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1 Abstract 33 

 34 

Background 35 

Aging is characterized by anatomical, physiological and biological changes which can impact drug 36 

kinetics. Elderly are often excluded from clinical trials and knowledge about drug kinetics and drug-drug 37 

interaction (DDI) magnitudes are sparse. Physiologically based pharmacokinetic (PBPK) modelling can 38 

overcome this clinical limitation but detailed descriptions of the population characteristics are essential 39 

to adequately inform models. 40 

 41 

Objective 42 

The objective of this work was to develop and verify a population database for aging Caucasians 43 

considering anatomical, physiological and biological system parameters required to inform a PBPK 44 

model with included population variability. 45 

 46 

Methods 47 

A structured literature search was performed to analyze age-dependent changes of system parameters. 48 

All collated data were carefully analyzed, and descriptive, mathematical equations were derived. 49 

 50 

Results 51 

A total of 362 studies were found of which 318 studies were included in the analysis as they reported 52 

rich data for anthropometric parameters and specific organs (e.g. liver). Continuous functions could be 53 

derived for most system parameters describing a Caucasian population from 20 to 99 years with 54 

variability. Areas with sparse data have been identified like tissue composition, but knowledge gaps 55 

were filled with plausible, qualified assumptions. The developed population was implemented in Matlab® 56 

and estimated system parameters from 1,000 virtual individuals were in accordance to independent 57 

observed data showing the robustness of the developed population. 58 

 59 

Conclusion 60 

The developed repository for aging subjects provides a singular specific source for key system 61 

parameters needed for PBPK modelling and can in turn be used to investigate drug kinetics and DDI 62 

magnitudes in elderly. 63 
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2 Key Points 64 

The developed repository provides a singular, specific source of age-dependent anatomical, 65 

physiological and biological system parameters required to inform physiologically based 66 

pharmacokinetic (PBPK) models. The parameters and associated developed equations can be 67 

implemented into existing PBPK frameworks and can be used to overcome sparse clinical data in aging 68 

subjects older than 65 years to investigate age-dependent changes in drug kinetics and drug-drug 69 

interaction (DDI) magnitudes in silico. These parameterized and informed PBPK models for elderly can 70 

provide more rational frameworks for dose-adjustments to overcome DDIs.  71 
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3 Introduction 72 

In recent years the number of elderly people worldwide has increased substantially [1]. An “elderly” is 73 

defined as being above the age of 65 years [2], which is in line with the age of retirement in most Western 74 

countries. Older individuals are prone to multi-morbidities and hence polypharmacy and in turn for drug-75 

drug interactions (DDIs) [3-5], however there is no clear pharmacological or clinical definition of “elderly” 76 

[6]. Often, elderly subjects are excluded from clinical trials resulting in a general lack of knowledge about 77 

the efficacy, safety and kinetics of a drug at different ages [7]. There are certain age-dependent 78 

anatomical, physiological and biochemical changes influencing drug kinetics including decreased kidney 79 

weight [8], reduced renal blood flow [9], reduced glomerular filtration rate (GFR) [10] and reduction in 80 

liver volume and blood flow [11-13]. For other parameters like enzyme and transporter abundance, or 81 

the concentration of plasma binding proteins, data are limited, contradictory or missing. In addition, it is 82 

difficult to investigate aging, because other environmental and behavioral factors like diseases, food and 83 

smoking can have effects themselves or enhance the aging process [14].  84 

 85 

Physiologically based pharmacokinetic modelling can help to overcome the lack of clinical data and to 86 

understand drug absorption, distribution, metabolism and elimination at different ages. Furthermore, 87 

PBPK models predict DDI magnitudes in aging individuals and support more rational identification of 88 

dose adjustments to overcome DDIs. To develop a PBPK model, system data (where system refers to 89 

the population of interest – e.g. elderly) are required to inform the PBPK model. To generate reliable 90 

predictions, a comprehensive description of system characteristics is essential to fully represent the 91 

population of interest. To date only two databases have been published to inform PBPK models for 92 

elderly, of which one does not distinguish between ethnicities [15] and the other does not consider 93 

population variability and provides no descriptive functions of physiological and anatomical parameters 94 

[16]. 95 

 96 

The objective of this work was to collate and analyze data from the literature with the view to create a 97 

new comprehensive description of system characteristics for PBPK modelling and to address 98 

shortcomings of previous databases. The work focuses on parameters to inform a PBPK model for aging 99 

people that considers population variability, and to develop continuous functions describing 100 

physiological parameters of interest between 20 and 99 years of age for a Caucasian population. 101 
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4 Methods 102 

4.1 Data source 103 

A structured literature search was performed using the MEDLINE database for age-dependency of 104 

anatomical, physiological and biological parameters required to inform a PBPK model for aging subjects. 105 

Keywords used were “aging”, “elderly” or “geriatric” plus the parameter of interest (Supplement S-Table 106 

1 and S-Figure 1 for the investigated compartments of a PBPK model). No restrictions were applied 107 

regarding the language or the publication year of the article. Abstracts were screened, and studies 108 

included if the study population were Caucasians, at least age has been reported in addition to the 109 

parameter of interest, and subjects were healthy or their disease / organ function was deemed unlikely 110 

to affect the parameter of interest like the effect of chronic liver disease on brain blood flow [17]. Studies 111 

performed with North Americans and Australians were considered if at least 80% of the study population 112 

were of European heritage. Studies including subjects over the age of 65 years should report at least a 113 

mean age in age decades. The reference list of chosen articles was manually screened to identify further 114 

references. 115 

4.2 Data analysis 116 

Data analysis was performed in Matlab® 2015b. The parameter of interest was analyzed in age decades. 117 

Data were converted to consistent units and a normal distribution was assumed for each parameter to 118 

make published data comparable. If a study reported median, minimum and maximum, data were 119 

converted to the arithmetic mean and standard deviation according to Hozo et al. [18] and if the 120 

interquartile range was given, the conversion was done according to Wan et al. [19].  121 

 122 

Collated data were separated into a development and verification dataset. Studies in the development 123 

dataset were required to report age, sex, body height, body weight and the ethnicity in addition to the 124 

parameter of interest as necessary covariates to describe correlations. Otherwise, studies with less 125 

reported covariates were used in the verification dataset. If at least three different studies covering the 126 

entire age range with at least one value in each age decade and all required covariates for the 127 

development dataset were available for a parameter of interest, the data was randomly separated into 128 

a development and a verification dataset. In the case of missing covariates like anthropometric 129 



 

 - 5 - 

parameters in the verification dataset or cardiac output for regional blood flow analysis, the covariates 130 

have been estimated by the derived equations following the approach by Williams & Leggett [20]. The 131 

body surface area was calculated according to DuBois & DuBois [21]. 132 

 133 

Weighted linear regression was performed to derive descriptive, continuous equations for the parameter 134 

of interest from 20 to 99 years considering age, sex, anthropometric parameters, location of the study, 135 

the publication year and methods of measurement as independent variables. Location was used as an 136 

independent variable to investigate if studies conducted in Europe, North America and Australia can be 137 

combined without bringing a bias into the data. Publication year has been used to investigate differences 138 

in key parameters (e.g. body weight) over the last century and if different methods used at different 139 

times have an impact. Data obtained by different methods have only been pooled when there was no 140 

significant difference between methods. 141 

 142 

Linear, polynomial and exponential functions were investigated during regression analysis. Covariates 143 

with a p-value below 0.01 have been considered as significant. Visual and numerical regression 144 

diagnostic were performed. The corrected Aikake’s information criterion was used for numerical 145 

diagnostics to select the best fitted function [22]. Variability for each parameter was calculated as the 146 

weighted coefficient of variance (CV) of the development dataset for each individual mean and standard 147 

deviation and it was visually investigated whether age has an impact on variability. The variability of a 148 

parameter of interest is estimated by the variability of the covariates describing the parameter of interest 149 

and if necessary additional random variability to fully capture the observed variability. 150 

 151 

The derived equations for all parameters necessary to describe a white population have been 152 

implemented in Matlab® and 1,000 virtual men and women have been created and the estimated system 153 

parameters have been compared to the independent verification dataset. Normal distribution with the 154 

derived CV (Tab. 1) was used to describe variability of the parameter of interest. Furthermore, it was 155 

analyzed if the sum of organ weights and regional blood flows do not exceed body weight and cardiac 156 

output. 157 
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5 Results 158 

A total of 362 studies were found of which 318 studies were included in the analysis. Studies were 159 

mostly excluded because age or ethnicity of the study population were insufficiently defined. Rich data 160 

were found for anthropometric parameters, adipose, brain, heart, kidney and liver. Data for some 161 

regional blood flows, such as to the bone, and in general composition of tissues were difficult to obtain 162 

from the literature. Although including data for centenarians, most of the data were found for ages up to 163 

the mid-eighties identifying a general knowledge gap for the very old. Derived equations and the 164 

population variability expressed as the CV can be found in Table 1. Detailed information on the number 165 

of subjects in each age decade used in the development dataset (S-Table 2), the number of total studies 166 

in the development and verification dataset, the methods used to measure the parameter of interest, the 167 

study location and the references (S-Table 4) can be found for each investigated parameter in the 168 

supplement. 169 

5.1 Age and sex distribution 170 

Data regarding age and sex distribution were taken from Eurostat [23] for all 28 member states of the 171 

European Union and the Federal Office for Statistics of Switzerland [24] (Figure 1). The number of 172 

subjects in each age decade was found to be uniform between 20 and 59 years. The number of subjects 173 

declined from the age of 60 years, with only 2% of the Swiss population being above 90 years. A Weibull 174 

distribution with α = 1.55 and β = 61.73 best described the age distribution. The proportion of women 175 

was found to be 50% of the population in Europe till the age of 69 years and increased to over 80% for 176 

very old Swiss subjects above the age of 100 years. In all following equations, age is expressed in years 177 

and sex is either 0 for men or 1 for women.  178 

5.2 Body height and body weight 179 

Anthropometric data of 106,698 Caucasians have been analyzed in the developmental dataset [24-70] 180 

and the derived equation has been verified with data from 14,096 subjects [71-86]. The mean body 181 

height of Caucasians aged 20 to 59 years was 178 cm for men and 166 cm for women with a gender-182 

independent CV of 3.8%. Body height declined 2% per age decade from the age of 60 years (Figure 2). 183 

The difference between men and women was constant at all age ranges. Location was found to be a 184 



 

 - 7 - 

significant variable during regression, with lower height observed in Southern Europe, and an exclusion 185 

of data reported from Portugal, Spain and Italy led to a non-significance of location. 186 

 187 

The mean body weight of a Caucasian aged 20 to 49 years was 79.9 kg for men and 64.1 kg for women 188 

with a CV of 15.7% (Figure 2). Body weight increased in subjects in the 5th and 6th age decade about 189 

4% and decreased afterwards about 10% in each age decade. In women, the decline started one age 190 

decade later than in men. In contrast to body height, location was not significant for body weight, but 191 

publication year was with a significant increase since 2000. 192 

5.3 Liver 193 

5.3.1 Liver weight 194 

Liver is the major organ of metabolism. Liver weight was analyzed from over 3,000 subjects [29, 41, 51, 195 

52, 55, 69, 72, 78, 87, 88] and was found to be on average 1.78 kg in men and 1.49 kg in women with 196 

a CV of 23.7% till the age of 65 years. Thereafter, liver weight decreased by 10 to 15% in women per 197 

age decade reaching 1.03 kg at the age of 100 years. The decrease in men was around 20% per age 198 

decade reaching 1.01 kg on average in 90 years old individuals (Figure 3).  199 

 200 

5.3.2 Liver blood flow 201 

Absolute total liver blood flow decreased by 60% between 60 and 90 years in men and women, but 202 

relative to cardiac output the changes were only significant between 90 and 100 years of age [13, 89]. 203 

The age-dependent changes in total liver blood flow might come from changes of the splanchnic blood 204 

flow [77, 89-94] explaining observed differences in the first pass effect between young and old subjects 205 

[95-97]. The hepatic arterial blood flow appears to be constant with age [20, 89, 98]. 206 

 207 

5.3.3 In-vitro-in-vivo extrapolation factors 208 

PBPK models are informed by in-vitro-in-vivo extrapolation meaning that for instance the in vivo 209 

clearance is extrapolated from measured in vitro data. Hepatic scaling factors like the hepatocellularity 210 

(HPGL) or microsomal proteins per gram liver (MPPGL) are needed [99]. Barter et al. reported age-211 

dependent equations for HPGL [100] and MPPGL [101] with the oldest individuals in the analysis being 212 

between the mid-seventies and the early eighties.  213 
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 214 

5.3.4 Hepatic enzyme activity 215 

Studies concerning the age-dependency of hepatic CYP enzyme activity are sparse and contradictory. 216 

The biggest challenge is the high variability in hepatic CYP enzyme abundance [102, 103] and the small 217 

sample size generally used for analysis [104, 105]. In a recent large meta-analysis investigating hepatic 218 

CYP abundance to inform PBPK models, age was only a significant covariate for CYP2C9 [103]. It is 219 

worthwhile mentioning, that the different genotypes known for CYP2C9 increase the sample size needed 220 

to identify age-dependency even further. A significant age-dependency was detected for CYP1A2, 221 

CYP2D6 and CYP2E1 in a different study, but not for CYP2C9 [106]. In a third study, CYP1A2 activity 222 

was reported to be independent of age [107]. Consistent between different studies, CYP3A4 activity is 223 

reported to be independent of age [108-110].  224 

 225 

Posalek et al. investigated drug clearances in elderly for probe substrates like caffeine (CYP1A2), 226 

warfarin (CYP2C9), phenytoin (CYP2C19), desipramine (CYP2D6) and midazolam (CYP3A4) and 227 

found a clearance decrease of 30 to 40% in 70 years old subjects compared to young individuals, which 228 

can be explained by the decline in liver volume and blood flow rather than hepatic CYP enzyme activity 229 

[111]. In addition inflammation affects CYP enzyme activity [112] making it difficult to analyze data from 230 

non-healthy elderly.  231 

 232 

UGT enzyme activity is reported to be independent of age in the literature [106, 113-115]. Taken 233 

together, this lack of evidence and data to inform age dependency necessitates a more judicious 234 

approach to assume no age-dependent hepatic enzyme activity and thus assume the same values in 235 

aging subjects as in young individuals.  236 

 237 

5.3.5 Hepatic drug transporter activity 238 

Recently, a compact meta-analysis about hepatic drug transporter abundance to inform a PBPK model 239 

was published and age was tested as a covariate in the analysis and was reported to be not significant 240 

for any hepatic drug transporter [116]. In a PBPK model, we are interested in activity rather than 241 

abundance because the activity of enzymes and drug transporters can explain the observed data. If the 242 

abundance of transporter does not change, there might still be an age-dependent difference in transport 243 
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activity; however, these data are currently not available. Comparable to hepatic enzymes, it is therefore 244 

recommended to use the same activity in elderly as in young subjects. 245 

5.4 Kidney 246 

5.4.1 Kidney weight 247 

The literature search yielded nine different studies with a total of 1,620 data points measuring kidney 248 

weight after autopsy [29, 41, 42, 51, 52, 55, 69, 78, 85] (Figure 4A). The average kidney weight in young 249 

males and females was 0.318 kg with a CV of 19.3% and 0.259 kg with a CV of 23.2%, respectively. 250 

The reduction in kidney weight increased with age starting from 5% at the age of 70 years to 15% at the 251 

age of 80 years to 25% up to the age of 100 years in both genders. 252 

 253 

5.4.2 Kidney blood flow 254 

Absolute kidney blood flow decreased by 5 to 10% per age decade till the age of 65 years and thereafter 255 

decreased by 25% per age decade (Figure 4B) [77, 90, 94, 117-125]. Kidney blood flow relative to 256 

cardiac output was 19.7% in young men and decreased to 11.9% at the age of 85 years. The decrease 257 

was 5 to 20% per age decade. In women, the average kidney blood flow relative to cardiac output was 258 

16.5% and stayed constant till the age of 70 years. Thereafter, it decreased to 9.2% at the age of 85 259 

years. 260 

 261 

5.4.3 Glomerular filtration rate 262 

Only studies using inulin or 51Cr-EDTA as a biomarker for glomerular filtration rate have been considered 263 

in this work [117-123, 125-129]. Equations to estimate the glomerular filtration rate like Cockcroft-Gault 264 

[10] and the modification of diet in renal disease [130] use serum creatinine, which is problematic 265 

considering senile sarcopenia in aging subjects [131]. The average glomerular filtration rate was 266 

between 130 – 140 mL/min in men aged between 20 and 50 years and around 120 mL/min in women 267 

of the same age. In the 5th age decade, glomerular filtration rate declined in men to 115 mL/min, which 268 

was like the value in women (112 mL/min). Afterwards, the decline in glomerular filtration rate was 269 

roughly 10% per age decade independent of gender reaching 50% of the value of a young adult at the 270 

age of 90 years (Figure 4C). 271 
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5.5 Adipose 272 

5.5.1 Adipose weight 273 

Adipose weight is usually measured via X-ray absorptiometry and bioelectric impedance analysis. Data 274 

from 18 different studies from 12,323 subjects were available for the development dataset [25, 26, 36, 275 

37, 41, 42, 45-48, 57, 59, 60, 62, 65, 68, 73, 132]. In young men, adipose weight was on average 17.8 276 

kg with a CV of 24%. It increased by 5 to 10% per age decade to 22.9 kg at the age of 70 years. The 277 

CV increased to 28%. In young women, adipose weight was found to be 17.3 kg with a CV of 29%. 278 

Between 20 and 70 years, adipose weight increased to 25.2 kg with a CV of 37% in women and 279 

decreased again to 21.9 kg with a CV of 37% at the age of 85 years. 280 

 281 

5.5.2 Adipose blood flow 282 

Adipose blood flow increased from 5% in young to 9% in aged males and from 8% in young to 10% in 283 

aged females [133, 134]. 284 

5.6 Muscle 285 

5.6.1 Muscle weight 286 

Data from 11 different studies with 5,542 participants were available to analyze muscle weight, which 287 

was measured by X-ray absorptiometry and bioelectrical impedance analysis [26, 41, 42, 45, 50, 64, 73, 288 

79, 81, 83, 132]. The average muscle weight was 32.0 kg in men aged 20 to 65 years and 19.8 kg in 289 

women of the same age. Muscle weight decreased by 10% per age decade between 65 and 100 years. 290 

The CV was 11.8% and was similar for males and females. 291 

 292 

5.6.2 Muscle blood flow 293 

Only sparse data concerning muscle blood flow have been found in the literature which do not cover all 294 

age decades but suggesting 17.5% of cardiac output in men and 11.1% in women [135-138]. 295 
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5.7 Brain 296 

5.7.1 Brain weight 297 

Brain weight was analyzed by using data from eight different studies with 2,425 participants [29, 41, 42, 298 

51, 52, 55, 78, 139] and was found to be independent of age. The average brain weight was 1.39 kg in 299 

males and 1.28 kg in females with a gender-independent CV of 9%. 300 

 301 

5.7.2 Brain blood flow 302 

The literature search yielded 12 different studies with 956 participants for brain blood flow [140-151]. 303 

brain blood flow relative to cardiac output was 11.8% in men and 15.6% in women below the age of 40 304 

years and increased to 15.6% in men and 16.3% in women in the 4th age decade and was constant 305 

thereafter.  306 

5.8 Heart 307 

5.8.1 Heart weight 308 

Heart weight was analyzed using data from 10 different studies measuring heart weight after autopsy 309 

[29, 41, 42, 53, 55, 61, 69, 78, 152, 153] and increased in both, males and females, from 0.325 kg and 310 

0.241 kg at the age of 25 to 0.390 kg and 0.317 kg in the 9th age decade.  311 

 312 

5.8.2 Heart blood flow 313 

Blood flow to the heart relative to cardiac output increased from 5.5% at the age of 25 years to 12% at 314 

the age of 85 years in men and from 4.3% at the age of 25 years to 11.3% at the age of 70 years in 315 

women [154-159]. 316 

 317 

5.8.3 Cardiac output 318 

Cardiac output is the volume of blood being ejected by the heart per minute. Data from 12 studies 319 

involving 645 subjects were used to analyze cardiac output [39, 63, 70, 74, 77, 84, 90, 94, 135, 138, 320 

160, 161]. Cardiac output decreased from 352 L/h in 30 years old males and 312 L/h in young females 321 

between 5 and 10% every age decade to 258 L/h in aged males and 201 L/h in aged females (Figure 322 

5). The CV was similar between both genders with a value of 21.1%. 323 
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5.9 Blood 324 

5.9.1 Blood weight 325 

Blood weight was analyzed from seven different studies with 382 male and 179 female participants [27, 326 

30, 31, 44, 66, 75, 162]. In young males, blood weight was 5.8 kg with a CV of 10% and decreased to 327 

5.0 kg at the age of 90 years (Figure 6). In young women, blood weight was lower with 3.8 kg, but stayed 328 

constant over different age decades. At the age of 70 years, female blood weight was still 3.7 kg. The 329 

CV was like in men. 330 

 331 

5.9.2 Hematocrit 332 

Blood parameters that have been analyzed were hematocrit and the concentration of albumin and alpha-333 

acidic glycoprotein (Figure 6). Data of 1,752 subjects aged 21 till 90 years were available to analyze 334 

hematocrit [122, 142, 163-168]. Sex was the only significant covariate. Mean values were 0.443 ± 0.064 335 

for men and 0.410 ± 0.063 for women. 336 

 337 

5.9.3 Plasma binding protein concentration 338 

Alpha-acidic glycoprotein showed no significant covariate when analyzing data of 472 subjects aged 24 339 

to 90 years from five different studies [169-173]. The mean value was 0.798 g/L with a CV of 24.3%. 340 

 341 

Regression analysis of albumin yielded age as a significant covariate [169, 174-181] with an overall CV 342 

of 7.9%. Albumin concentration declined about 1.5% in each age decade. Malnutrition and acute 343 

illnesses, occurring both often in the elderly, can have a significant impact on albumin concentration 344 

complication the analysis of age-dependent albumin concentration [172, 174, 179],. Therefore, only data 345 

from apparently healthy subjects have been used in the analysis. 346 

5.10 Other organs 347 

Other organs like spleen and pancreas are not described in detail here, but the descriptive equations to 348 

describe an aging Caucasian population can be found in Table 1 and more detailed information can be 349 

found in the Supplement (S-Table 2, 3 and 4). 350 
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5.11 Tissue composition 351 

Tissue composition is an important parameter to predict the distribution of drugs into tissues in a PBPK 352 

model. Data regarding the composition of lipids and proteins of tissues are generally sparse in humans 353 

and no age-dependency was found in the literature, but total body water, total extracellular water and 354 

total body cell mass have been reported in aging subjects [26, 37, 65, 182-190]. Age-independent 355 

fraction of tissue volumes [191] coupled with age-dynamic tissue volumes have been used to calculate 356 

the vascular and interstitial space of tissues (representing the extracellular water) and the intracellular 357 

space minus the intracellular water (representing the cell mass). Organ densities to convert organ weight 358 

obtained from the derived functions to volumes have been used from the ICRP database [192, 193]. 359 

The weighted mean of the organ density and the fraction of tissue compositions of investigated organs 360 

was used for the remaining organ. The values of all tissues have been summed up and compared 361 

against the observed data (Figure 7). The prediction of total body water and total cell mass were well in 362 

agreement with the observed data leading to the conclusion that the made assumptions were adequate 363 

to inform a PBPK model. 364 

5.12 Parameters affecting drug absorption 365 

Physiological parameters having an impact on drug absorption are gastric pH, gastric emptying and 366 

small intestinal transit time, the surface area available for absorption, and intestinal enzyme and drug 367 

transporter abundance. 368 

 369 

5.12.1 Gastric pH 370 

One study compared gastric pH in fasted and fed state between 24 young, healthy volunteers aged 21 371 

to 35 years [194] and 79 subjects aged 65 to 83 years [195]. The study reported a significant age-372 

dependent difference between the median pH in fasted state (interquartile range) with 1.72 (1.08 – 2.34) 373 

in the young group and 1.28 (0.90 – 5.60) in the aged group. The variability appeared to be much greater 374 

in older individuals, but the difference in sample size need to be kept in mind. Another study in young 375 

subjects below the age of 65 years found a median fasted pH of 1.45 [196]. To conclude, it is doubtful 376 

if there is an age-dependency of gastric pH in fasted state and more data need to be generated and 377 

included in the meta-analysis to judge the age effect properly. Gastric pH in fed state was not 378 

significantly different between young and elderly subjects [194, 195], but the decline of gastric pH from 379 
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fed to fasted state was exponential with a half-life of 1.8 hours (CV: 65%) in young and was linear with 380 

a half-life of 3.0 hours (CV: 80%) in aging subjects [195]. 8% of Caucasians are achlorhydric meaning 381 

they do not secret hydrochloric acid in the gastric juice [197] and thus having a gastric pH at fasted state 382 

of 7.1 [195]. In Japanese, the number of achlorhydric subjects increases with age [198], but this appears 383 

not to be the case in healthy aging Caucasians [195].  384 

 385 

5.12.2 Gastric emptying time 386 

Reports in the literature about gastric emptying time are contradictory. Some studies report a slower 387 

gastric emptying time [199, 200] in aging subjects, some report no changes [201, 202] and some a faster 388 

rate [203, 204]. A lot of influencing factors exist for gastric emptying time like gastric pH [205], particle 389 

size [203] and food [202, 203, 206] making it difficult to analyze age-dependency. Furthermore, gastric 390 

emptying has a circadian rhythm making a difference if the study is conducted in the morning or in the 391 

evening [207]. Two studies have investigated gastric emptying time after fluid and food intake in young 392 

controls and aging subjects [206, 208]. Both studies used the same marker, the same method and both 393 

started in the morning. Gastric emptying time was different between fluids and food but did not show 394 

any age-dependency, which was verified by the regression analysis. Therefore, it is recommended to 395 

use the same gastric emptying time in aging subjects as in young individuals. 396 

 397 

5.12.3 Small intestinal transit time 398 

Small intestinal transit time appears to be independent of age and a fixed value can be used to inform 399 

a PBPK model [209, 210]. 400 

 401 

5.12.4 Passive permeability 402 

The mucosal area is reported to decline with age [211, 212], but enterocytes and villi appear to be 403 

unchanged [212]. Malnutrition, disease and drug intake could alter the mucosa and need to be carefully 404 

considered when investigating age-dependency. Passive permeability was reported to be impaired in 405 

aging subjects [211], but two studies investigating mannitol and lactulose, two carbohydrates which are 406 

passively absorbed, showed no difference in passive permeability between young controls and aging 407 

subjects after correcting the data for the age-dependent decline in glomerular filtration rate [213, 214]. 408 
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It is therefore assumed that neither the surface area available for passive diffusion nor the rate of passive 409 

diffusion differ in aging subjects compared to young individuals. 410 

 411 

5.12.5 Intestinal enzyme and drug transporter abundance 412 

Data regarding intestinal enzyme and drug transporter abundance are generally sparse and therefore 413 

age-dependency cannot be analyzed sufficiently. 414 
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6 Discussion 415 

The described population database for aging subjects summarizes anatomical, physiological and 416 

biological system parameters required to inform PBPK modelling. Descriptive, continuous functions for 417 

systems parameters from the age of 20 to 99 years have been derived and verified with observed data 418 

extracted from peer-reviewed literature. Population variability was considered for each parameter. 419 

 420 

Two previous databases have been described in the literature for aging individuals. Thompson et al. 421 

gathered extensive data from the literature, but the authors did not considered different ethnic groups 422 

and combined data from Caucasians, Latin-Americans and Asians [15]. However, it is known that 423 

ethnicity can have a significant impact on system parameters, for instance hepatic enzyme abundance, 424 

and therefore on clearance prediction [215]. Schlender et al. published recently a database for elderly 425 

individuals further processing the data from Thompson et al. for Caucasians only [16]. A limitation of this 426 

study is that only values for organ weight and blood flow for each age decade were considered making 427 

it difficult to extrapolate to other ages of interest. Furthermore, population variability of system 428 

parameters was not considered by Schlender et al., which is an essential element for reasonable 429 

predictions of drug kinetics using PBPK models [216].  430 

 431 

One notable novelty of the presented repository for Caucasian subjects are the derived continuous 432 

functions that allow prediction for a population from 20 to 99 years of age. The advantage of continuous 433 

functions is the creation of only one population with one distinct value at a certain age. If two separated 434 

populations would have been built with one representing young subjects from 20 to 65 years and one 435 

elderly individuals from 65 to 99 years, there would be two separated equations calculating system 436 

parameters at the age of 65 which might lead to un-physiological steps. Another advantage for the 437 

prediction of monoclonal antibody kinetics or long-term drug therapies could be to introduce time-varying 438 

physiology [217] so that subjects age during the time of the simulation.  439 

 440 

A few limitations need to be acknowledged. Data from individuals over the age of 85 are sparse (S-441 

Table 2 in the Supplement) meaning the derived equations could be less robust and extrapolation to 442 

older ages might be difficult. However, data for centenarians have been included for some system 443 

parameters [78] and were adequately estimated by the derived functions. Clinical studies are usually 444 

not performed in the very old making it impossible to verify the described population by analyzing drug 445 
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kinetics. It is therefore recommended to use the described repository with caution at older ages. This 446 

holds particularly true for regional blood flows to adipose, heart, muscle and skin, because almost no 447 

geriatric data are currently available in the literature.  448 

 449 

Another area with sparse data, where more research is needed in the future, is tissue composition being 450 

important to predict the distribution into tissues accurately. It was shown that the assumptions used in 451 

this work are plausible for total body water and cell mass (Figure 7), however, exception for single 452 

tissues cannot be excluded and data for lipid composition in the elderly were generally not found in the 453 

literature. 454 

 455 

The analysis of system parameters to inform a PBPK model for aging Caucasians was complicated by 456 

the fact that some studies combine age groups together, meaning individuals aged 65 to 100 years 457 

might have been included, but only a mean age is given. This can lead to a bias in the data and hinders 458 

the characterization of age-dependent changes. Reports that insufficiently described age should 459 

generally be excluded unless no other data are available. Furthermore, ethnicity, particular in European 460 

studies, is not always clearly defined and need to be assumed from the given study location.  461 

 462 

Predictions of system parameters become more robust when model parameters are correlated with 463 

each other and covariability can be described [218, 219]. To obtain such descriptive correlations, studies 464 

need to report important covariates, which is unfortunately not always the case. Weighted regression 465 

analysis has been used to correlate parameters and to receive a more robust aging population. Linear 466 

regression can only describe linear relationships, however, using data transformation such as logarithm 467 

might compensate. Using regression, it is easy to overfit and model the noise in the data rather than the 468 

relationship between parameters. In this work, the corrected Akaike’s information criterion was used to 469 

select the best performing function among the tested ones, which in contrast to the coefficient of 470 

determination exhibits no bias to higher parameterized models. Another limitation of regression analysis 471 

is its sensitivity towards outliers. Visual inspection of the estimated mean and variability of each 472 

parameter compared to observed data in this work, did show an adequate fit all investigated parameters 473 

(Figure 2 to 7).  474 

 475 

 476 
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The evaluation of variability was further complicated by being unable to set boundaries for publication 477 

year and study location. For a few parameters, for instance blood weight, data were only available from 478 

specific regions (e.g. United States) and from the 1950s. Both, location and publication year have 479 

therefore been used as independent variables during regression and their impact has been quantified 480 

when sufficient data were available. Body height and body weight are key parameters to describe a 481 

population adequately and data from 106,698 individuals were available. Location was found to have 482 

an impact to body height, with lower height correlated with Southern Europe. Otherwise, location was 483 

not a significant covariate for any variable and therefore combining data of studies conducted in Europe, 484 

the United States and Australia appears not to bring a bias into the data. However, the derived equations 485 

should not be used to predict aging Africans or Asians as aging processes might be different. Publication 486 

year had a significant impact on body weight showing the weight increase particularly in the last ten 487 

years. Consequently, the developed population will require constant updates to include future potential 488 

changes like body weight. 489 

 490 

A challenge when studying older individuals is that the definition of elderly is not universal. The WHO 491 

specifies elderly as being above the age of 65 years [2], which is in accordance with the age of retirement 492 

in most Western countries, but a clear pharmacological or clinical age-cut off is missing [6]. For some 493 

patient groups, like people infected with HIV, the age cut-off is even as early as 50 years [220]. We 494 

compared organs parameters important for drug disposition for 50 and 70 years old men and women 495 

with 30 years old subjects (Figure 8). There is a progressive decline in relevant system parameters, 496 

such as adipose weight, liver and kidney blood flow, with age. However, it is challenging to conclude a 497 

“pharmacological” or “clinical” age cut-off for elderly based on the age-dependent changes in anatomical 498 

and physiological parameters, because it is unknown when those changes affect drug kinetics 499 

significantly. No study has been undertaken to compare pharmacokinetics of a drug between different 500 

age decades and correlate those data to age-dependent changes of organ parameters. Furthermore, 501 

elderly subjects included in clinical trials can have diseases influencing the parameter of interest. It is 502 

therefore a challenge to define “healthy” in terms of an aged person. 503 

 504 

Despite the limitations, in this work it was possible to derive descriptive, continuous functions to generate 505 

a virtual population from 20 to 99 years in accordance to observed, independent data. Elderly are a 506 

growing vulnerable patient population with a high frequency of co-morbidities and in turn polypharmacy. 507 
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However, aging subjects are often excluded from clinical trials and knowledge concerning drug kinetics 508 

and DDI magnitudes are scarce. The developed population database can be implemented into existing 509 

PBPK frameworks and can in turn be used to predict drug kinetics and DDI magnitudes in aging subjects 510 

overcoming the lack of clinical data and providing a rational framework for dose optimization to 511 

overcome DDIs.  512 
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7 Conclusions 513 

The population database for aging subjects presented in this work can be implemented into existing 514 

PBPK frameworks and allows the prediction of drug kinetics and DDI magnitudes in elderly. It provides 515 

descriptive, continuous functions for anatomical and physiological parameters from 20 to 99 years 516 

necessary to inform PBPK models and provides a view of the current literature concerning metabolizing 517 

enzymes and drug transporters in aging individuals. Furthermore, population variability is considered for 518 

all system parameters providing a framework for realistic pharmacokinetic predictions.  519 

 520 
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11 Figures 1093 

 1094 

Figure 1: Proportion of subjects (1A) and proportion of women (1B) per age decade. Data are from the 1095 
28-member states of the European Union (black bars) and Switzerland (white bars) 1096 
 1097 

 1098 

 1099 

 1100 

Figure 2: Body height (2A) and body weight (2B) per age decade in an aging population. The blue, red 1101 
and black lines represent the predicted mean of virtual males, virtual females and from all virtual 1102 
subjects, respectively. The dashed lines represent the 5 and 95% percentile of the predictions. Stars 1103 
show observed data from the development and circles represent overserved data from the independent 1104 
verification dataset. The size of the stars and circles indicates the size of the studied population 1105 
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 1106 

 1107 

Figure 3: Liver weight (3A) and liver blood flow (3B) per age decade in an aging population. The blue, 1108 
red and black lines represent the predicted mean of virtual males, virtual females and from all virtual 1109 
subjects, respectively. The dashed lines represent the 5 and 95% percentile of the predictions. Stars 1110 
show observed data from the development and circles represent observed data from the independent 1111 
verification dataset. Black circles represent data from an undefined gender population. The size of the 1112 
stars and circles indicates the size of the studied population 1113 
 1114 
 1115 
 1116 

 1117 

Figure 4: Kidney weight (4A), kidney blood flow (4B) and glomerular filtration rate (4C) per age decade 1118 
in an aging population. The blue, red and black lines represent the predicted mean of virtual males, 1119 
virtual females and from all virtual subjects, respectively. The dashed lines represent the 5 and 95% 1120 
percentile of the predictions. Stars show observed data from the development and circles represent 1121 
observed data from the independent verification dataset. Black circles represent data from an undefined 1122 
gender population. The size of the stars and circles indicates the size of the studied population 1123 
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 1124 

 1125 

Figure 5: Cardiac output per age decade in an aging population. The blue, red and black lines represent 1126 
the predicted mean of virtual males, virtual females and from all virtual subjects, respectively. The 1127 
dashed lines represent the 5 and 95% percentile of the predictions. Stars show observed data from the 1128 
development and circles represent observed data from the independent verification dataset. The size of 1129 
the stars and circles indicates the size of the studied population 1130 
 1131 

 1132 

 1133 

Figure 6: Blood weight (6A), hematocrit (6B), albumin (6C) and alpha-acid glycoprotein (6D) 1134 
concentration per age decade in an aging population. The blue, red and black lines represent the 1135 
predicted mean of virtual males, virtual females and from all virtual subjects, respectively. The dashed 1136 
lines represent the 5 and 95% percentile of the predictions. Stars show observed data from the 1137 
development and circles represent overserved data from the independent verification dataset. Black 1138 
circles represent data from an undefined gender population. The size of the stars and circles indicates 1139 
the size of the studied population 1140 
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 1141 

Figure 7: Total body water (7A) and total body cell mass (7B) per age decade in an aging population. 1142 
The blue, red and black lines represent the predicted mean of virtual males, virtual females and from all 1143 
virtual subjects, respectively. The dashed lines represent the 5 and 95% percentile of the predictions. 1144 
Stars show observed data from the development and circles represent observed data from the 1145 
independent verification dataset. The size of the stars and circles indicates the size of the studied 1146 
population  1147 
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 1149 

 1150 

Figure 8: Comparison of a 50 and 70 years old man (8A and 8B) and women (8C and 8D) with a 30 1151 
years old subject, who was arbitrarily chosen to represent a young individual. Blood flow is relative to 1152 
cardiac output and all values are relative to a 30 years old man and women, respectively  1153 
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12 Tables 1154 

 1155 

Table. 1: Descriptive equations and population variability for anatomical, physiological and biological 1156 
parameters necessary to inform a PBPK model. Virtual subjects from 20 to 99 years can be generated. 1157 
Blood flows are relative to cardiac output and the variability is only propagated from cardiac output. m 1158 
indicates male and f female, when there was a gender-related difference in the CV 1159 

Parameter Unit Descriptive equation CV [%] 

Body height cm −0.0039 × 𝐴𝑔𝑒2 + 0.238 × 𝐴𝑔𝑒 − 12.5 × 𝑆𝑒𝑥 + 176 3.8 

Body weight kg 
−0.0039 × 𝐴𝑔𝑒2 + 1.12 × 𝐵𝑜𝑑𝑦 ℎ𝑒𝑖𝑔ℎ𝑡 + 0.611 ×
𝐴𝑔𝑒 − 0.424 × 𝑆𝑒𝑥 − 137  

15.2 

Lung weight kg 𝑒(0.028×𝐵𝑜𝑑𝑦 ℎ𝑒𝑖𝑔ℎ𝑡+0.0077×𝐴𝑔𝑒−5.6) 0 

Adipose weight kg 
0.68 × 𝐵𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 − 0.56 × 𝐵𝑜𝑑𝑦 ℎ𝑒𝑖𝑔ℎ𝑡 + 6.1 ×
𝑆𝑒𝑥 + 65   

29.6 

Bone weight kg 𝑒(0.024×𝐵𝑜𝑑𝑦 ℎ𝑒𝑖𝑔ℎ𝑡−1.9) 13.2 

Brain weight kg 𝑒−0.0075×𝐴𝑔𝑒+0.0078×𝐵𝑜𝑑𝑦 ℎ𝑒𝑖𝑔ℎ𝑡−0.97 9.0 

Gonad weight kg 
−0.00034 × 𝐵𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 − 0.00022 × 𝐴𝑔𝑒 − 0.03 ×
𝑆𝑒𝑥 + 0.072  

34.8 

Heart weight kg 0.34 × 𝐵𝑆𝐴 + 0.0018 × 𝐴𝑔𝑒 − 0.36 
17.9 (m), 
22.7 (f) 

Kidney weight kg −0.00038 × 𝐴𝑔𝑒 − 0.056 × 𝑆𝑒𝑥 + 0.33 
19.3 (m), 
23.2 (f) 

Muscle weight kg 17.9 × 𝐵𝑆𝐴 − 0.0667 × 𝐴𝑔𝑒 − 5.68 × 𝑆𝑒𝑥 − 1.22  11.8 

Skin weight kg 𝑒(−0.0058×𝐴𝑔𝑒−0.37×𝑆𝑒𝑥+1.13)  8.3 

Thymus weight kg 0.0221 44.8 

Gut weight kg 3𝐸−06  ×  𝐵𝑜𝑑𝑦 ℎ𝑒𝑖𝑔ℎ𝑡2.49  7.3 

Spleen weight kg 𝑒1.13×𝐵𝑆𝐴−3.93  51.7 

Pancreas weight kg 0.103  27.8 

Liver weight kg 𝑒(0.87×𝐵𝑆𝐴−0.0014×𝐴𝑔𝑒−1.0)  23.7 

Blood weight kg 𝑒(0.067×𝐵𝑆𝐴−0.0025×𝐴𝑔𝑒−0.38×𝑆𝑒𝑥+1.7)  10.4 

Cardiac output (CO) L/h 159 ×  𝐵𝑆𝐴 − 1.56 × 𝐴𝑔𝑒 + 114 21.1 

Adipose blood flow % of CO (0.044 + 0.027 × 𝑆𝑒𝑥) × 𝐴𝑔𝑒 + 2.4 × 𝑆𝑒𝑥 + 3.9   

Bone blood flow % of CO 5  

Brain blood flow % of CO 𝑒−0.48×𝐵𝑆𝐴+0.04×𝑆𝑒𝑥+3.5  

Gonad blood flow % of CO −0.03 × 𝑆𝑒𝑥 + 0.05  

Heart blood flow % of CO −0.72 × 𝐵𝑜𝑑𝑦 ℎ𝑒𝑖𝑔ℎ𝑡 − 10 × 𝑆𝑒𝑥 + 134  

Kidney blood flow % of CO −8.7 × 𝐵𝑆𝐴 + 0.29 × 𝐵𝑜𝑑𝑦 ℎ𝑒𝑖𝑔ℎ𝑡 − 0.081 × 𝐴𝑔𝑒 − 13   

Muscle blood flow % of CO −6.4 × 𝑆𝑒𝑥 + 17.5  

Skin blood flow % of CO 5  

Thymus blood flow % of CO 1.5  

Gut blood flow % of CO 2 × 𝑆𝑒𝑥 + 14  
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Parameter Unit Descriptive equation CV [%] 

Spleen blood flow % of CO 3  

Pancreas blood flow % of CO 1  

Liver blood flow % of CO −0.108 × 𝐴𝑔𝑒 + 1.04 × 𝑆𝑒𝑥 + 27.9   

Albumin g/L −0.0709 × 𝐴𝑔𝑒 + 47.7  7.9 

GFR mL/min 𝑒−0.0079×𝐴𝑔𝑒+0.5×𝐵𝑆𝐴+4.2  14.7 

 1160 


