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Malaria and the ‘last’ parasite: how can 
technology help?
Ngoc Minh Pham1 , Walter Karlen1, Hans‑Peter Beck2,3* and Emmanuel Delamarche4*

Abstract 

Malaria, together with HIV/AIDS, tuberculosis and hepatitis are the four most deadly infectious diseases globally. 
Progress in eliminating malaria has saved millions of lives, but also creates new challenges in detecting the ‘last para‑
site’. Effective and accurate detection of malaria infections, both in symptomatic and asymptomatic individuals are 
needed. In this review, the current progress in developing new diagnostic tools to fight malaria is presented. An ideal 
rapid test for malaria elimination is envisioned with examples to demonstrate how innovative technologies can assist 
the global defeat against this disease. Diagnostic gaps where technology can bring an impact to the elimination cam‑
paign for malaria are identified. Finally, how a combination of microfluidic‑based technologies and smartphone‑based 
read‑outs could potentially represent the next generation of rapid diagnostic tests is discussed.
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The burden of malaria
The first record of malaria fevers dates back to the 5th 
century BC [1]. Today, malaria remains one of the four 
most life-threatening infectious diseases worldwide, 
together with tuberculosis, HIV/AIDS and hepatitis [2]. 
Latest data published by the World Health Organiza-
tion (WHO) are staggering: more than 216 million cases 
in 91 countries and more than 400,000 deaths occurred 
globally in 2016 [3]. These figures are the same as in 
2015, indicating that despite the unprecedented efforts 
in recent years, progress has stalled. This calls for more 
effective tools to reduce malaria and finally to eliminate 
this scourge. If this historical milestone can be accom-
plished, it could save the global economies $2 trillion by 
2040 [4].

Current diagnostic technologies 
and the challenges of detecting the ‘last’ parasite
This review only focuses on relevant innovative diag-
nostic technologies for malaria elimination settings 
where the malaria transmission is low; therefore, there 

is a critical need to detect asymptomatic individuals. 
Together with other effective interventions, ultra-sen-
sitive rapid diagnostic tests are much needed to iden-
tify the invisible reservoirs. The role of innovative tools 
becomes crucial in the fight against malaria and the 
WHO identifies three strategic pillars (universal access to 
prevention, drugs and diagnosis, elimination and surveil-
lance), of which accurate and effective diagnostics at the 
point-of-care (POC) is the first step towards appropriate 
diagnosis and treatment for malaria infection [5, 6].

Table  1 compares the performance of currently avail-
able malaria diagnostic tests for case management and 
surveillance. The landscape for malaria diagnosis can 
be divided into two main groups, POC methods in case 
management and laboratory-based methods for surveil-
lance [7]. In case management, microscopy and RDTs 
are the two diagnostic methods that are recommended 
in primary settings whilst highly sensitive RDTs and 
molecular diagnostics [polymerase chain reaction (PCR) 
and loop mediated isothermal amplification (LAMP)] 
are often used in laboratory settings [8]. While present-
ing ultra-sensitivity (less than 2 parasites/μL for both 
Pan and Pf-LAMP) in the field [9, 10], implementing 
malaria diagnostic tools in the field still requires address-
ing of several critical challenges such as simplified sample 
preparation steps, ready to use kits that require no cold 
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chain [11]. Further, there is no reported literature refer-
ring to the use of malaria LAMP as a diagnostic tool in 
populations, or of being endorsed and procured by any 
programs or governments. In the meantime, also being 
less sensitive, conventional RDTs are at much lower cost 
of approximately 1 $USD per test [12]. Field studies have 
shown that POC methods such as microscopy and rapid 
diagnostic tests (RDTs) are effective in low-resource set-
tings (LRS) [10, 13–25].

Microscopy
Microscopy is the reference standard for visualization of 
parasites in blood smears with an analytical sensitivity 
under normal circumstances approximately tenfold infe-
rior than that of molecular testing [26]. Microscope has 
been commonly used as a diagnostic tool in peripheral 
health centres for various reasons, including availability 
[27]. However, the quality of such diagnosis depends on 
the availability and skills of trained microscopists, which 
might not always be available in the LRS, where malaria 
is endemic.

Rapid diagnostic tests
Field studies have confirmed the benefits of introducing 
RDTs into routine testing such as better case manage-
ment, improved adherence to test results, and having 
more rational treatments [28, 29]. Characteristics of 
current malaria RDTs are summarized in Table  2. Key 
advantages of RDTs are the ease to use and quick result 

delivery time (15–20  min). Unlike PCR or microscopy, 
RDTs detect circulating antigen; therefore they can also 
be used to detect placental malaria [30]. Diagnosis of 
malaria in pregnancy is challenging because of placental 
sequestration, which is specific to Plasmodium falcipa-
rum infections, can make microscopy detection of para-
sites difficult.

Table 1 Characteristics of current malaria diagnostic tools used in case management and surveillance

p/µL parasites/µL, LoD limit of detection, CI confidence interval

LoD (p/µL 
or ng mL−1)

Sensitivity (%) 
(95% CI)

Specificity 
(%) (95% 
CI)

Cost ($US/test) Time Other requirements

Instrument Test

Case management

 Microscopy Expert: 4–20 [18] Depends on microscopist ~ 3000 0.12–0.40 [19] 60 min [18] Trained personnel, 
microscope, Giemsa 
stain [18]

Average: 50–200 
[19]

 RDTs Existing RDTs: 
100 p/µL [22]

Latest product: 
80 pg/mL for 
PfHRP2 [21]

> 85% depending 
on species [19]

> 99% [19] No need for expensive 
instrument

0.55–1.50 [18] 20 min [20] Test kit, appropriate 
storage conditions 
[18]

Surveillance

 RDTs Latest product: 
80 pg/mL for 
PfHRP2 [21]

> 85% depending 
on species [19]

> 99% [19] No need for expensive 
instrument

0.55–1.50 [18] 20 min [20] Test kit, appropriate 
storage conditions 
[18]

 PCR 26 (real‑time) [10] 100% [23] > 99% [10] Real‑time instru‑
ment > 20,000 [25]

1.5–4.0 [24] Standard > 6 h Thermocycler, cold 
chain, power, reagent 
grade, water

− 0.5 to 5. 0 [24]

 LAMP 47 (real‑time) [10] 83.3% [22] > 99% [22] Conventional PCR and 
LAMP ~ 5000 [25]

0.40–0.70 [24] 60 min Heat source for ampli‑
fication and DNA 
extraction

≥ 1 [23] 97.3% [24] > 85% [23]

Table 2 Advantages and disadvantages of current malaria 
RDTs

Advantage Disadvantages

Easy to use Deletion of the Pfhrp2 gene leads 
to false negative RDTs (particularly 
in populations in the Amazon 
region)

Low cost Lack of adequate sensitivity for 
detection of infection in asympto‑
matic individuals and/or prozone 
effect

Quick result delivery time 
(< 20 min)

Lack of heat stability when being 
stored in endemic settings

Portable and disposable Inability to differentiate non‑Pf 
malaria

Require minimal laboratory 
infrastructure, power or external 
equipment

Inability to distinguish current and 
past infections

Quick training Inability to quantify parasite density, 
especially for assessing severity of 
illness or monitoring treatment 
efficacy
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Although using the same technology of lateral flow 
immunoassays, the performance of malaria RDTs varies 
greatly from brand-to-brand, and lot-to-lot, especially 
with specimens having low parasite density (< 200 para-
sites/μL). In a collaboration between the Foundation for 
Innovative New Diagnostics (FIND), the WHO and the 
Centers for Disease Control and Prevention, 293 malaria 
RDTs were evaluated from 2008 to 2016 [31]. Most of 
the evaluated malaria RDTs detect P. falciparum histi-
dine-rich protein 2 (PfHRP2) or P. falciparum lactase 
dehydrogenase (PfpLDH). In the last round of evalua-
tion, anomalies that interfered with result interpretation 
were also recorded [31]. The most common anomalies 
were incomplete clearing and red background, which 
were observed in 48 and 24% of products. The second 
most common anomalies were failed migration of liquid, 
incomplete migration and patchy broken test lines, which 
occurred in 15, 11 and 11% of the products, respectively.

The performance of lateral flow-based RDTs depends 
on two main factors: the sensitivity and specificity of 
antibody-antigen combinations, and the ability to facili-
tate reliable liquid migration on the nitrocellulose mem-
brane. Much research has focused on new biomarker 
discovery [32–34], and only limited attention has been 
paid to reduce limitations imposed by the inhomoge-
neous migration of liquid across porous nitrocellulose 
membranes [35].

Figure  1 illustrates how unstructured the flow paths 
could be in a nitrocellulose membrane [36]. As the 
migration of liquid occurs in a porous network and is not 
actively controlled, a number of limitations arise: large 
volumes of sample needed, accumulation of reagents at 
the leading edge of the liquid flow, and increased cross-
reactivity [37]. It is, therefore, time to consider alterna-
tive options to facilitate a more precise liquid migration, 
hence more accurate test results.

Promising and alternative technologies for malaria 
detection
Table  3 summarizes six major classes of technologies 
used for detecting malaria and indicates their maturity 
levels. These technologies are individually reviewed in 
depth elsewhere [38] and most of them rely on stand-
ard concepts using immunoassays [39, 40], molecular 
diagnostics [41–49] and the visualization of parasites 
[50–53]. Table 4 provides specifications of some recently 
entered market malaria diagnostic [38]. Of those market-
ready products, four of them are molecular diagnostics, 
three are immunoassays and one is based on automated 
microscopy. Several promising proof-of-concepts for the 
next generation of malaria RDTs are emerging. For exam-
ple, prototypes have been built to detect the presence of 
haemozoin in blood sample [54–57]. Haemozoin crystals 

are produced by Plasmodium parasites as a final non-
toxic compound of haemoglobin metabolism. In a spe-
cific example, a portable light meter was built to image 
crystalized haemozoin pigment [58]. These pigments 
are birefringent, so the detection of haemozoin is based 
on rotating a plane of polarized light through them and 
observing anisotropic output of the light. The minimum 
concentration of haemozoin that could be detected with 
this polarized light system was 15  pg/mL, equivalent to 
30 parasites/μL of blood. Applications in the field are to 
be tested. 

Another example utilizes a portable breath analyzer: 
breaths of malaria-infected patients were found to con-
tain terpenes, a family of aromatic chemicals that are 
produced by parasites that can further attract mosquitoes 
[59, 60]. A pilot study in Malawi confirmed that these 
aromatic compounds could be transported into the lungs 
and hence could be detected in the exhalation of infected 
patients [61].

Despite being unquestionably novel, these abovemen-
tioned methods of detection still need to prove their 
practicality for POC in LRS and demonstrate a clini-
cally relevant limit of detection (LOD). For instance, in 
the breath analyzer, it would be useful to be able to con-
vert the level of terpenes detected in breath into parasite 
density.

Specifications for a new generation of malaria RDTs
Different settings require different target product pro-
files (TPP) [8]. Unlike previous malaria control cam-
paigns, the key characteristics of malaria elimination 
efforts are to interrupt endemic transmission and to 
prevent its re-establishment [62]. The Program for 

Fig. 1 Scanning electron micrograph showing the porousity of 
nitrocellulose membrane (Reprinted with permission from [36] 
copyright 2014 Royal Society of Chemistry)
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Appropriate Technology in Health (known as PATH) 
and FIND are pioneering the development and valida-
tion of sensitive rapid tests for mass screening in LRS. 

They also proposed a TPP for malaria RDTs in elimina-
tion settings, stating specific requirements for the ideal 
rapid tests according to concept of Affordable, Sensitive, 

Table 3 Examples of promising technologies for point-of-care diagnostics. table based on information contained in Ref [38]

Technology Early stage 
of R&D

Design and 
development

Evaluation
Regulatory 
approval(s) Piloting Post market 

surveillance
Laboratory Field application

Microscopy

Autoscope - 2015 [50]
Intellectual Ventures 
Laboratory

Foldscope [51]
Stanford University

Parasight - 2014 [52]
Sight Diagnostics

Commercially available 
malaria microscopy

Cellphone-based 
microscopy [53]
CellMic

Antigen 
detection

Highly sensitive Pf
RDTs - 2017 [39]
Alere

Fluorescent-based 
urine malaria test -
2015 [40]
Fyodor

Commercially available 
HRP2, pLDH and pan -
malaria RDTs (lateral flow 
assays)

Nucleic acid 
detection

NALFIA DIGMAL 
[41]
Diagmal Consortium

Saliva based test -
2015 [42]
John Hopkins & 
Ceres Nanosciences

Truelab - 2013 [43]
Molbio Diagnostics

Commercially available PCR 
& LAMP for research 
purposes

Accutas [44]
Auilia

Illumigence LAMP -
2016 [45]
Meridian

LabDisk - 2015 [46]
DiscoGnosis

NINA LAMP [47]
PATH

LAMP - 2012 [48]
Eiken & FIND

NANOMAL Q-POC 
[49]
QuantuMdx

Hemozoin 
detection

MRR -2015 [54]
Singapore - MIT

MOT - 2008 [55]
University of Exeter

VNB - 2015 [56]
Rice University

Magneto Optical -
2014 [57]
Budapest Univeristy

Spectroscopy
Breath test [61]
University of 
Washingon

Commercially available 
spectrometer

Serology ELISA
n/a

LAMP loop-mediated isothermal amplification, MRR magnetic resonance relaxometry, NINA non-instrumented nucleic acid amplification, MOT magneto-optical 
technology, VNB Homozoin-generated vapour nanobubble
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Specific, User-friendly, Equipment-free and Deliverable 
(ASSURED) [63]. The desired LOD is 5  parasites/µL or 
less, or concentration range of 6–12 ng/mL PfHRP2 [63]. 
For RDT developers it is important to note the caveat 
of the prozone phenomenon that might prevent detec-
tion of high parasite density [64]. Poor specificity could 
lead to over-treatment, thus depreciation of the intended 
value of RDTs (from public health perspectives); there-
fore, the required specificity for effective malaria diagno-
sis is at least 97% or ideally 99% [63].

Additional requirements for ideal RDTs are suitability 
and appropriateness for LRS where most malaria cases 
occur. To make an impact simplicity and affordability 
are of utmost importance. Simplicity means, the system 
should be equipment-free and should require very little 
resources [65]. A simple and automated test could obvi-
ate false results caused by user-errors [66]. Affordability 
is difficult to measure and depends on the cost–benefit 
equation of a specific situation. Also, tests should be 
designed to minimize impact of inappropriate storage 
conditions (2–40 °C) on reagent stability and usability of 
the devices [67].

Microfluidic technology for malaria POC testing
Microfluidics enable the miniaturization and simplifica-
tion of complicated analytical processes while consuming 
less reagents, minimizing waste, and requiring less sup-
porting instrumentation [68]. This stems out from the 
predictable behaviour of liquids at the microscale where 
flow is typically laminar. At microscale, minute amounts 

of liquids can be manipulated using microstructures, 
such as microvalves, micromixers or micropumps [69]. 
Low volumes of reagents, fast reaction times, compact 
and portable platforms are just a few advantages that 
make microfluidics technology attractive for POC appli-
cations [70, 71]. Figure 2 shows several examples demon-
strating the archetype of microfluidic-based diagnostics 
for POC applications, which is an integrated system com-
posed of a disposable unit (where analysis takes place) 
and a signal acquisition and processing module to pro-
cess the results. (a) [72], (b) [73], (c) [74].

Currently, microfluidic-based diagnostic devices can 
be divided into two categories: non-paper-based “tradi-
tional” microfluidics and paper-based microfluidics [75, 
76]. Research on traditional microfluidics often focuses 
on miniaturizing conventional techniques. For example, 
a collection of passive and active mixing elements were 
designed to facilitate mixing processes on chips [77]. 
Recent work in developing microfluidic-based diagnostic 
devices has focused on integrating all necessary elements 
into stand-alone platforms [78, 79] because such inte-
grated systems can operate without bulky accessories and 
do not require water, buffer, or a constant supply of elec-
tricity [80]. There are many ways to control liquid flows 
on microfluidic platforms, for instance, acoustic forces, 
mechanical forces, magnetic forces, as well as capillary 
and centrifugal forces [81–85]. To satisfy the stringent 
requirements for LRS, devices based on capillary and 
centrifugal forces have shown promising results. Table 5 
presents some examples of microfluidic-based systems 

a Microfluidic-based point-of-care dongle  b Lab-on-a-disk diagnostic platform c  Paper-based diagnostics  

Antibody 
holder 

1. Blood in cassette inlet 

Reagent cassette 

Test cassette 

2. Gold-
labelled 
antibodies 

3. Washes 
Venting port 

4. Silver B 

4. Silver A 

Fig. 2 Examples of microfluidic‑based diagnostics for low resource settings. Reprinted with permission: a from [72], copyright 2015 The American 
Association for the Advancement of Science, b from [73], copyright 2017 Royal Society of Chemistry, c from [74] copyright 2018, Diagnostics for All. 
Image courtesy of Diagnostics for All



Page 8 of 16Pham et al. Malar J  (2018) 17:260 

that have been designed to detect PfHRP2 and PfpLDH 
antigens or genetic materials from the parasites using 
on-chip molecular testing, cell deformation mechanism, 
electrical, optical, and magnetic detections amongst oth-
ers [54, 58, 79, 81, 86–94].

Immunodiagnostics on microfluidic platforms 
for malaria detection
Standard protocols to perform immunodiagnostics on 
microfabricated platforms require sample pre-concentra-
tion, flow control and detection of biomarkers (analytes 

Table 5 Performance of proof-of-concept platforms based on microfluidics for malaria detection

RBC red blood cell, iRBC infected red blood cell

Application Concept/detection 
principle

Biomarker/target Limit of detection Performance Time (min) Refs

Sensitivity (%) Specificity (%)

Molecular analysis Paper‑based LAMP P. falciparum 5 p/µL 61% 98% 45 min [81]

P. vivax 81% 98%

P. pan > 80% > 98%

Continuous flow PCR P. falciparum 2 p/µL 97.40% 93.80% n/a [86]

< 1 p/µL n/a n/a 2.5 h [87]

Cell deformation 
mechanism

Inertial focusing P. falciparum 2–10 p/µL n/a n/a 400 µL/min [88]

Inertial microfluidics P. falciparum iRBCs 2 cells/min n/a [89]

Non‑inertial lift effect P. falciparum ring 
stage iRBCs

Enrichment factor 
of 4.3

n/a [90]

Throughput 
12,000 cells/h

Electrical detection Electrical conductivity 
of iRBCs is signifi‑
cantly higher than 
healthy RBCs

P. falciparum ring 
stage

n/a n/a [91]

Optofluidic‑flow 
analyser that can 
measure the optical 
absorption of RBCs 
in P. falciparum 
infected blood 
sample

P. falciparum 1712 RBCs/s n/a 3 min [92]

2.96% parasite 
density

Naked‑eye screening 
of in‑meso detec‑
tion of hemozoin 
crystallites based on 
birefringence

Hemozoin crystals 
produced by P. 
falciparum

n/a ~ 12 min [58]

Optical detection Visual detection of 
colored assay spot 
on a disposable 
microfluidic card 
based on a flow‑
through membrane 
immunoassay

Malaria PfHRP2 10–20 ng/mL n/a 1–5 min [79]

Paper‑based catridge 
containing detec‑
tion areas for both 
thin and thick 
smears

P. falciparum 100 p/µL n/a 30 min [93]

Magnetic detection Cell enrichment 
microfluidics com‑
bined with mag‑
netic relaxometry 
detection

P. falciparum ring 
stage parasites

5% parasite density n/a 15 min [54]

Detection of hemo‑
zoin in iRBCs by 
magnetic resonance 
relaxometry

Hemozoin in iRBCs in 
P. falciparum infec‑
tions

< 10 p/µL n/a Few mins [94]
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and/or parasites). These multi-step protocols can benefit 
greatly from miniaturization, and in fact, microfluidic-
based immunoassays have demonstrated their potential 
for reliable and accurate performance [95, 96]. Figure  3 
presents some examples to illustrate how microfluid-
ics technology can be used to detect malaria by different 
methods of detection, such as molecular testing, size-
based cell sorting, electrical differentiation of healthy and 
infected red blood cells, optical detection of antigen and 
magnetic detection of haemozoin. (a) [97], (b) [88], (c) 
[91], (d) [79], (e) [94].

Sample pre-concentration
Low antigen concentration is a common problem in 
diagnostic immunoassays and malaria antigen detection 
is not an exception. To overcome this challenge, several 
prototypes of analyte concentrator have been developed 
to enrich biomarkers hence improve LOD. To illustrate 
how analyte enrichment prior to analysis can improve 
sensitivity of ELISA, Cheow et  al. reported a prototype 
that can enhance the LOD of prostate-specific-antigen 
assay up to 1.85 pg/mL [98]. The significant enhancement 
of 100-fold was achieved by trapping the charged fluores-
cent product of standard ELISA (analyte-bound enzyme 
complex) using a multiplex electrokinetic preconcentra-
tion technique without modifying the immunobinding 
process.

Blood is the most common type of specimen for POC 
testing. However, the cellular components in whole blood 
often cause non-specific background. To address this 
problem, a continuous microfluidic device was developed 

to filter the cells, making plasma available for on-chip 
analysis [99].

Healthy and P. falciparum-infected red blood cells 
exhibit different ionic permeability of their plasma mem-
brane, with infected cells being more permeable. There-
fore, when healthy and infected cells are suspended in 
a low conductivity medium, infected cells lose internal 
ions and acquire a different dielectrophoretic mobility 
than healthy ones [100]. Several groups have developed 
microfluidic chips using dielectrophoresis and variants of 
it to separate cells successfully leading to promising pro-
totypes for detecting infected red blood cells thus malaria 
infections [101–103].

Flow control
Controlling flow on microfabricated devices often 
introduces a great degree of complexity. For example, a 
combination of screws, pneumatic and solenoid valves 
was integrated into a microfluidic platform to actuate 
flow and control chemical gradients in microchannels 
[104]. This design might be suitable for laboratory-
based tests, but may not lead to robust systems for LRS. 
Nonetheless, the uses of centrifugation and capillary 
forces to transport liquids are excellent examples of 
stand-alone systems [105, 106]. Extensive reviews dis-
cussing how to engineer flow path in microscale using 
capillary and centrifugal forces for POC applications 
exist [69, 107]. Libraries of microfluidic elements such 
as valves, mixers and pumps have also been developed 
[77, 108, 109].

Fig. 3 Examples of microfluidic prototypes for malaria diagnosis using different methods. Reprinted with permission: a from [86], copyright 2016 
Wiley–VCH, b from [77], copyright 2014 Royal Society of Chemistry, c from [80] copyright 2014 Elsevier, d from [68] copyright 2012 Royal Society of 
Chemistry, e from [83] copyright 2014 Springer Nature
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Detection
Sensitive detection remains one of the biggest hurdles for 
clinical diagnosis at the onset of infection. The bottleneck 
is the limited amount of detectable analytes in a very 
limited volume of sample. One strategy is to amplify the 
signal, then convert it into quantitative measurements 
such as electrical and/or optical signals [96]. The detec-
tion strategy is therefore critical for the overall design 
and fabrication of a device. Optical detection is consid-
ered as the ideal read-out for POC applications of micro-
fluidics owing to the simple design and potentially low 
cost [110, 111]. There are five main categories of optical 
detection based on the type of generated optical signals: 
fluorescence, luminescence, absorbance, surface plas-
mon resonance, and surface-enhanced Raman scattering 
[112–116]. Detailed discussions about detection strate-
gies for microfluidics systems also exist in the literature 
[117].

Molecular testing on microfluidic platforms 
for malaria detection
At the moment, PCR and LAMP are the most sensitive 
technique for identification of asymptomatic individuals, 
for example, in 130 clinical samples presenting no para-
sites based on microscopy, as low as 3.6 × 10−4 parasite/
μL could be identified in 117 samples by a highly sensi-
tive genus-specific quantitative reverse transcriptase 
real-time PCR (qPCR) [118]. This low LOD was achieved 
by amplifying and detecting the total nucleic acids of the 
18S rRNA genes, which increased the analytical sensitiv-
ity of the assay by more than 1 log unit compared to DNA 
only. However, current applications of PCR and LAMP 
are still restricted to well-equipped laboratories and thus 
not suitable for LRS [119]. Miniaturized PCR and/or 
LAMP is desirable, but developing such devices is a more 
challenging task than that for biomarkers detection for 
three reasons: (1) sample pre-treatment is essential for 
extracting DNA of parasites for downstream analysis, (2) 
the critical signal amplification step highly depends on 
temperature control, and (3) robust, low cost, and porta-
ble detection techniques are required for remote settings 
[120].

Sample pre-treatment
The PCR/LAMP process requires isolation of genetic 
materials from infected cells, pre-concentration, as well 
as signal amplification and analysis. All steps need to be 
integrated seamlessly in a closed process to overcome 
time consuming laboratory-like processing steps. Ear-
lier studies have demonstrated successful prototypes 
that could sequentially perform cell isolation and lysis 

for messenger RNA purification [121]. On this device, a 
unique valving system was designed to facilitate liquid 
migration and analysis. Microfluidics with “macrofluid-
ics” can also be combined to precisely reconstitute rea-
gents, and automated filling liquids for multiplex PCR 
technique. A successful story is the Cepheid GeneXpert 
instrument, where all steps from sample preparation, 
nucleic acid extraction, to thermal cycling for amplifica-
tion and eventually detection can be integrated into one 
platform [122]. A review of microfluidic-based DNA 
analysis systems is available here [123].

Heating systems
The major challenge of miniaturizing bench-top PCR 
instruments is the requirement of numerous heating 
cycles for thermal reactions. To overcome this challenge, 
micromixers and microchambers were designed to allow 
thermal reactions to take place rapidly [124]. To speed 
up DNA amplification by improving thermal transfer 
through interfaces, microfluidic elements, such as mix-
ers, heaters and temperature controlling units were inte-
grated into glass and silicon substrates [125]. Another 
strategy to enable different heating regions using con-
tinuous flow was investigated using a Peltier element to 
regulate the temperature for thermal cycling [86]. On 
this platform, as few as to 2 P. falciparum parasites/μL 
could be detected. This device offered a simplified sam-
ple processing step using desiccated hydrogel, reagents 
and a camera to detect amplicons. When analysing 188 
archived, frozen samples collected in Uganda, this proto-
type achieved 97.4% sensitivity and 93.8% specificity.

One of the most promising development for stand-
alone integrated systems for DNA analysis perhaps was 
an elegant combination of an exothermic reaction with 
phase change materials to regulate the heat for thermal 
cycling [126]. In this prototype, downstream processes 
such as purification and concentration of sample were 
integrated seamlessly into the same platform.

Recent work reported by Juul et al. challenged the need 
of thermal cycling for PCR-like systems by proposing an 
endogenous enzyme activity detection called rolling-cir-
cle enhanced enzyme activity to quantify as little as 1 P. 
falciparum parasite/μL [87]. The principle of this method 
is based on using rolling-circle-amplification (RCA) 
technique to convert a circular DNA template into a 
 103 tandem repeat rolling-circle product. In this system, 
RCA substrates can be processed by the DNA-cleaving 
enzyme topoisomerase I from Plasmodium parasites, 
which produces many DNA circles leading to enhanced 
signal. RCA products can have sizes reaching microm-
eters, which enable visualization at single molecular level.
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Paper-based microfluidics
Paper-based microfluidics was proposed by Whitesides 
and colleagues [127]. Since then, this technology has 
been growing fast with great promises for global health 
applications [128]. Unlike its sister products of paper test 
strips, paper-based microfluidic analytical devices offer 
well-defined, millimetre-sized microchannels to trans-
port liquids in a controlled manner, yet with low cost for 
production (< $0.01) [129]. Using hydrophobic “inks” to 
define areas on hydrophilic paper, it is possible to per-
form multiple immunodiagnostic assays on the same test 
strip. To illustrate how complex analytical processes can 
be simplified and transformed into a paper-based micro-
fluidic device, Pereira et al. integrated concentration and 
detection steps into a single step assay [130]. The analyte 
PfpLDH in low abundance was first accumulated using a 
micellar aqueous two-phase system (ATPS). The micellar 
ATPS consisted in a nonionic Triton X-114 surfactant, 
which was used to concentrate biomarkers in a sample 
and enhance the LOD. In this system, a tenfold improved 
LOD of 10 ng/μL PfpLDH was achieved. In an alternative 
development of a foldable, card-like test device, PfHRP2 
could be detected and quantified [131]. The generated 
signal in presence of PfHRP2 was amplified by gold nan-
oparticles, yielding a LOD of 1.2 ng/mL PfHRP2, which 
is four times higher than that of the unamplified case. 
These studies serves as excellent examples for low cost, 
non-instrumented analysis systems without compro-
mised performance. Many other innovative approaches 
to control liquid flows such as selective hydrophobic ren-
dering or origami in which folding of multiple paper lay-
ers to trigger reactions were also investigated successfully 
[132–134].

Interfacing microfluidic-based analysis 
with networked mobile devices
Mobile health applications have rapidly been growing 
in recent years and there is a trend in interfacing con-
sumer electronics such as smartphones with lateral flow 
RDTs or microfluidic-based devices [135, 136]. Such 
combination is expected to deliver increased objectivity 
of test result interpretation and improved connectivity 
of the entire healthcare systems. The automation and 
digitized test results can be more easily combined with 
other health related parameters and combined with 
medical decision support systems. User-friendly inter-
faces, automated result analyses, remote-monitoring 
and data aggregation, increased storage conditions, and 
active quality assurance are just a few additional ben-
efits of this approach [137].

In 2008, paper-based microfluidics were integrated 
with a smartphone camera to perform immunoassays 

[128]. The camera of the phone was used to take a 
photograph of the detection zone before and after 
the deposition of specimen. Since then, many groups 
have started to develop and enhance capabilities of 
phone-based low cost diagnostic readers [136]. Table 6 
presents an overview of recent work in developing 
phone-based prototypes that can be used to detect vari-
ety of biomarkers for a wide range of diseases with clin-
ically relevant performance. Devices are designed for a 
broad spectrum of applications, from genetic testing, 
cancer detection to personalized food allergen moni-
toring [136, 138–140]. A wide range of strategies are 
also derived to enhance signal strength, for instance, 
using Quantum dots, Rayleigh/Mie scatter or gold nan-
oparticles [141–143]. At present, applications of smart-
phone-based diagnostics for malaria detection can be 
divided into two categories: phone-based RDT readers, 
which provides automatic interpretation of results, and 
phone-based brightfield microscopes, which allow sim-
ple and portable means to visualize parasites in blood 
samples [138–149].

Phone-based RDT readers
A smartphone was used for quantitative reading of 
the Optimal-IT test, a commercially available malaria 
RDT with a snap-on unit as reader that is suitable for 
both Android and iPhone [145]. Images of RDTs were 
acquired, in either transmission or reflection, and then 
processed in real time to deliver test results within 
10  min. The spatio-temporal information collected by 
this device can document prevalence of many infec-
tious diseases and would allow efficient tracking of 
epidemics. Another approach to integrate a custom 
microfluidic-based immunoassay detecting PfHPR2 
with phone-based detection was the development of a 
microfluidic chip, which can be connected to a phone 
camera to analyze signals and deliver results in 10 min. 
The opto-mechanical unit in this case consisted of opti-
cal fibers, microfluidic chips and mirrors, and could be 
easily removed from the back camera of the phone. The 
principle was to quantify changes in fluorescent inten-
sity upon capturing of PfHPR2 on the sensing region, 
yielding a LOD of 1  pg/mL of PfHRP2 in 10% diluted 
blood [144].

Phone-based bright-field microscope
Accurate and consistent blood smear reading is chal-
lenging to attain in health centres or small clinics in 
remote regions. A phone-based microscope is a low cost 
option that can offers enhanced image quality, improved 
accuracy and user comfort [146, 150]. There are two 
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simplified imaging techniques suitable for smartphone 
apps: (1) lens-free holographic imaging, and (2) on-lens 
devices.

Holography is an image-constructing technique using 
scattering and interference of light and pixel super-res-
olution to enhance optical images [151]. An automated 
lens-less holography was developed with a sufficient field 
of view of 24 mm2 to visualize and capture images of P. 
falciparum in blood smears [152].

Phone-based microscopy can also be engineered to be 
a field-ready polarized light microscope without compro-
mised fidelity and resolution [153]. The principle was to 
detect light birefringence caused by the crystallization of 
haemozoin. This field-based, modular microscope could 
magnify Plasmodium chabaudi parasites up to 50 times, 
gaining a comparable performance compared to conven-
tional polarized microscope. Additional benefits of this 
prototype are simple operations and low cost per test. 
Further work using clinical samples could confirm the 

full potential of this novel phone-based polarized light 
microscope.

Conclusion
Accurate and effective diagnosis is the first step to fur-
ther pursue efforts to eliminate and reduce the global 
burden of malaria by 90% in 2030. Current diagnostic 
methods can detect malaria symptomatic infections, 
but often miss out asymptomatic cases. The rise in pro-
portion of asymptomatic infections in low transmission 
areas calls for a new generation of rapid diagnostic tests 
that can detect the hidden parasite reservoir. Technology 
is advanced nowadays to (at least theoretically) be able 
to track down the last parasite carriers. While malaria 
case management has improved, other causes of fever 
need to be detected and treated accordingly. Therefore, 
the ideal RDT should come in as a complete package with 
ultra-high sensitivity and specificity, meet the ASSURED 
standards for LRS, and also provide additional diagnostic 

Table 6 Examples of lab-on-a-phone applications

Optical detection Data analysis Signal 
transduction

Target 
biomarker

Sample Platform Performance Refs.

Phone LED and camera + 4 exter‑
nal lenses and mirrors

Mie scattering 
simulation 
online

Immunoag‑
glutination 
(Mie light 
scattering)

PfHRP malaria 
biomarker

Human blood Microbeads 1 pg/mL–10 ng/
mL

[144]

LOD 1 pg/mL

Computational power + external 
optical fiber + LED

Phone applica‑
tion

Fluorescence Genomic DNA Escherichia coli 
and Staphylo-
cocus aureus

Microfluidics Comparable to 
that of com‑
mercial PCR

[138]

Phone camera Phone app Colorimetry HE4 (ovar‑
ian cancer 
biomarker)

Urine Microchip 89.5% sensitivity, 
90% specificity

[139]

2 external LEDs + phone camera Phone app Colorimetry Peanut Cookies Sample holder < 1 ppm [140]

External LED + phone cam‑
era + additional lens

Phone applica‑
tion

Fluorescence Escherichia coli Milk, water Glass capillary 5–10 cfu/mL [141]

External LED and optical fibers Phone app Immunochro‑
matography 
(Mie scatter)

Thyroid 
stimulating 
hormone

Human serum Nitrocellulose 
test strip

0.31 mIU/L [142]

Phone camera + external LED Computer Colorimetry Human IgG Human IgG 
sample

Microfluidics, 
silver deposi‑
tion

n/a [143]

Snap‑on attachment 
(lens + LEDs) + phone camera

Phone app Immunochro‑
matography

Malaria bio‑
markers

Whole blood Rapid test diag‑
nostic strips

4 × dilution c.f. 
RDTs

[145]

3 external attach‑
ments + lenses + LED + phone 
camera

Phone applica‑
tion

Fluorescence Cell count Blood Sample holder 600–2500 white 
cells/image

[146]

400–700 red 
cells/image

Phone camera Phone app Colorimetry pH Test strip n/a [147]

External LEDs and photodiode Phone app Colorimetry Glucose Urine Paper strips 0–250 mg/dL [148]

LOD 10 mg/dL

Snap‑on attachments 
(lens + LED) + phone camera

ImageJ on 
computer

Fluorescence Prostate specific 
antigen (PSA)

Whole blood Microfluidics Dynamic range 
0.08–60 ng/
mL

[149]

LOD 0.4–
0.04 ng/mL
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capabilities. Microfluidic devices coupled to phone-based 
readouts offer a unique opportunity to not only reduce 
the burden of infectious diseases, such as malaria, but 
also could provide tools for monitoring epidemics and 
elimination progress on very large scales.
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