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Abstract

We present a novel method for co-registration of two in-

dependent statistical shape models. We solve the problem of

aligning a face model to a skull model with stochastic op-

timization based on Markov Chain Monte Carlo (MCMC).

We create a probabilistic joint face-skull model and show

how to obtain a distribution of plausible face shapes given

a skull shape. Due to environmental and genetic factors,

there exists a distribution of possible face shapes arising

from the same skull. We pose facial reconstruction as a con-

ditional distribution of plausible face shapes given a skull

shape. Because it is very difficult to obtain the distribution

directly from MRI or CT data, we create a dataset of arti-

ficial face-skull pairs. To do this, we propose to combine

three data sources of independent origin to model the joint

face-skull distribution: a face shape model, a skull shape

model and tissue depth marker information. For a given

skull, we compute the posterior distribution of faces match-

ing the tissue depth distribution with Metropolis-Hastings.

We estimate the joint face-skull distribution from samples of

the posterior. To find faces matching to an unknown skull,

we estimate the probability of the face under the joint face-

skull model. To our knowledge, we are the first to provide

a whole distribution of plausible faces arising from a skull

instead of only a single reconstruction. We show how the

face-skull model can be used to rank a face dataset and

on average successfully identify the correct match in top

30%. The face ranking even works when obtaining the face

shapes from 2D images. We furthermore show how the face-

skull model can be useful to estimate the skull position in an

MR-image.

1. Introduction

In forensics, facial reconstruction is the process of recre-

ating the face of an unknown individual solely from their

skeletal remains [27]. Forensic artists reconstruct the face

surface by adding layers of muscle fibres and placing tis-

sue depth markers on the unknown skull. However, recon-

structing the face shape from a skull is an ill-posed prob-

lem. To begin with, it is commonly known that the facial

reconstruction process is highly artistic and different foren-

sic artists might produce different face predictions [28]. In

addition, many features of a shape are not due to the skull

itself, but due to genetics and environmental factors such as

diet and ageing. As a result, for a given skull there exists

a whole distribution of possible faces. Therefore, instead

of a one-to-one relation between skulls and faces, we as-

sume a one-to-many relationship. We propose to build a

joint distribution of face and skull shape to be able to re-

construct a distribution of faces contrary to a single face in

facial reconstruction. It is difficult to estimate the distribu-

tion directly from Computed Tomography (CT) or Magnetic

resonance imaging (MRI) data as it would be necessary to

capture multiple scans of the same person exposed to dif-

ferent environmental influences and both the face and the

skull are difficult to segment. Instead, we propose to cre-

Figure 1. Illustration of the face-skull model with the face fully

visible, one side visible and fully visible with an opacity of 70%.

ate an artificial dataset of corresponding skulls and faces.

To this end, we combine a statistical shape model of human

faces [18] with a statistical skull shape model. No point-

to-point correspondence is assumed. The two models are

independent and contain scans from different individuals.

We compute the posterior distribution of faces given a skull

using a Markov Chain Monte Carlo (MCMC) approach. A

sparse set of distance constraints between the surface of the

skull and the surface of the sampled faces is everything the

method needs. The distance constraints are known as tissue-

depth markers within facial reconstruction and represent the
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depth of the tissue in between the skull and the face surface

such as fat, muscle fibres and cartilage. We generate face-

skull pairs by sampling from the posterior face distribution

found for each skull. Then, we model the joint distribution

according to the generated data. The result is a probabilis-

tic model of skull and face shape that combines two inde-

pendent statistical shape models. With the joint statistical

face-skull shape model we can reconstruct face shapes from

skulls and match skulls to faces. For a given skull, we are

not only obtaining a single face, but also the full distribu-

tion of likely faces. The model can even be used to predict

the face distribution if only part of the skull is available or

it can be constrained by additional information about parts

of the face shape. The mean of the joint model is illustrated

in Figure 1.

As the model provides us with a distribution of faces,

we use it to evaluate the probability that a given face will

fit the skull. Within forensics, craniofacial superimposition

is the method of comparing a photo of a skull to a photo

of a face to evaluate their similarity [26]. We show how

the joint model can be used in a similar setting; to rank the

likelihood of faces to match a given skull. We compute the

face distribution for 9 skulls and rank a face dataset of more

than 300 face shapes. The ranking allows us to find the

correct matching face for a skull in the top 30%. We show

as a proof of concept that this method could be beneficial in

tasks such as Disaster Victim Identification.

2. Related Work

The majority of methods within automatic forensic facial

reconstruction share a general framework which consists of

finding the mapping between skulls and faces [2]. Indepen-

dent models of the face and the skull are constructed and the

parameter mapping between the two models is found from a

small test set. In more recent work [22], two individual sta-

tistical shape models were created from a large dataset of

CT head scans and a linear mapping is found between the

two. Similar methods have previously been attempted with

smaller datasets from various sources [19, 4, 13, 9, 29, 8].

The model mapping approach maps a skull to a single face

and therefore, does not account for shape variance due to

genetics and environmental factors such as diet and health.

Several approaches, however, suggest changing the facial

attributes in a final step to adjust for soft tissue variation due

to age and Body Mass Index (BMI) differences [19, 9, 21].

Alternative simple methods place tissue-depth pins on a

dry skull and deform a face-mesh according to the mean

tissue-depth measures [3].

More recent approaches fit several local shape models to

a skull and glue them together into one joint face by us-

ing partial least squares regression to find a smooth surface

transition [6, 11]. In [17] they are working with images of

skulls and try to identify the matching face from a larger set

of unnormalized facial photographs. The evaluation method

here does also mimic craniofacial superimposition, similar

to our method, by only using pure classification techniques

and without taking the soft-tissue variability into account.

The evaluation method, which is most similar to ours,

renders 3D landmarks and compares them to 2D landmarks

from facial ground truth images [25]. They warp a series

of CT images to a target dry skull and compute the mean

face prediction. They are able to restrict the solution space

by setting the BMI or age of the reconstruction but do not

consider the full distribution of possible faces arising from

a dry skull. The authors validate their method on a +200

person CT database and receive comparable results to ours

(average ranking of the true identity in top 30% on aver-

age) even though we use a much smaller dataset to build the

model and the data being of independent origin.

3. Background

In this section, we introduce statistical shape models

which we will combine in the Method section with a

Markov Chain Monte Carlo approach to integrate tissue-

depth marker data to build a joint face-skull model.

3.1. Statistical Shape Models

Statistical shape models (SSMs) are linear models of

shape variations. The main assumption behind SSMs is

that the space of all possible shape deformations can be

learned from a set of typical example shapes Γ1, . . . ,Γn.

Each shape Γi is represented as a discrete set of points; i.e.

Γi = {xi
k, xk ∈ R

3, k = 1, . . . , N}, where N denotes the

number of points. In order to be able to learn the shape vari-

ations from the examples, they need to be rigidly aligned to

a reference shape and have to be in correspondence. This

latter requirement means that the k-th point xi
k and x

j
k of ex-

ample Γi and Γj denote the same anatomical point. To build

the model, a shape Γi is represented as a vector ~si ∈ R
3N ,

where the x, y, z− components of each point are stacked

onto each other:

~si = (xi
1x, x

i
1y, x

i
1z, . . . , x

i
Nx, x

i
Ny, x

i
Nz). (1)

This vectorial representation makes it possible to use stan-

dard multivariate statistics to model a probability distribu-

tion over shapes. The usual assumption is that the shape

variations can be modelled using a normal distribution; i.e.

~s ∼ N (µ,Σ), where the mean µ and covariance matrix Σ
are estimated from the example data.

As the number of points N is usually large, the covari-

ance matrix Σ cannot be represented explicitly. Fortunately,

as the covariance matrix is determined completely by the n

example data-sets, it has at most rank n and can, therefore,

be represented using n basis vectors. This is achieved by

performing a Principal Component Analysis (PCA) [12]. In
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its probabilistic interpretation, PCA leads to a model of the

form

~s = ~µ+
n∑

i=1

αi

√
λi~ui, αi ∼ N (0, 1) (2)

where (~ui, λi) are the eigenvectors and eigenvalues of the

covariance matrix Σ. Note that each shape Γi is uniquely

determined by the coefficients ~α = (α1, . . . , αn)
T , and its

probability is p(~s) = p(~α) = 2π−
k

2 exp(−‖~α‖)2. Ignoring

discretization and committing a slight abuse of notation, we

will in the following refer the surface corresponding to the

model parameters ~α as Γ[~α].
By construction, an SSM has a fixed alignment in

space. To explain a given surface, we also need to be

able to adjust the pose of a surface. In addition to the

shape coefficients α, we need to model a translation ~t =
(tx, ty, tz)

T ∈ R
3 and a rotation R(φ, ψ, ρ) ∈ SO(3).

Here the rotation matrix R is parametrized by the Euler an-

gles φ, ψ, ρ. We summarize all the parameter in the vec-

tor ~θ = (α1, . . . , αn, φ, ψ, ρ, tx, ty, tz). Consequently, we

write Γ[~θ] to refer to the resulting surface.

In our case, we use a statistical shape model of skull

surfaces, constructed from 30 CT skull shapes. The skull

model construction is described in detail in [14]. We also

make use of the Basel Face Model [18] to model face shape.

We refer to these models as ΓS [~θ] and ΓF [~θ] respectively.

4. Method

We model the joint face-skull distribution and build a

joint face-skull statistical shape model. Because it is dif-

ficult or even impossible to observe the joint face-skull dis-

tribution directly, we construct it from the conditional distri-

bution over face shapes given skull shapes. Figure 2 shows

the general idea of combining the skull and the face model.

Skull model

Face model

Face-Skull model

Figure 2. Combining the models. We map each skull in the statis-

tical skull model to a distribution of face shapes in the face model.

The face-skull model is a joint distribution of the individual skulls

from the skull model and their individual face distributions.

4.1. Training Data

We use three sources of data; the publicly available

BFM, a statistical skull model and tissue marker data as de-

fined in the publicly available T-Table [23, 24] and shown

on a skull shape in Figure 3. All three sources have to our

knowledge no overlap in the individuals which the data was

obtained from.

4.1.1 Tissue-depth Gaussian assumption

The Gaussian distribution is assumed for each of the in-

dividual tissue-depth markers. While the distribution of

tissue-depth over age, weight and gender differences might

follow a more complex distribution, tissue-depth studies do

only provide mean and standard deviation and not the indi-

vidual measurements. However, the nature of our method

would allow easy use of more intricate distributions such

as Gaussian mixture models if one has raw data measures

available. As our raw skull data does not contain any meta-

data, we use the T-Table which uses the law of large num-

bers to combine measures from a variety of age, BMI and

gender groups. If skull metadata would be available, alter-

native data tables could be used to limit the variance and

update the mean, as found in [5].

Figure 3. Tissue-depth markers placed on a skull. The landmark

distributions are shown at the end of the vectors where one stan-

dard deviation is visualised. The illustration on the right shows a

face shape fit to the tissue-depth measures on the left.

4.2. Simulating the Joint FaceSkull Distribution

We model the joint face-skull distribution as a multivari-

ate normal distribution over face and skull shape.

ΓF ,ΓS ∼ N (µF ,ΣF ),N (µS ,ΣS) (3)

As we cannot observe the full joint face-skull distribution

directly, we propose to construct it from the skull shapes

and tissue depth marker information. Probability theory al-

lows us to write the joint distribution as a product of a condi-

tional distribution and a prior. We write the joint probability

of observing a specific face-skull pair as the distribution of

face shapes ΓF given the skull shape ΓS and the prior of the

skull shape.

P (ΓF ,ΓS) = P (ΓF |ΓS)P (ΓS) (4)
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The statistical skull shape model provides the prior P (ΓS).
The posterior distribution over plausible face shapes, given

a skull shape, consists of all the face shapes that fulfil the

given tissue depth constraints. We approximate the poste-

rior distribution over face shapes given an observed skull

shape with Metropolis-Hastings. Having a posterior distri-

MCMC

Probabilistic Model

Skull shape Tissue-depth markers

Face model Posterior face distribution

Figure 4. Illustration of the MCMC fitting procedure.

bution over faces given a skull allows us to construct the

joint distribution. According to Equation 4, we first sample

a random shape from the skull model. Then we approximate

the posterior face distribution given that skull. To create a

face-skull statistical shape model, we fit a Gaussian distri-

bution to the skull model samples and their corresponding

posterior face shape samples.

MCMC fittingStatistical Skull 
Model

Sample

Compute PCA
Posterior
sampling

Figure 5. Pipeline describing how to compute the face-skull model

by combining skull samples with the posterior face distributions

found with MCMC.

Figure 4 gives an overview of how we approximate the

posterior. Figure 5 shows how we build the joint face-skull

statistical shape model from skull samples and posterior

face shape samples.

4.2.1 Probabilistic Model

In this section, we describe how the probability distribu-

tion over possible face shapes is modelled (determined by

a parameter vector ~θ) to fit a given skull. We model the

probability distribution

P (~θ|Dtvi, Dsym, c,Dcs), (5)

where Dtvi, Dsym, c, Dcs are four different measurements

that are derived from the given skull and the tissue depth

markers. We will explain them in detail below. Using Bayes

theorem we can write the conditional distribution as a prod-

uct of its prior probability and a likelihood term. As we will

see later, we are only interested in comparing samples, so

the evidence term can be ignored. By assuming indepen-

dence between the individual likelihoods, we can write it as

the product:

P (~θ|Dtvi, Dsym, c,Dcs) ∝
P (~θ)Ptvi(D

tvi|~θ)Ptvs(D
sym|~θ)Pfs(c|~θ)Pcs(D

cs|~θ). (6)

With the face shape prior P (~θ) we penalise unlikely shapes.

We enforce the tissue-depth distribution with the tissue-

vector intersection likelihood Ptvi. Tissue-vector symmetry

is encouraged by Ptvs and face-skull intersection is discour-

aged with Pfs. Furthermore, we enforce correspondence in

a single point with the likelihood Pcs.

For a given skull shape ΓS we evaluate the probability of

a face shape from its face model parameters ~θ. We place N

points pSi ∈ R
3, i = 1...N on ΓS . For each point we have a

tissue-depth vector ~vSi ∈ R
3 with direction towards the face

surface (see Figure 3) [24]. We define the point pFi [
~θ] ∈ R

3

as the intersection point of ~vSi with the face model ΓF [~θ].
Tissue-vector intersection. We evaluate where the N

vectors ~vSi intersect with the face model at a given ~θ by the

distance di ∈ R for each vector. di is found from the skull

point pSi to the intersection point pFi (
~θ) on the face shape

as di(~θ,ΓS) = ‖pFi [~θ] − pSi ‖, with Dtvi denoting the di
distances for all the tissue-depth vectors. The probability

over all the N points is then the product of each individual

likelihood term:

Ptvi(D
tvi|~θ) =

N∏

i=1

N (di(~θ,ΓS), σ
2
i ) (7)

with σ2
i being the variance of the individual tissue-depth

vector.

Tissue-vector symmetry. We extend the evaluation of

tissue-vector intersection by evaluating how similarly mir-

roring vectors intersect the face surface. Each point pSi not

placed in the centre of the head has a mirror point. There

is a total of m points placed in the centre of the head. We

define pS
−i ∈ R

3 to be the mirror point of pSi and ~vS
−i ∈ R

3

to be the mirror vector of ~vSi around the sagittal plane. Let

d−i(~θ,ΓS) be the tissue-depth vector intersection mirroring

di(~θ,ΓS), then d
sym
i (~θ,ΓS) = ‖di(~θ,ΓS) − d−i(~θ,ΓS)‖

is the difference between a tissue-vector intersection depth

and its mirror vector intersection depth. Dsym is the tissue-

depth intersection differences. The combined likelihood for

all the mirroring points is:

Ptvs(D
sym|~θ) =

(N−m)/2∏

i=1

N (dsymi (~θ,ΓS), σ
2) (8)

with σ2 set to one. The likelihood will return a high prob-

ability if the symmetry vectors intersect the face surface at
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the same distance. Figure 6 (left) shows a sample where the

tissue-vector symmetry likelihood was not used.

Face in skull detection. The likelihood

Pfs(c|~θ) ∼ Exp(λ) (9)

penalizes the number of points c(~θ) of the face model which

intersect the skull shape ΓS . By choosing λ large, faces

intersecting with the skull region become very unlikely.

Point correspondence. In our implementation, we have

made use of a single point correspondence instance. The

point is placed in the centre of the face just below the nose.

The correspondence point on the skull is placed just below

the anterior nasal spine. The likelihood is necessary in order

to avoid misalignment at the nose region as shown in Fig-

ure 6 (right). The general point correspondence likelihood

Figure 6. Face-skull alignment problem from missing likelihood

terms. Left: Missing tissue-vector symmetry likelihood. The cen-

tre of the face and the skull does not align. This is especially vis-

ible at the nose which is shifted to the side. The illustrated tissue-

vectors have the same length and are not intersecting the tissue at

the same distance on both sides of the face. Right: Missing point-

to-point correspondence likelihood. The face is rotated slightly

which can be seen from the red line which should be horizontal as

in the picture to the left. The nose is also not aligned at the centre

of the nose, similar to the problem without the point correspon-

dence.

consists of m points where the exact face intersection posi-

tion on the face model surface has been defined as pFideal

j ∈
R

3, with j = 1...m. The distance between the actual in-

tersection point pFi (
~θ,ΓS) and the ideal intersection point

pFideal

j is found from dcsi (~θ,ΓS) = ‖pFi (~θ,ΓS) − pFideal

j ‖,

with Dcs denoting all the dcsi distances. The combined like-

lihood is then:

Pcs(D
cs|~θ) =

m∏

i=1

N (dcsi (~θ,ΓS), σ
2) (10)

with σ2 set to one.

4.2.2 Approximating the Probabilistic Model

The distribution (Equation 5) is complicated and cannot

be obtained in analytic form. However, as shown in the

previous section, we can evaluate the unnormalized dis-

tribution point-wise; i.e, we can compute the unnormal-

ized density for any value of the parameter ~θ. This allows

us to sample from the distribution using the well-known

Metropolis-Hastings (MH) algorithm [10]. To use the MH-

algorithm we need to define a proposal distribution Q(~θ′|~θ)
from which we know how to draw samples. By filtering the

samples in an acceptance/rejection step, the MH-algorithm

yields samples that follow the desired probability distribu-

tion (Equation 5). As a proposal distribution, we choose

random walk proposals; i.e., our proposals are all of the

form Q(~θ′|~θ) = N (0,Σ). More precisely, we choose inde-

pendent random walk proposals for the shape, rotation and

translation parameters. These individual proposals are com-

bined into a mixture proposal for the full parameter vector

Q(~θ′|~θ) = zαQ(~α′|~α) + ztQ(~t′|~t) + zRQ(~R′|~R) (11)

where zα, zt, zR are weighting factors of the different pro-

posal distributions with zα + zt + zR = 1. The standard

deviations for each of the proposal distributions have been

scaled to have 20% acceptance rate (Σα = 0.1, Σt = 0.2,

ΣR = 0.005).

5. Experiments

We evaluate the model in a recognition experiment. We

show how the face distribution from the posterior face dis-

tribution varies for a single skull. We compare different

sources of face shapes with respect to a verification per-

formance and evaluate the influence of higher modes in the

face shape. Furthermore, we show how the face-skull model

can be used as prior knowledge to segment the skull from

an MR-image. The experiments are performed with the sta-

tistical shape modelling library Scalismo1 as introduced in

[15].

5.1. Data

We perform the experiments on different types of face

shapes obtained from different sources.

Figure 7. The ground-truth skull segmentation of skull # 2, 5, 7, 9.

MRI data. We use a small test set of 9 MR-images from

where we segment and register the skull and the face in a

semi-automatic way. The face is segmented by image in-

tensity threshold and registered by fitting the BFM to the

1https://github.com/unibas-gravis/scalismo
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segmentation. The skull is segmented by multi-level thresh-

olding according to [7] and registered by fitting a posterior

skull-model (based on 20 landmarks) to the segmentation as

described in [16]. A subset of the final registered skulls are

shown in Figure 7.

3D surface scans. We also have high-resolution face

scans available for all the skulls as well as a large face

dataset of almost 300 people not belonging to any of the

skulls.

2D images. We add faces reconstructed from 2d face

images as an additional face shape source. This allows

us to investigate the usefulness of the face-skull model in

real-world applications such as identifying skulls from pass-

port photographs. We use the MCMC based Morphable

Model parameter reconstruction method [20] to obtain the

face shape. Morphable Models [1] are statistical shape and

texture models. Additional to a shape, they model surface

texture as a linear combination of texture basis functions

learned from data. They parameterize shape, texture, pose

and illumination of an object such as a face. We use the

BFM to reconstruct the face shape from single images. We

create an artificial dataset of images that imitate passport

photographs by rendering textured face scans. We reflect

the passport setting by rendering them in frontal pose and a

uniform illumination. The camera parameters and the dis-

tance of the face to the camera is fixed for all scans. The

artificially created images allow us to test whether we can

identify skulls from passport images in an optimal environ-

ment. Figure 8 shows example passport renderings, face

reconstructions from 2d images, face scans, and the shape

reconstruction error.

Photo 3D reconstruction 3D scan Reconstruction error

Figure 8. Face reconstruction from a photo. From left to

right: ground-truth photo, face shape reconstructed from the

photo, ground-truth 3D scan, and reconstruction error between the

ground-truth scan and the ground truth face scan.

5.2. Identification: Matching Faces to Skulls

In the following experiments, we want to identify the

face that belongs to a given skull from a set of face shapes.

We will compare the identification performance of different

sources of 3D face shape datasets as mentioned above.

Ranking experiment. In case of a natural disaster or a

crime, unknown remains have to be matched to a list of tar-

get identities. Different types of information about the tar-

get identities can be known, such as DNA or photographs.

Ranking the list according to how likely they are to match

to a specific skull will speed up the process and saves re-

sources because fewer DNA comparisons have to be done

until a match has been found.

Given a skull to identify, we rank target face shapes by

computing their probability under the posterior face-skull

model.

Figure 9. Random samples from the posterior model conditioned

on skull #5.

Alignment problem. To compute the probability of a

face shape under the posterior model correctly, the poste-

rior face model should only allow shape variability and not

pose or translation. Because the face-skull model is aligned

with the skull shapes and not the face, there is translation

and rotation variability. We remove this unwanted variance,

by constructing a new face model based on the posterior

face-skull model, where the shapes are aligned to a refer-

ence face shape. The resulting statistical face model can be

used to compute the correct probabilities of face shapes. To

compute the probabilities of the target faces, we align them

to the same reference. This allows us to rank the target face

shapes. Figure 9 shows random samples of the posterior

model of skull #5. We observe that the faces from the pos-

terior face distribution look different from one another but

are similar in shape.

Performance Measure. We measure the performance

of the model by computing the average rank of the correct

match. For every skull, we know the correct matching face

shape. We compare the three face shape sources with re-

spect to the ranking performance. The ranking results are

summarised in Table 1 where we show that the face-skull

model on average ranks the correct match within the high-
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est 30% across the different datasets with 9 target skulls.

Figure 11 and 12 visualise the top and bottom 3 ranked in

the 9 face ranking experiments from face scans. The rank-

ing result is consistent across the different data sources and

dataset sizes as shown by the normalized average ranking.

Experiment µ µ norm σ Min Max

MRI (9) 2.44 0.27 1.67 1 5

Scan (9) 2.89 0.32 1.54 1 5

Photo (9) 3.00 0.33 1.80 1 6

Scan (306) 91.89 0.30 44.23 26 159

Photo (106) 31.56 0.29 27.03 4 82

Table 1. Overall ranking statistics showing mean, normalized

mean, standard deviation, min and max ranking of the 5 experi-

ments with different face shape sources and sizes. The number of

faces in the dataset is mentioned in parenthesis next to each exper-

iment.

Figure 10. The number of principal components and the average

ranking of the correct match for face shapes from different target

sources.

5.3. Model evaluation

In this experiment, we answer the question if face size is

sufficient to identify skulls from faces to obtain better than

random rankings. The amount of details that can be ex-

pressed with a statistical shape model depends on the num-

ber of principal components used. For example, width and

height of a shape are mostly contained in the first compo-

nents. Therefore, we restrict the model to only the first n

ranks and measure the identification performance. We re-

strict the model to the first 1,2,5,10,20,50, and 100 principal

components and compare the average ranks of the correct

matches. Figure 10 shows the results. We see that around

50 components are necessary to obtain the best-ranking per-

formance from the model. It shows that size is not suffi-

cient to obtain good results, as is reflected in the first two

data points. Face details have to be taken into account too.

We can see, that the performance deteriorates at 100 com-

ponents. We hypothesise, that using too many components

introduces noise to the model which results in worse rank-

ings.

Ground-truth skull Ground-truth 3D scan

Face ranking for the ground-truth skull #5

1 2 3 7 8 9

Figure 11. Top and bottom 3 ranking for skull #5. The correct face

is found as the second most likely face out of 9.

Ground-truth skull Ground-truth 3D scan

Face ranking for the ground-truth skull #9

1 2 3 7 8 9

Figure 12. Top and bottom 3 ranking for skull #9. The correct face

is found as the most likely face out of 9.

5.4. MRI skull segmentation

In this section we quickly outline another possible appli-

cation of the model. Instead of using the face-skull model

to obtain a distribution over face shapes, we obtain a distri-

bution over plausible skull shapes by conditioning on a face

shape. An immediate application for this is the segmenta-

tion of the skull from an MR-image. Segmenting the skull

in an MR-image is a difficult task as the bone has the same

intensity as air and consequently cannot be distinguished.

Therefore, any successful segmentation method necessarily

needs to include a strong shape prior. In contrast, segmenta-

tion of the face from an MR-image can be done using sim-

ple threshold segmentation. Hence, by conditioning on the

known face shape, we can obtain a shape model that only

assigns a high probability to skulls which fit the given face.

We have illustrated this approach in Figure 13, where we

5301



PC. 2: -3 PC. 1: -3 Mean PC. 1: +3 PC. 2 +3

Figure 13. Mean and the first two principal components of the face-skull model conditioned on a face in an MR-image. Blue: ground-truth

face, green: face-skull model conditioned on the face, red: skull from the face-skull model. Notice the skull from the face-skull model

(red) in the back and on top of the head. The model is very good in describing the correct placement of the skull over the 2 components.

show the mean and the first two principal components (± 3

standard deviations). We observe that while the model still

has the flexibility to adapt to the image, it already constrains

the solution space well, and a model based segmentation al-

gorithm for this task would be likely to benefit from such

additional prior knowledge.

6. Discussion

The ranking results summarised in Table 1, clearly show

the potential of the joint face-skull model as a tool for face

identification based on the skull shape. The model is able

to identify the correct face on average within the top 30%,

even in a dataset of over 300 face scans. Such a dataset rank-

ing would especially be suited for Disaster Victim Identifi-

cation to make a rough initial sorting of individuals based

on standardised photos. The whole pipeline from individual

shape models to the ranking experiment concerns multiple

steps with room for improvement, which has not been the

focus of this paper.

MRI skull segmentation: the skull segmentation relies

heavily on the prior skull model. The different skulls in Fig-

ure 7 all seem too smooth and might omit important details.

The leftmost skull also seems unnaturally long (even though

it overlaps with the skull in the MRI). Fortunately, the pre-

diction does correctly find a longer male face from the face

dataset as the most likely and has the smaller female face

as the least likely. We might be able to use the face-skull

model to improve the skull segmentation as shown in Fig-

ure 13 and hopefully get a better ranking.

Tissue-vector direction: the tissue-vector directions as

projected from the skull in Figure 3 is another source of pos-

sible improvement. The directions are described and illus-

trated loosely in [24]. If for instance, the vectors around the

nose point slightly inward instead of outwards, our formula-

tion will favour faces with unnaturally narrow noses as the

vectors have to intersect the face mesh within the defined

tissue-vector depth. The ideal scenario would be to obtain

the tissue-vector depths and directions from a large set of

CT or MR-images where it is possible to register the cor-

rect directions and measure the tissue-depth more densely.

7. Conclusion

We have presented a method for constructing a joint

face-skull model by co-registering two individual statistical

shape models of the skull and the face. The main novelty

of our method is that it does not require a paired dataset

of head images, but can construct possible face-skull pairs

using readily available statistics about the soft tissue depth

at individual points. From a computational point of view,

our methods work by sampling possible faces from a pos-

terior distribution using the Metropolis-Hastings algorithm.

The generated face-skull pairs are then used to build the

joint face-skull model. We have shown different applica-

tions of our model. First, we can simply generate plausible

face shapes that fit a given skull. This is a task of great in-

terest in forensics. Our experiments also showed that, given

a skull, the space of possible face shapes is large. This im-

plies that current approaches of facial reconstruction, which

only predict a single face for a given skull, exclude a lot of

important information. We have also provided a quantita-

tive evaluation of the predictive power of our model. We

have used the model to rank possible faces according to how

likely the faces fit a given skull. Our results have shown that

using this method we can on average exclude 2/3 of possi-

ble faces from a dataset of several hundred faces. This can

have important applications in scenarios such as Disaster

Victim Identification. As another application, we have also

mentioned the possibility to use our model for model-based

segmentation of the skull in MR-images. We believe, that

our approach of combining individual statistical models is

quite general and that the same principle can be used to join

other shape models, in order to obtain flexible shape priors

of different combined structures.
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