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Abstract Gaussian Process Morphable Models (GP-
MMs) unify a variety of non-rigid deformation models

for surface and image registration. Deformation mod-
els, such as B-splines, radial basis functions, and PCA
models are defined as a probability distribution using

a Gaussian process. The method depends heavily on
the low-rank approximation of the Gaussian process,
which is mandatory to obtain a parametric representa-
tion of the model. In this article, we propose the use

of the pivoted Cholesky decomposition for this task,
which has the following advantages: 1) Compared to
the current state of the art used in GPMMs, it provides

a fully controllable approximation error. The algorithm
greedily computes new basis functions until the user-
defined approximation accuracy is reached. 2) Unlike

the currently used approach, this method can be used
in a black-box-like scenario, whereas the method au-
tomatically chooses the amount of basis functions for
a given model and accuracy. 3) We propose the New-

ton basis as an alternative basis for GPMMs. The pro-
posed basis does not need an SVD computation and
can be iteratively refined. We show that the proposed
basis functions achieve competitive registration results,
while providing the mentioned advantages for its com-
putation.
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‡ J. Dölz and T. Gerig, M. Lüthi, H. Harbrecht and T. Vet-
ter are with the Department of Mathematics and Computer
Science, University of Basel, Switzerland.

Address(es) of author(s) should be given

1 Introduction

A common approach in medical image analysis and
computer vision is analysis by synthesis: An image is
analyzed by synthesizing it using a generative model
[13,36]. The resulting model-parameters are then used

to understand the content of the target image. Popular
examples of analysis by synthesis in medical image anal-
ysis are atlas (or template) matching approaches [20,8,

33], or statistical shape and appearance models [19,6,
7]. The main idea behind all these methods is that any
object ΓT ⊂ Rd to be analyzed can be written with
respect to a reference object ΓR ⊂ Rd which is de-

formed by suitable deformation u? : ΓR → Rd. For bet-
ter readability, we denote vector-valued quantities by
bold-faced lower case letter, whereas we denote matrix

valued quantities by bold-faced capital letters.
For given image or surface representations ΓR and

ΓT , we are interested in finding the corresponding de-
formation field u? that deforms ΓR such that it matches
ΓT , i.e., it holds

ΓT = {x + u?(x) : x ∈ ΓR}.

Aiming at modeling non-rigid deformations, the crucial
question for practical applications is how to model a
family of possible deformations u, which contains (a
good approximation to) u?.

Recently, Lüthi et al. proposed Gaussian Process
Morphable Models (GPMM), which model the defor-
mations as a Gaussian process GP(µ,K) with mean
function µ : Ω → Rd and covariance (or kernel) func-
tion K : Ω × Ω → Rd×d [26,27,11], see Figure 1 for a
visual overview. In this view, all the above-mentioned
models correspond to special choices of the covariance

function and it becomes easy to combine characteris-
tics of the individual models or to incorporate addi-
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tional prior knowledge by, for example, enforcing mir-
ror symmetries [25], landmark constraints [24], or by
making models spatially varying [11]. The key aspect
of the method in [26] is that it allows modeling the ex-
pected deformations for individual registration tasks,
which makes it easy to tailor the problem to a specific
dataset. This is generally done in three steps:

1. Prior Model Building: Define a family of defor-
mations u using a Gaussian process GP(µ,K) with
a kernel function K. The model can be customized
by combining kernel building blocks with different
properties to match the expected family of deforma-
tion functions for a given registration task.

2. Model Approximation: The family of deforma-
tions u generated by a Gaussian process GP(µ,K)
can often be well approximated using a truncated
Karhunen-Loève-expansion [5], I.E., the family of
deformations u can approximatively be described
as

u ≈ uM := µ+
M∑
i=1

αi
√
λiφi, αi ∼ N (0, 1).

The corresponding pairs (λi,φi) are given as eigen-

pairs corresponding to the M largest eigenvalues
of an integral operator associated to the covariance
function K.

Using this representation, any deformation uM is
given as a linear combination of the eigenfunctions
and parametrized by finitely many parameters α =[
α1, . . . , αM

]
:

uM (α, ·) = µ(·) +

M∑
i=1

αi
√
λiφi(·).

3. Model Fitting / Registration: The parameter-
ized model uM (α, ·) is used to find the parameters
α to match the deformed reference ΓR to a given

target ΓT .

For the most optimal use of the prior knowledge in-
corporated in K, the family of possible deformations u
must be approximated as well as possible by the trun-
cated Karhunen-Loève expansion uM . However, the ap-
proximation method proposed in [26] has three major
disadvantages: 1) The Nyström method lacks a rigorous
control of the approximation accuracy. 2) The method
relies on parameters, such as the sampling of points on
the reference. These parameters depend on the model

to be approximated and need an experienced user to
be chosen. 3) A refinement of the model (adding more
basis functions) requires a re-computation of the whole
model. The mentioned issues have a big impact on the
practical usability of the registration framework, where

a feedback about the approximation accuracy of the
modeled prior is important to choose the model. Our
contribution in this work is to introduce the use of the
pivoted Cholesky decomposition for this task, see [18,
9], which allows the computation of a Karhunen-Loève-
expansion up to a prescribed accuracy with a rigorous
error control and to show its properties and advantages
compared to the Nyström method, which was originally
proposed for this purpose by Lüthi et al. [26]:

1. We enable the Gaussian process registration frame-
work to approximate models with a rigorous black-
box error control. In particular, the parameter M is
chosen adaptively for a user-defined tolerance. This
is a major advantage over the Nyström method,
which lacks feedback about the actual approxima-
tion accuracy and has several parameters to guess
heuristically.

2. The pivoted Cholesky decomposition follows a greedy-

type strategy, where the corresponding basis func-
tions generate a subspace which is equal to the sub-
space spanned by the truncated Karhunen-Loève-
expansion. We propose therefore to use the greedy-

type basis from the pivoted Cholesky decomposition
instead of the eigenfunctions for the representation
of uM . Thanks to the greedy-type strategy, the sub-

space can easily be enlarged by adding additional
basis functions, if required. We show that the pro-
posed basis functions lead to competitive results.

However, in contrast to the Nyström method, the
basis is refineable and is computationally less inten-
sive.

The paper is structured as follows: In Section 3
we recapitulate the fundamentals of Gaussian Process

Morphable Models and the Nyström method which is
currently used for its discretization. We particularly dis-
cuss the drawbacks of the Nyström method and how

this affects registration results. In Section 4 we intro-
duce the pivoted Cholesky decomposition for the low-
rank factorization of covariance matrices and discuss
how it can be used to compute Karhunen-Loève ex-
pansions for GPMMs. Section 5 introduces the new
greedy-type basis and contains also a discussion why
the registration results with this basis should behave
similar to the registration results with the eigenbasis
from the Karhunen-Loève expansions. The numerical
experiments in Section 6 are concerned with the approx-
imation quality of the introduced method, whereas the
numerical experiments in Section 7 demonstrate that
the introduced greedy type basis for GPMM is compet-
itive to state-of-the-art registration methods. Finally,

in Section 8 we draw our conclusions.
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The core algorithms of the method proposed are im-
plemented in the open-source project Scalismo [35].

2 Related Work

The Gaussian Process Morphable Model (GPMM) frame-
work [26], on which our work is based on, can be seen as
the unification of different concepts. On the one hand,
statistical shape models (SSM) can be extended with
additional flexibility using kernel functions. On the other
hand, the models are used as statistical priors for sur-
face and image registration. The work by Grenander et
al. [13] contains similarities to the GPMM approach,
as they propose to use a basis function representation
to span the model space. However, in all these works,
the basis functions have to be known analytically [3],
or the initial model needs to be of finite rank [21]. In
[22] and also in [28] the covariance function is not ap-
proximated, which is only feasible for compact kernels
with small correlation lengths. In the context of Gaus-

sian processes and the computation of low-rank approx-
imations to covariance matrices, the pivoted Cholesky
decomposition is an established algorithm, cf., e.g., [31,

18,9,4]. Having the low-rank approximation at hand,
it has been shown in [18] that the eigenpairs of the co-
variance matrix can be obtained approximately by solv-
ing an eigenvalue problem which has the dimension of

the rank of the low-rank approximation. Whereas these
works are restricted to the low-rank approximation of
matrices, is has been analyzed in [17] how the contin-

uous eigenvalue problem can be efficiently discretized
and solved by the pivoted Cholesky decomposition by
the use of finite elements. In [30] the authors employ

the pivoted Cholesky decomposition to compute a low-
rank factorization of kernel functions in terms of func-
tion skeletons. Since one can add another basis func-
tion to the low-rank factorization without recomputing
the others, they call the obtained basis the “Newton”
basis, in analogy to Newton interpolation. This kernel-
based approach has been extended in [34] to compute a
Karhunen-Loève expansion if radial basis functions are
used for the spatial discretization.

3 Fundamentals of Gaussian Process
Morphable Models

3.1 Modeling Deformation Priors

Gaussian Process Morphable Models (GPMM), which
have been introduced in Lüthi et al. [26] allow to define
prior models for registration analytically in advance us-
ing a matrix-valued Gaussian process. The vector fields,

Fig. 1 In this figure, an overview about how the Gausssian
Process Morphable Models are used on different domains.
Bottom left: A reference 2D mesh (colored in red) is de-
formed using a deformation field that is defined on the mesh
itself. Bottom middle: The GPMM deformation model is
defined on the whole 2D image domain. Bottom right: A
random sample of a GPMM defined on a 3D mesh with a
spherical shape.

which are defined continuously on a domain Ω ⊂ Rd,
act as the non-rigid transformation of the reference ob-

ject ΓR ⊂ Ω, which could be any geometric object or
grid defined in Ω. The GPMM are used on different
domains, such as two or three dimensional surfaces and
grid-like structures, which is also visualized in Figure 1.

A Gaussian process GP(µ,K) is defined by its mean
function µ : Ω → Rd and its covariance function K : Ω×
Ω → Rd×d, see [31]. Then, any deformation u sampled

from GP(µ,K), gives rise to a new surface Γ by warping
the reference surface ΓR:

Γ = {x + u(x) : x ∈ ΓR}.

Similar to the PCA representation of a statistical
shape model, a Gaussian process GP(µ,K) can be rep-
resented in terms of an orthonormal set of basis func-
tions {φi}∞i=1

u(x,α) ∼ µ(x) +
∞∑
i=1

αi
√
λiφi(x), αi ∈ N (0, 1), (1)

where (λi,φi) are the eigenpairs of the integral operator

TKf(·) :=

∫
Ω

K(·,x)f(x) dρ(x) (2)

with ρ(x) denoting a measure. The representation (1) is
known as the Karhunen-Loève expansion of the Gaus-
sian process [5].

Since the random coefficients, αi are uncorrelated,
the variance of u is given by the sum of the variances
of the individual components. Consequently, the eigen-
value λi corresponds to the variance explained by the
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i-th component. This suggests that, if the λi decay suffi-
ciently quickly, we can, instead of (1), use the low-rank
approximation

uM (x,α) ∼ µ(x) +
M∑
i=1

αi
√
λiφi(x). (3)

The resulting model is a finite dimensional, para-
metric model with M components, similar to a standard
statistical model. The expected error of this approxima-
tion is given by the tail sum

∞∑
i=M+1

λi. (4)

Estimates for the decay of the λi show that the tail sum
is reasonably small even for small M , provided that the
covariance function K is sufficiently smooth, cf. [14]. In
particular, any valid positive semi-definite covariance

function can be used.

3.2 Nyström Method

To compute the truncated Karhunen-Loève-expansion

(3) for an approximate GPMM model, the eigenpairs
of the integral operator (2) have to be computed, i.e.,
the continuous eigenvalue problem(
TKφm

)
(x) = λmφm(x) (5)

has to be solved, where TK is the integral operator (2)
given by the covariance function. In order to solve the
eigenvalue problem numerically, it has to be discretized,

i.e., it has to be transformed into a finite dimensional
problem

Cφm,N = λm,Nφm,N (6)

with φm,N ∈ RN and C ∈ RN×N .

The current state-of-the art proposed in [26] is to use
the Nyström method, which performs the discretization
by a sampling approach. Therefore, for some random
samples x1, . . . ,xN drawn according to ρ, one approx-
imates∫
Ω

K(·,x)f(x) dρ(x) ≈ 1

N

N∑
i=1

K(·,xi)f(xi), (7)

cf. [31] and the references therein. Although the estima-
tor can be inaccurate, it comes with minimal assump-
tions on the measure ρ, which makes it highly attractive
for problems with little information. If the reference do-

main is for example given by a set of vertices, appro-
priate samples can be drawn from this set.

Evaluating (7) at the sample points and multiply-
ing with N yields, similar to (6), the finite dimensional
eigenvalue problem

CNystrφm,N = Nλmφm,N (8)

with the matrix

CNystr =
[
K(xi,xj)

]N
i,j=1

and the point values(
φm,N

)
i
≈ φm(xi), i = 1, . . . , N.

Combining (2), (5) and (7), the eigenfunctions can then
be evaluated at any given point by

φm(x) ≈ λ−1
m,N

N∑
i=1

K(x,xi)
(
φm,N

)
i
. (9)

Probabilistric error bounds for the eigenpairs exist and
show that the accuracy increases with the number of
sample points, cf. [32].

3.3 Accuracy of the Nyström Method

The Nyström method has two major drawbacks which
cause difficulties in building accurate GPMM approxi-

mations.

1. The number of required eigenfunctions is unknown:

Even if it is known that the GPMM has a good low-
rank approximation, the required number of eigen-
functions, i.e., the value of M , cannot be determined
in advance or by the algorithm, but has to be chosen

by the user.
2. Dependence on random samples: The common prob-

lem of randomized algorithms that there are no de-

terministic error bounds applies also for GPMM.
In particular for GPMM, the sampling based ap-
proach might miss important features of the covari-
ance function on small scales, which might be crucial
for building accurate approximations.

These two points make it difficult to judge whether an
insufficient registration result is caused by an inaccu-
rate prior model. For a user it is difficult to guess the
right amount of basis functions and the right density

of random sampling to make sure that the prior model
accuracy is not the issue.

To overcome this problem, one may argue that a suf-
ficiently large number of samples N and a sufficiently
large number of eigenfunctions M will lead to a good
approximation. However, whereas a large value of M
may cause trouble in the optimization algorithm, the
choice of N � 1 leads to a N × N dense eigenvalue
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problem, whose solution with deterministic algorithms
has a complexity of O(N3). In addition, for large N ,
the evaluation of the eigenfunctions (9) becomes com-
putationally intensive for a large number of evaluation
points. Using a randomized SVD, cf., e.g., [16] and the
references therein, the complexity of the solution of the
eigenvalue problem can be lowered to O(MN2). While
this reduces the complexity of the solution of the eigen-
value problem, it introduces an additional probabilistic
component to the algorithm and still requires assem-
bling the full covariance matrix, which has a complexity
in memory and computation time of O(N2).

We thus require an algorithm satisfying the follow-
ing requirements:

1. The algorithm should be completely deterministic,
i.e., it should avoid random sampling and any other
random input data.

2. Given a user-defined tolerance, the algorithm should
automatically detect the number of required eigen-

functions, i.e., the value of M , such that the error
is below that tolerance.

3. While the previous two requirements address the

issues discussed at the beginning of this section, we
require the algorithm to be computationally efficient
without sacrificing accuracy.

While the first requirement can in principle be addressed
by more advanced Nyström methods based on quadra-
ture rules for the approximation of the integral in (7),

see [15], these quadrature rules are either difficult to
construct or lead to large system matrices, i.e., N � 1.
Therefore, the following chapter shall discuss an algo-

rithm fulfilling these requirements based on the pivoted
Cholesky decomposition.

4 Pivoted Cholesky for GPMM Approximation

4.1 Low-rank Approximation with the Pivoted
Cholesky Decomposition

Although the system matrices of the discrete eigenvalue
problems (6) and (8) are dense, they still have a low

dimensional structure in the sense of low-rank approx-
imations. In fact, the decay of the eigenvalues of the
integral operator (2) has been well investigated in [14],
where it has been proven that the eigenvalues satisfy
the decay estimate

λm ≤ Cm−2p/d.

Here, p is some parameter which increases with the
smoothness of the kernel. It is therefore evident that
there exists a reasonably sized M such that the tail sum

(4) is sufficiently small. Thus, assuming that the pre-
scribed GPMM can be reasonably well approximated
by a truncated Karhunen-Loève expansion implies that
its correlation matrices can be well approximated by a
truncated singular value decomposition and the matri-
ces of the dense eigenvalue problems (6) and (8) have a
low-rank structure.

A suitable tool to reveal the low-rank structure of
a covariance matrix is the pivoted Cholesky decompo-
sition. It only relies on the a-priori knowledge that co-
variance matrices are positive semi-definite matrices,
and does not require the precomputation of the ma-
trix. Non-stationary covariance kernels are naturally in-
cluded, since they yield positive semi-definite matrices.

Given some user-defined tolerance, the algorithm
finds a low-rank factorization such that the approxi-
mation error is below that tolerance, measured in the
trace-norm for positive semi-definite matrices. In par-
ticular, it automatically detects a rank M which is re-

quired to fulfill that tolerance. The pivoted Cholesky
decomposition, cf. [18,9], is given in Algorithm 1.

Algorithm 1 The pivoted Cholesky decomposition
Input:
– Function C(i, j) computing entry (i, j) of matrix C.
– Relative error tolerance ε > 0

Output:
– Required rank M for low-rank approximation
– Low-rank approximation CM =

∑M
i=1 `i`

ᵀ
i

– Approximation error trace(C−CM ) ≤ ε · trace(C)

Set M = 1
Set d =

[
C(i, i)

]N
i=1

Set error = ‖d‖`1
Set ε = ε · error
Set π = [1, 2, . . . , N ]
while error > ε do

Set i = arg max{dπj : j = M,M + 1, . . . , N}
Swap πM and πi
Set `M,πM =

√
dπM

for M + 1 ≤ i ≤ N do
Compute

`M,πi =
(
C(πM , πi)−

∑M−1
j=1 `j,πM `j,πi

)
/`M,πM

Update dπi = dπi − `M,πM `M,πM
end for
Compute error =

∑N
i=1 dπi

Set M = M + 1
end while

As can be seen from the algorithm, it requires a
function computing the covariance matrix entries as
input, rather than the covariance matrix itself. The

computation of the full covariance matrix can thus be
avoided since the algorithm determines automatically
which entries of the matrix need to be computed, which
are at most O(NM), rather than O(N2). The complex-
ity of the algorithm itself is O(NM2).
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Fig. 2 Samples from a GPMM deforming a sphere reference
mesh with a radius of 100 mm. The kernel has been chosen to
be as a a Gaussian kernel with a large length-scale, combined
with a small local one (Gaussian kernel with σ = 60 and
scale = 30 and a Gaussian kernel with σ = 15 and scale =
10 ). There is a visible increase in flexibility of the modeled
deformations when increasing the approximation accuracy of
the GPMM.

The only input parameter the user has to control
is the approximation accuracy. The error of the output
low-rank approximation is guaranteed to be below that

threshold. This gives the user a rigorous control over the
approximation accuracy of the GPMM as illustrated in
Figure 2. There, different random samples are shown

from a GPMM approximated with iteratively refined
accuracy.

Another interesting variant of the algorithm evolves
when an upper limit to the rank M of the low-rank ap-

proximation is fixed. Since the output of the algorithm
includes the error of the low-rank approximation, one
can directly check whether the quality of the low-rank
approximation is sufficient.

Having discussed a deterministic and efficient algo-
rithm for the low-rank approximation of covariance ma-
trices, we discuss next how this can be used for the com-
putation of Karhunen-Loève expansions. Note, that this

is relevant only for applications where the computation
of the Karhunen-Loève expansion itself is an absolute
necessity for further algorithms. We will show in Sec-
tion 5 that for many registration algorithms a full KL
expansion is not necessary and the low-rank approxima-
tion from the pivoted Cholesky decomposition is suffi-
cient. In this case, the postprocessing step described in
the remainder of this section can be omitted.

4.2 Computing Karhunen-Loève Expansions using
Low-rank Approximations

Having a suitable algorithm for the computation of low-
rank approximations at hand, one may replace the co-
variance matrices of the eigenvalue problems (6) and (8)
by its low-rank factorizations C ≈ LMLᵀ

M . This yields

an eigenvalue problem

LMLᵀ
Mvm,N = λm,Nvm,N .

Exploiting the fact that LMLᵀ
M has the same eigen-

values as Lᵀ
MLM , we obtain an equivalent eigenvalue

problem

Lᵀ
MLM v̌m,N = λm,N v̌m,N , (10)

which has the reduced dimension M � N and can
thus be solved by standard eigensolvers for dense matri-
ces. Approximations to the eigenvectors φm,N are then
given by

φm,N ≈ vm,N = LM v̌m,N . (11)

Thus, given a low-rank approximation C ≈ LMLᵀ
M ,

the solution of the dense small eigenvalue problem (10)
and the computation of the eigenvectors by (11) can be
accomplished in complexity O(M3) and in O(NM2),
respectively. Since the computation of the small eigen-
value problem and the complexity of the pivoted Cho-
lesky decomposition are bothO(NM2), the overall com-

plexity for the computation of the Karhunen-Loève ex-
pansion is also O(NM2).

Assuming that the GPMM can be reasonably well

approximated by a truncated Karhunen-Loève expan-
sion, M is reasonably small, and, thus, we can choose
N � 1, for example in the range of millions. This

allows for highly accurate spatial approximations. In
the following, we discuss two suitable discretizations
for surface and image registration. The discretizations
are chosen illustratively and could be replaced by more

advanced discretization schemes as discussed in the ap-
pendix.

4.2.1 Spatial Discretization for Surfaces

Because of its minimal assumptions, the Nyström ap-

proach is very popular in the machine learning com-
munity. It is also well suitable for surface to surface
registration, where the shape is represented as a set of
vertices and there is almost no structure available.

Thanks to using the pivoted Cholesky decomposi-
tion, we are no longer restricted by the size of the eigen-
value problem, and that the number of sampled points
can be several million. Thus, we may choose to deter-
ministically sample every vertex of the surface and can
even include additional evaluation points in the deter-
ministic sampling, such that the expensive interpolation
(9) can be omitted. We can thus compute the eigen-
functions directly on all mesh and evaluation points
and can thus completely avoid any random sampling

on the surface and its corresponding uncertain error.
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Consequently, when using the pivoted Cholesky decom-
position, we obtain a completely deterministic solution
within the user-controlled error tolerance.

Instead of the quadrature formula (7) where each
quadrature point has the same weight, one may also
choose more sophisticated quadrature points, see, e.g.,
[15]. The pivoted Cholesky can also be employed in this
case, as is discussed in Appendix A.1.

4.2.2 Spatial Discretization for Grid Approximations

Instead of the Nyström approach for the discretization
of the eigenfunctions, one may also choose finite element
schemes. Finite element schemes rely on finite dimen-
sional function spaces which are defined on (possibly
non-regular) grid structures. Thus, they are interesting
for image registration, where the computational domain
naturally provides such a structure.

A throughout analysis of a wide range of finite ele-
ment schemes for the computation of Karhunen-Loève

expansions using the pivoted Cholesky decomposition
was given in [17]. For simplicity, we restrict the pre-
sentation in this section to piecewise trilinear finite ele-

ments, see Appendix A.2, on a three-dimensional rect-
angular grid. The grid is assumed to consist of cells
of size h1 × h2 × h3 and we restrict ourselves to the

case ρ(x) = 1 and employ a well known mass lumping
scheme. This results in a function space spanned by N
vector-valued basis functions ϕi, i = 1, . . . , N , in which
the approximate eigenfunctions shall be represented.

Under these assumptions, the eigenvalue problem
(5) discretized with said finite elements becomes

CFEMφm,N = h2λm,Nφm,N . (12)

Here, h =
√
h2

1 + h2
2 + h2

3, with the system matrix

CFEM =
[
K(xi,xj)

]N
i,j=1

and the approximate eigenfunctions

φm(x) ≈ φm,N (x) =
N∑
i=1

(
φm,N

)
i
ϕi(x).

Obviously, given the similarity of the eigenvalue prob-
lem (12) to the eigenvalue problems (6) and (8), the
pivoted Cholesky decomposition can also be employed
in the case of this finite element scheme to compute the
Karhunen-Loève expansion. However, for more general

finite element schemes, the structure of the eigenvalue
problem (12) becomes more involved and we refer to
Appendix A.3 and [17] for more details.

A particular advantage of finite element schemes is
that precise error estimates exist on how to choose the

threshold of the pivoted Cholesky decomposition in de-
pendence of the grid size h, see [17]. In the described
case of piecewise trilinear finite elements, when the co-
variance function fulfills mild smoothness assumptions,
the threshold should be chosen proportional to h2. Then,
the use of the pivoted Cholesky decomposition will not
significantly change the approximation quality of the
finite element scheme when the grid size is changed.

4.3 Image and Surface Registration

After the prior GPMM is approximated by a Karhunen-
Loève expansion, it can be turned into a registration al-
gorithm. Therefore, we have to define a reference image
or 3D surface ΓR and a target data-set ΓT . We also have
to define a distance measure D between the objects. In
the surface registration setting, the distance function is
often defined as the distance between a point on the
perturbed reference and its corresponding closest point

on the target surface [26]. Together with the distance
measure, we can formulate the registration problem as

arg min
u∈FK

D[ΓR, ΓT ,u] + η‖u‖2K, (13)

where ‖·‖K denotes the norm of the kernel functions’s
reproducing Hilbert space FK and η is a regularization
parameter. Replacing u by its low-rank approximation

uM from (3), we can restate the problem in the para-
metric form

arg min
α1,...,αM

D
[
ΓR, ΓT ,µ+

M∑
i=1

αi
√
λiφi

]
+ η

M∑
i=1

α2
i , (14)

which can be optimized with common methods, such as
gradient descent.

The next section shows that we can even omit the

solution of the eigenvalue problem, if we choose an alter-
nate basis for the subspace spanned by the Karhunen-
Loève expansion.

5 Greedy GPMM Approximation with Newton
Basis

The conversion of the optimization problem in the re-
producing kernel Hilbert space from (13) to an op-
timization problem with finitely many parameters in
(14) has strictly been done with a Karhunen-Loève ex-
pansion in previous work [26]. This automatically cap-
tures the most significant features of the problem in
the reproducing kernel Hilbert space into the problem
with finitely many parameters. However, the Karhunen-

Loève expansion has more structure than actually needed
for the optimization in (14). Therefore, we may choose



8 Jürgen Dölz and Thomas Gerig†‡, Marcel Lüthi‡, Helmut Harbrecht and Thomas Vetter†‡

a basis spanning the same subspace as the Karhunen-
Loève expansion which is cheaper to compute and has
the property of iterative refinement. Denoting the m-
th eigenfunction obtained from the pivoted Cholesky
decomposition by φm,N and abbreviating

ΦN,M (x) =
[
φ1,N (x)

∣∣ . . . ∣∣φM,N (x)
]

andΣN,M = diag(λ1,N , . . . , λM,N ), the Karhunen-Loève
expansion (3) can be written as

uM (x,α) ∼ µ(x) +αΣN,MΦN,M (x)ᵀ.

By associating (11) with its corresponding functions,
we deduce that

ΦN,M (x) = LM (x)
[
v̌1,N

∣∣ . . . ∣∣v̌M,N

]︸ ︷︷ ︸
=:Φ̌N,M

,

which yields

uM (x,α) ∼ µ(x) +αΣN,M Φ̌N,M (x)ᵀ︸ ︷︷ ︸
=:α̃

LM (x)ᵀ.

We remark in particular that the coefficients α̃ are a

linear combination of the coefficients α. Thus, instead
of using the Karhunen-Loève expansion (3), and by de-
noting the function associated with the vector `i by

`i,N , we can use the expansion

uM (x, α̃) ∼ µ(x) +
M∑
i=1

α̃i`i,N (x),

see also [17], which spans the same subspace. The opti-

mization (14) then turns into

arg min
α̃1,...,α̃M

D
[
ΓR, ΓT ,µ+

M∑
i=1

α̃i`i,N

]
+ η

M∑
i=1

α̃2
i .

We can thus directly work with the Newton basis given
by the column vectors of the low-rank approximation of
the pivoted Cholesky decomposition, cf. [30], and omit
the solution of any eigenvalue problems.

The Newton basis offers some new interesting possi-
bilities since one can easily expand the basis if a higher
accuracy is needed. Therefore, it is sufficient to pro-
ceed in the algorithm of the pivoted Cholesky decom-
position. If the basis vectors need to be orthonormal,
one can apply an orthonormalization method like the
Gram-Schmidt algorithm, cf., e.g., [12]. As the pivoted
Cholesky decomposition, the Gram-Schmidt algorithm

can be continued when the basis has to be expanded.
We will show in the numerical experiments that this

greedy-type basis is a competitive alternative for reg-
istration compared to the original Karhunen-Loève ap-
proach by [26]. It also gains a computational advantage,

since the steps for the computation of the Karhunen-
Loève expansion from Section 4.2 can be omitted.

The actual performance improvements very much
depend on the numerical effort for the computation of
a single matrix entry. The computation of the pivoted
Cholesky decomposition is O(NM2), with a constant
which is dominated by that effort. The post-processing
to obtain the Karhunen-Loève expansion as described
in Section 4.2 consists of the computation of the small
matrix for the dense eigenvalue problem (NM2 op-
erations), the solution of the small eigenvalue prob-
lem (O(M3) operations, see [12]), and the computa-
tion of the eigenvectors for the large system (NM2

operations). We can thus save 2NM2 + O(M3) oper-
ations when using the Newton basis rather than the
Karhunen-Loève expansion.

However, from our perspective, the possibility to re-
fine the Newton basis greedily is much more valuable
than the actual performance improvements gained from
omitting the steps from Section 4.2. It is particularly

attractive to increase the approximation accuracy as
illustrated in Figure 2. In Figure 2, two random sam-
ples are visualized from models that are approximated

with increasing accuracy. We emphasize again that, in
contrast to the Karhunen-Loève approach, a refinement
of the model only needs the calculation of the addi-

tional basis vectors instead of a full computation from
scratch.

6 GPMM Approximation Experiments

6.1 Comparison of Generalisations for Surface GPMM

We use a data-set consisting of 39 registered face scans
to represent the ground-truth and as target surfaces

for the registration. The data-set is registered using the
method proposed by [2] which includes additional con-
straints to cope with artifacts and noise of the raw 3D
scans. To establish a fair comparison between the fit-
ting accuracy of the methods, we create an experiment
where only the generalisation ability of the models is
evaluated. The model for this experiment is defined
with a scalar multi-scale B-spline kernel, which is in-
troduced by Opfer [29]. Given a univariate third order
B-spline b3 and the function ψ(x) = b3(x1)b3(x2)b3(x3),
the kernel reads

kBSp(x,y) =

j∑
j=j

∑
k∈Zd

22−jψ
(
2jx− k

)
ψ
(
2jy − k

)
.

According to [29], this results in a valid, positive definite
kernel function on multiple scales. In our experiment,
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we define the levels from l = −5 to l = −2 and refer to
[26] for details on matrix valued B-spline kernels.

Taking the Nyström method proposed by [26] as a
reference, we use the same kernel function to approxi-
mate three different parametric models. For the refer-
ence, we sample a uniform subset of 1000 points and
approximate 1000 eigenfunctions, which, due to the ex-
pensive interpolation (9) to extend the eigenfunctions
to all mesh points, amounts to the borderline of feasi-
bility. With the pivoted Cholesky method we create a
model with a similar amount of basis-functions with a
tolerance of ε = 0.05 (1200 basis functions) and a more
accurate model with a tolerance of ε = 0.01 (2200 ba-
sis functions). Especially, we are able to sample on all
grid points and can avoid the expensive interpolation of
the eigenfunctions. Since the face data-set is registered
and thus in correspondence with the reference, we can
define a direct projection in the model space as

] arg min
α1,...,αM

Dc
[
ΓR, ΓT ,µ+

M∑
i=1

αi
√
λiφi

]
, (15)

where the distance function Dc consists of the squared
Euclidean distance of every point x with its correspond-
ing point on the registered target. This is a least squares

problem and the optimal solution for this problem can
be computed in closed form solution, which is shown in
[1].

The 39 registered human faces are projected into all
three models and the average point-to-point distance is

measured and illustrated in Figure 3. The Cholesky ap-
proximated model with ε = 0.05 performs similarly as
the Nyström model. However, when the approximation

accuracy of the Cholesky model is increased to ε = 0.01,
the model generalizes better to the faces dataset.

6.2 Spatially Varying Kernel Models

In this experiment, we compare the low-rank approxi-
mation methods on covariance functions, where the cor-
relation length varies depending on predefined regions
in the domain Ω. These type of covariance functions al-
low for the specification of different kind of smoothness
depending on the region. In practice, this is especially

useful for modeling different levels of detail depend-
ing on the region. To approximate a spatially-varying
model in practice, the Nyström approach is not optimal
for two reasons: 1) Locally detailed regions can be ap-
proximated using a more compact representation than
a global model with small details, which is, however,
not controllable with the Nyström approach. This is
illustrated in Figure 4, where the spatially-varying ker-
nel is approximated by a few basis functions. Choosing

Nystroem - 1000 Eigenfunctions Pivoted Cholesky - 95% Accuracy Pivoted Cholesky - 99 % Accuracy
0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Average Generalization Error [mm]

Fig. 3 Comparison of the generalization ability of three dif-
ferently approximated GPMM face models to 36 example
faces: The error is measured with the distance closest to the
target surface in [mm]. The GPMM approximated with the
Nyström method on 1000 eigenfunctions is compared to the
approximation of the same GPMM with 95% and 99% accu-
racy. We clearly see that an approximation of the model with
1000 eigenfunctions is only comparable to a model approx-
imation with 95% accuracy. Approximating the model with
an accuracy of 99% decreases the generalization error visibly.

the number of basis functions in advance, as it would

be the case for the Nyström method, is difficult and
unintuitive. 2) Since the Nyström approximation only
computes the eigenfunctions on a uniformly sampled

subset of points, it might well approximate coarse corre-
lations, but it is likely to miss small deformation regions
if the subset is not densely sampled, which is not the
case when using the pivoted Cholesky algorithm. As an

experimental setup we define a coarse kernel function
kc(x,y) and also a fine kernel kf (x,y), which are both
defined as Gaussian kernels with σ = 100 for kc and

σ = 15 for kf . Together with a function t : Ω → (0, 1),
which activates the fine kernel on a predefined region
in Ω, we formulate a spatially varying kernel as

ks(x,y) = kc(x,y) + t(x)kf (x,y)t(y). (16)

In Figure 4 the kernels and their individual amount
of basis functions are visualized. By simply choosing
the approximation error, we receive the right number
of basis functions to approximate the model.

One practical example for spatially varying kernels
is the construction of a registration prior for human

faces or full heads. In [10] it has been shown how to
model and apply such a prior for face registration. In
this experiment we compare a globally consistent kernel
to a spatially varying kernel by the means of model ap-
proximation and registration accuracy. Similar to 6.1,
we use a data-set consisting of 48 registered full human
head shapes as ground-truth target surfaces for the reg-
istration. The data-set is registered using the method
proposed by [2].
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Fig. 4 In this figure, random samples of different kernel func-
tions are visualized on a sphere with the radius of 100 mm.
All of them are approximated with the proposed method us-
ing an accuracy of 99.0%. The method automatically selects
the right amount of basis functions for the given model. The
spatially-varying model in the bottom row only contains local
details at the specified region. This drastically decreases the
number of basis functions to reach 99.0% accuracy.

Except the spatial variance we have built both de-
formation priors the same way with a multi-scale Bspline
kernel as its basis. A detailed description has been done

in [10]. In short, we have built kernel kSP , where a func-
tion emphasizes more details for the face region than for
the full head. A practical reason is that not much de-

tailed information is expected from this region and it
has to be more robust against occluders, such as hair.
The kernel kNSP , however is built globally ignoring the
regions of the head.

Using the method proposed in this paper, we can
measure the effect of the spatially-varying kernel using
the approximation accuracy when we limit both mod-
els to a fixed amount of basis functions (1000). Since

the spatially-varying kernel only allows correlations in
the face and ear region the representation of this model
can be more compact, which allows for more details
at the face region. The spatially-varying kernel can be
approximated 6% better with the same amount of ba-
sis functions than used for the non-varying counterpart
(Table 1). The better accuracy of the model and the ad-
ditional modelling information has a direct effect on the
face registration task itself. We have used both models
to register 48 human ground-truth heads and measured

the registration accuracy using the average correspond-
ing point distance. Figure 5 shows an improvement of

Global (kNSP ) Spatially Varying (kSP )

Accuracy 92.5% 98.1%

Table 1 Model approximation accuracy of the head registra-
tion prior models kSP and kNSP limited to 1000 basisfunc-
tions. The spatially varying kernel has been approximated 6%
more accurate than its global counterpart.

Full Head NSP Full Head SP Face NSP Face SP
0.2

0.4

0.6

0.8

1.0

1.2

1.4
Average Distance [mm]

Fig. 5 The measured accuracy of the spatially-varying model
kSP and its non-varying counterpart kNSP is shown. Left:
The error is measured on the full head (Red and Blue) and
only on the face region (Red). Right: The average distance
in [mm] of the GPMM registration compared against the
ground-truth.

Fig. 6 A comparison between the registrations with and
without a spatially-varying kernel. The registrations using the
spatially-varying kernel (left) show less errors in the facial re-
gion than its non-varying counterpart (right). For the face
registration application in [10] the variation at the ears were
deliberately built smooth because to be robust against out-
liers. For this reason the error is large for both models in this
region.

the full head as well as the isolated face region. The spa-

tially varying kernel enables more details for the face re-
gion while keeping a smooth backhead. Visually this is
also shown in Figure 6, where the error in facial details
around the mouth and eye region has been decreased.

The models were computed on a Intel(R) Xeon(R)
CPU E5-2670 0 @ 2.60GHz with 32 cores with a com-

putation time of approximately 20 minutes. The head
registrations take about 15 minutes per case.



Error Controlled Model Approximation for Gaussian Process Morphable Models 11

7 Medical Image Registration

With the following medical image registration exper-
iments, we measure the impact of approximation ac-
curacy and the approximation basis on the registration
accuracy of a human forearm CT dataset. Also, we show
a comparison of the GPMM registration with a state-of-
the-art multi-scale B-spline image registration pipeline,
which is implemented in Elastix [23]. The registrations
are performed on a data-set consisting of 27 CT im-
ages of the human forearm. The surface of Ulna and
the Radius have been manually segmented by experts
to provide a ground-truth measure of the accuracy. The
data has been rigidly aligned to one arbitrary example
of the data-set using 4 landmarks and are provided in
a resolution of 800 × 800 × 500. For the deformation
model, we selected the same kernel function as in [26],
which performed best in their experiment. To evaluate
the accuracy of our experiments, we computed the av-
erage squared distance error of the registered result to
the ground-truth segmentations of the provided 27 CT

images. For all the computations we used a Intel(R)
Xeon(R) CPU E5-2670 0 @ 2.60GHz with 32 cores.
The prior model approximations (Nystroem and PC)

are computed offline once took less than an hour in av-
erage. The approximation of the Newton basis model
is faster because it omits the last SVD step, as de-
scribed in Section 5. The registrations itself are both

in the range of 30 min per example, which counts for
multi-scale B-spline of Elastix, but also for the GPMM
registration.

7.1 Model Approximation Experiment

In this experiment, we compare the registration error
between the two different approximation methods; the
originally proposed Nyström method and the pivoted

Cholesky approximation using the Newton basis and
the finite element discretization. In Figure 7, the regis-
tration accuracy of the two models is visualized. If we
approximate the pivoted Cholesky model with an ac-
curacy of 99% (ε = 0.01), the registration results are
similar to the Nyström where we chose 500 eigenfunc-
tions. When the Cholesky model is approximated with

more accuracy (99.9%), a minor decrease of the error is
still visible, which also due to the larger flexibility of the
more accurate model, computed with pivoted Cholesky.
The advantage of the proposed method and the new
basis are not the approximation accuracy itself but the
control over the approximation error and the black-box
usage. Using the previously proposed Nyström example
the user will never be sure if a change of the number

PC (Newton) 99.9% PC (Newton) 99.0% Nystroem (500)
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Fig. 7 A comparison between different model approxima-
tions using the registration accuracy of the Ulna registration.
Our proposed Cholesky model with ε = 0.01 and ε = 0.001
error is comparable with the Nyström method with 500 eigen-
functions. However, the Pivoted Cholesky method provides
additional information about the approximation accuracy of
the given GPMM.
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Fig. 8 A comparison of the registration accuracy of two dif-
ferent basis for the GPMM approximation. Left: The pro-
posed Newton-basis is less computationally intensive and it-
eratively refinable. Right: The originally used Eigenbasis,
computed as in Section 4.2.

of basis functions still improves the GPMM approxima-
tion.

In Figure 8, a direct comparison between the eigen-
basis and the Newton basis is shown. For both models
we used the pivoted Cholesky method to approximate
the model with 99% accuracy. For the first model we
kept the basis as the Newton basis and for the second
model we used the method shown in 4.2 to compute
the eigenbasis. Figure 8 shows that the Newton basis
performs similarly at the given image registration task,
while it needs less computational steps, is greedily com-
puted and can be refined iteratively.

7.2 Image Registration Comparison

In this last experiment, we compare the proposed im-
age deformation models to a state-of-the-art B-spline
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registration algorithm, which is implemented in Elastix
[23]. In Figure 9 the GPMM registration approach with
the proposed basis functions is compared to the B-
spline registration included in Elastix [23].The goal of
this experiment is to evaluate the usage of the pro-
posed method and basis-functions in a practical setting
against a state-of-the-art baseline. The Elastix registra-
tion framework also contains a multi-resolution strat-
egy for the optimization, which is currently not present
in the GPMM framework. To achieve a fair compari-
son between the deformation models, we compare the
regstrations in two settings: 1) A comparison with a
single-scale Elastix with B-spline transformation, which
omits the influence of the optimization strategy and
enables a fair comparison of the models. 2) An exper-
iment, where a landmark posterior model is compared
to the multi-scale B-spline. Here we show that even
without an advanced optimization strategy the GPMM
models can perform similarly to Elastix. When the B-
spline method, provided in Elastix, is used with a single
B-spline scale, our proposed method performs in a com-

parable range. To become more robust towards local op-
tima, the GPMM method allows to build a prior of the
deformations by defining a kernel that is more suited

for a specific task. As Lüthi et al. [26] have shown, this
can be done in multiple ways, as for example, making it
spatially varying, symmetric or to include landmarks.

We show exemplary how adding landmark constraints
to restrict the prior to only deformations that match
the landmarks, lead to a more accurate registration ac-
curacy, and at the same time, much more robust re-

sults. For all the registration experiments we used the
proposed Newton basis, as shown in Section 5, which
show comparable performance to state-of-the-art reg-

istration methods, while having the desired properties
for prior modeling and the ability to refine the model
approximation iteratively.

8 Conclusion

We have presented a low-rank approximation method

for the Gaussian Process Morphable Model framework
(GPMM) with a controllable approximation error and a
refineable and greedy basis. An error-controlled param-
eterization of the GPMM is a very important step to ac-
curately specify and approximate deformation models
for registration. In this paper, we show a GPMM ap-
proximation method with significant advantages over
the originally proposed method: The method enables
full control over the approximation error and the greedy
algorithm stops at a predefined accuracy. In practice,
this enables the user to treat the model parameteriza-

tion as a black-box while still having guarantees about

Elastix Bspline Single-scale PC (Newton) 99% (1500) Elastix Bspline Multi-scale PC (Newton) 99% with Lm
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Fig. 9 A comparison of the built registration models with
a state of the art B-spline method, which is implemented in
Elastix [23]. Our model is comparable with the single scale
approach. The inclusion of landmarks to compute a poste-
rior GPMM guides the optimization procedure well and is
comparable to the multi-scale version of Elastix [23].

the approximation accuracy. As the second main con-

tribution, we proposed a new basis for GPMM registra-
tion. We showed that the Newton basis contains enough
structure for the registration problem optimization and

has two advantages over the previously used eigenba-
sis: 1) The calculation of this basis is computationally
more efficient because it omits the step of calculating
an SVD and 2) the Newton basis are computed greedily

and thus allow for iterative refinement of the approxi-
mation error without the re-computation of the preced-
ing basis-vectors. The contributions in this paper add

some important missing pieces to the GPMM frame-
work. In contrast to the initial framework, we provide
a practical and theoretically sound way to control the
approximation error of the GPMMs, which has a large

impact to the usability in practice. We showed the reg-
istration accuracy of the models in the context of hu-
man face surface registration evaluated on ground-truth
registrations. Also, we demonstrated the applicability
of the method in the context of medical image regis-
tration, where the human forearm was registered, and

showed that the method is competitive to state of the
art registration methods. The core algorithms proposed
in this work are published open source in the Scalismo
framework [35].

A Appendix

A.1 Advanced Nyström Schemes

Nyström schemes are suitable if the eigenfunctions of the
Karhunen-Loève expansion are only required in certain pre-
determined points x1, . . . ,xN . For this purpose, the integral
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operator (2) is approximated by a quadrature formula

∫
Ω

K(·,x)f(x) dρ(x) ≈
N∑
i=1

ωiK(·, ξi)f(ξi)

with quadrature points ξi and weights ωi. The discrete eigen-
value problem then reads

CNystrφ̂m,N = λm,N φ̂m,N

with the system matrix

CNystr =
[
ωjK(xi,xj)

]N
i,j=1

and the point values

φ̂m,N ≈
[
φm(xi)

]
i
, i = 1, . . . , N.

Note that the system matrix CNystr is not symmetric in gen-
eral. Assuming positive quadrature weights, i.e. ωi > 0, defin-
ing

MNystr = diag(
√
ω1, . . . ,

√
ωN )

and setting φm,N = MNystrφ̂m,N yields a symmetric, gen-
eralized eigenvalueproblem

MNystrCMᵀ
Nystrφm,N = λm,NMNystrφm,N

with the matrix

C =
[
K(xi,xj)

]N
i,j=1

, (17)

see also [15]. As it turns out, the finite element scheme yields
an eigenvalue problem with a similar structure.

A.2 Finite Element Scheme on a Rectangular Grid

Finite element schemes for functions with values in three di-
mensions rely on a finite dimensional subspace VN ⊂

[
L2(Ω)

]3
with basis

{
ϕ1, . . . ,ϕN

}
to represent the eigenfunctions of

the Karhunen-Loève expansion. To construct such a finite di-
mensional space, we consider a uniform rectangular grid Qh
on Ω where each cell has a size of h1×h2×h3. To each vertex
x1, . . . ,xN we assign a function ϕi with the property

ϕi(xj) =

{
1, i = j,

0, i 6= j,
i, j = 1, . . . , N, (18)

where on each cell Qh ∈ Qh, the basis function ϕi is a trilin-
ear polynomial, i.e.

ϕi(y)
∣∣
Qh

= a1 + a2y1 + a3y2 + a4y1y2 +

a5y3 + a6y1y3 + a7y2y3 + a8y1y2y3.

Here, the coefficients are uniquely determined such that (18)
holds. This means especially that the ϕi are only nonzero
in the eight cells with vertex xi. Note especially that all ϕi
are linearly independent, so we can define Vh ⊂ L2(Ω) as
the vector space spanned by the basis ϕ1, . . . , ϕN . A finite
dimensional subspace of

[
L2(Ω)

]3
is then given by Vh =

Vh × Vh × Vh.

A.3 Advanced Finite Element Schemes

Having a finite dimensional subspace at hand yields, cf., e.g.,
[15], the generalized eigenvalue problem

CFEMφm,N = λm,NMFEMφm,N (19)

with system matrices

CFEM =
[(
TKϕj ,ϕi

)
[L2

ρ
(D)]3

]N
i,j=1

,

MFEM =
[(
ϕj ,ϕi

)
[L2

ρ
(D)]3

]N
i,j=1

,

TK denoting the integral operator from (2), and the approx-
imate eigenfunctions

φm(x) ≈ φm,N (x) =

N∑
i=1

(
φm,N

)
i
ϕi(x).

It thus remains to explain how to assemble these matrices.
Since the basis functions ϕi are non-zero only on a few

elements, the mass matrix MFEM is sparse. Inserting the def-
inition of TK into the definition of CFEM, we obtain

CFEM =

[ ∫
D

∫
D

K(x,y)ϕj(y)ϕᵀ
i (x) dρ(y) dρ(x)

]N
i,j=1

.

In order to compute this integral, it is very common in finite
element methods to replace K by its interpolation Kh in the
finite element space, i.e. we approximate

K(x,y) ≈
N∑

i,j=1

K(xi,xj)ϕi(x)ϕᵀ
j (y).

Inserting this approximation into the definition of CFEM yields

CFEM ≈MFEMCMᵀ
FEM,

with the matrix C defined as for the Nyström scheme in (17).
The eigenvalue problem (19) thus turns into

MFEMCMᵀ
FEMφm,N = λm,NMFEMφm,N . (20)

A.4 Connection between the two Schemes

The two schemes can lead to the very same eigenvalue prob-
lem. In implementations of finite element schemes, there are
almost always quadrature formulas involved. Using piecewise
linear ansatz functions and replacing the integrals by a trape-
zoidal rule yields a diagonal matrix MFEM (this is also re-
ferred to as “mass lumping”). The definition of MNystr then
amounts to quadrature weights to a quadrature formula with
the vertices of the finite element mesh as evaluation points.
The two schemes are thus equivalent in this specific case.

A.5 Computing Karhunen-Loève Expansions using
Low-rank Approximations

Again, having a low-rank factorization C ≈ LMLᵀ
M of rank

M at hand, one can reduce the dimension of the eigenvalue
problems (20). For ease of notation, we do not distinguish be-
tween MFEM and MNystr and consider the eigenvalue prob-
lem

MCMᵀφm,N = λm,NMφm,N . (21)
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By substituting the low-rank approximation C ≈ LMLᵀ
M

and vm,N = M1/2φm,N into (21), the eigenvalue problem
becomes

M1/2LMLᵀ
M (M1/2)ᵀvm,N = λm,Nvm,N .

Exploiting the fact that M1/2LMLᵀ
M (M1/2)ᵀ has the same

eigenvalues as Lᵀ
M (M1/2)ᵀM1/2LM = Lᵀ

MMLM , we obtain
an equivalent eigenvalue problem

Lᵀ
MMLM ṽm,N = λm,N ṽm,N .

This modified eigenvalue problem has again dimension M �
N and can thus be solved by standard eigensolvers for dense
matrices.
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26. Marcel Lüthi, Thomas Gerig, Christoph Jud, and
Thomas Vetter. Gaussian process morphable models.



Error Controlled Model Approximation for Gaussian Process Morphable Models 15

IEEE transactions on pattern analysis and machine in-
telligence, 2017.
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