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Mass-dependent (MDF) and mass-independent fractionation (MIF) may cause characteristic isotope 13 

signatures of different mercury (Hg) sources and help understand transformation processes at 14 

contaminated sites. Here, we present Hg isotope data of sediments collected near industrial pollution 15 

sources in Sweden contaminated with elemental liquid Hg (mainly chlor-alkali industry) or phenyl-16 

Hg (paper industry). The sediments exhibited a wide range of total Hg concentrations from 0.86 to 17 

99 μg g-1, consisting dominantly of organically-bound Hg and smaller amounts of sulfide-bound Hg. 18 

The three phenyl-Hg sites showed very similar Hg isotope signatures (MDF δ202Hg: -0.2 to -0.5‰, 19 

MIF Δ199Hg: -0.05 to -0.10‰). In contrast, the four sites contaminated with elemental Hg displayed 20 

much greater variations (δ202Hg: -2.1 to 0.6‰, Δ199Hg: -0.19 to 0.03‰) but with distinct ranges for 21 

the different sites. Sequential extractions revealed that sulfide-bound Hg was in some samples up to 22 

1‰ heavier in δ202Hg than organically-bound Hg. The selectivity of the sequential extraction was 23 

tested on standard materials prepared with enriched Hg isotopes, which also allowed to assess 24 

isotope exchange between different Hg pools. Our results demonstrate that different industrial 25 

pollution sources can be distinguished based on Hg isotope signatures, which may additionally 26 

record fractionation processes between different Hg pools in the sediments.  27 
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Introduction 28 

Mercury (Hg) pollution is a serious threat for human health and the environment, especially 29 

due to the formation of neurotoxic bioaccumulating methyl-Hg in anoxic sediments and soils.1,2 The 30 

United Nations Environment Programme (UNEP) has recently launched a legally binding global 31 

mercury convention with the goal of minimizing further anthropogenic Hg release into the 32 

environment.3,4 Besides fossil fuel combustion and mining-related emissions, industrial activities 33 

represent one of the most important sources of anthropogenic Hg to the environment. Mercury has 34 

been used in many different industrial processes5 due to its unique physicochemical properties. 35 

Some of the Hg released from industrial sources is emitted to the atmosphere and can be transported 36 

in gaseous form over large distances even at the global scale. However, significant Hg releases from 37 

industrial sources also occur in solid or liquid form, for instance with wastewater. These releases 38 

have primarily local effects on ecosystems in the vicinity of the industrial facility where the Hg may 39 

exert negative impacts on aquatic foodwebs and accumulates in sediments and soils. A recent 40 

inventory of Hg releases from commercial products suggests that non-atmospheric pollution 41 

pathways may play a larger role for the historical global Hg budget than previously realized.6  42 

For instance, the use of elemental liquid Hg as a catalyst in the chlor-alkali process, generating 43 

chlorine gas (Cl2) and caustic soda (NaOH) by the electrolysis of NaCl brines, represents an 44 

important industrial Hg pollution source. Although alternative methods are currently replacing the 45 

Hg-cell process in the chlor-alkali industry4, it was one of the preferred methods for many decades 46 

and these plants were in operation worldwide. A typical Hg-cell may contain up to 3 Mg of liquid 47 

Hg and there were often about 100 cells per plant.7 As a result of using these large volumes of 48 

elemental Hg, which was pumped as a catalyst to transport Na in amalgamated form out of the 49 

electrolysis cell, substantial amounts of Hg were released to the environment at many places and 50 

over long time periods. Most Hg emission inventories focus on releases to the atmosphere. For 51 

instance, estimates of current worldwide Hg emissions to air from caustic soda production of up to 52 

163 Mg a-1 8 or a cumulative total of 4240 Mg up to the year 20089 were reported. Total emissions to 53 

air, water, and wastes from chlor-alkali plants in Western Europe were estimated at 9.5 Mg a-1 Hg in 54 

1998, but significant discrepancies exist between the reported emissions and the amount of Hg 55 
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purchased to replace Hg in cells.8 This may be partly explained by large losses of Hg with 56 

wastewater, as revealed today by some highly contaminated sediments, for instance in connection to 57 

the Swedish chlor-alkali industry.10 The Hg-cell process is becoming less common in the chlor-alkali 58 

industry, but many older plants are still in operation and contaminated sites with large amounts of 59 

released legacy Hg will continue to be an environmental threat even after a complete phase-out of 60 

the technology.4,6  61 

A second important industrial pollution source was the use of Hg as a biocide, for instance in 62 

the paper and pulp industry, where pulp fibers are stored in large ponds to which phenylmercuric 63 

acetate (in short: phenyl-Hg) was added as “slimicide” to prevent the growth of microorganisms. 64 

About 390 Mg Hg in the form of phenyl-Hg was used in Sweden between 1941 and 1968, when the 65 

use of phenyl-Hg was banned.11 Mercury-containing slimicides were also used in the Canadian 66 

paper and pulp industry between about 1940 and 1970 and, for example, a weekly consumption of 1 67 

gallon (~3.79 L) containing 5.3 weight-% Hg from a single paper mill (corresponding to about 11 kg 68 

a-1 Hg) was reported.12 A loss of about 40% of the used Hg to the effluent was estimated.11 In 69 

Sweden, these two industrial Hg emission sources were often spatially connected due to the use of 70 

chlorine gas for the bleaching of paper, so that chlor-alkali plants were sometimes located in the 71 

direct vicinity of paper and pulp storage ponds. Total Hg emission estimates from the Swedish forest 72 

industry amount to 1000 Mg, mostly coming from chlor-alkali plant, but including about 145 Mg 73 

originating from the use of phenyl-Hg for pulp preservation.13 Some of the pulp fibers were 74 

discharged with wastewater from the industrial sites and later deposited in nearby sediments of lakes 75 

or coastal environments. Other industrial facilities handling elemental Hg (e.g., manufacturing of 76 

mercury-arc valves) provided additional contamination sources. The Hg concentrations in these 77 

polluted sediments are often several orders of magnitude above geogenic background values and 78 

pose a threat for aquatic ecosystems, especially due to the microbially-mediated formation of 79 

methyl-Hg under anoxic conditions. Both elemental Hg and phenyl-Hg are unstable under 80 

environmental conditions in terrestrial and aquatic systems and are rapidly converted to Hg(II), 81 

which in turn forms complexes with functional groups in natural organic matter (NOM), degraded 82 

pulp fibers, and/or forms sulfide minerals in the sediments.10 83 
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Determining the origin of Hg pollution in sediments can be challenging considering the 84 

possibility of multiple Hg sources. Stable Hg isotope signatures could potentially help differentiating 85 

between pollution sources with distinct isotopic signatures as well as tracing Hg transformations in 86 

the sediments. Mercury has seven stable isotopes (196Hg, 198Hg, 199Hg, 200Hg, 201Hg, 202Hg, 204Hg) 87 

which are affected by mass-dependent fractionation (MDF) and mass-independent fractionation 88 

(MIF). Research over the last decade has revealed the potential of Hg isotope signatures as tracer for 89 

sources and processes in biogeochemical Hg cycling.14,15 In addition to fractionation driven by 90 

differences in isotopic mass, mercury isotopes are additionally affected by nuclear volume 91 

fractionation (also denoted as nuclear field shift effect) due to differences in nuclear charge radii 92 

between the different Hg isotopes,16 as well as magnetic isotope effects influencing only the odd 93 

mass isotopes 199Hg and 201Hg possessing nuclear spin and magnetic moment.17 Thus, Hg isotopes 94 

provide a multidimensional tracer system in which different isotope ratios can be used to trace 95 

different fractionating processes. There are still many unknowns about the exact fractionation factors 96 

and mechanisms of Hg isotope fractionation in natural and industrial systems. However, it is now 97 

clear that different Hg sources can have different isotope signatures and that biogeochemical Hg 98 

transformations are able to change Hg isotope signatures in a systematic manner.14,15 Several 99 

previous studies have used Hg isotope signatures to investigate Hg pollution from different 100 

industrial or other anthropogenic sources. For instance, contaminated sediments near zinc metal 101 

refineries in Belgium and France18 or near a chemical plant in China in which elemental Hg was 102 

used as a catalyst to produce acetic acid19 were found to exhibit different Hg isotope ratios compared 103 

with local geochemical background samples. Further studies discussed potential industrial 104 

contributions and applied mixing models for sediments affected by multiple Hg sources20-23 or for 105 

soils and sediments primarily affected by atmospheric pollution sources.24-26 Another recently 106 

published study27 investigated contaminated sediments near the Oak Ridge facility (TN, US) and 107 

used Hg isotope signatures to trace the mixing of industrial releases from the site with other local 108 

sources.  109 

However, none of the previous studies has directly compared different local industrial 110 

pollution sources such as elemental Hg and phenyl-Hg with respect to Hg isotope ratios in 111 
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contaminated sediments. The objectives of this study were (1) to assess whether sediments polluted 112 

by different local industrial sources have distinct Hg isotope signatures, potentially allowing a 113 

source allocation based on Hg isotope signatures, (2) to test the suitability of a sequential extraction 114 

procedure designed to separate organically-bound and sulfide-bound Hg, and (3) to study Hg isotope 115 

fractionation between the dominant Hg pools in contaminated sediments using the sequential 116 

extraction procedure, allowing to gain insights into potential fractionation processes during 117 

transformations of Hg within the sediments.  118 

Experimental Section 119 

Sampling sites. Sediment samples from seven sites in different regions of Sweden were investigated 120 

in this study. An overview about the location and characteristics of the different sites is given in 121 

Figure S1 and Table S1 (Supporting Information, SI). The samples were collected between 2004 and 122 

2006 and have been described in detail before10 and investigated for their porewater chemistry, Hg 123 

speciation, and methylation and demethylation potential.28-31 In the following, we use the 124 

abbreviations of the name of the sampling location to describe samples from the sites: Ala Lombolo 125 

(Ala), Karlshäll (Kar), Köpmanholmen (Köp), Skutskär (Sku), Marnästjärn (Mar), Turingen (Tur), 126 

and Nötöfjärden (Nöt). Two of the sediment cores (Köp and Sku) were taken in brackish water, 127 

whereas the other five were collected in freshwater environments. All sites were affected by local 128 

pollution from nearby industrial sources, releasing either elemental Hg (Köp and Sku: chlor-alkali 129 

industry, Mar: mercury-arc valve production, Ala: mining industry) or phenyl-Hg (Kar, Tur, Nöt: 130 

paper and pulp industry). In many cases, the pollution was linked to the discharge of pulp fibers 131 

from industrial sites, which was still recognizable in most of the sediment cores (all except Ala and 132 

Mar). A detailed sampling protocol is given by Drott.32 Briefly, sediment cores were taken with a 133 

polycarbonate core sampler and separated into different depth segments. Sediment material from 134 

multiple cores sampled in a 1 m2 area was pooled and later homogenized in the laboratory. Most 135 

samples originated from depth segments within the top 25 cm of the sediment, except for one site 136 

(Sku) where a sediment core down to 1 m depth was collected. In this study, between two and seven 137 

samples per sampling site were analyzed for Hg isotope ratios, representing a subset of the total 138 

samples previously investigated. 139 
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Sample preparation. For the analyses performed in this study, the samples were dried at 40°C. For 140 

the aqua regia digests, between 500 and 1000 mg homogenized material was reacted overnight with 141 

3 mL conc. HNO3, 8 mL conc. HCl, and 1 mL 0.2 M BrCl (in 12 M HCl, prepared after Bloom et 142 

al.33) in Teflon vials on a lateral shaker in a fume hood. After the addition of 10 mL H2O (DDI, 143 

doubly deionized, Milli-Q, Millipore, >18.2 MΩ cm), the digest solutions were filtered through 144 

0.2 μm-PTFE filters and stored in glass vials with Teflon-coated lids. For the sequential extractions,  145 

1000 mg sample was reacted with 20 mL 6 M HNO3 for 2 h according to the procedure by Hall et 146 

al.34 targeting the dissolution of all non-sulfide phases from the sediment. After separation of the 147 

supernatant by centrifugation (15 min, 3500 rpm) and filtration through 0.2 μm-PTFE filters, the 148 

sediment residue was digested with aqua regia as described above for the total digest samples. The 149 

reference material NIST-2711 (Montana Soil) was processed in parallel to the samples.  150 

Dissolution tests and enriched Hg isotope tracer experiments. To investigate the selectivity of 151 

the 6 M HNO3 extraction procedure for non-sulfide Hg forms, we conducted two series of extraction 152 

experiments, one with naturally abundant Hg and one with enriched stable Hg isotope tracers. The 153 

natural abundance series was conducted with a single material present (either NOM-bound Hg or 154 

sulfide-bound Hg) to test the selectivity of the extraction step. In contrast, the enriched isotope 155 

(“spike”) series was performed on a mixture of NOM-bound and sulfide-bound Hg to assess the 156 

potential influence of isotope exchange processes during the extraction procedure. For the natural 157 

abundance series, we used commercially available meta-cinnabar (β-HgS, Hg(II) sulfide black, Alfa 158 

Aesar) and a natural peat material (“Federseetorf”, previously used and characterized in our 159 

laboratory35) which had been amended with a Hg(II) nitrate solution to a concentration of 160 

2.9 μg g-1 Hg. For the experiments with naturally abundant β-HgS, an additional dissolution test with 161 

6 M HCl instead of 6 M HNO3 was performed to assess the potential effect of chloride on the 162 

dissolution process. For the experiment with enriched stable Hg isotope tracers, we used a β-HgS 163 

precipitate prepared from a 201Hg-enriched spike and a NOM sample spiked with enriched 199Hg to a 164 

concentration of 5.8 μg g-1 Hg. Further details about the spike composition, preparation and 165 

characterization procedures can be found in Jonsson et al.36 The enriched isotope spike experiments 166 

were conducted in triplicate by mixing equal aliquots containing approximately 10 μg Hg of 199Hg-167 
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NOM and of 201Hg-HgS with 500 mg quartz sand (previously heated to 550°C for 4 hours to remove 168 

potential Hg traces) serving as artificial sediment matrix for the extraction experiments. The vials 169 

were filled to a volume of 15 mL with DDI H2O. One experimental set was immediately extracted 170 

by adding 10 mL conc. HNO3 to the vial, resulting in a final concentration of 40% or 6 M HNO3. 171 

The second experimental set was first equilibrated for 48 h (end-over-end shaking in the dark) 172 

before the 6 M HNO3 extraction was started, to assess the potential influence of slow isotope 173 

exchange between 199Hg-NOM and 201Hg-HgS on the extraction procedure. In all experimental 174 

series, the 6 M HNO3 extraction was conducted over 2 h, designed to dissolve all non-sulfidic Hg 175 

forms according to Hall et al.,34 before the supernatant was separated by centrifugation (15 min at 176 

3500 rpm) and filtration (0.2 μm-PTFE filters). The residue was digested with aqua regia, identical 177 

to the procedure described above for the sediment samples. All experiments with enriched Hg 178 

isotope spikes were conducted in a designated clean chemistry laboratory and all solutions and 179 

labware were kept strictly separated from the field samples and natural abundance experiments.  180 

Analytical methods. Mercury concentrations in the digest and extraction solutions were measured 181 

by cold vapor – atomic fluorescence spectrometry (CV-AFS, Millennium Merlin, PS Analytical), 182 

except for the samples from the enriched spike experiments which were analyzed by cold vapor - 183 

single-collector - inductively coupled plasma mass spectrometry (CV-ICP-MS, Agilent 7500) using 184 

a reverse isotope dilution approach adapted from published methods37,38 and described previously39 185 

to quantify the contributions of 199Hg-NOM and 201Hg-HgS in the extraction samples. Mercury 186 

isotope ratios were determined by cold vapor multi-collector inductively coupled plasma mass 187 

spectrometry (CV-MC-ICPMS) using a Cetac HGX-200 cold vapor generator connected to a Nu 188 

Plasma MC-ICPMS (Nu instruments). Mass bias correction was performed by a combination of 189 

standard-sample bracketing using NIST-3133 and external normalization using a Tl standard 190 

solution (NIST-997) introduced via a desolvation nebulizer together with the Hg vapor into the 191 

plasma. Prior to Hg isotope ratio analysis, all solutions were diluted to 20 μg L-1 Hg in 1% BrCl 192 

matrix. The details of our analytical procedure for Hg isotope measurements have been described 193 

before.40,41 The results are reported following standard nomenclature42,43 with 194 

202Hg = [(202Hg/198Hg)sample / (
202Hg/198Hg)NIST-3133] - 1 for mass-dependent fractionation (MDF) 195 
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and  2520.0202199199  HgHgHg   or  7520.0202201201  HgHgHg   for mass-196 

independent fractionation (MIF). No MIF anomalies of 200Hg or 204Hg were observed for the 197 

samples of this study. The reported 2SD uncertainty of the sample results was based on the 198 

reproducibility of our in-house standard (ETH Fluka Hg) measured repeatedly in the same analytical 199 

session which was typically ±0.15‰, ±0.09‰, and ±0.04‰ for 202Hg, 199Hg, and 201Hg, 200 

respectively (n = 17), but slightly variable between different sessions (standard reproducibility of 201 

individual session is used for sample reporting). Analyses of the secondary standard UM-Almadén 202 

(202Hg = -0.50±0.07‰, 199Hg = -0.06±0.13‰, 201Hg = -0.04±0.07‰, 2SD, n=6) and reference 203 

material NIST-2711 (202Hg = -0.10‰, 199Hg = -0.20‰, 201Hg = -0.18‰) relative to NIST-3133 204 

were consistent with published data,44,24,42 demonstrating the accuracy of our isotopic analyses. 205 

Results and Discussion 206 

Hg concentrations and Hg isotope ratios. The sediment samples exhibited a wide range of Hg 207 

concentrations from 0.86 to 99 μg g-1 (Figure 1), all of them highly elevated above natural 208 

background concentrations. The geogenic background can be estimated from the average Hg content 209 

in Swedish bedrocks (0.0036 μg g-1)11 or the average Hg concentration of mineral C horizons of 210 

Swedish soils (0.013 μg g-1).45 For the organic matter dominated sediments in this study, natural 211 

background concentrations would be expected to be on the order of 0.1 μg g-1 Hg. The Hg 212 

concentrations in our contaminated sediments varied substantially among samples within a site. For 213 

instance, the samples from Köpmanholmen (Köp) encompassed both the lowest and highest Hg 214 

concentration of all samples, illustrating the heterogeneity of the contamination within the sampling 215 

sites. One reason for this may be the mixing of contaminated fiber material and non-contaminated 216 

mineral matter in the sediments from Köp.28 At this site, a stream outlet was covering some of the 217 

area with newly deposited silicate minerals, diluting the contaminated fibers. In general, the 218 

concentrations were higher and more variable in samples from the four sites which were 219 

contaminated with elemental Hg, whereas the three phenyl-Hg sites had somewhat lower and less 220 

variable concentrations ranging from 1.6 to 3.0 μg g-1, except for one sample with a higher 221 

concentration of 10.3 μg g-1. The Hg isotope analysis revealed large differences and distinct ranges 222 
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between the different sampling sites (Figures 1 and 2). The three phenyl-Hg sites displayed very 223 

similar or even identical signatures (MDF δ202Hg: -0.2 to -0.5‰, MIF Δ199Hg: -0.05 to -0.10‰). In 224 

contrast, the four sites contaminated with elemental Hg showed much greater variations (δ202Hg: -225 

2.1 to 0.6‰, Δ199Hg: -0.19 to 0.03‰), but with distinct ranges for the different sites. Specifically, 226 

the most negative δ202Hg values were found in the Köp samples ranging from -2.10 to -1.52‰, 227 

followed by the Sku samples with -1.40 to -0.60‰, and the Ala samples with a range of -0.53 to -228 

0.25‰. In contrast, the Mar samples were characterized by a strong enrichment of heavy Hg 229 

isotopes with a δ202Hg range of +0.45 to +0.57‰. In addition, these samples exhibited distinct 230 

negative 199Hg values of -0.12 to -0.19‰, whereas the other samples from elemental Hg sites had 231 

199Hg values close to 0‰. 232 

There was no correlation between δ202Hg and Hg concentration (Figure 1) or its inverse 233 

(1/Hg) which would indicate the mixing of different isotopic endmembers. As detailed in the 234 

following sections, our data rather suggest that the different industrial pollution source signatures 235 

were largely preserved in the sediment samples and that the large concentration ranges were caused 236 

by dilution processes and mixing with uncontaminated material, which is not able to change the Hg 237 

isotope composition due to the very low natural Hg contents. According to historic sources and 238 

interviews with former employees (conducted by Ulf Skyllberg), all Hg used in the Swedish industry 239 

originally came from Almadén in Spain, the largest Hg mine in the world. Although roasting 240 

processes at Hg mines have been shown to cause large Hg isotope fractionations in the residual ore 241 

waste (calcine)46, the produced elemental Hg can be assumed to exhibit a relatively homogeneous 242 

isotopic composition based on mass balance considerations. The isotopic variability of Hg from 243 

Almadén has not been completely explored yet, but a recent study reported an average 202Hg value 244 

of -0.56±0.35‰ (1SD, n = 7) for cinnabar (HgS) ore from the Almadén mine.47 Moreover, 202Hg 245 

values of metallurgical liquid Hg0 from retorting (-0.56±0.35‰, 1SD, n = 3)47 and a compilation of 246 

liquid Hg0 data from different sources (-0.39±0.37‰, 1SD, n = 7)48 including the UM-Almadén 247 

standard (-0.54‰)42 have been published. Thus, the available literature data suggest that a 202Hg 248 

value of about -0.5‰ relative to NIST-3133 represents a reasonable estimate of the source signature 249 
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from Hg used in industrial facilities in Sweden. Similar Hg isotope signatures have also recently 250 

been reported from estuarine sediments in the Northeastern USA, some of which were also affected 251 

by industrial pollution.23 Assuming that the synthesis of phenyl-Hg from elemental Hg was a process 252 

with a high yield, its Hg isotope composition likely corresponded to the initial source signature. Our 253 

isotopic data from the contaminated sediments collected in the vicinity of paper and pulp industry 254 

facilities emitting phenyl-Hg indicate that there was no significant Hg isotope fractionation 255 

occurring during the transport of contaminated pulp fibers into the sediments and during the 256 

presumably rapid and complete transformation of phenyl-Hg into Hg(II) bound to organic matter. 257 

Thus, the finding that all three phenyl-Hg sites displayed nearly identical isotopic signatures, which 258 

likely correspond to the initial industrial source material, suggests that no major Hg losses (e.g., 259 

reduction and gaseous Hg emission into the atmosphere which would cause significant isotope 260 

fractionation) occurred at these sites during or after the deposition of the contaminated sediments.  261 

The much higher isotopic variability found at some of the elemental Hg sites (Sku and Köp) 262 

may be largely explained by Hg isotope fractionation occurring between different Hg pools in the 263 

industrial system, in this case the chlor-alkali process. The pumping of large volumes of elemental 264 

Hg within the chlor-alkali cells in which a Na-Hg amalgam was formed in one compartment of the 265 

cell and elemental Hg recovered in another compartment of the cyclic process, as well as the 266 

possibility of Hg losses from the cells, both in liquid and gaseous forms, provides ample 267 

opportunities for significant Hg isotope fractionation. The partial evaporation of elemental Hg has 268 

been shown to strongly enrich light Hg isotopes in the vapor phase and heavy Hg isotopes in the 269 

solid residue,49,50 with the extent of the observed fractionation being controlled by the mass balance 270 

of the system. In addition, this process is accompanied by mass-independent fractionation caused by 271 

nuclear volume fractionation, resulting in small anomalies of 199Hg and 201Hg in the opposite 272 

direction to the mass-dependent fractionation trend recorded by 202Hg. Furthermore, elemental Hg 273 

can be isotopically fractionated by diffusive processes in gaseous form51 and finally, although not 274 

yet documented in the literature, it can be assumed that partial oxidation of elemental Hg to Hg(II) 275 

can result in significant changes of Hg isotope ratios in both substrate and product of the reaction. 276 

Thus, the source signature of the industrial elemental Hg source might have been altered at multiple 277 
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occasions during the chlor-alkali process or other industrial processes, during the emission from the 278 

industrial facility, and finally during the oxidative transformation to Hg(II) and its binding to organic 279 

matter and sulfide-phases in the contaminated sediments. However, the imprint of all these potential 280 

fractionating processes will only be apparent in the product if an incomplete transformation and 281 

subsequent spatial separation of different Hg pools occurred. Thus, even if for instance the oxidation 282 

of elemental Hg to Hg(II) in the sediments was accompanied by Hg isotope fractionation during the 283 

process, no significant difference in Hg isotope ratios between substrate and product will be 284 

apparent if the transformation process proceeded to completion. Mass balance considerations govern 285 

the extent of observable isotope fractionation during such processes with smaller pools (e.g., first 286 

formed product or last remaining substrate) exhibiting a larger extent of observable isotopic 287 

variation compared with larger pools which cannot be strongly fractionated relative to the initial 288 

isotopic composition.  289 

Considering the complexity of potential Hg emission and transformation pathways from chlor-290 

alkali plants to contaminated sediments, it appears difficult to provide an unambiguous interpretation 291 

of the large Hg isotope variability found in contaminated sediments collected in the vicinity of chlor-292 

alkali plants. However, the lack of a correlation of Hg isotope ratios with Hg concentrations at the 293 

sites suggests that secondary Hg loss processes in the sediments (e.g., reduction followed by gaseous 294 

Hg0 release) did presumably not play a significant role for the total Hg budget of the sediment 295 

samples. Similarly, methylation of Hg(II) in the sediments and subsequent transfer into aquatic 296 

ecosystems, although well documented by previous studies28-31 and of great environmental concern, 297 

affects only a relatively small pool of total Hg in the sediments and will not be able to change the 298 

bulk Hg isotopic composition of the contaminated sediments to a measurable extent. Taken together, 299 

this suggests that the relatively narrow and distinct ranges of Hg isotope signatures from the 300 

elemental Hg sites already existed at the time of deposition into the sediments.  301 

Different emission pathways and other site-specific factors (e.g., elemental Hg processing at 302 

industrial facility, mixing of different Hg sources from partially transformed fractionated pools, 303 

transport to sediments) might have contributed to the distinct isotopic ranges at the other sites. For 304 

instance, the Mar samples exhibited positive 202Hg and negative 199Hg values, which is consistent 305 
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with the fractionated residue of a partial evaporation process in which light Hg isotopes are 306 

preferentially removed, in conjunction with a small MIF effect by nuclear volume fractionation 307 

(NVF).49,50 The 199Hg/201Hg ratio of the Mar samples (1.58 ± 0.19, 1SD) was consistent with 308 

NVF (slope 1.6 in Figure S3), but an unambiguous identification of the MIF origin was impeded by 309 

the low extent of MIF in the samples. Assuming a starting composition of -0.5‰ in 202Hg and using 310 

a kinetic Rayleigh model with the fractionation factor of -6.7‰ for dynamic evaporation from 311 

Estrade et al.49, a partial removal of about 15% of the total Hg by evaporation loss can be modeled 312 

for the Mar samples which exhibited 202Hg values of around 0.5‰. The relatively higher 313 

temperatures and estimated biological productivity of the Mar site compared with the other 314 

elemental Hg sites (Table S1) are consistent with more intense Hg cycling and potential secondary 315 

loss processes from the sediments of this freshwater site. Moreover, the elemental Hg source at the 316 

Mar site was not the chlor-alkali industry, but rather wastewater from an industrial facility 317 

manufacturing mercury-arc valves, a process during which partial evaporation of elemental Hg is 318 

certainly conceivable. However, we are not able to differentiate whether the assumed evaporative 319 

Hg loss occurred before or after the deposition of the contaminated sediments.  320 

The other three elemental Hg sites exhibited either identical (Ala, mining-industry related 321 

source) or lighter (Sku and Köp, chlor-alkali industry) 202Hg values compared with the assumed 322 

initial source composition of -0.5‰. It makes sense that the elemental Hg at the site Ala (used for 323 

mineral testing purposes in laboratories of the mining industry) was likely not affected by industrial 324 

processing or significant evaporative losses and showed a good agreement with elemental Hg from 325 

the Almaden source material. The correspondance with the phenyl-Hg sites further strenghten the 326 

conclusion that the phenyl-Hg synthesis was a complete process and that no substantial fractionation 327 

occurred in the sediments. Of the remaining three sites, Sku and Köp (chlor-alkali industry) showed 328 

an enrichment in lighter and Mar (arc-valve manufacturing) in heavier Hg isotopes. This difference 329 

presumably finds its explanation in differences in the industrial processes used at these sites. In 330 

contrast to the signature of the heavy Mar signatures presumably caused by evaporation, the very 331 

light 202Hg values of the Köp samples (-2.1 to -1.5‰) encompassing a wide range of Hg 332 
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concentrations are difficult to explain with fractionation processes in the sediments and more likely 333 

indicative of the formation of a relatively large pool of isotopically light Hg during industrial 334 

processing of elemental Hg which was then released from the site. One of the Sku samples showed a 335 

much lighter 202Hg of -1.40‰ compared with the other six Sku samples (-0.6 to -0.9‰) which 336 

coincided with a deeper sampling depth (80-100 cm, Figure S2), potentially indicating a different 337 

depositional history of this particular sample (e.g., originating from an older release phase of the 338 

chlor-alkali plant possibly carrying a different Hg isotope signature) compared with the other more 339 

shallow samples from the Sku site. Overall, the narrow range of Hg isotope signatures from samples 340 

of an individual site (Figure 2), despite large Hg concentration gradients, is remarkable and suggests 341 

that the allocation of different pollution sources to contaminated sediments based on distinct Hg 342 

isotope signatures can be possible. However, the possibility of Hg isotope fractionation during 343 

industrial processing (largely governed by mass balance constraints as discussed above) needs to be 344 

considered in the assessment of “industrial” source signatures and may present a challenge for the 345 

application of mixing models based solely on the signatures of raw materials (e.g., elemental Hg 346 

from Almadén or other mines).  347 

Sequential extractions and selectivity tests. The extraction tests with naturally abundant and 348 

enriched spike materials demonstrated the general selectivity of the 6 M HNO3 procedure for non-349 

sulfidic Hg, but also illustrated the limitations of the method. As expected, only 0.27% of total Hg 350 

dissolved from the commercially available β-HgS during the 2 h extraction with 6 M HNO3, in 351 

contrast to 85.2% dissolution from the NOM-bound Hg(II) in the peat sample. Using 6 M HCl, 352 

3.51% of total Hg was dissolved from β-HgS, consistent with previous findings52-54 reporting 353 

slightly enhanced HgS dissolution with hydrochloric acid. The enriched spike experiments with both 354 

materials present showed a similar picture with only 1.65% of the total 201Hg from β-HgS dissolving 355 

during the 6 M HNO3 step. However, only 26.2% of the total 199Hg from NOM was released during 356 

the extraction. After the 48h pre-equilibration of the two spiked materials, the released percentage 357 

increased slightly to 3.10% dissolution of 201Hg (sulfidic) and 34.1% of 199Hg (NOM-bound) during 358 

the 6 M HNO3 extraction, indicating only a relatively minor influence of isotope exchange during 359 

the pre-equilibration and extraction procedure. The low extraction efficiency for the NOM-bound 360 
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199Hg during the extraction can be potentially explained by different bonding characteristics of the 361 

two NOM materials and different aging times of the Hg-NOM materials before conducting the 362 

experiment of the 199Hg-spiked NOM material compared with the peat sample to which naturally 363 

abundant Hg had been added. It has been shown before that longer reaction times between Hg(II) 364 

and NOM may decrease the mobility and bioavailability,39,55,56 presumably due to the formation of 365 

more stable bonding environments of Hg(II) in NOM over time. Obviously, not all NOM-bound Hg 366 

is extracted during the 6 M HNO3 procedure and this probably depends on the properties of the 367 

NOM material as well as the reaction time of Hg(II) with the NOM material. However, most 368 

importantly the fraction of sulfide-bound Hg which was released during the 6 M HNO3 extraction 369 

step was always relatively small. Nevertheless, it is clear that the performed sequential extraction 370 

procedure is not able to separate the two operationally-defined Hg(II)-binding forms completely.  371 

In order to test whether the incomplete extraction could cause artificial stable isotope 372 

fractionation, we analyzed the Hg isotope ratios of the extraction series with the natural abundance 373 

materials. As shown in Table 1 (and Figure S4), there was no significant difference in 202Hg 374 

between the small fraction of Hg dissolved from HgS by 6 M HNO3 (or 6 M HCl) and the residue 375 

dissolved with aqua regia. Similarly, the isotopic composition of the 85.2% dissolved Hg fraction 376 

from the peat sample was indistinguishable from the residue and the total digest of the peat sample. 377 

Thus, although the 6 M HNO3 extraction procedure was not completely selective and apparently not 378 

always able to mobilize NOM-bound Hg completely, it appears that no isotopic bias is introduced by 379 

the extraction procedure. Moreover, the results of the spike experiment indicate that organically-380 

bound and sulfide-bound Hg represent stable Hg pools which exchange only to a relatively small 381 

extent during the extraction. In consequence, isotopic variations between extracts of natural samples 382 

are in the following interpreted as differences in the isotope signatures of different Hg pools in these 383 

samples. Our experimental data further suggest that dissolution of HgS does not result in significant 384 

Hg isotope fractionation, at least during proton-promoted dissolution with HNO3 or HCl. However, 385 

whether this finding is applicable for other dissolution mechanisms and other Hg-bearing phases still 386 

remains to be confirmed in future studies. 387 
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Sequential extraction of sediment samples. The sequential extraction was only performed on 388 

selected samples with high Hg contents. Three samples each from the sites Ala, Sku, and Köp (all 389 

elemental Hg sites) were investigated in parallel to the NIST-2711 (Montana) reference material. 390 

The results revealed that about 80% (Ala) to 90% (Sku, Köp) of the total Hg in the sediment samples 391 

could be extracted with the 6 M HNO3 procedure targeting non-sulfidic Hg (Figure 3a). Only about 392 

10 to 20% of the total Hg was remaining after the extraction, presumably corresponding to residual 393 

HgS phases in the sediments. In contrast, only less than 20% of total Hg was extracted from NIST-394 

2711 in the 6 M HNO3 step, consistent with previous extraction studies of this material reporting 395 

only a minor influence of organically-bound Hg and a dominance of more stable Hg phases.33 The 396 

Hg isotope analysis of the extraction solutions (Figure 3b) revealed that the small sulfide-bound Hg 397 

pool was in some sample up to about 1‰ heavier in 202Hg (Köp 3) compared with the dominant 398 

organically-bound Hg pool extracted with 6 M HNO3. The Köp samples exhibited the largest 399 

isotopic difference between the two Hg pools with values between 0.5 to 1.0‰, whereas the Sku 400 

samples showed difference of about 0.4‰ and the Ala sampled had no significant isotopic difference 401 

between the two Hg pools. In contrast to the trend of the sediment samples, the large residual Hg 402 

pool in NIST-2711 (Montana soil) remaining after the 6 M HNO3 extraction was isotopically lighter 403 

by about 0.4‰ in 202Hg compared with the extracted Hg pool enriched in heavy Hg isotopes. It is 404 

difficult to interpret the isotopic difference between the two NIST-2711 solutions because the 405 

performed simplified two-step sequential extraction procedure did not allow probing of the dominant 406 

Hg pools from this contaminated soil sample (Montana soil) exhibiting a minor influence of 407 

organically-bound Hg. However, the different qualitative isotopic trend of the two extracts between 408 

the contaminated sediment samples and the reference material suggests that the observed offset has 409 

not been caused by some systematic method artifact, such as preferential extraction of light Hg 410 

isotopes during the extraction step. Instead, we suggest that the isotopically heavy signature of the 411 

sulfide-bound Hg pool in selected samples has been caused by fractionation in the environment, 412 

probably during the formation of organically-bound and/or sulfide-bound Hg phases in the 413 

contaminated sediments.  414 
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There are different potential explanations for the observed isotopic offset involving both 415 

kinetic and equilibrium fractionation mechanisms. A kinetic effect during the fast binding of Hg(II) 416 

to organic ligands might potentially leave behind an isotopically heavy residue from which sulfide 417 

phases were formed. Equilibrium fractionation factors are only available for certain species16,40, but 418 

all Hg(II) forms are predicted to be isotopically heavy relative to elemental Hg. Elemental Hg was 419 

presumably still present after the deposition of the Köp sediments (based on unpublished 420 

thermodesorption data, Ulf Skyllberg) in which the largest isotopic offset between the two 421 

extractions was observed. Thus, equilibrium isotope fractionation during redox processes or between 422 

different Hg(II) species could have contributed as well. In contrast, sorption to mineral phases as 423 

well as precipitation of sulfide phases are less likely to be responsible for the observed effect 424 

because both have been shown to cause an enrichment of light Hg isotopes in the solid phase.41,57 425 

Although we are not able to provide a definite mechanistic explanation, our extraction data clearly 426 

document that different Hg pools in sediments can exhibit different Hg isotope signatures. Previous 427 

studies have already applied sequential extraction techniques combined with Hg isotope analyses in 428 

the investigation of samples from contaminated soils and mine tailings,58,59 but isotopic difference 429 

between different Hg pools from sediments have not been reported before. Obviously, the 430 

application of sequential extraction techniques is often limited to samples with sufficiently high Hg 431 

concentrations. However, it will clearly represent an important addition to total digests in future 432 

studies at contaminated sites and help to elucidate fractionation processes between different Hg 433 

pools in both natural and anthropogenically affected environments. The applied two-step extraction 434 

procedure to separate sulfide-bound from non-sulfidic (primarily organically-bound) Hg phases 435 

represents a relatively simple method to separate the two dominant forms in many contaminated 436 

sediments. However, other extraction methods and the separation of additional Hg pools from 437 

different sample materials may be useful as well and should be explored in future studies. 438 

Environmental implications. The results of this study demonstrate that significant Hg isotope 439 

variations exist between contaminated sediments collected in the vicinity of different industrial sites. 440 

Sediments from three sites contaminated with phenyl-Hg still exhibited the estimated initial 202Hg 441 

source signature of industrial Hg used in Sweden which originated from the Almaden Hg mine in 442 
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Spain (about -0.5‰). In contrast, much larger variations in 202Hg values (-2.1 to 0.6‰) were 443 

present in a systematic manner between the sites contaminated with elemental Hg, showing distinct 444 

and relatively narrow ranges of isotopic variations within the different samples from a particular site, 445 

despite exhibiting large Hg concentration gradients. This suggests that secondary fractionation 446 

processes during biogeochemical Hg cycling in the sediments did not change the bulk sediment 447 

signature to a significant extent (with the exception of a potential evaporation loss from the Mar 448 

samples). In consequence, source allocation of different industrial pollution sources based on 449 

distinct Hg isotope signatures can be possible, but the possibility of Hg isotope fractionation during 450 

industrial processing should be considered in the assignment of source signatures. Furthermore, the 451 

observed differences in Hg isotope signatures between organically-bound and sulfide-bound Hg 452 

revealed that Hg isotope fractionation may occur between different Hg species within contaminated 453 

sediments. Thus, this study represents a significant advance toward the application of Hg isotope 454 

signatures as source and process tracer for anthropogenic Hg pollution and biogeochemical Hg 455 

cycling in contaminated environments. 456 

ACKNOWLEDGMENTS  457 

We thank Robin S. Smith for help with the Hg isotope analysis, Kurt Barmettler for support in the 458 

ETH soil chemistry laboratory, the staff of the ETH isotope geochemistry laboratory, especially 459 

Felix Oberli and Colin Maden, for excellent maintenance and support, and three anonymous 460 

reviewers for helpful comments. This study was supported by ETH Zurich (Grant No. 461 

ETH-15-09-2). 462 

SUPPORTING INFORMATION 463 

The Supporting Information (SI) contains additional figures and tables. This material is available 464 

free of charge via the Internet at http://pubs.acs.org.  465 

 466 

Page 17 of 26

ACS Paragon Plus Environment

Environmental Science & Technology



 

18

REFERENCES  467 

(1) Liu, G., Cai, Y., O'Driscoll, N. J., Eds. Environmental Chemistry and Toxicology of 468 
Mercury. John Wiley & Sons, New York, USA, 2012. 469 

(2) Bank, M. S., Ed. Mercury in the Environment: Pattern and Process. University of California 470 
Press, Berkeley, USA, 2012. 471 

(3) UNEP Minamata Convention on Mercury: Text and Annexes. United Nations Environment 472 
Programme. Publishing Service, United Nations, Geneva, 2013. 473 

(4) UNEP Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental 474 
Transport. UNEP Chemicals Branch, Geneva, Switzerland, 2013. 475 

(5) Hylander, L.; Meili, M. The rise and fall of mercury: Converting a resource to refuse after 476 
500 years of mining and pollution. Crit. Rev. Env. Sci. Technol. 2005, 35, 1−36. 477 

(6) Horowitz, H. M.; Jacob, D. J.; Amos, H. M.; Streets, D. G.; Sunderland, E. M. Historical 478 
mercury releases from commercial products: global environmental implications. Environ. 479 
Sci. Technol. 2014, 48, 10242−10250. 480 

(7) Sällsten, G.; Barregard, L.; Järvholm, B. Mercury in the Swedish chloralkali industry – an 481 
evaluation of the exposure and preventive measures over 40 years. Ann. Occup. Hyg. 1990, 482 
34, 205−214. 483 

(8) Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R. B.; Friedli, H. R.; Leaner, J.; Mason, R.; 484 
Mukherjee, A. B.; Stracher, G. B.; Streets, D. G.; Telmer, K. Global mercury emissions to 485 
the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10, 486 
5951–5964. 487 

(9) Streets, D. G.; Devane, M. K.; Lu, Z.; Bond, T. C.; Sunderland, E. M.; Jacob, D. J. All-time 488 
releases of mercury to the atmosphere from human activities. Environ. Sci. Technol. 2011, 489 
45, 10485–10491. 490 

(10) Skyllberg, U.; Drott, A.; Lambertsson, L.; Björn, E.; Karlsson, T.; Johnson, T.; Heinemo, S-491 
A.; Holmström, H. Net methylmercury production as a basis for improved risk assessment 492 
of mercury contaminated sediments. Ambio 2007, 36, 437−442. 493 

(11) Lindqvist, O.; Johansson, K.; Aastrup, M.; Andersson, A.; Bringmark, L.; Hovsenius, G.; 494 
Hakanson, L.; Iverfeldt, A.; Meili, M.; Timm, B. Mercury in the Swedish environment - 495 
recent research on causes, consequences and corrective methods. Wat. Air Soil Poll. 1991, 496 
55, 1−6. 497 

(12) Sunderland, E. M.; Chmura, G.L. An inventory of historical mercury emissions in Maritime 498 
Canada: Implications for present and future contamination. Sci. Total Environ. 2000, 256, 499 
39−57. 500 

(13) Regnell, O.; Elert, M.; Höglund, L. O.; Falk, A. H.; Svensson, A. Linking cellulose fiber 501 
sediment methyl mercury levels to organic matter decay and major element composition. 502 
Ambio 2014, 43, 878−890. 503 

(14) Blum, J. D.; Sherman, L. S.; Johnson, M. W. Mercury isotopes in earth and environmental 504 
sciences. Annu. Rev. Earth Planet. Sci. 2014, 42, 249–269. 505 

(15) Hintelmann, H. Use of stable isotopes in mercury research. In Mercury in the Environment: 506 
Pattern and Process. Bank, M. S., Ed.; University of California Press, Berkeley, USA, 507 
2012, pp 55−71. 508 

(16) Schauble, E. A. Role of nuclear volume in driving equilibrium stable isotope fractionation of 509 
mercury, thallium, and other very heavy elements. Geochim. Cosmochim. Acta 2007, 71, 510 
2170−2189. 511 

(17) Buchachenko, A. L. Mercury isotope effects in the environmental chemistry and 512 
biochemistry of mercury-containing compounds. Russ. Chem. Rev. 2009, 78, 319−328. 513 

Page 18 of 26

ACS Paragon Plus Environment

Environmental Science & Technology



 

19

(18) Sonke, J. E.; Schäfer, J.; Chmeleff, J.; Audry, S.; Blanc, G.; Dupré, B. Sedimentary mercury 514 
stable isotope records of atmospheric and riverine pollution from two major European heavy 515 
metal refineries. Chem. Geol. 2010, 279, 90–100.  516 

(19) Feng, X.; Foucher, D.; Hintelmann, H.; Yan, H.; He, T.; Qiu, G. Tracing mercury 517 
contamination sources in sediments using mercury isotope compositions. Environ. Sci. 518 
Technol. 2010, 44, 3363–3368. 519 

(20) Liu, J.; Feng, X.; Yin, R.; Zhu, W.; Li, Z. Mercury distributions and mercury isotope 520 
signatures in sediments of Dongjiang, the Pearl River Delta, China. Chem. Geol. 2011, 287, 521 
81–89. 522 

(21) Bartov, G.; Deonarine, A.; Johnson, T.M.; Ruhl, L.; Vengosh, A.; Hsu-Kim, H. 523 
Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 1. Source 524 
apportionment using mercury stable isotopes. Environ. Sci. Technol. 2013, 47, 2092−2099. 525 

(22) Donovan, P. M.; Blum, J. D.; Yee, D.; Gehrke, G. E.; Singer, M. B. An isotopic record of 526 
mercury in San Francisco Bay sediment. Chem. Geol. 2013, 349, 87–98. 527 

(23) Kwon, S. Y.; Blum, J. D.; Chen, C. Y.; Meattey, D. E.; Mason, R. P. Mercury isotope study 528 
of sources and exposure pathways of methylmercury in estuarine food webs in the 529 
northeastern US. Environ. Sci. Technol. 2014, 48, 10089−10097. 530 

(24) Estrade, N.; Carignan, J. Donard, O. F. X. Tracing and quantifying anthropogenic mercury 531 
sources in soils of Northern France using isotopic signatures. Environ. Sci. Technol. 2011, 532 
45, 1235–1242. 533 

(25) Feng, X.; Yin, R.; Yu, B.; Du, B. Mercury isotope variations in surface soils in different 534 
contaminated areas in Guizhou Province, China. Chin. Sci. Bull. 2013, 58, 249−255. 535 

(26) Ma, J.; Hintelmann, H.; Kirk, J. L.; Muir, D. C. G. Mercury concentrations and mercury 536 
isotope composition in lake sediment cores from the vicinity of a metal smelting facility in 537 
Flin Flon, Manitoba. Chem. Geol. 2013, 336, 96–102. 538 

(27) Donovan, P. M.; Blum, J. D.; Demers, J. D.; Gu, B.; Brooks, S. C.; Peryam, J. Identification 539 
of multiple mercury sources to stream sediments near Oak Ridge, TN, USA. Environ. Sci. 540 
Technol. 2014, 48, 3666−3674. 541 

(28) Drott, A.; Lambertsson, L.; Bjorn, E.; Skyllberg, U. Importance of dissolved neutral 542 
mercury sulfides for methyl mercury production in contaminated sediments. Environ. Sci. 543 
Technol. 2007, 41, 2270−2276. 544 

(29) Drott, A.; Lambertsson, L.; Björn, E.; Skyllberg, U. Effects of oxic and anoxic filtration on 545 
determined methyl mercury concentrations in sediment pore waters. Mar. Chem. 2007, 103, 546 
76−83. 547 

(30) Drott, A.; Lambertsson, L.; Björn, E.; Skyllberg, U. Do potential methylation rates reflect 548 
accumulated methyl mercury in contaminated sediments? Environ. Sci. Technol. 2008, 42, 549 
153−158. 550 

(31) Drott, A.; Lambertsson, L.; Björn, E.; Skyllberg, U. (2008). Potential demethylation rate 551 
determinations in relation to concentrations of MeHg, Hg and pore water speciation of 552 
MeHg in contaminated sediments. Mar. Chem. 2008, 112, 93−101. 553 

(32) Drott, A. Chemical speciation and transformation of mercury in contaminated sediments. 554 
Doctoral Thesis, Swedish University of Agricultural Sciences, 2009. 555 

(33) Bloom, N.; Preus, E.; Katon, J.; Hiltner, M. Selective extractions to assess the 556 
biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal. 557 
Chim. Acta 2003, 479, 233–248. 558 

(34) Hall, G. E. M.; Pelchat, P.; Percival, J. B. The design and application of sequential 559 
extractions for mercury, Part 1. Optimization of HNO3 extraction for all non-sulphide forms 560 
of Hg. Geochem. Explor. Environ. Anal. 2005, 5, 107−113. 561 

Page 19 of 26

ACS Paragon Plus Environment

Environmental Science & Technology



 

20

(35) Hoffmann, M.; Mikutta, C.; Kretzschmar, R. Bisulfide reaction with natural organic matter 562 
enhances arsenite sorption: Insights from X-ray absorption spectroscopy. Environ. Sci. 563 
Technol. 2012, 46, 11788−11797. 564 

(36) Jonsson, S.; Skyllberg, U.; Nilsson, M. B.; Westlund, P-O.; Shchukarev, A.; Lundberg, E.; 565 
Björn, E. Mercury methylation rates for geochemically relevant HgII species in sediments, 566 
Environ. Sci. Technol. 2012, 46, 11653−11659. 567 

(37) Hintelmann, H.; Ogrinc, N. Determination of stable mercury isotopes by ICP/MS and their 568 
application in environmental studies. In Biogeochemistry of Environmentally Important 569 
Trace Elements; Cai, Y., Braids, O. C., Eds.; ACS Symposium Series 835; Amer. Chem. 570 
Soc.: Washington, USA, 2003, pp 321−338. 571 

(38) Bjorn, E.; Larsson, T.; Lambertsson, L.; Skyllberg, U.; Frech, W. Recent advances in 572 
mercury speciation analysis with focus on spectrometric methods and enriched stable 573 
isotope applications. Ambio 2007, 36, 443−451. 574 

(39) Jiskra, M.; Saile, D.; Wiederhold, J. G.; Bourdon, B.; Björn, E.; Kretzschmar, R. Kinetics of 575 
Hg(II) exchange between organic ligands, goethite, and natural organic matter studied with 576 
an enriched stable isotope approach. Environ. Sci. Technol. 2014, 48, 13207–13217. 577 

(40) Wiederhold, J. G.; Cramer, C. J.; Daniel, K.; Infante, I.; Bourdon, B.; Kretzschmar, R. 578 
Equilibrium mercury isotope fractionation between dissolved Hg(II) species and thiol-bound 579 
Hg. Environ. Sci. Technol. 2010, 44, 4191–4197. 580 

(41) Jiskra, M.; Wiederhold, J. G.; Bourdon, B.; Kretzschmar, R. Solution speciation controls 581 
mercury isotope fractionation of Hg(II) sorption to goethite. Environ. Sci. Technol. 2012, 582 
46, 6654−6662. 583 

(42) Blum, J. D.; Bergquist, B. A. Reporting of variations in the natural isotopic composition of 584 
mercury. Anal. Bioanal. Chem. 2007, 388, 353−359. 585 

(43) Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and 586 
gas-ratio measurement results. Rapid Commun. Mass Spectrom. 2011, 25 (17), 2538−2560. 587 

(44) Sherman, L. S.; Blum, J. D.; Nordstrom, D. K.; McCleskey, R. B.; Barkay, T.; Vetriani, C. 588 
Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic 589 
field and Guaymas Basin sea-floor rift. Earth Planet. Sci. Lett. 2009, 279, 86−96. 590 

(45) Alriksson, A. Regional variability of Cd, Hg, Pb and C concentrations in different horizons 591 
of Swedish forest soils. Water Air Soil Pollut. Focus 2001, 1, 325−341. 592 

(46) Smith, R. S.; Wiederhold, J. G.; Jew, A. D.; Brown, Jr., G. E.; Bourdon, B.; Kretzschmar, R. 593 
Small-scale studies of roasted ore waste reveal extreme ranges of stable mercury isotope 594 
signatures. Geochim. Cosmochim. Acta 2014, 137, 1−17. 595 

(47) Gray, J.E.; Pribil, M. J.; Higueras, P. L. Mercury isotope fractionation during ore retorting in 596 
the Almadén mining district, Spain. Chem. Geol. 2013, 357, 150−157. 597 

(48) Laffont, L.; Sonke, J. E.; Maurice, L.; Monrroy, S. L.; Chincheros, J.; Amouroux, D.; Behra, 598 
P. Hg speciation and stable isotope signatures in human hair as a tracer for dietary and 599 
occupational exposure to mercury. Environ. Sci. Technol. 2011, 45, 9910−9916. 600 

(49) Estrade, N.; Carignan, J.; Sonke, J. E.; Donard, O. F. X. Mercury isotope fractionation 601 
during liquid-vapor evaporation experiments. Geochim. Cosmochim. Acta 2009, 73, 2693–602 
2711. 603 

(50) Ghosh, S.; Schauble, E.A.; Lacrampe Couloume, G.; Blum, J.D.; Bergquist, B.A. Estimation 604 
of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid–vapor 605 
evaporation experiments. Chem. Geol. 2013, 336, 5−12. 606 

(51) Koster van Groos, P. G.; Esser, B. K.; Williams, R. W.; Hunt, J.R. Isotope effect of mercury 607 
diffusion in air. Environ. Sci. Technol. 2014, 48, 227−233. 608 

Page 20 of 26

ACS Paragon Plus Environment

Environmental Science & Technology



 

21

(52) Mikac, N.; Foucher, D.; Niessen, S.; Fischer, J. C. Extractability of HgS (cinnabar and 609 
metacinnabar) by hydrochloric acid. Anal. Bioanal. Chem. 2002, 374, 1028–1033. 610 

(53) Mikac, N.; Foucher, D.; Niessen, S.; Lojen, S.; Fischer, J. C. Influence of chloride and 611 
sediment matrix on the extractability of HgS (cinnabar and metacinnabar) by nitric acid. 612 
Anal. Bioanal. Chem. 2003, 377, 1196–1201. 613 

(54) Fernandez-Martinez, R.; Rucandio, M. I. Study of the suitability of HNO3 and HCl as 614 
extracting agents of mercury species in soils from cinnabar mines. Anal. Bioanal. Chem. 615 
2005, 381, 1499–1506. 616 

(55) Miller, C. L.; Liang, L. Y.; Gu, B. H. Competitive ligand exchange reveals time dependant 617 
changes in the reactivity of Hg-dissolved organic matter complexes. Environ. Chem. 2012, 618 
9, 495−501. 619 

(56) Chiasson-Gould, S. A.; Blais, J. M.; Poulain, A. J. Dissolved organic matter kinetically 620 
controls mercury bioavailability to bacteria. Environ. Sci. Technol. 2014, 48, 3153−3161. 621 

(57) Foucher, D.; Hintelmann, H.; Al, T. A.; MacQuarrie, K. T. Mercury isotope fractionation in 622 
waters and sediments of the Murray Brook mine watershed (New Brunswick, Canada): 623 
Tracing mercury contamination and transformation. Chem. Geol. 2013, 336, 87–95. 624 

(58) Yin, R.; Feng, X.; Wang, J.; Bao, Z.; Yu, B.; Chen, J. Mercury isotope variations between 625 
bioavailable mercury fractions and total mercury in mercury contaminated soil in Wanshan 626 
Mercury Mine, SW China. Chem. Geol. 2013, 336, 80−86. 627 

(59) Wiederhold, J. G.; Smith, R. S.; Siebner, H.; Jew, A. D.; Brown, G. E.; Bourdon, B.; 628 
Kretzschmar, R. Mercury isotope signatures as tracers for Hg cycling at the New Idria Hg 629 
Mine. Environ. Sci. Technol. 2013, 47, 6137−6145. 630 

631 

Page 21 of 26

ACS Paragon Plus Environment

Environmental Science & Technology



 

22

‐2.5

‐2.0

‐1.5

‐1.0

‐0.5

0.0

0.5

1.0

0 20 40 60 80 100

2
0
2
H
g 
[‰

] 
(M

D
F)

Hg [μg g‐1]

Köp Kar

Sku Tur

Ala Nöt

Mar

Elemental: Phenyl:

NIST‐3133

 632 

Figure 1: Total Hg concentrations vs. mass-dependent fractionation (MDF) as 202Hg in sediment 633 

samples from seven sites in Sweden contaminated with elemental Hg (angled symbols) or phenyl-Hg 634 

(round symbols). Error bars represent 2SD uncertainty based on standard reproducibility of 635 

individual analytical session. 636 
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 638 

Figure 2: Two-dimensional Hg isotope plot with mass-dependent fractionation (MDF, 202Hg) vs. 639 

mass-independent fractionation (MIF, 199Hg) relative to NIST-3133 in sediment samples from 640 

seven sites in Sweden contaminated with elemental Hg (angled symbols) or phenyl-Hg (round 641 

symbols). Error bars represent 2SD uncertainty based on standard reproducibility of individual 642 

analytical session. 643 
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 645 

Figure 3: (a) Relative fraction of organically-bound Hg (6 M HNO3 extraction) and sulfide-bound 646 

Hg (aqua regia digestion) in selected samples from sites Ala, Sku, and Köp, as well as NIST-2711 647 

(Montana soil) for comparison; and (b) Hg isotope ratios (MDF, 202Hg) in corresponding extraction 648 

solutions plotted together with total digest data. Error bars represent 2SD uncertainty. 649 
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Table 1: Results of dissolution and extraction tests. Natural abundance experiments were performed 651 

with a single material, whereas the enriched (“spike”) experiments were conducted with a mixture of 652 

both materials present.  653 

Errors for dissolved fractions of “spike” experiments indicate 1SD of triplicate series. Hg isotope data 
of natural abundance experiments are reported relative to isotopic composition of total digests of the 
respective materials (Table S2) and errors indicate 2SD standard reproducibility of analytical session. 

Hg 
isotopes 

material extraction 
dissolved 
fraction 

[%] 

202Hginitial  

[‰] 

199Hginitial   

[‰] 

201Hginitial  

[‰] 

natural 
abundance 

β-HgS 6M HNO3 0.27 0.06 ±0.11 0.04 ±0.09 0.02 ±0.07

β-HgS 6M HCl 3.51 0.09 ±0.11 -0.02 ±0.09 0.03 ±0.07

Hg-NOM 6M HNO3 85.2 0.04 ±0.11 0.03 ±0.09 0.06 ±0.07

enriched 
(“spike”) 

β-201HgS 6M HNO3 1.65 ± 0.11 analyzed immediately 

β-201HgS 6M HNO3 3.10 ± 0.75 analyzed after 48 h pre-equilibration 

199Hg-NOM 6M HNO3 26.2 ± 3.5  analyzed immediately 

199Hg-NOM 6M HNO3 34.1 ± 5.4 analyzed after 48 h pre-equilibration 

 654 
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