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ABSTRACT  17 

Final harvest (clear-cutting) of coniferous boreal forests has been shown to increase stream water 18 

concentrations and export of the neurotoxin methyl mercury (MeHg) to freshwater ecosystems. 19 

Here the spatial distribution of inorganic Hg and MeHg in soil as a consequence of clear-cutting 20 

are reported. A comparison of soils at similar positions along hillslopes in four 80-years-old 21 

Norway spruce (Picea abies) stands (REFs) with four similar subjected to clear-cutting (CCs) 22 

revealed significantly (p<0.05) enhanced MeHg concentrations (ng g-1), MeHg areal masses (g ha-23 

1), and %MeHg of HgTOT in O horizons of CCs located between 1m and 41 m from streams. 24 

Inorganic Hg measures did not differ between REFs and CCs at any position. The O horizon 25 

thickness or bulk density did not differ, but at CCs the groundwater table and soil water content 26 

was significantly higher than at REFs. The largest difference in %MeHg of HgTOT (11 times, 27 

p<0.003) was observed in concert with significant increases in soil water content (p<0.0002) at 28 

intermediate hillslope positions (20-38 m from stream), outside the stream riparian zone. 29 

Incubation experiments demonstrated that soils having significantly enhanced soil pools of MeHg 30 

after clear-cutting also showed significantly enhanced methylation potential as compared with 31 

similarly positioned soils in mature reference stands. Addition of inhibitors demonstrated that 32 

sulfate reducing bacteria (SRB) and methanogens were key methylators. Rates of demethylation 33 

were not enhanced after clear-cutting. Our results suggest that enhanced water saturation of 34 

organic soils providing readily available electron donors stimulate Hg methylating microbes to net 35 

formation and build-up of MeHg in O horizons after forest harvest. 36 

 37 

 38 

Page 2 of 33

ACS Paragon Plus Environment

Environmental Science & Technology



 3 

INTRODUCTION 39 

The potent neurotoxin methyl mercury (MeHg) is of great concern in boreal landscapes where it 40 

forms and accumulates in aquatic food-webs. Concentrations of MeHg are high in pescivorous 41 

fish and in boreal landscapes the severity of this situation seems to have increased during the last 42 

decades.1-3 Because MeHg imported by terrestrial runoff exhibits a significantly higher rate of 43 

bioaccumulation in costal sediments than in situ formed MeHg,50 the formation and export of 44 

MeHg from terrestrial environments play a critical role in aquatic ecosystems.  45 

In the 1990’s it was demonstrated that MeHg formed in wetlands is an important source 46 

of MeHg in runoff to surface waters.4 Different types of boreal wetlands have since then been 47 

identified as net producers of MeHg,5,6 with rates of Hg methylation varying more than rates of 48 

demethylation.7 So far Black Alder swamps is the only type of wetland shown to net degrade 49 

MeHg.8 After microbial activity was demonstrated to be responsible for Hg methylation9 several 50 

microbial communities have been identified to methylate Hg in wetland environments, including 51 

sulfate reducing bacteria (SRB), iron reducing bacteria (IRB), methanogens and firmicutes.10-14  52 

While wetland soils are recognized as major sources, forested upland soils are generally 53 

considered as sinks for MeHg.15 However, during the phase of forest harvest and time period of 54 

establishment of a new stand, studies have revealed forest soils to be significant sources of 55 

MeHg to surface waters and their biota.16-22 Yet, some studies have found little or no effect from 56 

forest harvest on MeHg stream export.23 Clear-cutting is the most common final harvest practice 57 

in boreal forests.24 It results in a loss of evapotranspiration from trees which increases both the 58 

runoff and the level of the ground water table. Because of a large leaf area, this effect is greatest 59 

in coniferous forests25 where the runoff has been reported to increase 48 to 107% after clear-60 
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cutting,21,22,25,26  mainly depending on the fraction of the watershed area harvested and its 61 

topography (response in runoff). As a consequence of rising groundwater levels, discharge areas 62 

with newly water saturated soils are extended up along lower sections of hillslopes and into local 63 

depressions forming fringes and patches of new wetland-like habitats. Once inundated, the soil 64 

organic matter quality of these normally well-drained forest soils may provide excellent substrate 65 

as electron donors for anaerobic, Hg methylating bacteria.27,28 Electron donors are also provided 66 

by organic debris left after clear-cutting. Soil organic matter degradation is further excelled by 67 

increased exposure to solar radiation,29 which also has been shown to increase Hg0(g) photo-68 

emissions from soils after clear-cutting.30  69 

In a recent parallel study22 to the one reported here, we showed that: (1) the organic 70 

horizon MeHg soil pool (g ha-1) in average increased seven times two years after clear-cutting, 71 

and (2) the stream MeHg export increased significantly after clear-cutting in undulating terrain. 72 

An upscaling calculation demonstrated that in Sweden, where >95 % of the productive forest 73 

area is managed, final harvest of boreal coniferous forest increases the MeHg export to aquatic 74 

ecosystems by 12 - 20 % as compared to non-harvested forests.22 This estimate, based on 75 

watershed export data alone, narrows a previous one reported by Bishop et al.,19 based on results 76 

from a variety of studies. 77 

To mitigate stimulatory effects of forest harvest on MeHg formation and stream export, 78 

adjustment of forest management practices have been suggested, such as leaving zones of gallery 79 

forest along streams and avoiding soil disturbance and compaction by heavy machinery.19,34 80 

However, before such actions can be fully designed and implemented we need to better 81 

understand processes and factors in control of MeHg formation in forest soil (before and after 82 

harvest) and the spatial distribution of MeHg net producing “hot-spots” and their connections to 83 
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streams.35 Here we report the effect of forest clear-cutting on the distribution of MeHg 84 

accumulated in organic soil horizons along hillslope transects, by comparing 80-years-old 85 

reference stands of Norway spruce (Picea abies L. Karst) with two-years-old clear-cuts of 86 

similar stands. The potential for MeHg formation and degradation in soil of clear-cuts and 87 

reference stands was further examined in incubation experiments where rate constants for 88 

potential Hg methylation and MeHg demethylation, km and kd, were determined. Amendments of 89 

electron acceptors and metabolism-specific inhibitors were added to identify and quantify the 90 

role of different microbial communities for net MeHg formation in soil before and after forest 91 

harvest.  92 

 93 

MATERIALS AND METHODS 94 

Site descriptions. Four mature (>80-years-old) Norway spruce (Picea abies Karst.) 95 

reference stands (designated REFs) and four similar stands subjected to final harvest (clear-96 

cutting two years prior to the study, designated CCs) were selected. Two REFs and two CCs 97 

were situated above the post-glacial marine limit (AML) of the ancient Baltic Sea, and two REFs 98 

and two CCs were situated below the post-glacial marine limit (BML). All sites were located in 99 

north-central Sweden and were part of a larger study22 including a total of 20 watersheds (Figure 100 

S1, Text S1). Sites represented an area of 26 800 km2 covered by northern boreal coniferous 101 

forests and corresponding to about 15% of the forested land in Sweden. Sites situated AML were 102 

located between 297 and 488 m.a.s.l. and sites BML between 16 and 113 m.a.s.l. To facilitate 103 

comparison with parallel studies, the site designation follows Kronberg et al.22  104 
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Soil sampling and analyses of soil Hg and MeHg pools. Sites REF1, REF2, CC2 and 105 

CC3 situated the AML and sites REF1, REF4, CC2 and CC4 situated BML were selected for soil 106 

sampling and determinations of Hg and MeHg soil pools. Site coordinates and topographic 107 

characteristics are reported in Table S1, S2 (Supporting Information, SI). The organic (O) 108 

horizon was collected in June 2011 (two years after clear-cutting) by cutting samples with a 109 

specified volume from the side of dug pit with a steel knife. The O horizon was divided into the 110 

top, non-humified Oe, and the underlying, humified Oa, horizon. The complete Oe horizon was 111 

sampled and the top 15 cm of the Oa horizon. Depths of Oe and Oa and the underlying E horizon 112 

and the level of the groundwater table (after 30 min to let the water stabilize) were measured in 113 

the pit. In some pits large boulders prevented further digging and the groundwater level was set 114 

10 cm below the maximum depth. Composite samples of Oe and Oa (comprised of five sub-115 

samples taken within a plot of 1 by 1 m2) were taken at five positions (P1-P5) along one hillslope 116 

transect (in total 22 – 93 m long) running from recharge to discharge areas and positioned 117 

perpendicular to the first-order stream defining the watershed. Sample P1 was taken 1 m from 118 

the stream in the riparian zone and P5 in the recharge area. Samples P2-P4 were taken in 119 

between at arbitrary distances from stream to cover local depressions at intermediate positions 120 

along hillslopes. Billberry (Vaccinium myrtillus) was the dominant plant in the field layer at 121 

REFs with Deschampsia flexuosa and other grasses and herbs gradually taking over after clear-122 

cutting. Feather mosses (Hylocomnium splendens, Pleurizium schreberi) dominated the bottom 123 

layer at both REFs and CCs. Soils were classified as Podzols31 along hillslopes and Histosols (O 124 

horizon > 40 cm), with a patchy distribution, in the riparian zone along streams (having a width 125 

of about 2-8 m). Sampling positions at REFs and CCs were selected to be as equal as possible in 126 

relation to topography and average hydrology prior to clear-cutting. This was indeed achieved as 127 
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judged by the thickness of the O horizon which proved to be very similar at REFs and CCs 128 

(Figure 1, Table S5). Samples were stored in a cooling bag while transported to the lab and then 129 

in a fridge at 4°C. Within 48 h samples were homogenized through a 4 mm cutting sieve, after 130 

removal of larger plant materials (roots) and woody debris. The soil was dried (45 °C to avoid 131 

losses of Hg) and the fresh soil bulk density was calculated as gram of dry soil mass per dm-3. 132 

Analytical methods for the determination of HgTOT, MeHg, and geochemical parameters (pH, C, 133 

N, S) and water content are reported in Supporting Information (Text S2). Soil MeHg and HgTOT 134 

concentrations and areal masses were calculated for Oe and Oa horizons of REFs and CCs as 135 

arithmetic means of the 20 composite samples (P1-P5 at four REFs and four CCs, respectively). 136 

Data on MeHg and HgTOT areal masses (g ha-1) for Oe and Oa sub-horizons were first summed 137 

for each sampling position (P1-P5) before calculating the arithmetic average for the complete O 138 

horizon of REFs and CCs. Data on concentrations of HgTOT, MeHg, %MeHg, and water mass-% 139 

(of fresh soil) for Oe and Oa sub-horizons were weighted (by the measured sub-horizon 140 

thickness) to calculate average values for the complete O horizons of CCs and REFs. 141 

Soil sampling and determination of potential Hg methylation and MeHg 142 

demethylation rates. At four of the sites (REF1 AML, CC3 AML, REF4 BML, and CC4 BML) 143 

soils were re-sampled in August 2012 (three years after clear-cutting) for incubation experiments 144 

to determine Hg methylation and MeHg demethylation rate constants. Because no significant 145 

differences in % MeHg (of HgTOT) were observed between Oe and Oa sub-horizons at the first 146 

sampling occasion (in June 2011), the sampling in August 2012 was restricted to the top 10 cm 147 

of the Oa horizon. At CCs, samples were taken at three of the five positions decided at the 148 

sampling occasion in 2011: P1, P3 and P4 and at REFs samples were collected at two positions: 149 

P1 and P4. Samples were taken using a soil corer with a steel edge (10.5 cm in diameter), 150 
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immediately put in a ziplock plastic bag and kept in a cooling box on ice during transportation to 151 

the lab. The samples were stored at 4°C in refrigerator for one week.  152 

Isotopically enriched 198Hg(NO3)2, 
201Hg-NOM (natural organic matter), and Me204HgCl 153 

tracers were used in soil incubation experiments. The 201Hg-NOM tracer is less available for 154 

methylation than the traditionally used 198Hg(NO3)2 tracer,36 and can be assumed to be more 155 

relevant as a substrate in an organic forest soil where the complexation of Hg(II) to NOM thiol 156 

groups dominates the inorganic Hg speciation.37,38,54 The 201Hg-NOM tracer was prepared 5 days 157 

prior to the incubation.36 Two days prior to the incubation, soil samples were homogenized by 158 

hand in a plastic bag (to avoid soil water losses) in the glovebox (95% N2 and 5% H2). This was 159 

done as gently as possible, basically removing roots and mixing the sample by loosening up the 160 

depth-related structures (layering) of the O horizon to provide a representative, mixed sample 161 

still maintaining most of its small-scale structure. Subsamples were taken out for determination 162 

of water content, total Hg (HgTOT) and MeHg concentrations (Text S2, SI). The latter two 163 

analyzes were done immediately to decide the quantity of Hg and MeHg tracers to be added 164 

(corresponding to 10 – 30 % of ambient). Ten grams of homogenized soil were weighed (by two 165 

decimals) into 50 mL Falcon tubes covered with aluminum foil. Amendments and isotopically 166 

enriched tracers were added to the soil in a minimum amount of deoxygenated water (enough to 167 

provide efficient mixing but still maintaining differences in water contents among soil samples). 168 

The soil was mixed thoroughly using a metal spatula. A subsample (t48) was transferred to a 169 

second tube, weighed and incubated in darkness in the glovebox at 21±1°C. After 48 hours the 170 

t48 sample was frozen at -20°C.  The first tube (t0) was frozen on dry ice after each amendment 171 

was done, which took 10-15 minutes. All treatments were done in triplicate. Sulfate and freshly 172 

prepared amorphous iron hydroxide39 (henceforth designated Fe(III)) were added as potential 173 
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bacterial electron acceptors for SRB and IRB, respectively. Molybdate (Na2MoO4) and 174 

bromoethanesulfonic acid (BES) were added as specific inhibitors of SRB and methanogens, 175 

respectively,40 and azide (NaN3) was used as a general microbial metabolic inhibitor.41 Final 176 

concentrations in the samples were 50 µM of sulfate and molybdate, 10 mM of BES, 1 mol/L of 177 

Fe(III), and 100 mM azide. The CC4 P3 sample was excluded because of analytical problems.   178 

Potential methylation and demethylation rate constants (d-1) were calculated by equations 179 

(1) and (2), respectively, from masses of transformed 201Hg (201Hg-NOM tracer), 198Hg 180 

(198Hg(NO3)2 tracer) and Me204Hg (Me204HgCl tracer). Because of the difficulty to directly 181 

determine the pseudo-first order kinetics of Hg methylation (dHg/dt), and its dependency on the 182 

quantity of added Hg tracer, km in reaction (1) is commonly adopted as the potential methylation 183 

rate constant.32 The demethylation rate constant is determined by pseudo first-order kinetics. 184 

Demethylation of Me201,198Hg formed during the course of the incubation experiment, as well as 185 

methylation of 204Hg, were assumed negligible.  186 

km = ([Me201,198Hg]t48 – [Me201,198Hg]t0) / ([
201,198Hg-tracer]added × Δt)  (1) 187 

   kd = –1 × (ln [Me204Hg]t48 – ln [Me204Hg]t0)/ Δt         (2) 188 

The [MeHg]t48 and [MeHg]t0 are the determined MeHg concentrations (ng Hg g-1) for a given 189 

isotope at 48 hours  (t48) and at the start of the experiment (t0). The [201, 198Hg-tracer]added is the 190 

initial concentration of isotope tracer and Δt is the incubation time (days).  191 

Two-tailed Student’s t-test for heteroscedastic distributed log-transformed data were used 192 

to compare soil data for REFs and CCs. Differences between controls and treatments of 193 

incubation studies were tested by ANOVA followed by Tukey multiple comparison test. 194 
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RESULTS  195 

Soil concentrations and areal masses of HgTOT and MeHg along hillslopes. As previously 196 

reported, 22 average O horizon HgTOT concentrations and HgTOT areal masses did not differ 197 

between the REF (210 ng g-1 and 41 g ha-1, respectively) and CC sites (220 ng g-1 and 48 g ha-1, 198 

respectively) of this study. In contrast, MeHg concentrations (p=0.002) and areal masses of 199 

MeHg (p=0.006) and MeHg in % of HgTOT (p=0.003) were significantly higher at CC (4.8 ng g-1, 200 

1.1 g ha-1, and 2.7%, respectively) than at REF sites (1.0 ng g-1, 0.16 g ha-1, and 0.4%, 201 

respectively). Similar differences between REFs and CCs were reported for the sub-horizons Oe 202 

and Oa (Figure S2, SI). In summary, concentrations and areal masses of MeHg in CCs were 9-12 203 

times and 4-7 times higher that REFs in the Oe and Oa horizons, respectively, and 5-7 times 204 

higher than REFs in the O horizon as a whole. Individual data for all sampling sites are reported 205 

in the Supporting Information (Table S3, S4, SI).  206 

The average thickness and bulk density of the O horizon was similar at REF (29±22 cm 207 

and 64±19 g dm-3) and CC (29±13 cm and 69±32 g dm-3, Table S5, SI) sites. At sampling 208 

positions P1-P4 (situated 1 – 38 m from stream) the average O horizon thickness varied between 209 

26 and 32 cm at both REFs and CCs (Figure 1). Even if the thickness did not meet criteria for 210 

peat formation (Histosols: >40 cm organic horizon) it is indicative of an average groundwater 211 

table close enough to the surface to periodically saturate most of the O horizon. Further away, at 212 

sampling point P5, well-drained Podzols with typical O horizons (REF: 10 cm, CC: 13 cm) were 213 

developed. At the sampling occasion in June, in the middle of a dry spell, the groundwater at 214 

CCs reached into the lower part of the Oa horizons, while at REFs the level was several dm 215 

deeper (Figure 1, Table S5, SI).    216 
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In parallel to the groundwater level, the water content of the O horizon was enhanced at 217 

CCs and reached a maximum at some distance from the stream. Water contents were 218 

significantly higher at CCs as compared to REFs at sampling locations P3 (p=0.03) and P4 219 

(p=0.055, Figure 1, Table S6, SI). At REFs there was no clear pattern for the soil water content 220 

with distance to stream. The soil organic carbon content was significantly higher at REFs, 221 

indicative of soil disturbance and mineral matter mixing into the O horizon after clear-cutting.  222 

One meter from stream (P1) MeHg expressed as concentrations, areal masses and % of 223 

HgTOT were all significantly higher at CCs than at REFs (Figure 1, Table 1 and S6). A significant 224 

enhancement at CCs were also observed at position P3 (for MeHg concentrations and % of 225 

HgTOT). When the two sampling points P1+P2 and P3+P4 were grouped together (to improve 226 

statistical testing) the enhancement of MeHg at CCs (in relation to REFs) was most pronounced 227 

at intermediate positions (P3+P4) along hillslopes. MeHg concentrations were enhanced seven 228 

times (p=0.009) at P3+P4 and four times at P1+P2 (p<0.04) and %MeHg was enhanced 12 times 229 

(p=0.003) at P3+P4 (Table S6). Soil water contents were significantly enhanced at CCs at P3 230 

(p=0.003) and P3+P4 (p=0.0003). Further up along the hillslope, moving into the recharge area 231 

(at P5), groundwater levels, soil water contents and MeHg measures (Figure1) all reached the 232 

lowest values along transects and differences between CCs and REFs were not significant. 233 

Concentrations and areal masses of HgTOT generally decreased by distance from the stream 234 

(Figure 1, Table 1 and S5) and showed no significant differences between REFs and CCs. Both 235 

C/N and C/S ratios (g/g) in the O horizon remained very similar: 28±10 and 240±72, 236 

respectively, at CCs, 30±9.4 and 240±59, respectively, at REFs.  237 
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  238 

Figure 1. Spatial pattern of  mass-% soil water (upper left), O horizon thickness (bars) and 239 

groundwater table (lines, lower left) and %MeHg of HgTOT and areal mass of HgTOT (right) for 240 

the five sampling points (P1-P5) along hillslopes with average distances to stream denoted. 241 

Average values ± SE are reported for reference stands (REF, N=4) and clear-cuts (CC, N=4).  242 

Data are reported in Table S5 and S6, SI. All sampling positions were forested at REFs and prior 243 

to harvest at CCs. 244 

-70

-60

-50

-40

-30

-20

-10

0

-70

-60

-50

-40

-30

-20

-10

0

1m 9m 20m 38m 41m

G
ro

u
n

d
w

at
e

r 
ta

b
le

 c
m

O
 h

o
ri

zo
n

 t
h

ic
kn

e
ss

 c
m

CC REF

CC REF

30

40

50

60

70

80

90

so
il 

w
at

e
r 

m
as

s-
%

0

2

4

6

8

10

12

1m 9m 20m 38m 41m

%
M

e
H

g 
(o

f H
g T

O
T
)

p=0.038

CC REF

0

20

40

60

80

100

120

H
g T

O
T

 g
 h

a-1

CC REF

Page 12 of 33

ACS Paragon Plus Environment

Environmental Science & Technology



 13 

Table 1. Average (± SD) O horizon concentrations of total mercury (HgTOT) and methyl mercury 245 

(MeHg) and areal masses of MeHg for composite soil samples taken at five hillslope positions 246 

(P1-P5) at four sites. Figures in bold italics denote significant differences between references 247 

(REF) and clear-cuts (CC). Data on %MeHg, areal masses of HgTOT (g ha-1) and soil water and 248 

soil organic carbon mass-% are reported in Table S6, SI. 249 

 250 

 251 

 252 

Methylation and demethylation incubation studies. Rate constants for the potential 253 

methylation and demethylation, km and kd, were determined in incubation experiments of soil Oa 254 

horizon samples collected in August 2012, three years after final harvest. The water content of 255 

soil samples taken in August 2012 (68-91%, Table S7,SI) were similar to samples taken in June 256 

2011 (65-86%, Table S6, SI). Also similar to in June 2011, clear-cuts (CC3, CC4) demonstrated 257 

higher %MeHg and higher water contents in positions P3 and P4 than in position P1 (Table S7, 258 

SI). Soil samples at the reference stands (REF1 P1 & P3, REF4 P1) all showed lower water 259 

contents and substantially lower concentrations of MeHg (and %MeHg of HgTOT) than all the CC 260 

samples. Notable was the high concentration of MeHg (and %MeHg) and water content at 261 

Hillslope 

position 

HgTOT 

(ng g-1) 

MeHg 

(ng g-1) 

MeHg 

(g ha-1) 

 REF CC REF CC REF CC 

P1 1m (N=4) 170±53 210±95 0.6±0.4a 2.8±1.1b 0.16±0.20a 1.1±0.5b 

P2 9m (N=4) 220±59 250±17 1.3±0.5 4.0±5.8 0.26±0.14 0.94±1.2 

P3 20m (N=4) 220±35 190±46 0.8±0.6a 7.2±6.5b 0.13±0.09 2.0±2.4 

P4 38m (N=4) 220±21 200±35 1.3±1.1 7.9±6.0 0.20±0.13 1.2±1.1 

P5 41m (N=3) 190±10 230±54 1.0±0.6 1.2±1.2 0.05±0.03 0.06±0.04 

P1+P2 (N=8) 200±22 230±25 0.9±0.2a 3.4±1.5b 0.21±0.06a 1.1±0.3b 

P3+P4 (N=8) 220±10 195±14 1.1±0.3a 7.6±2.2b 0.16±0.04c 1.6±0.7d 

P1 to P5 (N=20) 210±43 220±54 1.0±0.7a 4.8±5.1b 0.16±0.14a 1.1±1.4b 
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sample point P3 in REF4. This sample was affected by clear-cutting of the forest stand further up 262 

along the slope just a short distance from the sampling point, conducted one year before the 263 

sampling occasion. The clear-cutting effect noted for MeHg% at REF4 P3 was also reflected by 264 

the potential methylation rate constant km (0.029 d-1), which fell into the range observed for the 265 

six CCs (0.014 – 0.582 d-1). In contrast, the three true REFs showed much lower methylation rate 266 

constants (0.0001-0.007 d-1, Table S7, SI). Statistical testing conducted with REF4 P3 considered 267 

to be affected by clear-cutting (and thus included as a CC) revealed that CC soils (N=7) had 268 

significantly higher concentrations of MeHg (p=0.003), %MeHg (p=0.010), km (p=0.048, one-269 

tailed test) and water content (p= 0.017) than REFs (N=3), Figure 2. Potential demethylation rate 270 

constants showed no response to clear-cutting, as illustrated by similar ranges for CCs (0.006-271 

0.081) and REFs (0.005-0.173), Table S7, SI.  272 

  

Figure 2. Average (±SD) concentrations of MeHg, %MeHg of HgTOT in soil prior to incubation, 273 

potential methylation rate constant (km) and soil water content (% of wet soil mass) for soil 274 

samples taken at clear-cuts (CCs, including REF4 P3 that was affected by clear-cutting, N=7) 275 

and reference stands (REFs, N=3). Data in Table S7, SI. Corresponding plots for log-transformed 276 

data are for clarity presented in SI, Figure S3.   277 
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Amendments of electron acceptors and inhibitors. In three of the five CC soils, and in the 278 

REF4 BML P3 soil (which was affected by clear-cutting), there was a significant (p<0.05) 279 

increase in km after addition of the potential electron acceptor sulfate (Figure 3). In two of these 280 

samples also addition of the electron acceptor Fe(III) enhanced km: one significantly (p<0.05; 281 

CC4 BML P3) and one almost significantly (p<0.10; REF4 BML P3). None of the REF samples 282 

were significantly affected by additions of sulfate and Fe(III). 283 

The microbial inhibitor azide significantly (p<0.05) or almost significantly (p<0.10) 284 

decreased the km in all CC samples (including REF4 BML P3) and in two out of three REFs. 285 

Amendment with BES (specific inhibitor for methanogens) significantly (p<0.05) reduced km by 286 

almost half in four of the six CC samples (CC4 BML P1, P3 and P4, and CC3 AML P3). A 287 

significant decrease was also observed in REF1 AML P1. Further, in response to addition of the 288 

specific inhibitor of SRB (molybdate), km decreased significantly (p<0.05) in the CC4 BML P1 289 

sample and almost significantly in the CC4 BML P4 sample (p=0.06).  290 

The effect of isotope labeled inorganic Hg tracers with different availability for 291 

methylation was evaluated by comparing the relative differences in km determined from the 292 

198Hg(NO3)2 and 201Hg-NOM tracers. For the Hg(NO3)2 tracer, rate constants were about 20 293 

times higher than for the Hg-NOM tracer (Figure S4), well in agreement with previous 294 

findings.36 As noted from the figure the pattern of relative response to electron acceptor and 295 

inhibitor amendments was similar for the 198Hg(NO3)2 and 201Hg-NOM tracers.  296 

In contrast to the results for the methylation process, amendment did not have any clear 297 

effect on demethylation rates (Figure S5). 298 

 299 
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Figure 3. Potential methylation rate constants (km) determined for the 198Hg(NO3)2 tracer. 300 

Control samples are compared with samples amended with electron acceptors (sulfate, Fe(III)) 301 

and microbial inhibitors (BES, molybdate, azide). The asterisk (*) denotes significant differences 302 

(p <0.05, ANOVA + Tukey multiple comparison test) and (^) marginally non-significant 303 

differences (p<0.07) from control (horizontal dotted lines). Error bars represent the standard 304 

deviation for triplicates. In the lower figure REF1 AML P1 and P3 are plotted on the right axis. 305 

 306 
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DISCUSSION 307 

Previous studies of boreal forest harvest have demonstrated increased MeHg concentrations in 308 

stream runoff and in downstream biota,16-22 but the source of MeHg has not been clearly 309 

identified. Here we extend the findings from Kronberg et al.,22 demonstrating increased MeHg 310 

pools in the O horizon after clear-cut, by reporting spatial distributions along recharge-discharge 311 

transects. Spatially, MeHg soil quantities were most enhanced at some distance from the stream, 312 

well outside the riparian zone, where also the water content of the O horizon was significantly 313 

enhanced (Figure 1). Thus, the most important factor for creating oxygen deficiency in soil: 314 

water saturation, likely played an important role to enhance soil MeHg after forest clear-cutting.  315 

 As a consequence of forest harvest, evapotranspiration significantly decreases25 and the 316 

runoff was shown to be enhanced on average 62% at the CC sites above the ML of this study.22 317 

The extra water supply will extend the discharge area from the riparian zone patches of Histosols 318 

into better drained O horizons of Podzols in lower sections and local depressions of hillslopes. 319 

The water table positioned in the lower part of the Oa horizon at CCs (Figure 1) demonstrates the 320 

effect of increased water supply after final harvest. Even if the O horizon in average was as thick 321 

as 26 – 36 cm at sampling positions P2-P4 (located in average 9 to 38 m from streams), the 322 

development of E and Bhs and Bs horizons (diagnostic for Podzols) prove at least seasonally 323 

relatively well-drained conditions prior to clear-cutting. It has been demonstrated that 324 

experimental flooding of well-drained upland soil O horizons results in high rates of Hg 325 

methylation and MeHg accumulation in soils.28,44 This observation has primarily been explained 326 

by a higher availability of electron donors (for methylating microbes) in relatively well-drained 327 

Podzol O horizons, as compared to the more recalcitrant organic matter accumulated in 328 

Histosols.28,44,53  We therefore suggest that hot-spots for MeHg net formation after forest clear-329 
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cutting are mainly to be found in lower sections (including local depressions) of hillslopes, at 330 

some distance from streams, where the combination of high availability of electron donors and 331 

increasing groundwater tables stimulates the activity of anaerobic microbes..  332 

This picture also agrees well with our previous findings that stream MeHg 333 

concentrations20 and annual MeHg export22 is most clearly enhanced after forest harvest in 334 

undulating terrain with small riparian zones, as compared to flatter landscapes with a larger 335 

contribution from riparian zones and wetlands. The more or less continuous layer of organic soil, 336 

connecting near stream Histosols with O horizons of Podzols in lower sections of hillslopes,  337 

possess a high hydraulic conductivity and serves as permeable medium for lateral movement of 338 

water and its solutes from soils to streams under high-flow conditions.43 Thus, through this 339 

medium, MeHg bonded to mobile organic matter45 will readily be transported from the hot-spots 340 

of MeHg formation in soil to the stream.  341 

Soil samples taken at positions along hillslopes, which were demonstrating significantly 342 

enhanced concentrations and areal masses of MeHg two years (Table 1, Table S6) and three 343 

years (Table S7) after clear-cutting, also showed significantly enhanced methylation rate 344 

constants (km), as compared to REFs (Figure 2). Thus, a positive relationship was observed 345 

between %MeHg (of HgTOT) in soils and km determined in the same soil after short-term (48 h) 346 

incubation (Figure 4). Similar relationships have been reported for sediments.51 Because the km is 347 

a true measure of short-term MeHg formation, the relationship can been seen as a confirmation 348 

that the build-up of %MeHg in soils (2-3 years) after forest harvest indeed is due to an increased 349 

net formation of MeHg. Because demethylation rate constants (kd) overlapped largely between 350 

CCs and REFs (Figure S4) it is concluded that the increased O horizon pool of MeHg after final 351 
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harvest is mainly caused by an enhanced rate of methylation and not by a decreased rate of 352 

demethylation.  353 

 354 

 355 

Figure 4. Relationships between %MeHg (of HgTOT) in soil samples prior to incubation and 356 

potential Hg methylation rate constant km determined for clear-cuts (CCs, red symbols N=6) and 357 

references (REFs, green symbols N=3). Linear model (a) and nonlinear model (b). The sample 358 

REF4 BML P3 was excluded from the plot. Dotted lines display 95% confidence intervals.  359 

 360 

It is reasonable to argue that factors in control of the longer-term build-up of MeHg in soils after 361 

clear-cutting also were largely responsible for the high methylation rate (as compared to REFs) 362 

as determined in the 48 h laboratory experiments. The considerable thickness of the sampled O 363 

horizons of both REFs and CCs (29 cm in average) suggest they were regularly affected by water 364 

saturation during periods of high flow events such as spring snowmelt and autumn rains, at least 365 

during the last rotation period of the forest stand. As a consequence of forest harvest, the 366 
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groundwater table at CCs was further increased and reached into the lower part of the O horizon 367 

even during a very dry period of the year (Figure 1). Thus it is expected that water saturated 368 

conditions prevailed throughout most of the year at sampling positions P1-P4 at CC sites. This 369 

study did not include genetic or molecular work to quantify abundance of different groups of 370 

bacteria, but given the hydrologic conditions after forest harvest, it is expected that an active 371 

community of anaerobic microbes were built-up in the water-saturated O horizon soils after 372 

forest harvest. 373 

In addition to microbial activity, the chemical speciation of Hg and MeHg is expected to 374 

influence the absolute rates at which these forms transform in the soil.56 Soil porewater chemistry 375 

was not characterized in this study, but streams draining REFs and CCs generally showed a 376 

dominance of Fe(II) over Fe(III) and sulfide was (barely) detected (>0.3 µM) in a few streams.22 377 

A comparison of C/N and C/S ratios in soils reveal no differences between REFs and CCs. 378 

Because sulfide readily reacts and becomes incorporated into NOM in permanent sulfate 379 

reducing environments,47,48 the C/S ratio provide a time-integrated measure of sulfate reduction 380 

in organic soils. The production of sulfide was obviously not large enough to significantly 381 

decrease the C/S ratio in soils of CCs below the values of the REFs (Table S5, SI).  382 

In the O horizon soils of this study both Hg and MeHg are expected to be almost 383 

exclusively complexed by NOM associated thiol groups (RSH).37,38,47,54,57  Spectroscopic studies 384 

of NOM from O horizon soils of Podzols and Histosols and dissolved OM in streams in the 385 

region suggest that the concentration of RSH group make up on average 0.15 mass-% of organic 386 

C54,55. Based on % soil organic C (Table S6, SI) and soil pH (3.8 (±0.3) in REFs and 4.2 (±0.2) 387 

in CCs) in the soils, and an maximum concentration of dissolved inorganic sulfides of 1-2 µM in 388 

soil porewater, even in the most anoxic riparian soils of the study area,7,57 thermodynamic 389 
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calculations demonstrate that Hg(SR-NOM)2 and MeHgSR-NOM complexes will constitute 390 

more than 95% of Hg and MeHg, respectively, in the soils of this study.55  391 

Given the dominance of Hg(SR-NOM)2 complexes in the soils, we expect the 201Hg-392 

NOM tracer to reflect the availability for methylating bacteria better than the 198Hg(NO3)2 tracer. 393 

However, since the chemical speciation of Hg (and MeHg) at ambient conditions in soils cannot 394 

be reliably simulated by any isotopic enriched tracer, there is currently no method available for 395 

accurate determination of actual Hg methylation or MeHg demethylation rates in soil. Therefore 396 

the relevance of the results of is study (and other incubation studies conducted in laboratory 397 

systems) relies on the clear demonstration that incubation of Hg-NOM and Hg(NO3)2 tracers in 398 

estuarine sediments at both micro36 and mesocosm50 scales, as well as in a wide range of wetland 399 

soils,57 give very similar results on a relative scale when soils or sediments are compared. Thus 400 

the Hg-tracer method is highly relevant for comparative purposes. The results further suggest 401 

that other factors than the Hg speciation are in control of the large differences observed between 402 

REFs and CCs when regards to MeHg build-up in soils and km determined in laboratory 403 

experiments. In addition to the microbial activity, electron donors and acceptors need to be 404 

considered. 405 

Potential electron acceptors (Mn (IV), Fe(III), SO4
2-) and electron-donors (low molecular 406 

mass organic compounds and H2) for anaerobic microbes were not determined in the soils, but 407 

amendments of electron acceptors and inhibitors during the incubation experiments can provide 408 

useful information on these aspects, as well as on the activity and identity of bacteria responsible 409 

for the methylation of Hg. By necessity additions of redox modulating constituents like Mn(IV), 410 

Fe(III) and SO4
2- will affect the redox conditions in the incubation slurries. A caveat may be in 411 

place, since it cannot be ruled out that the amendments may be differently affected in different 412 
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soil samples, due to some variation in the composition of soil constituents and chemistry. That 413 

being said, it should be noted that the soils in this study can be expected to represent a narrow 414 

collection of biogeochemical conditions. As reflected by uniform % organic C, C/N and C/S 415 

ratios, and the small contribution from reactive mineral components, we do expect the abiotic 416 

soil components to module the effect of amendments in a much similar way in all samples. Thus 417 

effects of amendments should be reliable, as reflected by the small errors of replicates which 418 

provided significances although the data material was not very extensive. 419 

The effect of the azide amendment demonstrated that Hg methylation was a biotic 420 

process. SRB were indicated to be present in most CC soils as indicated by the stimulatory effect 421 

of sulfate and inhibitory effect of molybdate (Figure 3). The effect of sulfate suggests this 422 

electron acceptor may have limited the Hg methylating bacteria in CC soils. In contrast, sulfate 423 

had no effect in any of the REFs and molybdate had an effect only in one REF. This may suggest 424 

that the population of SRB was not very large, or at least not very active in the REF soils. The 425 

inhibitory effect of BES in all CCs further points at methanogens contributing to MeHg 426 

formation after clear-cut. BES only had an effect in one of the REFs, again implying that either 427 

the activity and/or the population size of methanogens were small in REF soils. Notably, in two 428 

of the clear-cut samples (CC4 BML P1 and P4) the significant inhibitory effects of BES and 429 

MoO4 were similar in size. This may indicate a syntrophic relationship between the SRB and 430 

methanogenic communities, and that this interaction was stimulated after forest harvest.  431 

Given that the combined inhibition of SRB by molybdate and inhibition of methanogens 432 

by BES only halved the methylation rate constant, as compared to the control, it is reasonable 433 

that IRB and/or firmicutes13,14 also may have contributed to the increased Hg methylation after 434 

clear-cut. The fact that Fe(III) hydroxide addition did not result in significant responses (with the 435 
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exception of one CC sample), suggests that if IRB were present they were not limited by electron 436 

acceptors. Molybdate amendment proved SRB being responsible for the majority (up to 95%) of 437 

MeHg formation in riparian zone wetlands from the same boreal landscape as in this study.7 In 438 

this study the role of methanogens was not tested. A stimulatory effect by sulfate addition has 439 

been demonstrated in wetland soils in northern forest ecosystems,49 but not before in forest soils.  440 

In addition to quantifying soil pools of MeHg, this is the first study reporting potential 441 

methylation and demethylation rate constants, including effects of electron acceptor and donor 442 

amendments, related to forest harvest. In lack of process-oriented studies on Hg biogeochemistry 443 

after forest harvest, it may prove relevant to compare our results with studies of wetland soils in 444 

the same type of boreal landscape (and using the same incubation method). The range of 445 

%MeHg reported for CCs (0.2 – 11.8 % of HgTOT, Table S3-S4) in this study falls well into the 446 

range reported for boreal wetlands (2.3 – 17 %).7 The REFs (0.1 – 1.1%) clearly had %MeHg 447 

lower than boreal wetlands, while some of the CCs were just as high as the most net methylating 448 

and MeHg exporting boreal wetlands.  The km reported for REFs (0.0001-0.007 d-1, Table S5) 449 

was clearly much lower than in any of the boreal wetlands, whereas km values reported for CCs 450 

(0.014 – 0.58 d-1) were well in the range reported for boreal wetlands (0.002-0.10 d-1).7 The most 451 

highly methylating CC soils showed five times higher km than the most highly methylating boreal 452 

wetlands. Thus, while mature coniferous reference stands may show low rates of Hg methylation 453 

and MeHg soil pools are low, rates may locally increase tremendously after clear-cutting at Hg 454 

methylation hot-spots and O horizon pools of MeHg may reach levels similar to the highest net 455 

methylating wetlands. The same stimulatory factors: availability of electron donors, acceptors 456 

and nutrients suggested to explain hot-spots for Hg methylation in the transition zone between 457 
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uplands and fen wetlands52 and in fens with intermediate nutrient status,6,7 may apply also for 458 

hot-spots after forest clear-cutting.  459 

Since there were no indications that differences in Hg speciation or availability of 460 

electron acceptors control the large differences in the concentrations of MeHg build-up in CC 461 

soils and the much higher km, as compared to REFs, we argue that the increased water saturation 462 

of soil, in concert with readily available organic electron donors28,44 are the main factors 463 

responsible for building up an active community of Hg methylating microbes in O horizons of 464 

hillslope soils after forest clear-cut. 465 

Environmental implications of forest management practices. Of utmost importance to 466 

minimize MeHg export to aquatic ecosystems would be to avoid connecting Hg methylation hot-467 

spots established in lower sections in local discharge areas of hillslopes with draining streams 468 

during clear-cutting operations. Connectivity is provided by driving tracks and by digging new or 469 

clearing old ditches. These activities therefore should be minimized until a new forest stand has 470 

been established. Previous studies suggest it may take 10 years or longer until the effect of forest 471 

harvest on MeHg export returns back to pre-harvest levels.18,20 Whole-tree harvest, where some 472 

of the organic clear-cut debris is removed, may decrease this time window by limiting the input 473 

of readily available electron donors in form of organic debris to anaerobic bacteria. Although 474 

peaty soils located in the riparian zone along streams may be less prone to increased MeHg net 475 

formation after forest harvest, the general recommendation to avoid driving close to streams19,34 476 

would result in minimum export of MeHg from these regularly Hg methylating soils.   477 

 478 

 479 
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