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Chapter 1

Introduction

1.1 Isomorphisms between complements

Let X be an irreducible algebraic variety, defined over an algebraically closed field k. Let
I'; A € X be closed irreducible subvarities and let ¢: X\I' — X\ A be an isomorphism.
What can we then say about I' and A? The following questions naturally arise and are
the main topic of this thesis.

(1) Does ¢ extend to an automorphism of X7
(2) Are I' and A equivalent by an automorphism of X7
(3) Are I' and A isomorphic?

The first thing we notice is that ¢ (as well as its inverse) defines an isomorphism
between two open dense subsets of X and thus induces a birational map X --» X.
If the group Bir(X) of birational transformations of X is trivial, then the questions
above can all trivially be affirmatively answered. It is thus more interesting to consider
varieties that have a large group of birational transformations. In this thesis, we are only
concerned with rational varieties, whose groups of birational transformations (called
Cremona groups) are very rich and have been intensely studied for many years. In fact,
we restrict our study to projective space P" and affine space A", where n > 1. We
observe moreover that it is most interesting to study complements in codimension 1.

Lemma 1.1.1. Let o: P* \T' — P*\ A be an isomorphism, where T, A C P™ are
subvarieties of codimension > 2. Then ¢ extends to an automorphism of P™.

Proof. Consider ¢ and ¢~! as birational maps P* --» P*. Then ¢ and ¢! each

are given componentwise by homogeneous polynomials of the same degree with no
common factors. This description is moreover unique, up to multiplication by scalars.
By substitution we obtain an expression

o Ho([xo: ..t xn])) = [fo: ... fonl,

1
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for some f € klzg,...,z,] \ {0}. The map ¢ thus sends the set {f = 0} to the base
locus of ¢~ and hence ¢ cannot be extended to an isomorphism along {f = 0}. The
set {f = 0} is either empty (if f is constant) or of codimension 1 in P" and hence the
claim follows. ]

Using the standard open embedding A™ — P", given by
(1, oympn) = Loy oo xy),
we can also obtain the corresponding result for A”".

We further observe that complements of hypersurfaces in projective space are actu-
ally affine.

Lemma 1.1.2. Let I' C P" be a hypersurface. Then P\ ' is an affine variety.

Proof. Let f = 0 be an equation of I', where f is homogeneous of degree d > 1.
We consider the standard d-Veronese embedding ¢: P* — P™ with m = (”Zd) -1,
where the components of ¢ are given by the monomials of degree d in the variables
xg,...,Z,. Composing with an automorphism a € PGL,,;1(k), we can achieve that
the last component of 1) := a0 is equal to f. Since ¢ is a closed embedding, it follows
that P*\T ~¢(P"\T) C {z,, # 0} ~ A™ is closed and thus P™ \ T is affine. O

In this thesis, we are mainly concerned with isomorphisms between complements of
curves in P? and A? respectively. The fundamental tool in our study is the following
foundational result from the birational geometry of surfaces: given a birational map
@: P? -5 P2, there exists a commutative diagram

X
N
]P)2___f__>IP>2

where m and n are compositions of blow-ups. This allows us to study isomorphisms
between complements of curves via blow-ups and their configurations of exceptional
curves. This turns out to be a surprisingly effective tool throughout this thesis.

1.2 Summary of main results

In Chapter 2, we study isomorphisms between complements of irreducible curves in the
projective plane. In [Yos84], it was conjectured that if two irreducible curves C, D C P?
have isomorphic complements, then they are projectively equivalent (Yoshihara’s con-
jecture). The first counterexample was given in [Bla09]|. In particular, the construction
given there yields a pair of non-isomorphic curves of degree 39 that have isomorphic
complements. Later on, a counterexample of degree 9 was found in [Cos12|. We study
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in detail isomorphisms between complements of irreducible curves of degree < 8 (The-
orem 2) and give a new counterexample to Yoshihara’s conjecture of degree 8 (Theo-
rem 3), which has moreover the lowest degree possible (Corollary 2.1.2). Furthermore,
we show that Yoshihara’s conjecture holds if C' C P? admits a line L C P? such that
C\ L ~ A' (Theorem 1). This generalizes a Theorem from [Yos84], proven over the
complex numbers, to algebraically closed fields of arbitrary characteristic.

Chapter 3 is a joint work with Jérémy Blanc and Jean-Philippe Furter on isomor-
phisms between complements of irreducible curves in the affine plane (|[BFH16]). In
[Kra96], the following question was posed:

Complement Problem. Given two irreducible hypersurfaces E, F' C A™ and
an isomorphism of their complements, does it follow that F and F are
isomorphic?

We construct non-isomorphic curves C, D C A? that have isomorphic complements
(Theorem 6). These curves yield the first counterexample to the complement prob-
lem in dimension 2. Using these curves, we can also construct counterexamples to
the complement problem in any dimension > 3 (Corollary 3.6.2). In dimension > 3,
counterexamples had previously been found in [Pol16]. We show moreover that for any
irreducible curve C' C A? that is not isomorphic to an open subset of A!, any open
embedding A%\ C' < A? extends to an automorphism of A? (Theorem 4). This gives
in particular a positive answer to the complement problem for such curves. Finally, we
show that Theorem 4 is sharp, by giving a construction, for any proper open subset
of Al of two non-equivalent closed embeddings in A% whose images have isomorphic
complements (Theorem 5).

Chapter 4 is a short note summarizing some known results concerning embeddings
of the affine line in the affine plane. We study the following problem, found in [Sat76]:
given a polynomial f € k[z,y] that defines a line in A% does it follow that f — A
defines a line for all A € k? The answer is well known if the characteristic of the base-
field k is 0, by the theorem of Abhyankar-Moh-Suzuki ([AMT75], [Suz74]), but is still
open in positive characteristic. We show that the claim holds for lines of degree < 11
(Proposition 4.3.4), in any characteristic. In the proof, we study multiplicity sequences
at infinity and use some results developed in the previous chapters (Proposition 3.3.16,
Lemma 2.4.16).
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Chapter 2

Isomorphisms between complements
projective plane curves

ABSTRACT. In this article, we study isomorphisms between complements of ir-
reducible curves in the projective plane P2, over an arbitrary algebraically closed
field. Of particular interest are rational unicuspidal curves. We prove that if there
exists a line that intersects a unicuspidal curve C' C P? only in its singular point,
then any other curve whose complement is isomorphic to P2 \ C' must be projec-
tively equivalent to C. This generalizes a result of H. Yoshihara who proved this
result over the complex numbers. Moreover, we study properties of multiplicity
sequences of irreducible curves that imply that any isomorphism between the com-
plements of those curves extends to an automorphism of P2. Using these results,
we show that two irreducible curves of degree < 7 have isomorphic complements
if and only if they are projectively equivalent. Finally, we describe new examples
of irreducible projectively non-equivalent curves of degree 8 that have isomorphic

complements.
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2.4.4 A special sextic curve and the proof of Theorem 2 . . . . . . 54
2.4.5 A counterexample of degree 8 . . . . . . ... ... 57

2.1 Introduction

Throughout this article, we fix an algebraically closed field k of arbitrary characteristic.
Curves in P? will always be assumed to be closed. Let C, D C IP? be two irreducible
curves. We then call C' and D projectively equivalent if there exists an automorphism
of P? that sends C' to D. Our aim is to study isomorphisms P? \ C' — P?\ D and
properties of the curves C' and D, given such an isomorphism. In 1984, H. Yoshihara
stated the following conjecture.

Conjecture 2.1.1 ([Yos84]). Let C, D C P? be irreducible curves and ¢: P*\C — P*\ D
an 1somorphism between their complements. Then C' and D are projectively equivalent.

A counterexample to Conjecture 2.1.1 was given in [Bla09]. The construction given
there yields non-isomorphic (and hence projectively non-equivalent) rational curves Cy
and Dy of degree 39 that have isomorphic complements. Both curves have a unique
singular point py € Cy and gy € Dy respectively, such that Cy \ {po} and Dg \ {qo}
are isomorphic to open subsets of P!, each with 9 complement points. To see that
Cp and D, are not isomorphic, it is shown that the two sets of 9 complement points,
corresponding to Cy and Dy, are non-equivalent by the action of PGLy = Aut(P!) on
P!

It is a general fact that if there exists an isomorphism ¢: P?\ C' — P?\ D that
does not extend to an automorphism of P?, then C' and D are of the same degree
(Lemma 2.2.1) and there exist points p € C' and ¢ € D such that each C'\ {p} and
D\ {q} are isomorphic to complements of k£ > 1 points in P! (Proposition 2.2.6). More-
over, when the number £ of complement points is > 3, the isomorphism ¢ is uniquely
determined, up to a left-composition with an automorphism of P? (Proposition 2.2.8).

The case of unicuspidal rational curves (i.e. when the number k& of complement
points is 1) is of particular interest since the rigidity of Proposition 2.2.8 does not
hold there. Indeed, by a result of P. Costa (|Cos12|, [BFH16, Proposition A.3.]), there
exists a family of irreducible rational unicuspidal curves (Cy)xex+ in P? that are pairwise
projectively non-equivalent, but all have isomorphic complements. The first main result
of this article shows that a unicuspidal curve C' cannot be part of such family if there
exists a line L that intersects C only in its singular point.

Theorem 1. Let C C P? be an irreducible curve and L C P? a line such that C\ L ~ Al
Let o: P2\ C — P?\ D be an isomorphism, where D C P? is some curve. Then C and
D are projectively equivalent.

This theorem was already proven by H. Yoshihara [Yos84] over the field of complex
numbers. His proof relies on the theorem of Abhyankar-Moh-Suzuki ([AMT75], [Suz74])
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and also uses some analytic tools. We give a purely algebraic proof that works over
arbitrary algebraically closed fields.

The counterexamples to Conjecture 2.1.1 given by P. Costa are of degree 9 and it
is thus natural to ask what happens in lower degrees. This is the second main result of
this article. For the definition of multiplicity sequence used below, see Definition 2.4.2.

Theorem 2. Let C, D C P? be irreducible curves of degree < 8 and ¢: P*\ C — P2\ D
an isomorphism that does not extend to an automorphism of P*. Then C and D both
are either:

(1) lines;
(i7) conics;
(13i) nodal cubics;
(1v) projectively equivalent rational unicuspidal curves;
(v) projectively equivalent curves of degree 6 with multiplicity sequence (3,27);
(vi) curves of degree 8 with multiplicity sequence (3(7)) such that

O\ Sing(C) ~ D \ Sing(D) ~ A'\ {0}.

In the proof, we study the diagrams of exceptional curves in the resolutions of
the birational transformations of P? that are induced by the isomorphisms between
the complements, for all types of multiplicity sequences that can occur. We also use
Theorem 1 as an important tool.

As an immediate consequence of Theorem 2, we get the following corollary.

Corollary 2.1.2. Conjecture 2.1.1 holds for all irreducible curves of degree < 7.

Finally, we show that Corollary 2.1.2 is sharp by giving a counterexample of degree 8.
The construction is based on a configuration of conics and is given in Section 2.4.5.

Theorem 3. There exist irreducible projectively non-equivalent curves C,D C P? of
degree 8 with multiplicity sequence (3(7)) that have isomorphic complements.

2.2 Preliminaries

The following lemma is a well known fact, but included for the sake of completeness.

Lemma 2.2.1. Let C,D C P? be irreducible curves and p: P>\ C — P2\ D an
isomorphism. Then deg(C) = deg(D).
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Proof. Consider the following exact sequence of groups
0= Z % Pic(P?) 5 Pic(P?\ C) — 0

where a sends 1 to the class of C' in Pic(P?) and § is induced by the map that sends
a curve E C P? to the restriction £ N (P?\ C). The exactness at Pic(P?) follows from
the irreducibilty of C'. Since the class [C] equals deg(C)[L], where L is a line in P?, we
obtain that Pic(P? \ C) ~ Z/ deg(C)Z. The isomorphism ¢: P? \ C — P?\ D induces
an isomorphism on the corresponding Picard groups and hence the claim follows. [

Remark 2.2.2. The claim of Lemma 2.2.1 is false for reducible curves. As an example,
consider the curves given by the equations yz = 0 and (z? — y2)z = 0. They have
isomorphic complements via the automorphism of P? \ {z = 0} that sends [z : y : 2] to
[#2 : 22 — yz : 2%] (which is an involution). This example also shows that it is easy to
construct reducible counterexamples to Conjecture 2.1.1.

Definition 2.2.3. Let m € Z. A birational morphism 7: X — P? is called a m-tower
resolution of a curve C' C P? if

(1) there exists a decomposition
X=X, B X Xy =P

where 7; is the blow-up of a point p;, for i = 1,...,n, such that m;(p;+1) = p;, for
1=1,....n—1;

i1) the strict transform of C by 7 in X is isomorphic to P! and has self-intersection m.
y b

We use the following notational conventions throughout this article. Given a m-
tower resolution of a curve C' C P? as above and ¢ € {1,...,n}, we denote by C; the
strict transform of C' by 7 o ... om in X;. We usually denote by E; the exceptional
curve of m;, i.e. m, 1(]01») = E; C X;. By abuse of notation, we also denote its strict
transforms in X;,q,..., X, by E;.

We will frequently use the following fundamental lemma.

Lemma 2.2.4 ([Bla09]). Let C C P? be an irreducible curve and ¢: P*\C — P>\ D an
isomorphism, where D C P? is some curve. Then either ¢ extends to an automorphism
of P? or the induced birational map ¢: P? --» P? has a minimal resolution

where ™ and n are (—1)-tower resolutions of C and D respectively.
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Given a resolution as in Lemma 2.2.4, where 7 has a decomposition
X=X, .. 53X X, =P

with base-points py,...,p, and exceptional curves Fi,..., F,, we make the following
observations that are used throughout this article.

(i) For any i € {1,...,n}, the curve F; U...U E; C X; has simple normal crossings
(SNC) and has a tree structure, i.e. for any two curves from Fj, ..., E; there exists
a unique chain of curves from FE7, ..., F; connecting them.

(i7) For any i € {1,...,n}, the curves Ej,..., E;_ 1 C X; have self-intersection < —2
and F; C X, has self-intersection —1.

(77i) The contracted locus of nis Ey U... E,_1UC, C X and is also a SNC-curve that
has a tree structure. Moreover, F,, is the strict transform of D by 7.

Remark 2.2.5. We take the notations of Lemma 2.2.4 and suppose that ¢ does not
extend to an automorphism of P2. We then have a (—1)-tower resolution 7 = m0...om,
of C' with exceptional curves Ej, ..., E, and a (—1)-tower resolution n =mn;0...0mn, of
D with exceptional curves Fy,..., F,,. We then have {Ey,...  E, 1} ={F,...,F,1}
and FE, is the strict transform of D by n and F), is the strict transform of C' by 7w. One
may ask if such a resolution is always symmetric in the sense that

for all 2,7 = 1,...,n. This is in general not the case. For instance, there exists a
non-symmetric resolution of an automorphism of the complement of a line with the
following configuration of curves, where the unlabeled curves are (—2)-curves.

Starting with either of the (—1)-curves in this configuration, one can successively con-
tract all curves except the other (—1)-curve, whose image is a line in P2

Similarly, one can find non-symmetric resolutions of automorphisms of the comple-
ment of a conic. However, no example of a non-symmetric resolution of an isomorphism
between complements of irreducible singular curves is known to the author.

Proposition 2.2.6. Let ¢: P?\C < P? be an open embedding, where C' is an irreducible
curve and D = P2\ im(p). If ¢ does not extend to an automorphism of P2, then one
of the following holds.
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(1) C and D both are lines.
(7¢) C and D both are conics.

(17i) C and D each have a unique proper singular point p and q respectively, such that
C\ {p} and D\ {q} each are isomorphic to open subsets of P!, with the same
number of complement points.

Proof. By Lemma 2.2.4 the birational map ¢ has a minimal resolution

X
RN
IP)Q___f__>_IP>2

where 7 and 7 are (—1)-tower resolutions of C' and D respectively. Since C' and D
have the same degree the cases (i) and (i7) are clear and we assume that C' (and thus
also D) has degree > 3. The curves C' and D are both rational since they have a
(—1)-tower resolution and hence they have a singular point p and ¢ respectively, by the
genus-degree formula for plane curves. Denote by C' the strict transform of C by 7, by
D the strict transform of D by n, and by E be the union of irreducible curves in X
contracted by both m and . Then C'UE is the exceptional locus of 71 whose irreducible
components form a tree, since 7 is a (—1)-tower resolution. Likewise, DU E is the
exceptional locus of 7 and is a tree of irreducible curves. We thus have isomorphisms
C\{pt ~C\ (EUD)and D\ {¢} ~ D\ (EUC) induced by m and 7 respectively.
Since C' and D are both isomorphic to P! and they both intersect E transversally it
follows that C'\ {p} and D \ {q} are isomorphic to open subsets of P*. The number of
intersection points between C and FU D is given by

#(CNE)+#(CND)—#(CnEND).

For D the same formula holds with C' and D exchanged. It thus suffices to show that
#(CNE) =#(DnNE). Since the graphs of curves of C U E and D U E define a
tree, it follows that #(é N E) and #(15 N E) respectively is the number of connected
components of F. O

As a direct consequence, we get the following observation, which we can already
find in [Yos84] and [Bla09|.

Corollary 2.2.7. Let C, D C P? be irreducible closed curves and ¢: P>\ C — P2\ D
an isomorphism. If C is not rational or has more than one proper singular point, then
@ extends to an automorphism of P2.

Proposition 2.2.8. Let C C P? be an irreducible curve and ¢: P?\ C' — P2 an open
embedding that does not extend to an automorphism of P2. Let p € C be a point such
that C'\ {p} is isomorphic to P\ {py,...,px}, where py,...,pr € P! are distinct points.
If k > 3, then ¢ is uniquely determined up to a left-composition with an automorphism
of P2.
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Proof. By Lemma 2.2.4 there exists a (—1)-tower resolution 7: X = X, =% ... =
X; ™ P? with exceptional curves F, ..., E, and a (—1)-tower resolution n: X — P?

of some curve D C P? such that por = 7. We denote by E = E,U...UE,_; the union
of irreducible curves in X that are contracted by both 7 and 7. Moreover we denote
by C' = C, the strict transform of C by 7 in X, and by D = E, the strict transform
of D by 1 in X. Since 7 and 7 are (—1)-tower resolutions, we know that £ U C and
E U D have a tree structure such that C' and D each intersect E in 1 or 2 points. It
also follows that k = #C N (E U D).

Let us assume first that £ > 4. Then it follows that C and D intersect in at least
two points. This implies that the image of C after contracting the (—1)-curve D is
singular. Hence 7 is the minimal resolution of singularities of C', i.e. the blow-up of
all the singular points of C'. By the same argument 7 is the minimal resolution of
singularities of D. Thus the base-points of © and n are completely determined by C'
and D respectively. But this means that for any other birational map 1): P? --» P2 that
restricts to an isomorphism P2\ C' — P2\ D the composition )o@ ™! is an automorphism
of P2. Thus the claim follows in this case.

We now assume that k¥ = 3. Then C' and D intersect in 1,2, or 3 points. Assume
first that C' and D intersect in 2 or 3 points. Then the image of C' after contracting
Dis singular, so 7 is the minimal resolution of singularities of C', and analogously 7 is
the minimal resolution of singularities of D. Then for the same reason as before, any
other isomorphism P? \ C' — P2\ D is just ¢ composed with an automorphism of P2.

Finally, we assume that £ = 3 and that C and D intersect in only one point. We
can assume that this intersection is transversal, otherwise, if they were tangent, 7 and
n would again be the minimal resolutions of the singularities of C' and D respectively
and we could argue as before. The curve D intersects F in two distinct components,
say F; and Ej;. If we contract the (—1)-curve 15, there is a triple intersection between
the images of C, E; and E;. But this means that 7 is the minimal resolution of C' such
that the pull-back 7*(C') is a SNC-divisor on X. Hence the base-points of 7 are again
completely determined by the curve C'. Likewise, the base-points of 1 are determined
by D. We then argue as before that any isomorphism P2\ C' — P2\ D is the composition
of ¢ with an automorphism of P2 O

Corollary 2.2.9. Let C C P? be an irreducible curve such that there exists no point
p € C such that C\ {p} is isomorphic to A' or A'\ {0}. Then there exists at most one
curve D C %, up to projective equivalence, such that P?\ C' and P?\ D are isomorphic
and such that D is not projectively equivalent to C.

Proof. This is a direct consequence of Proposition 2.2.8. O

Remark 2.2.10. P. Costa’s example (|Cos12|) shows that Corollary 2.2.9 does in general
not hold when C'\ {p} ~ A'. On the other hand, there is no known example of pairwise
projectively non-equivalent curves C, D, E C IP? such that all 3 curves have isomorphic
complements and there exists a point p € C such that C'\ {p} ~ A\ {0}.
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2.3 Unicuspidal curves with a very tangent line

2.3.1 Very tangent lines

Let C C P? be an irreducible curve. A singular point p € C is called a cusp if the
preimage of p under the normalization C — C consists of only one point. A curve is
called unicuspidal if it has one cusp and is smooth at all other points. We call a line
L C P? very tangent to C' if there exists a point ¢ such that (C - L), = deg(C). By
Bézout’s theorem this means that L intersects C' in only one point. A line that is very
tangent to C' is also tangent in the usual sense, except in the special case where C'is a
line and the intersection is transversal.

Lemma 2.3.1. Let C' C P? be an irreducible curve and L C P? a line. Then C'\ L ~ Al
if and only if L is very tangent to C' and one of the following holds:

(1) C s a line.
(17) C is a conic.
(131) C' s rational and unicuspidal and L passes through the singular point of C.

Proof. Assume that L is very tangent to C. If C'is a line or a conic, then C'is isomorphic
to P! and thus C'\ L ~ Al. We thus assume that C' is rational and unicuspidal with
singular point p, where L passes through p. It follows that C' has a normalization
n: P! — C such that 7! (p) consists of only one point and thus C'\ {p} ~ P!\ n~!(p) ~
Al. Since L is very tangent to C, the intersection C'N L consists only of the point p. It
follows that C'\ L ~ C'\ {p} ~ Al.

To prove the converse, assume that C'\ L ~ Al. Tt follows that C is rational
and Sing(C') € C'N L. We consider the normalization n: P! — C and obtain C'\ L C
C\Sing(C) ~ P\ n~!(Sing(C)). Since C'\ L ~ Al it follows that n~!(Sing(C')) consists
of at most one point. If n~!(Sing(C)) is empty, then C' ~ P! is smooth and thus either a
line or a conic, by the genus-degree formula. Since C\ L ~ A, it follows that L intersects
C in only one point and is thus very tangent to C. If 71 (Sing(C)) is not empty, then
it contains exactly one point and thus C' is unicuspidal and C'\ L = C'\ Sing(C'). Since
C'N L = Sing(C') consists of only one point, the line L is very tangent to C. n

If C' is unicuspidal and rational and has a very tangent line L through the singular
point, then C'\ L ~ A'. In other words, C' is equivalent to the closure of the image of
a closed embedding A! < A% ~ P?\ L. Note that not all rational unicuspidal curves
admit a very tangent line through the singular point. For instance, there exists such a
unicuspidal quintic curve that is studied in detail in Section 2.4.2.

We call C\ L C P?\L ~ A? rectifiable if there exists an automorphism 6 € Aut(P?\L)
such that 6(C') = L'\ L for some line L' C P? that is distinct from L. Suppose that there
exists an open embedding ¢: P?\ C' < P? that does not extend to an automorphism
of P2, then the induced birational map P2 --» P? contracts the curve C to a point. It



2.3. UNICUSPIDAL CURVES WITH A VERY TANGENT LINE 15

turns out that C'\ L C P2\ L is then rectifiable. This is a consequence of the following

proposition, proven in [BFH16, Proposition 3.16|. It also follows from the work of
[KM83| and [Gan85] (see [BFH16, Remark 2.30]).

Proposition 2.3.2. Let C' C A*> = P?\ Ly, be a closed curve, isomorphic to A', and
denote by C' the closure of C in P?. Then the following are equivalent:

(i) There exists an automorphism of A? that sends C to a line.

(i) There exists a birational transformation of P? that sends C to a point.

We call a curve satisfying condition (77) of Proposition 2.3.2 Cremona-contractible.
Note that condition () is always satisfied if the characteristic of k is 0 by the Abhyankar-
Moh-Suzuki theorem ([AMT75], [Suz74|), but in general not in positive characteristic. It
follows from Proposition 2.3.2 that Theorem 1 holds if C'\ L C P?\ L is not rectifiable.

2.3.2 Automorphisms of A? and de Jonquiéres maps

Definition 2.3.3. Let L C P? be a line and p € L. We denote by Jon(P?, L, p) the
group of automorphisms of P2 \ L that preserve the pencil of lines through p. We call
an element in Jon(P?, L, p) a de Jonquieres map with respect to L and p.

We recall the following standard terminology, for instance as used in [Alb02].

Definition 2.3.4. Let X be a surface and let p € X be a point. Let E be the
exceptional curve of the blow-up of p. We then say that a point ¢ € F lies in the first
netghborhood of p. For k > 1, we say that a point lies in the k-th neighborhood of p if
it lies in the first neighborhood of some point in the (k£ — 1)-th neighborhood of p. We
say that a point is infinitely near to p if it lies in the k-th neighborhood of p, for some
k > 1. We call a point ¢ prozimate to p (denoted ¢ > p) if g lies on the strict transform
of the exceptional curve of the blow-up of p. We sometimes call the points of X proper
to distinguish them from infinitely near points.

Throughout this section, we fix a line L C P? and a point p € L. Moreover, we fix
projective coordinates [z : y : 2] on P? and denote the lines

L,:z=0 Ly:y=0 L,:z=0.
Lemma 2.3.5. Let j € Jon(P? L,p) \ Aut(P?) be of degree d. Then the minimal
resolution of 7 has 2d — 1 base-points with exceptional curves Ei, ..., Esq_1 as in the

following configuration

EQMLQ\EO);?/
| B[]
7’ \ Ed
L 2 ///Ed_

where the self-intersection numbers are —1 for thick lines, —2 for thin lines, or otherwise
are indicated in square brackets.
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Proof. The map j is an automorphism of P?\ L that does not extend to an automorphism
of P2, thus by Lemma 2.2.4 there exists a (—1)-tower resolution 7: X = X, ™% ... =
X1 ™ Xo = P? of L with exceptional curves Ei, ..., E, and a (—1)-tower resolution
n: X — P? of L such that jor = 7. The unique proper base-point of j is p, which is thus
the base-point of the first blow-up with exceptional curve E;. Since 7 is a (—1)-tower
resolution of L, the next base-point is the intersection point between F; and the strict
transform of L. After this blow-up, the strict transform of L has self-intersection —1
and thus there is no more base-point on this curve. We observe that E is the last curve
contracted by 7, since j preserves the pencil of lines through p. The next base-point is
thus either the intersection point ¢ between E; and Es, or a point on Fy \ (F;UL). Let
m > 0 be the number of base-points proximate to ¢. After blowing up those m points
we have the following resolution.

’

L Eo /// En El[—m}

7

The next base-point then lies on E,, \ E;. It cannot be the intersection point with
E,,_1, because then F,, ; would have self-intersection < —2 in X. But 7 first contracts

L and then the curves FEs, ..., E,,_>. After those contractions the self-intersection of
the image of E,,_; must be —1. Hence the next base-point lies on E,,, \ (E1 U E,,,—1).
We observe moreover that after n contracts L, Es, ..., E,, the image of E; has self-

intersection —m + 1. Thus there is a chain of (—2)-curves of length m — 1 attached to
E,,, which are obtained by successively blowing up points that lie on the last exceptional
curve but not on the intersection with another one. Since Fj is the last curve contracted
by n, it follows that F,,, ; is the last exceptional curve of .

Let us now determine the degree of j. For this we look at the degree of the image
of a line L' that does not pass through the base-points of j. The strict transform of L'
is drawn in the diagram on the left below.

EQM/\\EW)Ly/
‘ B — E2m/ Em+ E1[-m] *> D]
7/ \ E
LW ,E;x\ L'[m + 1] L/[2m —1]
After the curves L, Es, ..., F,, are contracted the image of L’ has self-intersection m+ 1
and L' intersects E,,,1 and F;, as shown in the diagram in the middle. Next, the curves
E,i1, ..., Eop o are contracted and the image of L has self-intersection 2m — 1 and L

intersects £ with multiplicity (m —1). Thus after E; is contracted the self-intersection
of the image of L is 2m — 1+ (m — 1) = m? and hence the degree d of j is equal to m.
0

We often identify P?\ L, with the affine plane A? with coordinates z, y, via the open
embedding (z,y) — [z : y : 1]. We call j € Aut(A?) an affine de Jonquiéres map if it
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is the restriction of a de Jonquiéres map with respect to L, and [0 : 1 : 0]. Affine de
Jonquiéres maps then preserve the fibration (z,y) — x.

Lemma 2.3.6. Let j € Aut(A?) be an affine de Jonquiéres map. Then j is of the form
(#,y) = (az + b, cy + f(z))
where a,c € k*, b €k, and f € k[z].

Proof. The map j sends (x,y) to (a(z,y),b(x,y)), where a,b € klz,y]. Since j is an
automorphism of A2, the polynomials a and b are irreducible. Moreover, j preserves
the fibration (z,y) — x, thus a is a scalar multiple of some element x — A with A € k.
We can then apply an affine coordinate change and may assume that a = . But then
j induces a k[z]-automorphism of the polynomial ring k[x][y|, and thus b is of degree 1
in the variable y. Moreover, the coefficient of y is an element in k[z]* = k* und thus
the claim follows. O

We will use the well known structure theorem of Jung and van der Kulk in the
sequel. We denote by Aff(P2, L) the affine group with respect to L, which consists of
the automorphisms of P? that preserve L. Moreover, we denote by B(P? L,p) the
intersection Aff(P?, L) N Jon(P?, L, p).

Theorem 2.3.7 ([Jun42|, [vdK53|). The group Aut(P?\L) is generated by the subgroups
Aff(P? L) and Jon(P?, L, p). Moreover, Aut(P?\ L) is a free product

Aff(]P)Qv L) >l<B(IP’Q,L,p) JOH(P27 Lap)a
amalgamated over the intersection of those two subgroups.

Remark 2.3.8. There exist many proofs of Theorem 2.3.7. The proof in [Lam02] uses
blow-ups and contractions of the line Lo, = P?\ A2, in the spirit of the methods used
in this article. For more proofs with a similar strategy see [BD11| and [BS15].

Lemma 2.3.9. Let 0 € Aut(P?\ L) with
f=aoj,0a,0...070ay,

where ay,a € (Aff(P%, L)\ Jon(P?, L, p)) U {id}, a; € Aff(P? L) \ Jon(P? L,p) fori =
2,...,n and j; € Jon(P?, L,p) \ Aff(P% L) fori=1,...,n. Then 6 has unique proper
base-point a;'(p). Moreover, the degree of 0 is [[, deg(j:).

Proof. The map j; has unique proper base-point p, and thus j; o a; has unique proper
base-point a;'(p) and (j; o a;)~! has unique proper base-point p. We proceed by
induction and assume that j,_10a,_;0...0j; 0a; has unique proper base-point a; ' (p)
and its inverse has unique proper base-point p. Moreover, the unique proper base-point
of (j, o ay) is a,'(p), which is different from p since a,, ¢ Jon(P?, L, p). It then follows
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that the composition j,oa,0...07;0a; again has al_l(p) as its unique proper base-point.
This remains true after a left-composition with a € Aff(P? L).

To compute the degree of 8, we observe that deg(j; o a;) = deg(j;) for all i, since the
maps a; are affine and hence have degree 1. We use again that (j,_10a,_10...0j;0a;)"*
and 7, o a, have no common base-point and obtain the result by induction by using
[Alb02, Proposition 4.2.1]. ]

Definition 2.3.10. Let X be a surface and let C' C X be a curve. For a point p € C,
let Ox, be the local ring at p, with unique maximal ideal m,. Let moreover f € Ox,
be a local equation of C' at p. We then define the multiplicity m,(C) of C' at p to be
the largest integer m such that f € mp'.

Let A be a linear system of curves on P? and let p be a proper or infinitely near
point of P2. We then define the multiplicity of A at p to be the smallest multiplicity
my(C) among all curves C' in A.

For a birational map 6: P2 --» P2, we denote by Ay the linear system of curves
on P2, given by the preimage of 0 of the linear system of lines on P2. For a proper
or infinitely near point p of P2, we define the multiplicity m,(0) of 6 at p to be the
multiplicity of the linear system Ay at p.

For a more detailed account of these notions, we refer to [Alb02].

We will use the following well known formula in the sequel.

Lemma 2.3.11. Let 0: P? ——» P? be a birational map and C' C P? a curve that is not
contracted by 6. Then the following formula holds:

deg 6(C) = deg(6) deg(C) — 3 m, (0)m,(C)

where the sum ranges over all proper and infinitely near points of P2, but only finitey
many summands are different from 0.

Proof. We consider a minimal resolution

X
/0\

P2- - -2 - > P2
where o7 and o9 are compositions of blow-ups. We denote by p1, ..., p, the base-points
of o1 and by FEy,..., E, the total transforms of their exceptional divisors in X. Let

moreover L C P? be a line that does not pass through the base-points of # and §~!. We
then have

Pic(X) ~Zo; (L) ®ZE1 & ... ® ZE,

with the intersection-numbers E; - E; = —§;; and E; - o5(L) =0 for 4,5 =1,...,n and
o%(L)* = 1. We find for the strict transform C of C' by o, and the total transform of L
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by o5 the following divisor formulas:

C' =deg(C Zmpz
3 (L) = deg(0 Zmpz

The degree of #(C') is equal to the intersection number #(C') - L. Using the projection
formula, we then obtain

(3

deg(0(C)) = 0(C) - L = C - 05(L) = deg(C) deg(0 Zmpl Jmy, (

]

Lemma 2.3.12. Let § € Aut(P?\ L,) \ Aut(P?) and let C C P? be a curve different
from L,. Then the following holds.

(1) 6 has a unique proper base-point and contracts L, to a point p € L,.
(11) deg(0(C)) < deg(0) deg(C), and equality holds if and only if p ¢ C.

(ii7) If L is a line and 6 € Jon(P? L., [0 : 1:0]), then 07 (L) is a line if and only if
0:1:0] € L.

Proof. To prove (i), consider the induced birational map 6: P? --» P2. Since 6 does not
extend to an automorphism of P?, it follows from Lemma 2.2.4 that § has a minimal
resolution

X
Ip>2i<2_\_>[p>2

where 0, and o, are (—1)-tower resolutions of L,. In particular, # has a unique proper
base-point. The strict transform of L, in X by oy is the exceptional curve of the last
blow-up in the tower of o5. This means that 6 contracts L, to a point of L,, which
is moreover the unique proper base-point of 1. The statements (ii) and (7ii) follow
directly from the formula

deg 6(C') = deg(0) deg(C qu ym,(C

from Lemma 2.3.11, since 6§ has a unique proper base-point (which is [0 : 1 : 0] if
0 € Jon(P?, L,,[0:1:0])). O
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2.3.3 Isomorphisms between complements of unicuspidal curves
Lemma 2.3.13. Let C C IP? be a unicuspidal curve such that

O = {0 € Aut(P*\ L,) | 0(C) = L.}

1s non-empty. Then for any 6 € © and any minimal resolution

X
VX
]P>2___ﬁ__>_P2

the following are equivalent.
(1) degf < deg® for all 0 € O.

(i

i)
(17i) deg(f) = deg(C).
)
)

The unique proper base-point of 0= is different from [0 : 1 : 0].

(iv) The strict transform of C' by oy intersects the strict transform of L, by oq in X.

(v

Proof. Let 8 € ©. We first prove (i) = (i7) and thus assume that  has minimal degree
in ©. We use Theorem 2.3.7 to write

The strict transform of C' by o1 in X has self-intersection 1.

1 . .
0~ =a,410J,90,0...0J10ay,

where ay,a,.1 € (Aff(P? L,) \ Jon(P? L,,[0 : 1 : 0])) U{id}, a; € Aff(P% L,) \
Jon(P* L,,[0:1:0]) fori =2,...,n, and j; € Jon(P?* L,,[0: 1 :0])\ Aff(P? L,)
for i = 1,...,n. If (jy oay)(L.) is a line, we can find a] € Aff(P? L,) such that
aj(L,) = (j1oay)(L,). But then 0" == (a,,10j,0a,0...0jJ0ay0a;)"" lies in © and
deg(0') < deg(f) by Lemma 2.3.9, which contradicts the minimality of the degree of 6
in ©. It follows moreover from Lemma 2.3.12 that (j; o a1)(L,) is a line if and only if
[0:1:0] € a;(L.),ie a;'([0:1:0]) € L,. Thus by the minimality of the degree of 6,
we have that a;*([0:1:0]) ¢ L.. Since a;*([0: 1:0]) is the unique proper base-point
of 671 it follows that it is different from [0 : 1: 0] and hence (i7) is proved.

Assume now that the unique proper base-point of 6! is different from [0 : 1 : 0].
From Lemma 2.3.11 we obtain the formula

deg(f) = deg(6™!) = deg(C) + Z my (6 L,).

Since the unique proper base-point of §~! lies on L, and is different from [0 : 1 : 0],
we have deg(f) = deg(C). This shows (ii) = (iii). Moreover, if we assume that
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deg(f) = deg(C), then 6 has minimal degree in ©. Thus the implication (ii7) = (7) is
also proved.

Finally, we show that (iv) and (v) are both equivalent to (ii). We consider a minimal
resolution of the induced birational map by 6:

X
v N
IEDQ____Q__>_P2

Since § € Aut(P?\ L,) \ Aut(IP?) both o, and oy are (—1)-tower resolutions of L,. We
denote by L, the strict transform of L, by o2 in X and by C' the strict transform of
C' by oy (which is also the strict transform L, of L, by 02) Suppose that the unique
proper base-point of §~1 is different from [0 : 1 : 0]. Then L, intersects L, = C' and C
has self-intersection 1. This shows that (i7) implies (iv) and (v). On the other hand, if
we blow up the point [0 : 1 : 0], then the strict transforms of L, and L, do not intersect
and have self-intersection < 1. Thus the implications (iv) = (i7) and (v) = (éi) also
follow. O

Proposition 2.3.14. Let ¢: P2\ C' — P?\ D be an isomorphism, where C, D C P?
are curves such that C' is rational and unicuspidal with singular point [0 : 1 : 0] and has
very tangent line L,. Let Oc be an automorphism of P2\ L, such that 0c(C) = L. and
suppose that 0c is of minimal degree with this property.

Then D is also rational and unicuspidal and, after a suitable change of coordinates,
has singular point [0 : 1 : 0] and very tangent line L,. Moreover, there exists an
automorphism 0p of P2\ L, such that Op(D) = L, and v € Aut(P?\ L,) that preserves
the line L, such that the following diagram commutes:

IF)Q_f>IP>2
| |
6! 16p
\ N
p2- Y. p2,

Furthermore, Op can be chosen such that in the chart z =1, the map v has the form

(2, y) = (2, y +2?f(2))
for some polynomial f € k[x].

Proof. The map ¢ induces a birational map P? --» P2. It does not extend to an
automorphism of P? since C' is singular but its image by 6 is a line. Thus 6 contracts
L, and no other curves. We consider a minimal resolution of 0:
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By Lemma 2.2.4, the morphisms o; and oy are (—1)-tower resolutions of L,. In par-
ticular, 8¢ has a unique proper base-point. Since the image of C' is a line, the unique
proper base-point of 6 is the singular point [0 : 1 : 0] and the strict transform of C
by o7 in X is smooth. Hence o; factors through the minimal SNC-resolution of C.
Moreover, by the minimality of the degree of 6, it follows from Lemma 2.3.13 that the
strict transform of C' by oy intersects the strict transform of L, by o, in X, i.e. the
last exceptional curve of o;. It follows that the strict transform of C' by o7 in X has
self-intersection 1 by Lemma 2.3.13. In fact, o; is the minimal 1-tower resolution of C'
that factors through the SNC-resolution of C'.

We now consider the induced birational map ¢: P? --» P2, We assume that ¢
does not extend to an automorphism of P2, otherwise the proof is finished. Thus by
Lemma 2.2.4 the map ¢ has a minimal resolution

Y
N
P2___f__>lp)2

where 7 and 7 are (—1)-tower resolutions of C' and D respectively. Hence ¢ has a unique
proper base-point, which is the singular point [0 : 1 : 0] of C'. Since C' is unicuspidal,
it follows that after each blow-up in the resolution 7, the strict transform of C' and the
exceptional curve intersect in a unique point. Since o7 is the minimal 1-tower resolution
of C that factors through the SNC-resoltion, it follows that 7 factors through ;. We
then get the following commutative diagram:

Y
X / !
PN
P2 < _ _6_0_ __]P>2___50_ _ s~ P2
The morphism Y — X is given by a tower of blow-ups. For i € {0,...,n}, we denote

the intermediate surfaces by X;, where Xy = X and X,, =Y and X; is obtained after
the i-th blow-up in this tower. The corresponding exceptional curves, as well as their
strict transforms, are denoted by FE;. Moreover, we denote by C; the strict transform
of C'in X;. In the surface X = X, the curves L, and Cj intersect transversally in
a unique point and have self-intersections —1 and 1 respectively. Since 7 is a (—1)-
tower resolution of C, the base-point in Xj lies on the previous exceptional curve,
which is the strict transform of L, by og,. Moreover, since the self-intersection of
is 1, the base-point in X also lies on Cj, otherwise C,, would have self-interscetion 1
in Y. Thus the base-point of 7 in X is the intersection point between Cjy and L,.
We argue similarly that the base-point in X; is the intersection point between C; and
FE,. In X, we then have the minimal (—1)-resolution of C' and thus have the following
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configuration of curves, where the dashed line represents the remaining exceptional
curves, the unlabeled curves have self-intersection —2, and the thick lines represent
(—1)-curves:

N

N
N

L, EY E> &)

N

N
AN

Since C5 has self-intersection —1, none of the subsequent base-points of 7 lie on (5,
respectively its strict transforms, otherwise C,, would have self-intersection < —1. Since
the curves E; and Cy are not connected in X, via the other exceptional curves (except
E,), it follows that 7 has another base-point in X3, which must lie on E. This base-
point is either the intersection point p between E; and Es or lies on Ey \ (E; UCy). Let
k > 0 denote the number of base-points proximate to p. After blowing up those points,
we obtain the following configuration in Xy o:

N 7
N //
N
N L./ FE1 [— N 2] Erio EIH»I/ d FEo CkJrQ
\\ 7
A 7

Again, we see that F; is not connected to Fyiq U...U Es U Cyio and thus 7 has a
base-point on Fj o, which now lies on Fj. 2\ F;. This base-point is not the intersection
point between Ej,o and FEj,; since the morphism 7 first contracts C, and then the

chain of curves Fj, ..., Ey. This implies that Fy,; is a (—2)-curve in X. Thus the next
base-point lies on Ejio \ (Ey U Ej41).
We observe that n first contracts the chain of curves C,,, Es, ..., Frio. After con-

tracting this chain, the image of E; has self-intersection —(k + 1). This implies that
there is a chain of k£ (—2)-curves attached to Ej.o, which then are contracted by 7, so
the image of F) has self-intersection —1 after this chain is contracted. It follows that
we have the following configuration in Xy, 3:

E> Cor43

Eoria/ Eakis

We now argue that this resolution is in fact 7 itself. Suppose it were not, then there
would be another base-point on Fay 43\ Fog 12, and thus Foy 3 is also contracted by . We
observe that n first contracts C,,, followed by Es, ..., Fxio, and then Ey s, ..., Forio.
After these contractions, the image of £ has self-intersection —1 and is contracted next.
After that, L, and all the exceptional curves of o; are contracted. The next contracted
curve must then be the image of Fy; 3. But we observe that the image of s 3 after
those contractions is singular. This follows from the fact that C' is singular and from
the symmetry of the configuration in Xy;,3. But then Ey. 3 cannot be contrated by n
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and we have a contradiction. It follows that o3 is the last exceptional curve in the
(—1)-tower resolution 7.

We observe moreover, also by the symmetry of the configuration, that n(L,) is a
line in P? that is very tangent to D = n(FEs,3) at the singular point. In fact, using the
symmetry of the resolution, we obtain a diagram

Y
/ \
X X'
2\ N
P2<——9—C———P2———f——>ﬂﬂ———02——>P2

such that n = 7701’ where 77 is the minimal 1-tower resolution of D, 7’ is the contraction
of the curves C, Ey, ..., Ey..3, and p is an automorphism of P? \ L, that sends D to
L..

We now consider the birational map 1) = 6p oo (fc)~!, which is an automorphism
of P2\ L.,. With the resolution above, we see that 1 preserves L,. Hence, in the
affine chart z = 1, the map 1 has the form (z,y) — (az,by + cx + 2> f(x)), where
a,b € k*,c € kand f € k[z]. Let a be the map [z :y: 2] = [a 'z : b7y — cx) : 2],
which is an automorphism of P? \ (L, U L,). We define ¢/ :== a0 ¢ and 6}, :== a0 0p.
Then ¢ has the form (z,y) — (z,y + 22 f(x)), as claimed.

[

Definition 2.3.15. Let X be an irreducible surface, C' C X an irreducible curve, and
p € C a point. Let a be the kernel of the restriction homomorphism Ox, — Oc¢,,
f = fle. Then we denote by Loc(X, C,p) the group of birational maps ¢: X --» X
fixing p, such that ¢* induces

(¢) an automorphism of Oy,
(74) a bijection a — a,
(éit) the identity on Ox,,/a?,
(iv) the identity on a/a3.

Remark 2.3.16. If ¢ € Loc(X,C,p), then ¢ induces a local isomorphism in a neigh-
borhood of p in X and C. Thus for a birational map #: X --» Y that is a local
isomorphism in a neighborhood of p € X, the conjugation 1 — 0! 0 ¢ o § induces an
isomorphism Loc(Y,0(C),0(p)) — Loc(X, C,p).

Lemma 2.3.17. For any X\ € k, the group Loc(A? L,, (0,\)) coincides with the group
of birational maps ¢: A? --» A? such that ¢ and o' each can be written of the form

(z,y) = (v + 2 a(z,y),y + 2?5z, y))

Jor some a, B € Opz (0,5)-
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Proof. Let ¢ be a birational map of A? of the proposed form. Then ¢ is defined at
(0, ) and fixes (0, ). The same is true for ¢!, so it is a local isomorphism at (0, \)
and thus satisfies (i) of Definition 2.3.15. One then checks points (i7) — (iv) for the
ideal a = (z) C K[z, y](zy—r) = Oaz,0,n). It follows that ¢ € Loc(A?, L, (0, \)).

To prove the converse, let ¢ € Loc(A? L,, (0,)\)). Since ¢* induces an auto-
morphism of Oz 0 = k[2,y]@y-x) We can write p*(z) = f and ¢*(y) = g for
some f,g € Op2 0. As " preserves the ideal () and induces the identity on
Oz 0)/(2%), we can express f(z,y) = = + 2?a(z,y) and g(z,y) = y + 2?B(z,y),
for some o, 3 € Oz o). Finally, since ¢* induces the identity on (z)/(2?), it follows
that x divides a and hence ¢ is of the desired form. Since Loc(A?, L,, (0, \)) is a group,
also the inverse of ¢ can be written in this form. O

Proposition 2.3.18. Let L C P? be a line and q1,q2 € L with ¢ # qa. Let ¢ €
Nper\{g} Loc(P?, L,p) and 0 € Aut(P?\ L) \ Aut(P?) such that 6~ has base-point q
and 0 has base-point qo. Then 0~ 01 o 0 lies in NpeL\{g2} Loc(P?, L, p).

Proof. Since the base-point of 7! is ¢; and the base-point of 6 is not ¢; we can by

Theorem 2.3.7 write = j, 0a,o...0 j; oa; with j; € Jon(P?, L, q) \ Aff(P?, L) and

a; € Aff(P2, L)\ Jon(P?,L,q) for i = 1,...,n. By induction, it suffices to prove the

claim for = joa with j € Jon(P?, L, q;) \ Aff(P?, L) and a € Aff(P?, L)\ Jon(P?, L, q).
We then find a minimal resolution

where 77! has the same base-points as j~! € Jon(P?, L, q1). Let d > 2 be the degree of
471, so we can write 7 as a composition of 2d — 1 blow-ups m: X = Xo4_; Tedt, Iy
X1 5 Xy = P2, as described in Lemma 2.3.5. We denote the exceptional curve of ;
by E; fori=1,...,2d — 1.

We want to lift ¢ to a birational transformation of X by conjugation with 7. To
do this, we choose coordinates on P? such that L = L, and ¢; = [0 : 0 : 1] and

g2 =[0:1:0]. By Lemma 2.3.17, we can locally express 1 as

(z,y) = (z+2’a(z,y), y + 2°B(z,y))

for some «a, 3 € NxexOaz0,n). We proceed by conjugating ¢ step-by-step with the
blow-ups ;.

The first blow-up has base-point (0,0) and is locally given by m: (x,y) — (zy,y).
We thus obtain:
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. zy + 23yPa(zy, y) 2 2 )
YT,y =< Y+ 27y Blry,y
v Ym@,y) y + 22y2B(zy, y) (#y,9)

_ 3 (ya(zy,y) — b(ry,y)) 2 9
(:v+:r A S P Y+ vy 5(:vy,y))

= (91; + xgyal(a:, Y),y + x2y2ﬁ1 (z, 3/)) = 1(z,y)

In local coordinates of A2 C X, the exceptional curve E; of m; is given by y = 0 and
a, B1 € MaexOaz 0,0

The base-point of m is then the point (0,0) € E;. Indeed, the base-points of
T, ..., mq all lie on E7, such that each of these blow-ups is of the form (x,y) — (z, zy),
in local coordinates. We can thus write m o ... 0 mg: (z,y) — (z,2% ly) and thus
conjugation with this map yields:

d—1 2d, 2 d—1
Ya(z,y) = <$+xd+2ya1(x,xd_1y)7 7y + 2%y B (x, 2 y) )

(x 4+ 22y (z, xd—ly))d_1

d—1,2 d—1
~ x T, ...
= z+ xd+2a1(:p, x¢ "),y + zdtly? Yl y) T
(1 + 2 yoy (z, x4 1y))

In local coordinates of A2 C X, we can write

Vy(z,y) = (x + 2 2a4(x,y), y + 2 By(x, y))

for some ay, B4 € MrekOaz,(0,3)-

The base-point of the blow-up 74,1 is a point on E,; but not E; ;. In local coordi-
nates, this means that 74,1 can be expressed as (z,y) — (x,zy + p), for some p € k*.
The conjugated map is then:

wy + 2™ By, vy + u))

_ d+2
VYar1(z,y) (x +aTaa(w, vy + p), r+ 2 2ay(x, zy + 1)

- <x + 2 ay(r, zy + 1),y + paPa(@ ay + p) — zyaq(z, zy + u>)

1+ z™ay(x, 2y + p)

and thus we can find agy1, Bay1 € NraexOaz2 (0,5) such that
Y (z,y) = (2 + 2P ang1 (2, 9), y + 221 (2, y)) -

After conjugating with the d — 2 remaining blow-ups mgy9, ..., g 1, we thus obtain
Uaa-1(z,y) = (z 4+ 2" azq-1(2,y), y + 2°oa1(z,y))

for some a1, Bad—1 € NMrekOaz 0,5 and hence it follows that ¢y € Loc(X, Eaq_1, (0, ))
for all A € k by Lemma 2.3.17.
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We now consider the following commutative diagram:

]P>2 ________ ]P>2

// \\
/ 77] TU N\
/ \
| joa Xoo- ey joa
\ l l /
AN e Iy /

N Ve

Apz____?___>ﬂm2%

For any p € L, \ [0 : 1 : 0], it follows that 7 induces a local isomorphism n~'(p) — p
and thus (joa) oo (joa) =noyy 1on ! € Loc(P? Ly, p).
]

Proof of Theorem 1. By Lemma 2.2.1 the curves C' and D have the same degree. Thus
the claim of the theorem is clear for lines and conics and we can assume that C has
degree at least 3 and is hence singular, in fact unicuspidal. The isomorphism ¢: P2\C —
P2\ D induces a birational map P? --» P2. If ¢ extends to an automorphism of P2,
then C' and D are projectively equivalent. We thus assume that ¢ does not extend to
an automorphism of P?, i.e. C is contracted by ¢. Since C'\ L ~ A!, we can apply
Proposition 2.3.2 by identifying P2\ L ~ A?% so there exists an automorphism of P2\ L
that sends C' to a line. We can then use Proposition 2.3.14 and for suitable coordinates
obtain the diagram

]P>2_f>_IED2

| |
Oc ! 10p

\ \

]P’2—1£>P2

where ¢, 0p € Aut(P? \ L,) with c(C) = 0p(D) = L, and ¢ € Aut(P?\ L,) has the
form (z,y) — (x,y + 2%f(x)) and thus lies in Loc(P?, L., [0 : X : 1]) for all X € k. The
base-point p of ¢ is different from [0 : 1 : 0] and is thus of the form [0 : A : 1] for
some A € k. We then define the map p = (6c)~! o ¢ o ¢, which is an automorphism
of P2\ (L, U (). It follows from Proposition 2.3.18 that p lies in Loc(P? L,,[0: 0 : 1])
and in particular preserves the line L,. Thus p is an automorphism of P? \ C' and
consequently ¢’ = ¢ o p~! is an isomorphism P? \ C' — P2\ D. On the other hand,
¢’ = (0p)~! 0 O¢ is an automorphism of P? \ L, and hence does not contract C. We
conclude that ¢’ contracts no curves and is indeed an automorphism of P2, making the
curves C' and D projectively equivalent. O]

2.4 Curves of low degree

In this section we study Conjecture 2.1.1 for curves of low degree, i.e. degree < 8. It is
a case study on the multiplicity sequences that occur (see Definition 2.4.2).
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2.4.1 Cases by multiplicity sequences

Lemma 2.4.1. Let C C P? be an irreducible curve of degree d > 3 such that there exists
an open embedding P>\ C' — P? that does not extend to an automorphism of P2. Then
C' is a rational curve, where all the proper and infinitely near singular points of C' can
be ordered from py to py, with multiplicities my > ... > my > 2, such that p; € C is a
proper point and p;11 lies in the first neighborhood of p;, fort=1,... k—1. Moreover,
the multiplicities satisfy the following relations:

k
d*—3d+2=>> m(m; - 1), (A)
=1
k
41> me (B)
=1

Proof. Let ¢: P2\ C < P? be an open embedding that does not extend to an auto-
morphism of P2. Then by Lemma 2.2.4 there exists a (—1)-tower resolution 7: X =
X, 2053 X, 5 X, =P? of C with base-points py, ..., p, and exceptional curves
Ei,...,E,, and a (—1)-tower resolution n: X — P? of some curve D C P? such that
pom =mn. Fori € {1,...,n}, we denote by m; the multiplicity of C; at p;, so we
have my; > ... > m,. The strict transform ), in X is smooth, thus 7 factors through
the minimal resolution of singularities of C' and blows up all its & < n singular points,
hence the first part of the claim follows.

For equation (A), we observe that C is a rational curve since C,, ~ P! and thus has
genus g(C') = 0. By the genus-degree formula for plane curves we get

0—g(c) = DA _gmmdmi =)

k
, 2
=1

)

and hence identity (A) follows. To see the inequality (B), it is enough to observe that
for a blow-up m; with exceptional curve E;, we get

7 (C;) = Cipr + my B

and hence (C;y1)? = (C;)? — m2, using the identities (F;)? = —1 and Ciy - E; = m;.
We then inductively obtain

—1=(C,)* =d> =) m}.
i=1

The claim then follows from the fact that the number k& of singular points is < n. [

The previous lemma motivates the following definition.
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Definition 2.4.2. Let C C P? be a curve. We say that C has multiplicity sequence
(mq,...,my), where my; > ... > my > 2, if C' has (proper or infinitely near) singular
points p1, ..., p, with multiplicities my, ..., m; such that p; € C is a proper point and
pi+1 lies in the first neighborhood of p; for i > 1, and moreover C' is smooth at all other
points. For a constant subsequence (m,...,m) of length [ > 1, we also use the short
notation (my).

Remark 2.4.3. It is not known to the author whether there exist irreducible curves
C, D C P? that have isomorphic complements but have different multiplicity sequences.

Lemma 2.4.4. Let C C P? be an irreducible curve of degree d > 3 with multiplicity
sequence (my,...,my), where we set mg == 1 if k = 1. If there exists an open embed-
ding P2\ C' — P? that does not extend to an automorphism of P2, then the following
inequalities hold:

m1+m2§d<3m1.

Proof. We use the set-up of the proof of Lemma 2.4.1 and extend the multiplicity
sequence (my,...,mg) by mgy = ... = m, = 1 such that both (A) and (B) from
Lemma 2.4.1 become equalities. We then subtract (A) from (B) for the extended
multiplicity sequence and obtain

i=1

We then multiply this equation by ¢ and subtract (B), so we get

(9)-Em (i)

Since the right-hand side of this equation is negative, so is the left-hand side. Thus, at

least one of the terms g —m; is negative. The inequality d < 3m; now follows from the

fact that the multiplicity sequence is non-increasing.

The inequality m; + mo < d follows from Bézout’s theorem, where we intersect C'
with a line going through points p; and ps of multiplicity m; and my respectively. [

Corollary 2.4.5. Let C C P? be an irreducible curve of degree < 8 such that there
exists an open embedding P>\ C — P? that does not extend to an automorphism of P2.
Then C' has one of the multiplicity sequences shown in the following table.
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degree | multiplicity sequences

(

4 (3); (23))

5 (4);(3,2(3)); (2())

6 | (5):(4,2w); (36, 2); B2y, 20); (3, 2(n))

71 (6);:(5,265); (433); (432, 23)); (4,3, 2(6)); B(0), 2(3))

8 (7);(6,2(6)); (5,3(3): 2(2)); (5, 32), 2(5)); (43), 3); (43), 2(3)); (42), 3(3));
(42),32),23)); (4(2), 3, 2(6)); (4,3(5)); (4, 310, 23)); B(n))

Table 2.1: Multiplicity sequences for degree < 8.

Proof. This follows from computations using Lemma 2.4.1 and Lemma 2.4.4, but we
need to look at one case more carefully. In degree 7 the multiplicity sequence (3(s))
is consistent with the inequalities in Lemma 2.4.1 and Lemma 2.4.4. Suppose that
there exists such a curve C' and denote by pi, ps, p3 the first 3 singular points, all of
multiplicity 3. By Bézout’s theorem those points are not collinear. Moreover, p3 is not
proximate to p; as the sum of the multiplicities of the strict transform of C' at p, and ps
is larger than the multiplicity at p;. Thus there exists a quadratic transformation ¢ with
base-points p1, p2, p3. The degree of ¢(C) is then 2-7—3 -3 —3 =5 by Lemma 2.3.11
and has two singular points of multiplicity 3. But this is not possible by Lemma 2.4.4.
Hence no curve of of degree 7 with multiplicity sequence (3s)) exists. O

The case of cubic curves is then straightforward.

Lemma 2.4.6. Let C C P? be a cubic curve and let p: P2\C — P>\ D an isomorphism,
where D C P? is some curve. Then C and D are projectively equivalent.

Proof. If ¢ extends to an automorphism of P2, the claim is clear. If not, then C is
rational and hence singular with a point of multiplicity 2. It is a well known fact that
can be checked by simple computations that there are only two singular cubic curves,
up to projective equivalence. One class is represented by the cuspidal cubic curve
22z — 1% = 0 and the other class by the nodal cubic curve 2%z — 43 — y?2 = 0. It follows
from Lemma 2.2.1 that D is again a cubic curve and by Proposition 2.2.6 that the
singularity of D is of the same type as the singularity of C, i.e. D\ Sing(D) ~ Al if C
is unicuspidal or D\ Sing(D) ~ A\ {0} if C is nodal. Hence C' and D are projectively
equivalent. O

Remark 2.4.7. The complement of a nodal cubic curve has infinitely many automor-
phisms, up to composition with automorphisms of P?. For a description, see for instance
[Yos85, Lemma 2.24]. The automorphism group of the complement of a cuspidal cubic
is even infinite dimensional, see [Yos85, Theorem A (6)].

We will frequently use the following formula for intersection numbers.
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Lemma 2.4.8. Let C C P? be a curve and 7: X, == ... 25 X1 ™5 Xo = P? a (—1)-
tower resolution of C' with base-points p1, ..., p, and exceptional curves E1, ..., E,. For
1 < k <n, we then have

Ok B = mpz(Oz) - Z Mp; (OJ)
pj=pi,j<k

Proof. Let 1,k € N with 1 < k < n. We denote by Ej the total transform of E; in X,
for j =1,..., k. By [AIb02, Corollary 1.1.25], we can then write

pj=pi,j <k
By [Alb02, Corollary 1.1.27], we have Cj - E; = m,,,(C;) and the claim follows. O

Lemma 2.4.9. Let C C P? be an irreducible curve that has multiplicity sequence
(mq,...,my). If there exist r < s < k — 2 such that

mr4a + mMy42 > my > my41,
Ms41 + Msy2 > mg > Msy1,

mg + Msi1 > M1,
then every open embedding P? \ C — P? extends to an automorphism of P2.

Proof. Suppose that there exists an open embedding ¢: P? \ C — P? that does not
extend to an automorphism of P?. Then by Lemma 2.2.4 there exists a (—1)-tower

resolution 7: X = X,, =% ... 25 X; &5 X, = P? of C' with base-points p1, ..., p, and
exceptional curves Ej, ..., E,, and a (—1)-tower resolution n: X — P? of some curve

D C P? such that ¢ o = 7. For any i € {1,...,k}, we obtain from Lemma 2.4.8 the
equation
C’nEZ:ml— Z m;j.
Dj > Pi

The point p,, is proximate to p,, but p,,s is not, as C),- E. > 0 and m,, 1 +m,0 > m,.
Hence we have C), - E,, = m,, — m,,1 > 0. Analogously we get C,, - E, > 0. The curve
EiU...UF, 1 UC, in X is the exceptional locus of  and thus has a tree structure.
By the same argument as before, the point p,i; is not proximate to ps_;, hence it
follows that the curves E, and E, are connected in £y U...U E,_; via some chain of
curves. Since F, and FE, are also connected via ), this yields a contradiction to the
tree structure of £y U ... U FE,_; UC,,. O

Corollary 2.4.10. Let C C P? be an irreducible rational curve with one of the mul-
tiplicity sequences (4,3,2)), (4,3(2),23)), (4,31),21)), (42):3,26)); (4@2),32)20)),
(5,32),2(5)), or (5,3(3),212)). Then any open embedding P*\ C' — P? extends to an
automorphism of P?.

Proof. This follows directly from Lemma 2.4.9. [
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2.4.2 The unicuspidal case and a special quintic curve

If C C P? is a unicuspidal curve that admits a very tangent line through the singular
point, then Theorem 1 gives an affirmative answer to Conjecture 2.1.1. In low degrees
this is often the case, as we will see using the following lemma, which we can already
find in [Yos84].

Lemma 2.4.11. Let C C P? be a curve with multiplicity sequence (my, ..., my), where
we set mo = 1 if k = 1. If deg(C) = my + my, then there exists a very tangent line to
C' through the proper singular point.

Proof. Let p; € C be the proper singular point of multiplicity m; and ps a point
infinitlely near to p; with multiplicity ms. Then there exists a line L through p; and
pa. We then get the local intersection (C' - L),, > my + my = deg(C). By Bézout’s
theorem L intersects C' in no other point and we have equality (C'- L),, = deg(C'), and
thus L is very tangent to C. m

In Table 2.1, we find the multiplicity sequence (2()) for quintic curves. It follows
from Bézout’s theorem that such curves do not admit a very tangent line through the
singular point and hence Theorem 1 does not apply. We thus have to study this case
separately. This seems to be a well known class of curves and was already considered
in |Yos84] and [Yos79|, but without full proofs. Over the field of complex numbers,
unicuspidal quintic curves were classified in [Nam84, Theorem 2.3.10.]. For the sake
of completeness, we give a self-contained treatment of the case unicuspidal curves with
multiplicity sequence (2()) below.

Lemma 2.4.12. Let C and D C P? be irreducible unicuspidal quintic curves with mult-
plicity sequence (2)) with singular points p1,...,ps and qu,...,qs respectively. Then
there exists o € Aut(P?) such that a(p;) = q; fori=1,...,6.

Proof. Let L C P? be the line through p; and p,. The singular points py, ps, p3 of C all
have multiplicity 2, thus they are not collinear by Bézout’s theorem. It follows that there
exists a quadratic map 6, : P? --» P? with base-points p1, ps, p3 and exceptional curves
E1, Ey, E5. The map 6, is then given by first blowing up p1, p2, p3 and then contracting
L3, EQ,El, as shown below. We denote by P, Py, Py the base-points of (0;)~! and by
Py, Ps, D the singular points of C" == 6,(C

S AN

Pa  Es
By Lemma 2.3.11, the degree of C"is2-5—-1-2—1-2—1-2 =4 and hence (' is a
unicuspidal quartic curve. Likewise, there exists a quadratic map 6, that sends D to a
unicuspidal quartic curve D', where we analogously denote the points ¢}, ..., g.
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We show that there exists an automorphism o’ € Aut(P?) such that o/(p}) = ¢/ for
i = 1,...,6, which implies that the map o = (f2)~! o @/ 0 f; is an automorphism of
P? that sends p; to ¢;, for i = 1,...,6, since the base-points of (6;)~! are sent to the
base-points of (6;)~'.

We can assume that, after a linear change of coordinates, we have pj = ¢{ =1[0:0: 1]
and p), = ¢4 = [0:1:0]. By Bézout’s theorem the points p/, p}, p; are not collinear, thus
we can moreover assume that pf, respectively ¢f, corresponds to the tangent direction
L.

The points p!, ph, p)y are in fact collinear and thus pf, corresponds to the tangent
direction L,, and the same is the case for ¢j. The linear maps fixing p}, p, pjy, p5 then
correspond to matrices in PGLj3 of the form

o o Q
S0 O
_ o O

where a,b, ¢ € k and ac # 0. We now consider the action of those linear maps on the
points p; and p;. We thus blow up the point pj = [0 : 0 : 1]. In local coordinates,
this blow-up is given by (u,v) — [uv : v : 1] and moreover p, = (0,0). With a linear
map of the above form, we get [uv : v : 1] — [auwv : buv + cv : 1] and the induced map
in the blow-up is locally given by (u,v) — (bﬁc, (bu + c)v). The induced map on the
exceptional curve is then [u : v] = [%u : cv] = [Fu : v]. We observe that pj is not
proximate to p}j and that pj is not collinear with p,p) and p} by Bézout’s theorem.
Thus pj is neither of the points [0 : 1] or [1 : 0] on the exceptional curve and we can
assume that pj = ¢4 = [1 : 1]. From this we obtain the condition a = 2.

For the point pj, we consider the blow-up of pj, = [0 : 1 : 0], in local coordinates
given by (u,v) — [u: 1 : uv], and py = (0,0). Applying a linear map of the form above,
we obtain [u : 1 : wv] = [au : bu + ¢ : wv] and the induced map on the blow-up is

given by (u,v) — ( uu 3), in local coordinates. The induced map on the exceptional

butc’ a
curve is [u : v] — [Su : To] = [%u :v] = [Pu : v]. As before, we see that pf is not
proximate to p} and is not collinear with p and p.. Hence we can also assume that
ps = qg = [1 : 1] and get the condition ¢ = 1.

We have thus found a linear map that sends p} to ¢, for i = 1,...,6 and the claim

follows. L

Proposition 2.4.13. Let C C P? be an irreducible unicuspidal quintic curve with
multiplicity sequence (2()). Then C' is projectively equivalent to the curve

Q: (w2 +9°) (zz + )z + 22°y) — 2° = 0.

Proof. We start by constructing a birational map P? --» P? that sends the line L, to the
quintic curve Q. To do this we consider first the quadratic map 6;: [z : y : 2] +-» [2%:
xy : 2z+y?]. This map is an automorphism of P?\ L, and sends the line L, to the conic

zz+y* = 0. Next, consider the quadratic map 0y: [z : y : 2] F-» [z2 : 22 —yz : 2], which
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induces an automorphism of P?\ L.. We compute the composition 1) := (6;) 0y 06,
and obtain

[z y 2] s [w(az4y?)? : (z2+y?) (28 —y(zz+y?)) © (zz+y7) (2(z2+y?) +227y)) —2°).

The map 1 is an automorphism of the complement of the conic zz 4+ y? = 0 in P? and
is moreover an involution. Hence both 1 and 1! contract the conic zz + y*> = 0 and
have unique proper base-point [0 : 0 : 1]. The image of the line L, by ¢ is exactly the
quintic curve ). The degree of ¥ is 5 and the linear system of ¢ contains the curve @)
whose only proper singular point is [0 : 0 : 1] with multplicity 2, thus by the Noether
equations 1 has 6 base-points of multiplicity 2, which then must be the same as the
singular points of Q).

Let C be any unicuspidal quintic curve with multiplicity sequence (2)). We can
assume by Lemma 2.4.12 that after a change of coordinates the 6 (proper and infinitely
near) singular points of C' and @ coincide. Hence by Lemma 2.3.11 the birational map
¥ ™1 sends the curve C to a curve of degree 5-5—2-2—2.2—-2.2—-2.2-2.2-2.2 =1,
i.e. a line. This line is tangent to the conic xz + y* = 0 since C' is unicuspidal and
the line does not pass through the base-point [0 : 0 : 1] of ¥). The tangents to the
conic zz + y? = 0 that do not pass through [0 : 0 : 1] are parametrized by the family
Lo: oz 4+ 20y — 2z = 0, where o € k. We then compute the equation of the image of
L, under v and get

Qo (zz+ %) ((zz + ¥*)(@°z — 2ay — 2) + 22°(ax — y)) +2° = 0.

Thus C' = @, for some a € k. A short computation shows that the automorphism of
P? given by
[z:y:z] = [r:ar+y: —a’r — 2ay + 2]

sends the curve (), to the curve Qy = Q. n

Corollary 2.4.14. Let Q C IP? be an irreducible unicuspidal quintic curve with multi-
plicity sequence (2()) and ¢: P>\ Q — P?\ D an isomorphism, where D C P? is some
curve. Then D s projectively equivalent to Q).

Proof. By Lemma 2.2.1 and Proposition 2.2.6, the curve D is also a rational unicuspidal
quintic. It thus has one of the multiplicity sequences (4),(3,23)), or (2(6)) by Corol-
lary 2.4.5. In the first two cases, D admits a very tangent line through the singular
point by Lemma 2.4.11, and thus by Theorem 1, this would also hold for the curve
@. Since ) does not admit a very tangent line through the singular point, it follows
that D has multiplicity sequence (2)) and is hence projectively equivalent to @ by
Proposition 2.4.13. O

To conclude the case of unicuspidal curves, we need two more observations.

Lemma 2.4.15. Let C C P? be a rational irreducible curve with one of the multiplicity
sequences (3(),23)), (4,35)), (4,30),2@)), or (5,2(5)). Then C is not unicuspidal.
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Proof. Let m: X = X} Dy B X B X, = P? be a minimal resolution of singu-
larities of C, where 7; is the blow-up of the singular point p; € X; of multiplicity m;
and has exceptional curve E; for ¢ = 1,...,k. It follows that C), intersects Ej with
multiplicity my. If there exists some i < k — 2 such that m; —m;,, = 1, it follows from
Lemma 2.4.8 that
Cv-E,=m; — Z mj =m; —miy =1
Dj~Di

since Cy - F; > 0 and m;o > 2. If E; does moreover not intersect Fj, it follows that
C' is not unicuspidal, as C} intersects the exceptional locus £} U ... U Ej of 7 in at
least two points, one on E; and one on Fj. We observe that this is the case for the
multiplicity sequences (3,2(7)), (3(1),2(3)), (4,3(5)), and (4, 3(4), 2(3)), since in each case
the exceptional curves in their minimal resolution of singularities form a chain where
E; and E). do not intersect, as one checks with Lemma 2.4.8.

Similarly, we see with Lemma 2.4.8 that for the multiplicity sequence (5, 2(s)), either
p3 is proximate to p; or not, but in both cases the curve C; intersects E; and FE7 in
distinct points and thus C' is again not unicuspidal. O

Lemma 2.4.16. Let C C P? be a rational, unicuspidal curve of degree d and multiplicity
sequence (my,...,my). There exists an open embedding P*\ C — P? that does not
extend to an automorphism of P? if and only if exactly one of the following possibilities

holds.

(i) d* — Zle m? =—1 and mp_1 —my = 1.

(i) d* — Zle m? —my, = —2 and my, = 2, my_1 # 3.

(iid) d® =S8 m2 —my > —1.

Proof. We first prove the direction (=), i.e. we suppose that there exists an open
embedding ¢: P2\ C' < P? that does not extend to an automorphism of P? and show
that we are in one of the cases (i), (ii), or (zii). It follows by Lemma 2.2.4 that there

exists a (—1)-tower resolution 7: X = X, ™% ... 2 X; ™ X, = P? of C' with
base-points py, ..., p, and exceptional curves Ej,..., E,, and a (—1)-tower resolution

n: X — P? of some curve D C P? such that pom = 7. Then E,U...UE,_;UC, is the
exceptional locus of 7, being the support of an SNC-divisor that has a tree structure.
The minimal resolution of singularities of C'is my o...om,. The curve C} intersects Fj
and since C' is unicuspidal this intersection is in a single point with multiplicity my (see
Figure 2.1 on the left). Since 7 is a (—1)-tower resolution of C, the self-intersection of
Ck is > —1.

Suppose that (C})? = —1. Then 7 has no other base-point, as this point would
lie on Ej \ Cj, and this would imply that C, and Ej do not intersect transversally
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in X. Moreover, the configuration of the curves Fi, ..., Ex_1,C) is connected, i.e. C
transversally intersects exactly one curve E € {Ej, ..., Ex_1} in its interesection point
with Ey. We observe that C} intersects F;y U ... U Ej_; only in the curve E, and thus
E,U...UE;_4 is connected. But this implies that Fj intersects only one curve from
Ey, ..., E_1, and thus F = E,_;. Now it follows from the fact that E,_; - C}, = 1 and
from Lemma 2.4.8 that mj_; — 1 = my, and we are thus in case (7).

// (mk) Ek

/ Cy

Figure 2.1: Blow-up of the points py, ..., Pktm,—2.

Suppose now that (Cy)? # —1. Then 7 has a base-point on Fy N Cj. Thus k < n
and the union of the curves FEi, ..., E,_1,C,, is SNC in X. It follows that the base-
point p; 1 is the intersection point between C; and Ey, for i = k,... , k+ my — 2. The
configuration of curves in Xj,,, 1 is shown in the diagram on the right in Figure 2.1.
The self-intersection of Cyyp, 1 is then d* — S5 m? — (my, — 1), and this number is
> —1, since 7 is a (—1)-tower resolution of C'.

Assume that d? — Zle m? —my = —2, i.e. there is no base-point on C,, 1. But
this means that there is no more base-point at all, since there is a triple intersection
between Ej, Eyim,—1 and Ciiym, —1, which would violate the SNC structure of the excep-
tional divisor of 1 if Ej,,, —1 was not the last exceptional curve of 7. Since the union of
Ei, ..., Eximy—2, Crym,—1 is connected, it follows that my = 2 (see Figure 2.1). It also
follows that the union of Fj, ..., Ejyp, 1 is connected and hence C} does not intersect
any other exceptional curve apart from Fj in Xj. It then follows from Lemma 2.4.8
that my_1 — my # 1 and thus my_; # 3. We are thus in case (i7).

The last remaining case is when d? — Zle m? —my, # —2, but then this expression
is > —1 and we are in case (i7i). We observe moreover that the cases (i), (i), (ii7) are
mutually exclusive.

We now prove the direction (<=). In each case we first blow up the k& singular points
of C' (with exceptional curves Ei,..., Fy). In case (i), this yields the resolution in
Figure 2.2. By the symmetry of the configuration, there exists a morphism from this
surface to P? contracting Cy, Fj_1,. .., F1.

Figure 2.2: Case ().



2.4. CURVES OF LOW DEGREE 37

In case (ii), we also blow up the the intersection point of C}y and Fj and obtain
the diagram in Figure 2.3. Again, by the symmetry of the configuration, there exists a
morphism to P? that contracts Cyi1, Ey, ..., E).

Figure 2.3: Case (i1).

Finally, in case (iii), we blow up my, points, with exceptional curves Ej.1, ..., Exim,,
all proximate to the intersection point between Cj and Ej. Then Cj,,, intersects
Eltm, transversally and the self-intersection of Cj,,, is > —1. We can thus continue
to blow up points until we have a (—1)-tower resolution of C, where C,,_; intersects
E, 1 tranversally. We then blow up any point on F,_; that does not lie on C,,_; or
any other exceptional curve. We then obtain the configuration in Figure 2.4. By the
symmetry of this configuration, there exists a morphism to P? by contracting the curves
Cn,En_1,...,Er.

Figure 2.4: Case (7i1).

]

Remark 2.4.17. Lemma 2.4.16 allows us to determine for a unicuspidal curve C' C P2,
whether there exists an open embedding P? \ C' < P? that does not extend to an
automorphism of P2, simply by looking at the multiplicity sequence of C'.

Corollary 2.4.18. Let C' C P? be an irreducible unicuspidal curve of degree < 8 and
let o: P2\ C' — P*\ D be an isomorphism, where D C P? is some curve. Then C' and
D are projectively equivalent.

Proof. If ¢ extends to an automorphism of P2, the claim is trivial. If not, then C
has one of the multiplicity sequences in Table 2.1, by Corollary 2.4.5. In the case
of the multiplicity sequence (2 ), the claim follows from Corollary 2.4.14. For the
multiplicity sequences (3,27)), (3(1), 2(3)), (4,3(5)), (4,3(4), 2(3)) the claim follows from
Lemma 2.4.15 and for (3(7)) from Lemma 2.4.16, since 8 —7-3* —=3 = -2 < —1. In
all other cases, there exists a very tangent line through the proper singular point of C'
by Lemma 2.4.11. Then the claim follows from Theorem 1. O]
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2.4.3 Some special multiplicity sequences

In this section we present some extension results for isomorphisms between curves that
are not unicuspidal and have a multiplicity sequence of a special form. Together with
the previous results this will lead to the proof of Theorem 2.

Proposition 2.4.19. Let C' be an irreducible rational curve of degree d > 4 and mul-
tiplicity sequence (myy)), where m > 2 and k > 1, and let ¢: P*\ C < P* be an open
embedding that does not extend to an automorphism of P2. If C is not unicuspidal,
then C'\ Sing(C') is isomorphic to A'\ {0} and C has either degree 8 with multiplicity
sequence (3(7y) or degree 16 with multiplicity sequence (6(7)).

Proof. Suppose that C' is not unicuspidal. By Lemma 2.2.4, there exists a (—1)-tower

resolution m: X = X,, =% ... 2 X; I X, = P? of C with base-points p1, ..., p, and
exceptional curves Fy, ..., F,, and a (—1)-tower resolution n: X — P? of some curve

D C P? such that por = 7. Then E,U...UE,_;UC, is the exceptional locus of 7, being
the support of an SNC-divisor that has a tree structure. The composition 7 o ...0m
is the minimal resolution of singularities of C'. By Lemma 2.4.8 we obtain that in
the surface X, we have the intersection numbers Cy - F; = 0, for ¢ = 1,... .k — 1,
and Cy - B, = m. Since F4 U ... U E,_1 UC}, is not connected, we know that n >
k, hence more points are blown up to obtain the (—1)-tower resolution 7. Since we
assumed C' not to be unicuspidal, the curves C} and E}, intersect in at least two points
in X,. If (), and FE) intersect in at least 3 points, then it follows that C, and Fj
intersect in at least two points in X, which is not possible by the tree structure of
E,U...UEFE, 1UC,. It thus follows that C} and E} intersect in exactly two points
and hence C'\ Sing(C) = C\ {p1} =~ A'\ {0}. Moreover, it follows (again by the
tree structure) that C,, intersects Ej transversally in one point in the surface X, thus
C} intersects Ej in one point transversally and in the point p,; with intersection
multiplicity m — 1 in X. The configuration of curves is illustrated in the diagram on
the left in Figure 2.5, where the dashed lines represent chains of (—2)-curves. Again
by the fact that C),, and E) intersect only in one point, the base-points of the blow-ups
Thils- - Thim—1 are proximate to pyi; (i.e. all lie on Ej) and we obtain E? = —m
in X1, as illustrated in the diagram on the right of Figure 2.5. We denote the
self-intersection of Cyy,,—1 by § and thus have § = d*> — km? — (m — 1). Since 7 is a
(—1)-tower resolution of C' we have § > —1.

Ck+m—1[5] 7
Figure 2.5: Minimal SNC-resolution of C.

To simplify the later cases we first prove the following.
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Claim (1). If k =1, we reach a contradiction.

Proof of Claim (1). Since the degree of C'is d > 4, we obtain m = d — 1 > 3 by the
rationality of C' and the genus-degree formula and hence we have 6 = d+ 1 > 5. Since
C,, has self-intersection —1, the base-point p;; is the unique intersection point between
C; and E; in X; fort=m,...,m+ 1+, as shown in Figure 2.6.

Figure 2.6: Case (m).

If 7 has another base-point in X, 414, then it lies on E,, 1146 \ Crny115. We know that
0 > 5 and thus the curves F,, and F,,.; have self-intersection —2 in X. Moreover,
the curves Fy,..., E,_1,C, have a tree structure in X, thus (), and E,, are uniquely
connected via E; in this tree. The map 7 successively contracts the curves in this tree,
starting with C,. The chain of curves that connects C, to E,, 1, respectively E,, 1,
contains F,,, thus n contracts F; before F,, ; and E,, ;. But this is not possible since
after contracting F,,, the images of both F,, 1 and E,,; have self-intersection —1. We
thus get a contradiction and conclude that k& > 2.

|

In the sequel, we separately study the cases 6 > 1, =0, and 6 = —1.

Claim (2). If 6 > 1, we reach a contradiction.

Proof of Claim (2). Since 7 is a (—1)-tower resolution of C' the base-point p;;; is the
unique intersection point between C; and E; in X; fori =k+m—1,... k+m+0 (see
Figure 2.7).

Figure 2.7: Case 6 > 1.

Since 6 > 1, it follows that the curve Ej,,, 1 has self-intersection —2 in X. Moreover,
we know that k > 2 (i.e. there is a (—2)-curve Ej_; as pictured in Figure 2.7). The
map 7 contracts the curves Ejy_; and FEjy.,,_1 after Ej, since in the tree of curves
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Ei, ..., E, 1,C, the curves C,, and E}_;, respectively Ej,,_1, are connected via Fj.
But after contracting Fj, the self-intersections of the images of Ej_; and Ej,,,_ 1 are
both —1, which is not possible. We thus conclude that 6 > 1 is not possible. |

Claim (3). If § = 0, we reach a contradiction.

Proof of Claim (3). Since 6 = 0, the base-point of the next blow-up 7y, is the unique
intersection point between Cy.,,—1 and FEjyy,_1; and we obtain the configuration of
curves in the left part of Figure 2.8.

Figure 2.8: Case 6 = 0.

In the surface X, the curves Fgip,,...,E, all lie in a chain (not necessarily in
this order) between C,, and Ej,,_1, i.e. the base-points always lie on the intersection
points of the chain between C),, and Fj,, 1, as otherwise there would be a loop in the
configuration of the curves Ei,...,E, 1,C, in X (see the right part of Figure 2.8).
Moreover, FEj.,, intersects C), in this chain. The map 7 first contracts C, and after
this contraction the image of Ej has self-intersection —m + 1. It follows that in the
chain of curves between C,, and Ej.,, 1, after C,, there is a chain of (—2)-curves of
length m — 2, such that the image of Ej is —1, after this chain is contracted. This
means that the base-points p;yq for i = k+m, ...,k +m+ (m — 3) all lie on Ex 1.
Denote the next curve in the chain after the m —2 (—2)-curves by E. After C,, and the
chain of m —2 (—2)-curves are contracted, the images of Ej and FE intersect. Moreover,
the self-intersection of Ej is —1 in this surface and thus 7 then contracts Ej, ..., E.
Since we assume k > 2, it follows that the image of E is tangent to Ej,,_ 1. But this
means that E is not contracted by n and must in fact be E,, = Ej 4,1 (m—2). Since the
base-points piim1, - - - Pktm+(m—2) all lie on Ky, 1, the self-intersection of Ky, in
X is —m. We observe that after n contracts C,, and the chain FE, ..., F; the image of
Ejm—1 has self-intersection —m + k, which has to be equal to —1, and thus £k = m — 1.
From the condition 6 = 0 and the genus-degree formula we obtain the equations

0=d*—(m—1)m*>—m+1,
0=d*—3d+2—(m—1)m>

Subtracting the second equation from the first then yields 3d — m? — 1 = 0. We can

then substitute d = @ in the first equation and obtain

(m? 4 1)2

O:
9

(= = = 1) = o+ ) (P 1)
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which has no integer solutions in m. We conclude that ¢ = 0 is not possible. |

Claim (4). If § = —1, then C is of degree 8 or 16 with multiplicity sequence (3(7)) or
(6¢7)) respectively.

Proof of Claim (4). We already have a (—1)-tower resolution of C' in this case (see
Figure 2.9). We observe that blowing up the intersection point between Ej and Fjyi,, 1
yields a symmetric diagram and thus there exists a morphism X — P? whose contracted
locus is exactly F1 U ... U Eryim_1 U Crim.

Figure 2.9: Case § = —

The condition 6 = —1 and the genus-degree formula give us the following equations for
the values of d, m, k:

0=d>—km?>—m+2,
0=d?>—3d+2—km?— km.

We see from the first equation that any integer factor of d and m also divides 2. Hence
the greatest common divisor of d and m is 1 or 2. Subtracting the equations yields
3d —m — km = 0, from which we conclude that m divides 3d. It thus follows that m
d1v1des 6. Next, we replace k = 3‘1—m in the first equation above and get d*> — 3dm —
m? —m +2 = 0. We then check for natural solutions in d for m € {2,3,6} and find
(d,m) = (8,3) or (16,6) (both with k = 7) as the only possibilities. [

This concludes the proof of Proposition 2.4.19. O

Remark 2.4.20. The assumption that d = deg(C') > 4 in Proposition 2.4.19 is necessary
since the the complement of a nodal cubic has non-extendable automorphisms (see
Remark 2.4.7).

Corollary 2.4.21. Let C' C P? be an irreducible rational curve with one of the multi-
plicity sequences (23)), (3), (4), (2()), (5), (6), or (7). If C is not unicuspidal, then
any open embedding P? \ C' — P? extends to an automorphism of P2.

Proof. This is a direct consequence of Proposition 2.4.19. O

Proposition 2.4.22. Let C C P? be an irreducible rational curve of degree d and
multiplicity sequence (m), (m — 1)), wherem > 3 and k,1 > 1 and let p: P2\C' — P?
be an open embedding that does not extend to an automorphism of P2. Then either C
is unicuspidal or of degree 6 with multiplicity sequence (3,2(7)) or of degree 13 with
multiplicity sequence (5(),4).
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Proof. We suppose that C' is not unicuspidal. Since ¢ does not extend to an auto-
morphism of P2, it follows by Lemma 2.2.4 that there exists a (—1)-tower resolution

X=X, .. 2 X; 55 X, = P? of C with base-points p1, . .., p, and exceptional
curves Fy, ..., E,, and a (—1)-tower resolution n: X — P? of some curve D C P? such

that pomr =n. Then F1U.. . UE,_1UC, is the exceptional locus of 1, being the support
of an SNC-divisor on X that has a tree structure. The composition 7, ;0 ...0m is
the minimal resolution of the singularities of C'. By Lemma 2.4.8 we obtain that in
the surface X ;, we have the intersection numbers Cy ;- £y, = 1 and Cyy; - E; = 0 for
i=1,....k—landi=k+1,... k+1—1.

Claim (1). If k> 2 and [ > 2, we reach a contradiction.

Proof of Claim (1). By Lemma 2.4.8 we have Cy; - Exy; = m — 1. The configuration
is shown in Figure 2.10, where the dashed lines represent chains of (—2)-curves.

Figure 2.10: Minimal resolution of singularities of C'.

If 7 has a base-point in Xj,;, then it lies on the intersection with Cjy; and Ej,
otherwise there would be a loop formed by Ej,..., Exy; and C), in X,,, which is not
possible by the tree structure of the curves Fy,..., E, 1,C,. Since Ej;.; does not
intersect the (—2)-curves Ey_1, Ey, and Ej, 1, it follows that their self-intersections in
X are also —2. We observe that the map 7 contracts the curve Ej before Ej_; and
Ej.q, since C), and E}_q, respectively Fy.q, are connected via Ej, in the graph of the
curves Fy, ..., FE,_1,C,. But after contracting Fj, the images of Ej;_; and Ej,; both
have self-intersection —1, which is a contradiction since 7 is a (—1)-tower resolution. H

In the sequel, we separately look at the more involved cases where kK =1 or [ =1

(parts (A) and (B) below).

(A) We assume that k = 1.
Claim (A.1). If (Cj41)* = —1, then C has degree 6 and multiplicity sequence (3,27)).

Proof of Claim (A.1). By Lemma 2.4.8 we have Cjyy - Ejy1 = m — 1. If Cj;; has self-
intersection —1, then by the symmetry of the configuration (see Figure 2.11), there
exists a morphism X — P? whose contracted locus is By U ... U E; U Ciyq.

From (Cj41)* = —1 and the genus-degree formula we obtain the following two iden-
tities:

0=d*—m?—1I(m—1)*+1,
0=d*—3d+2—m(m—1)—1(m—1)(m—2).
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Figure 2.11: Case k =1, (Ci41)? = —1.

Subtracting the second equation from the first yields 3d — 1 —m — {(m — 1) = 0. We
then substitute I(m — 1) = 3d — 1 — m in the first equation and obtain d* = 3d(m — 1)
and thus d = 3(m — 1). Finally, we get

0=3d—1-m—-Ilm—-1)=0O-0)(m—-1)—(m+1)

and for positive integer values this equation is only satisfied with m = 2 and [ = 7
since 1 <9—1= Z—ﬂ < 2, for m > 3. This leads to the multiplicity sequence (3,2(7))
in degree 6. The corresponding resolution diagram is shown in Figure 2.11, where the
dashed line represents one (—2)-curve. [

We suppose from now on that we are not in the case of the multiplicity sequence
(3,2(7)). We then have (Cj41)* > —1. This implies that = has a base-point in the
intersection of Cj,, with E;.;. In fact, the curves C,, and E;;; do not intersect in X,
otherwise there would be a loop in the graph of the curves Fy, ..., E,_1,C,. Thus C;;
and FEj,; intersect in a single point in X;,;, and hence the intersection multiplicity is
m — 1. We have thus the configuration of curves shown in the left part of Figure 2.12.

Figure 2.12: Minimal SNC-resolution of C' for k = 1.

Since C),, and E;;; do not intersect in X, it follows that the base-point p;,; for
t =1014+1,...,1 +m — 1 is the unique intersection point between C; and FE;, which
also lies on Fj,;. The configuration of curves in X;,,, is shown in the right part of
Figure 2.12. We denote the self-intersection number of C;,,, by d and this number is
equal to d> —m?—1(m —1)*>— (m —1). Since 7 is a (—1)-tower resolution we have that
0> —1.

Claim (A.2). If 6 = —1, we reach a contradiction.
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Proof of Claim (A.2). From 6 = —1 and the genus-degree formula we obtain

0=d>—m*—1l(m—1)>*-m+2,
0=d*—3d+2—m(m—1)—I(m—1)(m—2).

Subtracting the second equation from the first yields 3d —2m —I(m — 1) = 0. We then

replace | = 34=2" ip the first equation and obtain the identity
m—1

O=d*—m*>—Bd—2m)(m—1)—m+2=d*— (m—1)(3d —m +2).

It follows that m — 1 divides d?. Let p be a prime number that divides m — 1. Then
p divides d* and thus also d. From the equality [(m — 1) = 3d — 2m it follows that
p divides 2m. Since m — 1 and m are coprime, it follows that p = 2. We can then
write m — 1 = 2" for some r > 1. We observe that 2" divides d?. Moreover, 2" divides
3d —2(2" + 1) and thus also 3d — 2. But then 2" divides d? — 3d + 2 = (d — 1)(d — 2).
Since d is even, it follows that 2" divides (d —2). Since 2" divides 3d — 2 = (d — 2) + 2d,
it follows that 2"~! divides d, but also d — 2, and thus r must be 1 or 2. Using these
values for r, it is easy to check that the equations above have no integral solutions for
d. We can thus conclude that § # —1. |

Claim (A.3). If 6 = 0, we reach a contradiction.

Proof of Claim (A.3). The curves Cpy,, and Fj,,, have a unique intersection point,
hence this is the base-point p;y,+1. After blowing up pji.,41 Wwe obtain a (—1)-tower
resolution of C' (see the left part of Figure 2.13).

Figure 2.13: Case k =1, 6 = 0.

In the surface X, the curves Ej 41, . .., F, all lie in a chain (not necessarily in this
order) between C),, and FEj,,,, otherwise there would be a loop in the configuration of
the curves Fy, ..., E, 1,C,. The curve Ej,,,,1 intersects C,, in this chain. The map n
contracts first C), and then the chain E7, ..., E;. The self-intersection of the image of
Ejymy1 after those contractions increases by [ 4+ 1. Since Fj,; is not a (—1)-curve after
those contractions (as m > 3), it follows that Ej ,,.; is a (—1)-curve in this surface.
This implies that in X the curve Ej,,,.1 has self-intersection —(I + 2). This means
that the base-points piim42, ..., Pigm+@+2) must lie on the strict transform of Ej 1.
Assume first that [ > 2. Then Ej,,,,o has self-intersection —2 in X. The map n
contracts Fj,, before the (—2)-curves Ejy,,_1 and Ej,, 2, but this is not possible, as
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the images of both Ejy,,—1 and Ej 12 are (—1)-curves, after contracting Fj,,,. Hence
[ must be 1 and the multiplicity sequence of C'is then (m,m — 1). The condition 6 = 0
and the genus-degree formula give

O=d*—m?>—(m—12-m+1,
0=d*—3d+2—m(m—1)— (m—1)(m—2).

Subtracting those equations yields the identity 3d = 3m, which is not possible as m < d.
We conclude that § # 0.
|

Claim (A.4). If 6 = 1, we reach a contradiction.

Proof of Claim (A.4). Again, the base-point p;,,,11 is the intersection point between
Ei i, and Cyypy, and pyio,e0 is the intersection point between Ejy .1 and Cyp,yq. After
blowing up piim+1 and pjimi2 we have a (—1)-tower resolution of C' (see the left part
of Figure 2.14).

Figure 2.14: Case k =1, 6 = 1.

Suppose that this resolution is 7. Then n contracts Ej;,, before the (—2)-curves
Eii 1 and Eji 11, but this is not possible. Hence 7 has another base-point, which
must be the intersection point between Ej,,,.1 and Ej o, otherwise there would be
loop in the resolution in X. Now in X3, the curve Cj4,,+3 intersects the (—2)-curves
E1 and Ejy,, 2. Thus there is another base-point of 7, which is the intersection point
between Ej, 40 and Ejy,, 3. But this implies that Ej;,,,.1 has self-intersection —3 in
X (see the right part of Figure 2.14). We know that n contracts FEj.,, before Ej ,, 1
and Fjy 1. After contracting Fj,,,, the self-intersections of the images of E;,,, 1 and
Eiimi1 are —1 and —2 respectively. But then Fj,,, 1 intersects no other (—2)-curve,
so we have Fy,,, 1 = E;, o and hence m = 3. The multiplicity sequence of C' is thus of
the form (3,2)). Using § =1 and the genus degree formula, we obtain

0=d*—4l— 10,
0=d?—3d—2l—4.

Subtracting those equations and rearranging terms, we obtain [ = #, which we can

substitute in the first equation and get d*> — 6d + 2 = 0, which has no integer solution
in d. Thus ¢ = 1 is not possible.
|
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Claim (A.5). If 6 > 2, we reach a contradiction.

Proof of Claim (A.5). For i = [+ m,...,l + m + ¢, the base-point p;;; is then the
unique intersection point between C; and E;. As 6 > 2, this means that E;,,, 1 has
self-intersection —2 in X (see Figure 2.15). But this leads to a contradiction, since 7
contracts Ej.,, before the (—2)-curves E; ,, 1 and Ej,,+1, whose images both have
self-intersection —1, after F;,, is contracted.

Figure 2.15: Case k=1, 0 > 2.

This concludes the case k = 1.

(B) Assume now that | = 1, as shown in Figure 2.16. We can also assume that
k > 2, since we have already considered the case k = 1. If (4 has self-intersection —1,
then by the symmetry of the configuration, there exists a morphism X — P? whose
contracted locus is K1 U ... UE,_{ UC,.

Figure 2.16: Minimal resolution of singularities for [ = 1.

From (Cj,1)? = —1 and the genus-degree formula we get the following two identities

0=d*—km®>—(m—1)>%+1,
0=d*~3d+2—km(m—1)— (m—1)(m—1).

Subtracting the second identity from the first yields 3d — 1 — km — (m — 1) = 0. We
then substitute km = 3d — 1 — (m — 1) in the first equation and obtain d* = m(3d — 2).
Let p be a prime number that divides 3d — 2 and thus also d. But then p = 2 and hence
we can write 3d — 2 = 2" for some natural number r. It then follows that m = (2;32)2,
in particular 2" divides 22" +4-2" +4 and thusr = lorr =2. If r =1, then d = %,
which is absurd. If r = 2, then d = 2 and m = 1, which is excluded by hypothesis.
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We thus know that (Cy11)* > —1 and hence 7 has a base-point on Ej; that also
lies on Cy1. Since C' is not unicuspidal, the curves Cy,q and Fj,, intersect in at least
two points.

There are now two possibilities: either C}.; passes through the intersection point
between Ej, and Ej.1, or it does not. We will look at those cases separately (parts (i)

and (ii) below).

(i) We suppose that Cy 1 passes through the intersection point between Ejy and Ej. 1.
Then this point is the next base-point of 7, since there can be no triple intersections
in the tree of the curves F1, ..., E,_1,C, in X. Moreover the intersection multiplicity
between Cy.1 and Ej 1 at pgio is m — 2 as C,, and Ej,, intersect transversally in X,
see the configuration on the left in Figure 2.17.

Ert1

Figure 2.17: Blow-up of pgio,. .., Prkrm—1-

It follows that the base-point p;,; is the intersection point between FEj.; and E;
fort=k+1,....,k+m — 2. We then denote by ¢ the self-intersection of Cy,,,_1 in
Xtm—1, see the configuration on the right in Figure 2.17. We have § = d? — km? —
(m—1)>— (m —2) and § > —1, since 7 is a (—1)-tower resolution.

Claim (B.i.1). If § = —1, we reach a contradiction.

Proof of Claim (B.i.1). From 6 = —1 and the genus-degree formula we obtain

0=d*—km?*—(m—1>—m+3,
0=d*—3d+2—km(m—1)— (m—1)(m—2).

Subtracting those identities yields 3d — km — 2m + 2 = 0. Thus the greatest common
divisor of d and m d1V1des 2. We then substitute k = M in the first equation and
obtain d? — 3dm +m? —m +2 = 0. Let p be any prime number that divides m. Then
p divides 3d + 2 and also d? + 2. But then p also divides d* — 3d = d(d — 3). Assume
that p does not divide d, then p divides d — 3. Then p divides 3d + 2 — 3(d — 3) = 11.
On the other hand p also divides (d? +2) — (d — 3)* — 3(d — 3) = 2 and thus we have a
contradiction. It follows that p divides d and hence p = 2. Dividing the equation above
by 2 yields
dil—3dT+mT—T+1:o.
2 2

We conclude that 3 must be odd. Smce m is a power of 2 it then follows that m = 2.
We hence obtain the equation d?> — 6d + 4 = 0, which has no integer solution in d. We

conclude that § = —1 is not possible. |
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Claim (B.i.2). If § = 0, then C has degree 13 and multiplicity sequence (5¢),4).

Proof of Claim (B.i.2). From ¢ = 0 and the genus-degree formula we obtain

0=d*—km*— (m—1)>—m+2,
0=d*—3d+2—km(m—1)— (m—1)(m —2).

Subtracting those identities yields 3d — km — 2m + 1 = 0. We thus see that d and m
are coprime and that m divides 3d + 1. We substitue k = Mﬂf““l in the first equation
and obtain d? — 3dm + m? + 1 = 0. From this we see that m divides d*> + 1. But then
m also divides (d? + 1) — (3d + 1) = d(d — 3). Since d and m are coprime, m divides
d — 3. On the other hand, m also divides (d* + 1) + (3d + 1) = (d + 1)(d + 2). Let p
be a prime number that divides m. Then p divides d — 3 and either d + 1 or d + 2, but
not both since they are coprime. Thus p must be either 2 or 5. Assume moreover that
p? divides m. Then p? also divides d? + 1 and 3d + 1. Since p divides d — 3, it follows
that p? divides (d —3)> =d?* —6d+9 =d*+ 1 —2(3d + 1) + 10. But then p? divides
10, which is not possible. We conclude that m € {5,10} (since m > 3). We then check
for integer solutions for d in the equation d? — 3dm + m? + 1 = 0 for those values of m
and find (d,m) = (13,5) as the only possibility. For a diagram of a resolution of such
an isomorphism see Remark 2.4.23. We assume from now on that we are not in this
case. |

Claim (B.i.3). If § = 1, we reach a contradiction.

Proof of Claim (B.i.3). From ¢ = 1 and the genus-degree formula we get the equations

0=d*—km*— (m—1)>—m+1,
0=d*—3d+2—km(m—1)— (m—1)(m—1).

Subtracting those identities yields 3d — km — 2m = 0. We then substitute k = ?’d’%
in the first equation and obtain d*> = m(3d +m + 1). Let p be any prime number that
divides m. But then p divides d? and thus also d. It then follows that p divides 1 and
we have a contradiction. ]

Claim (B.i.4). If § > 2, we reach a contradiction.

Proof of Claim (B.i.4). Since 7 is a (—1)-tower resolution of C, the base-point p;;; is
the unique intersection point between C; and E;, fori = k+m—1,... k+m+9d—1. The
configuration after those blow-ups is shown in Figure 2.18. Since no more base-point
of m can lie on Ej,,, its strict transform in X has self-intersection —2. If m > 3, then
FEktm—1 intersects the two (—2)-curves Fy .2 and Ej,, in X. But n contracts Ej -1
before those two curves and thus this situation is not possible and we have m = 3. Since
d < 3m =9 by Lemma 2.4.4, the multiplicity sequence of C' is in Table 2.1 and can
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Figure 2.18: Case [ =1, 6 > 2.

only be (3(3),2) in degree 6. In this case § = 5. But this implies that Ej ;.41 is also
a (—2)-curve in X. We hence get a contradiction after n contracts Ej,,,_1. Then the
image of Fj,, intersects the (—2)-curves Ej and Ej 1. [ |

This concludes (i) of part (B).

(ii) Suppose now that Cy,1 does not pass through the intersection point between Ej,
and Ej.1. Then C}; intersects Ej.1 in one point with intersection multiplicity m — 1,
otherwise there would be a loop in the configuration of the curves Fy, ..., E,_1,C,. The
configuration of curves in Xy, is shown in the left part of Figure 2.19. Since C,, and
Ej.1 do not intersect in X, it follows that the base-point p;,q fori = k+1,... k+m—1
is the unique intersection point between C; and FE;, which also lies on Ejy,;. The
configuration of curves in Xy, is shown in the right part of Figure 2.19. We denote
the self-intersection of Cj,,,, by § and this number is equal to d*—km?—(m—1)?—(m—1).
Since 7 is a (—1)-tower resolution of C' it follows that § > —1.

Ey11

Figure 2.19: Blow-up of pgia, ..., Pkim.

In the surface X, let E # Ej in {E1,..., E,} be a curve that intersects C,,. We
know that the map 7 first contracts C),, and then the chain Fy, ..., Fy. Since k > 2, it
follows that the image of E is tangent to Fj.1, after those contractions. This implies
that F is not contracted by n and thus £ = F,, is the last exceptional curve in the
(—1)-tower resolution 7. We now look what happens for different values of 4.

Claim (B.ii.1). If 6 = —1, we reach a contradiction.

Proof of Claim (B.ii.1). In this case we already have a (—1)-tower resolution of C'. This
resolution must be 7, since there is no more base-point on C},, and C,, intersects F,,.
But we observe that the curves Ei, ..., Erym_1, Crim are not connected and thus cannot
be the contracted locus of . Hence § = —1 is not possible. ]
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Claim (B.ii.2). If 6 = 0, we reach a contradiction.

Proof of Claim (B.ii.2). The base-point py 1 is the unique intersection point between
Clm and Eyi,,. After this blow-up, we have a (—1)-tower resolution of C', which must
be 7, for the same reason as in the case 6 = —1. The configuration of curves is shown
in Figure 2.20.

Figure 2.20: Case [ =1, 0 = 0.

The map n contracts first Cy1,,,+1 and then the chain Ey, ..., F;. After those con-
tractions the self-intersection of the image of Ej.; is —m + k, but must also be —1
and hence k = m — 1. From 6 = 0 we then obtain the equation d* = m(m? — 1).
Since m and m? — 1 are coprime, they are both squares, as d > 0. But if m > 2 is a
square, then m? — 1 is not a square. Hence the only integer solutions to the equation
are (d,m) = (0,—1),(0,0), (0,1), and thus § = 0 is also not possible. |

Claim (B.ii.3). If 6 > 1, we reach a contradiction.

Proof of Claim (B.ii.3). For i =1+ m,...,l +m+ d, the base-point p;;; is the unique
intersection point between C; and FE;. After those blow-ups we have a (—1)-tower
resolution of C'; which has to be 7 for the same reason as in the previous cases. The
configuration of curves is shown in Figure 2.21.

Figure 2.21: Case [ =1,6 > 1.

Since 6 > 1, the curve Ej,,,,1 has self-intersection —2. But we know that n contracts
E1m before the (—2)-curves Ey,, 1 and Ej,,,,1, which leads to a contradiction. W

This concludes (ii) of part (B) and hence finishes the proof of Proposition 2.4.22.
[l
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Remark 2.4.23. Below we see the configuration of exceptional curves of a resolution
of a non-extendable isomorphism between two curves of degree 13 with multiplicity
sequence (5(,4). All the unlabeled curves have self-intersection —2. Starting with
either of the (—1)-curves, one can successively contract all curves in this configuration,
except the other (—1)-curve. The image of this curve in P?, denoted C, then has
self-intersection 169 = 132, It remains to be verified whether such curves exist and
whether new counterexamples to Conjecture 2.1.1 may arise in this way. We remark
that C'\ Sing(C) ~ A!\ {0} and thus C is different from the unicuspidal examples of
degree 13 constructed in [Cos12].

Corollary 2.4.24. Let C C P? be an irreducible curve with one of the multiplicity se-
quences (3,2(3)), (32),2w)), (33),2), (B4, 213)), (4,3(3)), (4,35)), (42),33)), o7 (43),3).
Then either C' is unicuspidal or any open embedding P? \ C' — P? extends to an auto-
morphism of P2.

Proof. This is a direct consequence of Proposition 2.4.22. O

Remark 2.4.25. Note that in Corollary 2.4.24, only curves with the multiplicity se-
quences (3(3),2) and (4),3) can be unicuspidal.

Proposition 2.4.26. Let C C P? be a rational curve of degree d and multiplicity
sequence (my, ..., my) such that all multiplicities are even and there exists | < k such
that mpy1 = ... =my =2 and mj < mjp1+...+my for all j <1. Let p: P*\ C — P?
be an open emedding that does not extend to an automorphism of P2. Then C is
unicuspidal.

Proof. Suppose that C' is not unicuspidal. By Proposition 2.4.19, we can assume that
the multiplicity sequence of C' is non-constant. By Lemma 2.2.4, there exists a (—1)-

tower resolution 7: X = X,, =% ... 2 X; % X, = P? of C with base-points p1, . .., pn
and exceptional curves Fy,..., E,, and a (—1)-tower resolution 7: X — P2 of some

curve D C P? such that pom =n. Then E; U...U E,_; UC, is the exceptional locus
of n, being the support of an SNC-divisor that has a tree structure. The composition
7 0. ..o m is the minimal resolution of singularities of C. For ¢ = 1,..., k, we obtain
the following intersection numbers, by Lemma 2.4.8:

CkEZZmz— ij.

DPj=DPi
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In particular, Cj - By, = 2. Since m; < mjyq1 + ... +my for all j </, it follows that, for
t=1,...,1, the curves E; and F} do not intersect in X, and hence also not in X. Since
all m; are even, it follows that the intersection numbers C} - F; are even. It follows
moreover that the intersection numbers C,, - E; are also even for i = 1,...,[, since Fj
and F; do not intersect in X;. The curve F1 U ... U E,_; U C, is SNC and therefore
E; and C), do not intersect at all, for ¢ = 1,...,[. Since the multiplicities m;.1, ..., mx
are all equal to 2, it follows that C} does not intersect any of the curves Ey, ..., Fy_1,
but only Ej. Since C' is not unicuspidal, the curves C} and Ej, intersect in two distinct
points. We denote by § the self-intersection of Cy, which is given by § = d® — S°F | m2.
Since C' has a (—1)-tower resolution, we have § > —1.

Claim (1). If § = —1, we reach a contradiction.

Proof of Claim (1). We already have a (—1)-tower resolution of C' (see Figure 2.22).
Since ('} and E), intersect in two points and there is no more base-point on CY, there is
no more base-point at all. But we observe that C), and F;1U...UE)_; are not connected.
This is not possible and hence § must be > 0.

Figure 2.22: Case § = —1.

Claim (2). If § = 0, we reach a contradiction.

Proof of Claim (2). The genus-degree formula yields
k
i=1

Using § = 0, we get 3d — 2 = Zle m;. This identity implies that d is even. We can
thus find the equations

Adding those identities yields

g(g+3>+1:2%<%+1).
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The left-hand side of this equation is odd, whereas the right-hand side is even. This is
a contradiction and thus é = 0 is not possible. |

Claim (3). If § = 1, we reach a contradiction.

Proof of Claim (3). The base-point px.; is one of the intersection points between Cj
and Ej. The curve Cy. 1 has then self-intersection 0 in X}, and thus the base-point py o
is the unique intersection point between Cj.; and Fj,;. The configuration of curves
in Xg,o is shown in Figure 2.23. In the surface X, the curve Ej has self-intersection
—2. This implies that n first contracts C,, and then Ej,..., E;, in this order. By
assumption, the multiplicity sequence of C' is non-constant. This implies that there
exists a curve F; with j < k that intersects 3 other exceptional curves. But this implies
that the image of Ej.,, after contracting C,,, Fk, ..., E, is singular and hence cannot
be contracted. We thus reach a contradiction and conclude that § # 1.

Figure 2.23: Case 6 = 1.

Claim (4). If § > 2, we reach a contradiction.

Proof of Claim (4). Again, the base-point py is one of the intersection points between
Cy and Ejy. Since 7 is a (—1)-tower resolution of C| it follows that for i = k+1,... k+90,
the base-point p;,; is the unique intersection point between Cy and Fj, (see Figure 2.24).
This implies that in X, the curve Ej.; has self-intersection —2. We observe that Fj
also intersects the (—2)-curve Fj_; in X. Since 7 contracts Ej before Ej_; and Ej,q,
this leads to a contradiction.

Figure 2.24: Case § > 2.

This concludes the proof of Proposition 2.4.26. O
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Corollary 2.4.27. Let C C P? be an irreducible curve with one of the multiplcity
sequences (4,2()), (4@3),2(3)), or (6,2@)). If C is not unicuspidal, then any open em-
bedding P? \ C' — P? extends to an automorphism of P2.

Proof. This is a direct consequence of Proposition 2.4.26. O

2.4.4 A special sextic curve and the proof of Theorem 2

Proposition 2.4.28. Let C C P? be a curve of degree 6 and multplicity sequence
(3,2(7)) and let p: P>\ C' — P2\ D be an isomorphism, where D C P? is a curve. Then
C and D are projectively equivalent.

Proof. If ¢ extends to an automorphism of P? the claim is trivial, so we assume this is
not the case. Then by Lemma 2.2.4, there exists a (—1)-tower resolution 7: X — P? of
C and a (—1)-tower resolution n: X — P? of D such that 7 = pom. The curve C has 8
singular points py, ..., ps, where p; ;1 lies in the first neighborhood of p; forv=1,...,7.
The map 7 is a (—1)-tower resolution of C' and thus blows up the points py, ..., ps. We
denote by E; the exceptional curve of the blow-up of p;, for i = 1,...,8. After blowing
up those 8 points, the strict transform C' of C has self-intersection 62 — 32 —7-22 = —1.
We observe that C' and Ey intersect with multiplicity 2. Since no other base-point
of 7 lies on C it follows that also the strict transforms of C' and Eg intersect with
multiplicity 2 in X. But this means that Fy is not contracted by 7. It follows that Eg
is the last exceptional curve of 7w and n(Es) = D.

By Bézout’s theorem the points py, po, p3 are not collinear and hence there exists a
conic Q; C P? that passes through pi,...,ps. Again by Bézout’s theorem, it follows
that C and @ intersect transversally in some proper point of P? that is different from

. It then follows that the strict transform Q1 of ()1 in X transversally intersects Fj
and C. By symmetry there also exists a conic ()2 C P2 whose strict transform Q» by n
intersects F5 and D transversally. The configuration of curves in X is shown below.

To see that Ql and Qg do not intersect in X, we observe that 7w sends QQ to a
rational quartic curve with multiplicity sequence (2(3)) and singular points py, pa, ps. It
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then follows that Q1 - Qs = Q5 - m(Q3) —2—2—2—1—1 = 0. Moreover, the curves Q;
and Q, both have self-intersection —1 in X. We can thus construct a morphism p by
contracting the curves QQ, FEs, B>, E4 and @1, E5, Eg, E;. The rank of the Picard group
of X is 9, and hence the rank of the Picard group of the image of p is 1. It thus follows
that p is a morphism X — P2, The images of C, E, and F all have self-intersection 4
and are thus smooth conics in P2. The curves p(E;) and p(C) intersect in two distinct
points p, ¢ € P2, with multiplicity 1 in p and multiplicity 3 in ¢. The curves p(F,) and
p(Es) also intersect in p and ¢, but with multiplicity 3 in p and multiplicity 1 in ¢. The
configuration of the 3 conics is shown below.

Up to a linear change of coordinates, we can assume that the smooth conic p(E,) has
equation rz + y* = 0 and the points p and g are [1 : 0 : 0] and [0 : O : 1] respectively.
Conics that pass through the points [1:0: 0] and [0: 0 : 1] are of the form

ay® + bry + cxz + dyz = 0

where a,b,c,d € k. A smooth conic with this equation intersects zz + y?> = 0 with
multiplicity 3 in [1: 0 : 0] if and only if a = ¢ # 0, b = 0 and d # 0. Thus there exists
some A € k* such that p(C’) has equation xz + y? + Ayz = 0. Analogously, there exists
p € k* such that p(Fg) has equation zz + y* + uyz = 0.

We then find § € Aut(P?) that sends a point [z : y : 2] to [%z cy : ). Thus

0 preserves the conic zz + y2 = 0 and exchanges p(C) and p(Es). It follows that
0= p~lofopisan automorphism of X that exchanges C and Ey and sends F; to Eg_;
fori=2,...,7. But then no fon!isan automorphism of P? that sends C to D, and
hence C' and D are projectively equivalent. O

Before we are able to prove Theorem 2, we need to look at one more special case.

Lemma 2.4.29. Let C C P? be a curve of degree T and multiplicity sequence (5,2()).
Then every open embedding P? \ C' — P? extends to an automorphism of P2.
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Proof. Suppose that there exists an open embedding ¢: P? \ C' — P? that does not
extend to an automorphism of P2. Then by Lemma 2.2.4, there exists a (—1)-tower

resolution 7: X = X,, =% ... 3 X; =5 X, = P? of C with base-points py, ..., p, and
exceptional curves Fy, ..., E,, and a (—1)-tower resolution n: X — P? of some curve

D C P? such that por = 7. Then E;U... U E,_; UC, is the exceptional locus of
7, being the support of an SNC-divisor that has a tree structure. By Lemma 2.4.8, we
obtain the intersection number

C’n-Elzmi— ij.

Pj~P1

Thus either C, - By =3 or (), - E; = 1. Since C), can intersect E; only transversally in
at most one point, we conclude that C,, - EF; = 1 and that p3 is proximate to p;. For
the first 6 blow-ups of 7, we then obtain the configuration of curves illustrated below.

The curves E5 and Ej; have self-intersection —2 in X since the resolution 7 is obtained
by blowing up more points on Fg. Moreover, the map 7 contracts E3 before Fy and Ejy,
but this leads to a contradiction. O

We are now ready to give the proof of the second main result.

Proof of Theorem 2. We assume that C' is not a line, conic, or a nodal cubic. We can
also assume that C' is rational and has a unique proper singular point with one of the
multiplicity sequences in Table 2.1, by Corollary 2.4.5. Otherwise, ¢ extends to an
automorphism of P2. If C is unicuspidal, then C' and D are projectively equivalent by
Corollary 2.4.18. If C' is not unicuspidal, then ¢ extends to an automorphism of P? by
Corollary 2.4.10, Corollary 2.4.21, Corollary 2.4.24, Corollary 2.4.27, and Lemma 2.4.29,
except when C'is of degree 6 with multiplicity sequence (3,2(7)) or C'is of degree 8 with
multiplicity sequence (3(7)). If C' has multiplicity sequence (3,2(7)), the claim follows
from Proposition 2.4.28. If C' has multiplicity sequence (3(7)), then C'\ Sing(C) is
isomorphic to A\ {0}, by Proposition 2.4.19. O

Remark 2.4.30. For all known examples of irreducible curves C' C P? that have non-
extendable open embeddings P?\ C' < P2, we have that C'\ Sing(C) ~ P'\{py,...,pr},
where k € {1,2,3,9}. There are only very few known non-unicuspidal examples. Do
there exist examples for any k£ € N?
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2.4.5 A counterexample of degree 8

It follows from Theorem 2 that if two irreducible curves C, D C P? of degree < 8 are
counterexamples to Conjecture 2.1.1, then C' and D are of degree 8 and have multiplicity
sequence (3(7)). In this section, we show that such counterexamples do indeed exist.
First we need the following auxiliary construction.

Lemma 2.4.31. We denote the conic
ANzy+azz+yz=0
and for XA € k\ {0, —1} the conics
Dy:a? — (14 Nay — Azz — (1+ Nyz =0,

1 1 1
A,\:z2—<1+x)xy—xxz—(1+X)yz:0.

Then the curves A, Ty and Ay intersect in [0 : 1 : 0] with multiplicity 3 for each pair.
Moreover, the curves

e A and Ty intersect in [0:0: 1],
e A and A, intersect in [1:0: 0],
e 'y and A, intersect in [A:0: 1],

and in no other point apart from [0 :1:0]. The configuration of these conics is shown
below.

[0:1:0]‘

Furthermore, there exists an automorphsim of P? that preserves A and exchanges T'y
and Ay if and only if A = 1.
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Proof. The curves A, I'y and A, are given by explicit equations and it is a straightfor-
ward computation to determine the intersection points and multiplicities.

To prove the last claim, suppose that § € Aut(P?) = PGL3(k) preserves A and
exchanges I'y and A,. Then 6 fixes [0 : 1 : 0] and exchanges [1 : 0 : 0] and [0: 0 : 1].
Those conditions imply that € is of the form [x : y : 2] — [az : y : Bz], for some
a, f € k*. The image of A under 6 then has equation Sxy + afzrz + ayz = 0. Since A
is preserved, it follows that o = f = a8 and hence « = § = 1. The map 6 also fixes
the intersection point [A : 0 : 1] between I'y and A,. Since O([A: 0:1]) =[1:0: Al
it follows that A = 1. For the converse, suppose that A = 1. Then the automorphism
[x:y:z]—[z:y:x] preserves A and exchanges I'; and A;. O

Proof of Theorem 3. With the same notations as in Lemma 2.4.31, we choose some
A€ k\{0,£1} and conics A, I' = T'y, A = A,. We denote moreover by L, the line
y = 0 and by L, the line through [0 : 1 : 0] and [A : 0 : 1]. The line L) has equation
x — Az = 0 and intersects A in the points [0 : 1 : 0] and 1+ X : —1: 1+ §]. The
configuration of those curves in shown below.

We then blow up the points [1 : 0: 0], [0:0: 1] and [A : 0 : 1], with exceptional
curves Fy, Fy, and Ej respectively. The configuration after these blow-ups is shown
below. By abuse of notation, we use the same names for the strict transforms of all
curves. Curves with self-intersection —1 are drawn with thick lines and all other self-
intersection numbers are indicated, except if they are —2.

P

Next, we blow up the intersection point ¢ between L, and Ej3, with exceptional
curve F4. The curves I, A and A each intersect with multiplicity 3 in the point p. We
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then blow up p and two points proximate to p (with exceptional curves Ej, Eg, E7)
so that the strict transforms of I'; A and A are disjoint. We thus obtain the following
configuration of curves.

Finally, we blow up the intersection point r between A and E7; and two points
proximate to r, with exceptional curves Eg, Fy, Fjp, and obtain the configuration
shown below. We denote the surface obtained after these blow-ups by X and denote
the composition of all 10 blow-ups by p: X — P2. The curves E, E,, E,, E,o are
dashed and unlabeled because they will not be used for what follows.

The rank of the Picard group of X is 11, since this surface is obtained from P? by
10 blow-ups. We can now find a morphism 7: X — P2, by contracting the 10 curves
A, Es, L,, E7, Eg, E5, Ly, A, Eg, Ey, in this order. The image C' = 7(I') is then a
curve of degree 8 in P? with multiplicity sequence (3(7)). Likewise, we find a morphism
n: X — P? where we first contract I" instead of A. The image D := n(A) is then also a
curve of degree 8 with multiplicity sequence (3(7)). The complements P?\ C' and P?\ D
are both isomorphic to the complement of the union of the curves I', A, Ejs, L,, E7,
Eg, Es, Ly, A, Eg, Fy in X.

Suppose now that C' and D are projectively equivalent, i.e. there exists § € PGL3(k)
with 8(C) = D. We observe that the base-points of 7 are completely determined by
C, since 7 is the minmal SNC-resolution of C' followed by the blow-up of the unique
intersection point between E3 and E7. Likewise, the base-points of 1 are determined by
D. Tt follows that 6 := 1! o6 ox defines an automorphism of X that exchanges I" and
A and preserves the other exceptional curves. But then 6 induces an automorphism



60 CHAPTER 2. COMPLEMENTS OF PROJECTIVE PLANE CURVES

of P? (via p) that exchanges the conics I'y A C P? and preserves A, L, and L. But
this is not possible by Lemma 2.4.31, since we have chosen A # 1. We thus reach a
contradiction and conclude that C' and D are not projectively equivalent. O]

Remark 2.4.32. The construction in the proof of Theorem 3 also works if the base-field
k is not algebraically closed, except if the fieldk has only 2 or 3 elements. In those cases
we cannot choose A € k\ {0, £1} = @.
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Chapter 3

Exceptional isomorphisms between
complements of affine plane curves

JEREMY BLANC, JEAN-PHILIPPE FURTER, AND MATTIAS HEMMIG!
(arXiv:1609.06682v3)

ABSTRACT. This article describes the geometry of isomorphisms between com-
plements of geometrically irreducible closed curves in the affine plane A2, over an
arbitrary field, which do not extend to an automorphism of AZ.

We show that such isomorphisms are quite exceptional. In particular, they occur
only when both curves are isomorphic to open subsets of the affine line A!, with
the same number of complement points, over any field extension of the ground
field. Moreover, the isomorphism is uniquely determined by one of the curves, up
to left composition with an automorphism of A2, except in the case where the
curve is isomorphic to the affine line A! or to the punctured line A!\ {0}. If one
curve is isomorphic to A!, then both curves are equivalent to lines. In addition,
for any positive integer n, we construct a sequence of n pairwise non-equivalent
closed embeddings of A!\ {0} with isomorphic complements. In characteristic 0
we even construct infinite sequences with this property.

Finally, we give a geometric construction that produces a large family of exam-
ples of non-isomorphic geometrically irreducible closed curves in A? that have
isomorphic complements, answering negatively the Complement Problem posed
by Hanspeter Kraft [Kra96]. This also gives a negative answer to the holomorphic
version of this problem in any dimension n > 2. The question had been raised by
Pierre-Marie Poloni in [Pol16].

!The authors gratefully acknowledge support by the Swiss National Science Foundation Grants “Bi-
rational Geometry” PPOOP2 128422 /1 and “Curves in the spaces” 200021 169508 and by the French
National Research Agency Grant “BirPol”, ANR-11-JS01-004-01. The article was written mainly dur-
ing the second author’s stay in Basel, for one year.
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3.1 Introduction

In the Bourbaki Seminar Challenging problems on affine n-space [Kra96|, Hanspeter
Kraft gives a list of eight basic problems related to the affine n-spaces. The sixth one
is the following:

Complement Problem. Given two irreducible hypersurfaces F, F' C A™ and
an isomorphism of their complements, does it follow that £ and F' are
isomorphic?

Recently, Pierre-Marie Poloni gave a negative answer to the problem for any n > 3
[Pol16]. The construction is given by explicit formulas. There are examples where both
E and F are smooth, and examples where E' is singular, but F' is smooth. This article
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deals with the case of dimension n = 2. The situation is much more rigid than in
dimension n > 3, as we discuss in Theorem 4.

We will work over a fixed arbitrary field k and we will only consider curves, surfaces,
morphisms, and rational maps defined over k, unless we explicitly state so (and will then
talk about k-curves, k-surfaces, k-morphisms, and k-rational maps, where k denotes the
algebraic closure of k.) We recall that two closed curves C, D C A? are equivalent if there
is an automorphism of A? that sends one curve onto the other. Note that equivalent
curves are isomorphic. A variety (defined over k) is called geometrically irreducible if it
is irreducible over k. A line in A? is a closed curve of degree 1.

Theorem 4. Let C C A? be a geometrically irreducible closed curve and let p: A%\
C < A? be an open embedding. Then, the complement D C A? of the image of ¢ is
also a geometrically irreducible closed curve. Assuming that ¢ does not extend to an
automorphism of A2, the following holds:

(1) Both C and D are isomorphic to open subsets of A, with the same number of
complement points. This means that there exist square-free polynomials P, Q) € k|t]
with the same number of roots in k and such that

1
t, 6])

Moreover, the same result holds for every field extension k' /k.

1
C' ~ Spec(k|t, ﬁ]) and D ~ Spec(k|

(2) If C is isomorphic to A, then both C' and D are equivalent to lines.

(3) If C is not isomorphic to A' or AY\ {0}, then ¢ is uniquely determined up to a left
composition with an automorphism of A2.

Corollary 3.1.1. If C C A? is a geometrically irreducible closed curve not isomorphic
to A\ {0}, then there are at most two equivalence classes of closed curves whose
complements are isomorphic to A%\ C.

Corollary 3.1.2. Let C C A? be a geometrically irreducible closed curve. Then there
exists at most one closed curve D C A%, up to equivalence, such that C' and D are
non-isomorphic, but have isomorphic complements.

Corollary 3.1.3. Let C C A? be a geometrically irreducible closed curve, not isomor-
phic to Al or A\ {0}. Then, the group Aut(A% C) = {g € Aut(A?) | ¢(C) = C},
which can be naturally identified with a subgroup of Aut(A?\ C), has index 1 or 2 in
this group.

Corollary 3.1.4. If C C A? is a singular, geometrically irreducible closed curve and
0: A2\ C — A%\ D is an isomorphism, for some closed curve D, then ¢ extends to
an automorphism of AZ.
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Corollary 3.1.4 shows in particular that the Complement Problem for n = 2 has a
positive answer if one of the curves is singular, contrary to the case where n > 3, as
pointed out before. This is also different from the case of P2, where there exist non-
isomorphic geometrically irreducible closed curves with isomorphic complements [Bla09,
Theorem 1], but where all these curves are necessarily singular (see Proposition 3.7.1
below).

Theorem 4 moreover shows that the Complement Problem for n = 2 has a pos-
itive answer if one of the curves is not rational (this was already stated in [Kra96,
Proposition 3| and does not need all tools of Theorem 4 to be proven, see for instance
Corollary 3.2.7 below). More generally, the answer is positive when one of the curves
is not isomorphic to an open subset of A'. The circle of equation x? + y? = 1 over R is
an example of a smooth rational affine curve which is not isomorphic to an open subset
of A'. Note that [Kra96, Proposition 3] says in addition that the Complement Problem
for n = 2 and k = C has a positive answer if one of the curves has Euler characteristic
one; this is also provided by Theorem 4.

Corollary 3.1.1 describes a situation quite different from the case of dimension n > 3,
where there are infinitely many hypersurfaces £ C A", up to equivalence, that have
isomorphic complements [Poll6, Lemma 3.1]. It is also in contrast with the case of
P2, where we can find algebraic families of closed curves in P2, non-equivalent under
automorphisms of P?, that have isomorphic complements (and thus infinitely many if
k is infinite). This follows from a construction in [Cos12|, see Proposition 3.7.3 below.

All tools necessary to obtain the rigidity result (Theorem 4) are developped in
Section 3.3, using some basic results given in Section 3.2. The proof is carried out at
the end of Section 3.3. It uses embeddings into various smooth projective surfaces and
a detailed study of the configuration of the curves at infinity. We study in particular
embeddings into Hirzebruch surfaces that have mild singularities on the boundary and
then study blow-ups of these, and completions by unions of trees.

Our second theorem is an existence result which demonstrates the optimality of
Theorem 4.

Theorem 5.

(1) There exists a closed curve C C A?, isomorphic to A' \ {0}, whose complement
A%\ C' admits infinitely many equivalence classes of open embeddings A\ C' — A?
into the affine plane. Moreover, the set of equivalence classes of curves with this
property is infinite.

(2) For every integern > 1, there exist pairwise non-equivalent closed curves C1, . .., C,
C A?, all isomorphic to A*\ {0}, such that the surfaces A2\ C}, ..., A2\ C, are all
isomorphic. Moreover, if char(k) = 0, we can find an infinite sequence of pairwise
non-equivalent closed curves C; C A%, i € N, such that the surfaces A*\ C;, i € N,
are all isomorphic.
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(3) For each polynomial f € K[t] of degree > 1, there exist two non-equivalent closed
curves C, D C A2, both isomorphic to Spec(k|t, %]), such that the surfaces A*\ C
and A%\ D are isomorphic. Moreover, the set of equivalence classes of the curves
C' in such pairs (C, D) is infinite.

A constructive proof of Theorem 5 is given in Section 3.4. We use explicit equations
and work with birational maps which either preserve one projection A? — A! or are
compositions of a small number of them.

We then give counterexamples to the Complement Problem in dimension 2:

Theorem 6. There exist two geometrically irreducible closed curves C, D C A? which
are not isomorphic, but whose complements A*\ C and A?\ D are isomorphic. Fur-
thermore, these two curves can be chosen of degree 7 if the field admits more than 2
elements and of degree 13 if the field has 2 elements.

The proof is given in Section 3.5. We first establish Proposition 3.5.1 (mainly via
blow-ups of points on singular curves in P?) which asserts that, for each polynomial
P € k[t] of degree d > 1 and each A € k with P()\) # 0, there exist two closed curves
C,D C A? of degree d* — d + 1 such that A?\ C and A? \ D are isomorphic and such
that the following isomorphisms hold:

C' ~ Spec (k[t, %]) and D ~ Spec (k[t, é]), where Q(t) = P</\ + %) - ¢des(P)

Then, the proof of Theorem 6 follows by providing an appropriate pair (P, \) for every
field. The case of infinite fields is quite easy. Indeed, if k is infinite and P € k]t]
is a polynomial with at least 3 roots in k, then Spec(k[t, ]) and Spec(k][t, %]) are
not isomorphic, for a general element A € k (Lemma 3.5.4). This shows that the
isomorphism type of counterexamples to the Complement Problem is as large as possible
(indeed, by Theorem 4(1), any curves C, D C A? providing a counterexample to the
Complement Problem are necessarily isomorphic to open subsets of A! with at least
three complement k-points).

We finish this introduction by presenting some easy consequences of Theorem 6 that
are further elaborated in Section 3.6:

(1) The negative answer to the Complement Problem for n = 2 directly gives a
negative answer for any n > 3 (Proposition 3.6.1): Our construction produces, for
each n > 3, two geometrically irreducible smooth closed hypersurfaces E, F C A"
which are not isomorphic, but whose complements A™ \ E and A™ \ F are isomorphic
(Corollary 3.6.2). All the hypersurfaces constructed this way are isomorphic to A" =2 x C
for some open subset C' C A'. This does not allow us to give singular examples like
those of [Pol16], but provides a different type of example.

(71) Choosing k = C, our construction gives families of closed complex curves C, D C
C? whose complements are biholomorphic (because they are isomorphic as algebraic
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varieties), but which are not themselves biholomorphic (Proposition 3.6.3). From this
there directly follows the existence of algebraic hypersurfaces E, ' C C" which are
complex manifolds that are not biholomorphic, but have biholomorphic complements,
for every n > 2 (Corollary 3.6.4). This answers a question asked in [Pol16]. Note that in
the counterexamples of [Pol16], if both hypersurfaces are smooth, then they are always
biholomorphic (even if they are not isomorphic as algebraic varieties).

The authors thank Hanspeter Kraft, Lucy Moser-Jauslin and Pierre-Marie Poloni
for interesting discussions during the preparation of this article.

3.2 Preliminaries

In the sequel, k is an arbitrary field and k its algebraic closure. Unless otherwise
specified, all varieties of dimension at least one are k-varieties, i.e. algebraic varieties
defined over k, or equivalently k-varieties with a k-structure. When we say for example
rational, resp. isomorphic, we mean k-rational, resp. k-isomorphic (which means that
the maps are defined over k). Nevertheless, we will often have to consider k-varieties,
but we will then always state so explicitly. A variety is called geometrically rational,
resp. geometrically irreducible, if it is rational, resp. irreducible, after the extension
to k. When dealing with “points” (but also with “base-points” or “complement points”)
we will always specify k-points or k-points. Finally, let us recall that a k-base-point
of a k-birational map f: X --» Y, where X and Y are smooth projective k-surfaces,
is either proper, when it belongs to X, or infinitely near, when it does not belong to
X, but to a surface obtained from X via a finite number of blow-ups. If we assume
furthermore that f, X,Y are defined over k, then a k-base-point of f is defined in the
following obvious way: it is either a proper k-base-point defined over k, or it is an
infinitely near k-base-point of f which is a k-point of a surface obtained from X via
a finite number of blow-ups of k-points. Of course, there is no reason for a birational
map f: X --» Y to admit a k-base-point. For example, when k = Fy the birational
involution of P? given by [x : y : 2] = [2?2 +y® +yz : w2 +y? + 2% 1 22 + 2y + 27
admits no k-base-point (but has three base-points over Fg = Fs[u]/(u® +u + 1), namely
[1:u:u?+u+1], [u:v?+u+1:1]and [u*+u+1:1:u]). Similar examples of degree
5 for k = R are classical and can be found in [BM15, Example 3.1]. Also, a closed curve
in A% does not necessarily admit a k-point. For example, the geometrically irreducible
closed curve of equation 2% 4+ 3% 4+ 1 = 0 admits no R-point.

Working over an algebraically closed field, every birational map ¢: X --+ Y between
two smooth projective irreducible surfaces X and Y admits a resolution, which consists
of two birational morphisms n: Z — X and n: Z — Y, where Z is a smooth projective
irreducible surface, such that the following diagram is commutative.
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Let us also recall that a birational morphism between two smooth projective irreducible
surfaces is a composition of finitely many blow-downs. We can moreover choose this
resolution to be minimal, which corresponds to asking that no irreducible curve of Z
of self-intersection (—1) be contracted by both n and 7. The morphism 7 is obtained
by blowing up all base-points in X of ¢. Analogously 7 is obtained by blowing up all
base-points in Y of ¢ 1. In Lemma 3.2.5(2), we will prove that under some additional
hypotheses (satisfied by all birational maps that we will consider), such a miminal
resolution also exists over an arbitrary field k, and that moreover the morphisms 7 and
7 are obtained by sequences of blow-ups of k-points (which may be proper or infinitely
near).

3.2.1 Basic properties

In order to study isomorphisms between affine surfaces, it is often interesting to see the
affine surfaces as open subsets of projective surfaces and then to see the isomorphisms as
birational maps between the projective surfaces. Recall that a rational map p: X --» Y
between smooth projective irreducible surfaces is defined on an open subset U C X such
that F' = X \ U is finite. If C is an irreducible curve of the surface X, its image is
defined by ¢(C) := ¢(C'\ F'). We then say that C' is contracted by ¢ if ¢(C') is a point.
The aim of this section is to establish Proposition 3.2.6, that we often use in the sequel.
Its proof relies on some easy results that we begin by recalling: Proposition 3.2.3,
Corollary 3.2.4 and Lemma 3.2.5.

We begin with the following definition, that we will frequently use, in particular to

extend birational maps of A? to birational maps of P%:
Definition 3.2.1. The morphism
A? — P2
(,y) = [z:y:]]

is called the standard embedding. It induces an isomorphism A% —» P2 \ Loo, where
Lo, C P? denotes the line at infinity given by z = 0.

With this embedding every line in A2, given by an equation ax + by = ¢ where a, b, ¢
are elements of k and a, b are not both zero, is the restriction of a line of P2, given by
the equation ax + by = cz and distinct from L.

Definition 3.2.2. For each birational map ¢: P* --» P?, we define J, C P* to be the
reduced curve given by the union of all irreducible k-curves contracted by .

Proposition 3.2.3. Let ¢: P2 ——» P? be a birational map.

(1) The curve J, is defined over k, i.e. is the zero locus of a homogeneous polynomial
f € Klz,y, z].
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(2) The restriction of ¢ induces an isomorphism P*\ J, — P2\ J,-1. Moreover, the
number of irreducible components of J, and J,—1 over k are equal.

Proof. (1). The maps ¢ and ¢~! may be written in the form

o: lx:iy:zl— [solz,y,2):s1(x,y,2): so(x,y,2)]  and
et [ziyizle oy, 2) s a(zy,2) gy, )],

where sg, $1,52 € k[z,y, 2] (as well as qo, q1,¢2) are homogeneous polynomials of the
same degree and with no common factor. Since p~top = id, there exists a homogeneous
polynomial f € k[z,y, 2] such that go(s0, 51, 52) = 2f, q1(50, 51, 52) = yf, q2(50, 51, 52) =
z2f. We now observe that J, is the zero locus of f. Indeed, the polynomial f is zero
along an irreducible k-curve if and only if this curve is sent by ¢ to a base-point of !
In characteristic zero, note that J, is also the zero locus of the Jacobian determinant
associated to .

(2) By extending the scalars, we may assume that k = k is algebraically closed. We
take a minimal resolution of ¢, with the commutative diagram

where n and 7 are birational morphisms. The morphism 7, resp. m, is the sequence of
blow-ups of the base-points of ¢, resp. ¢~ 1.

By computing the Picard rank of X, we see that  and 7 contract the same number of
irreducible curves of X. Let n be this number. We then denote by £ C X, resp. F C X,
the union of the n irreducible curves contracted by 7, resp. 7. The map ¢ then restricts
to an isomorphism

P2\ n(EUF) = P’\n(EUF).

We now show that n(E U F') = n(F). Since n(E) consists of finitely many points,
it suffices to see that these are contained in the curves of n(F'). Each point p of n(E)
corresponds to a connected component of E, which contains at least one (—1)-curve
& C E. The curve &€ is not contracted by =, by minimality, and hence is sent by 7 onto
a curve m(£) C P? of self-intersection > 1. This implies that & intersects F' and thus
p € n(F). We similarly get that 7(E U F) = n(F), and obtain that ¢ restricts to an
isomorphism

P?\ n(F) = P*\ n(E).

Since n(F) is a closed curve in P? whose irreducible components are contracted by ¢, we
have n(F) = J,. Similarly, we get 7(E) = J,-1. Moreover, the number of k-irreducible

components of n(F) is equal to the number of irreducible components of F'\ E, which is
equal to the number of irreducible components of £\ F. This completes the proof. [

Corollary 3.2.4. Let T' C P? be a closed curve and ¢: P2\T < P? an open embedding.
Then the complement of (P> \T') is a closed curve A C P* with the same number of
irreducible components over k as I.
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Proof. Let ¢: P? ——» P? be the birational map induced by ¢. Proposition 3.2.3 implies
that J, C I', that J; and Js-1 have the same number of irreducible components over
k, and that ( induces an isomorphism P?\ J; — P2\ J,-1

If J, = T, the proof is finished. Otherwise, I = I'\ J; is a closed curve of
P2\ J;, which has the same number of irreducible components over k as the closed
curve A’ = @(I") of P? \ Jg-1. The result follows with A = A"U Js-1. O

Lemma 3.2.5. Let ¢: X --» Y be a birational map between two smooth projective
surfaces that restricts to an isomorphism U = X\ C — Y\ D =V, where C, resp. D,
is the union of geometrically irreducible closed curves Cy,...,C, in X, resp. Dq,..., Dy
in'Y. Then, the following holds.

(1) All k-base-points of p, resp. @', are k-rational and belong to C, resp. D.

(2) The map ¢ admits a minimal resolution which is given by birational morphisms
n: Z — X and 7: Z — Y, which are blow-ups of the base-points of ¢ and o~ *
respectively, as shown in the following diagram:

(3) In the above resolution, we have n~(U) = 7~ (V).

(4) For eachi € {1,...,r}, there exists j € {1,...,s} such that either ¢ restricts to a
birational map C; --» D; or ¢(C;) is a k-point of D;. In this latter case, the curve
C; is rational (over k).

Proof. We argue by induction on the total number of k-base-points of ¢ and ¢~'. If
there is no such base-point, then ¢ is an isomorphism and everything follows.

Suppose now that ¢ € Y is a proper k-base-point of ¢~'. As ¢ induces an isomor-
phism U — V, we have ¢ € D;(k) for some j € {1,...,s}. There is moreover an
irreducible k-curve of Y contracted by ¢ onto ¢, which is then equal to C; for some
i€ {1,...,r}. Since C; is defined over k, so is its image (the generic point of C; is
defined over k and is sent onto the k-point ¢), i.e. ¢ is k-rational. Let e: Y = Y be
the blow-up of ¢ and let E C Y be the exceptlonal divisor (which is 1somorphlc to P1).
The birational map ¢ = ¢! o pr X —-» Y induces an isomorphism U — V, where
V=c'(V)=Y\(DiU---UD,UE), and where D; C Y is the strict transform of D;
fort=1,...,s. The E—base points of »~! correspond to the k-base-points of ¢! from
which the point ¢ is removed and the k-base-points of ¢ coincide with the k-base-points
of p.

We may thus apply the induction hypothesis and obtain assertions (1)—(4) for ¢.
Denoting by 17: Z — X and 7: Z — Y the blow-ups of the base-points of ¢ and ¢!
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respectively (which give the resolution of ¢ as in (2)), we obtain (1)—(2) for ¢ with n = 7,
7 = eft. Assertion (3) is given by n~'(U) = 7~ 1(U) R V) = 7 e (V) =
7~ H(V). Assertion (4) follows from the assertion for ¢ and from the fact that e restricts
to a birational morphism D; — D; for each i, and sends E ~ P! onto a k-point of D;.

In the case where ¢~ admits no k-base-point, a symmetric argument can be applied
to ¢! by starting with a proper k-base-point of ¢. O

In the sequel, we will frequently use the following result.

Proposition 3.2.6. Let C C A? be a geometrically irreducible closed curve and let
0: A2\ C < A? be an open embedding. Then, there erists a geometrically irreducible
closed curve D C A? such that o(A2\ C) = A%\ D. Denote by C and D the closures
of C and D in P2, using the standard embedding of Definition 3.2.1. Denote also by
Lo, = P2\ A? the line at infinity and by ¢: P --» P? the birational map induced by .
Then, one of the following three possibilities holds:

(1) We have $(C) = D. Then, the map ¢ extends to an automorphism of A? = P?\ L,
that sends C' onto D.

(2) We have $(C) = Lp>. Then, the curve D is a line in A%, i.e. D is a line in P? and
@ extends to an isomorphism A% = P?\ Lo, — P?>\ D that sends C' onto Lo, \ D.
In particular, C' is equivalent to a line.

(3) The map ¢ contracts the curve C to a k-point of P2. Then, the curve C (and
therefore, also the curve C) is a rational curve (i.e. is k-birational to P').

Proof. The restriction of ¢ to P?\ (L, U C) = A%\ C gives the open embedding
@: A2\ C = A? — P2 By Corollary 3.2.4, we obtain an isomorphism P?\ (L., UC) —
P2\ A, for some curve A C P2, which is the union of two k-irreducible closed curves of
P2, Since Lo is included in A, there exists an irreducible closed k-curve D of A? such
that A = Lo, U D. As a conclusion, the restriction of ¢ at the source and the target
induces an isomorphism

P2\ (Lo UC) — P2\ (Lo U D).

It follows that (A% \ C) = A%\ D. The equality D = A? \ ¢(A?\ C') proves that the
curve D is defined over k and is therefore geometrically irreducible. By Lemma 3.2.5(4),
one of the following three possibilities holds:

(1) We have (C) = D. Hence, the restriction of ¢ at the source and the target
provides an automorphism of A? = P?\ L., (Proposition 3.2.3).

(2) We have $(C) = L. Then, the restriction of ¢ at the source and the target
provides an isomorphism P?\ L., — P?\ D (again by Proposition 3.2.3). Since
the Picard group of P?\ T is isomorphic to Z/ deg(T")Z, for each irreducible curve
I', the curve D must be a line in P2,
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(3) The map ¢ contracts the curve C to a k-point of P?. Then, by Lemma 3.2.5(4)
this point is necessarily a k-point and the curve C' is k-rational. O

Corollary 3.2.7. Let C C A? be a geometrically irreducible closed curve. If C' is not
rational (i.e. not k-birational to P'), then every open embedding A* \ C' — A? extends
to an automorphism of AZ.

Proof. This follows from Proposition 3.2.6 and the fact that cases (2)-(3) occur only
when (' is rational. O

Remark 3.2.8. Tt follows from Corollary 3.2.7 that the automorphism group Aut(A?\C),
where C'is a non-rational geometrically irreducible closed curve, may be identified with
the group Aut(A? C) of automorphisms of A? preserving C. By [BS15, Theorem 2],
this group is finite (and in particular conjugate to a subgroup of GLy(k) if char(k) = 0,
as one can deduce from |DaGi75, Theorem 5|, [Serr77, §6.2, Proposition 21| or from
[Kam79, Theorem 4.3]). For a general discussion on the group Aut(A?\ C), where C
is a geometrically irreducible closed curve, see Section 3.3.5 below.

We find it interesting to prove that case (3) of Proposition 3.2.6 occurs only when
C intersects L., in at most two k-points, even if this will not be used in the sequel.

Corollary 3.2.9. If C C A% is a geometrically irreducible closed curve such that C
intersects Lo, = P?\A? in at least three k-points, then every open embedding A*\C' — A?
extends to an automorphism of AZ.

Proof. We may assume that k = k. Assume by contradiction that the extension
$: P2 ——» P? does not restrict to an automorphism of A%, By Proposition 3.2.6, the
curve C is contracted by ¢ (because C' is not equivalent to a line, so (2) is impossible).
We recall that ¢ restricts to an isomorphism A? \ €' = P?\ (L, UC) — A2\ D =
P2\ (L U D) (Proposition 3.2.6) and that C' C J; C Lo UC, Js-1 C Lo, U D, where
J, Js—1 have the same number of irreducible components (Proposition 3.2.3). We take
a minimal resolution of ¢ which yields a commutative diagram

We first observe that the strict transforms Lp2,C C X of Ly, C by 7 intersect in at
most one point. Indeed, otherwise the curve Lpz would not be contracted by 7, because
7 contracts C, and is sent onto a singular curve, which then has to be D. We get
Js = C, Jy-1 = Ly and get an isomorphism P? \ C — P?\ L, which is impossible,
because C has degree at least 3.

Secondly, the fact that Lp2,C C X intersect in at most one point implies that n
blows up all points of C'N L., except at most one. Since Jp-1 C DU Ly, there are
at most two (—1)-curves contracted by 1. But L. and C intersect in at least three
points, so we obtain exactly two proper base-points of ¢, corresponding to exactly two
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(—1)-curves Ey, B, C X contracted to two points py,p, € C N Ly by 1. Moreover,
the identity Js;-1 = D U Lo, implies that J; = C'U L (Proposition 3.2.3). We write
E! = n~1(p;) \ E; and find that 7 contracts F = E} U E; U C U Lps.

We now show that E; - F' > 2, for i = 1,2, which will imply that 7(E;) is a singular
curve for i = 1,2, and lead to a contradlctlon since E;, B are sent onto L., and D by
7. As E;UE! = n7(p;), it is a tree of rational curves, which intersects both C and Lpe
since p; € Uﬂ L. If E! is empty, then E; - C>1and E;- LPQ > 1, whence E;- F > 2 as
we claimed. If E! is not empty, then E; - E! > 1. The only possibility to get E; - FF <1
would thus be that E; - El =1, E; - C =FE; - Lp2 = 0. The equality E; - B} = 1 implies
that E! is connected, and E; - C’ E;- Lpz = 0 implies that C- E!'>1 and L]pz E! > 1.
Since Z]pz and C intersect in a point not contained in El it follows that F' contains a
loop and thus cannot be contracted. O]

Remark 3.2.10. In case (3) of Proposition 3.2.6, it is possible that C intersects the
line L, in two k-points. This is the case in most of our examples (see for example
Lemma 3.4.2 or Lemma 3.4.9). The case of one point is of course also possible (see for
instance Lemma 3.2.12(1)).

We will also need the following basic algebraic result.

Lemma 3.2.11. Let f € k[x,y] be a polynomial, irreducible over k, and let C C A?
be the curve given by f = 0. Then, the ring of functions on A?\ C and its subset of
invertible elements are equal to

O(A’\ C) = K[z, y, '] Ck(z,y), OA’\C)" = {Af" | A e k' ,neZ}.
In particular, every automorphism of A? \ C permutes the fibres of the morphism
A%\ C — A"\ {0}

given by f.

Proof. The field of rational functions of A? \ C' is equal to k(z,y). We may write any
element of this field as u/v, where u,v € k[z,y| are coprime polynomials, v # 0. The
rational function is regular on A%\ C' if and only if v does not vanish on any k-point
of A2\ C. This means that v = \f", for some A € k*, n > 0. This provides the
description of O(A%\ C') and O(A?\ C)*. The last remark follows from the fact that
the group O(A? \ C)* is generated by k* and one single element g, if and only if this
element ¢ is equal to Af*! for some \ € k*: Therefore, every automorphism of A%\ C
induces an automorphism of O(A? \ C') which sends f onto Af*!. O

3.2.2 The case of lines

Proposition 3.2.6 shows that we need to study isomorphisms A%\ C' — A2\ D which
extend to birational maps of P? that contract the curve C' to a point. One can ask
whether this point might be a point of A? (and would thus be contained in D) or



3.2. PRELIMINARIES 75

belongs to the boundary line Ly, = P?\ A?. As we will show (Corollary 3.3.6), the first
possibility only occurs in a very special case, namely when C' is equivalent to a line.
The case of lines is special for this reason, and is treated separately here.

Lemma 3.2.12. Let C' C A? be the line given by v = 0.

(1) The group of automorphisms of A?\ C is given by:

Aut(A?\ C) = {(z,y) = (A, pay + s(z,27) [ A\ p € K'n € Z,s € K[z, 27 ]}

(2) Every open embedding A\ C — A? is equal to Yo, where a € Aut(A?\ C) and
v A%\ C — A? extends to an automorphism of A%. In particular, the complement
of its image, i.e. the complement of Ya(A?\ C) = (A% \ C), is a curve equivalent
to a line.

Proof. To prove (1), we first observe that each transformation (x,y) — (Az®!, pa™y +
s(z,z71)) actually yields an automorphism of A?\ C. Then we only need to show that
all automorphisms of A?\ C are of this form. An automorphism of A2\ C corresponds to
an automorphism of k[z, y, z7!] which sends = to Az*!, where \ € k* (Lemma 3.2.11).
Applying the inverse of (z,y) — (Az*!,y), we may assume that z is fixed. We are left
with an R-automorphism of R[y], where R is the ring k[z, x~!]. Such an automorphism is
of the form y — ay+0b, where a € R*, b € R. Indeed, if the maps y — p(y) and y — q(y)
are inverses of each other, the equality y = p(¢q(y)) implies that degp = degq = 1. This
actually proves that p has the desired form, i.e. p = ay + b, where a € R*, b € R.

To prove (2), we use Proposition 3.2.6 and write ¢ as an isomorphism A? \ C =
A%\ D where D is a geometrically irreducible closed curve, and only need to see that
D is equivalent to a line. We write ¢ = ¢!, choose an equation f = 0 for D (where
f € k[z,9] is an irreducible polynomial over k), and get an isomorphism ¢*: O(A? \
C) = k[z,y, 27 — O(A%\ D) = k[z,y, f~!] that sends x to \f*! for some A\ € k*
(since the group O(A?\ D)* is generated by k* and the single element *(z), this
forces ¥*(x) = Af*!). We can thus write v as (z,y) — (Af(z,y)*, gz, v) f(x,v)"),
where n € Z and g € k[x,y]. Replacing ¢ by its composition with the automorphism
(,y) = (A o) y((A 1)) ™) of A2\ O, we may assume that ¢ is of the form
(x,y) = (f(x,y),9(z,y)). If g is equal to a constant v € k modulo f, we apply the
automorphism (x,y) — (x,(y — v)x™!) and decrease the degree of g. After finitely
many steps we obtain an isomorphism A%\ D — A2\ C of the form t: (z,y)
(f(x,y),g(x,y)) where g is not a constant modulo f. The image of D by 1) is then
dense in C, which implies that 1y extends to an automorphism of A? that sends D onto
C' (Proposition 3.2.6). O



76 CHAPTER 3. COMPLEMENTS OF AFFINE PLANE CURVES

3.3 Geometric description of open embeddings A? \
C — A?

3.3.1 Embeddings into Hirzebruch surfaces

We will need not only embeddings of A? into P2, but also embeddings of A? into other
smooth projective surfaces, and in particular into Hirzebruch surfaces. These surfaces
play a natural role in the study of automorphisms of A? (and of images of curves by
these automorphisms), as we can decompose every automorphism of A? into elementary
links between such surfaces and then study how the singularities at infinity of the curves
behave under these elementary links (see for instance [BS15]).

Example 3.3.1. For n > 1, the n-th Hirzebruch surface I, is
F,={(la:b:c,[u:v]) €P?xP" | bv" = cu"}

and the projection m,: IF,, — P! yields a P!-bundle structure on F,,.
Let S,, F,, C F,, be the curves given by [1:0: 0] x P! and v = 0, respectively. The
morphism
A2 — T,
(@,y) = ([z:y": 1]y 1))
gives an isomorphism A? = F,\(S, U F,).

We recall the following easy classical result:

Lemma 3.3.2. For each n > 1, the projection m,: F,, — P! is the unique P'-bundle
structure on F,, up to automorphisms of the target PL. The curve S, is the unique
irreducible k-curve in F,, of self-intersection —n, and we have (F},)?* = 0.

Proof. Since F,\(S,, U F},) is isomorphic to A%, whose Picard group is trivial, we have
Pic(F,) = ZF, + 7S, (where the class of a divisor D is again denoted by D). Moreover,
F, is a fibre of m, and S, is a section, so (F},)?> = 0 and F, - S,, = 1. We denote by
S/ C F, the section given by a = 0, and find that S), is equivalent to S, + nF,,, by
computing the divisor of 2.

Since S, and S/ are disjoint, this yields 0 = S, - (S, + nFE,) = (S,)* + n, so
(Sp)? = —n.

To get the result, it suffices to show that an irreducible k-curve C' C F,, not equal to
S, or to a fibre of 7, has self-intersection at least equal to n. This will show in particular
that a general fibre I of any morphism F,, — P! is equal to a fibre of 7, since F has
self-intersection 0. We write C' = kS,, + L F,, for some k,[ € Z. Since C # S,, we have
0<C-S,=1—nk. Since C is not a fibre, it intersects every fibre, so 0 < F,, - C' = k.
This yields | > nk > 0 and C? = —nk? + 2kl = kl + k(I — nk) > ki > nk* > n. O

Lemma 3.3.3. Let C C A? be a geometrically irreducible closed curve. Then, there
exists an integer n > 1 and an isomorphism 1: A> — F,\(S, U F,,) such that the
closure of 1(C) in I, is a curve T' which satisfies one of the following two possibilities:
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()T -F,=1andTNF,NS,=0.
(2) T'- F,, > 2 and the following assertions hold:

(a) If n =1, then 2m,(I') <T'- Fy for {p} = S1 N Fy, and m,(I') <T'- Sy for each
re Fl(k)

(b) If n > 2, then 2m,.(T') < T - F, for each r € F,(k).

Furthermore, in case (1), the curve C is equivalent to a curve given by an equation of
the form

a(y)z +b(y) =0,
where a,b € K[y| are coprime polynomials such that a # 0 and degb < dega. Moreover,
the following assertions are equivalent:

(i

The polynomial a is constant,

(17) The curve C is equivalent to a line;

)
)
(iit) The curve C is isomorphic to A';
(w) 'S, =0.

Proof. Let us take any fixed isomorphism ¢: A2 —» F,\(S, U F,) for some n > 1, and
denote by I' the closure of +(C).

We first assume that I" - F;, = 1. This is equivalent to saying that I' is a section
of m,. We may furthermore assume that the k-point ¢, defined by {¢,} = F,, N S,, does
not belong to I', as otherwise we could blow up the point ¢,, contract the curve F,,
change the embedding to IF,,;; and decrease by one unit the intersection number of I"
with S, at the point g,. After finitely many steps we get ¢, € T, i.e. we are in case (1).

If ' F, =0, then I is a fibre of 7, : F,, — P!. Let ¢ be the unique automorphism
of A? such that ¢ o) is the standard embedding of A? into IF,, of Example 3.3.1. Then,
the curve C is equivalent to the curve ¢~!(C'), which has equation y = A\, for some
A € k. This proves that C' is equivalent to the line y = A, and thus to the line x = A,
sent by the standard embedding onto a curve satisfying conditions (1).

It remains to consider the case where I' - F,, > 2. If " satisfies (2), we are done.
Otherwise, we have a k-point p € F;, satisfying one of the following two possibilities:

(@) n=1,m,(I') >T"- Sy, and p € Fy.
(b) 2m,(I') > I' - F,, and either n > 2 or n =1 and p € 51 N F}.

We will replace the isomorphism A% — F,)\(S,, U F},) by another, where the singular-
ities of the curve I' either decrease (all multiplicities are unchanged, except one which
has decreased) or stay the same (as usual, the multiplicities taken into account concern
not only the proper points of F,,, but also the infinitely near points). Moreover, the
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case where the multiplicities stay the same is only in (a), which cannot appear two con-
secutive times. Note that in all that process the intersection I' - F}, remains unchanged.
Then, after finitely many steps, the new curve I" satisfies the conditions (2).

In case (a), we observe that the inequality m,(I') > I' - S; combined with the
inequality I' - Sy > (I"- S1), > m,(I') - m,(S1) implies that p ¢ S;. We may then choose
p to be a k-point of F; \ S; of maximal multiplicity and denote by 7: F; — P? the
birational morphism contracting S; to a k-point ¢ € P2, observe that 7(F}) is a line
through ¢, that 7(I") is a curve of multiplicity I'-S; at ¢ and of multiplicity m,(I") > I"-S;
at p' = 7(p) € 7(F1). Moreover, p' is a k-point of 7(F}) of maximal multiplicity on
that line. Denote by 7/: F} — P? the birational morphism which is the blow-up at p'.
Let S7 be the exceptional fibre of 7/, F| the strict transform of 7(F7) and I the strict
transform of 7(I"). We then replace the isomorphism A? — F; \ (S; U F}) with the
analogous isomorphism A? — F} \ (S} U F/) and get

Vre F, m(I'") <T"- 5] =m,(I).

Hence, (a) is no longer possible. Moreover, the singularities of the new curve I' have
either decreased or stayed the same: Indeed, the multiplicities of the singular points
of 7(T') are the same as those of I', plus one point of multiplicity I" - S;. Similarly,
the multiplicities of the singular points of 7(I") are the same as those of I, plus one
point of multiplicity m,(I'). Of course, we do not really get a singular point if the
multiplicity is 1. Therefore, the singularities of the new curve remain the same if and
only if m,(I') = 1 and I'- S} = 0. The situation is illustrated below in a simple example
(which satisfies m,(I') =3 > T"- S} = 2).

=

F r
S1

lﬂ

In case (b), we denote by k: F, --+ F,, the birational map that blows up the point p
and contracts the strict transform of F},. Call ¢ the point to which the strict transform
of F, is contracted. We have k = m, o (m,)"!, where m,, resp. 7, are blow-ups of the
point p of [F,,, resp. the point ¢ of F,,,. The drawing below illustrates the situation in
a case where n’ = n — 1. The composition of ¢ with s provides a new isomorphism
A? — F,, \ (S, UFy,), where S, is the image of S,, and F}, is the curve corresponding
to the exceptional divisor of p. Note that F} is a fibre of the P-bundle #’: F,, — P!
corresponding to 7 = m, o k7!, and that S, is a section, of self-intersection —n/’,
where n”’ =n+1ifpe S, andn’ =n—1if p ¢ S,. Hence, sincen > 2orn =1
and {p} = S, N F,, we get that (S,/)> = —n/ < 0, and obtain a new isomorphism
/' A? =5 F,,\(S,y U Fy). The singularity of the new curve I' at the point ¢ is equal
to I' - F,, — m,(T"), which is strictly smaller than m,(I') by assumption. Moreover
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2m,(I") > T"- F,, > 2, which implies that p was indeed a singular point of I.

; p
;F Jr LN o
<¥Sn Sy
q
Fy F,

Finally, we must now prove the last statement of our lemma, which concerns case (1).
Let 1 be the unique automorphism of A? such that ¢ o 1) is the standard embedding
of A? into IF,, of Example 3.3.1. Then, by replacing ¢ by ¢ o 1) and C by the equivalent
curve 1~ 1(C), we may assume that t: A2 — F,\(S, UF,) is the standard embedding.
This being done, the restriction of m,: F,, — P to A% is (z,y) — [y : 1]. The fibres
of m,, equivalent to F), being given by y = cst, the degree in x of the equation of C' is
equal to I' - F}, (this can be done for instance by extending the scalars to k and taking
a general fibre). Since I' - F,, = 1, the equation is of the form za(y) + b(y) for some
polynomials a,b € k[y], a # 0. Since C' is geometrically irreducible, the polynomials a
and b are coprime. There exist (unique) polynomials q.b € k[z] such that b = aq +b
with degb < dega. Then, changing the coordinates by applying (z,y) — (x + q(y), y),
we may furthermore assume that degb < dega.

Let us prove that points (7)-(iv) are equivalent. The implications (i) = (i7) = (ii7)
are obvious. We then prove (iii) = (iv) = (7).

(i17) = (iv): We recall that T is a section of m,: F,, — P!, so that we have isomor-
phisms I' ~ P! and "\ F}, ~ A!. The fact that C =T\ (F, US,) ~ Al implies that
C N (S, \ F,) is empty. Since I' N F,, NS, = () by assumption, we get " - S,, = 0.

(7v) = (i): We use the open embedding

A2 — T,
(u,v) = ([1:uv™:ul,v:1]).

The preimages of I' and S,, by this embedding are the curves of equations a(v) +b(v)u =
0 and v = 0. Hence I' - S;, = 0 implies that a has no k-root and thus is a constant. []

3.3.2 [Extension to regular morphisms on A?

The following proposition is the principal tool in the proof of Proposition 3.3.10, Corol-
lary 3.3.11 and Proposition 3.3.13, which themselves give the main part of Theorem 4.

Proposition 3.3.4. Let C C A? be a geometrically irreducible closed curve, not equiv-
alent to a line, and let p: A*\ C — A? be an open embedding. Then, there exists an
open embedding v: A®> < F,,, for some n > 1, such that the rational map 1o ¢ extends
to a regular morphism A* — F,,, and such that ((A?) =T, \ (S, UF,) (where S, and
F,, are as in Example 3.3.1).
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Proof. By Proposition 3.2.6, ¢(A?\ C') = A? \ D for some geometrically irreducible
closed curve D. If ¢ extends to an automorphism of A? sending C onto D, the result is
obvious, by taking any isomorphism ¢: A> — F,, \ (F, U S,), so we may assume that
¢ does not extend to an automorphism of A?. Lemma 3.2.12 implies, since C is not
equivalent to a line, that the same holds for D. Moreover, Proposition 3.2.6 implies
that the extension of p~! to a birational map P? --» P2, via the standard embedding
A? < P2, contracts the curve D to a k-point of P2, In particular, it does not send D
birationally onto C' or onto L.

We choose an open embedding ¢: A? < F,, given by Lemma 3.3.3, which comes
from an isomorphism ¢: A2 — F,\(S, U F},), such that the closure of «(D) in F,, is a
curve I" which satisfies one of the two possibilities (1)-(2) of Lemma 3.3.3.

We want to show that the open embedding to¢: A?\ C' < F,, extends to a regular
morphism on A?. Using the standard embedding of A? into P? (Definition 3.2.1), we
get a birational map ¢: P2 --» F,, and need to show that all k-base-points of this
map are contained in L.,. Note that ¢ restricts to an isomorphism P? \ (L, UC) —
F, \ (F,US,UT). This implies that all k-base-points of v, ! are defined over k
(Lemma 3.2.5(1)) and gives the following commutative diagram

\ . n /

A*\ D,

where 7, ™ are blow-ups of the base-points of v and ¢! respectively, and where
N Y Lo UC) =7"Y(F,US,UT) (Lemma 3.2.5(2)-(3)).

We assume by contradiction that v has a base-point ¢ in A? = P2\ L., which means
that one (—1)-curve E, C X is contracted by n to ¢. This curve is the exceptional
divisor of a base-point infinitely near to ¢, but not necessarily of ¢. The minimality of
the resolution implies that 7 does not contract E,, so m(£E,) is a curve of F,, contracted
by 1~ to q, which belongs to {T', F},, S, }.

We first study the case where ¥ has no base-point in L. The strict transform
of L. has then self-intersection 1 on X. Hence, it is not contracted by 7, and thus sent
onto a curve of self-intersection > 1, which belongs to {I', F,, S,} by Lemma 3.2.5(4).
As (F,)? =0 and (S,)? = —n < —1, L, is sent onto " by #. This contradicts the fact
that I is not sent birationally onto L., by 1!

We can now reduce to the case where 1) also has a base-point p in L.,. There is thus
a (—1)-curve E, C X contracted by n to p and not contracted by m. As above, this
curve is the exceptional divisor of a base-point infinitely near to p, but not necessarily
of p. Again, w(E,) belongs to {I', F},, S, }.

We thus have at least two of the curves I', F,, S, that correspond to (—1)-curves
of X contracted by 7.

We suppose first that S,, corresponds to a (—1)-curve of X contracted by n. The
fact that (S,)? = —n < —1 implies that n = 1 and that 7 does not blow up any point
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of S,,. As there is another (—1)-curve of X contracted by 7, the two curves are disjoint
on X, and thus also disjoint on [Fy, since m does not blow up any point of S;. The other
curve is then I' (since Fy - Sy = 1), and I" - Sy = 0. If moreover I'- F} = 1 (condition (1)
of Lemma 3.3.3), then the contraction F; — P? of S} sends I" onto a line of P2, which
contradicts the fact that D C A? is not equivalent to a line. If I'- F} > 2, then condition
(2) of Lemma 3.3.3 implies that m,(I') < T'-S; = 0 for each r € Fi(k). Hence, the
intersection of I' with F} (which is not empty since I' - F} > 2) consists only of points
not defined over k, which are therefore not blown up by 7. The strict transforms I" and
Fy on X then satisfy T'- Fy =T+ F; > 2. As T is contracted by n, the image n(Fl) is a
singular curve and is then equal to C. This contradicts the fact that ¢ contracts C to
a point.

There remains the case is when S, does not correspond to a (—1)-curve of X
contracted by 1, which implies that {7(E,),7(E,)} = {F,, '}, or equivalently that
{E,,E,} = {F,,T}, where F, and I denote the strict transforms of F, and I on X.
Since (F,)? = 0 and (F,)> = —1, there exists exactly one k-point r € F, (and no
infinitely near points) blown up by 7, which is then a k-point (as all base-points of =
are defined over k). We obtain

m,(I')=T-F,>1and I'NF, = {r},

since ﬁ and T are disjoint on X (and because I' - F;, > 1, as I satisfies one of the two
conditions (1)-(2) of Lemma 3.3.3).

We now prove that 7=!(r) and 771(S,,) are two disjoint connected sets of rational
curves which intersect the two curves F,, and T, i.e. the two curves E, and E,. For
this, it suffices to prove that r ¢ S, and that S, - T' > 1. Suppose first that I' - F,, = 1
(condition (1) of Lemma 3.3.3). Since 'NF, NS, = 0, we get r € F, \ S,. The
inequality I'- S,, > 0 is provided by the fact that D is not equivalent to a line (see again
condition (1) of Lemma 3.3.3 and the equivalence between (ii) and (iv) given in that
case). Suppose now that I' - F,, > 2. As m,(I') =T'- F,, > 2, we have 2m,(I') > " - F,,,
which implies that n =1, r € F,,\ S, and 2 < m,(I") <T'- S, (see again possibility (2)
of Lemma 3.3.3).

We conclude by observing that, since n(E,) = q € P?\ Ly, and n(E,) = p € Lo,
any connected set of curves of (L., U C) which intersects the two curves £, and E,
must contain the strict transform C' of C. Since 7~'(r) and 7~*(S,) are included in
7Y F,US,UT) = 7Ly U C), this contradicts the fact that 7=!(r) and 7—(S,)
are two disjoint connected sets of rational curves which intersect the two curves F,
and I ]

A direct consequence of Proposition 3.3.4 is the following corollary, which shows
that only smooth curves C' C A? are interesting to study. This also follows from
Proposition 3.3.10 below. Since the proof of Proposition 3.3.10 is more involved, we
prefer first to explain the simpler argument that shows how the smoothness follows
from Proposition 3.3.4.
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Corollary 3.3.5. Let C C A? be a geometrically irreducible closed curve. If C' is not
smooth, then every open embedding o: A*\ C' — A? extends to an automorphism of A?.

Proof. By Proposition 3.2.6, o(A?\C') = A%\ D for some geometrically irreducible closed
curve D. We apply Proposition 3.3.4 and obtain an open embedding ¢: A? < F,,, for
some n > 1, such that the rational map ¢ o ¢ extends to a regular morphism A? — F,,.
Embedding A? into P2, we get a birational map ¢ : P? --» IF,, which is regular on A2
In particular, the singular k-points of C' are not blown up in the minimal resolution of
1. Hence, the curve C is not contracted by 1 and is thus sent onto a singular curve
¢(C) C F,,. Since ¥ restricts to an isomorphism P?\ (L, UC) — F, \ (F, U S, UD),
Lemma 3.2.5(4) shows that the singular curve (C) must be F},, S, or D. As F, and
S,, are smooth, we find that ¢(C) = D. Proposition 3.2.6 then shows that ¢ extends
to an automorphism of A2 O

Another direct consequence of Proposition 3.3.4 is the following result, which shows
that in case (3) of Proposition 3.2.6, the point to which C is contracted lies in A? only
in a very special situation:

Corollary 3.3.6. Let C C A? be a geometrically irreducible closed curve and let p: A2\
C < A% be an open embedding. If the extension of ¢ to P? contracts the curve C (or
equivalently its closure) to a point of A2, then there exist automorphisms «, 3 of A?
and an endomorphism ¢: A* — A? of the form (z,y) — (x,2"y), where n > 1 is an
integer, such that ¢ = apB. In particular, C C A? is equivalent to a line, via f3.

Proof. By Proposition 3.2.6, ¢(A?\ C) = A? \ D for some geometrically irreducible
closed curve D. Denote by ¢~': A% --s A? the birational transformation which is the
inverse of ¢. Since C' is contracted by ¢ to a point of A2, it is not possible to find an
open embedding ¢: A? < F,, for some n > 1, such that the birational map ¢ o ¢!
actually defines a regular morphism A? — F,. By Proposition 3.3.4, this implies that
D is equivalent to a line. Hence, the same holds for C, by Lemma 3.2.12. Applying
automorphisms of A? at the source and the target, we may then assume that C' and D
are equal to the line z = 0. By Lemma 3.2.12(1), the map ¢ is of the form (z,y) —
(Ax, px"y+s(x)), where A\, u € k*, n > 1 and s € k] is a polynomial. We then observe
that ¢ = ayp, where « is the automorphism of A? given by (z,y) — (A\z, py + s(x)) and
1 is the endomorphism of A? given by (z,y) — (x, 2™y). O

Corollary 3.3.6 also gives a simple proof of the following characterisation of birational
endomorphisms of A2 that contract only one geometrically irreducible closed curve. This
result has already been obtained by Daniel Daigle in [Dai91, Theorem 4.11].

Corollary 3.3.7. Let C C A? be a geometrically irreducible closed curve and let @ be
a birational endomorphism of A? which restricts to an open embedding A%\ C — AZ.
Then, the following assertions are equivalent:
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(1) The endomorphism ¢ contracts the curve C.
(i7) The endomorphism ¢ is not an automorphism.

(ii1) There exist automorphisms o, 3 of A% and an endomorphism 1 : A* — A? of the
form (z,y) — (x,z"y), where n > 1 is an integer, such that p = abf.

Proof. (iit) = (i1): This follows from the fact that, for each n > 1, the map ¢: (x,y) —
(x, x™y) is a birational endomorphism of A? which is not an automorphism, as its inverse
Y=t (z,y) = (x,27"y) is not regular.

(it) = (i): Denote by ¢: P? --» P? the birational map induced by ¢. Since ¢ is an
endomorphism of A? which is not an automorphism, cases (1)-(2) of Proposition 3.2.6
are not possible. Hence, we are in case (3): C'is contracted by ¢ to a point of P2, which
is necessarily in A? since p(A?) C A2

(1) = (4i7): This follows from Corollary 3.3.6. O

3.3.3 Completion with two curves and a boundary

The following technical Proposition 3.3.10 is used to prove Corollary 3.3.11 and Propo-
sition 3.3.13, which yield almost all statements of Theorem 4.

Definition 3.3.8. Let X be a smooth projective surface. A reduced closed curve C' C X
is a k-forest of X if C' is a finite union of closed curves C1, ..., C,, all isomorphic (over
k) to P! and if each singular k-point of C' is a k-point lying on exactly two components
C;, C; intersecting transversally. We moreover ask that C' does not contain any loop.
If C is connected, we say that C' is a k-tree.

Remark 3.3.9. If n: X — Y is a birational morphism between smooth projective sur-
faces such that all k-base-points of 77" are defined over k, then the exceptional curve
of n (the union of the contracted curves) is a k-forest £ C X. Moreover, the strict
transform and the preimage of any k-forest of Y is a k-forest of X. The preimage of a
k-tree is a k-tree.

Proposition 3.3.10. Let C,D C A? be geometrically irreducible closed curves, not
equivalent to lines, and let ¢: A*\ C — A%\ D be an isomorphism which does not
extend to an automorphism of A%. Then there is a smooth projective surface X and two
open embeddings p1, pa: A?> — X which make the following diagram commutative

and such that the following holds:
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) The curves T = p1(C) C X, A = py(D) C X are isomorphic to P'.
) Fori=1,2, we have p;(A?) = X \ B; for some k-tree B;.

(1i1) Writing B = By N By, we have By = BUA and By, = BUT.
)

There is no birational morphism X — Y, where Y is a smooth projective surface,
which contracts one connected component of B, and no other k-curve.

(v) The number of connected components of B is equal to the number of k-points
of BNT and to the number of k-points of BN A, and is at most 2.

Proof. By Proposition 3.3.4, there exist integers m,n > 1, and isomorphisms
1 A7 5o\ (S UF), to: A2 = TF,\ (S,UF,)

such that both open embeddings 1107 ': A*\ D — F,, and 150: A? \ C — F,, extend
to regular morphisms u;: A — F,, and uy: A> — F,,. Denoting by ¢: F,, --» F,, the
corresponding birational map, equal to to(u1)™' = us(11)™!, the restriction of ¥ gives
an isomorphism F,, \ (Sim U F,, U 11(C)) — F,, \ (S, U F, U 15(D)) (which corresponds
to ¢). We then have the following commutative diagram

A

AT\ C ¢ A\ D

where n and 7 are birational morphisms, which are sequences of blow-ups of k-points,
being the base-points of 1 and ¢! respectively (Lemma 3.2.5).

Since uy, uy are regular on A2, the k-base-points of 1/ (which are k-points), resp. 1/ ~",
are infinitely near to k-points of F,, U S,, C IF,,, resp. F, U S, C F,. In particular, we
get two open embeddings

p1 :n_lblz A? — X, P2 =1l A2 X

such that pag = p; (or more precisely pa¢ = pi|az\c). We have pi(A%) = X \ By and
p2(A?) = X \ By, where By := n!(S,,UF,,) and By := 7 !(S, UF,) are k-trees (see
Remark 3.3.9).

By Lemma 3.2.5, the following equality holds:

0 (S U Fpy U g (C)) = 7 1S, U F, Uta(D)).

The left-hand side is equal to B; UT', where I' = p;(C') C X is the strict transform of
11(C) C F,, by n and the right-hand side is equal to By U A, where A = po(D) C X
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is the strict transform of o(D) C F,, by . The fact that ¢ does not extend to an
automorphism of A? implies that B, # B, whence A # I'. Writing B := B, N By, the
equality By UTI' = By U A yields:

By =BUT and By = BUA (with T' = p;(C), A = ps(D) C X).

In particular, since By, By are two k-trees, I' and A are isomorphic to P! (over k) and
intersect transversally B in a finite number of k-points. We have now found the surface
X together with the embeddings py, p2, satisfying conditions (i)—(ii)—(iz2i). We will then
modify X if needed, in order to get also (iv)—(v).

The number of connected components of B is equal to the number of k-points
of BNT, and of BN A: This follows from the fact that BUT and B U A are k-trees.
Remember also that each k-point of BN T, or of BN A, is a k-point, as mentioned
earlier.

Suppose that the number of connected components of B is r > 3, and let us show
that at least r — 2 connected components of B are contractible (in the sense that there
is a birational morphism X — Y, where Y is a smooth projective rational surface,
which contracts one component of B and no other k-curve). To show this, we first
observe that I' intersects r distinct curves of B. Since I' is one of the irreducible
components of By = 771(S,, U F,), we can decompose 7 as m o m; where m(T') is
an irreducible component of (m2)~!(S, U F,,) intersecting exactly two other irreducible
components Ry, Ry, and such that all k-points blown up by 7 are infinitely near points
of m(I')\(R1URy). This proves that we can contract at least r—2 connected components
of B.

If one connected component of B is contractible, there exists a morphism X — Y,
where Y is a smooth projective rational surface, which contracts this component of B,
and no other curve. Since the component intersects A transversally in one point, and
also I' in one point, we can replace X by Y, pi,ps by their compositions with the
morphism X — Y and still fulfill conditions (i)—(ii)—(zii). After finitely many steps,
condition (iv) is satisfied. By the observation made earlier, the number of connected
components of B, after this is done, is at most 2, giving then (v). H

Corollary 3.3.11. Let C,D C A? be geometrically irreducible closed curves and let
@: A2\ C — A2\ D be an isomorphism which does not extend to an automorphism
of A2,

Then, the curves C, D are isomorphic to open subsets of A': there ewist polynomials
P,Q € k[t] without square factors, such that C' ~ Spec(k[t, ]) and D ~ Spec(k|t, %])
Moreover, the numbers of k-roots of P and Q are the same (i.e. extending the scalars
to k, the curves C' and D become isomorphic to A* minus some finite number of points,
the same number for both curves). The numbers of k-roots of P and Q) are also the
same.

Remark 3.3.12. When k = C, this follows from the fact that C' and D are isomorphic to
open subsets of A!| since the curves are rational (Corollary 3.2.7) and smooth (Corol-
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lary 3.3.5). Indeed, since A%\ C' and A? \ D are isomorphic, they have the same Euler
characteristic, so C' and D also have the same Euler characteristic.

Proof. If C' or D is equivalent to a line, so are both curves (Lemma 3.2.12), and the
result holds. Otherwise, we apply Proposition 3.3.10 and get a smooth projective surface
X and two open embeddings p;, p2: A% < X such that pyp = p; and satisfying the
conditions (7)-(7i)-(4i7)-(iv)-(v). In particular, C' is isomorphic to I' \ By = I'\ ((I' N
B) U (T'UA)). Since T is isomorphic to P! and T'N B consists of one or two k-points,
this shows that I' is isomorphic to an open subset of A!. Proceeding similarly for D,
we get isomorphisms C' ~ Spec(k[t, 5]) and D ~ Spec(k|t, %]) where P, Q) € Kk[t] are
polynomials, which we may assume without square factors.

The number of k-roots of P is equal to the number of k-points of I' N B; minus
1. Similarly, the number of k-roots of @ is equal to the number of k-points of A N B,
minus 1. To see that these numbers are equal, we observe that 'NB; = (I'NB)U(I'NA),
that AN By = (ANB)U(ANT), and that the number of k-points of I'N B is the same
as the number of k-points of AN B (this follows from (v)). As each point of I' N B that
is contained in I' N A is also contained in A N B, this shows that P and () have the
same number of k-roots. As each k-point of I' N By or A N By which is not a k-point is
contained in I' N A, the polynomials P and () have the same number of k-roots. m

Proposition 3.3.13. Let C, D, D' C A% be geometrically irreducible closed curves, not
equivalent to lines, and let : A2\C — A2\ D, ¢': A2\C — A?\ D' be isomorphisms
which do not extend to automorphisms of A%. Then, one of the following holds:

1

(a) The map ¢'(p)~! extends to an automorphism of A? (sending D to D');

(b) The curves C, D, D’ are isomorphic to A';
(¢) The curves C, D, D" are isomorphic to A\ {0}.

Remark 3.3.14. Case (b) never occurs, as we will show later. Indeed, since C' is not
equivalent to a line, the existence of ¢, ¢’ is excluded (Proposition 3.3.16 below).

Proof. It C ~ A' or C ~ A\ {0}, then D ~ C =~ D' by Corollary 3.3.11. We
may thus assume that C' is not isomorphic to A' or A'\ {0}. We apply Proposi-
tion 3.3.10 with ¢ and ¢" and get smooth projective surfaces X, X’ and open embed-
dings p1, pa, Py, ph: A% — X such that pyp = p1, phy’ = p} and satisfying the conditions
(1)-(44)-(iii)-(iv)-(v). In particular, we obtain an isomorphism s: X \ (BUT UA) —
X'\ (BUI"UA) (where I' = p1(C) C X, A = po(D) C X, I" = pi(C) C X',
A" = ph(D'") C X’) and a commutative diagram
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By construction, k sends birationally I' = p;(C) onto IV = p{(C). If k also sends A
birationally onto A/, then ¢'p~! extends to a birational map that sends birationally D
onto D' and then extends to an automorphism of A? (Proposition 3.2.6). It remains

then to show that this is the case.

Using Lemma 3.2.5, we take a minimal resolution of the indeterminacies of «:

where 7 and 7 are the blow-ups of the k-base-points of x and !, all being k-rational.
We want to show that the strict transforms A and A’ of A € X, A’ C X are equal. We
will do this by studying the strict transform I' = I of T’ and I and its intersection with
A and A’ and with the other components of By =~ {(BUTUA) = 7~ (B UT'UA).

Recall that By = BUA, B, = BUI', Bl = B UA’, B, = B UI" are k-trees and
that C' is isomorphic to I'\ By and I'"\ B} (Proposition 3.3.10).

(1) Suppose first that I' N B; contains some k-points which are not defined over k.
None of these points is thus a base-point of x and each of these points belongs to 'M A,
so I'N A contains k-points not defined over k. Since B) is a k-tree, 7 1(B}) is a k-tree,
so I' = I intersects all irreducible components of By into k-points, except maybe A'.
This yields A = A’ as we wanted.

(i) We can now assume that all k-points of I'N B, are defined over k, which implies
that all intersections of irreducible components of By are defined over k. We will say
that an irreducible component of By is separating if the union of all other irreducible
components is a k-forest (see Definition 3.3.8).

Since By = B U A is a k-tree, its preimage on By is a k-tree. The union of all
components of By distinct from T’ being equal to the disjoint union of n~1(B;) with
some k-forest contracted to points of I' \ By, we find that [ is separating. The same
argument shows that A and A’ are also separating.

It remains then to show that any irreducible component £ C By which is not equal
to A or T is not separating. We use for this the fact that C' ~T \ Bj is not isomorphic
to A' or A\ {0}, so the set I'N By contains at least 3 points. If n(E) is a point ¢, then
the complement of n~!(q) in Bz contains a loop, since I" intersects the k-tree B into at
least two points distinct from ¢. If n(E) is not a point, it is one of the components of
B. We denote by F' the union of all irreducible components of BUI U A not equal to
n(E), and prove that F' is not a k-forest, since it contains a loop. This is true if ANT
contains at least 2 points. If AN T contains one or less points, then A N B contains at
least two points, so contains exactly two points, on the two connected components of
B which both intersect I' and A (see Proposition 3.3.10(v)). We again get a loop on
the union of I', A and of the connected component of B not containing n(FE). The fact
that F' contains a loop implies that = (F) contains a loop, and achieves to prove that
E is not separating. O
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3.3.4 The case of curves isomorphic to A! and the proof of The-
orem 4

To finish the proof of Theorem 4, we still need to handle the case of curves isomorphic
to A'. The case of lines has already been treated in Lemma 3.2.12. In characteristic
zero, this finishes the study by the Abyhankar-Moh-Suzuki theorem, but in positive
characteristic, there are many closed curves of A? which are isomorphic to A!, but are
not equivalent to lines (these curves are sometimes called “bad lines” in the literature).
We will show that an open embedding A? \ C' — A? always extends to A? if C is
isomorphic to A!, but not equivalent to a line.

Lemma 3.3.15. Let n > 1 and let I' C F,, be a geometrically irreducible closed curve
such that T - F, > 2. If there ewists a birational map F, --» P? that contracts T’ to a
point (and perhaps contracts some other curves), then I is geometrically rational and
singular. Moreover, one of the following occurs:

(a) There exists a point p € F,,(k) such that 2m,(T) > T - F,.
(b) We have n =1 and there exists a point p € Fy(k) \ Sy such that m,(T') > T - S;.

Proof. We may assume that k = k. Denote by ¢: F,, --» P? the birational map that
contracts C' to a point (and maybe some other curves). The minimal resolution of this
map yields a commutative diagram

In Pic(F,,) = ZF, @ ZS,, we write

I' = a5, +bF,
—Kp, = 25, +(2+n)F,

for some integers a,b. Note that a = T'- F,, > 2 and that b —an =T-5, > 0. By
hypothesis, the strict transform I' of ' on X is a smooth curve contracted by 7. In
particular, I is rational and the divisor 2I" + a Ky is not effective, since

(2T +aKx) - 7" (L) = aKx - 7*(L) = ar*(Kp2) - 7*(L) = aKp> - L = —3a < 0

for a general line L C P2
Denoting by Ei, ..., E. € Pic(X) the pull-backs of the exceptional divisors blown
up by 1 (which satisfy (E;)*> = —1 for each i and FE; - E; = 0 for ¢ # j) we have

L= an'(S)) + by'(F,) = 2imimik
o —Ex = 297(Sh) + @+ (F) - Y ki
2 +aKxy = (20 —a(24+n))n*(F,) + >.i_,(a—2m;)E;
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which implies, since 2I" + aKy is not effective, that either 2b < a(2+n) or 2m; > a for
some 4. If 2m; > a for some i, we get (a), since the m; are the multiplicities of T at the
points blown up by 7.

It remains to study the case where 2m; < a for each 4, and where 2b < a(2 + n).
Remembering that b —an =1-.5,, > 0, we find n < g < “T”, whence n = 1 and thus
2b < 3a. We then compute

3T +0Kx = (3a—2b)0"(S,) + i (b—3m,)E;

which is again not effective, since (3T + bK) - 7*(L) = bKx - 7*(L) = —3b < 0 for a
general line L C P2, because b > an = a > 2. This implies that there exists an integer
i such that 3m; > b. Since 2m; < a, we find m; > b—a =I"- Sy, which implies (b). O

Proposition 3.3.16. Let C' C A? be a closed curve, isomorphic to A' (over k). The
following are equivalent:

(a) The curve C is equivalent to a line.

(b) There exists an open embedding A*\ C' — A? which does not extend to an auto-
morphism of AZ.

(¢) There exists a birational map P? --» P? that contracts the curve C (or its closure)
to a k-point (and perhaps contracts some other curves). In this statement A? is
identified with an open subset of P? via the standard embedding A% — P2,

Proof. The implications (a) = (b) and (a) = (c) can be observed, for example, by
taking the map (x,y) — (x,zy), which is an open embedding of A%\ {z = 0} into A?
which does not extend to an automorphism of A2, and whose extension to P? contracts
the line z = 0 to a point.

To prove (b) = (c), we take an open embedding ¢: A?\ C' — A? which does not
extend to an automorphism of A? and look at the extension to P2. By Proposition 3.2.6,
either this contracts C', or C' is equivalent to a line, in which case (¢) is true as was
shown earlier.

It remains to prove (c¢) = (a). We apply Lemma 3.3.3, and obtain an isomorphism
v A2 = F,\(S, U F,) such that the closure of +(C) in [F,, is a curve I which satisfies
one of the two cases (1)-(2) of Lemma 3.3.3. In case (1), the curve is equivalent to a
line as it is isomorphic to A! (equivalence (ii) — (iii) of Lemma 3.3.3). It remains to
study the case where I satisfies conditions (2) of Lemma 3.3.3 (in particular I'- F}, > 2),
and to show that these, together with (¢), yield a contradiction. We prove that there
is no point p € F,(k) such that 2m,(T') > T - F,. Indeed, since T' - F,, > 2, such a
point would be a singular point of I', and since I'\ (S, U F},) = «(C) ~ C' is isomorphic
to A', p would be a k-point and the unique k-point of I'N (S, U F,). Moreover, as
I'- F, > 2, we would find that p € F,,. Since 2m,(I') > I' - F}, and because I satisfies
conditions (2) of Lemma 3.3.3, the only possibility would be that n = 1, p € F; \ S;
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and 0 < m,(I') <T'-S;. This contradicts the fact that I' N (S} U F}) contains only one
k-point.

Denote by 1)y: P? --» P? the birational map that contracts C' (and maybe some
other curves) to a k-point. Observe that vy o 1! yields a birational map v : F,, --» P?
which contracts I to a k-point. As there is no point p € F,, (k) such that 2m,,(I") > I'-F,,
Lemma 3.3.15 implies that n = 1 and that there exists a point p € Fy(k) \ S; such that
m,(T') > ' - S;. Again, this point is a k-point, since C' is isomorphic to A'. This
contradicts the conditions (2) of Lemma 3.3.3. O

Remark 3.3.17. If k is algebraically closed, the equivalence between conditions (a) and
(¢) of Proposition 3.3.16 can also be proved using Kodaira dimension. We introduce
the following conditions:

(a)" The Kodaira dimension x(C,A?) of C'is equal to —oo.
(c)’ There exists a birational transformation of P? that sends C' onto a line.

The equivalence between (a) and (a)" follows from [Gan85, Theorem 2.4.(1)] and the
equivalence between (a)" and (c)" is Coolidge’s theorem (see e.g. [KM83, Theorem 2.6]).
We now recall how the classical equivalence between (¢) and (¢)’ can be proven. Every
simple quadratic birational transformation of P? contracts three lines. This proves
(c) = (c). To get (c¢) = (c)’, we take a birational transformation ¢ of P? that contracts
C to a point and decompose ¢ as ¢ = ¢, o0---0;, where each y; is a simple quadratic
transformation (using the Castelnuovo-Noether factorisation theorem). If i > 1 is the
smallest integer such that (¢; 0 --- 0 ¢;)(C) is a k-point, the curve (p;_; o --- 0 ;)(C)
is contracted by ¢; and is thus a line.

Remark 3.3.18. If the field k is perfect, then every curve that is geometrically isomorphic
to A' (i.e. over k) is also isomorphic to A'. This can be seen by embedding the curve
in P! and considering the complement point, necessarily defined over k. For non-
perfect fields, there exist closed curves C' C A? geometrically isomorphic to A!, but
not isomorphic to Al (see [Rus70]). Corollary 3.3.11 shows that every open embedding
A%\ C' < A? extends to an automorphism of A? for all such curves.

We can now conclude this section by proving Theorem 4:

Proof of Theorem 4. We recall the hypotheses of the theorem: we have a geometrically
irreducible closed curve C' C A? and an isomorphism ¢: A2\ C' — A2\ D for some
closed curve C' C A% Moreover, ¢ does not extend to an automorphism of A2, We
consider the following three cases:

If C' is isomorphic to A!, then the implication (b) = (a) of Proposition 3.3.16 shows
that C' is equivalent to a line and Lemma 3.2.12(2) implies that the same holds for
D. In particular, the curves C' and D are isomorphic. This achieves the proof of the
theorem in this case.

If C is isomorphic to A\ {0} then so is D by Corollary 3.3.11. This also gives the
result in this case.
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It remains to assume that C' is not isomorphic to A! or to A\ {0}. Proposition 3.3.13
shows that the isomorphism ¢: A%\ C' — A%\ D (not extending to an automorphism
of A?) is uniquely determined by C, up to left composition by an automorphism of
A?. In particular, there are at most two equivalence classes of curves of A? that have
complements isomorphic to A%\ C. Corollary 3.3.11 gives the existence of isomorphisms
C ~ Spec(k[t, 5]) and D ~ Spec(k|t, %]) for some square-free polynomials P, Q) € k[t]
that have the same number of roots in k, and also the same number of roots in the
algebraic closure of k. By replacing k with any field k’ containing k we obtain the
result. O

Corollaries 3.1.1, 3.1.2 and 3.1.4 are then direct consequences of Theorem 4.

3.3.5 Automorphisms of complements of curves

Another consequence of Theorem 4 is Corollary 3.1.3, which we now prove:

Proof of Corollary 3.1.3. Recall the hypothesis of the corollary: we start with a geo-
metrically irreducible closed curve C' C A% not isomorphic to A* or A\ {0}. We want
to show that Aut(A? () has index at most 2 in Aut(A? \ C). If ¢y, ps are automor-
phisms of A%\ C which do not extend to automorphisms of A?, it is enough to show
that (¢2) '¢; extends to an automorphism of A?. This follows from Theorem 4(3). O

Remark 3.3.19. With the assumptions of Corollary 3.1.3, the group Aut(A?\ C) is a
semidirect product of the form Aut(A? C')xZ/27Z if and only if there exists an involutive
automorphism of A?\ C' which does not extend to an automorphism of A2

Corollary 3.3.20. If k is a perfect field and C C A? is a geometrically irreducible
closed curve that is

(1) not equivalent to a line,

(17) not equivalent to a cuspidal curve with equation ™ — y" = 0, where m,n > 2 are
coprime integers,

(i17) mot geometrically isomorphic to A\ {0},

then Aut(A?\ C) is a zero dimensional algebraic group, hence is finite.

Proof. Conditions (7)-(44)-(4i7) imply that Aut(A? C) is a zero dimensional algebraic
group [BS15, Theorem 2|. If moreover C' is not isomorphic to A!, then Aut(A?\ C) is

also zero dimensional by Corollary 3.1.3. If C is isomorphic to A! (but not equivalent
to a line by (7)), then Aut(A?\ C') = Aut(A?, C) by Proposition 3.3.16. O

Remark 3.3.21. Let us make a few comments on the group Aut(A?\ C) when C C A? is
a geometrically irreducible closed curve not satisfying the conditions of Corollary 3.3.20.
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(i) If C is equivalent to a line, we may assume without loss of generality that C' is
the line x = 0. Then, Aut(A? \ C) is described in Lemma 3.2.12.

(ii) If C' does not satisfy (ii), we may assume that C' has equation z™ — y" = 0,
where m,n > 2 are coprime integers. Since the curve C' is singular, we have
Aut(A%\ C) = Aut(A?, C) by Corollary 3.3.5. Moreover, we have Aut(A? C) =
{(z,y) — (t"z,t™y) | t € k*} by |BS15, Theorem 2(ii)].

(iii)(a) If C is geometrically isomorphic to A!\ {0}, but not isomorphic to A\ {0},
then Aut(A?, C) has index 1 or 2 in Aut(A? \ C) by Corollary 3.1.3. The group
Aut(A? C) is then an algebraic group of dimension < 1 by [BS15, Theorem 2|, so
the same holds for Aut(A?\ C'). An example of dimension 1 is given by the curve
of equation z? 4+ y* = 1, in the case where k = R (see [BS15, Theorem 2(iv)]).

(iii)(b) If C is isomorphic to A'\{0}, we do not have a complete description of Aut(A?\C).
The simplest cases where C' has equation x™y" — 1, where m,n > 1 are coprime,
can be completely described. In particular, Aut(A?\ C) contains elements of
arbitrarily large degree.

3.4 Families of non-equivalent embeddings
In this section, we study mainly the curves of A? given by an equation of the form
a(y)z +b(y) =0

where a, b € k[y| are coprime polynomials such that degb < dega. This will lead us to
the proof of Theorem 5.

These curves already appeared in Lemma 3.3.3, where we proved in particular that
they are isomorphic to A! if and only if a(y) is a constant (Lemma 3.3.3(4)-(i4i)).
Actually, we have the following obvious and stronger result:

Lemma 3.4.1. Let C C A? be the irreducible curve given by the equation
a(y)r + by) = 0,

where a,b € k[y] are coprime polynomials and a is nonzero. Then, the algebra of reqular
functions on C' is isomorphic to kly, 1/a(y)].

Proof. The algebra of regular functions on C' satisfies

k[C] = k[z,yl/(a(y)z + b(y)) ~ kly, —b(y)/a(y)] = k[y, 1/a(y)],

where the last equality comes from the fact that there exist ¢, d € k[y] with ad —bc = 1,
which implies that 2 = 24=¢ — ¢ —¢. b e k[y, 2]. 0

a
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3.4.1 A construction using elements of SLs(k[y])

Lemma 3.4.2. For each matrix ( a(y) bly) ) € SLa(k[y]), we have an isomorphism

c(y) d(y)

p: A2\C = A2\ D
c(y)z+d(y)
(wy) = (G Y)
where C; D C A* are given by a(y)z + b(y) = 0 and a(y)z — c(y) = 0 respectively.

Proof. Note first that ¢ is a birational transformation of A% with inverse ¥ : (z,y)

(%,y). It remains to prove that the isomorphism ¢*: k(z,y) — k(z,y), = —
%, y — vy induces an isomorphism k[z, y, ﬁ] — klz,y, ﬁ] This follows from the
equalities:

pr(r) =2 o (y) =y, ¢ (5=)=ar+b and

Prx) = 2 gr(y) =y, O () =ar - -

The curves C' and D of Lemma 3.4.2 are always isomorphic thanks to Lemma 3.4.1.
We now prove that they are in general not equivalent.

Lemma 3.4.3. Let Oy, Cy C A? be two geometrically irreducible closed curves given by
ar(y)z +b1(y) =0 and az(y)z + ba(y) = 0

respectively, for some polynomials ay, as, by, by € kly] such that dega; > degb; > 0 and
dega, > degby > 0. Then, the curves Cy and Cs are equivalent if and only if there
exist constants o, \, u € K* and B € k such that

az(y) = A-ar(ay + B), ba(y) = p-bi(ay + B).

Proof. We first observe that if as(y) = A - ai1(ay + 5) and be(y) = p - by(ay + B) for
some o, A\, pu € k*, B € k, then the automorphism (z,y) — (ﬁx, ay + B3) of A% sends Cy
onto (.

Conversely, we assume the existence of ¢ € Aut(A?) that sends Cy onto C and
want to find o, A\, u € k*, 5 € k as above. Writing ¢ as (z,y) — (f(z,v), g(z,y)) for
some polynomials f, g € k[z,y], we get

M(al(g)f + by (9)) = as(y)x + ba(y) (A)

for some p € k*.

(1) If g € k[y], the fact that k[f, g| = k[z, y] implies that g = ay + 3, f = vx + s(y)
for some o,y € k*, 8 € k and s(y) € k[y]. This yields a;(g)f + b1(9) = a1(g)(yx +
s(y)) + bi(g), so that equation (A) gives:

ay = pry-ai(g), by =p- (a1(9)3(y) + b1(9))~
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This shows in particular that dega; = degay, whence degby, < dega;(g). Since
degbi(g) < degai(g), we find that s = 0, and thus that by = p - bi(g), as desired.
This concludes the proof, by choosing A = py.

(#3) It remains to consider the case where g ¢ k[y], which corresponds to deg,(g) > 1.
We have deg, a1(g) = dega; - deg,(g) > degb - deg,(g) = deg, b1(g), which implies
that deg, (a1(g)f +bi(g)) = deg(a1) - deg,(g) + deg,(f). Equation (A) shows that this
degree is 1, and since dega; > 1, we find dega; = 1. Similarly, the automorphism

sending C onto C, satisfies the same condition, so degas = 1. This implies that
by, by € k*. There thus exist some a, A\, u € k*, § € k such that as(y) = A - a;(ay + B)
and by(y) = i - bi(ay + ). 0

Proposition 3.4.4. For each polynomial f € k[t] of degree > 1, there exist two closed
curves C, D C A%, both isomorphic to Spec(klt, %D, that are non-equivalent and have
1somorphic complements. Moreover, the set of equivalence classes of the curves C' ap-
pearing in such pairs (C, D) is infinite.

Proof. We choose an irreducible polynomial b € k[t] which does not divide f. For each
n > 1 such that deg(f") > 2deg(b), we then choose two polynomials ¢, d € k[t] such that
f™d—be =1 (this is possible since ged(f™,b) = 1). Replacing ¢, d by ¢+ af™, d+ ab, we
may moreover assume that degc < deg f™. The curves C,, D,, C A? given by f(y)"z +
b(y) = 0 and f(y)"z — ¢(y) = 0 are both isomorphic to Spec(k|[t, fin]) = Spec(k[t, %])
by Lemma 3.4.1 and have isomorphic complements by Lemma 3.4.2. Moreover, as
degbc = deg(f"d — 1) > deg(f™) > 2deg(b), we find that degc > degb, which implies
by Lemma 3.4.3 that C,, and D,, are not equivalent. Moreover, the curves C,, are all
non-equivalent, again by Lemma 3.4.3. O]

3.4.2 Curves isomorphic to Al \ {0}

We consider now families of curves in A? of the form zy? + b(y) = 0, for some d > 1
and some polynomial b(y) € k[y] satisfying b(0) # 0. Note that all these curves are
isomorphic to Spec(k|y, y—ld]) = Spec(kly, é]) ~ A\ {0} by Lemma 3.4.1.

Lemma 3.4.5. Let d > 1 be an integer and b(y) € k[y| be a polynomial satisfying
b(0) # 0. We define Dy, C A? to be the curve given by the equation

zy® +b(y) =0
and @y, to be the birational endomorphism of A? given by
o(w,y) = (xy” +b(y), ).
Denote by L, resp. Ly, the line in A* given by the equation x = 0, resp. y = 0.
(1) The transformation @y, induces an automorphism of A*\ L, and an isomorphism

A%\ (L, U Dy) — A%\ (L, U L,).
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(2) Assume now that b has degree < d— 1 and fix an integer m > 1. Then, there exists
a unique polynomial ¢ € K|y| of degree < d — 1 satisfying

by) = c(yb(y)™) (mod y*). (B)
Furthermore, we have ¢(0) # 0.
(3) Define the birational transformations T and iy, of A? by
(2,y) = (2, 2y) and Yo = (pc) " 7" 00

Then, ¥y m induces an isomorphism A%\ D, — A? \ D. whose expression is

r+A+yf(z,y)

Vom (T, y) = —,
’ (e + b))

y (xyd + b(y))m :

for some constant \ € k and some polynomial f € k[z,y| (depending on b and m).

(4) Fizing the polynomial b, all open embeddings A%\ Dy — A? given by Py m, m > 1,
are non-equivalent.

Proof. (1): The automorphism (¢p)* of k(x,y) satisfies

(e0)*(x) = zy? + b(y) and (s)*(y) = y.

The result follows from the following two equalities:

(oo)"(klz,y,5]) = klay' +0(y),y, ;] = k[z,y,,] and
((,Ob)*(k[l’,y, %’ %]) = k['ryd + b(y)’ m)yv i] = k[l’,y, i? m]

(2): Since b(0) # 0, the endomorphism of the algebra kly]/(y?) defined by y
yb(y)™ is an automorphism. If the inverse automorphism is given by y — u(y), note that
(B) is equivalent to c(y) = b(u(y)) (mod y?). This determines uniquely the polynomial
c. Finally, replacing = by zero in (B), we get ¢(0) = b(0) # 0.

(3): Since 7 induces an automorphism of A%\ (L, U L,), assertion (1) implies that
¢ induces an isomorphism A2\ (L, U D,) — A2\ (L, U D,) (this would be true for any
choice of ¢). It remains to see that the choice of ¢ which we have made implies that 1)
extends to an isomorphism A2\ D, — A%\ D, of the desired form.

Since (@c)_l(xvy) = (xiycd(y)ﬂy)a Tm<x7y) - ($,l’my), and wb,m - (Qpc)_leSOba we
get:

Vom(,y) = (0e) 7™ (xy? 4+ 0(y),y) o
(:cyd+b(y)—c(yA)’yA> , with A = (wyd +b(y))™. (€)

ydAd
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To show that ), has the desired form, we use b(y) = c(yb(y)™) (mod y?) (equation
(B)), which yields A € k such that b(y) = c(yb(y)™) + Ay? (mod y?*1). Since yA =
yb(y)™ (mod y¥1), we get b(y) = c(yA) + My? (mod y?*1). There is thus f € k[z,y]
such that

2y +(y) — c(yA) = y'(z + X+ yf(z,y)).
This yields the desired form for 1y, ,,, and shows that 1), restricts to the automorphism
z+ 2+ A on L, and then restricts to an isomorphism A%\ D, — A%\ D..

(4): It suffices to check that for m > n > 1 the birational transformation 6 = ¢, o
(Ypm)~* of A? does not correspond to an automorphism of A?. Setting [ =m —n > 1
and denoting by ¢, and ¢, the elements of k|y| associated to b and to the integers m
and n respectively, we get

0 = ((pe,) 27"pp) © ((wcm)lesob)_l = (Pe) T P

The second component of §(z,y) is thus equal to the second component of 77, (z,y)
which is —at—ss € k(z,y) \ k[z,y]. This shows that 6 is not an automorphism of A?

(and not even an endomorphism) and completes the proof. ]

Remark 3.4.6. Note that Lemma 3.4.5(1) provides an isomorphism A%\ (L, U D) —
A%\ (L, U L,) where the reducible curves (L, U D;) and (L, U L,) are not isomorphic.
Indeed, the reducible curve (L,UD;) has two connected components (since L,N Dy, = 0),
while the reducible curve (L,UL,) is connected (since L,NL, # ). Asnoted in [Kra96],
this kind of easy example explains why the complement problem in A™ has only been
formulated for irreducible hypersurfaces.

Remark 3.4.7. Geometrically, the construction of Lemma 3.4.5(3) can be interpreted as
follows: the birational morphism ¢,: (z,y) — (zy? + b(y),y) contracts the line y = 0
to the point (b(0),0). If d = 1 then ¢, just sends the line onto the exceptional divisor
of (b(0),0). If d > 2, it sends the line onto the exceptional divisor of a point in the
(d — 1)-st neighbourhood of (b(0),0). The coordinates of these points are determined
by the polynomial b. The fact that 7: (x,y) — (z,2™y) contracts the line x = 0
implies that vy, contracts the curve Dy, given by zy? + b(y) = 0. Moreover, 7™ fixes
the point (b(0),0) and induces a local isomorphism around it, hence acts on the set of
infinitely near points. This action changes the polynomial b and replaces it by another
one, which is the polynomial ¢ = ¢, provided by Lemma 3.4.5(2).

Proposition 3.4.8. There ewists an infinite sequence of curves C; C A%, i € N, all
pairwise non-equivalent, all isomorphic to A\ {0} and such that for each i there are
infinitely many open embeddings A%\ C; — A%, up to automorphisms of AZ.

Proof. Tt suffices to choose the curve C; given by zy**? + y + 1, for each i > 2. These
curves are all isomorphic to A'\ {0} by Lemma 3.4.1 and are pairwise non-equivalent
by Lemma 3.4.3. The existence of infinitely many open embeddings A%\ C; < A2, up
to automorphisms of A?, is then ensured by Lemma 3.4.5(4). O
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One can compute the polynomial ¢ = ¢, provided by Lemma 3.4.5(2), in terms of
b and m, and find explicit formulas. We obtain in particular the following result:

Lemma 3.4.9. For each p € k define the curve C,, C A? by
3 2 _
xy” +py” +y+1=0.

Then, there exists an isomorphism A%\ C, — A2\ C,_1. In particular, if char(k) = 0,
we obtain infinitely many closed curves of A%, pairwise non-equivalent, which have
1somorphic complements.

Proof. The isomorphism between A%\ C,, and A%\ C,,_; follows from Lemma 3.4.5 with
d=3,m=1,b=mw?+y+landc= (u—1)y?> +y+1.

To get the last statement, we assume that char(k) = 0 and observe that the affine
surfaces A%\ C, are all isomorphic for each n € Z. To show that the curves C,,, n € Z
are pairwise non-equivalent, we apply Lemma 3.4.3: for m,n € Z, the curves C,, and
C,, are equivalent only if there exist o, A, u € k*, 8 € k such that

=X (ay+8)°, my’+y+1=p- (nlay+B)*+ (ay+ B) +1).

The first equality gives 8 = 0, so that the second one becomes my?+y+1 = p- (na’y*+
ay + 1). We finally obtain g = 1, @« = 1 and thus m = n, as we wanted. O

If char(k) = p > 0, Lemma 3.4.9 only gives p non-equivalent curves that have iso-
morphic complements. We can get more curves by applying Lemma 3.4.3 to polynomials
of higher degree:

Lemma 3.4.10. For each integer n > 1 there exist curves Cy,...,C, C A2, all iso-
morphic to A\ {0}, pairwise non-equivalent, such that all surfaces A*\Cy, ..., A\ C,
are wsomorphic.

Proof. The case where char(k) = 0 is settled by Lemma 3.4.9 so we may assume that
char(k) =p > 2. Set b(y) = 1+y and d = p" + 2. For each integer i with 1 <i <n, we
apply Lemma 3.4.5(2) with m = p’. Hence, there exists a unique polynomial ¢; € kly]
of degree < d — 1 satisfying

b(y) = ciyb(y)”)  (mod y*). (D)
Let C; C A? be the curve given by the equation
zy® + ci(y) = 0.

By Lemma 3.4.5(3), all surfaces A%\ C1, ..., A%\ C, are isomorphic to A?\ D, where
D C A? is given by
zy® + b(y) = 0.
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It remains to check that C1, ..., C,, are pairwise non-equivalent. Assume therefore that
C; and C; are equivalent. By Lemma 3.4.3, there exist o, A\, u € k*, 8 € k such that

y'=X-(ay+8),  ci(y) = p-cilay + B).

The first equality gives S = 0, so that we get:

¢j(y) = p- ci(oy). (E)
However, by equation (D) we have
L+y=cly+y"™) (mody*?)
and this equation admits the unique solution
G=1+y—y" T+ (terms of higher order).

(Unicity follows for example again from Lemma 3.4.5(2)). Hence, looking at equation
(E) modulo y?, we obtain 1+ y = u(1 + ay), so that @ = u = 1. Equation (E) finally
yields ¢; = ¢;, so that the above (partial) computation of ¢; gives us i = j. O

The proof of Theorem 5 is now complete:

Proof of Theorem 5. Part (1) corresponds to Proposition 3.4.8. Part (2) is given by
Lemma 3.4.9 (char(k) = 0) and Lemma 3.4.10 (char(k) > 0). Part (3) corresponds to
Proposition 3.4.4. O

3.5 Non-isomorphic curves with isomorphic comple-
ments

3.5.1 A geometric construction
We begin with the following fundamental construction:

Proposition 3.5.1. For each polynomial P € Kk[t] of degree d > 3 and each )\ € k with
P(X\) # 0, there exist two closed curves C, D C A? of degree d* —d + 1 such that A%\ C

and A%\ D are isomorphic and such that the following isomorphisms hold:

C' ~ Spec (k[t, %]) and D ~ Spec (k[t, %]), where Q(t) = P()\ + %) -7,

Proof. The polynomial Py(x,y) : P(%)yd € k[z,y] is a homogeneous polynomial of
degree d such that Py(x,1) = P(x). Let then I',; A, L, R C P? be the curves given by
the equations

Dy 2 =Pyz,y), A:2=0 L:z=M\y, R:y=0.
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By construction, P, is not divisible by y. Moreover, the two lines L and A satisfy
LNT ={p1,q1} where py = [A:1: P(A)], s =[0:0:1] and A does not pass through
Pp1 OT q1.

Note that I' C P? is a cuspidal rational curve, that the point ¢; = [0: 0 : 1] € P?(k)
has multiplicity d — 1 on I, and is therefore the unique singular point of this curve (this
follows for example from the genus formula of a plane curve). The situation is then as

follows.
r R

P

q1

Denote by 7: X — P? the birational morphism given by the blow-up of pi, qi,
followed by the blow-up of the points ps,...,ps_1 and gs,...,qs infinitely near p; and
q1 respectively and all belonging to the strict transform of I'. Denote by T, A, L, R,
Ei,oooy g1, Fi,...,Fq C X the strict transforms of I, A, L, R and of the exceptional
divisors above p1,...,pa—1, q1, - -.,qq.- Consider the tree (which is in fact a chain)

d—2 d
B=LulJ&ulJF.
=1 =1

We now prove that the situation on X is as in the symmetric diagram (F),

where all curves are isomorphic to P!, all intersections indicated are transversal and
consist in exactly one k-point, except for I' N A, which can be more complicated (the
picture shows only the case where we get 3 points with transversal intersection).

Blowing up once the singular point ¢; of I, the strict transform of I' becomes a
smooth rational curve having (d —1)-th order contact with the exceptional divisor. The
unique point of intersection between the strict transform and the exceptional divisor
corresponds to the direction of the tangent line R. Hence, all points ¢o, ..., g belong
to the strict transform of the exceptional divisor of ¢;. This gives the self-intersections
of Fi, ..., Fq and their configurations, as shown in diagram (F). As p; is a smooth
point of ', the curves &, ..., &1 form a chain of curves, as shown in diagram (F).
The rest of the diagram is checked by looking at the definitions of the curves I', A, L,
R.

We now show the existence of isomorphisms

Yr: X\ (BUA) = A% and ¢: X\ (BUT) = A?
such that C' = ¢, (I'\ (BUA)) and D = (A \ (BUT)) are of degree d> — d + 1.
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We first show that 1) exists (the case of ¢, is similar, as diagram (F) is symmetric).
We observe that since 7 is the blow-up of 2d — 1 points defined over k, the Picard group
of X is of rank 2d, over k and over its algebraic closure k. We contract the curves F,

, J1 and obtain a smooth projective surface Y of Picard rank d (again over k and
k). The configuration of the image of the curves &, ..., 5_1, L, T is then depicted in
diagram (G) (we omit the curve R as we will not need it):

In fact, Y is just the blow-up of the points p1,...,pa—1 starting from P2.

In order to show that X \ (BUA) ~Y \ (AULUE U---UE,_,) is isomorphic to
A?, we will construct a birational map @/)1 --» IP? which restricts to an isomorphism
Y\(AULU& U---UE;_y) — P?\ £ for some line £. Let us now describe this map.
Denote by 7 the unique point of Y such that {r} = ANLinY. We blow up r; and
then the point 75 lying on the intersection of the exceptional curve of r; and of the strict
transform of A. For i = 3,...,d, denoting by r; the point lying on the intersection of
the exceptional curve of r;_; and on the strict transform of the exceptional curve of
r1, we successively blow up r;. We thus obtain a birational morphism 6: Z — Y. The
configuration of curves on Z is depicted in diagram (H) (we again use the same name
for a curve on Y and its strict transform on Z; we also denote by G; C Z the strict
transform of the exceptional divisor of r;):

We can then contract the curves A, Gs, ..., Gy1,L, &, ..., Es_2,G1 and obtain a bira-
tional morphism p: Z — P2. The image of the target is P2, because it has Picard rank 1;
note also that the image £ of Gy is actually a line of IP’2 since it has self-intersection
1. The birational map 1/)1 --» P? given by wl = pf~! is the desired birational map.
The closure C of C' C A2 in P? is then equal to the image of T by p.

For each contracted curve above, the multiplicity (on C’) at the point where it is
contracted is equal to d for A, Gs,...,Ga_1, to d —1 for L, &, ...,Eso, and is equal

o (d —1)? for G;. Adding the smgular point of multiplicity d — 1 of T, we obtain
the two sequences of multiplicities (d,...,d) and ((d —1)?,d —1,...,d — 1). The self-

—— ~

-~

d—1 d

intersection of C is then

(d®—d+1)+(d=1)-d®+(d—-1)-(d—1)*+ ((d—1)*)? = (&> —d + 1),
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which implies that the curve has degree d*> — d + 1.

The case of 1), is similar, since the diagram (F) is symmetric.

In particular, this construction provides an isomorphism A%\ C' ~ A? \ D, where
C, D C A? are closed curves isomorphic to I'\ (BUA) ~ T'\ (AU{¢}) and A\ (BUT) ~
A\ (T U L) respectively, both of degree d* — d + 1.

Since T'\ {q;} is isomorphic to A via ¢t — [t : 1: Py(t,1)] = [t : 1 : P(t)], we obtain
that C' ~ T\ (AU {q}) is isomorphic to Spec(k[t, ]).

We then take the isomorphism A! — A\ L = A\ {[\:1:0]} given by ¢t ~— [\t +1:
¢ : 0]. The pull-back of ANT corresponds to the zeros of Py(\t+1,t) = t?Py(A+1,1) =
Q(t). Hence, D is isomorphic to Spec(k]t, %]) as desired. O

Corollary 3.5.2. For each d > 0 and every choice of distinct points aq, . ..,aq,b1,bs €
P! (k), there are two closed curves C, D C A? such that A*\C' and A*\ D are isomorphic
and such that C' ~P'\ {ay,...,a4,b1} and D ~P'\ {ay,...,a4,ba}.

Proof. The case where d < 2 is obvious: Since PGLy(k) acts 3-transitively on P! (k),
we may take C' = D given by the equation x = 0, resp. xy = 1, resp. z(x — 1)y = 1,
if d =0, resp. d = 1, resp. d = 2. Let us now assume that d > 3. Since PGLy(k)
acts transitively on P!(k), we may assume without restriction that b; is the point at
infinity [1 : 0]. Therefore, there exist distinct constants g1, ..., puqs, A € k such that
a; = [py 2 1],...,aq = [pa = 1] and by = [A : 1]. We now apply Proposition 3.5.1 with
P =TI, (t — ;). We get two closed curves C, D C A? such that A2\ C' and A2\ D are
isomorphic and such that C' ~ Spec(k[t, 5]) = A"\ {p1, ..., pa} 2P\ {a1,...,aq,b01}
and D ~ Spec(k[t, é]) o~ Al\{ml_)\, e M—l_/\}, where Q(t) = P(A+1)-t. It remains to
observe that D is isomorphic to P\ {[uy : 1],..., [gg : 1], [N : 1]} viat — [At+1:¢]. O

Corollary 3.5.3. If k is infinite and P € k[t] is a polynomial with at least 3 roots in
k, we can find two curves C, D C A? that have isomorphic complements, such that C
is isomorphic to Spec(k[t, 5]), but D is not.

Proof. By Lemma 3.5.4 below, there exists a constant A in k such that P(\) # 0 and
such that the curves Spec(k[t, 5]) and Spec(k[t, %]) are not isomorphic. The result now
follows from Proposition 3.5.1. [

Lemma 3.5.4. If k is infinite and P € k[t] is a polynomial with at least 3 roots in k,
then for a general X € k, the polynomial Q(t) = P(A + %) - t9e(P) has the property that
the curves Spec(kt, +]) and Spec(k[t, é]) are not isomorphic.

Proof. Let A1, ..., s € k be the single roots of P. It suffices to check that for a general

A there is no automorphism of P! that sends {\, ..., Ag, 00} to {rl_/\, o M+A’ oo}, or
equivalently that there is no automorphism that sends {1, ..., Ag, 00} to {A\1, ..., Ag, A}
But if an automorphism sends {Aq, ..., A\g, 00} to {1, ..., Ag, A}, it necessarily belongs

to the set A of automorphisms ¢ such that o= ({\;, A2, \3}) C {A1,..., A\g,0}. Since
an automorphism of P! is determined by the image of 3 points, the set A has at

most 6(d§1) = (d+ 1)d(d — 1) elements. In conclusion, if A is not of the form ¢(u)
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for some ¢ € A and some pu € {)\,...,\g,00}, then no automorphism of P! sends
{)\1,...,)\d,00} to {Al,...,)\d,)\}. ]

Remark 3.5.5. If k is a finite field (with at least 3 elements), then the conclusion of

Corollary 3.5.3 is false for the polynomial P = [] (z —«). Indeed, if C;, D C A? are two
ack

curves such that C' is isomorphic to Spec(k[t, ]) and A? \ C' is isomorphic to A \ D,
then D is isomorphic to Spec(k]t, %]) for some polynomial () that has no square factors

and the same number of roots in k and in k as P (Theorem 4(1)). This implies that @
is equal to pP for some p € k* and thus that C' and D are isomorphic.

A similar argument holds for P = [[ (zr —«a) and P =[] (x —«a) (when the
ack* aek\{0,1}

field has at least 4, respectively 5 elements) since PGLy (k) acts 3-transitively on P*(k).

Corollary 3.5.6. For each ground field k with more than 27 elements, there exist two
geometrically irreducible closed curves C, D C A% of degree T which are not isomorphic,
but such that A*>\ C and A?\ D are isomorphic.

Proof. We fix some element ¢ € k\ {0,1}. For each A € k\ {0,1,(}, we apply
Corollary 3.5.2 with d = 3, a3 = [0 : 1], ag = [1 : 1}, a3 = [( : 1], by = [1 : 0],
by = [X : 1] and get two closed curves C; D C A? such that A?\ C and A?\ D are
isomorphic and such that C' ~ A'\ {0,1,¢} =P\ {[0: 1],[1: 1],[¢ : 1],[1 : 0]} and
D ~P"\{[0:1],[1:1],[¢C:1],[A:1]}. It remains to see that we can find at least one A
such that C' and D are not isomorphic. Note that C' and D are isomorphic if and only
if there is an element of Aut(P') = PGLy(k) that sends {[0 : 1],[1 : 1],[¢ : 1], [\ : 1]}
onto {[0 : 1],[1 : 1],[¢ : 1],[1 : 0]}. The image of this element is determined by the
image of [0 : 1], [1 : 1],[¢ : 1], so we have at most 24 automorphisms to avoid, hence at
most 24 elements of k \ {0, 1,(} to avoid. Since the field k has at least 28 elements, we
find at least one A with the desired property. O

We can now prove Theorem 6.

Proof of Theorem 6. If the field is infinite (or simply has more than 27 elements), the
theorem from Corollary 3.5.6. Let us therefore assume that k is a finite field. We again
apply Proposition 3.5.1 (with A = 0). Therefore, if |k| > 2 (resp. |k| = 2), it suffices to
give a polynomial P € k|t] of degree 3 (resp. 4) such that P(0) # 0 and such that if we
set Q := P(1)t%8”, then the k-algebras k[t, ] and k[t, %] are not isomorphic.

We begin with the case where the characteristic of k is odd. Then, the kernel
of the morphism of groups k* — k*, x — 2? is equal to {—1,1}, so that this map
is not surjective. Let us pick an element o € k* \ (k*)?. Let us check that we can
take P = (t — 1)((t — 1)> — «). Indeed, up to a multiplicative constant, we have
Q = (t—1)((t—1)>—at?). Let us assume by contradiction that the algebras klt, 5] and
k[t, %] are isomorphic. Then, these algebras would still be isomorphic if we replaced P
and ) by

P=Pt+1)=t(t*—a)and Q = Q(t + 1) = t(t* — a(t + 1)%).
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This would produce an automorphism of P!, via the embedding ¢ +~ [t : 1], which sends
the polynomial uv(u? —av?) onto a multiple of uv(u® — a(u+v)?). This automorphism
preserves the set of k-roots: {[0: 1],[1: 0]}, and is of the form either [u : v] — [uu : v]
or [u: v] — [pv : u] where p € k*. The polynomial u* — cv? must be sent to a multiple
of u? — a(u + v)?, which is not possible, because of the term uwv.

We now treat the case where k has characteristic 2. We divide it into three cases,
depending on whether the cube homomorphism of groups k* — k*, o — 22 is surjective
or not (which corresponds to asking that |k| not be a power of 4) and setting aside the
field with two elements.

If the cube homomorphism is not surjective, we can pick an element a € k*\ (k*)3.
We may take the irreducible polynomial P = t3—a € k[t]. Indeed, up to a multiplicative
constant, we have Q = t* —a~'. Assume by contradiction that the algebras k[t, 5] and
k(t, %] are isomorphic. Then, there should exist constants A, i, ¢ € k with Ac # 0 such
that

c(t® —al) = (At +p)? —a.

This gives us © = 0 and A\*> = ¢ = o?. Since the square homomorphism of groups

k* — k*, o — 2% is bijective, there is a unique square root for each element of k*.
Taking the square root of the equality a® = X3, we obtain a = ()3, where v is the
square root of A\. This is impossible since a was chosen not to be a cube.

If the cube homomorphism is surjective, then 1 is the only root of 3 —1 = (t—1)(t*+
t+1), so t*+t+1 € k[t] is irrreducible. If moreover k has more than 2 elements, we can
choose a € k\ {0,1} and take P = (t — a)(t* + ¢+ 1). Up to a multiplicative constant,
we have @ = (t — a~')(t* +t + 1). Let us assume by contradiction that the algebras
k[t, 5] and Kk[t, %] are isomorphic. Then, these algebras would still be isomorphic if we
replaced P and @) by

P=Plt+a)=tl?+t+a’+a+1)and Q=Q(t+a ) =t{t*+t+a2+at+1).

This would yield an automorphism of P!, via the embedding ¢ ~ [t : 1], which sends the
polynomial uv(u?+uv+(a®+a+1)v?) onto a multiple of uv(u?+uv+ (a2 +a~t+1)v?).
The same argument as before gives o> + a+1 =a2+a !+ 1 ie o> +a+1=
a2(a? 4+ a + 1). This is impossible since a? + a + 1 # 0 and o? # 1.

The last case is that in which k = {0, 1} is the field with two elements. Here the
construction does not work with polynomials of degree 3: the only ones which are not
symmetric and do not vanish at 0 are 3 +¢2 41 and ¢34+t + 1, and they are equivalent
via t — t + 1. We then choose for P the irreducible polynomial P = ¢* + ¢ + 1 (it has
no root and is not equal to (2 +t +1)2 = t* + ¢ + 1). This gives Q = t* + > + 1. Let
us assume by contradiction that the algebras k¢, 5] and k[t, é] are isomorphic. Then,
there would exist constants A, i, ¢ € k such that Ac # 0 and

c(t* + 3+ 1) = (M +p)* + (M +p) + 1.

This is impossible since (At + ) + (At + p) + 1= MNP+ X+ (p + p+ 1), O
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3.5.2 Finding explicit formulas

To obtain the equations of the curves C, D and the isomorphism A%\ C — A%\ D
given by Proposition 3.5.1, we could follow the construction and explicitly compute the
birational maps described: The proposition establishes the existence of isomorphisms

Yr: X\ (BUA) = A% and ¢: X\ (BUT) = A?

such that C' = ¢4 (I'\ (BUA)) and D = (A \ (BUT)) are of degree d> — d + 1,
_ d-2 d
where B = LU |J & U |J Fi, and 11,19 are given by blow-ups and blow-downs, so it
i=1 i=1
is possible to compute ;7 ~1: P? --» P? with formulas (looking at the linear systems),
and then to get the isomorphism 1m0 (¢y7~ 1)1 A2\ ¢ — A%\ D. However, the
formulas for 1,71, 1ym ! are complicated.

Another possibility is the following: we choose a birational morphism X — W that
contracts L,&y,...,E 2 and Fy, ..., Fa to two smooth points of W, passing through
the image of JF (this is possible, see diagram (F)). The situation of the image of the
curves R, &; 1, F1,T', A (which we again denote by the same name) in W is as follows:

Computing the dimension of the Picard group, we find that W is a Hirzebruch surface.
Hence, the curves £;_1, R are fibres of a P!-bundle W — P! and Fi, A, I are sections of
self-intersection d — 2, d,d. We can then find many examples in F; and Fy (depending
on the parity of d), but also in FF,, for m > 2 if the polynomial chosen at the outset is
special enough.

The case where d = 3 corresponds to curves of degree 7 in A% (Proposition 3.5.1),
which is the first interesting case, as it gives non-isomorphic curves for almost every
field (Theorem 6). When d = 3, we find that F; is a section of self-intersection 1
in W = Fy, so F, \ F; is isomorphic to the blow-up of A? at one point, and [, A
are sections of self-intersection 3 and are thus strict transforms of parabolas passing
through the point blown up. This explains how the following result is derived from
Proposition 3.5.1. However, the statement and the proof that we give are independent
of the latter proposition:

Proposition 3.5.7. Let us fix some constants ag,ay,as,a3 € k with agas # 0 and
consider the two irreducible polynomials P, Q) € k|x,y| of degree 2 given by

P=a*—ayx—asy and Q=>4+ apx+ ary.
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(1) Denoting by n: A2 — A? the blow-up of the origin and by T, A C A2 the strict
transforms of the curves I, A C A? given by P = 0 and Q = 0 respectively, the
rational maps

op:  A? - A2 and pg: A --» A?

(,y) (—%P(mﬁ) (z,y) (@,Q(fc,y))

are birational maps that induce 1somorphisms
Up = (eplinp: A2\T = A% and o= (pgn)liaa: A*\A = A2

(2) Define the curves C, D C A? by C = po(I'\ A), D = ¢p(A\T) and denote by
P A%\ C — A? \ D the isomorphism induced by the birational transformation
Yp(g)~t: A% --» A2, Then, the curves C, D C A? are given by f =0 and g =0
respectively, where the polynomials f,g € klx,y| are defined by:

f = (1 — x(xy + al)) <y (1 —x(xy + al)) — a0a2> — z(ap)?as,
g = (1 — x(zy + ag)) (y (1 — x(zy + ag)) — a1a3> — zap(as)?.
The following isomorphisms hold:

1 1
C ~ Spec | k[t, =] and D =~ Spec | k[t, =—s——] | .
> i @it! D oiio 3t

Moreover, ¥ and ¥~ are given by

ag (x(my +ay) — 1) y f(z,y)

E (2,9) ~ f(z,y) " (ao)”

4 (x("Ty +a2) - 1) yg(z,y)
9(r,y) " (a3)?

= (z,y).

Proof. (1): Let us first prove that pp is birational and that ¢pn induces an isomor-
phism A2\ T' — A% We observe that &: (z,y) — (z,2% — ayz — asy) is an auto-
morphism of A? that sends I' onto the line L, C A? of equation y = 0. Moreover
op = opr ' (z,y) — (—=%,y) is birational, so ¢p is birational. Since £ fixes the ori-
gin, n~!kn is an automorphism of A? that sends I" onto the strict transform iy C A? of
L,. The fact that ¢pn induces an isomorphism A%\ L, — A? is straightforward using
the classical description of the blow-up A? in which

A% ={((z,y),[u:v]) | zv = yu} C A% x P!
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and 7: A% — AZ is the first projection. Actually, with this description L, = L, x [1 : 0]
is given by the equation v = 0 and the following morphisms are inverses of each other:

A2\ L, = A2, ((@y),[u: o)) = (—2,p)
A= A\ L, (2,9) = (—oy,y), [—o: 1)),

It follows that (¢pn)(n~'kn) = @pn induces an isomorphism A2\ T' —+ A2, The case
of o and pgn would be treated similarly, using the automorphism of A? given by
(z,y) = (y* + apx + a1y, y). This proves (1).

(2): Now that (1) is proven, we get two isomorphisms

Yplu: U = A2\ D, glu: U — A?\ C,

where U = A2\ (T UA). Remembering that T' C A? is given by z(z — ay) = asy, we
have an isomorphism

p: Al — r
t — (tag + asg, t(tag + CLQ))
%(l’ - a?) A (xvy)

Replacing p(t) in the polynomial Q(z,y) = zag + ya; + y* used to define A, we find
Q(tag + as, t(ta3 + &2)) = (tag + ag)(t3a3 + t2&2 -+ ta1 + ao).
The root of taz + ay is sent by p to the origin, which is itself blown up by 1. Hence,
the map 7~ 'p induces an isomorphism from V = Spec(k[t, ﬁ]) c Al to T\ A.
i=0 L i
Applying ¢g = (vgn)liz\a, We get an isomorphism 6 = (pgp)lv: V — C. Since
(pg)~ ! is given by

Yy (1 —z(zy + a1)>

(pq) " (z,y) — zy |,
Qo

we can explicitly give # and its inverse:

0: Spec(k|[t, ﬁ])

t — <ﬁ;,(ta3+a2)(2?:0tiai)>
(91 sty o)

— — ay — (x,y).
as Qo

Computing the extension of § to a morphism P! — P2, we see that the curve C' C A?
has degree 7. To find its equation, we can compute ((¢q)~)*(P): since (ag)*P(z,y) =
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(aor)(agr — agaz) — (ag)*azy, we get

(@0)*((pa) )" (P) = ()P (M=lersnd o)
y(1—2(xy+ar)) (y (1 — 2(zy + a1)) — apas) — zy(a)*as
= yf(z,y),

where

f=0—z(zy+a)) (y(Q—z(zy+ a)) — aas) — x(ao)’as € k[z,y]

is the equation of C' (note that the polynomial y = 0 appears here, because it corre-
sponds to the line contracted by (1g)™", corresponding to the exceptional divisor of
A? — A? via the isomorphism A? — A? \ A) The linear involution of A? given by
(x,y) = (—y, —x) exchanges the polynomials P and () and the maps ¢p and ¢q, by re-
placing ag, a1, as, as by as, as, a1, ag respectively. This shows that D C A? has equation
g = 0, where g is obtained from f on replacing ag, a1, as, as by as, as, ay, ag, i.e.

9= (1—a(ry+az)) (y (1 - 2(xy + as)) — a1a3) — wag(az)* € klz,y}.

Therefore, D is isomorphic to Spec(k] It remains to compute the iso-

i=0 ¥3—1i
morphism ¢: A?\ C — A%\ D, which is by construction equal to the birational maps

Yp(g) ™t = wp(pg)™'. Using the equation (ag)*P (%fﬂ”)),xy) = yf(z,y), we
get:

U(a,y) = ep (y(l_x(xy+a1>>,xy)

Qo

_ (o vy —elyta)) 4 (y(l — x(ry + a1)>,xy)
0 P <y<1—w<wy+a1>>’w>

ao

_ (ao(:c(xy+a1)—1) yf(x,y))
f(z,y) " (@) )

By symmetry, the expression of 1)~! is obtained from that of 1) by replacing aq, a1, as, as
az (x(vy +a2) — 1) yg(z,y) -
9(z,y) " (as)?

by as, as, a1, ag, i.e. it is given by ¢ !(z,y) = (

Remark 3.5.8. Proposition 3.5.7 yields an isomorphism ¢*: k[z,y, é] — K[z, v, %]
which sends the invertible elements onto the invertible elements and thus sends g onto
AfEL for some A € k* (see Lemma 3.2.11). This corresponds to saying that ¢ induces
an isomorphism between the two fibrations

A2\ C L A\ {0} and A2\ D % A\ {0},
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possibly exchanging the fibres. To study these fibrations, we use the equalities

(ol () ="0L, (o9 = L, 0

which can either be checked directly, or deduced as follows: the first equality follows

from ((¢g)™")*(P) = y{;T’”)’gf), applying (¢g)*, and the second is obtained by symmetry.

Note that equation (I) provides ¥*(g) = @, since ¥ = pp(pg) .

For each p € k, the fibre C, C A? given by f(z,y) = p is an algebraic curve
isomorphic to its preimage by the isomorphism g = (¢gn)|j2\A A2\ A =5 A? of
Proposition 3.5.7(1). By construction, (o) "(C,) is equal to T, \ A, where I', ¢ A2
is the strict transform of the curve ', C A? given by (ag)*P — u@ = 0 (follows from
equation (I)). The closure of I';, in P? is the conic given by

(a0)?2” = py? = = (ol + a0az) = (uay + (ao)as)y) =0,

which passes through [0 : 0 : 1] and is irreducible for a general p. Projecting from the
point [0 : 0 : 1] we obtain an isomorphism with P! (still for a general ). The curve I',\ A
is then isomorphic to P! minus three k-points of A, which are fixed and do not depend
on y, and minus the two points at infinity, which correspond to (ag)*z? — uy?* = 0.

When the field is algebraically closed, we thus find that the general fibres of f are
isomorphic to P! minus 5 points, whereas the zero fibre is isomorphic to P! minus 4
points (if Z?:o a;t' is chosen to have three distinct roots). Moreover, the two points of
intersection with the line at infinity say that this curve is a horizontal curve of degree 2,
or a horizontal curve which is not a section (in the usual notation of polynomials and
components on boundary, see [NN02, AC96, CD17]), so the polynomials f and g are
rational, but not of simple type (see [NN02, CD17]). When k = C, this implies that
the polynomial has non-trivial monodromy [ACD98, Corollary 2, page 320].

3.6 Related questions

3.6.1 Higher dimensional counterexamples

The negative answer to the Complement Problem for n = 2 also furnishes a negative
answer for any n > 3. This relies mainly on the cancellation property for curves, as
explained in the following result:

Proposition 3.6.1. Let C, D C A? be two closed geometrically irreducible curves that
have isomorphic complements. Then for each m > 1, the varieties Ho = C' x A™
and Hp = D x A™ are closed hypersurfaces of A% x A™ = A™*2 that have isomorphic
complements. Moreover, C' and D are isomorphic if and only if C x A™ and D x A™
are.
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Proof. Denoting by f, g € k|z,y] the geometrically irreducible polynomials that define
the curves C, D, the varieties Ho, Hp C A2 x A™ = A™*? are given by the same
polynomials and are thus again geometrically irreducible closed hypersurfaces. The
isomorphism A2\ C' — A2\ D then extends naturally to an isomorphism A™*2\ Hy, —

Am+2 \ HDo
The last equivalence is the well-known cancellation property for curves, proven in
[AHET72, Corollary (3.4)]. O

Corollary 3.6.2. For each ground field k and each integer n > 3, there exist two geo-
metrically irreducible smooth closed hypersurfaces E, F C A™ which are not isomorphic,
but whose complements A" \ E and A"\ F are isomorphic. Furthermore, the hyper-
surfaces can be given by polynomials f,g € klxy,z5] C K[x1,...,2,] of degree T if the
field admits more than 2 elements and of degree 13 if the field has 2 elements. The
hypersurfaces E, F are isomorphic to C' x A" 2 and D x A"2 for some smooth closed
curves C, D C A? of the same degree.

Proof. Tt suffices to choose for f,g the equations of the curves C,D C A? given by
Theorem 6. The result then follows from Proposition 3.6.1. O

3.6.2 The holomorphic case

Proposition 3.6.3. For every choice of d+ 1 distinct points aq, . .., aq,aqs41 € C, with
d > 3, there exist two closed algebraic curves C, D C C? of degree d* —d+1 such that C
and D are algebraically isomorphic to C\{ay,...,aq-1,aq} and C\{ay,...,aq_1,0q4:1}
respectively, and such that C*\ C and C?\ D are algebraically isomorphic.

In particular, if we choose the points in general position, the curves C' and D are
not btholomorphic, but their complements are.

Proof. The existence of C, D follows directly from Proposition 3.5.1. It remains to
observe that C' and D are not biholomorphic if the points are in general position. If
f: C — D is a biholomorphism, then f extends to a holomorphic map CP* — CP!, as
it cannot have essential singularities. The same holds for f=!, so f is just an element of
PGL2(C), hence an algebraic automorphism of the projective complex line. Removing
at least 4 points of CP! (this is the case since d > 3) and moving one of them produces
infinitely many curves with isomorphic complements, up to biholomorphism. O

Corollary 3.6.4. For each n > 2, there exist algebraic hypersurfaces E, F' C C" which
are complex manifolds that are not biholomorphic, but have biholomorphic complements.

Proof. Tt suffices to take polynomials f,g € C[xq,xs] provided by Proposition 3.6.3,
whose zero sets are smooth algebraic curves C, D C C? that are not biholomorphic, but
have holomorphic complements. We then use the same polynomials to define E, F' C
C", which are smooth complex manifolds that have biholomorphic complements and
are biholomorphic to C' x C*2 and D x C"~2 respectively. It remains to observe that
C x C" % and D x C" 2 are not biholomorphic. Denote by pc: C x C*2 — C and
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pp: D x C"2 — D the projections on the first factor. If : C" 2 x C — C" 2 x D is
a biholomorphism, then ppo: C* 2 x C' — D induces, for each ¢ € C, a holomorphic
map C"2? — D which must be constant by Picard’s theorem (since it avoids at least two
values of C). Therefore, the map pp o) factors through a holomorphic map x: C' — D:
we have pp o ¢ = x o pc. We analogously get a holomorphic map #: D — C', which is
by construction the inverse of x, so C' and D are biholomorphic, a contradiction. [

3.7 Appendix: The case of P?

In this appendix, we describe some results on the question of complements of curves in
P? explained in the introduction. These are not directly related to the rest of the text
and serve only as comparison with the affine case.

We recall the following simple argument, known to specialists, for lack of reference:

Proposition 3.7.1. Let C, D C P? be two geometrically irreducible closed curves such
that P*\ C' and P2\ D are isomorphic. If C and D are not equivalent, up to automor-
phism of P2, then C and D are singular rational curves.

Proof. Denote by ¢: P2 --» P? a birational map which restricts to an isomorphism
P2\ C = P2\ D. If ¢ is an automorphism of P2, then C' and D are equivalent.
Otherwise, the same argument as in Proposition 3.2.6 shows that both C' and D are
rational (this also follows from [Bla09, Lemma 2.2]). If C' and D are singular, we
are done, so we may assume that one of them is smooth, and then has degree 1 or
2. Since the Picard group of P2\ C is Z/deg(C)Z, we find that C and D have the
same degree. This implies that C' and D are equivalent under automorphisms of P2
The case of lines is obvious. For conics, it is enough to check that a rational conic
over any field is necessarily equivalent to the conic of equation zy + 22 = 0. Actually,
we may always assume that the rational conic contains the point [1 : 0 : 0], since it
contains a rational point. We may furthermore assume that the tangent at this point
has equation y = 0. This means that the equation of the conic is of the form zy+u(y, 2),
where u is a homogenous polynomial of degree 2. Using a change of variables of the
form (z,y,2) — (x + ay + bz,y, z), where a,b € k, we may assume that the equation
is of the form zy + cz> = 0, where ¢ € k*. Then, using the change of variables
(z,9,2) — (cx,y,2), we finally get, as announced, the equation zy + 22 = 0. ]

In order to get families of (singular) curves in P? that have isomorphic complements,
we here give explicit equations from the construction of Paolo Costa [Cos12]. We thus
obtain unicuspidal curves in P? which have isomorphic complements, but which are
non-equivalent under the action of Aut(P?). We give the details of the proof for self-
containedness, and also because the results below are not explicitly stated in [Cos12].
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Lemma 3.7.2. Let k be a field. Let d > 1 be an integer and P € k[z,y| a homogenous
polynomial of degree d, not a multiple of y. We define the homogeneous polynomial

fp € K[z, y, 2] of degree 4d + 1 by the following formula, where w := xz —y

2.

fr = zw* 4 2yw'P(2?, w) + zP?*(2*, w).

Denote by Cp, L, Q C IP? the curves of equations fp =0, resp. z =0, resp. w = 0, and
by Ve, Ve, Vo C A3 their corresponding cones (given by the same equations). Then:

(1)
(2)

The polynomial fp is geometrically irreducible (i.e. irreducible in k[x,y, 2]).

The rational map ¥p: A3 --» A3 which sends (x,y, z) to
<x, y+ P (x2w_1, 1) , 2+ 2yP (wa_l, 1) + zP? (x2w_1, 1) )
is a birational map of A3 that restricts to isomorphisms

A3\ Vo — A3\ Vo, Vp\ Vo — Ve \ Vg and A®\ (Vo U Vp) — A%\ (Vo U V;).

Since p is homogeneous, the same formula induces a birational map of P? that
restricts to isomorphisms

P2\ Q = P*\Q, Cp\Q — L\ Q and P*\ (QUCp) — P2\ (QUL).

Since the point [0 : 0 : 1] is the unique intersection point between Cp and Q, it is
also the unique singular point of Cp.

Let X\ be a nonzero element of k. Then, the rational map
"% (wnyv Z) = (l‘ + ()\ - ].)U)Z_l,y, Z) = ()‘$ - ()\ - 1)y22_1ay72)

is a birational map of A3 that restricts to automorphisms of A3\ V., Vo \ V; and
A3\ (V; UVy). The same formula then gives automorphisms of P2\ L, Q\ L and
P2\ (LU Q).

Set P(x,y) = P(\x,y) and k = (V) Ypatbp. Then, the rational map k restricts to
an isomorphism A3\ Vp — A3 \ V. In particular, k also induces an isomorphism

P2\ Cp — P2\ Cp.

For each homogeneous polynomial P € k[x,y] of degree d which is not divisible by
y, the curves Cp and Cp are equivalent up to automorphisms of P2, if and only if
there exist some constants p € kK*, u € k such that

P(z,y) = pP(px,y) + py*.
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Proof. (1)-(2): As does each rational map A3 --» A3 the rational map ¢p sup-
plies a morphism of k-algebras (¢¥p)*: k[z,y, 2] — k(z,y,z). This sends x,y, z onto
z,y + zP(x?w™, 1), 2 + 2yP(x?w™, 1) + 2 P*(z*w™"',1). Note that (¥p)* fixes x and
w. This implies that (p)* extends to an endomorphism of k[x,y, z,w™!], which is
moreover an automorphism since (¢¥p)* o (¢)_p)* = id. Extending to the quotient field
k(x,y, z), we get an automorphism of k(z,y, z), that we again denote by (¢p)*, so ¥p
is a birational map of A% and induces moreover an isomorphism of A3\ Vg, because
(Yp)*(k[z,y, z,w™]) = k[z,y, 2, w™!]. We then observe that (¢p)*(2) = fpw=2? where
fp and w = zz —y? are coprime since fp(1,0,0) = P?(1,0) # 0. Let us also notice that
VeNVg ={(x,y,2) € A% | x =y = 0} and that V;NVg = {(z,y,2) € A’ | y = 2 = 0}.
Hence p restricts to an isomorphism of surfaces Vp \ Vo — V; \ Vo. This implies
that Vp and Cp are rational, and that fp is geometrically irreducible, which proves (1).
This also implies that 9 p restricts to an isomorphism A%\ (VoUVp) — A3\ (VoU V).
As vp is homogeneous, we get the analogous results by replacing A%, Vp, V., Vg by P2,
Cp, L, Q respectively.

(3): We check that oy o py-1 = id, s0 ¢, is a birational map of A3, which restricts
to an automorphism of A®\ V., since the denominators only involve z. Moreover,
(px)*(w) = Aw (where (p,)* is the automorphism of k(z,y, z) corresponding to ),
so the surface Vg \ V. is preserved, hence p, restricts to automorphisms of A3\ V,
Vo \ Vz and A®\ (V; UVg). Since ¢y is homogeneous, the same formula then gives
automorphisms of P2\ £, @\ £ and P?\ (LU Q).

(4): By (2)-(3), the transformation k = (1) 'prtbp restricts to an isomorphism
AP\ (VoUVp) = A%\ (Vo UV3). Let us prove that with the special choice of P that
we have made, # then restricts to an isomorphism A®\ Vp — A%\ V. For this, we
prove that the restriction of x is the identity automorphism on Vo \ Vp = Vo \ Vp =
Vo\{(z,y,2) € A* | x = y = 0}. We compute

oxhp(,y,2) = (5'3' + (A= D Ry 4+ 2P (2, w)w ™, fPUde)

which satisfies (@ \tp)*(w) = (vr)"(w) = Aw. To simplify the notation, we write
§= (A= DwX {1 and get that k(r,y,2) = (Vp) Loatbp(r,y, 2) is equal to

(a: + 6,y + xP(x*, w)w™? — (x4 6)P A @+ 62w 1), 2+ C)

for some ¢ € k(z,y, z). Since P(x,y) = P(\z,y), the second component is

rP (2% w) — P((x + 0)%,w)(x + 9)

K'(y) =y +

As w?™! divides the numerator of §, we can write x*(y) as y + w(fp) "R, for some
R € k[z,y,2] and n > 0. Similarly, x*(z) = 2 + wfp'S, where S € k[x,y, z]. Since
K (w) = \w, we get

o= (z+wfp'S)(z+¢) — (y +wfp"R)%,
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which shows that ((z + wfp'S) = wf;’hT for some T € k[z,y, z], m > 0. Hence we
can write k*(z) = z +( = z +wfp™7T for some T' € k[z,y, z] and m > 0. This shows
that x is well defined on Vg \ Vp = Vo \ Vp = Vo \ {(z,v,2) € A? | x = y = 0} and
restricts to the identity on this surface.

Since & is homogeneous, the isomorphism A%\ Vp — A3\ V3 also induces an
isomorphism P? \ Cp — P?\ C}, which fixes pointwise the curve Q \ Cp = @\ Cp.

(5): Suppose first that P(z,y) = pP(p*z,y) + uy® for some p € k*, i € k. Define
the transformation o € GL3(k) by

a(a,y,z) = (x, py — pa, p*z = 2ppy + ()

and the birational transformation s € Bir(A®) by s = ¢pa(tp)~!. Let us note that
= (Yp) 'a*yy. We check that o*(w) = p*w, from which we get s*(w) = p*w. The
equality

a*(U(y) = o (y+aP(x*w, 1)) = py — px + xP(p 22w, 1)
= py+ prP(z*w ", 1) = pp(y)

gives us s*(y) = py. The relation z = 7 (w —y?) combined with the equality s*(z) = x
now proves that s*(z) = p?z. But we have (vp)*(2) = frw™2@ and (¢¥p)*(z) = fpw ™2,
so that we get a*(fpw™24) = p? fpw=2¢. In turn, this latter equality yields

o (fp) = p"** fp.

This shows that o induces an automorphism of P? sending Cp onto C'p.

Conversely, suppose that there exists 7 € Aut(PP?) sending Cp onto Cs.

We begin by proving that 7 preserves the conic Q. Since Cp \ Q ~ Cp \ Q ~
L\ Q ~ A, the irreducible conic @ C P? intersects Cp (respectively C5) in exactly
one k-point, the unique singular point [0 : 0 : 1] of Cp (resp. C). The irreducible conic
7(Q) thus also intersects C's in one k-point, namely [0 : 0 : 1]. Observe that this implies
that 7(Q) = Q. We first notice that Cp \ {[0 : 0 : 1]} ~ A, so there is one k-point
at each step of the resolution of Cs5. We can then write ¢; = [0 : 0 : 1] and define a
sequence of points (¢;);>1 such that ¢; is the point infinitely near ¢;_; belonging to the
strict transform of Cp, for each ¢ > 2. Denote by r the biggest integer such that g,
belongs to the strict transform of Q and by 7’ the biggest integer such that ¢, belongs
to the strict transform of 7(Q). By Bézout’s Theorem (since Q and 7(Q) are smooth),
we have

Z mg,(Cp) = deg(Q) deg(Cp) = deg(7(Q)) deg(C Z mg,(C

which yields » = /. On the blow-up X — P? of qq,...,q,, the strict transform of
the curve Cp is then disjoint from those of Q and 7(Q), which are linearly equivalent.
Assume by contradiction that we have 7(Q) # Q. Then, we claim that the strict
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transform of any irreducible conic @' in the pencil generated by Q and 7(Q) is also
disjoint from the strict transform of C's. Indeed, we first note that Cz and Q" have no
common irreducible component since C is an irreducible curve whose degree satisfies

degCps >5>2=deg Q.

Finally, since the (infinitely near) points ¢i, ..., ¢. belong to both Q" and C's and since
Yo Mg (Cp) = deg(Q') deg(Cp), the curves Q@ and C'p do not have any other common
(infinitely near) point.

Choose now a general point g of P? which belongs to Cps \ {¢1} ~ A! and choose
the conic @' in the pencil generated by Q and 7(Q) which passes through ¢. Then,
the strict transforms of @ and C intersect in X (at the point ¢). This contradiction
shows that Q is preserved by 7.

Since 7 € Aut(P?) = PGL3(k) fixes the point [0 : 0 : 1] (which is the unique singular
point of both Cp and C) and preserves the line = 0 (which is the tangent line of
both Cp and C at the point [0 : 0 : 1]), it admits a (unique) lift « € GL3(k) which is
triangular and satisfies a*(z) = z. This means that « is of the form:

a: (z,y,2) = (2, py — px, vz + 6y + £x),

for some constants p, i, v, 0, € k (satisfying py # 0). Since o*(w) is proportional to
w, we get v = p?, § = —2pp and € = p?, i.e. o is of the form

a: (z,y,2) = (x,py — p, p°z = 2ppy + ().

Set s := Ypa(bp)~! € Bir(A3). Since a*(w) = p*w, we also get s*(w) = p*w. Since
(Vp)*(2) = frw™2, (¢5)*(2) = fpw™2? and since o*(fp) and fp are proportional, the
fractions s*(z) and z are also proportional. Therefore, there exists a nonzero constant
¢ € k such that

s*(x) =z, s*(w)=pw, s*(2)=¢z. (J)

Moreover, s induces a birational map § of P? which is an automorphism of P?\
Q, because the same holds for o, ¢¥p and 5. Let us observe that s is in fact an
automorphism of P2. Indeed, otherwise 5 would contract Q to one point. This is
impossible: Since § preserves the two pencils of conics given by [z : y : 2] — [w : 27
and [z : y : z] = [w : 2%], which have distinct base-points [0 : 0 : 1] and [1 : 0 : 0],
these base-points are fixed by §. Hence, there exist some constants (, 7,0 € k such that
s*(y) = Cx +ny + 0z. Hence (J) gives us ( = 6 = 0, i.e. s*(y) = ny. But the equality
s = Ypa(yp)~! is equivalent to ¥ sa = sp and by taking the second coordinate we
get

(py — px) + 2P (p 22w, 1) = (Ypa)*(y) = (s1bp)*(y) = n (y + 2P (2’w ™', 1))

which yields p = 5 and P(p~2z?w™',1) = pP(z?w ", 1) + pu. By substituting p~?y +
x~'y? for z and by noting that w(z,y, p—*y + 2~ 'y*) = p~>xy, we obtain P(zy~',1) =
pP(p*xy=', 1)+ pu, which is equivalent to P(x,y) = pP(p?z,y)+py?, as we required. [
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The construction of Lemma 3.7.2 yields, for each d > 1, families of curves of degree
4d + 1 having isomorphic complements. These are equivalent for d = 1, at least when k
is algebraically closed (Lemma 3.7.2(5)), but not for d > 2. We can now easily provide
explicit examples:

Proposition 3.7.3. Let d > 2 be an integer. Set P = 2% + 2% 'y and w = 2z — y? €
k[z,y]. All curves of P* given by

2w 4 2yw? P(\2?, w) + xP*(\x?,w) = 0

for A € X*, have isomorphic complements and are pairwise not equivalent up to auto-
morphisms of P2.

Proof. The curves correspond to the curves Cp(y,,) of Lemma 3.7.2 and thus have
isomorphic complements by Lemma 3.7.2(4). It remains to show that if Cprg,) is
equivalent to Cp s, y, then A = A. Lemma 3.7.2(4) yields the existence of p € k*, ju € k
such that P(\z,y) = pP(p*A\x,y) + py®. Since d > 2, both P(Az,y) and pP(p*Az,y)
do not have component with 3¢, so u = 0. We then compare the coefficients of ¢ and
¥ 1y and get

M= p(pPN)?, X = p(pP A",

which yields A= p*\, whence p = 1 and A =\ as desired. O]
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Chapter 4

Lines in the affine plane in positive
characteristic

ABSTRACT. In this chapter, we summarize some results on embeddings of the
affine line in the affine plane. It is well known by the theorem of Abhyankar-
Moh-Suzuki that any line in the affine plane is rectifiable if the characteristic of
the base-field k is 0. This result does not hold in positive characteristic and the
classification of lines in the plane is completely unknown. A conjecture related to
this problem asks the following: given a polynomial f € k[z, y] that defines a line
in A2, does it follow that f — A defines a line for all A € k? We show that this
conjecture holds for all lines of degree at most 11.

Contents
4.1 Introduction . ... ... ... ... .o 119
4.2 Preliminaries . . . ... ... .. ... . 00 00 120
4.3 Linesoflowdegree . ... .......... ... ..., 124

4.1 Introduction

Throughout this section, we fix an algebraically closed field k of characteristic p > 0.
Our aim is to study lines in the affine plane A2. We call a closed curve C' C A? a
line if it is isomorphic to A!. Correspondingly, we call a polynomial f € klx,y] a line
if k[z,y]/(f) =~ k[t], i.e. the curve defined by f is a line. A line in A% can also be
described as the image of a closed embedding A! < A2 Such an embedding is given
by t — (u(t),v(t)) such that u,v € k[t] with k[u, v] = k[t].

We call two closed curves C, D C A? equivalent if there exists an automorphism of
A? that sends C to D. We say that a line is rectifiable if it is equivalent to a coordinate
line. Correspondingly, we call a line f € k[x,y] a variable if there exists a polynomial
g € k[z,y] such that k[f, g] = k[z,y]. In the literature non-rectifiable lines have also
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been called bad, wild, or exotic. The foundational result in the study of lines in A? was
given S. S. Abhyankar and T. T. Moh.

Theorem 4.1.1 ([AM75]). Let f € klz,y] be a line. If p = char(k) does not divide
deg,(f) or deg,(f), then f is a variable. In particular, every line is a variable if

char(k) = 0.

Remark 4.1.2. Theorem 4.1.1 was proven independently in [Suz74] for the field of com-
plex numbers, with different methods. The complex version of Theorem 4.1.1 is thus
usually called the Abhyankar-Moh-Suzuki Theorem.

We will see in Example 4.2.10 that not all lines are variables if p > 0. We observe
that if f € k[z,y] is a variable, then every fiber of f is a line. This naturally leads to
the following conjecture which can be found in [Sat76|, but according to [Ganll| was
already posed by S. S. Abhyankar in 1968.

Conjecture 4.1.3. Let f € k[x,y] be a line. Then f — X is a line for all X € k.

Remark 4.1.4. Tt is shown in [Ganll, Theorem 4.12] that f — A is a line for all A € k
if and only if f — A is a line for infinitely many A € k. Moreover, it is shown that if
f is a line, then f — A is irreducible, smooth and has one place at infinity for all but
finitely many A € k. To prove Conjecture 4.1.3 it is thus sufficient to show that f — A
is rational for infinitely many A\ € k.

4.2 Preliminaries

The results and proofs in this section are all well known and can also be found in various
sources such as [AM75], [GanT79], [Moh88|, or [Dai90].

As usual, we identify A? as an open subset of P? via the embedding (z,y) — [z : y : 1]
and boundary curve Lo, = P?\ A% given by the equation z = 0. For a closed curve
C c A? we denote by C its closure in P?2. We know from Lemma 2.3.1 that if C' C A2
is a line, then C' C P? is either a line, a conic, or a unicuspidal curve that has the
very tangent line L. If C is unicuspidal, its minimal resolution of singularities is a
tower resolution. Thus, if C is singular, it has a sequence of singular points, called
the multiplicity sequence at infinity, where the first singular point is proper and any
subsequent singular point lies in the first neighborhood of the previous one.

Lemma 4.2.1. Let C C A? be a line, defined by a polynomial f € k[z,y|, and let u,v €
k[t] be polynomials such that k[u,v] = k[t] and f(u,v) = 0, where deg(u) < deg(v).
Then the following hold:

(i) deg(f) = deg(v).

(43) mio.1.0)(C) = deg(v) — deg(u).
(4ii) deg,(f) = deg(v) and deg,(f) = deg(u).
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Proof. To prove (i) it is enough to observe that the closure C' C P? = A2U L, intersects
the line L., with intersection multiplicity deg(v). Thus deg(f) = deg(C) = C - Lo, =
deg(v).

The number deg, (f) is the intersection number between C' and the affine line y = 0
and thus coincides with deg(v). Analogously, we get deg,(f) = deg(u) and thus we
obtain (#ii). The intersection number between C and the projective line x = 0 is
deg(u) + m(p.1.0)(C), but also deg(C) = deg(v), and hence we get (ii). O
Corollary 4.2.2. Let C C A? be a line such that deg(C) is a prime number. Then C
18 rectifiable.

Proof. Up to a linear change of coordinates we can assume that C' is given by a poly-
nomial f € k[z,y] such that deg,(f) < deg,(f). Suppose that C is not rectifiable.
Then p divides deg(C) = deg(f) = deg,(f) by Theorem 4.1.1, and since deg(C) is a
prime number, it follows that deg(C') = p. Moreover, p divides the first multiplicity
my = deg,(f) — deg,(f) at infinity by Theorem 4.1.1. We thus reach a contradiction
since m; < deg(C') = p. O

Lemma 4.2.3. Let 0 be an automorphism of A% and denote U = 0(z) € k[z,y] and
V =0(y) € klz,y]. Then deg,(U) divides deg, (V') or vice versa.

Proof. We observe that the claim is true if 6§ is an affine map. Next, suppose that 6
is of the form j, o a, o...0 j; 0ay o jy where j; € Jony\ Affy for ¢ = 0,...,n and
a; € Affy\ Jony for i = 1,...,n. We show by induction on n that 6 is then of the form

(z,y) — (az™ + u(z,y), bz" + v(x,y))

where m < n such that m divides n, deg(u) < m, deg(v) < n, and a,b € k*. This
holds for n = 0 by the definition of a de Jonquiéres map. Suppose by the induction
hypothesis that j, oa, o...j; 0ay o jg is of the claimed form and let a,,1 € Affy\ Jon,
and jn+1 S JOH2 \ Aﬂg Then

an+1(2,y) = (ux + gy + as, Bz + Boy + B3)
for some aq, ag, as, b1, e, B3 € k with ap # 0, and
Jna1 (@, y) = (x4 72,0y + 0px® + ... + 612 + &)

where 71,72 € k with v # 0 and 6,9y, ..., € k with 6,0, # 0 and k£ > 2. It follows
that

(Jn+1© Gng1 © ... 0 j1 010 fo)(w,y) = (abyra” +u'(2,y), a3y 0p2*" + ' (2, y))

for some v/, v" € k[x,y] with deg(u') < n and deg(v") < kn and so the induction step is
complete.

We have proved the claim if 0 is of the form j, oa, o...0 j; 0a; o jy and hence
the claim also follows if € is of the form a,,1 © j, ©a, o ... 0 j; 0 a; o jg o ag for
ag, ant1 € (Affy\ Jong) U {id}. This finishes the proof by Theorem 2.3.7. O
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Corollary 4.2.4. Let f € k[x,y| be a variable. Then either deg,(f) divides deg,(f) or
deg, (f) divides deg,(f).

Proof. Let f be parametrized by u,v € k[t], i.e. f(u,v) = 0 and k|u,v] = k[t]. Then
deg,(f) = deg(v) and deg,(f) = deg(u) by Lemma 4.2.1. The map x > (u(z),v(z))
defines a closed embedding of A! in A2. Since f is a variable, this embedding extends to
an automprhism of A?, i.e. there exist U,V € k[z,y] with U(z,0) = u(x) and V(z,0) =
v(x) and k[U, V] = k[z,y]. We then have deg,(U) = deg(u) and deg, (V') = deg(v) and
thus the claim follows from Lemma 4.2.3. O

Remark 4.2.5. We should mention that historically, the main difficulty in the proof
of the Abhyankar-Moh Theorem in characteristic 0 consisted in showing that if there
are elements u,v € k[t] such that k[u,v] = k[t], then deg(u) divides deg(v) or vice
versa. From this fact one can also deduce the theorem of Jung. In this sense, the
order of results in this section is somewhat unusual, but in this way, we obtain all the
needed results without assumptions on the characteristic. For a more detailed historical
account, see for instance [vdE04].

Lemma 4.2.6. Let [ € k[x,y] be a line and u,v € k[t] such that f(u,v) = 0. Then
there exists o € k* such that 0, f (u,v) = adw and 0, f(u,v) = —adu.

Proof. Applying the derivative in ¢ to the equation f(u,v) = 0 yields
Oy f(u,v)0u + 0, f (u,v)0pw = 0.

Since f is a line, we can find g € k|z, y| such that ¢t = g(u,v). Taking the derivative in
t then yields

0x9(u, v)0u + 0yg(u,v)0w = 1.
In particular O;u and O,v are coprime. To prove the claim, it is sufficient to show
that 0, f(u,v) and 0, f(u,v) are coprime. Suppose that 0, f(u,v) and 0, f(u,v) have
a common non-constant divisor d. Let a € k be a root of d. Then (u(a),v(«)) is a

singular point of the curve defined by f, but this is not possible since f is a line and
thus smooth. O

Lemma 4.2.7. Let [ € k[x,y] be a line and u,v € k[t] such that f(u,v) = 0. Then
f € klz,y?] if and only if u € k[tP].

Proof. We observe that f € klz,y?] <= 0,f = 0 and u € k[t?!] <= 0Ou = 0.
Moreover, 0, f and 0,f cannot both be 0, otherwise f lies in k[z?, y?] and cannot be a
line. Likewise, 0;u and O0;v cannot both be 0. The claim then follows from the identity

Oy f (u,v) 0 + 0y f(u, v)Ov = 0,
obtained by taking the derivative in ¢ of f(u,v) = 0. O

Lemma 4.2.8. Let u,v € k[t]. Then k[uP,v] = K[t] if and only if ku,v] = k[t] and
815?] S k*.
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Proof. Suppose that k[u?,v] = k[t]. Since u € k[uP,v], we also have k[u,v] = Kklt].
Moreover, there exists a polynomial g € k[z,y| such that ¢ = g(u”,v). Then the
derivative in ¢ yields 1 = 9,g(u?, v)0sv, and thus O € k[t]* = k*.

For the converse, suppose that klu,v] = k[t] and d;v € k*. Then we have t €
k[uP, vP] C k[uP,v]. Moreover, we can write v(t) = at + b(t*), where a € k* and b € k|[t],
and hence t € k[u, v]. O

For a polynomial f =" a;;z'y’ € k[z,y] and n € N we define

f = aiaty’
by raising all coefficients to the n-th power. With this notation we obtain the identity
fr= o (ar,y").

Corollary 4.2.9. Let f € k[z,y] be a polynomial. Then f®) (x,y?) is a line if and only
if fis aline and O, f € k*.

Proof. Suppose that f®)(x, y?) is a line. Then by Lemma 4.2.7 there exists u? € k|[t?]
and v € k[t] such that f®(u? vP) = 0 and k[u?,v] = k[t]. But then f(u,v) = 0 and
k[u,v] = k[t] and thus f is a line. By Lemma 4.2.8 we have 0,v € k* and thus also
O, f(u,v) € k*. Since we have f(u,v) = 0, it follows that 0, f € k*.

For the converse, suppose that f is a line and 0, f € k*. We have k[u, v] = k[t] and
0w € k* by Lemma 4.2.7. It then follows from Lemma 4.2.8 that k[u”,v] = k[t]. We
also have 0 = f(u,v)? = f®(u?,v?) and thus f®(z,y?) is a line. O

Example 4.2.10. The best known examples of non-rectifiable lines are the so-called
(generalized) Segre lines, which first appear in [Segb6] (see also [Ganll]). They can
be constructed as follows. We start with a polynomial of the form f =y — u(2?) — z,
where u € k[z]| such that p { deg(u) > 1. Then f is a line and J, f € k*. It follows from
Corollary 4.2.9 that for any n € N the polynomial

g=f%) (2, ") =y —v(a?) —x

is a line, where we denote by v(z?) = u®")(2?). We have deg,(g) = pdeg(v) = pdeg(u)
and deg, (g) = p" and thus by Corollary 4.2.4 it follows that g is not a variable if n > 2.
Additionally, we can find the parametrization g(t*", u(t?) +t) = 0. We can also see that
Conjecture 4.1.3 holds for Segre lines. To see this, let A € k. Then we can choose a
p"-th root p of X. It follows that g — A = (y — p)?" —v(2P) — x = g(x,y — p) is again a
line.

Corollary 4.2.9 allows us to find many examples of non-rectifiable lines. Suppose
that f € k[z,y] with 0, f € k* and f — X is a line for all A € k. Then for any \ € k the
polynomial f®)(x,y?)—\is a line since f—\is aline and 9,(f—\) = 9, f € k*. Thus the
construction in Corollary 4.2.9 will not lead us to counterexamples of Conjecture 4.1.3.

To conclude this section we mention two other conjectures related to lines in A2
The first one can be found in [Moh88| (respectively a slightly stronger version).
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Conjecture 4.2.11. Let f € k[z,y] be a line. Then there exists an automorphism
0 € Auty(k[z,y]) such that O(f) € k[x, y?].

In [Dai90] it is shown that Conjecture 4.2.11 implies Conjecture 4.1.3. Moreover,
it is shown that Conjecture 4.2.11 implies that every line in A? can be obtained from
a coordinate line by iteratively applying automorphisms of A? and the construction in
Corollary 4.2.9.

The second conjecture is the following.

Conjecture 4.2.12. Let f € k[x,y] be a line. Then there exists some n € N such that
k(t)[z, yl/(f — ") =~ k(t)[z].

This conjecture also implies Conjecture 4.1.3 and holds for Segre lines.

4.3 Lines of low degree

Lemma 4.3.1. Every line of degree < 5 is rectifiable.

Proof. Let C C A? be a line of degree < 5. Then C C P? is a rational curve. Moreover,
either C is a line, a conic or is unicuspidal and has one of the following multiplicity
sequences at infinity: (2), (3),(2(3)), (4), (3,2(3)), or (2(6)). Using Lemma 2.4.16 we see
that in all of these cases there exists an open embedding P? \ C' < P? that does not
extend to an automorphism of P2. In particular, C' is Cremona-contractible. It then
follows from Proposition 3.3.16 (in [BFH16]) that C is rectifiable. O

We have seen in Example 4.2.10 that non-rectifiable lines of degree 6 do exist.
Using Lemma 2.4.16 and Proposition 3.3.16, one can check that any non-rectifiable line
of degree 6 has multiplicity sequence (2(19y) at infinity and any non-rectifiable line of
degree 9 has multiplicity sequence (3(g),2) at infinity. In fact, the following result from
[Gan85, Theorem 2.4] shows that non-rectifiable lines of degree 6 or 9 are all equivalent
to Segre lines.

Proposition 4.3.2. Let f € k[x,y] be a non-rectifiable line.
(1) If deg(f) =6, then p =2 and f is equivalent to a Segre line of the form
yt— 25— Az
for some A € k*.
(17) If deg(f) =9, then p =3 and f is equivalent to a Segre line of the form
y’ —a® — px

for some p € k*.
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We will moreover use the following result from [Moh88, Corollary of Theorem 2|.

Proposition 4.3.3. Let p =2 and let f € k[z,y| be a line such that deg,(f) = 2m and
deg, (f) = 2n, where m and n are coprime. Then Conjecture 4.2.11 holds for f.

Proposition 4.3.4. Conjecture 4.2.11 holds for all lines of degree < 11.

Proof. Let C C A? be a line and C its closure in P2. If deg(C) < 5, then C is
rectifiable by Lemma 4.3.1 and thus Conjecture 4.2.11 holds in this case. If deg(C) is 6
or 9, then C' is either rectifiable or equivalent to a Segre line by Proposition 4.3.2 and
Conjecture 4.2.11 also holds. If deg(C) is 7 or 11, then C is rectifiable by Corollary 4.2.2
and thus Conjecture 4.2.11 also holds for those degrees.

The cases of degree 8 and 10 remain to be checked. Assume first that deg(C) = 8.
If p #£ 2, then C' is rectifiable by Theorem 4.1.1. Thus we assume that p = 2 and that
C' is not rectifiable. Then the first multiplicity at infinity is even and is thus 2,4 or 6.
If this multiplicity is 2 or 6 we can apply Proposition 4.3.3 and Conjecture 4.2.11 holds.
We thus assume that the first multiplicity of C' at infinity is 4. Using Lemma 2.4.16
and Proposition 3.3.16 and the fact that C is unicuspidal, we find that C' must have
one of the multiplicity sequences (4,2¢5)) or (4(2),2(9)) at infinity.

Assume first that the multiplicity sequence is (4, 2(15)). We denote by p1, ..., pi¢ the
sequence of (proper and infinitely near) singular points of C'. Since L, is very tangent
to C' it follows from Bézout’s theorem that pi, ps, p3, ps lie on Ly, (respectively its strict
transforms). On the other hand, C is unicuspidal and thus ps is proximate to py, i.e.
lies on the strict transform of the exceptional curve of the blow-up of p, since the first
multiplicity is the sum of the second and the third. We thus reach a contradiction since
p3 cannot both be proximate to p; and lie on the strict transform of L.

We now assume that the multiplicity sequence of C' at infinity is (42),2(9)). By
Bézout’s theorem the first 3 singular points in the sequence of singular points of C' are
not collinear. Thus there exists an affine quadratic map ¢ with those 3 base-points.
The map ¢ is an automorphism of P? \ L., and deg(¢(C)) =2-8 —4—4—2 =6 by
Lemma 2.3.11. It follows that C' is equivalent to a Segre line by Proposition 4.3.2 and
hence Conjecture 4.2.11 holds in this case.

Assume now that deg(C) = 10. If p is different from 2 and 5, then C is rectifiable
by Theorem 4.1.1. If p = 2 and C' is not rectifiable, then the first multiplicity at
infinity of C' is 2,4,6 or 8. In all of these cases we can apply Proposition 4.3.3 and
Conjecture 4.2.11 holds. If p =5 and C' is not rectifiable, then the first multiplicity at
infinity of C' must be 5. Using the fact that C' is unicuspidal, one checks that C' must
have multiplicity sequence (5(3),4) at infinity. But then C'is Cremona-contractible by

Lemma 2.4.16 and hence C' is rectifiable by Proposition 3.3.16. O
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