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Abstract

Heroin dependence is a chronic relapsing brain disorder, characterized by the compulsion to seek and use heroin. Heroin
itself has a strong potential to produce subjective experiences characterized by intense euphoria, relaxation and release
from craving. The neurofunctional foundations of these perceived effects are not well known. In this study, we have used
pharmacological magnetic resonance imaging (phMRI) in 15 heroin-dependent patients from a stable heroin-assisted
treatment program to observe the steady state effects of heroin (60 min after administration). Patients were scanned in a
cross-over and placebo controlled design. They received an injection of their regular dose of heroin or saline (placebo)
before or after the scan. As phMRI method, we used a pulsed arterial spin labeling (ASL) sequence based on a flow-sensitive
alternating inversion recovery (FAIR) spin labeling scheme combined with a single-shot 3D GRASE (gradient-spin echo)
readout on a 3 Tesla scanner. Analysis was performed with Statistical Parametric Mapping (SPM 8), using a general linear
model for whole brain comparison between the heroin and placebo conditions. We found that compared to placebo, heroin
was associated with reduced perfusion in the left anterior cingulate cortex (ACC), the left medial prefrontal cortex (mPFC)
and in the insula (both hemispheres). Analysis of extracted perfusion values indicate strong effect sizes and no gender
related differences. Reduced perfusion in these brain areas may indicate self- and emotional regulation effects of heroin in
maintenance treatment.
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Introduction

In heroin-dependent patients, acute and chronic exposure to

heroin is associated with impairments in a range of cognitive

processes, including impulse control dysfunction [1]. On the other

hand, heroin, chemically known as diacetylmorphine (DAM),

reduces the craving and stress response, accompanied by

relaxation and euphoria [2,3]. It is used as a maintenance drug

in heroin-assisted treatment programs in clinical settings in several

countries [4]. When heroin is injected, it very rapidly crosses the

blood brain barrier, due to the lipophilicity of the acetyl groups

[5]. DAM itself has a short half-life of less than ten minutes and is

decarboxylated into 6-monoacetylmorphine (6-MAM), 3-mono-

acetylmorphine (3-MAM) and then into morphine [6]. While the

metabolite 3-MAM has no effect on opioid receptors, both 6-

MAM and morphine bind to the m-opioid receptor and act as

agonists. Pharmacokinetic modeling leads to the conclusion that 6-

MAM is the main active metabolite during the acute effects after

heroin administration [7]. The metabolite 6-MAM is unique to

heroin and could underlie the intense rewarding effects and the

addictive properties [5,8]. Opioid receptors belong to the class of

G-protein coupled receptors (GCPR); they enhance the probabil-

ity of presynaptic GABA release, which is linked to both the

physiological and the psychotropic effects [9], leading to analgesia,

respiratory depression and reduced blood pressure [10,11].

Psychotropic effects include euphoria, relaxation, excitement,

pleasure, and drowsiness [12], with a rush and an euphoric phase

[13]. The rush is described as lasting only seconds and providing a

rapid release of inner tensions and craving. In contrast, the

euphoric phase may last several hours in a steady state and is

characterized by inner happiness, drowsiness and a feeling of

distance from surrounding events [14].

However, the neurofunctional foundations of the effects

mediated by heroin administration are not well understood.

Pharmacological magnetic resonance imaging (phMRI) permits an

in vivo examination of how psychotropic drugs affect neural

network function in the brain [15–25]. In the present study, we

have examined the acute effects of heroin, using an arterial spin

labeling (ASL) magnetic resonance imaging (MRI) technique. ASL

provides non-invasive and absolute quantification of cerebral

blood flow (CBF), using magnetically labeled arterial blood as an

endogenous contrast agent. This is an advanced and established

imaging method to track acute drug effects. In contrast to blood-

oxygen-level-dependent (BOLD), ASL perfusion has been shown
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to be highly reproducible over long time scales, due to the absolute

quantification of CBF [26]. We have investigated CBF in a task

free resting state during the euphoria phase (after one hour) and

we expected that heroin administration could be related to altered

perfusion in areas of the brain implicated in the regulation of

emotions.

Materials and Methods

Design
This study is part of a randomized, placebo-controlled clinical

trial that has been registered (http://clinicaltrials.gov; ID

NCT01174927). Each patient was scanned twice, with a short

interval between scans (mean 9 SD 3.8 days). On one day, the

subjects received an injection of heroin or placebo (saline) before

the scan and on the other after the scan. Patients received their

regular morning dose of diacetylmorphine, corresponding to half

of their daily dose. The order of heroin and placebo administra-

tion was randomized and patients were blinded to what they

received. A study nurse administered the substance intravenously

20 minutes before the scanning session started. The ASL perfusion

data were acquired one hour after injection (Mean = 69 min;

SD = 11 min), corresponding to the euphoria phase during heroin

condition.

Heroin-induced alterations in physiological parameters were

assessed within the scanner by measuring heart rate, blood

pressure and blood oxygen saturation every 5 minutes. The

psychological effects of the applied substance were assessed by a

45-item Heroin Craving Questionnaire (HCQ) [27] and visual

analogue scales (VAS) for intoxication, sedation, withdrawal, and

strength of drug effects (range 0 to 10).

Study sample
Fifteen (9 male) non-left-handed heroin-dependent patients

(ICD-10 = F11.22) were included in the study. All subjects

participated in a national program of standardized DAM

(‘‘heroin’’)-assisted treatment (JANUS Basel, Switzerland). Par-

ticipants were told to abstain from illicit drug use other than

prescribed heroin for the duration of the study, from alcohol

intake for 72 hours and from tobacco consumption for 2 hours

before scanning. Illicit substances and medications were

controlled by a urine test at each session. The exclusion criteria

were a positive alcohol breathalyzer test, a history of significant

medical problems or a major mental disorder (other than

substance use disorders).

Ethics Statement
All patients gave written informed consent and Basel Ethics

Committee (EKBB, Switzerland, [http://www.ekbb.ch/]) ap-

proved the study. Patients were informed that they received their

regular heroin dose (half of a daily dose) before or after the scan.

Image acquisition
Imaging was performed on a 3 Tesla MRI scanner

(Magnetom Verio, Siemens Healthcare, Germany) at Basel

University Hospital. For high resolution anatomical data, a 3D

T1-weighted scan (MPRAGE) was acquired with 16161 mm3

isotropic resolution, repetition time (TR) of 2000 ms, inversion

time (TI) of 1000 ms and echo time (TE) of 3.4 ms. For

perfusion data, a pulsed ASL sequence [28] based on a flow-

sensitive alternating inversion recovery (FAIR) spin labeling

scheme [29] was applied, combined with modified Q2TIPS (TI

periodic saturation) pulse preparation and a single-shot 3D

GRASE (gradient-spin echo) readout [30]. For quantification of

cerebral blood flow (CBF), a time series with 14 incremental TI

(200 to 2800 ms in 200 ms steps) was acquired. For each TI,

two images were acquired: one after slice-selective inversion

(control image) and one after non-selective inversion (labeled

image). The sequence parameters were: repetition time

3200 ms, echo time 12.7 ms and spatial resolution

4.664.664 mm3 (interpolated to 2.362.364 mm3).

Image processing and analysis
Maps of quantified CBF (perfusion maps) were calculated

from ASL raw data. Difference images of label and control

images at different TI were derived and the time course was

fitted to a model describing different stages of arterial blood

passage, using in-house software, [28]. The resulting MHD files

were converted to the NIFTI format with MedINRIA 1.9.2

(http://med.inria.fr).

Further image processing and analyses were performed using

Statistical Parametric Mapping (SPM8; Wellcome Department of

Cognitive Neurology, London, United Kingdom). At the subject

level, MPRAGE images were segmented to gray matter (GM) and

intracranial tissue (ICT; sum of GM, white matter, and

cerebrospinal fluid). Perfusion maps were reoriented to the

standard direction. Both conditions were first realigned and then

coregistered to segmented GM images, resulting in optimal

MPRAGE coregistration. Then perfusion maps were masked

with binarized ICT (binarization threshold: voxel intensity .0.1)

to remove the extracerebral signal. The resulting perfusion maps

were normalized to standard stereotactic MNI (Montreal Neuro-

logical Institute) space by applying the transformation parameters

of normalized MPRAGE images. Finally normalized perfusion

maps were smoothed using a 6 mm full-width-at half-maximum

(FWHM) Gaussian kernel. All processed images were assessed with

respect to quality and registration. See preprocessing steps in

figure 1.

At the group level, a voxel-wise whole brain comparison

between the heroin and placebo conditions was performed with a

basic general linear model (GLM). A proportional scaling method

in SPM8 was used to normalize each subject’s perfusion maps.

MNI coordinates of significant clusters were converted into

Talairach space and labeled with the Talairach Client 2.4.3

(http://www.talairach.org/client.html).

Statistical analysis
We performed a repeated measures (within-subject) analysis

of variance (ANOVA) for whole brain analysis. Pre-processed

heroin and placebo perfusion maps were used as input data.

The following tests were applied: heroin , placebo (higher

perfusion during heroin) and heroin . placebo (lower perfusion

during heroin). Statistical significance was assessed at the

cluster-forming threshold of p,0.01 (uncorrected). At the

cluster level, only clusters with p,0.05 corrected for family-

wise error (FWE) were considered significant [31]. We used the

eigenvariate function in SPM8 to extract mean perfusion values

within the significant clusters. Cohen’s d was performed to

calculate effect sizes of perfusion reduction. We used paired t-

tests in SPSS Statistics (IBM SPSS Statistics; Armonk, NY: IBM

Corp) to analyze differences in HCQ scores, VAS values and

physiological parameters between the heroin and placebo

conditions. To analyze demographic, clinical and perfusion

differences (extracted values) between men and women, we used

independent-samples t-tests. Pearson’s r correlations were

performed to assess the association of heroin dependence

duration and extracted perfusion values.

Acute Effects of Heroin on Cerebral Perfusion
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Results

Demographic and clinical characteristics
The patients mean age was 41 years, they were heroin

dependent for a mean of 21 years and had participated in the

heroin-assisted treatment for a mean of 8 years. Mean daily heroin

dose was 350 mg. Male and female patients didn’t differ

significantly in age (p = 0.10), duration of heroin dependence

(p = 0.76), duration of heroin maintenance (p = 0.70) and daily

dose of heroin (p = 0.44). Some patients also illicitly used other

drugs, one third of patients had an additive substitution with a

small dose of methadone. All participants were cigarette smokers.

None of patients had abused alcohol. The patients’ characteristics

are described in table 1.

Physiological and psychological effects
In the heroin condition, patients had significantly lower heart

rates and blood oxygen saturation, as shown in figure 2 (p,0.01).

The differences remain significant at 60 minutes (p,0.05). There

were no significant differences in the systolic and diastolic blood

pressures, either in the mean values or at 60 minutes.

All patients correctly guessed the substance they had received

before the scanning procedure. Perceived drug effects, feeling of

intoxication and sedation, and relief from withdrawal were

significantly higher during heroin condition than during the

placebo condition (p,0.01). The desire to use heroin did not differ

significantly between the two conditions. See the psychological

effects of heroin in table 2.

Brain perfusion characteristics
Compared to placebo, heroin administration was associated

with relatively low perfusion in three main clusters (threshold:

p,0.01). The first two clusters are within the area of the left and

right insula (p,0.001 and p = 0.026; FWE corrected). The third

cluster is in the area of the medial frontal cortex, with peaks in the

anterior cingulate cortex (ACC) and the medial frontal gyrus

(mPFC) (p,0.001; FEW corrected). No significant hyperperfusion

(relative to placebo) was associated with heroin administration.

Brain perfusion characteristics are shown in table 3 and figure 3.

Extracted mean perfusion values of significant clusters are

shown in table 4. Comparison of heroin and placebo condition

showed the following effect sizes in perfusion reduction: left insula

d = 1.38, ACC/MPFC d = 0.93, right insula d = 0.82. Male and

female patients didn’t differ significantly in perfusion within all

three clusters (p.0.05). Correlation analysis between extracted

perfusion values and duration of heroin dependence showed no

significant association (p.0.05).

Figure 1. Overview of preprocessing steps at the subject level (SPM8). BIN: Binarization; CSF: Cerebrospinal fluid; GM: Gray matter; WM:
White matter.
doi:10.1371/journal.pone.0071461.g001

Table 1. Socio-demographic and diagnostic characteristics of
the study sample.

Measurements
Subjects
(n = 15)

Age (years), mean (SD) 40.9 (6.6)

Male gender, n (%) 9 (60.0)

Partnership, n (%) 6 (40.0)

Employment, n (%) 7 (46.7)

Age at first heroin use (years), mean (SD) 18.1 (3.0)

Duration of heroin dependence (years), mean (SD) 20.5 (7.7)

Duration of heroin maintenance (years), mean (SD) 7.0 (3.9)

Heroin dose (mg/day), mean (SD) 346.0 (173.4)

Methadone substitution, n (%) 5 (33.3)

Methadone dose (mg/day), mean (SD) 30.0 (10.0)

Cocaine use, n (%) 7 (46.7)

Cannabis use, n (%) 4 (26.7)

Tobacco use, n (%) 15 (100.0)

SD: Standard deviation.
doi:10.1371/journal.pone.0071461.t001

Acute Effects of Heroin on Cerebral Perfusion
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Figure 2. Physiological parameters after heroin and placebo administration. BP: Blood pressure; **: p,0.01.
doi:10.1371/journal.pone.0071461.g002
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Discussion

To our knowledge, this is the first study to measure selective

heroin effects during the euphoria phase with an advanced phMRI

method. We found that heroin administration in heroin-depen-

dent patients is associated with a significant reduction in perfusion

in the insula of both hemispheres, the anterior cingulate cortex

(ACC) and medial prefrontal cortex (mPFC) with strong effect

sizes. Whereas the insula and ACC play an essential role in

emotional regulation and self-awareness [32,33], the mPFC is

known to be important in self-referential processing [34]. The

extended limbic system and the mPFC are frequently involved in

opiate abuse [35,36].

A previous study examined the acute effects of heroin using

functional neuroimaging [13]. Immediately after injection of

heroin, there was increased perfusion in the left anterior cingulate

gyrus, posterior cerebellar lobe, and right precuneus. After

15 minutes, heroin was associated with increased perfusion in

the left superior frontal gyrus [13]. Another study was based on

region of interest (ROI) analyses [37]. Eighty seconds after heroin

injection, perfusion of the amygdalae was enhanced. In our study,

we measured perfusion 60 minutes after heroin injection in a

stable heroin maintenance treatment. In contrast to previous

studies, we did not examine the acute effects in the first minutes

after administration, but steady state effects before or after a

heroin maintenance dose. Moreover, rather than 99mTc-

HMPAO SPECT [13] or perfusion-weighted MR imaging

(PWI) [37], our phMRI study employed ASL CBF quantification,

which is highly reproducible and a well-established method to

measure drug effects [26,38,39].

Interestingly, previous studies with the short acting opioid

remifentanyl, which is used in anesthesia, showed that its acute

Table 2. Psychological effects of heroin.

Measurements Placebo Heroin p-value

HCQ: Desire to use heroin, mean (SD) 3.6 (0 to 14.5) 3.9 (0 to 15) .849

HCQ: Intensions and plans to use heroin, mean (SD) 2.2 (0 to 9) 3.1 (0 to 9.5) .005*

HCQ: Anticipation of positive outcome, mean (SD) 1.4 (0 to 6) 3.0 (0 to 14) .056

HCQ: Relief from withdrawal/dysphoria, mean (SD) 1.0 (0 to 4) 3.1 (0 to 9) .047*

HCQ: Lack of control over use, mean (SD) 3.3 (0 to 15) 2.0 (0 to 11.5) .128

VAS: Intoxication, mean (SD) 1.1 (1.7) 3.7 (2.1) .005*

VAS: Sedation, mean (SD) 1.7 (2.3) 3.3 (2.8) .009*

VAS: Withdrawal, mean (SD) 3.7 (3.0) 0.4 (1.3) .001*

VAS: Drug effect, mean (SD) 0.3 (1.0) 6.5 (2.9) ,.001*

HCQ: Heroin Craving Questionnaire; SaO2: Blood oxygen saturation; SD: Standard deviation; VAS: Visual Analogue Scale;
*: p,0.05.
doi:10.1371/journal.pone.0071461.t002

Table 3. Effects of heroin on brain perfusion in contrast to placebo.

Area Hemisphere
Talairach
coordinates of Cluster size Cluster p-value Cluster p-value

cluster maximum
(x y z) (voxels) (uncorrected) (FWE corrected)

Contrast: P(heroin) , P(placebo)

Insula (BA 13) L 238 3 29 4590 ,.001*** ,0.001***

Superior Temporal Gyrus (BA 38) L 253 15 211

Insula (BA 13) L 230 17 28

Anterior Cingulate (BA 24) R 8 33 8 2664 ,.001*** ,0.001***

Medial Frontal Gyrus (BA 11) L 22 50 211

Anterior Cingulate (BA 24) R 8 23 23

Precentral Gyrus (BA 44) R 63 10 11 1379 0.001*** 0.026*

Insula (BA 13) R 36 13 24

Insula (BA 13) R 40 4 24

Contrast: P(heroin) . P(placebo)

None

BA: Brodmann area; L: left; P: perfusion; R: right; WM: white matter;
*: p#0.05;
***: p#0.001.
Each coordinate triple is a peak area of contrast intensity in one of the two significant clusters and refers to a specific area defined in the atlas of Talairach & Tournoux
(1988).
doi:10.1371/journal.pone.0071461.t003
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effects leads to regional hyperpferusion in the ACC [15,40] and in

the insula [41]. These immediate effects of remifentanyl are in line

with the perfusion findings during the rush phase of heroin [13].

Our findings, which represent more steady state effects of heroin-

assisted treatment, support previous neuroimaging studies. After

intramuscular morphine injection, glucose utilization was de-

creased by 10% in the whole brain, as well as in telencephalic

areas [42]. In opioid-dependent subjects, prefrontal perfusion is

generally reduced and the right-greater-than-left perfusion asym-

metry, normally found in healthy probands, was found to be

reversed [43]. Thus, we can argue that heroin-assisted treatment

with regular and repeated heroin injection may reduce activity in

specific brain areas.

The differences in perfusion, recognized by comparing the

heroin and placebo conditions, may also be caused by hyperperfu-

sion after placebo, which could be associated with withdrawal and

craving. In general, placebo may induce craving and withdrawal

symptoms in heroin-dependent patients [44]. However, all

patients were under stable heroin maintenance treatment and

did not show any acute withdrawal symptoms after the scanning

procedure. We also found relatively low withdrawal levels and

craving scores after placebo administration.

The present heroin-associated modulation of perfusion in

prefrontal and extended limbic regions may also be related to

the abnormal cerebral volumes reported in heroin-dependent

patients [45,46]. A possible direct connection between reduced

Figure 3. Altered regional perfusion in heroin in comparison to placebo condition. A) Relative hypo- (blue) and hyperperfusion (red) in
heroin condition projected on an inflated brain (threshold: p,0.05). Hyperperfusion was not significant. B) Significant hypoperfusion (blue) in heroin
condition (threshold: p,0.01; FEW corrected p,0.05). The z coordinate shows the position of each slice in reference to the Talairach atlas (see
Table 3). The medial prefrontal cortex, the anterior cingulate cortex, and the insular cortex are shown in different colors, in order to clarify the spatial
relationship to the significant clusters.
doi:10.1371/journal.pone.0071461.g003

Table 4. Regional perfusion values of significant clusters.

Region Placebo Heroin Effect size

(Mean/SD/CI 95%) (Mean/SD/CI 95%) (Cohen’s d)

Cluster 1: left Insula 97.07/10.93/91–103 82.10/10.68/73–88 1.38

Cluster 2: right Insula 79.17/11.03/73–85 69.44/12.38/63–76 0.82

Cluster 3: ACC/MPFC 108.71/16.72/99–118 92.16/19.0/82–103 0.93

ACC: Anterior cingulate cortex; CI: Confidence interval; MPFC: Medial prefrontal cortex.
doi:10.1371/journal.pone.0071461.t004
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perfusion during the acute effects of heroin and the reduced GM

volume observed in heroin users could be that recurrent regional

hypoperfusion may lead to metabolic impairment, affecting neural

and glial function, and leading to a reduction in volume. This is in

line with animal models of brain ischemia, which showed that a

decline in CBF is associated with cognitive impairment and neural

death [47,48].

This reduced perfusion in these areas may underlay the feelings

perceived by heroin users, such as relaxation and euphoria [49].

The mPFC and ACC are both parts of the cortical midline

structures and the default mode network (DMN) [34]. The DMN

has been postulated to be an intrinsic brain network, and is active

when self-relevant mental stimulations are processed, such as non-

goal-oriented thinking, autobiographical memory retrieval, envi-

sioning the future, and conceiving the thoughts and perspectives of

others [50], [51,52]. The anatomy of the DMN can be divided

into interacting subsystems, including the medial temporal lobe,

which provides information from prior experiences in the form of

memories and associations [53]. The mPFC acts as integrative

component and provides flexible use of the temporal information

during the construction of self-relevant mental stimulations.

The moderate number of participants limits our findings.

Moreover, our patients were recruited from a population, which

mainly consisted of individuals with long-standing polysubstance

use. Although this problem is virtually inevitable when chronic

heroin-dependent individuals are examined, it may have biased

the results. Another limitation is the lack of a healthy control group

and the use of an inactive placebo that could lead to withdrawal

symptoms.

To conclude, our findings demonstrate that acute adminis-

tration of heroin results in reduced brain activity within the left

anterior cingulate cortex (ACC), the left medial prefrontal

cortex (mPFC) and in the insula (both hemispheres). Reduced

perfusion in these prefrontal and extended limbic areas may

indicate self- and emotional regulation effects of heroin

maintenance treatment.
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