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Abstract

Androgen biosynthesis in males occurs to a large extent in testicular Leydig cells.

This study focused on the evaluation of three murine Leydig cell lines as potential

screening tool to test xenobiotics interfering with gonadal androgen synthesis. The

final step of testosterone (T) production in Leydig cells is catalyzed by the enzyme

17β-hydroxysteroid dehydrogenase 3 (17β-hsd3). The endogenous 17β-hsd3
mRNA expression and Δ4-androstene-3,17-dione (AD) to T conversion were

determined in the murine cell lines MA-10, BLTK1 and TM3. Additionally, effects

of 8-Br-cAMP and forskolin stimulation on steroidogenesis and T production were

analyzed. Steroids were quantified in supernatants of cells using liquid

chromatography–tandem mass spectrometry. Unstimulated cells incubated with

AD produced only very low T but substantial amounts of the inactive androsterone.

Stimulated cells produced low amounts of T, moderate amounts of AD, but high

amounts of progesterone. Gene expression analyses revealed barely detectable 17β-
hsd3 levels, absence of 17β-hsd5 (Akr1c6), but substantial 17β-hsd1 expression in

all three cell lines. Thus, MA-10, BLTK1 and TM3 cells are not suitable to study

the expression and activity of the gonadal T synthesizing enzyme 17β-hsd3. The
low T production reported in stimulated MA-10 cells are likely a result of the
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expression of 17β-hsd1. This study substantiates that the investigated Leydig cell

lines MA-10, BLTK1, and TM3 are not suitable to study gonadal androgen

biosynthesis due to altered steroidogenic pathways. Furthermore, this study

emphasizes the necessity of mass spectrometry-based steroid quantification in

experiments using steroidogenic cells such as Leydig cells.

Keywords: Endocrinology, Pharmaceutical science

1. Introduction

Steroid hormones are involved in the regulation of essential physiological

processes. Systemic steroid levels are mainly produced by the adrenal glands

synthesizing mineralocorticoids, glucocorticoids and precursors of active andro-

gens, and the gonads synthesizing active sex steroids [1]. Disruption of

steroidogenesis by genetic defects or environmental influences, including the

exposure to synthetic chemicals, has been associated with developmental

disturbances [2], impaired reproduction [3, 4], cancer [5, 6, 7], metabolic

disorders [8, 9, 10], immune and neurologic diseases [11, 12].

For the identification of substances interfering with steroidogenesis and for

mechanistic investigations, cell lines derived from the adrenals or from testicular

Leydig cells represent alternatives to primary cells and animal experimentation that

are ethically accepted, low-cost and rapid testing systems. Nevertheless, cell-based

models must be well characterized and they should be used only for well-defined

applications, including appropriate positive and negative controls. In contrast to the

adrenals, where a human adrenal adenoma cell line (H295R) has been validated

according to the Organization for Economic Cooperation and Development

(OECD) guideline to detect substances disrupting steroid production [13], currently

no human Leydig cell line to study testicular steroidogenesis is available. Human

H295R cells are an appropriate model to test disruption of adrenal steroidogenesis.

Unfortunately, this cell line is not suitable to study testosterone synthesis disruption

due to low amount of total produced T and the lack of endogenous 17β-
hydroxysteroid dehydrogenase type 3 (17β-HSD3) [14]. Moreover, the supplemen-

tation by Nu-serum for cultivation of H295R contributes considerable amounts of T

and the low amounts produced by the cells are a result of the expression of

AKR1C3 (17β-HSD5) rather than 17β-HSD3 [14]. Primary human and murine

Leydig cells represent an ideal model to study disruption of T synthesis. However,

primary cells are difficult to obtain due to low yield, and there are considerable

inter-individual differences; similarly, the preparation of primary rodent Leydig

cells is laborious and the yield rather low, thus limiting their use for medium to

high throughput testing. There are, however, several commercially available rodent

Leydig cell lines to study testicular steroidogenesis (reviewed in [15, 16]). Most of

these cell lines have been developed decades ago and morphological and genetic
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transformations may have occurred in these lines over the years. MA-10 cells were

derived from a spontaneous testicular murine tumor, which were subjected to in

vitro immortalization [17]. TM-3 cells were derived from primary testicular murine

cell cultures subjected to spontaneous immortalization in vitro [18]. Immortalized

BLTK1 [3_TD$DIFF]cells were established from a testicular tumor induced by the Simian virus

T-antigen (SV40 TAG) oncogene of a transgenic mice expressing the inhibin-α
promoter [19]. Forgacs et al. reported that BLTK1 cells display consistent induction

of steroidogenesis for up to 30 passages [20].

Human and rodent de novo androgen production from cholesterol differs regarding

Δ4-androstene-3,17-dione (AD) synthesis. In humans, AD is produced via the Δ5

metabolic steroid intermediates pregnenolone (Preg) and 17α-hydroxypregneno-
lone (17OH-Preg). The human enzyme CYP17A1 efficiently converts 17OH-Preg

to dehydroepiandrosterone (DHEA) but has low affinity for 17α-hydroxyproges-
terone (17OH-P). In rodents, CYP17 is able to convert Δ4 and Δ5 steroids, but in

contrast to humans it prefers the Δ4 intermediates progesterone (P) and 17OH-P

[21]. Importantly, in both human and rodents AD is converted in the last step to T

by 17β-HSD3 [22].

Several reports describe the use of mouse Leydig cell lines to investigate the

interference of xenobiotics with steroidogenesis, especially focusing on the

disruption of T production (reviewed in [16]). Many studies have chosen a single

steroid as a read-out, mostly T, and using antibody-based quantification methods.

Such methods often suffer from limited specificity [23, 24, 25, 26], and it cannot

be excluded that other steroid metabolites might interfere with the read-out due to

the inability of antibodies to distinguish between structurally very similar steroid

metabolites.

An initial aim of the present project was to identify a mouse Leydig cell model

expressing substantial 17β-hsd3 levels in order to investigate the impact of

substances on the last step of testicular T formation. Three mouse Leydig cell lines,

MA-10, BLTK1 and TM3, were investigated by assessing the conversion of

exogenous AD to T, the basal production of T, as well as the production of T and

additional steroids following stimulation by 8-Br-cAMP and forskolin. The mRNA

expression levels of key genes involved in androgen production was measured by

quantitative RT-PCR, providing an explanation for the observed steroid production

by these cells.

2. Materials and methods

2.1. Cultivation of MA-10, BLTK1 and TM3 cell lines

The mouse Leydig cell line MA-10 (ATCC, Manassas, VA, USA) was cultivated

as described previously [27]. Cell culture materials and chemicals were obtained
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from Gibco, Carlsbad, CA, USA, and Sigma-Aldrich, St. Louis, MO, USA, unless

otherwise stated. Briefly, cells were grown on 0.1% gelatin-coated cell culture

dishes in DMEM/F12 medium containing 20 mM HEPES, pH 7.4, 15% horse

serum, and 50 μg/mL gentamicin. MA-10 cells were exclusively used from

passages 12 to 19. The BLTK1 mouse Leydig cell line (kindly provided by Prof.

Ilpo Huhtaniemi and Dr. Nafis Rahman, University of Turku, Turku, Finland [20])

was maintained in DMEM/F12 medium with 10% fetal bovine serum (FBS), 100

U/mL penicillin and 100 μg/mL streptomycin. BLTK1 cells were exclusively used

from passages 20 to 25. The mouse Leydig cell line TM3 was cultivated in

DMEM/F12 medium, containing 15 mM HEPES, pH 7.4, 100 U/mL penicillin and

100 μg/mL streptomycin, 2.5 mM L-glutamine, 5% horse serum and 2.5% FBS.

TM-3 cells were used from passages 11 up to 17. All cell lines were incubated

under standard conditions (5% CO2, 37 °C). For ultra-pressure liquid

chromatography–tandem mass spectrometry (UPLC–MS/MS) measurements

phenol red-free medium containing overnight charcoal/dextran-treated FBS or

horse serum was used.

2.2. Determination of mRNA expression

Total RNA from mouse Leydig cells (300,000 cells seeded in 6-well plates) was

extracted using Trizol reagent, followed by reverse transcription using the

Superscript III reverse transcriptase. The mRNA levels from different genes were

analyzed using a Rotor-Gene 6000 light cycler (Corbett, Sydney, Australia).

Reactions were performed in a total volume of 10 μL reaction buffer containing

KAPA SYBR master mix (Kapasystems, Boston, MA, USA), 10 ng cDNA and

specific oligonucleotide primers (Table 1). Relative gene expression was compared

to the internal control cyclophilin A (Ppia).

2.3. Determination of androstenedione metabolism

The conversion of radiolabeled AD by BLTK1 cells (10,000 grown in 24-well

plates) was measured using a modified protocol from Legeza et al. [27]. Briefly,

cells were incubated in serum-free DMEM/F12 medium containing 200 nM

radiolabeled 50 nCi [1,2,6,7−3H]-AD (GE Healthcare, Little Chalfont, UK). The

enzymatic reactions were terminated by adding 2 mM unlabeled AD and T

dissolved in methanol. The steroids were separated on UV-sensitive silica TLC

plates (Macherey-Nagel, Oensingen, Switzerland) using a chloroform-methanol

solvent system at a ratio of 9:1. Bands migrating with an Rf of AD and T, as well

as two fractions in between AD and T, were scraped off the TLC plate and

transferred to tubes containing scintillation cocktail. Radioactive decay of AD and

corresponding metabolites were analyzed using a scintillation counter (PerkinEl-

mer, Waltham, MA, USA). For UPLC–MS/MS analysis cells were incubated with

unlabeled AD and steroids formed were analyzed after extraction from bands of
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TLC plates by UPLC–MS/MS. Alternatively, for experiments where steroids were

directly analyzed by UPLC–MS/MS, MA-10 (100,000), BLTK1 (200,000) and

TM3 (75,000) cells were seeded in 12-well plates and cultivated for 24 h. Cells

were washed with phosphate buffered saline (PBS) and incubated with charcoal/

dextran-treated FBS/horse serum containing phenol red-free complete DMEM/F12

medium supplemented with AD, cAMP analogue or forskolin. Cells were

incubated for 24 h, followed by collection of culture supernatants. Samples were

stored at −20 °C prior to UPLC–MS/MS analysis.

2.4. Assessment of cross-reactivity of the enzyme immunoassay
(EIA) kit for testosterone

The EIA kit for T (Cayman Chemical Company, MI, USA) was applied according

to the manufacturer’s instructions. 5α-dihydrotestosterone (DHT) and 5β-
dihydrotestosterone, androstenediol, 5α-androstanedione, androsterone (ADT),

eticholanolone and DHEA were purchased from Steraloids (Newport, RI, USA).

All tested metabolites were dissolved in ethanol, diluted in the buffer provided with

the kit and measured at three different concentrations (150 pg/mL, 75 pg/mL and

37.5 pg/mL) in duplicates. Cross-reactivity was calculated in percentage of the

recovery rate of the corresponding metabolite.

2.5. Ultra-pressure liquid chromatography–tandem mass spec-
trometry

Stock solutions for analyte standards (Steraloids) and their corresponding

deuterium labeled internal standards (IS) (CDN-Isotopes, Pointe-Claire, Canada)

were prepared in methanol at a concentration of 10 mM. Thereafter, standards and

deuterium labeled IS working solutions were prepared by mixing each individual

stock solution to obtain a working concentration of 100 μM. Calibration curves

Table 1. Oligonucleotide primers used for quantitative RT-PCR.

Gene Oligonucleotide Forward Primers Oligonucleotide Reverse Primers

Hsd3b1 5′-GTCACAGGTGTCATTCCCAG-3′ 5′-TTCTTGTACGAGTTGGGCC-3′

Cyp17a1 5′-AGAGTTTGCCATCCCGAAG-3′ 5′-AACTGGGTGTGGGTGTAATG-3′

Hsd17b3 5′-ACAATGGGCAGTGATTAC-3′ 5′-GTGGTCCTCTCAATCTCTTC-3′

Akr1C6 5′-TCCGAAGCAAGATAGCAGATG-3′ 5′-GTTGGACTATGTGGACCTGTAC-3′

Srd5a1 5′-TCACCTTTGTCTTGGCCTTC-3′ 5′-TTATCACCATGCCCACTAACC-3′

Akr1c14 5′-GTACAAGCAAACACCAGCAC-3′ 5′-ATGTCCTCTGAAGCCAACTG-3′

Hsd17b1 5′-GCTGTGTTGGATGTGAATGTG-3′ 5′-ACTTCGTGGAATGGCAGTC-3′

Ppia 5′-CAAATGCTGGACCAAACACAAACG-3′ 5′-GTTCATGCCTTCTTTCACCTTCC-3′
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were prepared by serial dilution of the working solutions of standards in DMEM/

F12 phenol red-free medium in the range of 0.975 nM–1000 nM. Cell supernatant

was taken at the appropriate time point and IS at a final concentration of 0.1 μM in

protein precipitation solution (zinc sulfate 0.8 M in water/methanol 50/50 v/v)

were added. After shaking vigorously for 10 min at 4 °C, the samples were

centrifuged for 10 min at 10,000 × g. Supernatants were transferred onto Oasis

HBL SPE columns (Waters, Milford, MA, USA) that were preconditioned with

methanol and water. Samples were washed twice with water, eluted with methanol

and evaporated to dryness at a vacuum evaporator. Samples were reconstituted in

100 μL methanol by vigorously shaking for 30 min at 4 °C.

Analytes were measured simultaneously by UPLC–MS/MS using an Agilent 1290

UPLC instrument equipped with a binary solvent delivery system, an auto sampler

(at 4 °C), and a column oven, coupled to an Agilent 6490 triple quadrupole mass

spectrometer equipped with a jet stream electrospray ionization interface (AJS-

ESI) (Agilent Technologies, California, USA). Fragmentation for multiple reaction

monitoring (MRM) and source conditions within the positive ion mode were

automated defined by use of the integrated compound- and source- optimizer

software modules (Agilent Technologies, B.07.01). The general source parameters

were set as following: Gas temperature 290 °C, gas flow 14 L/min, sheath gas

temperature 350 °C, sheath gas flow 11 L/min, nozzle voltage 1500 V, cell

accelerator voltage 5 V and fragmentation voltage 380 V. Specific optimized

analyte conditions are shown in Table 2. Analyte separation was achieved using a

reversed-phase column (ACQUITY UPLC BEH C18, 1.7 μm, 2.1 × 150 mm,

Waters, Wexford, Ireland), heated to 65 ± 0.8 °C. The mobile phase consisted of

water-acetonitrile-formic acid (A) (95/5/0.1; v/v/v) and (B) (5/95/0.1; v/v/v). The

eluent gradient was set from 25 to 41.4% of B within 0–20 min using a ramping

flow-rate from 0.65 mL/min to 0.36 mL/min, followed by a washout (100% of B,

20–22 min) and column re-equilibration (25% B1, 22–26 min) at a constant flow-

rate of 0.65 mL/min. The injection volume was 5 μL per sample. Methanol in water

(75/50 v/v) was used as needle and needle-seat flushing solvent for 10 s after

sample aspiration. Samples were stored until analysis in the auto sampler

(maintained at 4 °C). Data acquisition and analysis was performed using Mass

Hunter Workstation Acquisition Software Version 07.01 SP1 and MassHunter

Workstation Software Quantitative Analysis Version B.07.00/Build 7.0457.0,

respectively (Agilent Technologies).

3. Results

3.1. Rapid metabolism of AD to androsterone by BLTK1 cells

The initial aim of this study was to identify a mouse Leydig cell line suitable for

assessing 17β-hsd3 expression and enzyme activity in order to investigate
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Table 2. Parameters for the androgens measured and mass spectrometer properties.

Steroid RT
[min]

Precursor Ion (m/
z)

Product ion (m/
z)

Collision energy
(V)

Nebulizer
(psi)

Ion Funnel RF high
(V)

Ion Funnel RF low
(V)

Dwell time
(ms)

Capillary (positive,
KV)

ADT 18.1 273.2 255.2 12 15 120 90 250 3

147.1 24

T 8.1 289.2 97.1 32 25 170 90 200 2.5

109 28

AD 9.5 287.2 97.1 20 15 170 90 100 2

109 24

DHT 12.5 291.2 159.1 24 15 120 90 100 3

255 12

ADT-
d2

18.1 275.2 257.1 8 15 120 90 100 3

118.1 52

T-d2 8.1 291.5 111.1 13 25 170 90 100 2.5

125 24

AD-d7 9.4 294.2 113 28 15 170 90 100 2

100 24

DHT-
d3

12.3 294.2 258.2 12 15 120 90 100 3

162 24
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xenobiotics interfering with the last step of T synthesis. Based on a previous study

reporting the expression of 17β-hsd3 and detecting T production using an antibody-

based quantification method [20], the mouse Leydig cell line BLTK1 was first

chosen as a cell model. Because mRNA levels often do not provide sufficient

information on protein expression and a suitable, specific anti-17β-hsd3 antibody

was not available, we attempted to measure 17β-hsd3 enzyme activity by

incubating BLTK1 cells in serum-free medium supplemented with 200 nM of

radiolabeled AD and determining its metabolism by subjecting the culture

supernatants to steroid separation by TLC and analyzing the excised bands by

scintillation counting. Four distinct fractions were collected: fraction 1 migrating

with the Rf of AD, fraction 2 migrating with the Rf of T, and fractions 3 and 4 with

Rf between AD and T. The results suggested a time-dependent metabolism of AD

and the formation of one major metabolite migrating with the Rf of T, as well as

two minor metabolites (Fig. 1A). T was expected to be the main product because of

the rapid conversion of AD to T by 17β-hsd3 in adult Leydig cells. However, the

formation of the main metabolite could not be blocked by the potent 17β-hsd3
inhibitor BP1 at concentrations of 1 μM and 10 μM (Fig. 1B), shown previously to

efficiently inhibit 17β-hsd3-mediated T production in testis homogenates [28],

indicating that another metabolite was formed. Therefore, the fraction migrating

with the Rf of T was extracted from the TLC plate and subjected to UPLC–MS/MS

analysis, revealing the absence of T.

Next, supernatants of BLTK1 cells incubated with 250 nM AD for different time

periods were analyzed by UPLC–MS/MS. The main metabolite produced by

BLTK1 cells was identified as ADT. The time-dependent loss of AD over time was

proportional to the increase of ADT in the culture supernatants (Fig. 2). DHT was

below the detection limit and only very low amounts of T could be measured.

3.2. Discrepancy to earlier work due to lack of specificity of
antibody-based steroid quantification?

In an earlier study reporting T production by BLTK1 cells an EIA kit was applied

for T quantification [20]. Radioimmuno assays (RIA) and enzymes-linked

immunosorbent assays (ELISA) are methods that have been used to detect very

low amounts of steroids for decades. However, all steroids share a common

backbone and, therefore, it is important to assess the cross-reactivity rates between

the key steroids produced by the system that is used in a corresponding experiment

[24, 25, 29]. Thus, in the present study, the recovery rates of eight relevant

androgenic steroids were tested by applying the T detection EIA kit (Cayman

Chemical, Ann Arbor, MI, USA) that has been used in the earlier study reporting T

production by BLTK1 cells [20]. The highest mean recovery rate was detected for

DHT (59%) (Table 3). Other androgens showed recovery rates between 5–36%.
Most importantly, cross-contamination was found for 5α-androstandione (21%),
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AD (25%) and ADT (16%). Thus, the high amounts of ADT formed by BLTK1

cells from AD, as shown in the present study, suggest that ADT might have been

detected instead of T in the earlier study using this EIA kit for T quantification.

These results emphasize the use of mass spectrometry-based steroid quantification

methods when analyzing complex biological systems.

3.3. Comparison of the conversion of androstenedione to
testosterone and androsterone in MA-10 and BLTK1 cells

Next, in an attempt to compare their capacity to catalyze the last step of T

synthesis, BLTK1 and the more widely used MA-10 cells were incubated in

charcoal/dextran treated medium supplemented with 200 and 100 nM AD,

respectively, for 4.5 h (Fig. 3). AD concentrations dropped to about 50% after 4.5 h

of incubation with both MA-10 and BLTK1 cells (medium control, +cells;

Fig. 3A, D). BLTK1 cells did not produce AD de novo (Fig. 3A), compared to

MA-10 cells, where low amounts of AD could be detected (Fig. 3D). AD was

absent from the medium control in the absence of cells (Fig. 3A, D), indicating that

[(Fig._1)TD$FIG]

Fig. 1. Metabolism of radiolabeled androstenedione in BLTK1 cells analyzed by TLC and scintillation

counting. A, BLTK1 cells were incubated in serum-free medium supplemented with 200 nM AD

containing 50 nCi [1,2,6,7-3H]-AD for up to 240 min, followed by separation of steroids by TLC and

analysis of the excised fractions by scintillation counting. The main product formed was found in the

fraction 2 migrating on TLC like T. Minor amounts of unknown products were detected in TLC

fractions 3 and 4. Data represent mean ± SD from two independent experiments, each performed in

duplicate, n = 4. B, Formation of the product migrating with an Rf like that for T by BLTK1 cells after

30 min exposure to 200 nM radiolabeled AD in the presence of vehicle control (0.1% DMSO) or the

17β-hsd3 inhibitor benzophenone 1 (BP1, 1 μM and 10 μM). Data represent mean ± SD from three

independent measurements, each performed in duplicate, n = 6. In all experiments, the cell culture

supernatants were collected and analyzed. Analytes were separated using TLC and samples were

quantified using scintillation counting.
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[(Fig._2)TD$FIG]

Fig. 2. Time-dependent metabolism of androstenedione and formation of androsterone quantified by

UPLC–MS/MS. BLTK1 cells were incubated in serum-free medium supplemented with 250 nM AD for

different time (0, 30, 90, and 270 min), and the formation of ADT, T and DHT was quantified by

UPLC–MS/MS in the cell culture supernatants. Data are shown as mean ± SD of technical triplicates.

Table 3. Cross-reactivity of a commercially available testosterone ELISA kit

(Cayman Chemical) toward several androgens. Experiments were performed

according to the manufacturer’s protocol. Data show mean recovery rate of three

tested steroid concentrations (150 pg/μL, 75 pg/μL, 37.5 pg/μL) from a

representative experiment. Results were confirmed by a second independent

experiment. Mean recovery rates for several tested androgens interacting with the

anti-testosterone antibody varied from 5% up to 59%.

Steroid Mean recovery rate (cross-reactivity)

Testosterone 100 ± 10

5α-Androstanedione 21 ± 8

5α-Dihydrotestosterone 59 ± 9

5β-Dihydrotestosterone 28 ± 5

Androstendione 25 ± 6

Androstenediol 36 ± 3

Androsterone 16 ± 11

Dihydroepiandrosterone 5 ± 3

Etiocholanolone 18 ± 1
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it was completely removed by charcoal/dextran treatment. In contrast, T could not

be completely removed from the BLTK1 culture medium, which contains charcoal/

dextran treated FBS (Fig. 3B), whereas it was completely removed from horse

serum containing MA-10 culture medium (Fig. 3E). Thus, higher amounts of T

were measured in BLTK1 cell supernatants due to T contamination contributed by

the serum. However, T concentrations in supernatants of both cell lines were

increased after incubation with AD compared to the medium control (Fig. 3B, E),

revealing a low conversion of AD to T in both cell lines. In contrast, ADT was a

[(Fig._3)TD$FIG]

Fig. 3. Formation of testosterone and androsterone in BLTK1 and MA-10 Leydig cells after incubation

with androstenedione. Steroids were quantified by UPLC–MS/MS in supernatants of BLTK1 cells

incubated with 200 nM AD (A–C) and of MA-10 cells incubated with 100 nM AD (D–F) in charcoal/

dextran treated medium for 4.5 h. Results represent steroid concentrations (in nM) in supernatants of

medium control (− cells), treatment control (200 or 100 nM AD, − cells), cells exposed to AD (200 or

100 nM AD, + cells), and cells incubated in medium in the absence of AD (medium only, + cells).

Statistical significance was assessed using one-way ANOVA analysis followed by a post Tukey test.

Data of BLTK1 cells represent mean ± S.D. from two independent experiments, each performed in

duplicate, n = 4. MA-10 data represent mean ± S.D. from three independent experiments, each

performed in duplicate, n = 6. *p < 0.05, ***p < 0.001.
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major metabolite formed upon incubation of both cell lines with AD (Fig. 3C, F).

Both cell lines produced similar amounts of ADT from AD. Importantly, both

BLTK1 and MA-10 cells incubated with AD produced approximately 50–100
times more ADT than T (Fig. 3C, F). Furthermore, MA-10 and BLTK1 cells both

produced low amounts of ADT de novo. No ADT was detected in the medium

controls in the absence of cells. However, regarding the mass balance, in both cell

lines AD was not exclusively converted into ADT, indicating that either ADT is

further metabolized (for example by conjugation) or that other metabolites were

formed from AD. Interestingly, an additional experiment using BLTK1 and MA-10

cells incubated with serum-free medium showed a similar decrease in AD

concentrations and the formation of very low amounts of T but high amounts of

ADT (Fig. 4). Compared to cells incubated with charcoal/dextran treated serum,

approximately 3–4 fold higher amounts of ADT were formed under serum-free

conditions, emphasizing the importance of medium composition for steroidogene-

sis.

The absence of substantial production of T was further supported by the fact that

17β-hsd3 mRNA in BLTK1 and MA-10 cells is expressed at very low levels, 1000

times lower than in mouse testis (Table 4). This finding confirms that the

endogenous expression of 17β-hsd3 in BLTK1 cells is too low to sufficiently

convert AD into T. Therefore, the BLTK1 cell line is not a suitable model to study

effects on T synthesis. Moreover, despite the high levels of Srd5a mRNA within

both cell lines (data not shown) DHT is not produced, likely a result of the lack of

functional 17β-hsd3.

3.4. Effects on steroidogenesis in MA-10 cells by the inducers 8-
Br-cAMP and forskolin

Forskolin and 8-Br-cAMP are well-known inducers of steroidogenesis via the

cAMP-PKA pathway. Two different concentrations of each compound (10 and 50

μM) were used to stimulate steroid synthesis in MA-10 cells. Cells were treated

with 10 and 50 μM of 8-Br-cAMP or forskolin for 24 h. Steroid concentrations in

the cell supernatants were analyzed by UPLC–MS/MS.

As shown in Fig. 5A, 8-Br-cAMP concentration-dependently induced AD

production in MA-10 cells. The results shown were obtained from a single

experiment, which was independently reproduced four times. Comparable relative

steroid values were observed in all four experiments; however, at different

passages of the cells different absolute steroid levels were obtained. The inducible

effect of 8-Br-cAMP was also found to be passage-dependent. Nevertheless,

concentration-dependent stimulation of AD production was observed in every

experiment. Treatment with forskolin did not result in significantly altered AD

levels as measured in cell supernatants. Compared to the amount of AD detected in
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the cell supernatants, T levels were 10–20 times lower (Fig. 5B). In the basal state,

the supernatants of the MA-10 cells vehicle control (DMSO 0.5%) contained less

than 100 pM of T after 24 h of incubation. Despite the low concentrations detected,

T was significantly increased by both inducers and at both concentrations.

Interestingly, the 50 μM 8-Br-cAMP treatment was about four times more efficient

than the 50 μM forskolin treatment in enhancing T production.

In contrast to T, significantly higher amounts of ADT were measured in MA-10

cells in the basal state (vehicle control, i.e. DMSO), reaching concentrations of

about 2 nM (Fig. 5C). However, both treatments with 8-Br-cAMP and forskolin

[(Fig._4)TD$FIG]

Fig. 4. Formation of testosterone and androsterone in BLTK1 and MA-10 Leydig cells after incubation

with androstenedione in serum-free medium. Before incubation with AD, BLTK1 and MA-10 cells

were cultivated in serum-free media for 24 h. Steroids were quantified by UPLC–MS/MS in

supernatants of BLTK1 cells incubated with 100 nM AD (A–C) and of MA-10 cells incubated with 100

nM AD (D–F) in serum-free medium for 4.5 h. Results represent steroid concentrations (in nM) in

supernatants of medium control (− cells), treatment control (100 nM AD, − cells), cells exposed to AD

(100 nM AD, + cells), and cells incubated in medium in the absence of AD (medium only, + cells).

Data of BLTK1 and MA-10 cells represent mean ± S.D. from one experiment, each performed in

duplicates.
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Table 4. Comparison of mRNA expression levels of enzymes involved in

androgen synthesis in mouse testis and Leydig cell lines. Testes were obtained

from three different 11 weeks old C57bl6 mice. Testes were homogenized and

lysed in TRI-reagent. Leydig cells were grown to confluence in 6-well plates and

lysed using TRI-reagent. Messenger RNA was isolated and converted into cDNA.

CT-values were determined using 10 ng of cDNA. Data on BLTK1 and TM3 were

obtained from a single experiment performed in triplicate. Testis and MA-10 data

were obtained from three independent experiments each performed in triplicate.

Significant changes of mRNA expression in MA-10 cells compared to mouse testes

are indicated. Testis vs. MA-10, t-test = ** p < 0.0001; * p < 0.01.

Testis MA-10 BLTK TM3

Hsd17b3 22.4 ± 0.9 31.2 ± 0.2 ** 31.36 n.d

Akr1c14 23.6 ± 0.7 17.3 ± 0.2 ** 14.21 21.54

Srd5a1 21.8 ± 0.3 20.7 ± 0.5 19.77 25.05

Hsd3b1 17.6 ± 1.2 19.0 ± 0.5 12.35 23.31

Cyp17a1 17.4 ± 0.9 23.3 ± 1.0 * 25.98 28.55

Hsd17b1 26.9 ± 0.2 25.8 ± 0.2 25.32 26.78

Hsd17b2 22.2 ± 0.2 n.d n.d n.d

Akr1c6 n.d n.d n.d n.d

Ppia 14.2 ± 0.1 13.6 ± 0.2 14.15 12.67

[(Fig._5)TD$FIG]

Fig. 5. Quantification of de novo synthesis of androstenedione, testosterone and androsterone by MA-

10 cells. MA-10 cells were incubated with 8-Br-cAMP or forskolin (10 μM and 50 μM) for 24 h,

followed by quantification of steroids in supernatants by UPLC–MS/MS. DMSO (0.5%) and medium in

the absence of cells served as controls. The medium contained charcoal/dextran-treated serum.

Statistically significant difference to the DMSO control was assessed using one-way ANOVA analysis

followed by a post Tukey test. Data represent mean ± S.D. from one out of four independent

experiments performed in duplicate. *p < 0.05, **p < 0.01, ***p < 0.001.
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led to decreased levels of ADT in cell supernatants after 24 h, but only the values at

50 μM forskolin reached statistical significance, when compared to the DMSO

control.

Cells in the basal state (vehicle control) produced P to reach a concentration of 3

nM after 24 h. P levels were significantly increased in supernatants of cells

stimulated with 8-Br-cAMP or forskolin (Fig. 6A). 17OH-P levels were increased

by 20–50 fold in supernatants of cells stimulated with 50 μM 8-Br-cAMP but not at

the lower concentration of 10 μM or in the presence of forskolin (Fig. 6B).

3.5. Analysis of the expression of genes involved in androgen
synthesis

In order to understand the reason for the inability of the mouse MA-10 Leydig cell

line to produce substantial amounts of T, the mRNA expression of several genes

with a key role in androgen synthesis was determined and compared with the

corresponding levels in mouse testis. For comparison, BLTK1 and TM3 were also

qualitatively assessed in a single experiment. Ppia served as a house-keeping

control. Importantly, 17β-hsd3, essentially catalyzing the last step of T synthesis,

was well expressed in mouse testis but not detectable in TM3 and only at very low

levels in MA-10 and BLTK1 cells (Table 4). Akr1c6, also known as 17β-hsd5 (and
corresponding to AKR1C3 in human), was not expressed at detectable levels in

[(Fig._6)TD$FIG]

Fig. 6. Quantification of de novo production of progesterone and 17-hydroxyprogesterone by MA-10

cells. Progesterone and 17-hydroxyprogesterone levels were quantified by UPLC–MS/MS in medium

and supernatants of MA-10 cells stimulated for 24 h with 8-Br-cAMP or forskolin (10 μM and 50 μM).

The medium contained charcoal/dextran treated serum. DMSO (0.5%) and medium in the absence of

cells served as controls. Statistical differences to the DMSO control were assessed using one-way

ANOVA analysis followed by a post Tukey test. Data represent mean ± S.D. from one out of three

independent experiments performed in duplicate. *** p < 0.001.
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mouse testis and in any of the three cell lines. Mouse 17β-hsd1, which can accept

AD as a substrate to form T [30], was found to be expressed in mouse testis as well

as in all three mouse Leydig cell lines, providing an explanation for the low levels

of T formed by these cell lines despite of the absence or background levels of 17β-
hsd3 and the absence of Akr1c6. Interestingly, 17β-hsd2, which converts estradiol

to estrone but also was reported to be able to convert 5α-DHT to 5α-
androstanedione and T to AD [31, 32], was expressed in mouse testis but not in

any of the three cell lines.

An efficient androgen production depends on the expression of 3β-hsd1 and

Cyp17a1, which were both well expressed in mouse testis. The lower expression of

Cyp17a1 in the Leydig cell lines compared to mouse testis explains the preferred

production of P in the three cell lines. The considerable amounts of ADT generated

by MA-10 and BLTK1 cells are likely a result of the high expression of Srd5a1

(5α-reductase) and Akr1c14 (3α-HSD).

4. Discussion

This study investigated the capability of three commonly used mouse Leydig cell

lines, i.e. TM3, BLTK1 and the most widely used MA-10, to synthesize T in their

basal state or upon stimulation by 8-Br-cAMP or forskolin. All three cell lines

produced no or very low amounts of T in their basal state. Nevertheless, in MA-10

cells T synthesis was detectable but it remained an order of magnitude lower than

the production of AD and two orders of magnitude lower than that of P upon

stimulation by 8-Br-cAMP or forskolin. This data is in line with previous reports

by Lacroix et al., reporting negligible T production due to decreased 17β-
hydroxysteroid dehydrogenase activity in the P variant of the Leydig cell tumor

(M5480), adapted for serial transplantation by Dr. W. F. Dunning (Miami) to

establish the MA-10 cell line. Real-time PCR analyses in this study revealed very

low or absent 17β-hsd3 mRNA expression levels in MA-10, BLTK1 and TM-3

cells. The enzyme 17β-hsd3 essentially catalyzes the final step of T synthesis in

Leydig cells and, therefore, these cell lines are not suitable as screening tool for T

synthesis disruption. A variant of the M5480 Leydig cell tumor (M5480A)

producing similar amounts of P and T at basal levels was reported [33]. This

variant might be used to develop a murine Leydig cell line for investigations into

the disruption of T generation and the regulation of the 17β-hsd3 expression and

enzyme activity.

Other investigators reported increasing amounts of T in supernatants of BLTK1

cells that were stimulated with recombinant human chorionic gonatropin (rhCG)

[20, 34, 35]. However, they also observed that BLTK1 cells produced much more

P than T, consistent with the present study. Nevertheless, these investigators did

not mention whether they used serum-free media or charcoal treated media in their
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experiments, and no data on cross-reactivity assessment of the ELISA kits used

were reported; thus an over estimation of the reported T generation in these earlier

studies cannot be excluded.

Unexpectedly, the addition of exogenous AD to BLTK1 and MA-10 cells resulted

in only very low amounts of T formation but considerable generation of ADT. An

explanation for this observation was provided by the mRNA expression analysis

revealing high expression of Akr1c14 (3α-hsd) and Srd5a1 (5α-reductase), two key
enzymes required for the conversion of AD to ADT via the intermediate 5α-
androstanedione (Fig. 7) [36, 37, 38]. Additionally, the known 17β-hsd3 inhibitor

BP-1 was not able to inhibit the low amounts of T generated by MA-10 cells, and

the 17β-hsd3 mRNA expression was very low, while 17β-hsd1 was well expressed,
suggesting that T synthesis unlike in testis, was not mediated by 17β-hsd3 but

rather by 17β-hsd1. It has been shown earlier that murine 17β-hsd1 can convert AD
to T [30]. This is important regarding the interpretation of results obtained from

investigations into effects of xenobiotics and endogenous mediators on T synthesis

by these murine Leydig cell lines.

An important issue remains the analytical method chosen for T quantification.

Since antibody-based quantification methods often are limited regarding their

specificity [24], such methods should mainly be applied for applications where the

[(Fig._7)TD$FIG]

Fig. 7. Schematic representation of murine and human gonadal androgen synthesis. Classic murine and

human biosynthesis pathways of T in testis (black background). Alternative/backdoor pathway of 3α-
androstanediol in human and mouse (grey background). Intermediate steroids are shown in boxes on

white background. Murine pathways are depicted by dotted and human pathways by black arrows. The

main human biosynthesis pathway of T via DHEA is shown by a bold black arrow. Preferred murine

pathways of T via P and 17OH-P are shown by bold dotted arrows [36, 56].
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identity of the generated steroids is known, and mass spectrometry-based methods

should be used for the analysis of samples with complex steroid patterns. As shown

in this study, the explicit use of the EIA kit for T quantification would have led to

the misinterpretation that mainly T instead of ADT is formed from AD by MA-10

and BLTK1 cells. Also, the use of radiolabeled steroids, followed by separation by

TLC, could result in misleading conclusions if several metabolites are formed and

identical standards are not included as controls.

Several earlier studies applied MA-10 [39, 40, 41, 42, 43, 44, 45, 46, 47], BLTK1

[20, 35], or TM3 cells [48, 49, 50, 51] to analyze effects of endogenous and

exogenous substances on steroidogenesis by measuring T production using

antibody-based methods. In most of these studies there is only limited information

available on the specificity of the antibody used, and the commercial suppliers

mostly included only a limited number of steroid metabolites in their

characterization. Thus, it cannot be excluded that the reported concentrations

were overestimated due to cross-reactivity. In many of the above studies, the

steroid concentrations in the medium used for the experiment are not explicitly

defined, and different medium/serum combinations were used in different studies,

making a direct comparison difficult.

The present study indicates that BLTK1 and MA-10 cells in the presence of

medium containing charcoal/dextran treated serum mainly metabolize exogenously

added AD to ADT, and that ADT formation is even more pronounced under serum-

free conditions. The results also emphasize that care should be taken regarding the

conclusions drawn on altered T production in experiments using these murine

Leydig cell lines because 17β-hsd3 seems not to be functionally expressed and T

formation probably is a result of 17β-hsd1 expression in these cells. Thus, a

suitable Leydig cell line expressing all key gonadal steroidogenic enzymes is still

needed. The human adrenal H295R cell line is a well-established model to test

endocrine disrupting chemicals. However, this cell line is also not suitable to study

T synthesis disruption due to low amounts of totally produced T and the lack of

endogenous 17β-HSD3. Thus, any AD into T conversion observed in these cells

most likely is a result of the ubiquitously expressed AKR1C3 (17β-HSD5) [14].
Thus, human or mouse primary Leydig cells are currently the only reliable model

to investigate 17β-hsd3 activity and its regulation as well as disruption of T

synthesis.

Gene expression analysis further revealed that 3β-hsd1 was well expressed but

Cyp17 was substantially lower in the murine Leydig cell lines compared to adult

mouse testis, providing an explanation for the production of low amounts of

androgens but high P. The fact that Srd5a1 and Akr1c14 are highly expressed in

these cell lines explains the favored synthesis of ADT and other steroid metabolites

of the backdoor pathway (Fig. 7).
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Unfortunately, the three murine Leydig cell lines BLTK1, MA-10, and TM3 show

a fetal Leydig cell-like phenotype lacking 17β-hsd3 expression. Shima et al.

showed that fetal Leydig cells produce and secrete AD, while T is further produced

by Sertoli cells. The fetal testis produces much less T than adult Leydig cells

[52, 53]. O’shaughnessy et al. showed that 17β-hsd3 was expressed in

seminiferous tubules (Sertoli cells) up to day 20, and later on 17β-hsd3 expression

was restricted to the interstitial tissue in Leydig cells [54]. Mahendroo et al.

showed that the predominant androgen in immature mouse testis is 3α-
androstanediol (3α-diol) [55]. In our experiments, forskolin significantly decreased

ADT concentrations in supernatants of MA-10 cells. This may be due to forskolin-

mediated stimulation of the production of steroids involved in the backdoor

pathway, leading to the accumulation of 3α-diol (Fig. 6). A prominent peak was

detected in supernatants of forskolin treated cells using LC–MS/MS that is

expected to be 3α-diol; however, verification using an authentic standard will be

required.

This study highlights the limitations of three murine Leydig cells as potential

screening tool to investigate the endogenous disruption of T synthesis.

Nevertheless, these cell lines are still suitable to examine testicular disruption of

the steroidogenic pathway up to P production, which seems to be intact and can be

stimulated using 8-Br-cAMP and hcG. Importantly, steroid levels should be

measured using a validated and accurate quantification such as LC–MS/MS or

GC–MS/MS in order to minimize over- or underestimation of the quantified steroid

concentrations.

5. Conclusion

The three murine Leydig cell lines MA-10, BLTK1 and TM3 produce no or only

very low T under basal conditions. T production is measurable in MA-10 cells and

is stimulated by 8-Br-cAMP; however, under these conditions one and two orders

of magnitude more AD and P, respectively, are produced. The T formed by these

cell lines is probably due to 17β-hsd1 expression because 17β-hsd3 expression is

barely detectable and inhibition of this enzyme did not abolish T formation.

Furthermore, exogenous AD was predominantly metabolized to ADT and only

minor amounts of T were formed. Thus, MA-10, BLTK1 and TM3 cell lines are

not suitable models to investigate interferences by substances of Leydig cell T

synthesis. Mouse and human Leydig cell lines expressing the entire set of

steroidogenic enzymes should be developed for high throughput screening of

potential endocrine disrupting chemicals. Moreover, this study further emphasizes

the need for replacement of antibody-based steroid quantification methods by

mass-spectrometry-based methods (GC–MS/MS, LC–MS/MS) when analyzing

samples from biological systems producing several steroid metabolites.
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