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Abstract

Development of resistance to malaria treatments remains a great threat to
continued malaria burden reduction and elimination. Quantifying the impact
of key factors which increase the emergence and spread of drug resistance
can guide intervention strategies. Whilst modelling provides a framework to
understand these factors, we show that a simple of model with a sensitive–
resistant dichotomy leads to incorrectly focusing on reducing the treatment
rate as a means to prevent resistance. Instead we present a model that
considers the development of resistance within hosts as a scale, and we then
quantify the number of resistant infections that would arise from a single
sensitive infection. By including just one step before full resistance, the model
highlights that disrupting this development is more effective than reducing
treatment rate. This result is compounded when the model includes the more
realistic scenario of several intermediary steps. An additional comparison
to transmission probabilities, where resistant infections are less likely to be
transmitted (cost of resistance), confirms that preventing the establishment
of resistance is more effective than controlling the spread. Our work strongly
advocates for further studies into within-host models of resistance, including
the potential of combination therapies to disrupt emergence.

Keywords: Ross-MacDonald model, malaria treatment, resistance
emergence, resistance spread, resistance establishment, mutation

1. Introduction1

Resistance threatens not just control of malaria but also our potential to2

eliminate malaria in low prevalence settings. Several historical examples of3

Preprint submitted to Journal of Theoretical Biology February 5, 2019

https://doi.org/10.1016/j.jtbi.2018.10.050
©2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by edoc

https://core.ac.uk/display/211688814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


development of the spread of resistance to malaria treatment exist, such as4

widespread chloroquine resistance and less geographically spread sulfadox-5

ine/pyrimethamine resistance, and more recently, resistance to artemisinin6

(Yeung, 2004, WHO, 2018). Even once a drug is no longer in use, the resis-7

tant genotypes may decline slowly, or even persist indefinitely (Liechti et al.8

2017).9

In the early 2000s combination therapy, where an infected individual is10

treated with two or more drugs, became accepted as an approach to prevent11

resistance to a given particular drug given as monotherapy (World Health12

Organization 2001). Artemisinin combination therapies were introduced with13

short-acting artemisinin derivatives formulated with different longer-acting14

partner drugs, such lumefantrine or Mefloquine (Nosten and White 2007).15

Nonetheless, resistance continues to occur, with artemisinin resistance devel-16

oping in South East Asia (Ménard et al. 2016) with fear of further spread-17

ing and thus threatening both morbidity control and elimination of malaria.18

More recently triple combination therapies with the view to delay emergence19

and spread are being tested (Shanks et al. 2014). The community state20

that to eliminate malaria policy decisions need to be preemptive, not reac-21

tive (Boni et al. 2016). This requires a deeper understanding of resistance22

which cannot be gained from generalisations of specific case studies. To test23

and understand key drivers of resistance, mathematical models provide an24

invaluable framework.25

zur Wiesch et al. (2011) consider the overall dynamics, and discuss which26

factors could influence the growth of resistance, including mutation, recom-27

bination and de novo versus transmitted resistance. Typically reducing the28

probability that de novo resistance mutations occur is often the focus, mean-29

ing that pathogens are rapidly eliminated and patients continue treatment30

after they feel better. However, Read et al. (2011) argue that the more ag-31

gressive the regime, the greater the selection pressure in favour of resistance.32

Essentially, reducing resistance is a balance between reducing the probability33

of de novo resistance whilst not creating opportunity for mutated genotypes34

to grow rapidly (Day and Read 2016). Kouyos et al. (2014) relate this bal-35

ance to high and low transmission areas, advising moderate treatment where36

malaria has high-transmission since co-infection is more frequent, and thus37

resistant and sensitive strains compete more often within an individual host.38

Aggressive treatment would be more likely to cause the removal of a sensi-39

tive competitor. In a summary of population genetics and epidemiological40

models for drug resistance, Mackinnon (2005) states that the two overriding41
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factors are the proportion of humans treated with drugs, and the efficacy of42

the drug in clearing parasites.43

When drug concentration is low enough to kill the sensitive genotype,44

it may not necessarily be high enough to kill partially-resistant mutations.45

With more uninfected blood cells, partially-resistant and resistant genotypes46

can multiply rapidly. This selection process is often summarised by the47

selection coefficient, which is simply the difference between the growth rate48

of the mutant type and the sensitive type for a given drug concentration - the49

relative fitness (Huijben et al. 2011). So a large selection coefficient implies50

that the mutant type is growing rapidly. Day et al. (2015) contend that51

instead of the relative fitness, the absolute fitness is a better measure. That52

is, the growth rate of the mutant type is compared to itself at a baseline rate53

defined by both the drug concentration and a within patient state variable,54

such as the density of resources, or immune cells.55

Having established that a resistant infection develops within a host, the56

transmission of this infection throughout the homogeneous population can57

be modelled via a compartment model. The most well-known example of a58

compartmental model for malaria transmission is the Ross-MacDonald model59

(Ross 1911, Macdonald 1957, Dietz 1974). This model puts the main burden60

of transmission on mosquito-specific features, and thus motivated mosquito-61

based malaria control programmes (Mandal et al. 2011). The simplicity62

and relevance of the Ross-MacDonald has ensured that it continues to be a63

strong basis for a broader theory of mosquito-bourne disease transmission64

and control (Smith et al. 2012).65

There are several compartmental models that include a treated popula-66

tion, and a population resistant to treatment. We compare our model to67

six models which we are aware of, see Table 1. Two of the models, Koella68

and Antia (2003) and Chiyaka et al. (2009), include an immune population.69

As expected, the three models which explicitly include a treated population70

(Koella and Antia (2003), Esteva et al. (2009) and Chiyaka et al. (2009))71

find that the proportion treated has an effect on the spread of drug resis-72

tance. The models of Koella and Antia (2003) and Esteva et al. (2009)73

also find that the spread of resistant infections depends on the effectiveness74

of the treatment (defined in terms of the period of infection), and the cost75

of resistance (defined in terms of the reduction of intensity of transmission76

due to mutation). Their models do not indicate transmission as a significant77

factor. Chiyaka et al. (2009) also show that the spread of drug resistance78

depends on the infectious periods, defined here as the ratio of the infectious79
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periods of treated and untreated humans. Unlike Koella and Antia (2003)80

and Esteva et al. (2009), Chiyaka et al. (2009) find the transmission rates81

from infectious humans with resistant and sensitive infections to influence82

the spread of resistant infections. Tumwiine et al. (2014) and Tchuenche et83

al (2014) show that as the evolution of drug resistance grows, so does the84

number of infections in the population. However, these models do not con-85

sider the transmission of resistant infections - mosquitoes are either infected86

or susceptible only such that resistance only occurs from evolution within a87

treated host. More recently, Legros and Bonhoeffer (2016) modelled the resis-88

tance within-host, and used this model to determine the transmission rates89

in a simple compartmental (susceptible-infected) model. Unlike the other90

models in Table 1, there is not a separation of hosts infected with sensitive91

or resistant infections, since resistance is incorporated in the transmission92

rates, which depend on the within-host model of the density of gametocytes.93

Generally, compartmental models which explicitly include a resistant94

class, do not include a partially-resistant class, although field evidence sug-95

gests that assuming only sensitive and fully-resistant gene classes is often96

invalid (Hastings et al. 2002). Resistance is a process, and thus better repre-97

sented as a scale than a dichotomy. Tchuenche et al (2014), who do include98

partial resistance, do not include this class within the mosquito population,99

and thus ignoring the transmission of partially resistant infections. This is100

particularly relevant when considering the spread of resistance.101

To summarise the overall findings of the compartmental models in Ta-102

ble 1, drug resistance increases in the population as treatment increases, and103

decreases as the period of infection decreases (drug efficacy increases). This104

is agreement with Mackinnon’s (2005) summary on population genetics and105

epidemiological models. When the evolution of drug resistance is included,106

it is found to be a driving factor, but a comparison of this factor to the107

transmission probabilities of sensitive and resistant infections is currently108

missing. This omission has become more important as recent work interfaces109

within-host models with population models via these probabilities (Legros110

and Bonhoeffer, 2016 and Bushman et al., 2018).111

This paper presents a novel compartmental model that includes the evo-112

lution of an infection within a treated host, such that a sensitive infection113

becomes a partially resistant infection, which becomes a fully resistant in-114

fection. This transference is defined by the ‘replacement rate’. The replace-115

ment rate is a summary statistic that could be interpreted as an evolution116

rate which leads to the emergence of resistance. There has been a variety of117
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approaches to model the emergence of resistance (Day et al., 2015, Day et al,118

2016, Hastings, 2003, Hastings and Hodel, 2014, Hastings et al., 2002, Hast-119

ings and Watkins, 2005, MacKinnon, 2005, Read et al. 2011, Stepniewska120

and White, 2008, zur Weisch et al., 2011). In Section 4 we demonstrate121

how three different approaches can be combined with our model to interface122

within host models with population models.123

Since ‘replacement rate’ is a summary statistic, it’s definition is flexible124

to the question at hand, and thus the definition of partial resistance. For125

example, when treatment is a combination of two drugs - partial resistance126

may represent that the host has developed resistance to one drug, but not127

the second. Alternatively, resistance may require several mutations, as is128

the case with sulphadoxine pyrimethamine which has five important point129

mutations that have been found to be associated with resistance (Sarmah130

et al., 2017). These mutations occur incrementally, and thus less than five131

mutations can be considered as partial resistance. In fact, instead of one132

level of partial resistance, the model could be adapted to have four levels133

of partial resistance, one for each mutation. See Subsection 3.4 for further134

discussion about increasing the number of partially resistant classes.135

In this model, the three different classes of infections are passed to mosquitoes136

such that mosquitoes can transmit partially resistant and fully resistant in-137

fections, where different classes of infections have different probabilities of138

being transmitted due to a cost of resistance. The key contribution of this139

paper is that we quantify the great importance of understanding the evolu-140

tion of drug resistance - the replacement rate. Comparing this replacement141

rate to transmission properties, we show that controlling the emergence of142

drug resistance within a host is more effective than controlling the spread.143

Our model compliments current research on resistance since it is this144

precise replacement rate that other research attempts to quantify, either145

by pharmacokinetic/pharmacodynamic modeling analysis (Hastings et al.146

2002), theoretical modelling (Day and Read 2016), or within-host models147

(Bushman et al. 2016). The interface between this research and our model is148

discussed more in Section 4. Our model suggests that in areas of high trans-149

mission, the effect of the replacement rate is greater, so it is more important150

to minimise it by, for example, using drugs with a short half life (Hastings151

et al. 2002).152

We do not include factors such as age structure, socio-economic factors,153

and migration since a malaria model that incorporates all factors and vari-154

ables becomes an overwhelmingly complex system (Mandal et al. 2011).155
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Moreover, our aim is to quantify the effect of treatment, and highlight what156

treatment and resistance variables are of most importance, so we include157

the minimum factors required. This is an introductory model that can act158

as the foundation for further studies which include multiple infections, and159

immunity.160

Table 1: The human and mosquito compartments used by previous malaria transmission
models which include a resistant population: Koella and Antia (2003), K, Esteva et al.
(2009), E, Chiyaka et al. (2009), C; Legros and Bonhoeffer (2011) (where immunity is
modelled within host - denoted by *); Tchuenche et al. (2011); Tumwiine et al. (2014);
and this paper, LP. All models include a susceptible population of humans and mosquitoes,
omitted from the table for clarity.
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E
x
p

os
ed

In
fe

ct
ed

In
fe

ct
ed

p
ar

ti
al

ly
-r

es
is

ta
n
t

In
fe

ct
ed

re
si

st
a
n
t

T
re

at
ed

T
re

at
ed

p
ar

ti
al

ly
-r

es
is

ta
n
t

T
re

at
ed

re
si

st
an

t

Im
m

u
n

e

P
ar

ti
al

ly
im

m
u

n
e

P
ar

ti
al

ly
im

m
u

n
e

re
si

st
an

t

E
x
p

os
ed

E
x
p

os
ed

p
ar

ti
al

ly
-r

es
is

ta
n
t

E
x
p

os
ed

re
si

st
an

t

In
fe

ct
ed

In
fe

ct
ed

p
ar

ti
al

ly
-r

es
is

ta
n
t

In
fe

ct
ed

re
si

st
an

t

K X X X X X X X
E X X X X X
C X X X X X X X X X
L X X∗ X

Tc X X X X X X X X X
Tu X X X X
LP X X X X X X X X X X X X

2. The model161

The model is based on the Ross-McDonald delay differential equation162

model (Ross 1911, Macdonald 1957) where populations of humans and mosquitoes163
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are either susceptible or infected. Infected mosquitoes bite susceptible hu-164

mans who then become infected. Mosquitoes which bite infected humans165

become exposed (infected but not infectious), and after τ̂ time, become in-166

fectious if they have not already recovered. It is assumed that mosquito and167

human populations are constant. To model drug resistance, a treated human168

population is required, so we allow infections be to treated at a rate rx, see169

Figure 1.170

A novel aspect of this model is to follow three distinct infection classes:171

sensitive j = S, partially-resistant j = P , and fully-resistant j = R in both172

the human and mosquito population. Transference between the three classes,173

of the form S → P → R, occurs in the treated population only, via a pro-174

cess we call ‘replacement’. Replacement depends on factors such as the drug175

pressure, the mutation rate, and the de novo hazard. At a practical level176

these factors depend on inadequate dosage levels, poor compliance, combi-177

nation therapy, and other implementation factors. Three different methods178

to quantify the replacement rate, φ, are discussed in Section 4.179

Resistance also occurs in the human population via mosquito transmis-180

sion, which we consider separately since the resistance evolution is not di-181

rectly affected by the transmission intensity (Hastings et al. 2005). Resistant182

infections may not be transmitted as easily, which is included in our model183

via the transmission probabilities bj and cj. The probabilities that a bite184

leads to an infection in a human are related such that bS ≥ bP ≥ bR, and the185

probabilities that a bite leads to an infection in a mosquito are related such186

that cS ≥ cP ≥ cP . This allows the possibility that even when the cost of187

resistance is infinite, and so transmission of fully-resistant infections is zero,188

bR = cP = 0, fully-resistant infections can persist due to the replacement of189

partially-resistant infections within treated hosts. Additionally, even when190

within-host resistance evolution has been removed, φ = 0, resistant infections191

may persist via transmission.192

2.1. Human population193

The total number of humans, which remains constant, is N , and is thus194

the sum of susceptible hosts S, infected hosts Ij and treated hosts Tj (j =195

S, P , R),196

N = S(t) + I(t) + T (t),

where I = IS+ IP + IR and T = TS+TP +TR. The recovery and death rates197

for all untreated infections, and treated fully-resistant infections, are assumed198
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to be the same, (rI and α respectively). Perfect treatment is assumed so that199

the death rate for individuals with sensitive and partially-resistant treated200

infections is the same as the background death rate µ. The recovery rates for201

sensitive and partially-resistant infections are rTS and rTP . Comparing the202

recovery and death rates for the different classes: rI < rTP < rTS and µ < α.203

2.1.1. Infected human population, Ij(t)204

There are three classes of infected humans. For a given infection, the205

population is increased by the susceptible population which are bitten by a206

mosquito in class j, and decreased according to a recovery rate and back-207

ground death rate,208

dIj
dt

= abjm
S

N
Îj − (rI + rx + α)Ij, (1)

where a is the biting rate of mosquitoes, m is the density of female mosquitoes,209

and Îj is the number of mosquitoes with a class j infection. All variables and210

parameters are defined in Tables 2 and 3.211

2.1.2. Treated human population, Tj(t)212

Infected humans are treated at a rate rx. Within the treated population,213

there is replacement (S → P → R) due to growing resistance, via the214

replacement rate φ,215

dTS
dt

= rxIS − (φ+ µ+ rTS )TS , (2)

dTP
dt

= rxIP − (φ+ µ+ rTP )TP + φTS , (3)

dTR
dt

= rxIR − (α + rI)TR + φTP . (4)

The replacement S → P is assumed to occur at the same rate as P → R216

for ease of analysis, but they could be different rates. Note that IR and TR217

are the same: fully-resistant infections are unaffected by treatment, either218

because treatment was not administered IR or it is ineffective TR. How-219

ever, using separate compartments allows us to monitor for infections that220

were initially partially-resistant TR (establishment), and those that arise from221

mosquito transmission IR (development).222
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2.2. Mosquito population223

The total number of mosquitoes N̂ remains constant in time,224

N̂ = Ŝ(t) + Ê(t) + Î(t), (5)

and we assume recovery rates and death rates do not vary due to infec-225

tion. There are three classes of mosquitoes to correspond with the sensitive,226

partially-resistant, and fully-resistant infections.227

2.2.1. Exposed mosquito population, Ej(t)228

For a given infection, j = S,P ,R, the population is increased by the229

susceptible population which bite an infectious human in class j. At each230

time interval, a proportion leave the exposed population because the latency231

period τ̂ has expired, as well as the background death rate µ̂,232

dÊj
dt

= acj
Ij + Tj
N

Ŝ − acj
I ′j + T ′j
N ′

Ŝ ′e−µ̂τ̂ − µ̂Êj, (6)

where (·)′ is (·) at time t− τ̂ .233

2.2.2. Infected mosquito population, Îj(t)234

The population is increased from the exposed population whose latency235

period has expired, and decreased according to the background death rate,236

dÎj
dt

= acj
I ′j + T ′j
N ′

Ŝ ′e−µ̂τ̂ − µ̂Îj. (7)

2.3. Example simulations237

The model is run for three years using the values in Table 3, and initially238

no infected humans nor mosquitoes with partially-resistant nor fully resistant239

infections,240

IP = IR = ÊP = ÊR = ÎP = ÎR = 0.

However, there are initially a small proportion of treated humans with the241

more resistant classes. The non-zero compartments at t = 0 are242

S = 99.4, IS = 0.5, TS = TP = TR = 0.099, and Ŝ = 80, ÊS = ÎS = 10. (8)
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Figure 1: Schematic diagram of our malaria model. Infections are either sensitive j = S,
a partially-resistant j = P or a fully-resistant j = R. Susceptible mosquitoes become
infected in relation to the proportion of infected humans. After a latency period of τ̂ ,
mosquitoes become infectious and may infect susceptible humans. Infections in humans
are treated at rate rx. In the human population, each compartment has a down arrow to
represent death, at either the background rate µ, or the rate due to infection α (µ < α).
The up arrows represent recovery (rTS < rTP < rI), where all recovered persons become
susceptible again. For clarity, this return to susceptible is not explicitly shown. In the
mosquito population, the up arrow represent death at rate µ̂, where death is replaced by
new susceptible mosquitoes.
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Table 2: Model variables

Epidemiological compartments Symbol

Total number of humans N
Susceptible humans S

Humans with sensitive infection IS
Humans with partially-sensitive infection IP

Humans with fully-resistant infection IR
Total infected humans I

Treated humans with sensitive infection TS
Treated humans partially-sensitive infection TP

Treated humans fully-resistant infection TR
Total number of mosquitoes N̂

Susceptible mosquitoes Ŝ

Mosquitoes exposed to sensitive infection ÊS
Mosquitoes exposed to partially-resistant infection ÊP

Mosquitoes exposed to fully-resistant infection ÊR
Total exposed mosquitoes Ê

Mosquitoes infected with sensitive infection ÎS
Mosquitoes infected with partially-resistant infection ÎP

Mosquitoes infected with fully-resistant infection ÎR
Total infected mosquitoes Î

11



Table 3: Parameter description and their default values. Unless indicated by a ∗, values
are from Mandal et al. 2011. The values indicated by a ∗ are guesstimates.

Parameter Symbol Value

Natural death rate of humans µ 0.017/365 day−1

Death rate of treated humans (assume perfect treatment) µ 0.017/365 day−1

Death rate of not treated humans α ∗0.17/365 day−1

Natural death rate of mosquitoes µ̂ 0.2 day−1

Latent period of mosquito τ̂ 11 days
Biting rate a 0.25 day−1

Prob. that a bite transmits a sensitive infection to a human bS 0.3
Prob. that a bite transmits a partially-resistant infection to a human bP 0.28

Prob. that a bite transmits a fully-resistant infection to a human bR 0.2
Prob. that a bite transmits a sensitive infection to a mosquito cS 0.5

Prob. that a bite transmits a partially-resistant infection to a mosquito cP 0.4
Prob. that a bite transmits a fully-resistant infection to a mosquito cR 0.3

Ratio of female mosquitoes to humans m 28
Rate that infected humans receive treatment rx 0.03 day−1

Average recovery rate of untreated infections rI 0.02 day−1

Average recovery rate of treated, sensitive infections rTS
∗0.06 day−1

Average recovery rate of treated, partially-resistant infections rTP
∗0.04 day−1

Replacement rate φ ∗1/110 day−1

Despite a very low initial presence of resistance, the proportion of resistant243

infections grows rapidly, but then it appears that an endemic equilibrium is244

reached, see Figure 2a. Whereas when there is no cost of resistance, such that245

bS = bP = bR and cS = cP = cR (Figure 2b), the infected proportion contin-246

ues to increase. The specific requirements for an endemic equilibrium, and247

the effect of the transmission probabilities, is discussed further in Section 3.2.248

As previously mentioned, even when bR = cR = 0, fully-resistant infec-249

tions persist due to the replacement of partially-resistant infections within250

treated hosts, see Figure 2c. This figure also has the rate of replacement set251

to zero after one year. Together with Figure 2d, this shows that resistance252

persists in a population once once the possibility of resistance developing253

within a host is removed.254

3. Results255

Having established the model, and discussed some examples, we present256

some analyses to track the emergence and spread of resistance. In Section 3.1,257

the number of secondary infections arising from a single infection is calcu-258

12



0

25

50

75

100

0 1 2 3

Years

P
er

ce
nt

ag
e 

of
 h

os
ts

(a) All parameters as in Table 3 (bS =
0.3, bP = 0.28, bR = 0.2 and cS =
0.5, cP = 0.4, cP = 0.3).

0

25

50

75

100

0 1 2 3

Years

P
er

ce
nt

ag
e 

of
 h

os
ts

(b) All infections equally likely to be
transmitted, bS = bP = bR = 0.3 and
cS = cP = cP = 0.5.
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(c) Fully resistance infections cannot be
transmitted, bR = cR = 0, and within-
host resistance evolution removed after
one year, φ = 0 for t > 365.

(d) Within-host resistance evolution re-
moved after one year, φ = 0 for t > 365.

Figure 2

Example simulations to show the effect of varying transmission probabilities
and within-host evolution. All parameters are as in Table 3, unless

otherwise stated. The colours correspond to the compartment colours in
Figure 1: Pink compartments are the infected populations, without

treatment, and the blue compartments are the treated population. Except
the darkest pink, which is the treated population with the fully resistant
infection (this compartment is equivalent to the fully-resistant infected
population without treatment, second darkest pink). The darker tone

correspond to more resistant infections.

lated. By keeping the three classes of infections separate, we focus on the259

number of resistant infections that arise from a sensitive infection. The affect260

of the different treatment variables is discussed, and the importance of the261
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replacement rate φ is quantified. Then we discuss the requirements for an262

endemic equilibrium.263

The importance of φ is verified for two model adaptations, which would264

make the model more realistic. Firstly, in Subsection 3.3, we show that265

the results remain the same when an asymptomatic human population is266

included. Secondly, in Subsection 3.4, we show that as more levels of resis-267

tance evolution are included, the replacement rate φ actually becomes more268

important.269

3.1. Reproductive numbers270

As resistance grows, so does the total number of infected individuals. The271

reproductive number is a measure of the number of secondary, infectious,272

infections expected after one new infection. The number of infections of any273

class, arising from a single infection of any class, is denoted by RS P R→S P R274

and is the sum of275

RIS→ÎSRÎS→IS
RIS→TS→ÎSRÎS→IS

}
RS→S , (9)

RIP→ÎPRÎP→IP
RIP→TP→ÎPRÎP→IP

}
RP→P , (10)

RIR→ÎRRÎR→IR
RIR→TR→ÎRRÎR→IR

}
RR→R, (11)

RIS→TS→TP→ÎPRÎP→IP

}
RS→P , (12)

RIP→TP→TR→ÎRRÎR→IR

}
RP→R, (13)

RIS→TS→TP→TR→ÎRRÎR→IR

}
RS→R, (14)

where the subscripts indicate the movement of the initial infection through276

the different compartments. For example, infection of class j in a mosquito277

passed to a human is RÎj→Ij . The reproductive numbers (12)–(14) relate to278

resistance emerging, with (14) being of particular interest as it relates to the279

number of fully resistant infections arising from a single sensitive infection.280

Once fully resistant infections are established, the reproductive number (11)281

relates to the fully resistant infection spreading. From the model, (9)–(14)282

are defined as,283

RS→S =
a2bScSm

µ̂

[
rTS + rx + φ+ µ

(rI + rx + α)(rTS + φ+ µ)

]
e−µ̂τ̂ , (15)
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RP→P =
a2bPcPm

µ̂

[
rTP + rx + φ+ µ

(rI + rx + α)(rTP + φ+ µ)

]
e−µ̂τ̂ , (16)

RR→R =
a2bRcPm

µ̂

[
1

rI + α

]
e−µ̂τ̂ , (17)

RS→P =
a2bPcPm

µ̂

[
rxφ

(rI + rx + α)(rTS + φ+ µ)(rTP + φ+ µ)

]
e−µ̂τ̂ , (18)

RP→R =
a2bRcPm

µ̂

[
rxφ

(rI + rx + α)(rTP + φ+ µ)(rI + α)

]
e−µ̂τ̂ , (19)

RS→R =
a2bRcPm

µ̂

[
rxφ

2

(rI + rx + α)(rTS + φ+ µ)(rTP + φ+ µ)(rI + α)

]
e−µ̂τ̂ .(20)

The derivation of (15)–(20) is provided in Appendix A. The terms outside284

the square brackets relate to the reproductive number of the delay Ross-285

McDonald model,286

RS =
a2bcme−µ̂τ̂

µ̂
, (21)

(Ruan et al. 2009). That is, reduction in transmission is most strongly af-287

fected by the exponent terms: the death rate of mosquitoes µ̂, and the latency288

time period τ̂ ; the biting rate a has a stronger affect than the transmission289

probabilities b, c (here bj, cj) and the mosquito density m. These known af-290

fects have more impact for the reproductive numbers (15)–(20) which have a291

larger term inside the square brackets. This is especially true for the variables292

to the left of the square brackets, which relate to transmission rates, because293

the terms in the square brackets are of the same order as the transmission294

terms, whereas the latency period and mosquito death rate are exponents.295

We now investigate when the reproductive numbers relating to resistance296

emerging (18)–(20) are large for varying parameters, and thus informing when297

the transmission rates and latency period have a stronger effect on the spread298

of resistance.299

Let us assume that the recovery rate from infection rI , the death rate300

from infection α and background death rate µ are fixed. Therefore, the301

reproductive numbers (15)–(20) only vary by the treatment variables:302

• the recovery rates for sensitive and partially-resistant infections which303

are being treated, rTS , rTP . It is assumed that these rates range between304

2 and 10 times larger than the recovery rate of non-treated individu-305

als rI ,306
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• the rate of infections being replaced by more resistant infections φ ∈307

[0, 1],308

• the treatment rate rx ∈ (0, 1];309

and the cost of resistance, represented by the transmission probabilities bj310

and cj. Overall, the number of infections can be reduced by increasing the311

treatment rate rx and increasing the recovery rates, rTS and rTP . However,312

as the replacement rate φ increases, so does the total number of infections,313

see Figure 4a.314

Previous studies confirm that increasing the rate of treatment increases315

the rate of resistance spread (Koella and Antia 2003, Esteva et al. 2009,316

Chiyaka et al. 2009); and increasing the cost of resistance reduces the spread317

of resistance (Koella and Antia 2003, Esteva et al. 2009). However, like318

Tchuenche et al (2011) and Tumwiine et al. (2014) who include resistance319

growth, we show that the replacement rate has a much stronger affect, see320

Figure 3. Moreover, by including partial resistance in the mosquito popula-321

tion, we can separate resistant infections that are transmitted and those that322

develop within the host.323

When the replacement rate is high, there are a lot of secondary fully-324

resistant infections arising from a single sensitive infection, RS→R. This is325

because the development of fully-resistant infections from sensitive infections,326

RS→R, is affected by the replacement rate twice, hence equation (20) is O(φ2),327

which is the same order as the biting rate a. Therefore, in this model, the328

replacement rate has an equal affect as the biting rate. Since the replacement329

rate φ and the transmission variables a, bj, cj and m are of similar order,330

in areas of high transmission, reducing the replacement rate has a strong331

effect. Moreover, this is actually more effective than reducing the treatment332

rate rx, or increasing the cost of resistance bj, cj, at mitigating resistance333

spread. The limited effect of transmission rates bj and cj is in agreement334

with Gandon et al. (2001, 2003), where they showed that vaccines limiting335

transmission have little effect on evolution.336

Nonetheless, one must be careful when interpreting the specifics of this337

model. For example, treatment rate per day is likely to be considerably338

larger than the replacement rate per day. Under this model, there is reason339

to believe that under certain conditions, the treatment rate may actually340

create more resistance emergence than the replacement rate (for example, the341

treatment rate is rx = 0.9 and the replacement rate is φ = 0.01, see Figure342

4b). However, as we discuss later in Section 3.4, only including one step to343
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resistance is perhaps still too coarse a lens, which would make this example344

meaningless. Instead, when interpreting the resistance emerging reproductive345

number RS→R, consider the overall result that whilst the influence of the346

replacement rate is compounded, the treatment rate and transmission rates347

remain unchanged.348

All resistance emerging reproductive numbers, RS→P , RP→R, RS→R, (15)–349

(20) are inversely related to the treatment rates rTS and rTP . Therefore,350

improved recovery rates not only reduce the overall number of infections,351

but it is especially beneficial for reducing the emergence of drug resistance.352

Note that RS→P , RP→R, RS→R, (15)–(20) depend on the treatment rate of353

partially-resistant infections rTP , whereas the treatment rate of sensitive in-354

fections rTS affects RS→P and RP→R only. Therefore the recovery rate of355

partially-resistant infections is of more importance at mitigating the spread356

of resistance. In fact, the recovery rate of partially-resistant infections rTP357

has a stronger affect than the treatment rate rx, see Figure 4a.358

3.2. Equilibrium359

When considering the disease free equilibrium, we consider the case of a360

constant human population. Without treatment, the system reduces to the361

delay Ross-McDonald model, and thus the disease free equilibrium is trivial.362

The endemic equilibrium is363

I∗

N
=

RS − 1

RS + ace−µ̂τ̂/û
,

where RS is as in (21), from Ruan et al. 2009. For the full model presented364

here, with treatment and resistance, the disease free equilibrium is when365

I∗j =
βj

rI + rx + α
,

T ∗S =
rxβS

(rI + rx + α)(rTS + φ+ µ)
,

T ∗P =
rx [φβS + (rTS + φ+ µ)βP ]

(rI + rx + α)(rTS + φ+ µ)(rTP + φ+ µ)
,

T ∗R =
rx [φ2βS + φ(rTS + φ+ µ)βP + (rTS + φ+ µ)(rTP + φ+ µ)βR]

(rI + rx + α)(rTS + φ+ µ)(rTP + φ+ µ)(rI + α)
,

where βj = abjm(S∗/N)Î∗j . As expected, when βS = βP = βR = 0, the366

equilibrium is the disease free equilibrium. These conditions are not met in367

the examples in Figure 2, but it is clear that the difference is negligible.368
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Figure 3

The change in the resistance emerging reproductive numbers RS→P , RP→R
and RS→R, and the overall reproductive number RS P R→S P R, relative to
the recovery rate of the treated population rT , the treatment rate rx, and

the replacement rate φ. The * in the legend indicates the lines are the
same.

We now discuss the conditions required for an equilibrium where only the369

sensitive, and partially-resistant infections are present,370

IR = TR = ÎR = 0. (22)

If fully-resistant infections are absent from IR and ÎR, they can only enter371

the population via TP . Therefore the equilibrium (22) will only remain stable372

if there is no movement from TP to TR. From (19), and assuming that the373

death and recovery rates are non-zero, α, rI > 0, it is clear that movement374
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from TP to TR is only prevented if the treatment or replacement rate is zero,375

rx = 0 or φ = 0. Similarly, the conditions for sensitive only infections is only376

stable under the same conditions. Moreover, even when the cost of resistance377

prevents transmission of the fully-resistant infection, this class of infection378

persists unless rx = 0 or φ = 0 due to resistance developing within a treated379

host.380

3.3. Including an asymptomatic population381

An infection in a human may be asymptomatic Aj, such that infections382

in humans could transfer S ↔ Aj ↔ Ij → Tj (as well as S ↔ Ij → Tj as383

before), where Aj represents asymptomatic infections. We now discuss how384

the reproductive numbers (15)–(20) change with this added feature.385

With these new compartments, the recovery rate of infections (untreated386

or fully-resistant) rI , is the sum of the recovery rates from infected to sus-387

ceptible rIS and from infected to asymptomatic rIA. Similarly, the recovery388

rates from treated infections rTj , j = S, P , is the sum of the recovery rates389

from treated to susceptible rTjS and from treated to asymptomatic rTjA. This390

change does not alter the reproductive numbers (15)–(20). However, more391

significantly, an asymptotic population adds an exponential term e−(rA+µ)τ ,392

where rA is the recovery rate of asymptotic infections, and τ is the asymptotic393

period. This highlights results consistent with previous models - the period394

of time that humans are infectious is key factor of transmission dynamics395

(Chiyaka et al. 2009).396

3.4. Resistance as a scale397

Consider a model for a single infection without partial-resistance, such398

that fully-resistant infections replace sensitive infections directly. In this cir-399

cumstance the number of secondary fully-resistant infections arising from a400

single sensitive infection, RS→R, would be O(bR), O(cP), O(rx), and O(φ),401

not O(φ2) as in this model. This would have led to the conclusion that402

transmission probabilities, treatment rate, and replacement rate are equally403

important. Alternatively, consider a single infection with n steps towards full404

resistance, where each step is equally likely. Then the number of secondary405

fully-resistant infections arising from one sensitive infection RS→R, would406

be O(bR), O(cP), O(rx), as before, but now O(φn). Therefore, because in-407

fections evolve through different stages before becoming fully-resistant, con-408

trolling this evolution is incredibly important, and much more important409

than transmission probabilities and treatment rate. By modelling resistance410
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emergence as a scale, and not a sensitive–resistant dichotomy, the potential411

of combination therapies to disrupt emergence comes into focus.412

To demonstrate, suppose that a sensitive infection evolves resistance to a413

drug at rate φA, and develops resistance to a partner drug at rate φB. From414

our analysis we observe that the number of fully resistant infections to result415

from a single sensitive infection, RS→R, would be O(φAφB). (Both rates416

relate to within-host evolution, so the conclusion that within-host dynamics417

is the driver of resistance still holds.) In this form it is clear that eliminating418

one step (φA = 0 or φB = 0) prevents full resistance developing.419
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Figure 4

The change in the overall reproductive number and the resistance emerging
reproductive number, relative to changes in the treatment variables. The *

in the legend indicates the lines are the same. Note that as the model
becomes more realistic so as to incorporate additional levels of resistance,

the effect of the recovery rates, rTS , rTP , and treatment rate, rx, remain the
same, but the effect of the replacement rate φ (the red line) increases

dramatically.

4. Parameterising the replacement rate φ420

Having established that the replacement φ is the most important treat-421

ment variable, we discuss three different methods to determine an approx-422

imate value. This value is bounded by 0, meaning no resistance evolution,423

and 1, meaning instant transference from sensitive to resistant.424

4.1. The selection window425

When a treatment is first administered a patient is protected from partially-426

resistant and sensitive infections. Once the drug concentration is below a427

20



certain value, the resistant genotypes are no longer inhibited by the drug428

and spreads to replace the original, sensitive infection. This time period429

is referred is referred to as the selection window (Kay and Hastings 2015,430

Hastings, Watkins and White 2002). Let us assume that during this selec-431

tion window, sensitive parasites are ‘replaced’ by partially-resistant parasites,432

and thus φ is connected to the selection window.433

Kay and Hastings (2015) use the selection window to calculate the prob-434

ability, as a function of time, of parasites successfully surviving residual drug435

levels. They show that artmether-lumefantrine and artesunate-mefloquine436

kept the probability of successful emergence (our ‘replacement’) below 10%437

for 10 to 20 days post-treatment. This corresponds to 0.0055 ≤ φ ≤ 0.011.438

Whereas resistance is more likely to occur with DHA piperaquine, which kept439

the probability of successful emergence (‘replacement’) below 40% for 10 days440

post-treatment, φ = 0.05. We use a default value of φ = 1/110 = 0.0091 (see441

Table 3), which lies in the range of a combined artesunate treatment.442

4.2. The probability of resistance443

Day and Read (2016) calculate the probability of resistance, dependent444

on the drug concentration c. This corresponds to φ in our model such that445

φ = 1− e−H(c), (23)

where H(c) is the sum of the de novo hazard and the standing hazard. The446

de novo hazard depends on the rate which resistant mutations appear after447

the start of the treatment, and the probability of escape of any such mutant.448

The standing hazard is the hazard due to a standing population of resistant449

microbes that are already present at the start of treatment. The full equation450

for H(c) is provided in Appendix B. Unlike Hastings, Watkins and White451

(2002), which focuses on the effect of drug pressure only, Day and Read452

(2016) find that sometimes moderate treatment is preferred. Equation (23)453

provides useful insight, but parameterising it remains an open challenge.454

4.3. Within-host modelling455

Lastly, one could model the dynamics within-host (Bushman et al. 2016),456

and interface the two models, as in Legros and Bonhoeffer (2016). In Legros457

and Bonhoeffer (2016), the transmission probability b, depends on the num-458

ber of gametocytes, which is determined by a within-host model. The results459
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from this paper indicate that it would be more important to include the re-460

placement rate. This could be done by considering the erythrocytes infected461

with the sensitive clone, YR, such that462

φ = ε(1− µy)µmYR, (24)

where ε ∈ [0, 1] is the treatment efficacy, and µy is the death rate of infected463

erythrocytes, which are both included in the original Legros and Bonhoeffer464

(2016) model. The new variable µm ∈ [0, 1] relates to the proportion of465

erythrocytes infected with the sensitive clone which evolve to become infected466

with the resistant clone. Replacement rate (24) allows a transference from467

sensitive to resistant erythrocytes that increases as the treatment efficacy468

increases, whilst still allowing for reduction in erythrocytes due to death.469

Of note, as the number of erythrocytes infected with the sensitive clone YR470

changes over time, so does the replacement rate φ.471

5. Discussion472

Generally, previous models which monitor the spread of resistance have473

found that reducing the proportion of people treated is one of the most reli-474

able ways to reduce resistance, which is clearly an undesirable strategy both475

for control and elimination. Our model agrees with this finding, but more476

encouragingly and realistically, reducing the replacement rate has a stronger477

effect at reducing resistance spread. Models which include the evolution of478

drug resistance show that it is important, but omit mosquitoes transmit-479

ting varying infections, so a comparison to the transmission probabilities is480

missing.481

In fact, for a model that considers one partially-resistant class only, the482

effectiveness of this control strategy is directly comparable to the conclusions483

from the original Ross-MacDonald model which found that reducing the bit-484

ing rate of mosquitoes is more effective than reducing density of mosquitoes.485

However, when one considers that resistance is a continuous scale, the evolu-486

tion within-host is the most important factor, which emphasises the potential487

of combination therapies to disrupt emergence.488

The replacement rate φ is not specific to a given drug, but instead it is489

a measure which can be influenced by implementation procedures, such as490

pharmacokinetics, pharmacodynamics, poor adherence or combination ther-491

apy. The parameterisation examples provided in Section 4 could be consid-492
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ered as a single factor of a much more complex system. Whilst reasonably pa-493

rameterising this more complex system may be overreaching, understanding494

the various factors should still be the focus of policy decisions. For example,495

when administering combination therapy, it may be challenging to under-496

standing the different rates of resistance to individual drugs, but because it497

is understood that combination therapy lowers the overall replacement rate,498

it should be the preferred treatment strategy. This focus on keeping evolu-499

tion low by treatment administration protocol is also discussed by Bell and500

MacLean (2016), who present an evo-epidemiological model of antibiotic re-501

sistance. Their work predicts that it should be possible for any antibiotic to502

be effectively evolution-proof, as long as the antibiotic is administered in a503

way that prevents the epidemic spread of resistant lineages.504

6. Conclusion505

As resistance spreads, treatment becomes ineffective. To understand506

drivers of resistance we developed a compartmental model that includes507

partial resistance and full resistance, and we then quantified the number508

of resistant infections that arise from a single sensitive infection. Previous509

models for single infections, where resistance is a dichotomy, find that treat-510

ment rate and the cost of infection to be key factors that contribute to the511

spread of resistance. By including just one intermediary step before full re-512

sistance, in both the human and mosquito population, we demonstrate that513

although these factors are important, the transmission of resistance is actu-514

ally best mitigated by controlling the evolution within a host. This result is515

compounded when one considers that the development to full resistance is516

actually a continuous process. This model can be used in combination with517

other models that are investigating this replacement process, and thus one518

can track how certain factors (such as reducing the selection window) affect519

the transmission dynamics.520

Secondly, provided there is a replacement of sensitive infections with more521

resistant variants, a disease free equilibrium does not exist. Moreover, a522

population with only sensitive or partially-resistant infections is not possi-523

ble. This again highlights the importance of understanding what treatment524

strategies are the most effective at reducing this replacement rate.525

Our work strongly advocates for policies which reduce resistance emerg-526

ing (or to at least act quickly once it has emerged). However, resistance to527

malaria treatment has been observed in Africa, yet it has not been estab-528

23



lished. This may be because the model presented here only considers single529

infections, and ignores the dynamics within a mosquito. Notwithstanding530

these additions, the model supports further research into resistance develop-531

ing within hosts.532
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Appendix A. The reproductive numbers657

The disease free equilibrium point is when the human population is658

IS = IP = IR = TS = TP = TR = 0 and S = N,

and the mosquito population is659

ÊS = ÊP = ÊR = IS = IP = IR = 0 and Ŝ = N̂ = 1.

Consider a single newly infectious mosquito with any class of infection. At660

time t this mosquito has a probability e−ût of surviving its infectious period,661

and infects humans at a rate abjmS/N . Hence the total number of humans662

who become infectious, from each class, due to this mosquito during its entire663

infectious period is664

RÎj→Ij = abjm
S

N

∫ ∞
S

e−ût dt

=
abjm

µ̂
(A.1)

A similar process is used to derive the total number of mosquitoes who be-665

come infectious from a human during his/her entire infectious period. How-666

ever, there are several different routes the infection can take, see (9)–(11).667

These different routes are detailed below.668

Appendix A.1. Equation (9): RS→S = (RIS→ÎS +RIS→TS→ÎS )RÎS→IS669

The expected number of mosquitoes who become infectious with a sensi-670

tive infection, from one human with this infection who is not treated, is671

RIS→ÎS = acSe
−µ̂τ̂
∫ ∞
S

e−(rI+rx+α)t dt

= acS
1

rI + rx + α
e−µ̂τ̂ . (A.2)

And if the human is treated, which occurs at a rate rx, the expected number672

of infectious mosquitoes is,673

RIS→TS→ÎS = acSe
−µ̂τ̂rx

∫ ∞
S

∫ ∞
S

e−(rI+rx+α)ue−(rTS+φ+µ)t du dt

= acS
rx

(rI + rx + α)(rTS + φ+ µ)
e−µ̂τ̂ . (A.3)
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Combining with (A.1) gives the total number of secondary sensitive infections674

from one human infected with a sensitive infection,675

RS→S =
a2bScSm

µ̂

[
rTS + rx + φ+ µ

(rI + rx + α)(rTS + φ+ µ)

]
e−µ̂τ̂ .

Appendix A.2. Equation (10): RP→P = (RIP→ÎP +RIP→TP→ÎP )RÎP→IP676

The expected number of mosquitoes who become infectious with the677

partially-resistant infection, from one human with this infection who is not678

treated, is the parallel to (A.2). Similarly, if the human is treated, which679

occurs at a rate rx, the expected number of infectious mosquitoes is the680

parallel to (A.3). Therefore, the total number of secondary infected humans,681

with a partially-resistant infection, from one human infected with a partially-682

resistant infection, is683

RP→P =
a2bPcPm

µ̂

[
rTP + rx + φ+ µ

(rI + rx + α)(rTP + φ+ µ)

]
e−µ̂τ̂ .

Appendix A.3. Equation (11): RR→R = (RIR→ÎR +RIR→TR→ÎR)RÎR→IR684

The expected number of mosquitoes who become infectious with the fully-685

resistant infection, from one human with this infection who is not treated, is686

the same as (A.2). However, if the human is treated, which occurs at a rate687

rx, the expected number of infectious mosquitoes is688

RIR→TR→ÎR = acPe
−µ̂τ̂rx

∫ ∞
S

∫ ∞
S

e−(rI+rx+α)ue−(rI+α)t du dt

= acP
rx

(rI + rx + α)(rI + α)
e−µ̂τ̂ .

Combining with (A.1) gives the total number of secondary infected humans,689

with a fully-resistant infection, from one human infected with a fully-resistant690

infection,691

RR→R =
a2bRcPm

µ̂

1

rI + α
e−(rA+µ)τe−µ̂τ̂ . (A.4)

Appendix A.4. Equation (12): RIS→TS→TP→ÎPRÎP→IP692

A human infected with a sensitive infection may infect a mosquito with693

partially-resistant infection. This human would be treated at a rate rx, and694
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become partially-resistant at rate φ, giving,695

RIS→TS→TP→ÎP = acSe
−µ̂τ̂rxφ

∫ ∞
S

∫ ∞
S

∫ ∞
S

e−(rI+rx+α)ve−(rT+φ+µ)u

e−(rT+φ+µ)t du dv dt

=
acSµ

λ

rxφ

(rI + rx + α)(rTS + φ+ µ)(rTP + φ+ µ)
e−µ̂τ̂ .

Combining with (A.1) gives the total number of secondary infected humans,696

with a partially-resistant infection, from one human infected with a sensitive697

infection,698

RS→P =
a2bPcSm

µ̂

[
rxφ

(rI + rx + α)(rTS + φ+ µ)(rTP + φ+ µ)

]
e−µ̂τ̂ .

Appendix A.5. Equation (13): RIP→TP→TR→ÎRRÎR→IR699

A human infected with a sensitive infection may infect a mosquito with a700

partially-resistant infections. This human would be treated at a rate rx, and701

become partially-resistant at rate φ, giving,702

RIP→TP→TR→ÎR = acPe
−µ̂τ̂rxφ

∫ ∞
S

∫ ∞
S

∫ ∞
S

e−(rI+rx+α)ve−(rT+φ+µ)u

e−(rI+α)t du dv dt

= acP
rxφ

(rI + rx + α)(rTP + φ+ µ)(rI + α)
e−µ̂τ̂ .

Combining with (A.1) gives the total number of secondary infected humans,703

with a fully-resistant infection, from one human infected with a partially-704

resistant infection,705

RP→R =
a2bRcPm

µ̂

[
rxφ

(rI + rx + α)(rTP + φ+ µ)(rI + α)

]
e−µ̂τ̂ .

Appendix A.6. Equation (14): RIS→TS→TP→TR→ÎRRÎR→IR706

A human infected with a sensitive infection may infect a mosquito with707

partially-resistant infection. This human would be treated at a rate rx, be-708

come partially-resistant at rate φ, and then fully-resistant at rate φ, giving,709

RIS→TS→TP→TR→ÎR = acSe
−µ̂τ̂rxφ

2

∫ ∞
S

∫ ∞
S

∫ ∞
S

∫ ∞
S

e−(rI+rx+α)we−(rT+φ+µ)v

e−(rT+φ+µ)ue−(rI+α)t dw du dv dt

= acS
rxφ

2

(rI + rx + α)(rTS + φ+ µ)(rTP + φ+ µ)(rI + α)
e−µ̂τ̂ .
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Combining with (A.1) gives the total number of secondary infected humans,710

with a fully-resistant infection, from one human infected with a sensitive711

infection,712

RS→R =
a2bRcSm

µ̂

[
rxφ

2

(rI + rx + α)(rTS + φ+ µ)(rTP + φ+ µ)(rI + α)

]
e−µ̂τ̂ .

Appendix B. Day and Read 2016713

The probability of resistance emerging is approximately equal to714

φ = 1− e−H(c),

where H(c) is the resistant hazard,715

H(c) = D(c) + S(c).

The quantity D(c) is the de novo hazard,716

D(c) =

∫ a

S
λ[p(s; c), c] π[x(s; c), c] ds.

Is is comprised of the integral of the product of λ[p(s; c), c], the rate at717

which resistant mutants appear at time s after the start of treatment, and718

π[x(s; c), c], the probability of escape of any such mutant.719

The quantity S(c) is the standing hazard - the hazard due to a standing720

population of n resistant microbes that are already present at the beginning721

of treatment,722

S(c) = −n ln(1− π[x(0; c), c]).
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