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Distinct Proteomic, Transcriptomic, and
Epigenetic Stress Responses in Dorsal and
Ventral Hippocampus
Amalia Floriou-Servou, Lukas von Ziegler, Luzia Stalder, Oliver Sturman, Mattia Privitera,
Anahita Rassi, Alessio Cremonesi, Beat Thöny, and Johannes Bohacek

ABSTRACT
BACKGROUND: Acutely stressful experiences can trigger neuropsychiatric disorders and impair cognitive processes
by altering hippocampal function. Although the intrinsic organization of the hippocampus is highly conserved
throughout its long dorsal-ventral axis, the dorsal (anterior) hippocampus mediates spatial navigation and memory
formation, whereas the ventral (posterior) hippocampus is involved in emotion regulation. To understand the
molecular consequences of stress, detailed genome-wide screens are necessary and need to distinguish between
dorsal and ventral hippocampal regions. While transcriptomic screens have become a mainstay in basic and
clinical research, proteomic methods are rapidly evolving and hold even greater promise to reveal biologically and
clinically relevant biomarkers.
METHODS: Here, we provide the first combined transcriptomic (RNA sequencing) and proteomic (sequential window
acquisition of all theoretical mass spectra [SWATH-MS]) profiling of dorsal and ventral hippocampus in mice. We used
three different acute stressors (novelty, swim, and restraint) to assess the impact of stress on both regions.
RESULTS: We demonstrated that both hippocampal regions display radically distinct molecular responses and that
the ventral hippocampus is particularly sensitive to the effects of stress. Separately analyzing these structures greatly
increased the sensitivity to detect stress-induced changes. For example, protein interaction cluster analyses revealed
a stress-responsive epigenetic network around histone demethylase Kdm6b restricted to the ventral hippocampus,
and acute stress reduced methylation of its enzymatic target H3K27me3. Selective Kdm6b knockdown in the
ventral hippocampus led to behavioral hyperactivity/hyperresponsiveness.
CONCLUSIONS: These findings underscore the importance of considering dorsal and ventral hippocampus sepa-
rately when conducting high-throughput molecular analyses, which has important implications for fundamental
research as well as clinical studies.

Keywords: Dorsal, Epigenetics, H3K27me3, Hippocampus, Kdm6b, Proteomics, Sequencing, Stress, SWATH-MS,
Transcriptomics, Ventral
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Acutely stressful life events can precipitate mood and anxiety
disorders, posttraumatic stress disorder, and cognitive
dysfunction in humans (1–4). A key target of the acute stress
response is the hippocampus (5–7), which has a highly
conserved intrinsic organization, but its connectivity to other
brain regions is strikingly different along its longitudinal axis
(dorsal to ventral in rodents, posterior to anterior in humans)
(8,9). Functionally, the dorsal hippocampus (dHC) is critical for
learning and memory performance, while the ventral hippo-
campus (vHC) is involved in anxiety and behavioral inhibition
(10–13). These vast functional differences are also reflected in
the transcriptomic profile of dHC and vHC (14–16). Stress can
modulate hippocampal plasticity in opposite directions along
the longitudinal axis, impairing long-term potentiation in the
dHC and enhancing it in the vHC (17–19). Similarly, a few

studies have reported strikingly different effects of stress in
dHC versus vHC at the level of morphologic changes (20),
epigenetic regulation (21,22), and gene and protein expression
(19,23). RNA sequencing has recently revealed specific tran-
scriptomic effects of chronic stress in the vHC and led to the
identification of functionally relevant molecular targets (24,25).
However, in comparison with chronic stress, the molecular
impact of acute stress remains poorly characterized (26).
Transcriptomic analyses after acute stress have so far studied
only whole hippocampal tissue (27–30). Therefore, we use RNA
sequencing and state-of-the-art sequential window acquisition
of all theoretical mass spectra (SWATH-MS) proteomics to
provide the first genome-wide characterization of gene and
protein differences between dHC and vHC. We demonstrate
that dHC and vHC differ profoundly in their molecular
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composition and that they respond to acute stressors in
strikingly different ways, with unexpectedly unique transcrip-
tional profiles triggered by each stressor.

METHODS AND MATERIALS

Animals

C57BL/6J male mice (2.5 months old) were obtained from
Janvier Labs (Saint Berthevin, France) and maintained in a tem-
perature- and humidity-controlled facility on a 12-hour reversed
light/dark cycle (lights off: 8:15 AM; lights on: 8:15 PM). All pro-
cedures were carried out in accordance with Swiss cantonal
regulations for animal experimentation and were approved under
license 155/2015.

Stress Paradigms

For all experiments, mice were single housed 24 hours before
stress/handling/testing (31). For novelty stress, each mouse
was placed in the center of a square box for 6 minutes. For
restraint stress, each mouse was placed in a 50-mL Falcon
tube with a large air hole cut out for its nose for 30 minutes.
For cold swim stress, mice were placed in a plastic cylinder
filled with 18 6 1�C water for 6 minutes.

Tissue Processing

Mice were killed by cervical dislocation 45 minutes after the
initiation of stress for transcriptomic analyses and 24 hours
after initiation of stress for proteomic analyses (unless
specified otherwise). The brain was immediately removed,
and the hippocampus was dissected on ice and separated
into dorsal and ventral halves using a razor blade. Tissue
was snap frozen in liquid nitrogen and stored at 280�C until
processing.

Statistics

Statistical analyses of proteomic and transcriptomic ana-
lyses are described in the corresponding sections. For
all other analyses, two groups were compared using
independent-samples t tests. For comparison of more than
two groups, one-way analyses of variance were employed if
there was a single factor. For two-factorial design (region 3

treatment), two-way analyses of variance were employed.
Significant effects were analyzed using Tukey’s post hoc
tests. Data were routinely checked for outliers using Grubb’s
test. For all analyses, statistical significance was set to
p , .05.

Proteomic Analyses. Data are available to readers via
ProteomeXchange with identifier PXD006781. Samples were
processed and analyzed using a previously described method
(32). A detailed description of all steps is in Supplement 1.

RNA Sequencing Analyses. All data are available to
readers via Gene Expression Omnibus with identifier
GSE100236. Libraries were prepared using the TruSeq
Stranded RNA Kit (Illumina, Inc., San Diego, CA) and single-
end sequencing (Illumina HiSeq4000). A detailed description
of all steps is in Supplement 1.

RESULTS

Transcriptomic Profiling of dHC and vHC

We dissected the hippocampus midway between the dorsal
and ventral poles, as indicated in Figure 1A, and performed
RNA sequencing on both dissections (n = 5 mice/group).
Because gene expression differences are most profound be-
tween the dorsal and ventral poles of the hippocampus, with a
gradual transition in the intermediary region (8,15), we ex-
pected that our approach would yield a conservative estimate
of differences between dHC and vHC. We found that more
than 20% of all detected genes (3081 of 13,902 genes) were
differentially expressed between dHC and vHC (p , .005, log2
fold change . 60.3) (Figure 1C); in total, 1639 genes were
enriched in the dHC and 1442 were enriched in the vHC
(Table S1 in Supplement 2). Functional enrichment analysis
using the Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID) functional annotation tool (33) shows
several strongly enriched categories specific for either dHC or
vHC (Figure 1B). Previous transcriptomic work (15) had
compared gene expression between dHC and vHC in principal
neurons of different hippocampal subregions (CA1, CA3, and
dentate gyrus). The authors identified 37 genes as differentially
expressed between dHC and vHC across subregions, and we
could validate 100% of these genes (Table S2 in Supplement 2).
Furthermore, we could validate 84% of the 86 genes that
Cembrowski et al. (15) found to differ in only one subregion of
the hippocampus (Table S3 in Supplement 2). This shows that
despite collecting whole tissue from dHC or vHC, our
approach is sensitive enough to resolve subregion-specific
effects restricted to a single hippocampal cell class. Alto-
gether, we identified 490 genes with very strong expression
differences (. twofold change, p , .005) between dHC and
vHC (Table S4 in Supplement 2).

To gain insights into functional interactions between the
genes enriched in either dHC or vHC, we created interaction
networks based on known and predicted protein interaction
networks (34) (for details, see Supplement 1). Genes enriched
in dHC or vHC form distinct clusters (Figures S1 and S2 in
Supplement 1; Tables S5 and S6 in Supplement 2). Pathway
analyses on the top two clusters reveal enrichment for gluta-
matergic synapse, long-term potentiation, endocytosis, and
regulation of actin cytoskeleton in the dHC and for neuroactive
ligand-receptor activation, serotonergic synapse, and gamma-
aminobutyric acidergic synapse in the vHC.

<
Figure 1. Transcriptomic and proteomic differences between dorsal hippocampus (dHC) and ventral hippocampus (vHC). (A) Schematic illustration of
hippocampal dissection. (B) Pathway analysis for transcriptomic enrichment in dHC vs. vHC. (C) Transcriptomic results for messenger RNA (mRNA)
enrichment in dHC (red) or vHC (blue). (D) The p-value distribution for transcriptomic analysis. (E) Proteomic results for protein enrichment in dHC (red) and
vHC (blue). (F) The p-value distribution for proteomic analysis. (G) Venn diagram showing all identified, as well as all significantly enriched, mRNAs and proteins
and their overlap. (H) Correlation between mRNAs and proteins enriched in dHC or vHC. FC, fold change; PCC, Pearson correlation coefficient.
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Proteomic Profiling of dHC and vHC

We then used the recently developed SWATH-MS-based
proteomics approach to conduct proteome quantification
[Gillet et al. (32)] comparing dHC with vHC (n = 6 mice/group).
Across all samples, we were able to identify a total of 4564
proteins, 2414 of which we could reliably quantify. SWATH-MS
measurements revealed high reproducibility with Pearson
correlation coefficients of protein intensities between biolog-
ical replicates of .967 to .994 in the vHC and .970 to .996 in the
dHC (Figures S3 and S4 in Supplement 1, respectively). Similar
to messenger RNA (mRNA) data, we observed that more than
20% of all detected proteins (513 of 2414) were differentially
expressed between dHC and vHC (p , .005, log2 fold change
. 60.3) (Figure 1E). In total, 389 proteins were enriched in the
dHC and 124 proteins were enriched in the vHC (Table S7 in
Supplement 2).

For RNA sequencing and SWATH-MS, the p value distri-
bution reveals very strong effects (Figure 1D, F). When

integrating these datasets, we identified 171 genes with sig-
nificant differences at both the mRNA and protein levels
(Figure 1G and Table S8 in Supplement 2). The majority of
these (151 genes) show a positive correlation between mRNA
and protein expression (r = .56, n = 171, p , .0001) (Figure 1H),
with 37 genes enriched in the vHC and 114 genes enriched in
the dHC (Table S8 in Supplement 2). Pathway analysis
revealed that mRNAs/proteins enriched in the dHC are
involved in calcium signaling pathways and glutamatergic
synapse function, whereas those enriched in the vHC are
involved in metabolic pathways (Table S9 in Supplement 2).
Among the most enriched mRNA/protein pairs, we found Wfs1
and Epha7, both of which have been previously shown to be
enriched in hippocampal CA1 neurons (16). This demonstrates
that our proteomic analysis is able to resolve subregion-
specific expression differences in heterogeneous brain dis-
sections. To further show that SWATH-MS data can be vali-
dated independently, we used Western blotting to quantify one
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of the mRNA/protein pairs highly enriched in the dHC, myelin
oligodendrocyte glycoprotein. We confirmed a highly signifi-
cant enrichment in the dHC (t10 = 6.46, p , .0001) (Figure S5 in
Supplement 1).

A small subset of genes (20 of 171) showed opposite effects
on mRNA and protein levels (Table S8 in Supplement 2). These
included a substantial number of receptors (e.g., Gabra3,
Gria4) and ion-channel genes (e.g., Scn9a, Kcnma1, Kcna3,
Cacnb4, Cacna2d2). Pathway analysis revealed an enrichment
for neuroactive ligand–receptor interaction and serotonergic
and gamma-aminobutyric acidergic synaptic transmission
(Table S9 in Supplement 2). Because serotonergic signaling
was also recognized by functional cluster analysis of RNA
sequencing data described above (Figure S2 in Supplement 1;
Table S6 in Supplement 2), we measured monoaminergic
neurotransmitter levels using high-performance liquid chro-
matography. Indeed, results showed higher serotonin levels in

the vHC than in the dHC (t8 = 4.28, p = .003) (Figure S6 in
Supplement 1). Notably, norepinephrine and epinephrine
levels, but not dopamine levels, were also higher in the vHC
than in the dHC (Figure S6 in Supplement 1).

Different Stressors Induce Distinct Transcriptional
Changes

Given the profound molecular differences observed between
dHC and vHC, we hypothesized that stressful stimuli would
elicit different molecular responses in both structures. To
capitalize on the fact that stressful experiences lead to rapid
gene expression changes in the hippocampus, we used RNA
sequencing to assess the impact of stress on the hippocampal
transcriptome. To this end, we exposed mice to one of three
commonly used stress paradigms (n = 5/group): 1) novelty
stress (6 minutes in a novel environment), 2) restraint stress
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(physical immobilization for 30 minutes), or 3) swim stress
(forced swimming for 6 minutes in 18�C water). Mice were
sacrificed for tissue collection 45 minutes after initiation of
stress together with home-cage control mice (n = 5) (see
Figure 2A). Hippocampi were extracted, and one hemisphere
was collected as a whole (whole HC), while the other hemi-
sphere was split into dHC and vHC. We showed that
approximately 100 genes strongly responded to each stress
condition in the whole HC (p , .005, log2 fold change . 60.3),
with the majority of genes being upregulated after stress
exposure (Figure 2B). An unexpected finding was that all three
stressors caused radically different gene expression profiles
(for a list of all differentially regulated genes, see Table S10 in
Supplement 2). In whole HC, dHC, and vHC, the number of
genes uniquely regulated by each stressor was far greater than
the number of overlapping/shared genes (Figure 2C–E). This
prompted us to analyze the genes that changed in response to
at least two stressors; here we refer to them as stress genes.
We identified 215 stress genes in whole HC, dHC, and vHC
(Figure 2G–J), of which 131 genes were upregulated and 84
genes were downregulated. Remarkably, all identified stress
genes were regulated in the same direction (increased or
decreased) consistently among stressors (novelty, restraint,
and swim) within a given region (whole HC, dHC, or vHC)
(Table S11 in Supplement 2). Pathway analysis revealed that
the upregulated stress genes were related to transcriptional
regulation, whereas the downregulated stress genes were
related to cell adhesion and cell junction (Figure S7 in
Supplement 1).

Strong Information Gain by Separately Analyzing
dHC and vHC

When analyzing dHC and vHC separately, the number of
genes identified increased dramatically (Figure 2B). While
analyzing the whole HC identified 111 genes regulated by
swim stress, analyzing dHC and vHC separately identified 486
genes (4.4-fold increase) (Figure 2F). Similarly, analyzing dHC
and vHC separately increased the number of unique genes by
2.5-fold and 4.1-fold for novelty stress and restraint stress,
respectively (Figure S8 in Supplement 1). The same held true for
stress-genes. In the whole HC, we identified 66 stress genes
(Figure 2G); in dHC and vHC, we identified a total of 199 stress
genes, a threefold increase (Figure 2H–J). Again, vastly different
sets of genes were detected in dHC and vHC (Figure 2J).

Heightened Stress Sensitivity in vHC

Our transcriptomic analyses clearly showed that the vHC is
particularly responsive to stress-induced changes, given that
each stressor consistently regulated more genes in the vHC
than in the dHC (Figure 2B) and that the number of stress genes
was twice as high in the vHC as in the dHC (Figure 2H–J). We
next asked whether the heightened stress sensitivity of the vHC

was also observed at the proteome level. Because swim stress
induced the strongest gene expression changes overall,
particularly in the vHC (Figure 2F), and because protein levels
changed more slowly than mRNA levels, we decided to mea-
sure protein levels 24 hours after swim stress exposure. At this
time point, stress-induced behavioral changes have been well
described (35), and mice exposed to swim stress on 2 subse-
quent days (24 hours apart) showed a dramatic switch from
active (swimming) to passive (floating) coping behaviors during
the second test (Figure 3A, B). We also assessed anxiety using
the open field test (36) 24 hours after swim stress exposure, and
we detected an increase in anxiety as measured by increased
defecation (t50 = 2.143, p = .037, as well as suppressed
exploratory rearing (t50 = 2.852, p = .006) (Figure S9 in
Supplement 1). We then compared proteome-wide changes 24
hours following swim stress (n = 7 mice) with nonstressed
control mice (n = 6 mice) (Figure 3A). Expectedly, the observed
stress-induced effects were much smaller than the profound
proteomic differences between dHC and vHC (see Figure 1).
Therefore, we chose a less conservative cutoff (p , .05) to
identify significantly regulated proteins 24 hours after stress
exposure. With these parameters, we identified 68 proteins
changed after stress in the dHC and 128 proteins changed after
stress in the vHC (Figure 3C; Tables S12 and S13 in
Supplement 2). Only 3 of these proteins were significant in both
dHC and vHC, which is strikingly similar to the very different
transcriptional response to stress between dHC and vHC. The
p-value distribution indicates a stronger overall effect in the vHC
compared with the dHC (Figure 3D). In line with the stronger
transcriptional changes observed in the vHC shortly after stress,
these results suggest that 24 hours after stress exposure the
heightened stress sensitivity of the vHC is still detectable at the
proteome level.

Network Analyses Reveal an Epigenetic Cluster in
vHC

To gain a better functional understanding of the molecular
networks and processes differentially regulated by stress in
dHC and vHC, we integrated gene expression data into
protein–protein interaction networks and visualized the results
using Cytoscape (see Methods and Materials for details). We
observed larger interaction networks in the vHC than in the
dHC (Figure 4A, B; Figures S10 and S11 in Supplement 1), and
we identified one epigenetic cluster around the histone
demethylase Kdm6b (also known as Jumonji domain con-
taining 3 [Jmjd3]) in response to all stressors in the vHC
(Figure 4C–E). Notably, none of these network clusters was
detected in the dHC after any of the stress conditions. Kdm6b
is a histone demethylase specific for the repressive histone
mark H3K27me3 (37). Previous work has shown the ability of
stress to induce epigenetic changes in the hippocampus within
a few hours after stress exposure (21,22,38). Therefore, we

=

and vHC (n = 6–7 per group). Insets show representative images. (H) Cartoon showing stereotactic virus delivery to the vHC. (I, J) Representative microscopy
images show no enhanced green fluorescent protein (eGFP) expression in neurons of the dHC (I) but show strong eGFP expression in the vHC (J). Scale bar =
500 mm. Insets in (J) show that the eGFP signal is colocalized with Nissl stain and not observed in the cortex (scale bar = 100 mm). (K) Experimental design for
the open field test with novel stimuli (OFT1). (L) Kdm6b expression is reduced in the vHC of short hairpin RNAs (shRNAs)-Kdm6b mice (n = 9–11 per group).
(M, N) Kdm6b knockdown leads to increased locomotion (M) and hyperactivity (N) in the OFT1 (n = 10–11 per group). Data are presented as mean 6 SEM. d,
dorsal; Syn1, synapsin 1; v, ventral.
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used Western blotting to quantify the level of H3K27me3 at
baseline, 75 minutes, and after 4 hours following swim stress
exposure (Figure 4F). Two-way analysis of variance revealed a
significant interaction between brain region and stress expo-
sure (F2,30 = 5.33, p = .010). Follow-up analyses showed no
effect of stress exposure on the dHC (F2,15 = 2.14, p = .153) but
showed a decrease in H3K27me3 specifically in the vHC 4
hours after stress initiation (F2,15 = 4.95, p = .022) (Figure 4G).
To test whether knockdown of Kdm6b in the vHC in vivo could
have an impact on behavior, we developed an adeno-
associated virus containing four short hairpin RNAs (shRNAs)
against Kdm6b under the synapsin promoter (AAV8-hSyn1-
shKdm6b-eGFP) (see Figure S12 in Supplement 1). We injec-
ted this virus (shRNAs-Kdm6b), or a control vector containing
nonsilencing shRNAs (shRNAs-control), stereotactically into
the vHC based on previously established coordinates
(Figure 4H). Four weeks after surgery, virus expression was
confirmed in the vHC (Figure 4J), restricted to neurons
(Figure 4J, insets), with no expression in the dHC (Figure 4I, J).
Kdm6b mRNA levels in whole-tissue lysates of the vHC were
decreased in shRNAs-Kdm6b mice relative to control mice
(t18 = 2.56, p = .020) (Figure 4L). However, starting 10 to 14
days after virus delivery, overt changes in health and behavior
became evident in shRNAs-Kdm6b mice but not in shRNAs-
control mice. We observed full motor seizures in 4 of 26
injected mice, and these mice were excluded from the exper-
iment. In 15 of the remaining shRNAs-Kdm6b mice, we noticed
marked hyperactivity during weekly routine checks and cage
changing. Three weeks after surgery, we tested motor activity in
the open field, yet locomotion was similar between groups and
was increased in shRNAs-Kdm6b mice only during the first few
minutes of the test (see Figure S13 in Supplement 1). Because
shRNAs-Kdm6b mice were noticeably more agitated when
moving or opening the home cage, we hypothesized that the
observed changes might be related to hyperresponsiveness to
novel/startling stimuli. Thus, we recorded behavior in a modified
open field test adapted to prevent habituation to the test by
playing brief bursts of novel sounds every 2 minutes (see
Figure 4K and Supplement 1 for details). Again, mice showed
increased locomotor responses during the first 2 minutes but
then maintained higher motor activity throughout the duration of
the test (F1,19 = 7.50, p = .0131) (Figure 4M). We also found that
shRNAs-Kdm6b mice were hyperactive, as defined by move-
ment faster than 10 cm/sec (F1,19 = 7.56, p = .0127) (Figure 4N).
This suggests that startling stimuli prevented habituation to the
environment in the shRNAs-Kdm6b group and triggered hyper-
activity. Kdm6b in neurons of the vHC seems to be critical for
maintaining normal behavioral responses to unexpected stimuli.

DISCUSSION

Different Acute Stressors Induce Distinct
Transcriptional Profiles

Acutely stressful events trigger a multifaceted response
involving the coordinated release of neurotransmitters, hor-
mones, and peptides (stress mediators), which sets in motion
molecular cascades that lead to long-lasting structural and
functional changes across the brain (5,39). Recent work in
rodents has revealed that acute stressors can enhance

glutamate release, decrease spine density, induce dramatic
molecular changes in hippocampus, amygdala, and prefrontal
cortex, and impair cognitive and emotional behaviors for hours
or even days after the initial stress exposure (40–47). It is striking
that the different stressors in our study induced very different
transcriptomic profiles, which might be because they trigger the
same stress mediators in unique ways (5). For example, some
stressors lead to stronger release of noradrenaline and serotonin
(28,48,49), while others trigger higher corticosterone release
(50–52). These stress mediators interact with each other;
noradrenaline can further enhance the excitatory effects of
glutamate signaling (53), while corticotropin-releasing hormone
and corticosterone have synergistic effects on spine density and
depression of synaptic responses through shared molecular
pathways (54). In addition, various stressors engage different
neuronal populations and circuits; for example, a single-restraint
stress exposure activates different neuronal networks than
exposure to a multimodal stressor of the same duration (20).
Multimodal stressors arguably represent a more naturalistic
scenario than single-modality stressors and induce more pro-
found effects on cognitive performance (20,54). Finally, the
duration of stressors needs to be considered when interpreting
gene expression changes after stress, which are highly dynamic
and often transient (28,55,56). In the current study, we decided to
assess the transcriptomic profile 45 minutes after initiation of
stress. However, different time points will yield different tran-
scriptomic results, and it will be important to carefully charac-
terize the temporal profile of stress-induced transcriptomic
changes in future studies. In addition, gene expression varies
dramatically along the trisynaptic circuit within the hippocampus
(15). One recent study used a genetic bacTRAP approach to
sequence translating mRNAs in principal neurons from the CA3
subregion of the hippocampus after stress exposure (57), an
elegant approach that should be extended to other subregions
and cell types in the future (58).

A Shared Transcriptomic Profile Between Different
Acute Stressors

Genes regulated by at least two different stressors—here
referred to as stress genes—make up only a small part of the
total number of genes regulated by stress. A recent study in
rats used the same three stress conditions (novelty, restraint,
and swim) and showed rapid binding of both glucocorticoid
and mineralocorticoid receptors (glucocorticoid and mineralo-
corticoid receptor heterodimers) to glucocorticoid response
elements of the genes Per1 and Sgk1 in response to all
stressors (55). We found both of these genes to be upregulated
by all stressors (see “stress genes” in Table S11 in Supplement
2), suggesting that the genes identified as stress genes may
constitute a core set of glucocorticoid-responsive genes.

dHC and vHC Respond Differently to Stress

Early work demonstrated that lesion of the vHC, but not of the
dHC, potentiated the emergence of stress ulcers (59). Further-
more, dHC and vHC show opposite electrophysiological re-
sponses to the stress hormone corticosterone (17). One month
after an acute traumatic stress experience, rats were found to be
more anxious and showed increased beta-adrenergic receptor-
2 binding to downstream effector proteins in the vHC but not in
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the dHC (60), and the immediate early gene Fos was primed for
activation in the vHC (47). In addition, stress induces different
epigenetic changes in dHC and vHC. The activating histone
mark H3S10p-K14ac is increased after acute swim stress in the
dentate gyrus of the dHC, but not of the vHC, in a
glucocorticoid-dependent manner (21,61,62), while H3K9me3 is
increased, and H3K27me3 is reduced specifically in the dHC
shortly after restraint stress (changes in the vHC were not
assessed) (38,63). Targeted analysis of transcriptional changes
after chronic stress in the vHC recently identified individual
genes that are causally related to stress-induced depressive-like
behaviors (24,25). One of these studies identified H3K27ac as
an epigenetic mark specifically suppressed by chronic stress in
the vHC, and linked it to reduced expression of the astroglial
glutamate exchanger through the transcriptional corepressor
REST (repressor element-1 silencing transcription factor) (24).
H3K27ac is an activating mark mutually exclusive with the
repressive mark H3K27me3, which we found to be decreased
after acute stress. Therefore, acute stress appears to have the
opposite effect of chronic stress, suggesting that the decrease
in H3K27me3 after acute stress may be part of an adaptive
response that might be overwhelmed after long-lasting chronic
stress exposure and eventually lead to disease. Our attempt to
knock down Kdm6b, the stress-activated lysine demethylase
targeting H3K27me3, led to marked hyperresponsiveness to
novel stimuli and induced epileptic seizures in some mice.
Because acute stress induces glutamate release (2) and is
known to trigger epileptic seizures (64), Kdm6b regulating
H3K27me3 at specific loci might serve as an adaptive response
keeping hippocampal excitability in check after acute stress
exposure (65). This hypothesis needs to be more carefully
assessed in future studies that combine acute and chronic
stress and measure epigenetic changes along the trisynaptic
circuit of dHC and vHC.

Proteomics, Clinical Implications, and Future
Approaches

Proteins are the key regulators of biological function in health
and disease; thus, there needs to be a focus on unbiased
assessment of protein levels in the search of biomarkers in
animal models or to study postmortem tissue in human pa-
tients (66–68). In these studies, separately analyzing dHC and
vHC will boost the ability to detect biological differences in
genome-wide screens. The different response of dHC and vHC
to stress has important implications for many stress-related
diseases with known hippocampal engagement such as
depression, anxiety disorders, cognitive decline, and schizo-
phrenia (7,69–71). For example, gene expression analyses in
postmortem brain samples of patients with major depressive
disorder have identified dysregulation in genes related to glu-
tamatergic signaling (including SNAP25, GRIA2, and GRIA3)
(72), and all corresponding proteins show significant expres-
sion differences between dHC and vHC in our proteomic
screen at baseline (Table S7 in Supplement 2). Animal models
have clearly shown that stress induces profound changes in
glutamatergic signaling, particularly in the dHC (18,73,74).
Notably, our proteomic data reveal that many of the glutamate
receptors (GRIA1, GRIA2, GRIA3, GRIA4, GRM1, GRM2, GRM5,
and GRM7) are strongly enriched in the dHC. Cluster and

pathway analysis of our transcriptomic and proteomic data also
reveal strong enrichment of networks related to glutamatergic
signaling, dendritic spines, and postsynaptic density in the dHC
(Figure 1B). This is in line with recent findings that spine density
changes after stress in the dHC but not in the vHC (20).
Importantly, some key changes in response to acute stress may
occur on the level of protein posttranslational modifications,
even at later time points after stress exposure, and thereby
escape proteomic screening. For example, an increase in
depolarization-evoked glutamate release 24 hours after acute
stress depends on long-lasting phosphorylation of synapsin 1
without a changes in total synapsin 1 protein levels (42,75).
Phosophoproteomic approaches are rapidly improving (76) and
start revealing important new insights in complex in vivo sys-
tems (77). Although proteomic screens are powerful new tools
with great clinical potential, they do not have the same sensi-
tivity as transcriptomic screens owing to the fact that proteins
display a higher dynamic range of expression compared with
mRNA, making it more difficult to detect low-abundance pro-
teins from whole-cell extracts (78). Separately analyzing dHC
and vHC is a practical first step toward increasing information
gain and can be implemented immediately in basic research and
clinical studies.
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