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SUMMARY 23 

BACKGROUND: Submicrocopic malaria infections contribute to transmission in exposed populations 24 

but their extent is underestimated even by standard molecular diagnostics. Sophisticated sampling and 25 

ultra-sensitive molecular methods can maximize test sensitivity but are not feasible in routine 26 

surveillance. Here we investigate the gains achievable by using increasingly sensitive methods with the 27 

aim to understand what diagnostic sensitivity is necessary to guide malaria interventions.  28 

METHODS: Using ultra-sensitive qPCR (us-qPCR) on concentrated high-volume blood samples (2ml) 29 

as reference, we quantified the proportion of P. falciparum (Pf) and P. vivax (Pv) infections and 30 

gametocyte carriers detectable in finger-prick blood volumes (200µl) by standard 18SrRNA qPCR, us-31 

qPCR, RDT, and ultra-sensitive Pf-RDT in 300 cross-sectional venous blood samples from Papua New 32 

Guinea. 33 

FINDINGS:  Standard qPCR identified 54% (87/161) and 51% (73/143) of Pf and Pv infections detected 34 

by the reference method. Us-qPCR identified an additional 7% (11/161) and 10% (14/143). The vast 35 

majority of gametocyte carriers (Pf: 86%, 80/93; Pv, 91%, 75/82) were found among infections 36 
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detectable by us-qPCR. Ultra-sensitive RDT missed half of Pf infections positive in standard qPCR, 37 

including high gametocytemic infections. Epidemiological patterns corresponded well between 38 

standard qPCR and the reference method. As the prevalence of Pv decreased with increasing age, the 39 

proportion of Pv infections undetectable by standard qPCR increased.  40 

INTERPRETATION: Virtually all potentially transmitting parasite carriers are identified using us-41 

qPCR on finger-prick blood volumes. Analysing larger blood volumes revealed a large pool of ultra-42 

low density Pf and Pv infections, which will unlikely transmit. Current RDTs cannot replace 43 

molecular diagnostics for identifying potential Pf transmitters. 44 

FUNDING: Swiss National Science Foundation.  45 

 46 

 47 

Evidence before this study 48 

We searched PubMed for publications until Mar 1, 2018 using the search terms:  “plasmodium” AND 49 

(“falciparum” OR “vivax”) AND (“sub-microscopic” OR ”submicroscopic” OR “ultra-sensitive” OR 50 

“ultra-sensitive”) AND (“pcr” OR “polymerase chain reaction”). We retrieved 135 studies, which were 51 

screened for the sample type (venous blood versus finger prick), sample volume, and type of (molecular) 52 

analysis method used for detection of malaria infection. At the Thai/Myanmar border and in Vietnam, 53 

few studies investigating ultra-low parasitemias in asymptomatic carriers applied a detection method 54 

by Imwong et al. that uses venous blood combined with standard qPCR. However, this method does 55 

not allow species determination of the lowest Plasmodium parasitemias, and no direct comparisons 56 

were made to standard sampling and molecular detection methods used by the vast majority of malaria 57 

epidemiological studies. One study by Das et al assessed the performance of a novel ultra-sensitive 58 

lateral flow P. falciparum rapid diagnostic test (Pf-usRDT) in Myanmar and Uganda. We found no 59 

studies investigating the presence of gametocytes among ultra-low density malaria infections, which 60 

serves as a surrogate marker of their potential to contribute to malaria transmission. 61 

 62 

Added value of this study 63 

In many endemic areas the aim of anti-malarial interventions has shifted from just treating clinical cases 64 

to also reducing or eliminating malaria transmission. This entails the identification and treatment of 65 

asymptomatic parasite carriers that are characterized by low parasite densities, but still can maintain 66 

malaria transmission. Improved diagnostic techniques have revealed a large reservoir of such infections 67 

below the microscopic detection threshold, and even below the limit of detection of standard molecular 68 

techniques. However, the venous sampling required for detection of the lowest parasitemias is not 69 

feasible in routine surveillance and intervention monitoring. Our study therefore addresses the question 70 
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of how many P. falciparum and P. vivax infections are missed in population-based studies using 71 

standard molecular malaria diagnostics or a novel ultra-sensitive Pf-usRDT. Our study aims to evaluate 72 

the relevance of these “hidden infections” in the context of malaria interventions by detecting 73 

gametocytes (transmission stages) in high-volume samples.  74 

  75 

Implications of all the available evidence 76 

Our findings show that a large proportion (up to 50%) of P. vivax and P. falciparum infections are 77 

undetected by standard molecular diagnostics using finger-prick blood volumes in cross-sectional 78 

studies. Despite this large number of missed detections, standard molecular malaria diagnostics suffice 79 

to investigate the epidemiological patterns in the population and to identify virtually all parasite carriers 80 

with gametocyte densities that are meaningful for onwards transmission. In contrast, Pf-usRDT missed 81 

a large number of P. falciparum infections with high gametocyte densities. Our findings thus relax the 82 

pressure to apply venous blood sampling for ultra-sensitive molecular diagnostics, while casting doubt 83 

on the effectiveness of implementing the Pf-usRDT in interventions aiming at reducing malaria 84 

transmission.   85 
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INTRODUCTION  86 

During the last decade, malaria epidemiological studies have increasingly applied molecular methods 87 

for diagnosis of infections. This revealed that a large proportion of malaria infections in naturally 88 

exposed populations are characterized by low parasite densities undetectable by light microscopy or 89 

rapid diagnostic test (RDT) (1,2). Although chronic low-density infections are associated with negative 90 

clinical consequences in the long term (3), they have no acute pathological impact and may even confer 91 

protection against severe malaria episodes (4). In the context of malaria control the main relevance of 92 

chronic low-density infections is their contribution to maintaining malaria transmission (5,6).  93 

Maximal detection of low-density malaria infections is thus often considered important for countries 94 

aiming at malaria elimination; however, this is challenging in the context of routine surveillance 95 

strategies. The detection of low-density infections requires active surveillance of entire populations with 96 

molecular diagnostics, which are most commonly based on amplification of the Plasmodium 18S rRNA 97 

gene from finger-prick blood samples (7). Recently, a first ultra-sensitive P. falciparum RDT (us-RDT) 98 

was launched for simplified detection of low-density malaria infections in surveillance screens (8).  99 

In the last years, improved nucleic acid amplification techniques have set increasingly high standards 100 

in test sensitivity by using multi-copy target genes (9) or increasing  the blood volumes processed (10). 101 

In Tanzania and South East Asia these approaches have revealed low-density infections that would not 102 

be detected by standard molecular malaria diagnosis, i.e. 18S rRNA quantitative polymerase chain 103 

reaction (qPCR) on finger-prick samples (9,11). The extent, epidemiology and relevance of these 104 

“hidden” ultra low-density P. falciparum and P. vivax infections requires more awareness in the context 105 

of efforts towards malaria elimination and for discovery of remaining pockets of transmission.  106 

Venous blood sampling and sophisticated sample processing is required for the most sensitive 107 

molecular diagnostic tests, which is feasible in research studies but not in large-scale surveillance. In 108 

this study we therefore address the question whether the use of highly sophisticated molecular detection 109 

methods provides more useful information for design and monitoring of malaria interventions compared 110 

to standard molecular detection. To this end, we systematically validate the proportion of P. falciparum 111 

and P. vivax infections as well as gametocyte carriers that are detected in samples from a community 112 

survey using different blood volumes, different molecular diagnostics, standard RDT (st-RDT) and a 113 

novel us-RDT (8). We compare the epidemiological patterns that are observed with each diagnostic 114 

approach to investigate whether certain subgroups of the human host population are of greater 115 

importance than others for harbouring of low-density malaria infections. The knowledge gained may 116 

be used as a benchmark for the design of surveillance strategies, where maximizing test sensitivity has 117 

to be balanced against the feasibility of venous bleeding.  118 

 119 
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METHODS 120 

Study design  121 

Venous blood samples were collected from 300 participants in a cross-sectional survey between 122 

November 2016 and February 2017, i.e. during peak rainy season, in two coastal medium-endemic 123 

villages in Madang province, Papua New Guinea (PNG) (12). Sample collection was embedded in a 124 

larger census-based cross-sectional survey, during which participants aged 5 years and older (excluding 125 

pregnant women) could volunteer for venous sampling. After informed consent, health status 126 

assessment, a standard electronic prevalence questionnaire (http://malariasurveys.org/toolkit.cfm) and 127 

a brief interview, 5 ml of venous blood were collected in sodium-heparin coated vacutainers (BD 128 

Biosciences). 800µl of blood were immediately stabilized in RNAprotect Cell Reagent (Qiagen).  129 

Participants presenting with signs and symptoms of malaria infection (>37·5°C axillary or reported 130 

fever in the previous two days) were tested using the CareStart HRP2/pLDH (Pf/PAN) Combo RDT 131 

(AccessBio). Test-positive participants were treated according to national guidelines.  132 

Demographics of the study population were comparable between the two study villages. In Megiar 133 

(n=163) and Mirap (n=137) villages, mean participant age was 30 years (median, 31; interquartile range 134 

[IQR], 14-43) and 28 years (median, 24;  IQR, 14-40). 48% and 55% of participants in Megiar and 135 

Mirap were male and 76% and 90% reported having slept under a bednet in the preceding night. 20 136 

participants presented with fever or reported fever within the two preceding days, and 24 participants 137 

reported antimalarial treatment within the last month.  138 

Ethical approval for the study was obtained from PNG Institute of Medical Research Institutional 139 

Review Board (PNGIMR IRB number 1516) and the Medical Research Advisory Committee of the 140 

PNG Ministry of Health (MRAC number 16.01).  141 

 142 

Sample processing and nucleic acid extraction 143 

Whole blood aliquots of 200µl (chosen to mimic finger-prick blood samples) and 2 ml were separated 144 

into red blood cell (RBC) pellet and plasma. RBC pellets from the 2 ml blood aliquots were depleted 145 

of white blood cells by Ficoll Paque Plus (GE healthcare) gradient centrifugation. RBC pellets, 146 

RNAprotect samples, and whole blood aliquots of samples with sufficient volume (N=247) were stored 147 

at -20°C.  148 

DNA was extracted from the RBC pellets within three months using the QIAamp 96 DNA Blood Kit 149 

(Qiagen) for small RBC volumes and QIAamp DNA Blood Midi Kit (Qiagen) for large RBC volumes 150 

according to the manufacturer’s instruction. DNA was eluted in 100µl and 400µl, respectively, yielding 151 
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2-fold or 5-fold template concentration with respect to the original blood sample. For samples that were 152 

qPCR-negative for P. falciparum or for P. vivax when analysing DNA from small and large blood 153 

volumes, a 200µl aliquot of DNA from the large blood volume was further concentrated 10-fold by 154 

sodium acetate/ethanol precipitation, yielding a final 50-fold concentrated template. RNA was extracted 155 

from the pelleted RNAprotect samples within six months using the RNEasy Mini Kit (Qiagen) 156 

according to the manufacturer’s protocol, including an on-column DNAse digest (13). RNA was eluted 157 

in 80µl, yielding a 10-fold template concentration compared to the original blood sample. 158 

 159 

Detection of malaria infections 160 

Standard qPCR for detection of P. falciparum and P. vivax used previously published 18S rRNA assays 161 

(13,14) with a modified P. falciparum reverse primer (PFS18S_revMAO: 5'–162 

TATTCCATGCTGTAGTATTCAAACACAA–3' (15)). Ultra-sensitive qPCRs with increased limit of 163 

detection compared to standard qPCR (10, Appendix, page 1-2) targeted the P. falciparum var gene 164 

acidic terminal sequence (Pf-varATS) (9) or the P. vivax mitochondrial cox1 gene (Pv-mtCox1) (16). 165 

Presence of gametocytes was investigated in all P. falciparum or P. vivax-positive samples using 166 

previously published pfs25 and pvs25 qRT-PCR assays (13).  167 

All molecular assays used 4µl of template material, hence the blood volume equivalent per reaction 168 

ranged between 8µl and 200µl whole blood (Appendix, page 3). Parasitemia or gametocytemia was 169 

quantified in relation to a standard row of target-specific plasmid (13) and adjusted according to the 170 

concentration factor of DNA template with respect to whole blood.  171 

All small blood volume DNA samples were tested using P. falciparum and P. vivax 18S rRNA, Pf-172 

varATS and Pv-mtCox1 qPCRs. Throughout this manuscript, 18S rRNA qPCRs on small blood volume 173 

DNA samples are referred to as “standard qPCR” (st-qPCR) and Pf-varATS and Pv-mtCox1 qPCRs on 174 

small blood volume DNA samples as “ultra-sensitive qPCR” (us-qPCR).  175 

Eluted high-volume DNA samples were tested using Pf-varATS and Pv-mtCox1 qPCRs. Samples 176 

negative for P. falciparum or P. vivax on eluted DNA from both small and large blood volumes were 177 

further tested in Pf-varATS and Pv-mtCox1 qPCRs using concentrated large-volume DNA. Results 178 

obtained by Pf-varATS or Pv-mtCox1 qPCRs on eluted and on concentrated large-volume DNA were 179 

combined and are further referred to as “high-volume ultra-sensitive qPCR” (hv-us-qPCR). 180 

Parasite densities correlated well between different molecular detection methods, with stronger 181 

correlations observed for P. falciparum compared to P. vivax (P. falciparum, Spearman’s rho=0·86-182 

0·92; P. vivax, rho=0·.80-0·86, Appendix, page 4) 183 
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Samples for which frozen whole blood was available were tested with P. falciparum/P. vivax st-RDT 184 

(Malaria Ag P.f/P.v, SD Bioline) and P. falciparum us-RDT (Malaria Ag Pf Ultra-Sensitive, Alere) 185 

using 5µl of thawed whole blood. Mean P. falciparum and P. vivax parasite densities in samples tested 186 

by RDT were not significantly different from the full set of samples or samples not tested by RDT. 187 

 188 

Statistical analysis 189 

We aimed to evaluate whether certain population subgroups harbour more ultra-low density infections 190 

than others and to compare the epidemiological patterns observed with the different diagnostics. To this 191 

aim, the effect of covariates on the odds of detecting a P. falciparum/P. vivax infection or 192 

gametocytemia was modeled using multivariable logistic linear regression. Covariates were selected a 193 

priori on the basis of previous knowledge. Univariate factors were calculated for RDT-diagnosed P. 194 

falciparum infections due to the low number of positive detect ions. All analyses were performed in 195 

R version 3.4.1. Packages plyr and reshape2 were used for structuring of data; packages limma, gplots, 196 

beeswarm and forestplot for production of graphics; package zoo was used to calculate a rolling mean 197 

of diagnostic sensitivity. 198 

 199 

Role of the funding source 200 

The sponsor of the study had no role in study design, data collection, data analysis, data interpretation, 201 

or writing of the report. The corresponding author had full access to all the data in the study and had 202 

final responsibility for the decision to submit for publication.  203 

 204 

RESULTS 205 

The effect of test sensitivity on P. falciparum and P. vivax prevalence estimates  206 

Using large blood volumes and hv-us-qPCR, P. falciparum and P. vivax infections were detected in 207 

53% (CI95: 48-59) and 45% (CI95: 39-51) of study participants (Table 1). Half of these infections were 208 

missed using st-qPCR (on small blood volumes), resulting in almost two-fold lower prevalence rates of 209 

29% (CI95: 24-35) and 24% (CI95: 20-30) for P. falciparum and P. vivax (Table 1). 210 

Performing us-qPCR on small blood volumes increased parasite prevalence estimates slightly (P. 211 

falciparum, 33%, CI95: 27-38; P. vivax, 29%, CI95: 24-35; Table 1) compared to st-qPCR. Parasite 212 

densities in these additionally positive infections were similar to the lowest parasite densities detected 213 

by st-qPCR (Figure 1B&C), with a median of 1·01 (IQR: 0·86-1·76) estimated P. falciparum 214 
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parasites/µl blood and 0·08 (IQR 0·03-0·16) estimated P. vivax parasites/µl blood (based on a 215 

conversion formula in the Appendix, pages 6-10). In other words, detection of infections with few or a 216 

single parasite in the small blood volume was more reliable using us-qPCR compared to st-qPCR, as 217 

the higher number of DNA sequences targeted in us-qPCR reduces the effect of chance. 218 

Detection of the lowest parasitemias was only achieved by hv-us-qPCR, in which a larger blood volume 219 

equivalent is examined (Figure 1B&C). However even at such maximized sensitivity a chance effect 220 

remained in detecting low-density infections, which was apparent from an imperfect overlap of 221 

positivity between the molecular detection methods (Appendix, page 11).   222 

 223 

In the 247 samples that were tested using RDT, st-RDT detected 15% (20/135) of all P. falciparum 224 

infections (Figure 2A). us-RDT detected 27% (36/135) of all P. falciparum infections, corresponding 225 

to 51% (36/70) of st-qPCR-detectable P. falciparum infections (Figure 2A). us-RDT detected P. 226 

falciparum infections with lower parasitemia compared to st-RDT (Figure 1A) and showed improved 227 

diagnostic performance over the whole range of P. falciparum densities (Figure 2B).  228 

A single P. vivax infection was identified by st-RDT, which was in stark contrast to the 118 P. vivax 229 

infections that were detected by qPCR methods in the subset of samples that were tested with RDT. 230 

 231 

Prevalence and density of gametocytes in infections detectable by different diagnostics 232 

Parasite and gametocyte densities correlated better for P. vivax (r=0·69) than for P. falciparum (r=0·42, 233 

Appendix, page 13). For both species, parasite density was the single most important predictor for 234 

gametocyte carriage (Appendix, page 14). 235 

Gametocytes were detected in 95% (19/20; CI95: 73-100) of P. falciparum infections identified by st-236 

RDT and in 75% (12/16; CI95: 47-92) of infections additionally identified by us-RDT (Figure 3A). 237 

Gametocytes were also detected in 44% (44/99; CI95: 35-55) of us-RDT-negative/qPCR-positive P. 238 

falciparum infections (Figure 3A). Of all P. falciparum gametocyte carriers, 59% (44/75) were not 239 

detected by us-RDT. The range of gametocyte densities in us-RDT-negative gametocyte carriers was 240 

comparable to that in us-RDT- and st-RDT-positive gametocyte carriers (Figure 3D).   241 

 242 

When using molecular diagnosis, gametocytes were most common in st-qPCR-detectable P. falciparum 243 

and P. vivax infections (gametocyte positive: P. falciparum, 82%, 71/87, CI95: 72-89%; P. vivax, 92%, 244 

67/73, CI95: 82-97%, Figure 3B&C). More than half of infections additionally detected by us-qPCR 245 

also carried gametocytes (P. falciparum, 67%, 10/15, CI95: 39-87%; P. vivax, 58%, 11/19, CI95: 34-246 

79%; Figure 3B&C). The proportion of gametocyte carriers was considerably lower in infections only 247 

detectable in hv-us-qPCR (P. falciparum, 20%, 12/59, CI95: 11-33%; P. vivax, 8%, 4/49, CI95: 3-20%). 248 
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As a result, diagnosis of infections using st-qPCR missed 24% and 18% of all P. falciparum and P. 249 

vivax gametocyte carriers in the population (Table 1). Using us-qPCR, only 14% and 9% of P. 250 

falciparum and P. vivax gametocyte carriers were missed. 251 

 252 

Mean P. falciparum and P. vivax gametocyte densities were significantly lower in infections that were 253 

not detected by st-qPCR compared to those that were (geometric mean; P. falciparum, 1·0 vs 31·6 pfs25 254 

transcripts/µl blood, p<0·001; P. vivax, 0·3 vs 5·6 pvs25 transcripts/µl blood, p<0·001). In infections 255 

that were only detected by hv-us-qPCR, estimated gametocyte densities did not exceed 1 gametocyte/µl 256 

blood (based on previously published conversion formulas (13,17) (Figure 3E&F; Appendix, pages 6-257 

10). Also in infections that were detected by us-qPCR but not by st-qPCR, estimated gametocyte 258 

densities were below 1 gametocyte/µl blood in all but one infection (Figure 3E&F).      259 

 260 

 261 

Identification of risk factors for malaria infection by different diagnostic methods  262 

The same main risk factors for malaria infection were identified by st-qPCR and hv-us-qPCR (Figure 263 

4, Appendix, page 15). Age was the only significant predictor for the odds of a P. vivax infection. The 264 

odds of a P. falciparum infection was significantly associated with village of residence and 265 

haemoglobin level. Patterns in the odds of RDT-diagnosed P. falciparum infections were similar to 266 

those of molecular P. falciparum diagnosis; however, the power of risk analysis was low due to the low 267 

number of RDT-positive detections (Appendix, page 16-17).  268 

The proportion of ultra-low density infections among all infections was up to 2-fold higher in population 269 

subgroups with low parasite prevalence compared to subgroups with high prevalence. For example, as 270 

P. vivax prevalence dropped from 63% (30/48, CI95: 47-76%) in 11-15 year old children to 31% (14/45, 271 

CI95: 19-47%) in adults older than 50 years (Figure 5B), the proportion of ultra-low-density P. vivax 272 

infections rose from 30% (9/30, CI95: 15-50%) in the 11-15 years old children to 64% (9/14, CI95: 36-273 

86%; Figure 5B) in the oldest age group. Overall, P. vivax density decreased with increasing age (Figure 274 

5D, Anova p<0.001), while no clear trends with age were observed for P. falciparum (Figure 5A). For 275 

P. falciparum, parasite prevalence differed between villages and was inversely related to the proportion 276 

of ultra-low density infections per village (Appendix, page 18). However, these differences between 277 

villages were not statistically significant. 278 

 279 

DISCUSSION AND CONCLUSION 280 

In this study we applied multiple molecular diagnostic methods with maximized sensitivity to explore 281 

the true prevalence of P. falciparum and P. vivax in an endemic population in PNG. This revealed an 282 
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unexpectedly large reservoir of infections below the limit of detection of standard molecular diagnosis. 283 

Main limiting factors were the blood volume sampled and the blood equivalent added to the detection 284 

assay. However, complex laboratory procedures are necessary when using large blood volumes, which 285 

are not feasible for routine malaria surveillance or intervention monitoring. This raises the questions 286 

whether malaria interventions aimed at reducing transmission can benefit from detecting these ultra-287 

low-density residual infections. 288 

In cross-sectional surveys, the density of gametocytes in the host’s blood is often used as a surrogate 289 

marker for the transmission potential to mosquitoes. Directly measuring infectivity in cross-sectional 290 

surveys is challenging as it would require feeding of colony mosquitoes by direct exposure of the 291 

infected individual or by membrane blood feeding. Although gametocyte density is positively 292 

associated with infection success in membrane feeding experiments (18–20), measuring gametocyte 293 

densities in the hosts’s blood may provide only a limited picture of the true probability of onwards 294 

transmission. This may rather depend on the density of mature gametocytes in the subcutaneous tissue, 295 

where gametocytes may aggregate to facilitate transmission to mosquitoes (21). 296 

In our study gametocyte densities were estimated from the number of pfs25 or pvs25 transcripts, both 297 

highly expressed in mature female gametocytes. High-volume RNA sampling maximized the limit of 298 

gametocyte detection to below 1 P. falciparum or 11 P. vivax gametocytes per 800µl blood (detailed 299 

discussion of molecular quantification, Appendix, pages 6-10). Estimated gametocyte densities in our 300 

study were often below 1 gametocyte per 1µl blood, a threshold below which mosquito infection is rare 301 

in membrane feeding experiments (18–20). In fact, with one exception, estimated gametocyte densities 302 

were below 1 gametocyte/µl blood in all infections undetected by st-qPCR, suggesting that those are 303 

unlikely infective to mosquitoes. However, if parasitemia in infections undetectable by st-qPCR at the 304 

time of sampling would increase at a later time point, the likelihood of transmission would increase. 305 

Studies on the longitudinal dynamics of chronic P. falciparum infections revealed fluctuations in clonal 306 

densities by transient absence and later re-appearance of clones (22,23). Large fluctuations in 307 

Plasmodium densities over time have been described in Vietnam (24); however, in absence of parasite 308 

genotyping it cannot be evaluated whether the observed density peaks represent new infections. In a 309 

cohort of PNG children, 70% of febrile malaria episodes showed a new genotype (25). Low-density 310 

clones persisting around the levels of qPCR detection thus seem to be under density control (with 311 

fluctuations) and, in absence of superinfection, asymptomatic individuals are unlikely becoming highly 312 

effective transmitters. 313 

While molecular methods are required to detect very low gametocyte densities, the associated asexual 314 

parasite densities are approximately 10 to 100-fold higher and are thus detectable with less sensitive 315 

methods. In a recent multi-country trial, high-quality research-grade microscopy identified >90% of 316 

infectious P. falciparum carriers in high-transmission settings and two of three infectious carriers in a 317 
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low-transmission setting (26). In the same study, all infectious carriers were detectable by standard 318 

molecular methods using finger-prick blood volumes (26). These results support our finding that little 319 

can be gained by laborious sampling and processsing of larger blood volumes when diagnosis aims at 320 

identifying infectious individuals. 321 

The relevance of maximizing molecular diagnostic sensitivity in malaria surveillance surveys was 322 

further investigated by analyzing the predictors of infection in cross-sectional data. If ultra-low-density 323 

infections would accumulate in certain demographic pockets, these population subgroups would require 324 

specific targeting with improved detection methods. The same epidemiological patterns were observed 325 

with st-qPCR and hv-us-qPCR, supporting the view that  standard molecular methods are adequate for 326 

investigating the relative distribution of malaria infections in populations. In contrast, the extent of 327 

undetected ultra-low density infections should be considered when absolute parameters such as parasite 328 

prevalence are to be measured. 329 

In a previous comparative diagnostic study, the us-RDT missed 16% and 56% of PCR-detectable P. 330 

falciparum infections in a high endemic (Uganda) and low endemic (Myanmar) setting (8). In PNG, us-331 

RDT missed 50% of P. falciparum infections that were detectable using st-qPCR, including samples 332 

with high gametocyte densities. Although the effect on us-RDT sensitivity of using frozen-thawed 333 

venous blood rather than fresh finger-prick blood in both studies is unknown, us-RDT seems a 334 

suboptimal substitute for molecular diagnosis in anti-malarial interventions such as screen-and-treat 335 

interventions for reducing or eliminating malaria transmission in PNG.  336 

Although PNG currently does not represent a low-endemic or pre-elimination setting, where detecting 337 

very-low density infections is considered particularly relevant, its unique local epidemiology resembles 338 

that of other P. falciparum-P. vivax-endemic settings with declining transmission: Corresponding to 339 

global trends of an increasing proportion of submicroscopic infections with decreasing parasite 340 

prevalence (1), also in PNG parasite densities declined over the last decade alongside a decline in 341 

clinical incidence and prevalence of malaria (12). Furthermore, malaria transmission in PNG is highly 342 

heterogeneous over small spatial scales (25), which is considered a hallmark of declining transmission 343 

and has been described in a variety of settings such as western Kenya (27), Thailand (28), and the 344 

Peruvian Amazon (29).  345 

A main limitation of our study was the exclusion of children younger than five years for ethical reasons. 346 

Young children carry the main burden of malaria infection and disease, however, it is thought that their 347 

contribution to mosquito infections is smaller than that of adolescents and adults (30). As parasite 348 

densities are higher in young PNG children compared to adolescents and adults (17), ultra-low-density 349 

infections may be less common in young children, and therefore also the gain by applying ultra-sensitive 350 

diagnostics would be lower. 351 
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A technical limitation that applies to molecular malaria diagnostics as well as microscopy is the effect 352 

of chance in capturing a scarce parasite, which depends on the volume of blood or DNA solution 353 

investigated. In our study, some low-density infections were not detected by a supposedly more 354 

sensitive method but were positive by a supposedly less sensitive molecular method. The chance effect 355 

that is intrinsic to all malaria diagnostics can thus be lowered, but not abolished, by sampling of larger 356 

blood volumes and targeting of high-copy DNA sequences.  357 

In conclusion, we have shown that the extent of both P. falciparum and P. vivax infections below the 358 

limit of detection of standard molecular malaria diagnostics is substantial. Yet, gametocyte densities in 359 

infections undetected by standard molecular diagnostics were very low and potentially not infective.  360 

The us-RDT did not achieve this level of sensitivity and missed infections with high gametocyte 361 

densities. Our findings relax the pressure to identify the very last parasite and advocate against the need 362 

for venous sampling in malaria control and elimination interventions.  363 
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 481 

FIGURE LEGENDS 482 

Figure 1. Parasite density distributions in P. falciparum (A,B) and P. vivax (C) infections detected 483 

by RDT and molecular methods with different sensitivity. Parasite density by hv-us-qPCR is plotted 484 

(underlying histograms in the Appendix, page 5), therefore only samples positive in hv-us-qPCR are 485 

shown. Samples were categorized according to their positivity by the specific detection methods. 486 

Categories are: A, st-RDT positive, st-RDT negative/us-RDT positive, st-RDT and us-RDT-487 

negative/qPCR positive; in B&C, st-qPCR positive, st-qPCR negative/us-qPCR positive, st-PCR and 488 

us-qPCR negative/hv-us-qPCR positive. Different colours represent the different categories. An 489 

unknown number of target sequences is amplified in P. falciparum and P. vivax ultra-sensitive qPCR, 490 

hence parasite densities cannot be directly compared between the two species (see discussion on 491 

quantifying parasitemia by molecular methods in the Appendix, pages 6-10).  492 

 493 

Figure 2. Diagnostic performance of P. falciparum RDTs compared to qPCR methods in a subset 494 

of 247 samples. Frozen whole blood for RDT analysis was only available for 247/300 samples. (A) 495 

Venn diagram of P. falciparum positivity by st-RDT, us-RDT and molecular detection methods. Five 496 

samples were positive by st-RDT and/or us-RDT but negative by st-qPCR, and would thus have been 497 

considered false positive by RDT. However, P. falciparum parasites were detected in all RDT-positive 498 

samples using hv-us-qPCR. (B) Diagnostic sensitivity of st-qPCR, us-RDT and st-RDT in relation to 499 
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parasite densitiy (by hv-us-qPCR). Diagnostic sensitivity was calculated as a rolling mean of 10 500 

observations using combined detections by any qPCR as reference, and is shown with 95% CI (shaded 501 

areas). Curves were smoothed using lowess function (span=0.16). An assessment of overall RDT 502 

diagnostic performance (sensitivity and specificity) is shown in the Appendix, page 12. 503 

 504 

Figure 3. Proportion of gametocyte-positive infections (A-C) and gametocyte density (D-F) in 505 

infections detected by RDT (A,D) and molecular methods with different sensitivity (B,C,E,F). (A-506 

C). Samples were categorized according to their positivity by the different diagnostic methods as 507 

specified under each bar (corresponding to Figure 1). (A-C) The proportion of gametocyte positive 508 

samples in each category is shown. (D-F) For each category, the concentration of gametocytes-specific 509 

transcripts in the corresponding samples is displayed, with each dot representing one sample. For each 510 

category, summary lines are displayed: thick line, median; thin lines, IQR. A different number of pfs25 511 

and pvs25 transcripts is amplified per P. falciparum and P. vivax gametocyte, hence gametocyte 512 

densities cannot be directly compared between the two species (see discussion on quantifying 513 

gametocytes by molecular methods in the Appendix, pages 6-10). pfs25 and pvs25 copy numbers 514 

corresponding to one gametocyte (within the confidence range, based on previously published 515 

correlations in (13,17)) are delineated with a horizontal line.  516 

 517 

Figure 4. Forest plot comparing the epidemiological patterns in P. falciparum (A) and P. vivax (B) 518 

infections detected using molecular methods with different sensitivity. Odds ratios were modeled 519 

using logistic regression for infections detected using st-qPCR or using hv-us-qPCR. Detailed numeric 520 

model results for qPCR diagnosis (as well as for RDT diagnosis) are shown in the Appendix, pages 15-521 

17. 522 

 523 

Figure 5. Age patterns in P. falciparum (A, C) and P. vivax (B, D) infections. (A,B) Age patterns in 524 

parasite prevalence (by hv-us-qPCR) and in the proportion of infections undetectable by st-qPCR. 525 

Shaded areas represent 95% confidence intervals. (C, D) Age patterns in parasite density (by hv-us-526 

qPCR). Each dot represents one sample in the respective age group, and summary lines are displayed 527 

(thick line, median; thin lines, IQR). Parasite densities in infections undetectable by st-qPCR are plotted 528 

in yellow (C) and light blue (D). An unknown number of target sequences is amplified in P. falciparum 529 

and P. vivax ultra-sensitive qPCRs, hence parasite densities cannot be directly compared between the 530 

two species (see discussion on quantifying parasitemia by molecular methods in the Appendix, pages 531 

6-10).  532 
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