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Abstract

Oligo-arginines are thoroughly studied cell-penetrating peptides (CPPs, Figures 1 and 2). Previous 

in-vitro investigations with the octaarginine salt of the phosphonate fosmidomycin (herbicide and 

anti-malaria drug) have shown a 40-fold parasitaemia inhibition with P. falciparum, compared to 

fosmidomycin alone (Figure 3). We have now tested this salt, as well as the corresponding 

phosphinate salt of the herbicide glufosinate, for herbicidal activity with whole plants by spray 

application, hoping for increased activities, i.e. decreased doses. However, both salts showed low 

herbicidal activity, indicating poor foliar uptake (Table 1). Another pronounced difference between 

in-vitro and in-vivo activity was demonstrated with various cell-penetrating octaarginine salts of 

fosmidomycin: intravenous injection to mice caused exitus of the animals within minutes, even at 

doses as low as 1.4 μmol/kg (Table 2). The results show that use of CPPs for drug delivery, for 

instance to cancer cells and tissues, must be considered with due care. The biopolymer 

cyanophycin is a poly-aspartic acid containing argininylated side chains (Figure 4); its building 

block is the dipeptide H-βAsp-αArg-OH (H-Adp-OH). To test and compare the biological 

properties with those of octaarginines we synthesized Adp8-derivatives (Figure 5). Intravenouse 

injection of H-Adp8-NH2 into the tail vein of mice with doses as high as 45 μmol/kg causes no 

symptoms whatsoever (Table 3), but H-Adp8-NH2 is not cell penetrating (HEK293 and MCF-7 

cells, Figure 6). On the other hand, the fluorescently labeled octamers FAM-(Adp(OMe))8-NH2 

and FAM-(Adp(NMe2))8-NH2 with ester and amide groups in the side chains exhibit mediocre to 
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high cell-wall permeability (Figure 6), and are toxic (Table 3). Possible reasons for this behavior 

are discussed (Figure 7) and corresponding NMR spectra are presented (Figure 8).
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Introduction

Guanidinium-rich compounds (GRCs) are among the most extensively studied cell-

penetrating substances. The guanidinium groups (GGs) are usually attached to backbones, 

which may be simple oligo-α- or -β-arginines or other oligopeptides with attached GGs, as 

for instance oligoprolines; other reported backbones include oligo-peptoids, -carbonates, -

carbamates, -disulfides, -phosphates, -glycosides, peptide nucleic acids (PNAs), inositol, or 

dendrimers. As an entry into the field we refer to a review article with historical background 

by P. Wender, one of the discoverers[1][2] of oligo-arginine cell-penetration,[1 – 5] to an 

overview on cell-penetrating peptides (CPPs) by one of the experts in the field Ü. Langel,[6]

[7] to a recent article discussing the role of flexibility of attachment and of distance between 

the GGs on the backbone,[8] to the design and testing of a sophisticated disulfide polymer 

backbone with guanidinylated side chains that carries a fluorescent cargo into cell nucleoli,

[9][10] and to clinical applications.[11] A schematic presentation of guanidinium-rich 

systems is presented in Figure 1,2 together with an extreme case, in which the guanidinium 

moieties are actually part of the backbone.[15]

While a majority of CPP investigations deals with derivatives of natural products, such as 

Tat, Antp, and Penetratin, and with the artificial compounds oligo-L- and -D-arginines (1),[1 

– 6][11 – 14] commonly specified as Rn and rn, our work has focused on the unnatural oligo-

β-arginines (2, 3 in Figure 2) and their fluorescently[16 – 24] or radioactively[21] labeled 

and covalently modified[22] derivatives.3 They rapidly enter eukaryotic cells (3T3 mouse 

fibroblasts,[16][19] HeLa cells,[17] HEK293 cells,[20] human hepatocytes, fibroblasts, 

macrophages, infected but not ‘healthy’ erythrocytes,[19] and Plasmodium falciparum, a 

eukaryotic microorganism[19]), as well as prokaryotic cells (Bacillus megaterium, 

Escherichia coli);[18] they also penetrate deep into mouse skin,[17] just like the analogous 

α-peptidic oligo-arginines.[26] The most pronounced property of the oligo-β-arginines, 

which they share with all β-peptides, tested so far, is their peptidolytic and metabolic 

stability in vitro and in vivo. Thus, after i.v. administration to male albino rats (Han Wistar) 
all of the radioactively labeled octa-β-arginine 2b remained chemically unchanged and was 

2For a critical article about oligo-nucleotide cell delivery by CPPs with historical background, see a short review (expert opinion) in 
ref.[12] The well-considered comments about drug delivery, recently published by J.-C. Leroux, may be especially applicable to the 
field of cell penetration.[13] For those who are able to read German we recommend the recent review by O. Avrutina, H. Kolmar, and 
M. Empting.[14]
3For a comprehensive review article covering the literature on β-peptides up to 2004 see ref.[23] For a seminal full paper about 
preparation and properties of oligo-β-arginines see ref.[17] For independent work on this subject by the Gellman group see ref.[25] 
and earlier contributions cited therein.
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enriched in various tissues of the animals after 4 days (< 2% excretion), while with peroral 

administration almost the complete dose was recovered in feces within 24 h. No toxic effects 

were observed with the concentrations employed and under the conditions used[21] (vide 
infra). Like their α-peptidic counterparts the oligo-β-arginines do not enter anionic lipid-

POPC/POPG vesicles.[20][24] Rather, they attach to the vesicle surfaces, disrupt the 

structure of the membrane and make it permeable, causing, for instance, calcein release from 

vesicles.[24]4

4:1-Salts of Fosmidomycin and Glufosinate with Octaarginines and Test of Herbicidal 
Activity

Inspired by investigations of the Matile group[28] on the importance of polyion-counter-ion 

complexes for cell penetration5 and remembering the perfect fit between guanidinium 

groups and so-called oxy-anions (Figure 3,a) that had been used in organic synthesis and in 

supramolecular chemistry,[30 – 36] we had prepared the 1:4 salt 1a-4Fos of octaarginine 

amide and fosmidomycin to test its in vitro activity against P. falciparum, and we were able 

to report in 2013 that growth of this parasite (which causes malaria) was much more 

strongly reduced by the salt than by fosmidomycin itself (Figure 3,b and c).[37]6

Fosmidomycin, a phosphonic-acid derivative, was first isolated as a natural product from 

Streptomyces rubellomurinus;[38] it is commercially available as the Na-salt7 and was 

originally used as an herbicide; it inhibits the enzyme DOXP reductoisomerase (DXR) of the 

non-mevalonate pathway leading to isoprenoids in plants and in unicellular organisms, such 

as the eukaryotic P. falciparum or mycobacteria (causing malaria, toxoplasmosis, 

tuberculosis, or lepra, see the discussion and references in[37]). The ca. 40-fold decrease of 

P. falciparum growth rate caused by the salt 1a-4Fos (Figure 3) shows that the cell-

penetrating octaarginine with its fosmidomycin cargo passes the most complex cell wall of 

this eukaryotic microorganism for delivery of the inhibitor to the active site of the enzyme 

DXR.

4Interaction with the negatively charged surfaces of the vesicles is, of course, related to the mechanism of cell penetration: in non-
endosomal mechanisms the oligoarginines first make contact with negatively charged phospholipids and glycans, such as heparin, on 
the cell surface (cf. Figure 3,a, below), before entering the cell, a process, which depends on the membrane potential across the cell 
wall maintained by ion pumps.[27] The composition of the cell surface changes when the cells are infected (cf. erythrocytes[19]) or 
when they are in an apoptotic state (cf. HEK293 cells[20]).
5For delivery of an inositol pyrophosphate derivative by a guanidinium-rich transporter (with a polycarbonate backbone) into the 
cytoplasm of HeLa cells see ref.[29]
6It is important at this point to comment on the preparation of salts, like 1a-4Fos and 1a-4Glufos, and the concentrations of oligo-
arginines used/administered herein and in reports of other groups. When preparing and purifying the oligo-arginines in the usual way, 
i.e. by Fmoc-technology and HPLC purification with trifluoro-acetic-acid (TFA)-containing solvent mixtures, an octaarginine amide, 
for instance, is isolated as the nona-triflate salt 1a-9TFA (see Figure 2), thus containing ca. 45 wt-% of TFA. A sample purchased 
from one of the companies offering peptide-synthesis services consists of almost 50% TFA. We have confirmed this by elemental 
analyses of the F-content of various lyophilized samples. In the work described herein and in ref.[37] the oligo-arginine TFA-salts 
were treated with Amberlyst ion-exchange resin A-26 (OH− form, pKa 12.13) to remove TFA before use, so the reported 
concentrations refer to free oligo-arginines, if not stated otherwise. Since other authors in the field (vide infra) do not mention 
corrections or precautions along these lines we have to suspect that the oligo-arginine concentrations given in their papers may 

actually be too high. The only paper we are aware of, in which CF3CO2
− counterions of GRCs are explicitly shown with the 

molecular formulae, is the publication by Wender et al. in ref.[2].
7For preparing the 4:1-salts with oligo-arginines (Figure 3, b), the commercial fosmidomycin Na-salt and the glufosinate NH4-salt 
were converted to the free acids by treatment with the ion-exchange resin IR-120 (pKa 2.2) (cf. footnotes 6 and 14).
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The successful application of octaarginine for transporting an antibiotic compound into the 

parasite causing malaria drew our attention to another interesting phosphorous derivative: 

phosphinothricin, a phosphinic-acid (Figure 3), the L- or (S)-form of which was first isolated 

and identified by the Zähner group in Tübingen in 1972,[39][40] as a component of the 

tripeptide phosphinothricyl-Ala-Ala (from Streptomyces viridochromogenes). 

Phosphinothricin is a potent glutamate-synthetase inhibitor, the ammonium salt of the 

racemic form, glufosinate, is a widely used non-selective herbicide. Extensive use of 

glufosinate has led to reports of evolved weed resistance,[41] in which case much higher 

levels/amounts of the herbicide are required to control the resistant weeds. It would therefore 

be highly desirable to be able to increase the glufosinate activity, and thus reduce the 

necessary dosis, cf. the 40-fold in vitro activity increase when going from fosmidomycin to 

its octaarginine salt described above. Thus, we prepared the salt 1a-4Glufos from the free 

phosphinic acid and octaarginine by the same procedure described above for the 

corresponding fosmidomycin salt and tested its activities in comparison with the 

corresponding ammonium salt and with 1a-4Fos. The post-emergence herbicidal activity of 

all three compounds was compared at 13 days after application, using 0.5% Tween 20 as the 

adjuvant. The plants species listed in Table 1 were assessed 13 days after herbicide 

application – 0% meaning no effect and 100% meaning complete kill. All samples were 

sprayed at 500, 125, and 60 g/hectare, with respect to the active glufosinate or 

fosmidomycin component. As can be seen from the data listed in Table 1, both 1a-4Glufos 
and 1a-4Fos salts of the cell-penetrating octaarginine peptide showed poor herbicidal 

activity. The glufosinate octaarginine salt was much weaker than glufosinate, and the 

fosmidomycin octaarginine salt was also much weaker than fosmidomycin (based on 

previous data[42]). Since it is known8 that oligo-arginines penetrate plant cells very much 

the same way as other eukaryotic cells, it is possible that the low activity of both 1a-4Glufos 
and 1a-4Fos is instead due to poor foliar uptake. This is consistent with reports that very 

hydrophilic compounds cross a plant cuticle through a polar pathway that has molecular size 

limitations, which are likely incompatible with these large CPP-salts.[44][45]

Thus, the in-vitro plant-cell[43] penetration of oligo-arginine derivatives could not be 

exploited for delivery into whole plants of the herbicides glufosinate and fosmidomycin. We 

speculate that the limited biological activity we observe, especially with 1a-4Fos, might be 

due to the foliar uptake of small amounts of the dissociated compounds (i.e. non CPP-salts).

In-vivo-Toxicity in Mice of the 4:1-Salts of Fosmidomycin with Octaarginines and of Other 
Oligo-Arginine Derivatives

In view of the observed lack of activity of the glufosinate and fosmidomycin salts 

1a-4Glufos and 1a-4Fos in whole plants we worried about the activity of oligo-arginine 

derivatives in whole animals, i.e. their in-vivo activity. This appeared to be especially 

important because of recent reports about artemisinin resistance of P. falciparum,[46] which 

has caused a revival of interest in fosmidomycin as an anti-malarial drug; for an extensive 

review article about clinical trials see ref.[47] In order to find out whether the octaarginine 

salt 1a-4Fos is more active than fosmidomycin itself, as it is in vitro (vide supra), we have 

8See for instance, an article in which nonaarginine (R9) was reported to carry a disulfide-attached protein into live plant cells.[43]
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carried out in-vivo tests by intravenous tail-vein injection to Plasmodium-berghei-infected 

and to non-infected mice (P. berghei is a parasite that causes rodent malaria.9) There have 

been numerous in vivo studies involving oligo-arginines in drug delivery; for an extensive 

review we recommend an article by Zaro and Shen;[48]10 for two reports about acute 

toxicity of simple oligo-arginine derivatives determined by direct intravenous injection to 

mice we refer to papers by the groups of Tsien[55] and Zhang.[56]11 ,12

The results of our toxicity investigations of the fosmidomycin-octaarginine salts are 

collected in Table 2, which also contains some literature data, and, for comparison, 

parasitaemia-reduction values for the Na-salt of fosmidomycin. Clearly, all octaarginine salts 

are extremely toxic when administered intravenously, lethal down to 1.5 μmol/kg doses, and 

so are the previously reported oligo-arginine derivatives1a and 1b themselves; it looks as if 

the TFA salt 1a-9TFA of octaarginine is somewhat more toxic than peptide 1a without this 

counter-ion. There is no difference between the octa-L-, -D- and -β-arginine salts 1a-, 

ent-1a-, 2a-4Fos or between infected and non-infected mice. Thus, the in-vitro increase of 

fosmidomycin activity against P. falciparum when used as the salt 1a-4Fos cannot be 

confirmed in the in-vivo experiment with P. berghei. In contrast, the toxic activity of the salt 

turns out to be more or less identical to that of pure oligo-arginines 1. Apparently, 

fosmidomycin found other counter-cations and octaarginine other counter-anions after 

injection into the blood stream, inspite of the perfect anion-cation fit between the two 

components of the salts (cf. Figure 3,a). The systemic toxicity in intravenous and 

intraperitoneal administration of polycationic CPPs is supposed to be associated with mast-

cell degranulation.[55]

Suitably Protected Adp-Building Blocks (4 – 6) and Peptide Assembly to the Octamers (7 – 
10) Derived from the Biopolymer Cyanophycin

Discovery, Physiological Function, and Structure of Cyanophycin—The 

guanidinium-rich compounds (GRCs, Figure 1,a) consisting of arginine (1a in Figure 2) 

must be considered unnatural; to the best of our knowledge no oligo-arginine has been 

identified as part of a natural CPP system. There is, however, a peptidic biopolymer carrying 

an arginine side chain with a terminal guanidine group on each and every residue: 

cyanophycin (Figure 4), largely unknown among chemists, biochemists, and biologists. In 

view of our interest in GRCs we have followed the research of Alexander Steinbüchel and 

his group (University Münster) in the field of cyanophycin for years.[58 – 64] This 

biopolymer has an intriguing structure: it is a poly-aspartic-acid N-argininylated on the 

carboxylic acid groups of the side chains (Figure 4). Cyanophycin was discovered as 

characteristic granules in blue-green algae by the Italian botanist Antonio Borzi in 1887 and 

chemically identified by R. D. Simon in 1971.[65] It is formed by cyanobacteria as a storage 

9For in vitro tests with octaarginines and various P. berghei-infected human cell lines, see ref.[37]
10For ‘life-cell’ toxicities (cytotoxicities) of 1 and ent-1 with n = 9 and 10, see ref.[49][50] For review articles with references to in-
vivo tests with GRCs, including intravenous injections, see also ref.[51 – 53] Leucocyte toxicity of a taxol-octaarginine conjugate.[54]
11In the work by Zhang et al.[56] diastereomeric octaarginines consisting of L- and D-arginine moieties (called ‘chimera’) were tested, 
and it turned out that the toxicities differed substantially, depending on the number and position of D-entities in the chain of L-
arginines. In independent work by our group[20] such ‘mixed’ octaarginine derivatives were found to have varying rates of cell 
penetration (up to a factor of 4) and varying stabilities in heparin-stabilized human plasma (from 5 min to > 7 days), depending upon 
the site and frequency of D/L-replacements in the octaarginine chain.
12For a non-toxic dosis administered i.v. to rats see 2b in Table 2 and ref.[21] For application of nM doses to mice see ref.[57]
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material for nitrogen and carbon under conditions of nutrient shortage; its molecular weight 

can be up to 130 kDa. Synthetases producing the polymer and cyanophycinases degrading it 

have been isolated and can be used for production of the polymer on technical scale. The 

building block of the polymer consisting of aspartic acid and arginin has been proposed as a 

di-aminoacid-nutrient additive; for leading papers on these subjects see the articles by the 

Steinbüchel group in refs.[58 – 64] and publications cited therein. Herein we refer to the 

building block of the cyanophycin polymer as H-Adp-OH (Figure 4). Adp may be 

considered a dipeptide of Arg and Asp, in which the aspartic acid is incorporated as a β-

amino-acid building block.[23]

Interestingly, the side chains on the peptide backbone of an Adp-oligomer can be cationic, 

zwitterionic, or anionic, depending on the pH (Figure 4). For cell-penetration the 

guanidinium groups with their positive charges must be considered mandatory. Under 

physiological conditions the zwitterionic form (without a net charge) should be present to 

some extent; this could lead to reduced interaction of the guanidinium groups with 

negatively charged entities on the cell surface, believed to be an important initial step for cell 

penetration4. On the other hand, if Adp-oligomers would turn out to have cell-penetrating 

properties, they could possibly play this role in nature – hitherto unnoticed.

Synthesized Adp-Derivatives 4 – 6 and Octamers 7 – 10—To find out whether 

oligo-Adp-derivatives, segments of the guanidinium-rich biopolymer cyanophycin, behave 

like common GRCs, we have synthesized octa-Adp with (7 – 9) and without (10 – 12) N-

terminal fluorescent FAM labels and with methyl ester (8, 11) and dimethylamide groups (9, 

12) instead of COOH groups in the side chains (Figure 5).[66] The latter two compounds 

were chosen to probe a possible negative influence of zwitter-ion formation on cell-

penetrating properties.13

All octa-Adp-derivatives were purified by preparative HPLC and identified by mass 

spectrometry. In this way 5 to15 mg quantities of the novel peptides were obtained. The 

lyophilized samples consist of TFA salts, which were treated with Amberlyst ion-exchange 

resin A-26 (OH− form, pKa 12.13) for removal of the TFA counter-ions.14 If not otherwise 

stated, the samples thus obtained were used for the biological experiments described in the 

following section.

Determination of in-vivo-Toxicity and of in-vitro-Cell permeability of Adp8-Derivatives

In-vivo-Toxicity Measured by Intravenous Injection—The salt of Adp8 with four 

fosmidomycin counter-ions (10-4Fos), the octa-Adp (10), and its derivatives with ester (11) 

and amide groups (12) were tested for acute in-vivo toxicity as described above for the 

octaarginine derivatives (Table 2). Surprisingly, no obvious acute toxicity symptoms 

whatsoever were caused by the salt (10-4Fos) or octa-Adp (10), even at doses as high as 45 

μmol/kg.15 On the other hand, the octapeptides 11 and 12 with methylester and dimethyl-

amide groups, respectively, in the arginine side chains are toxic. At doses of ca. 30 μmol/kg 

13Interestingly, an Arg-methylester as in 8 was chosen by Matile et al.[9][10] to render poly(disulfide)s cell permeable.
14Elemental analysis of lyophilized H-Adp8-NH2 (10) showed that the sample had an F-content of 14.7%, a value that is calculated 
for [H-Adp8-NH2 · 8 CF3CO2H] (cf. footnote 6, above).
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both derivatives are lethal, just like the octaarginines (Table 2). Detailed results are 

summarized in Table 3. Thus, the free carboxylic-acid groups in the side chains of octa-Adp 

prevent toxicity.

Cell-Penetrating Properties of Adp-Derivatives 7 – 9 Studied by Confocal 
Fluorescence Microscopy (CFM)—At this point of our investigation the questions 

arose whether non-toxic Adp-derivatives with free carboxylic acid groups in the side chains 

have cell-penetrating properties and how they might differ in this respect from the 

compounds with ester and amide groups in the oligomer side chains. As candidates for cell-

penetration studies we used the FAM-labeled octa-Adp-derivatives 7 (with free carboxylic 

acid groups) and 8 and 9 (with ester and amide groups, respectively).

To evaluate cell permeability, we monitored the permeation efficiency of the FAM-labeled 

peptides into HEK293 and MCF-7 cells by CFM. The fluorescent lipophilic membrane stain 

R18 was used to mark the plasma membranes of the cells.16 The results are illustrated in 

Figure 6: i) FAM-Adp8-NH2 (7) does not enter the cells at all. ii) In contrast, the FAM-

(Adp(OMe))8-NH2 (8) and FAM-(Adp(NMe2))8-NH2 (9) derivatives exhibited mediocre to 

high cell permeability and yielded homogeneous cell loading accompanied by higher 

concentrations in the nuclear region.17

Thus, the FAM-labeled octamer 7 of the non-toxic cyanophycin-derived peptide 10 (cf. 
Table 3), with free carboxylic-acid groups in the arginine side chains of the Adp residues, 

turns out to have no cell-penetrating properties, while its toxic derivatives possessing ester 

and amide groups (8 and 9) are cell permeable and behave like conventional octaarginine 

CPPs such as 1b.[20]

A simple interpretation of this result would be that there are no ‘free’ guanidinium groups on 

the backbone of peptides 7 and 10 under the physiological conditions (pH 7.4) of our 

experiment (cf. introduction and Figure 1). Rather than the cationic or zwitter ionic 

structures discussed above (see Figure 4) there could be a structure containing 

intramolecular salt moieties consisting of guanidinium cations and carboxylate anions. An 

example is shown in Figure 7,a, where the carboxylate group of Adp residue n forms an 

anion-cation complex with the guanidinium group of Adp residue n + 2. In such a structure 

the peptide backbone does not adopt an extended conformation that can present the attached 

side chains carrying guanidinium groups to enable interaction with cell surfaces. This 

intramolecular salt formation calls to mind the large decrease in cell-penetration observed 

for the peptides containing equal numbers of Arg and Glu residues shown in Figure 7,b,[68] 

as compared to their counterparts containing only Arg residues. Also, the so-called 

activatable cell-penetrating peptides (ACPPs) shown schematically in Figure 7,c[55][69 – 

15The observation that the Adp-octamer 10 has no i.v.-toxicity matches well with the fact that the ‘monomer’ H-Adp-OH itself is 
being considered as a dipeptidic nutrient additive (vide supra), which means that it does not exhibit any p.o.-toxicity. See publications 
cited in ref.[58 – 63], especially those coauthored by A. Sallam; type in Google: ‘Zwei Aminosäuren als Geschäftsidee. Mit 
Cyanobakterien den Körper stäken’, https://www.n-tv.de/wissen.[63][64] See also: Cysal GmbH, Technologiehof Münster, 
Mendelstrasse 11, D-48149 Münster, Germany; http://www.cysal.de,[64] and footnote 18 below.
16In a previous investigation of octaarginine derivatives we employed the membrane-localization dye DiI.[20]
17Full experimental details and a quantitative analysis of the cell permeation considering the role of DMSO and of the membrane dye 
R18 is published in a separate paper.[67]
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73] are not cell-penetrating by themselves, but contain a predetermined specific cleavage 

site, such as chemically (S–S bonds), photochemically or enzymatically labile entities, that 

are cleaved in the extracellular space, releasing cell-penetrating polycationic oligo-arginine 

derivatives with their cargo. A previously proposed example of guanidinium neutralization 

in an oligo-arginine by the phosphate dianion (HPO4
2 −) is shown in Figure 7,d; similar 

intermolecular salt-bridge formation with the phosphate-ester groups of membrane 

phospholipids has been suggested to facilitate transport through the membrane.[74]

Another conclusion from these results must be that the in-vivo toxicity observed with 

octaarginines and with the octa-Adp-ester and -amide derivatives is due to their poly-

cationic structures.

NMR-Spectra of the Octa-Adp-Derivatives—If the Adp octamer with free carboxylic-

acid groups would form intramolecular salt complexes, as indicated in Figure 7, a, we 

expected that its different backbone structure should give rise to a markedly different NMR 

spectrum in comparison with the spectra of the ester and amide derivatives. Thus, we 

measured the NMR spectra in water of the three octa-Adp-derivatives 10-9TFA, 11-9TFA, 

and 12-9TFA, as obtained by preparative HPLC purification (using TFA-containing eluent) 

followed by lyophilization (cf. footnotes 6 and 14). The three spectra presented in Figure 8 

are so similar that no evidence for a different backbone structure of octa-Adp 10 with its free 

carboxylic-acid groups can possibly be derived. This is actually not surprising, if we 

consider that formation of an intramolecular salt between the guanidinium and the 

carboxylate group would be energetically unfavorable for the triflate salt 10-9TFA (see the 

accompanying Equation 1 and the pH-dependent structures of oligo-Adp shown in Figure 4). 

We are now in the process of synthesizing larger amounts of the octamer 10 to be able to 

measure its NMR spectra in the presence of different counterions in aqueous solutions at 

various pH values; the results of these investigations will be reported in due course.

Conclusion and Outlook

We have shown that the antiparasitic and herbicidal activities of fosmidomycin (a 

phosphonic acid) and of glufosinate (a phosphinic acid) are not increased when their salts 

with cell-penetrating octaarginines are administered in vivo, and we have demonstrated that 

intravenous injection of various octaarginine derivatives into the tail veins of mice is 

extremely toxic. These results contrast with those of in-vitro studies.
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In search for new types of arginine-rich cell-penetrating peptides with improved properties 

we have synthesized for the first time and investigated an octamer segment [H–Adp8–NH2] 

of the biopolymer cyanophycin. This novel oligopeptide possessing arginines as side chains 

turns out to be neither toxic nor cell-penetrating. If, on the other hand, the COOH groups in 

the argininylated side chains of H–Adp8–NH2 are replaced by ester or amide groups, both 

the toxicity and the cell permeability, typical of oligoarginines, are restored. NMR spectra of 

the three triflate salts provide no evidence for different backbone structures of the octamer 

with COOH, as compared to the analogs with COOMe and CONMe2 groups.

Future investigations of the cyanophycin-derived peptides will have to address, inter alia, the 

question of whether a possible intracellular enzymatic ester hydrolysis of the cell-

penetrating compound H–(Adp(OMe))8–NH2, converting it into the non-cell-penetrating 

compound H–Adp8–NH2, could lead to unexpected effects in CPP applications. 

Furthermore, the toxicity of H–(Adp(OMe))8–NH2 might be reduced, and its cell-

permeability modulated by having ester groups in the side chains only at certain positions of 

the peptide chain (‘mixed’ Adp/Adp-ester oligomers). Another aspect in connection with the 

use of olig-Adp derivatives for CPP investigations is their enzymatic degradation. Oligo-L-

arginines are degraded rapidly; the half-life of the octamer in human plasma is 0.5 min, 

oligo-D-arginines are much more stable under these conditions[20] and are therefore the 

commonly preferred enantiomers in CPP studies (rn instead of Rn). It will be important to 

determine the half-lifes of the cell-penetrating octa-Adp derivatives with ester and amide 

groups in the side chains.18
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Figure 1. 
Guanidinium-rich structures. a) The guanidinium groups (GGs) are attached to various 

backbones, mostly oligo-peptides. The rate of cell penetration and the peptidolytic stability 

depend upon the nature of the backbone (a), the length and flexibility of the connecting units 

(b), the distance (c) between the GGs, and the number (n) of GG-bearing units. Cargoes (d), 

such as fluorescent groups or bioactive moieties to be delivered into cells are attached to the 

backbone. b) A cell-penetrating oligomer, in which GGs are part of the backbone.[15]
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Figure 2. 
Frequently investigated oligo-arginines (1, Rn), their enantiomers (ent-1, rn) and β-

octaarginine derivatives (2, β3-Rn and 3, β2-Rn). The C-terminal group is NH2, due to the 

solid-phase peptide synthesis (SPPS) by the Fmoc technology on Pal-PEG-PS-type resins. 

The N-terminal group R may be a hydrogen atom, a fluorescent marker, or a cargo moiety 

with biological activity to be carried into cells. As pointed out in footnote 6 below, the 

product obtained by an Fmoc-octaarginine synthesis, followed by HPLC purification and 
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lyophilization is actually the nona-triflate salt 1a-9TFA. For FAM derivatives see Figure 5 

and the section on CFM; for a Cy5 derivative see Table 2, below.
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Figure 3. 
Salts with guanidinium groups. a) Perfect match of counter-ions in guanidinium salts with 

symmetrical dibasic anions; carboxylates, phosphonates, phosphates (see also d) in Figure 7, 

below), sulfonates, and sulfates are common in biological systems. b) Salts of the 

octaarginines 1a and 2a with the physiologically active compounds fosmidomycin 

(herbicide, antimalarial drug) and glufosinate (herbicide). c) left side: Enhanced efficacy of 

fosmidomycin against blood-stage Plasmodium falciparum, when used as the salt 1a-4Fos 
(in-vitro test); red: course over 72 h of parasitaemia when untreated; other colors: 
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parasitaemia when treated with 0.1 – 5.0 μM of the 1:4 salt 1a-4Fos. c) right side: IC50 for 

growth inhibition in the presence of fosmidomycin alone (181.4 nM, red) and in the presence 

of the salt 1a-4Fos (4.4 nM). The two diagrams are taken from ref.[37]
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Figure 4. 
The biopolymer cyanophycin and the monomeric argininylated aspartic-acid derivative β-

Asp-α-Arg-dipeptide (H-Adp-OH), from which the polymer is built. In the literature 

cyanophycin is commonly referred to as ‘cyanophycin granule polypeptide’ (CGP). The side 

chains of an Adp-oligomer contain pH-dependent charges (positive and negative charges on 

the N- and C-termini are not considered in this presentation).
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Figure 5. 
Synthesized building blocks 4 – 6 for solid-phase-peptide synthesis by the Fmoc-technology 

on Fmoc-Pal-PEG-PS resin. SPPS leads to the Adp-octamers 10 – 12, and their FAM-

derivatives 7 – 9. For the formula of the fluorescein-derivative FAM see Figure 2. For details 

of the syntheses see ref.[66]
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Figure 6. 
CFM Images for determining penetration into HEK293 and MCF-7 cells by the octa-Adp-

derivatives 7 – 9. Yellow fluorescence: R18-marked cell walls; green fluorescence: FAM-

labeled octa-Adp-derivatives. Clearly, compound 7 with free carboxlic-acid groups in the 

peptide side-chains does not enter the cells. For details see ref. [67]
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Figure 7. 
Cation-anion interactions in oligoarginine derivatives. a) Possible salt-type structures in 

oligo-Adp chains derived from cyanophycin. b) Poor surface binding and cell uptake of 

neutral mixed Arg-Glu tetradeca-peptides as compared to poly-cationic analogs. c) 

‘Internally neutralized’ polyelectrolytes, in which the anionic and cationic charges may be 

represented by the carboxylate and guanidinium groups in the side chains of Glu and Arg, 

respectively. d) Guanidinium neutralization by phosphate groups proposed in a discussion of 

the influence of counter-anions on cell and membrane permeability of oligo-arginines.[74]
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Figure 8. 
1H-NMR Spectra of the TFA salts of octa-Adp (10, a section of cyanophycin, recorded at 

500 MHz) and of its methylester and dimethyl amide derivatives (11,12, recorded at 600 

MHz) in H2O/D2O 95:5 at 25 °C. NMR Samples were prepared by dissolving 10.5 mg of 

10, 8.7 mg of 11, and 7 mg of 12, respectively, in 600 μl of the solvent mixture. Water 

suppression was achieved using excitation sculpting. Assignments indicated in the figure are 

based on DQF-COSY, TOCSY, 13C-HSQC, 15N-HSQC and ROESY, all recorded at 600 

MHz. Tentative residue specific assignments of selected protons are indicated in 

parentheses. Proton resonances close to the position of the water signal are also suppressed 

or strongly attenuated.
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Table 1

Screen of herbicidal activity of glufosinate ammonium salt and of the octaarginine salts 1a-4Glufos and 

1a-4Fos on whole plants

Plant Species[a] [g/ha] Glufosinate NH4 Salt [%] 1a-4Glufos [%] 1a-4Fos [%]

AMAPA 500 100 50 40

125 100 20 10

  60 100   0   0

CHEAL 500 100 10 80

125   70 10 70

  60   40 10   0

EPHHL 500 100 30 60

125   70 10 30

  60   30   0   0

IPOHE 500 100 10 60

125   50 10 20

  60   30   0   0

SETFA 500 100   0 50

125 100   0 10

  60 100   0   0

ECHCG 500 100   0 30

125   90   0 10

  60   80   0   0

ELEIN 500 100 20 40

125 100   0 20

  60   80   0   0

DIGSA 500 100 60 80

125   90 10   3

  60   80   0   0

LOLPE 500   70   0 10

125   30   0 10

  60   20   0   0

[a]
AMAPA: Amaranthus palmeri, CHEAL: Chenopodium album, EPHHL: Euphorbia heterophylla, IPOHE: Ipomoea hederacea, SETFA: Setaria 

faberi, ECHCG: Echinochloa crus-galli, ELEIN: Eleusine indica, DIGSA: Digitaria sanguinalis, LOLPE: Lolium perenne. Three concentrations 
were used (500, 125, 60 [g/ha]); adjuvant 0.5% Tween 20; assessment 13 days after herbicide application, 0% meaning no effect, 100% meaning 
complete kill.
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Table 2

In-vivo-Toxicity investigations with the octaarginine-fosmidomycin salts 1- and 2-4Fos by intravenous 

injection into the tail vein of mice non-infected or infected by P. berghei. For comparison, literature toxicity 

values of other oligo-arginines, 1 and 2, are also shown (their corresponding concentrations may have to be 

corrected to lower values6). Parasitaemia reductions by Na-fosmidomycin are also presented. Parasitaemia 

reductions < 20% must be considered non-significant in this investigation: ‘no parasitaemia reduction’. 

Administration cocktail 0.9% NaCl; volume administered: 0.01 ml/g mouse

Compound i.v. dose [μmol/kg] Observed effects

With Plasmodium berghei-infected mice

    Na-fosmidomycin 1.5·106 95% Parasitaemia reduction

   5·105 72% Parasitaemia reduction

1.5·104 No parasitaemia reduction

   5·103 No parasitaemia reduction

    1a-4Fos  50 Immediate exitus

   1.5 Exitus in 3 min

   0.5 No parasitaemia reduction, increased heart rate (HR), ataxia

    ent-1a-4Fos  50 Immediate exitus

   1.5 Exitus in 3 min

   0.5 No parasitaemia reduction, increased HR, ataxia

    2a-4Fos (β)  47 Immediate exitus

   1.4 Exitus in 3 min

   0.47 No parasitaemia reduction, no acute toxicity symptoms

With non-infected mice

    1a  79 Immediate exitus

   7.9 Increased HR, ataxia

    1a-9TFA  43.6 Immediate exitus

   4.4 Immediate exitus

    1b-8TFA  39.4 Immediate exitus

   4.0 Increased HR, ataxia

    1a-4Fos    5 Exitus in 3 min

   0.5 Increased HR, ataxia

    ent-1a-4Fos    5 Exitus in 3 min

   0.5 Increased HR, ataxia

Our previous work with rats

  2b (β)    0.7 No toxic effects[21][57]

Reports in the literature with mice

    ent-1b    5 Exitus within < 5 min[55]

   2.5 4/5 Survival[55]

    mixed-(L/D)-1a  20 Exitus in < 5 min[56]

10 and 5 Survival depends on ratio and position of L- and D-Arg[56]
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Table 3

In-vitro-Toxicity investigations with octa-Adp derivatives 10 – 12. Intravenous injection into the tail vein of 

mice non-infected or infected by P. berghei. The parasitaemia reduction observed with 10-4Fos was below 

20%. For the experiment with octa-Adp 10 TFA-free peptide was used; peptides 11 and 12 were employed as 

TFA salts (cf. footnote 6 above). For comparison with octaarginine derivatives, for abbreviations, and for 

experimental details see Table 2

Compound i.v. dose [μmol/kg] Observed effects

With Plasmodium berghei-infected mice

  10-4Fos   1.10 No parasitaemia reduction

  0.34 No parasitaemia reduction

  10 45 No parasitaemia reduction, no acute toxicity symptoms

  9 No parasitaemia reduction, no acute toxicity symptoms

  4.5 No parasitaemia reduction, no acute toxicity symptoms

With non-infected mice

  11-9TFA 30.1 Immediate exitus

  3.0 Increased HR, ataxia

  12-9TFA 29.1 Immediate exitus

  2.9 Increased HR, ataxia
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