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Abstract
Counterexample-guided abstraction refinement (CEGAR) is a method for incrementally com-

puting abstractions of transition systems. We propose a CEGAR algorithm for computing abstrac-
tion heuristics for optimal classical planning. Starting from a coarse abstraction of the planning
task, we iteratively compute an optimal abstract solution, check if and why it fails for the concrete
planning task and refine the abstraction so that the same failure cannot occur in future iterations.
A key ingredient of our approach is a novel class of abstractions for classical planning tasks that
admits efficient and very fine-grained refinement. Since a single abstraction usually cannot capture
enough details of the planning task, we also introduce two methods for producing diverse sets of
heuristics within this framework, one based on goal atoms, the other based on landmarks. In order
to sum their heuristic estimates admissibly we introduce a new cost partitioning algorithm called
saturated cost partitioning. We show that the resulting heuristics outperform other state-of-the-art
abstraction heuristics in many benchmark domains.

1. Introduction

Counterexample-guided abstraction refinement (CEGAR) is an established technique for model
checking in large systems (Clarke, Grumberg, Jha, Lu, & Veith, 2003). The idea is to start from
a coarse (i.e., small and inaccurate) abstraction, then iteratively improve (refine) the abstraction in
only the necessary places. In model checking, this means that we search for error traces (behaviors
that violate the system property we want to verify) in the abstract system, test if these error traces
generalize to the actual system (called the concrete system), and only if not, refine the abstraction in
such a way that this particular error trace is no longer an error trace of the abstraction.

In model checking, CEGAR is usually used to prove the absence of an error trace. In this
work, we use CEGAR to derive heuristics for optimal state-space search, and hence our CEGAR
procedure does not have to completely solve the problem. Instead, abstraction refinement can be
interrupted at any time to derive an admissible search heuristic.

A key component of our approach is a new class of abstractions for classical planning, called
Cartesian abstractions, which allow efficient and very fine-grained refinement. Cartesian abstrac-
tions are a generalization of the abstractions that underlie pattern database heuristics (Culberson &
Schaeffer, 1998; Edelkamp, 2001) and domain abstraction (Hernádvölgyi & Holte, 2000).

As the number of CEGAR iterations grows, one can observe diminishing returns: it takes more
and more iterations to obtain further improvements in heuristic value. Therefore, we also show how
to build multiple smaller additive abstractions instead of a single big one.

One way of composing admissible heuristics is to use the maximum of their estimates. This
combination is always admissible if the component heuristics are. In order to gain a more informed
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heuristic it would almost always be preferable to use the sum of the estimates, but this estimate
is often not admissible. To remedy this problem, we can use cost partitioning (Katz & Domshlak,
2008) to ensure that the cost of each operator is distributed among the heuristics in a way that makes
the sum of their estimates admissible.

To combine multiple Cartesian abstraction heuristics admissibly, we introduce a new cost parti-
tioning algorithm, which we call saturated cost partitioning. Saturated cost partitioning opportunis-
tically exploits situations where some operator costs can be lowered without affecting the quality of
the heuristic. Given an ordered sequence of abstractions, the saturated cost partitioning algorithm
computes the smallest cost function cost′ that is sufficient for achieving the same heuristic values
under the first abstraction as with the full cost function cost. It then assigns cost function cost′ to
this abstraction and continues the process with the remaining abstractions, using the leftover costs
cost − cost′ as the new overall cost function. Compared to other cost partitioning algorithms for
abstraction heuristics, one advantage of saturated cost partitioning is that the abstractions can be
created one at a time. In particular, only a single abstraction needs to be held in memory simultane-
ously.

The simplest way to combine saturated cost partitioning with our CEGAR algorithm is to itera-
tively invoke the CEGAR loop on the same original task, only changing the cost functions between
iterations to account for the costs that have already been assigned to previous abstractions. In our
experiments this approach solves slightly fewer tasks compared to using a single Cartesian abstrac-
tion. This is because the resulting abstractions focus on mostly the same parts of the task. Therefore,
we propose three methods for producing more diverse abstractions.

The first diversification method uses the fact that the CEGAR loop can often choose between
multiple possibilities for refining the Cartesian abstraction and chooses a refinement based on the
remaining costs. The second method computes abstractions for all goal atoms separately, while the
third does so for all causal fact landmarks of the delete relaxation of the task (Keyder, Richter, &
Helmert, 2010).

We evaluate Cartesian abstractions and saturated cost partitioning with and without these diver-
sification strategies on the benchmark collection of previous International Planning Competitions.
Our results show that heuristics based on a single Cartesian abstraction are able to achieve compet-
itive performance only in a few domains. However, constructing multiple abstractions in general
and using landmarks to diversify the heuristics in particular leads to a significantly higher number of
solved tasks and makes heuristics based on Cartesian abstractions outperform other state-of-the-art
abstraction heuristics in many domains.

2. Background

Throughout this work we use a toy planning task as a running example. The task is adapted from the
Gripper domain (McDermott, 2000) in which a robot has to transport balls from roomA to roomB.
In our example task the robot has a single gripper G and there is only one ball. The robot can grab
and drop the ball and move between the two rooms. Initially, the robot is in room A, so assuming
all operators cost 1, the cheapest plan for this task is to let the robot grab the ball in room A, move
to room B and drop the ball there.

To formalize classical planning problems such as this example, we use a SAS+-like (Bäckström
& Nebel, 1995) representation.
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Variables V = 〈robot, ball〉, dom(robot) = {A,B}, dom(ball) = {A,B,G}
Operators O = {move-A-B, move-B-A, grab-in-A, grab-in-B, drop-in-A, drop-in-B}

• pre(move-A-B) = {robot 7→ A}, eff(move-A-B) = {robot 7→ B}, cost(move-A-B) = 1.

• pre(move-B-A) = {robot 7→ B}, eff(move-B-A) = {robot 7→ A}, cost(move-B-A) = 1.

• pre(grab-in-A) = {robot 7→ A, ball 7→ A}, eff(grab-in-A) = {ball 7→ G}, cost(grab-in-A) = 1.

• pre(grab-in-B) = {robot 7→ B, ball 7→ B}, eff(grab-in-B) = {ball 7→ G}, cost(grab-in-B) = 1.

• pre(drop-in-A) = {robot 7→ A, ball 7→ G}, eff(drop-in-A) = {ball 7→ A}, cost(drop-in-A) = 1.

• pre(drop-in-B) = {robot 7→ B, ball 7→ G}, eff(drop-in-B) = {ball 7→ B}, cost(drop-in-B) = 1.

Initial State s0(robot) = A and s0(ball) = A (or s0 = 〈A,A〉)
Goal s? = {ball 7→ B}

Figure 1: Definition of the example Gripper task Π = 〈V,O, s0, s?〉 with a single ball, a gripper G
and two rooms A and B.

Definition 1. Planning tasks.
A planning task is a tuple Π = 〈V,O, s0, s?〉, where:

• V = 〈v1, . . . , vn〉 is a finite sequence of state variables, each with an associated finite domain
dom(vi).

An atom is a pair 〈v, d〉, also written v 7→ d, with v ∈ V and d ∈ dom(v).

A partial state s is an assignment that maps a subset vars(s) of V to values in their respective
domains. We write s[v] ∈ dom(v) for the value which s assigns to the variable v. Partial
states defined on all variables are called states, and S(Π) is the set of all states of Π. We will
interchangeably treat partial states as mappings from variables to values or as sets of atoms.

The update of partial state s with partial state t, written s⊕t, is the partial state with vars(s⊕
t) = vars(s) ∪ vars(t), (s ⊕ t)[v] = t[v] for all v ∈ vars(t), and (s ⊕ t)[v] = s[v] for all
v ∈ vars(s) \ vars(t).

• O is a finite set of operators. Each operator o has a precondition pre(o), an effect eff(o) and a
non-negative cost cost(o) ∈ R+

0 . The precondition pre(o) and effect eff(o) are partial states.
The postcondition post(o) of an operator o is defined as pre(o) ⊕ eff(o). An operator o ∈ O
is applicable in state s if pre(o) ⊆ s. Applying o in s results in the state sJoK = s⊕ eff(o).

• s0 ∈ S(Π) is the initial state and s? is a partial state, called the goal.

Figure 1 shows how the example Gripper task can be formalized using this definition. We
will frequently use a tuple notation for states and write 〈d1, . . . , dn〉 to denote the state {v1 7→
d1, . . . , vn 7→ dn}. (Facilitating such a notation is the main reason why we define V as a sequence
rather than a set.)

The notion of transition systems is central for assigning semantics to planning tasks:
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〈A,A〉

〈B,A〉

〈A,G〉

〈B,G〉 〈B,B〉

〈A,B〉
grab-in-A

drop-in-A

grab-in-B

drop-in-B

move-A-B
move-B-A

move-A-B
move-B-A move-B-A

move-A-B

Figure 2: Transition system for the example Gripper task with a single ball, a gripper G and two
rooms A and B.

Definition 2. Transition systems, regression, plans and traces.
A transition system T = 〈S,L, T, s0, S?〉 consists of a finite set of states S, a finite set of labels L,
a set of transitions T ⊆ S×L×S, an initial state s0 ∈ S and a set of goal states S? ⊆ S. We write
s

l−→ s′ for 〈s, l, s′〉 ∈ T , i.e., for a transition from state s ∈ S to state s′ ∈ S with label l ∈ L.
The regression of a set of states S′ ⊆ S with respect to a label l ∈ L is defined as regr(S′, l) =

{s ∈ S | s l−→ s′ ∈ T ∧ s′ ∈ S′}.
A sequence of transitions 〈s0 l1−→ s1, s1

l2−→ s2, . . . , sk−1
lk−→ sk〉 is called a trace from s0 to sk.

The empty sequence is considered a trace from s to s for all states s. A trace from state s to some
state s′ ∈ S? is called a goal trace for s. The sequence of labels 〈l1, l2, . . . , lk〉 of a goal trace for
state s is called a plan for s. We often write “goal trace” and “plan” instead of “goal trace for s0”
and “plan for s0”.

A planning task Π = 〈V,O, s0, s?〉 induces a transition system T with states S(Π), initial state
s0, goal states {s ∈ S(Π) | s? ⊆ s} and transitions {s o−→ (s⊕ eff(o)) | s ∈ S(Π), o ∈ O, pre(o) ⊆
s}. Plans for T are also called plans for Π.

Associating a cost function cost with T , which assigns the weight cost(l) ∈ R+
0 to all transitions

with label l, turns the transition system into a weighted digraph (possibly with parallel arcs). A
plan is optimal if the sum of assigned weights along the path is minimal. Optimal planning is the
following problem: given a planning task Π with initial state s0 and operator cost function cost,
find an optimal plan starting in s0 in the transition system induced by Π and weighted by cost, or
prove that no plan starting in s0 exists. Figure 2 shows the (unweighted) transition system induced
by the Gripper example. We follow the common convention and always mark the initial state with
an unlabeled incoming edge and goal states with double borders.

By losing some distinctions between states, we can create an abstraction of a planning task.
This allows us to obtain a more “coarse-grained”, and hence smaller, transition system. For this
paper, it is convenient to use a definition based on equivalence relations:

Definition 3. Abstractions.
Let Π be a planning task inducing the transition system 〈S,L, T, s0, S?〉.

An abstraction relation ∼ for Π is an equivalence relation on S. Its equivalence classes are
called abstract states. We write [s]∼ for the equivalence class to which s belongs. The function

538



COUNTEREXAMPLE-GUIDED CARTESIAN ABSTRACTION REFINEMENT FOR CLASSICAL PLANNING

mapping s to [s]∼ is called the abstraction function. We omit the subscript ∼ where clear from
context.

The abstract transition system induced by∼ is the transition system T ′ with states {[s] | s ∈ S},
labels L, transitions {[s] l−→ [s′] | s l−→ s′ ∈ T}, initial state [s0] and goal states {[s] | s ∈ S?}.
We call T ′ = 〈S′,L′, T ′, s′0, S′?〉 an induced abstraction. Enlarging S′, L′, T ′ or S′? turns T ′ into a
(non-induced) abstraction.

Induced abstractions are also called strict homomorphisms, and general abstractions are called
homomorphisms. We generally assume abstractions to be induced and will make it explicit when
we speak about non-induced abstractions.

In the context of an abstraction, the planning task Π on which the abstract transition system is
based is called the concrete task, and similarly we will speak of concrete states, concrete transitions,
concrete traces and concrete plans to distinguish them from abstract ones.

Abstraction preserves paths in the transition system and can therefore be used to define admis-
sible and consistent heuristics for planning (e.g., Katz & Domshlak, 2008; Helmert, Haslum, &
Hoffmann, 2007; Katz & Domshlak, 2010). Specifically, h∼(s, cost) is defined as the cost of an
optimal plan starting from [s] in the abstract transition system (weighted by cost function cost) or
∞ if no plan starting from [s] exists. Practically useful abstractions should be efficiently computable
and give rise to informative heuristics. These are conflicting objectives.

3. Cartesian Abstractions

We want to construct compact and informative abstractions through an iterative refinement pro-
cess. Choosing a suitable class of abstractions is critical for this. For example, pattern databases
(Edelkamp, 2001) do not allow fine-grained refinement steps, as every refinement at least dou-
bles the number of abstract states. Merge-and-shrink abstractions (Helmert et al., 2007; Helmert,
Haslum, Hoffmann, & Nissim, 2014) do not maintain efficiently usable representations of the preim-
age of an abstract state, which makes their refinement complicated and expensive.

During abstraction refinement, we frequently need to check whether a given operator induces a
transition between two given abstract states. We now show that this check is expensive for merge-
and-shrink abstractions. Let BDDA and BDDB be (reduced ordered) BDDs (Bryant, 1986) over the
binary variables {v1, . . . , vn} such that BDDA represents the set of truth assignments A and BDDB

represents the set of truth assignmentsB. Consider the planning task with variables 〈v0, v1, . . . , vn〉,
dom(v0) = {0, 1} and a single operator o with pre(o) = {v0 7→ 0} and eff(o) = {v0 7→ 1}. Let
a = {x ∪ {v0 7→ 0} | x ∈ A} and b = {y ∪ {v0 7→ 1} | y ∈ B} be two abstract states
in a merge-and-shrink abstraction. Then A and B have a non-empty intersection iff o induces a
transition between a and b.

Due to the known relationships between merge-and-shrink abstractions and BDDs, we can con-
struct merge-and-shrink representations of a and b with identical representation size (modulo small
constants) to BDDA and BDDB if we use a linear merge strategy based on the same variable or-
der as the one used for the BDDs, with v0 at the front (Helmert, Röger, & Sievers, 2015). The
best algorithms known for testing if BDDA and BDDB have a non-empty intersection takes time
O(‖BDDA‖ · ‖BDDB‖), where ‖X‖ is the number of nodes of X . If the transition check needed
less time, then testing whether two BDDs have a non-empty intersection could also be done faster,
but no algorithm with a better runtime is known. In a typical merge-and-shrink abstraction, the
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{A} × {A,G} {B} × {A,G} {A,B} × {B}

grab-in-A
drop-in-A

move-A-B

move-B-A

drop-in-B

grab-in-B

move-A-B
move-B-A

Figure 3: Example Cartesian abstraction of the Gripper example. In the left and center state we
know where the robot is, but not whether its gripper holds the ball, whereas in the abstract goal state
we ignore the position of the robot.

BDDs involved can have 104 or more nodes (e.g., Sievers, 2017), so a single transition test can
take 108 or more computation steps. This is prohibitively expensive for the refinement approach we
consider in this paper, which can perform millions of transition tests.

Because of these and other shortcomings of pattern databases and merge-and-shrink abstrac-
tions, we introduce a new class of abstractions for planning tasks that is particularly suitable for
fine-grained abstraction refinement.

Definition 4. Cartesian sets and Cartesian abstractions.
A set of states for a planning task with variables 〈v1, . . . , vn〉 is called Cartesian if it is of the form
A1 ×A2 × . . .×An, where Ai ⊆ dom(vi) for all 1 ≤ i ≤ n.

An abstraction is called Cartesian if all its abstract states are Cartesian sets.
For an abstract state a = A1×. . .×An, we define dom(vi, a) = Ai ⊆ dom(vi) for all 1 ≤ i ≤ n

as the set of values that variable vi can have in abstract state a.

Figure 3 shows an example Cartesian abstraction for the Gripper task. The Cartesian sets {A}×
{A,G}, {B} × {A,G} and {A,B} × {B} are the states in the abstract transition system. The
heuristic h∼ maps each state to the respective abstract goal distance (2, 1 or 0 — under the unit cost
function).

The name “Cartesian abstraction” was coined in the model-checking literature by Ball, Podelski,
and Rajamani (2001) for a concept essentially equivalent to Definition 4. (Direct comparisons are
difficult due to different state models.) We discuss their work in Section 7.

Cartesian sets naturally arise in planning tasks. In particular, for every partial state s, the set of
states that agree with s (i.e., all states s′ with s′[v] = s[v] for all v ∈ vars(s)) is Cartesian.

Definition 5. Cartesian sets for partial states.
Let s be a partial state of a planning task with variables V = 〈v1, . . . , vn〉. The Cartesian set
induced by s is defined as

Cartesian(s) = A1 × . . .×An, where Ai =

{
{s[vi]} if vi ∈ vars(s)
dom(vi) otherwise

.

Clearly, Cartesian(s) contains exactly the states that agree with s. It follows that many impor-
tant sets of states in a planning task, such as the set of goal states or the set of states in which a given
operator is applicable, are Cartesian.

Cartesian abstractions form a fairly general class; e.g., they include projections (the abstractions
underlying pattern databases) and domain abstractions (Hernádvölgyi & Holte, 2000) as special
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cases. A projection is an abstraction that only considers the information from a subset P ⊆ V
of the state variables, called the pattern. For a state s, let s|P be the partial state defined on P
with s|P [v] = s[v] for all v ∈ P . Two states s and s′ are equivalent under the projection to P iff
s|P = s′|P . It is easy to see that this is a Cartesian abstraction, where the equivalence class of state
s is [s]∼ = Cartesian(s|P ).

A domain abstraction is an abstraction that is defined in terms of local equivalence relations, one
for each state variable. Consider a planning task with state variables 〈v1, . . . , vn〉 and equivalence
relations ∼1, . . . ,∼n, where ∼i is an equivalence relation on dom(vi). The domain abstraction
induced by ∼1, . . . ,∼n is the abstraction relation ∼ defined as s ∼ s′ iff s[vi] ∼i s

′[vi] for all
1 ≤ i ≤ n. It is easy to see that domain abstractions are a proper generalization of projections: pro-
jections arise in the special case where each local abstraction is either the identity relation (d ∼i d

′

iff d = d′) or the universal relation (d ∼i d
′ for all d, d′). It is also easy to see that domain abstrac-

tions are Cartesian abstractions, where each equivalence class is a Cartesian product of equivalence
classes of the local equivalence relations. Specifically, we have [s]∼ = [s[v1]]∼1 × · · · × [s[vn]]∼n ,
and hence every equivalence class of ∼ is a Cartesian set.

Unlike projections and domain abstractions, general Cartesian abstractions can have arbitrarily
different levels of granularity in different parts of the abstract state space. One abstract state might
correspond to a single concrete state while another abstract state corresponds to half of the states of
the task.

We illustrate the relationships between different classes of abstractions with example abstrac-
tions of our Gripper task. Figure 4a shows the abstract transition system induced by the projection to
the pattern {robot}. Clearly, this abstraction is also a domain abstraction, Cartesian abstraction and
merge-and-shrink abstraction. When we additionally partition the domain for variable ball into the
groups {A} and {B,G}, the resulting abstraction is not a projection anymore (Figure 4b). It is how-
ever still a domain abstraction. A further split of state {B}×{B,G} into the two states {B}×{B}
and {B}×{G} yields the Cartesian abstraction in Figure 4c. Since not all domains are split equally
for all states, it is not a domain abstraction anymore. Combining the states {A} × {B,G} and
{B} × {A} results in the transition system in Figure 4d. This abstraction is not Cartesian anymore,
but can be expressed in the merge-and-shrink formalism.

Merge-and-shrink abstractions are even more general than Cartesian abstractions because every
abstraction function can be represented as a merge-and-shrink abstraction, although not necessarily
compactly (Helmert et al., 2015). It is open whether every Cartesian abstraction has an equivalent
merge-and-shrink abstraction whose representation is at most polynomially larger.

The following theorem collects a number of properties that make Cartesian sets interesting for
CEGAR in planning. We remind the reader that a partition of a set X is a collection of subsets
X1, . . . , Xk ⊆ X that are pairwise disjoint and jointly exhaustive, i.e., Xi ∩Xj = ∅ for all i 6= j

and
⋃k

i=1Xi = X . Some definitions additionally require that all subsets are non-empty, but we do
not need to make this restriction here.

Theorem 1. Properties of Cartesian sets.
Let Π = 〈V,O, s0, s?〉 be a planning task.

(P1) The set of goal states of Π is Cartesian.

(P2) For all operators o ∈ O, the set of states in which o is applicable is Cartesian.

(P3) The intersection of Cartesian sets is Cartesian.
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{A} × {A,B,G}

{B} × {A,B,G}

move-A-B move-B-A

grab-in-A
drop-in-A

grab-in-B
drop-in-B

(a) Projection.

{A} × {A} {A} × {B,G}

{B} × {B,G}{B} × {A}

grab-in-A

drop-in-A

move-A-B move-B-A move-A-B move-B-A

grab-in-B
drop-in-B

(b) Domain abstraction.

{A} × {A} {A} × {B,G}

{B} × {A} {B} × {G} {B} × {B}

grab-in-A

drop-in-A

move-A-B

move-B-A

move-A-B
move-B-A move-A-B

move-B-A

drop-in-B

grab-in-B

(c) Cartesian abstraction.

{〈A,A〉} {〈A,B〉, 〈A,G〉, 〈B,A〉}

{〈B,G〉} {〈B,B〉}

grab-in-A
move-A-B

drop-in-A
move-B-A

move-A-B
move-B-A move-A-B

move-B-A

drop-in-B

grab-in-B

(d) Merge-and-shrink abstraction.

Figure 4: Example abstractions of the Gripper task for different classes of abstractions. The captions
state the most specific class each abstraction belongs to.
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(P4) For all operators o ∈ O, the regression of a Cartesian set with respect to o is Cartesian.

(P5) If b ⊆ a and c ⊆ a are disjoint Cartesian subsets of the Cartesian set a, then a can be
partitioned into Cartesian sets d and e with b ⊆ d and c ⊆ e.

(P6) If c ⊆ a is a Cartesian subset of the Cartesian set a and s ∈ a \ c, then a can be partitioned
into Cartesian sets d and e with s ∈ d and c ⊆ e.

Proof. Let V = 〈v1, . . . , vn〉.

(P1) The set of goal states is Cartesian(s?).

(P2) Consider any operator o ∈ O. The set of states where o is applicable is Cartesian(pre(o)).

(P3) The intersection of two Cartesian sets A1× . . .×An and B1× . . .×Bn is (A1 ∩B1)× . . .×
(An ∩Bn).

(P4) The regression of Cartesian set b = B1 × . . . × Bn with respect to operator o ∈ O is
regr(b, o) = A1 × . . .×An with

Ai =


Bi if vi /∈ vars(post(o))
∅ if vi ∈ vars(post(o)) and post(o)[vi] /∈ Bi

pre(o)[vi] if vi ∈ vars(pre(o)) and post(o)[vi] ∈ Bi

dom(vi) if vi ∈ vars(eff(o)) \ vars(pre(o)) and post(o)[vi] ∈ Bi

To see that exactly one of the four cases applies in each situation, note that cases 2–4 all cover
situations with vi ∈ vars(post(o)) because vars(post(o)) = vars(pre(o)) ∪ vars(eff(o)). The
further distinctions in these cases are whether post(o)[vi] ∈ Bi (in cases 3–4, but not in case
2) and whether vi ∈ vars(pre(o)) (in case 3, but not in case 4).

(P5) Let a = A1× . . .×An, b = B1× . . .×Bn and c = C1× . . .×Cn. Set Xi = Bi ∩Ci for all
1 ≤ i ≤ n. Let j be an index such that Xj = ∅. Such an index must exist because otherwise
we can select arbitrary values xi ∈ Xi for all 1 ≤ i ≤ n to obtain 〈x1, . . . , xn〉 ∈ b ∩ c,
contradicting that b and c are disjoint.

Because Xj = Bj ∩Cj = ∅, we can partition Aj into Dj and Ej in such a way that Bj ⊆ Dj

and Cj ⊆ Ej , for example by setting Dj = Bj and Ej = Aj \ Bj . Then d = A1 × . . . ×
Aj−1 ×Dj ×Aj+1 × . . .×An and e = A1 × . . .×Aj−1 ×Ej ×Aj+1 × . . .×An have the
required property.

(P6) Follows from the previous property by setting b = {s}, which is a Cartesian set.

4. Abstraction Refinement

In this section, we describe our abstraction refinement algorithm, provide an example, analyze its
time complexity, and discuss some implementation details.
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Algorithm 1 Main loop. For a given planning task, returns a plan, proves that no plan exists, or
returns an abstraction of the task (for example to be used as the basis of a heuristic function). All
algorithms operate on the planning task Π = 〈V,O, s0, s?〉 with V = 〈v1, . . . , vn〉.

1: function CEGAR()
2: T ′← TRIVIALABSTRACTION()
3: while not TERMINATIONCONDITION() do
4: τ ′← FINDOPTIMALTRACE(T ′)
5: if τ ′ is “no trace” then
6: return task is unsolvable
7: ϕ← FINDFLAW(τ ′)
8: if ϕ is “no flaw” then
9: return plan extracted from τ ′

10: T ′← REFINE(T ′, ϕ)
11: return T ′

4.1 Refinement Algorithm

We begin by describing the main loop of our algorithm before explaining the details of the underly-
ing functions.

4.1.1 MAIN LOOP

The main loop of the refinement algorithm is shown in Algorithm 1. At every time, the algorithm
maintains an abstract transition system T ′, which it represents as an explicit labeled digraph. Ini-
tially, T ′ is the trivial abstract transition system, containing only one abstract state a0, which covers
all concrete states of the planning task (line 2). Then the algorithm iteratively refines T ′ until a
termination criterion is satisfied (usually a time and/or memory limit, see line 3), the task is proven
unsolvable (lines 5–6) or a concrete plan is found (lines 8–9).

Each iteration of the refinement loop first computes an optimal abstract goal trace τ ′ for the
abstract initial state (line 4). If no such trace exists (τ ′ is “no trace”), the abstract task is unsolvable.
In this case, the concrete task is also unsolvable and we are done (lines 5–6).

Otherwise, we try to convert τ ′ into a concrete goal trace in the FINDFLAW function (line 7).
If the conversion succeeds, i.e., τ ′ contains no flaw, we return the concrete plan extracted from
τ ′ (lines 8–9). If the conversion fails, FINDFLAW returns the first encountered flaw ϕ, i.e., a rea-
son for why the conversion failed. Afterwards, we refine T ′ such that the same flaw ϕ cannot be
encountered in future iterations (line 10).

In each step of the loop the goal distances of all states can only increase. Without time or
memory limits the resulting abstraction heuristic monotonically increases in accuracy with each
refinement, and we will eventually find an optimal concrete plan or prove that no concrete plan
exists. If we hit a time or memory limit (line 3), we abort the loop and return the refined abstract
transition system (line 11).

4.1.2 TRACE VERIFICATION

The FINDFLAW function in Algorithm 2 attempts to convert the abstract goal trace τ ′ into a concrete
goal trace with the same label sequence. If this succeeds, it returns the special value “no flaw”.
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Algorithm 2 Trace verification. Tries to convert a given abstract goal trace τ ′ into a concrete goal
trace. If the conversion fails, returns the first encountered “flaw”, i.e., a pair of a concrete state s
and a Cartesian set c ⊆ [s] such that converting the trace failed because s /∈ c. If the conversion
succeeds, the function returns “no flaw”.

1: function FINDFLAW(τ ′)
2: s← s0
3: for each (a

o−→ b) ∈ τ ′ do
4: if o is not applicable in s then
5: return 〈s, [s] ∩ Cartesian(pre(o))〉
6: if b does not include sJoK then
7: return 〈s, [s] ∩ regr(b, o)〉
8: s← sJoK
9: if s is not a goal state then

10: return 〈s, [s] ∩ Cartesian(s?)〉 with
11: return “no flaw”

Otherwise, it returns a flaw, which we define as a pair 〈s, c〉 where s is a concrete state and c ⊆ [s]
is a Cartesian set such that the conversion of the abstract trace failed because s /∈ c. Let τ ′ =
〈a0 o1−→ a1, a1

o2−→ a2, . . . , ak−1
ok−→ ak〉. We attempt to find a concrete trace 〈s0 o1−→ s1, s1

o2−→
s2, . . . , sk−1

ok−→ sk〉 where s0 is the concrete initial state, [si] = ai for all 0 ≤ i ≤ k, and sk is
a concrete goal state. The conversion procedure starts from the initial state s = s0 of the concrete
task (line 2) and iteratively applies the next operator o in τ ′ until one of the following situations is
encountered:

1. Operator o is not applicable in concrete state s (line 4). In this case, the flaw is 〈s, c〉, where
c is the set of concrete states in [s] in which o is applicable.

2. For abstract and concrete transitions a o−→ b and s o−→ sJoK we have that [s] = a but [sJoK] 6=
b, i.e., the concrete and abstract traces diverge (line 6). This can happen because abstract
transition systems are not necessarily deterministic, and therefore the same abstract state can
have multiple outgoing transitions with the same label. In this case, the flaw is 〈s, c〉 where c
is the set of concrete states in [s] from which we can reach b by applying o.

3. The concrete goal trace has been completed, but the last concrete state s is not a goal state
(line 9). In this case, the flaw is 〈s, c〉 where c is the set of concrete goal states in [s].

Properties P1, P2, P3 and P4 from Theorem 1 entail that c is a Cartesian set in all three cases. If
none of these conditions occur, τ ′ corresponds to a concrete plan, so there is no flaw (line 11).

4.1.3 REFINEMENT

After a flaw 〈s, c〉 has been identified, it serves as the basis for refining the abstraction. The goal
here is to split [s] into two abstract states in such a way that the same flaw cannot occur again after
the refinement.
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[s]

s

d e

c

Figure 5: Illustration of how an abstract state [s] must be split into two new abstract states d and e
for a flaw 〈s, c〉.

Property P6 from Theorem 1 guarantees that it is always possible to partition the abstract state
[s] into two Cartesian sets d and e that separate s from c (i.e., s ∈ d and c ⊆ e). This is illustrated
in Figure 5. For the respective cases this split ensures that

1. o is inapplicable in all concrete states in d,

2. applying o in any state in d cannot lead to a state in b, and

3. d contains no concrete goal states.

Note that to make progress in the abstraction refinement process, it is important that the parti-
tioning of [s] into d and e is proper, i.e., both subsets are proper subsets of [s]. This is equivalent
to the requirement that both subsets are non-empty because a partition of a set into two subsets is
non-proper iff one of the subsets is the whole set and the other one is empty. Hence, we now argue
why d 6= ∅ and e 6= ∅.

The former is easy to see because s ∈ d. To see why e 6= ∅, we observe that c ⊆ e and that in
each of the three cases, c must be non-empty:

1. In the first case, c is the set of concrete states in [s] in which o is applicable. Because T ′ is an
induced abstraction and has a transition starting in [s] labeled with o, c cannot be empty.

2. In the second case, c is the set of concrete states in [s] from which we can reach b by applying
o. Because T ′ is an induced abstraction and has the transition [s]

o−→ b, c cannot be empty.

3. In the third case, c is the set of concrete goal states in [s]. Because T ′ is an induced abstraction
and [s] is an abstract goal state, c cannot be empty.

Because every refinement step for the flaw 〈s, c〉 separates s from c, it is easy to see that the same
flaw can never be encountered in future iterations of the main loop. In every iteration, some abstract
state is split into two smaller abstract states, and therefore the abstraction becomes increasingly more
fine-grained. This implies that the main loop must eventually terminate, even without specifying a
termination condition in line 3, either because no more abstract trace can be found or because the
abstract trace corresponds to a concrete trace.

The REFINE function in Algorithm 3 shows the refinement process. It splits [s] into two new
abstract states d and e as explained above and updates the abstract transition system by replacing [s]
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Algorithm 3 Refinement. Given an abstract transition system T ′ and a flawϕ, refines T ′ by splitting
the abstract state [s] into two new abstract states and returns the resulting abstract transition system
T ′′.

1: function REFINE(T ′, ϕ)
2: 〈S′,L′, T ′, [s0], S′?〉 ← T ′
3: 〈s, c〉 ← ϕ
4: 〈d, e〉 ← SPLIT(s, c)
5: S′′← (S′ \ {[s]}) ∪ {d, e}
6: T ′′← REWIRETRANSITIONS(T ′, [s], d, e)
7: if [s] = [s0] then
8: a0← d
9: else

10: a0← [s0]
11: if [s] ∈ S′? then
12: S′′? ← (S′? \ {[s]}) ∪ {e}
13: else
14: S′′? ← S′?
15: return 〈S′′,L′, T ′′, a0, S′′? 〉

Algorithm 4 Transition rewiring. Given a set of abstract transitions T ′, an abstract state [s] that
is currently being split, and the two resulting new abstract states d and e, calculate the new set of
induced transitions.

1: function REWIRETRANSITIONS(T ′, [s], d, e)
2: T ′′← T ′

3: for each a o−→ b ∈ T ′′ with a = [s] do
4: T ′′← T ′′ \ {a o−→ b}
5: if CHECKTRANSITION(d, o, b) then
6: T ′′← T ′′ ∪ {d o−→ b}
7: if CHECKTRANSITION(e, o, b) then
8: T ′′← T ′′ ∪ {e o−→ b}
9: for each a o−→ b ∈ T ′′ with b = [s] do

10: T ′′← T ′′ \ {a o−→ b}
11: if CHECKTRANSITION(a, o, d) then
12: T ′′← T ′′ ∪ {a o−→ d}
13: if CHECKTRANSITION(a, o, e) then
14: T ′′← T ′′ ∪ {a o−→ e}
15: return T ′′

with d and e. In general, there can be many possible splits that separate s from c, and hence many
possible choices of d and e. We discuss this choice in Section 4.3.

Next, the REFINE function “rewires” the transitions with the REWIRETRANSITIONS function
shown in Algorithm 4. Since only a single state is split into two new states, the rewiring procedure
only needs to make local changes to the transition system. Concretely, it needs to decide for each
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Algorithm 5 Transition check. Returns true iff operator o induces a transition between abstract
states a and b.

1: function CHECKTRANSITION(a, o, b)
2: for each v ∈ V do
3: if v ∈ vars(pre(o)) and pre(o)[v] /∈ dom(v, a) then
4: return false
5: if v ∈ vars(post(o)) and post(o)[v] /∈ dom(v, b) then
6: return false
7: if v /∈ vars(post(o)) and dom(v, a) ∩ dom(v, b) = ∅ then
8: return false
9: return true

incoming and outgoing transition of [s], including self-loops, whether the transition needs to be
rewired from/to d, from/to e, or both. This check is done by CHECKTRANSITION in Algorithm 5.
(We discuss more efficient alternatives to Algorithms 4 and 5 in Section 4.3.)

The last step of the REFINE function is to update the abstract initial state and abstract goal states,
if necessary. Due to the way we split [s] into d and e, e can never be the abstract initial state and d
can never be an abstract goal state.

It is easy to verify that REFINE preserves the abstraction property (see Definition 3): if T ′ is an
abstraction of the concrete transition system, then the refined abstract transition system T ′′ is also
an abstraction of the concrete transition system, with one more abstract state than T ′. Moreover, it
is also easy to verify that REFINE preserves inducedness: if T ′ is an induced abstraction, then so is
T ′′. Because T ′′ is a refinement of T ′ in the sense that every plan of T ′′ is a plan of T ′ (but not vice
versa), all heuristic values based on T ′′ are at least as large as the corresponding heuristic values
based on T ′.

4.2 Example CEGAR Abstraction

Figure 6a shows the initial abstraction for our Gripper example task Π. If we use this abstraction
to define a heuristic h1, we obtain h1(s0) = 0 because [s0] is an abstract goal state. The empty
abstract goal trace 〈〉 fails to solve Π because s0 does not satisfy the goal. Therefore, REFINE

splits [s0] based on the goal variable, leading to the finer abstraction in Figure 6b. The heuristic h2
induced by this abstraction yields h2(s0) = 1 because 〈drop-in-B〉, the optimal abstract plan for
[s0] = {A,B} × {A,G}, has a cost of 1.

The abstract goal trace 〈({A,B} × {A,G}) drop-in-B−−−−−→ ({A,B} × {B})〉 corresponding to this
abstract plan in Figure 6b does not solve Π because two preconditions of drop-in-B are violated in
s0: ball 7→ G and robot 7→ B. We assume that REFINE performs a split based on variable robot (a
split based on ball is also possible), which leads to Figure 6c. The abstraction heuristic h3 for this
abstraction produces the estimate h3(s0) = 2.

A further refinement step, splitting on ball, yields the system in Figure 6d with the optimal

abstract goal trace 〈({A} × {A,G}) move-A-B−−−−−→ ({B} × {G}), ({B} × {G}) drop-in-B−−−−−→ ({A,B} ×
{B})〉 and the heuristic estimate h4(s0) = 2. The first operator is applicable in s0 and takes us into
state s1 with s1(robot) = B and s1(ball) = A, but the second abstract state a1 = {B} × {G} of
the goal trace does not abstract s1, i.e., the abstract and concrete plans diverge. Regression from a1
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{A,B} × {A,B,G}a)

move-A-B, move-B-A, grab-in-A, grab-in-B, drop-in-A, drop-in-B

{A,B} × {A,G} {A,B} × {B}b)

move-A-B, move-B-A
grab-in-A, drop-in-A

drop-in-B

grab-in-B

move-A-B, move-B-A
grab-in-A, drop-in-A

{A} × {A,G} {B} × {A,G} {A,B} × {B}c)
move-A-B

move-B-A

grab-in-A
drop-in-A

drop-in-B

grab-in-B

grab-in-A
drop-in-A

move-A-B
move-B-A

{A} × {A,G} {B} × {G} {A,B} × {B}

{B} × {A}

d)

move-A-B move-B-A

move-A-B

move-B-A
grab-in-A
drop-in-A

drop-in-B

grab-in-B

{A} × {A}

{B} × {A}

{A} × {G} {B} × {G} {A,B} × {B}e)

move-A-B

move-B-A

grab-in-A

drop-in-A

drop-in-B

grab-in-B

move-A-B
move-B-A

Figure 6: Refining the example abstraction.
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with respect to move-A-B yields the Cartesian set c = {A} × {G}, and hence REFINE must split
the abstract initial state [s0] into two new states d and e in such a way that s0 ∈ d and c ⊆ e.

The result of this refinement is shown in Figure 6e. Under this abstraction we can define a
heuristic h5 which yields h5(s0) = 3. The optimal plan for this abstraction is a valid concrete plan,
so we stop refining.

4.3 Implementation

In the following, we describe some of our implementation decisions.

4.3.1 REPRESENTATION OF CARTESIAN SETS

Even though we write a = A1 × . . . × An to denote a Cartesian set for the variable sequence
〈v1, . . . , vn〉, it is important to note that we do not store Cartesian sets as sets of concrete states,
which would require exponential space. Instead, we only store the abstract domains dom(vi, a) for
1 ≤ i ≤ n, requiring space linear in the number of atoms.

4.3.2 REFINEMENT STRATEGY

As noted above, when handling the flaw 〈s, c〉, we have to partition [s] into two new abstract states d
and e with s ∈ d and c ⊆ e. Due to the nature of Cartesian abstractions, the only way of splitting [s]
into two Cartesian sets d and e is to choose a single variable v with s[v] /∈ dom(v, c) and partition
dom(v, [s]) into dom(v, d) and dom(v, e) (cf. the proof of property P6 in Theorem 1). All other
abstract domains must remain the same as in [s], i.e., dom(v′, d) = dom(v′, e) = dom(v′, [s]) for all
v′ ∈ V \ {v}. The question is how to choose v and how to partition dom(v, [s]).

Let us first consider the question of selecting a variable v on which to split [s]. After some
preliminary experiments we chose the following variable-selection strategy, which we call “max-
refined”. Out of the candidate variables, it selects the one that has already been refined the most
in [s], i.e., the variable v that minimizes the fraction |dom(v,[s])|

|dom(v)| among all variables for which splits
are feasible. We break ties by choosing the variable with the smallest index. This strategy clearly
outperforms picking splits randomly and its inverse strategy, i.e., “min-refined”.

After selecting a variable v for which a split is feasible, we need to separate s[v] from dom(v, c).
We must put s[v] into d and dom(v, c) into e. We are free in deciding where to put the remaining
values dom(v, [s]) \ ({s[v]} ∪ dom(v, c)). All other things being equal, we might expect that the
abstract goal distance of d (the state we actually reached) might be higher than the one of e (the new
state we would have wanted to reach), because the remainder of the abstract trace might correspond
to a concrete plan from e, but definitely not from d. Therefore, we choose to put the remaining
values into d, which might result in a greater increase of the average heuristic value.

4.3.3 LOOKUP FUNCTION

For the heuristic to be efficiently computable, we must be able to retrieve heuristic values very
fast. The most critical operation here is computing the abstract state [s] given a concrete state
s. To make this operation efficient, we store a refinement hierarchy of split abstract states. This
hierarchy is a binary tree of abstract states whose root is the first abstract state that was split, i.e.,
the only abstract state in the trivial abstract transition system. Whenever a state is split, the two
resulting states become its child nodes. The leaves of the refinement hierarchy are the states in the
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Algorithm 6 Abstract state lookup function. Given the concrete state s, return the abstract state [s]
by traversing the refinement hierarchy.

1: function GETABSTRACTSTATE(s)
2: a← root of the refinement hierarchy
3: while HASCHILDREN(a) do
4: b, c← GETCHILDREN(a)
5: v← GETSPLITVARIABLE(a)
6: if s[v] ∈ dom(v, b) then
7: a← b
8: else
9: a← c

10: return a

{A,B} × {A,B,G}

{A,B} × {A,G}

{A} × {A,G}

{A} × {A} {A} × {G}

{B} × {A,G}

{B} × {A} {B} × {G}

{A,B} × {B}

Figure 7: Refinement hierarchy for the final abstraction of the Gripper example from Figure 6e.

final abstraction. In addition to the child nodes we also store the variable on which each abstract
state was split. Figure 7 shows an example refinement hierarchy and GETABSTRACTSTATE in
Algorithm 6 demonstrates how we use refinement hierarchies for looking up abstract states. We
analyze the runtime complexity of this operation below.

4.3.4 A∗ SEARCH

In principle, we could use any optimal algorithm for finding optimal traces in line 4 of Algorithm 1,
such as Dijkstra’s algorithm. However, the FINDOPTIMALTRACE function runs significantly faster
if we use A∗ with the following heuristic: every time we find an abstract trace τ , we update the goal
distances of all states visited by τ . These heuristic values are admissible since τ is optimal. During
each refinement we use the goal distance of the split state for the two new states. The heuristic
remains admissible since refinements can only increase goal distances.

4.3.5 SELF-LOOPS

We store self-loops separately from state-changing transitions. This reduces both the time and
the memory needed to refine an abstraction. The reason for the speedup is that the representation
allows us to avoid the overhead of following self-loops in the FINDOPTIMALTRACE function. We
save memory since instead of storing an operator and a destination state, as for state-changing
transitions, we only need to store an operator for self-loops.
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4.3.6 REWIRING TRANSITIONS EFFICIENTLY

Since we have to rewire numerous transitions during each refinement, we need to make this opera-
tion as fast as possible. Algorithm 4 shows a straightforward but inefficient implementation, which
iterates over all transitions, determines which ones are affected by the current refinement step, and
then uses Algorithm 5 to decide whether a given hypothetical transition is part of the abstract tran-
sition system.

The actual implementation does not iterate over all transitions, but maintains the incoming and
outgoing transitions of each abstract state for direct access. The transitions are updated in-place, not
copied and modified as in Algorithm 4.

Moreover, the individual transition checks can be made more efficient by exploiting the fol-
lowing observation: whenever we check for the existence of a transition a′′ o−→ b′′ in the refined
transition system T ′′, this check is triggered by an existing transition a′ o−→ b′ in the current tran-
sition system T ′, where a′′ = a′ or a′′ is obtained from a′ by splitting based on the variable v,
and similarly b′′ = b′ or b′′ is obtained from b′ by splitting based on the variable v. This means
that a′′ agrees with a′ on all variables other than v, and b′′ agrees with b′ on all variables other
than v. Because T ′ is an induced transition system with the transition a′ o−→ b′, we know that none
of the variables v′ 6= v can cause the transition check to fail. Therefore, it is sufficient to only
consider variable v to determine whether the refined transition exists. This greatly speeds up the
refinement loop. In our implementation we split the generic transition check into three special-
ized procedures, one for each type of transition: REWIREINCOMINGTRANSITION (Algorithm 9),
REWIREOUTGOINGTRANSITION (Algorithm 10) and REWIRESELFLOOP (Algorithm 11). They
are shown in Appendix A.

4.4 Theoretical Runtime Analysis

For our abstraction refinement algorithm to be useful, it has to be able to make refinements very
fast. The following runtime guarantees show that the critical operations have adequate worst-case
runtime complexities.

Theorem 2. Runtimes of operations on Cartesian sets.
If k is the number of atoms in a planning task Π, the following functions are computable in time
O(k) for Cartesian abstractions ∼:

(R1) Compute the intersection of two Cartesian sets.

(R2) Compute the regression of operator o over a Cartesian set.

(R3) Given s ∈ S(Π), compute [s]∼ and h∼(s) (after abstract goal distances have been precom-
puted).

(R4) Given Cartesian sets a and b and operator o, decide if a o−→ b is an abstract transition.

(R5) Given state s ∈ S(Π) and Cartesian set a, decide whether a contains s.

Proof. We represent Cartesian sets a as bit vectors where exactly the bits corresponding to atoms
included in a are set. Let V = 〈v1, . . . , vn〉 be the sequence of variables in Π.

(R1) Intersecting two Cartesian sets a and b with a = A1 × . . . × An and b = B1 × . . . × Bn by
intersecting the bit vectors takes time O(k).
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(R2) The proof of property P4 of Theorem 1 on page 541 shows how the regression is computed.
All membership tests can be computed in O(1). Therefore, the worst-case time complexity is
O(k).

(R3) Algorithm 6 on page 551 shows how we compute the abstract state corresponding to a given
concrete state. Its runtime is determined by the number of iterations and the time for each
iteration. There can be at most k iterations, since in the worst case we split off one of the k
atoms from the same abstract state k times. Because the set membership test in line 6 runs in
constant time, computing [s]∼ given s ∈ S(Π) runs in time O(k). Once we have computed
the abstract state, retrieving the heuristic value is a constant-time lookup operation. Therefore,
also computing h∼(s) given s ∈ S(Π) takes time O(k).

(R4) Algorithm 5 on page 548 shows the general procedure for checking if a transition exists be-
tween two states. The runtime of the third case in the loop dominates the runtimes of the other
two because it involves the intersection of domains instead of a simple membership test. One
intersection for variable v ∈ V runs in time O(|dom(v)|). In the worst case an intersection is
performed for each variable v ∈ V , and thus the whole algorithm has the asymptotic runtime
O(

∑n
i=1 |dom(vi)|) = O(k).

(R5) Let b = {s[v1]}× . . .×{s[vn]} be the Cartesian set that only contains s. Constructing b takes
timeO(k) since we represent it as a bit vector of length k. The intersection a∩b is non-empty
iff a contains s. Using property R1 we can see that the whole operation runs in time O(k).

5. Multiple Abstractions

Even with these algorithmic improvements, building a single big abstraction suffers from the prob-
lem of diminishing returns. This phenomenon is quantified by Korf’s conjecture, which implies that
in a unit-cost setting the maximum heuristic value in an abstract transition system grows (only) log-
arithmically in the number of abstract states (Korf, 1997). For example, if the base of this logarithm
is 2, each successive improvement of the heuristic value of the initial state by 1 might require dou-
bling the number of abstract states. This is a prototypical example of diminishing returns. While
Korf’s conjecture makes many simplifying assumptions that do not generally hold, experiments
have confirmed many times and for many different classes of abstractions that such diminishing
returns almost always occur. (See Holte, 2013, for a detailed discussion of Korf’s conjecture and its
consequences.)

Intuitively, using only a single abstraction of a given task is often not enough to cover suffi-
ciently many aspects of the task with a reasonable number of abstract states. Therefore, it is often
beneficial to build multiple abstractions that focus on different aspects of the problem (Holte, Felner,
Newton, Meshulam, & Furcy, 2006). This raises two questions: how do we come up with different
abstractions, and how do we combine their heuristic estimates admissibly? To answer the second
question, we introduce a new cost partitioning algorithm, which we will describe next. Afterwards,
we will discuss ways to calculate diverse sets of abstractions.
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5.1 Saturated Cost Partitioning

When using multiple admissible heuristics, we want them to be additive in order to obtain a more
informed overall estimate, i.e., we want the sum of their individual estimates to be admissible. One
way to achieve this is to use cost partitioning (Katz & Domshlak, 2008), dividing operator costs
among multiple cost functions. Traditionally, these cost functions were required to assign non-
negative costs to operators, but as Pommerening, Helmert, Röger, and Seipp (2015) showed, this
restriction is unnecessary.

Definition 6. Cost partitioning.
A cost partitioning for a planning task with operators O and cost function cost is a sequence
cost1, . . . , costn of cost functions costi : O → R such that

∑
1≤i≤n costi(o) ≤ cost(o) for all

operators o ∈ O.

Cost partitioning can be used to enforce additivity of a family of heuristics h1, . . . , hn. Each
heuristic hi is evaluated according to its own “private” operator cost function costi. If each hi
is admissible (i.e., hi(s, cost) ≤ h∗(s, cost) for all states s and cost functions cost), then their sum∑n

i=1 hi(s, costi) is admissible for the original cost function cost due to the way the cost partitioning
distributes the operator costs. The question is: how do we find a cost partitioning that achieves a
high overall heuristic estimate?

Katz and Domshlak (2008, 2010) showed that optimal cost partitionings can be found in poly-
nomial time by linear programming for a wide range of abstraction heuristics. It has been demon-
strated empirically that computing optimal cost partitionings for some or even all states encountered
during search is a viable approach for landmark heuristics and certain classes of implicit abstrac-
tion heuristics (Karpas & Domshlak, 2009; Katz & Domshlak, 2010; Karpas, Katz, & Markovitch,
2011). However, computing even a single optimal cost partitioning can already be prohibitively
expensive for (explicit) abstractions of modest size (Pommerening, Röger, & Helmert, 2013; Seipp,
Keller, & Helmert, 2017b).

Consequently, several alternatives to optimal cost partitioning with varying time vs. accuracy
tradeoffs have been proposed, such as uniform cost partitioning (Katz & Domshlak, 2007) and post-
hoc optimization (Pommerening et al., 2013). A drawback of these non-optimal cost partitioning
algorithms is that they can assign a higher share of the costs to a heuristic than necessary, in the
sense that the same heuristic values could be obtained with a lower share of the costs. There-
fore, we introduce a new cost partitioning algorithm, called saturated cost partitioning, which does
not waste costs by assigning them to heuristics that do not make use of them. Seipp, Keller, and
Helmert (2017a) provide a theoretical and experimental comparison of cost partitioning algorithms,
including saturated cost partitioning.

The saturated cost partitioning algorithm works as follows: given an ordered sequence of heuris-
tics 〈h1, . . . , hn〉 and an overall cost function cost, we compute the minimum cost function cost1
with h1(s, cost1) = h1(s, cost) for all states s. Then we subtract cost1 from cost and use the re-
maining costs cost − cost1 as a new overall cost function, repeating the process for h2, and so on.
As a result, each heuristic hi only uses the costs that it actually needs to maintain its estimates (for
the given remaining costs), and the remaining costs are used to define further cost functions that
allow summing the estimates of all heuristics admissibly. We use the name saturated cost function
to refer to the minimum cost function that preserves all heuristic values. A saturated cost function
is a generalized cost function since it may assign negative costs to operators, including −∞ for
operators that are only applicable in states from which no goal state can be reached.
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Definition 7. Generalized cost function.
Let Π be a planning task with operators O. A generalized cost function cost assigns real-valued
costs or negative infinity to each operator, i.e., cost(o) ∈ R ∪ {−∞} for all o ∈ O.

Definition 8. Saturated cost function.
Let Π be a planning task with operators O. Let h be a heuristic for Π and cost be a (non-
generalized) cost function forO. The saturated cost function scf = saturate(h, cost) is the minimum
generalized cost function that preserves all heuristic estimates. Formally,

1. h(s, scf) = h(s, cost) for all states s ∈ S(Π) and

2. all other generalized cost functions cost′ with h(s, cost′) = h(s, cost) for all states s ∈ S(Π)
satisfy cost′(o) ≥ scf(o) for all operators o ∈ O.

In general, such a cost function does not necessarily exist because there might be no unique min-
imum cost function. However, for explicitly-represented abstraction heuristics h, saturate(h, cost)
exists and can be efficiently computed as shown in the following theorem.

Theorem 3. Saturated cost function for abstraction heuristics.
Let Π be a planning task with operators O and cost function cost, and let h be an abstraction
heuristic for Π defined by the abstract transition system T with states S and transitions T . Fur-
thermore, let h∗T (a, cost′) be the cost of the cheapest abstract plan in T weighted by cost function
cost′ for the abstract state a ∈ S. Finally, let Tfin ⊆ T be the subset of transitions a o−→ b ∈ T with
h∗T (b, cost) <∞. Then the saturated cost function saturate(h, cost) is the function scf with

scf(o) =

{
−∞ if o induces no transitions in Tfin

max
a

o−→b∈Tfin
(h∗T (a, cost)− h∗T (b, cost)) otherwise

for all o ∈ O.

Proof. We first observe that scf(o) in the statement of the theorem is well-defined for every operator
o. If o induces no transitions, the first case applies. Otherwise, the maximization in the second case
is over a non-empty set, and h∗T (a, cost) − h∗T (b, cost) for a given transition a o−→ b is a difference
of finite values and hence well-defined. (The value h∗T (b, cost) is finite by definition of Tfin, and
h∗T (a, cost) is finite because a has a successor with finite heuristic value, namely b.)

We now show that scf satisfies the two properties of saturated cost functions from Definition 8:

Prop. 1. We must show h(s, scf) = h(s, cost) for all states s ∈ S(Π).

We first show h(s, scf) ≤ h(s, cost) for all s ∈ S(Π). It is easy to see that scf(o) ≤ cost(o)
for all operators o: in the case where scf(o) = −∞, this holds trivially, and otherwise there
exists a transition a o−→ bwith scf(o) = h∗T (a, cost)−h∗T (b, cost) ≤ cost(o)+h∗T (b, cost)−
h∗T (b, cost) = cost(o), where we use that h∗T (a, cost) ≤ cost(o) + h∗T (b, cost) by the
triangle inequality. From scf(o) ≤ cost(o) for all o, we get that h(s, scf) ≤ h(s, cost) for
all states s ∈ S(Π) since lowering the weights in a transition system can only decrease
goal distances.
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It remains to show h(s, scf) ≥ h(s, cost) for all concrete states s ∈ S(Π). Since changing
the cost function does not affect the abstraction mapping, this is the case if h∗T (a, scf) ≥
h∗T (a, cost) for all abstract states a ∈ S.

Let a0 be any abstract state in S. If there is no goal trace for a0, we have h∗T (a0, scf) =

h∗T (a0, cost) = ∞. Otherwise, let τ = 〈a0 o1−→ a1, . . . , ak−1
ok−→ ak〉 be a goal trace for

a0. All transitions in τ must be part of Tfin because clearly the goal is reachable from all
states that τ traverses. We can bound the cost of τ under scf by

k∑
i=1

scf(oi)
(1)

≥
k∑

i=1

(h∗T (ak−1, cost)− h∗T (ak, cost))

(2)
=

k−1∑
i=0

h∗T (ak, cost)−
k∑

i=1

h∗T (ak, cost)

(3)
= h∗T (a0, cost)− h∗T (ak, cost)
(4)
= h∗T (a0, cost)− 0

= h∗T (a0, cost),

where (1) uses that scf(o) ≥ h∗T (a, cost)− h∗T (b, cost) for all transitions a o−→ b ∈ Tfin, (2)
and (3) are basic arithmetic, and (4) uses that ak is a goal state.

This shows that the cost of any plan for a0 under scf is never lower than h∗T (a0, cost), the
cost of an optimal plan under cost. This proves h∗T (a, scf) ≥ h(a, cost) for all abstract
states a ∈ S, concluding this part of the proof.

Prop. 2. By contradiction: let cost′ be a generalized cost function with h(s, cost′) = h(s, cost)
for all concrete states s ∈ S(Π) and cost′(o) < scf(o) for some operator o ∈ O. Since
cost′(o) can only be lower than scf(o) if scf(o) 6= −∞, this means that the second case in
the definition of scf in the statement of this theorem applies for o and we have cost′(o) <
max

a
o−→b∈Tfin

(h∗T (a, cost) − h∗T (b, cost)). Therefore, there exists a transition a o−→ b ∈
Tfin with cost′(o) < h∗T (a, cost) − h∗T (b, cost). This implies h∗T (a, cost) > cost′(o) +
h∗T (b, cost). Because h(s, cost′) = h(s, cost) for all concrete states s ∈ S(Π), we also
have h∗T (c, cost′) = h∗T (c, cost) for all abstract states c ∈ S. With this, we obtain
h∗T (a, cost′) > cost′(o) + h∗T (b, cost′), which violates the triangle inequality for short-
est paths in graphs.

Using Theorem 3 we can efficiently compute the saturated cost function for any abstraction
heuristic where the abstract transition system is either explicitly represented, as for Cartesian ab-
stractions and merge-and-shrink abstractions without label reduction (Helmert et al., 2014), or easily
enumerable, as for pattern databases (Culberson & Schaeffer, 1998). For merge-and-shrink heuris-
tics using label reduction (Sievers, Wehrle, & Helmert, 2014) the computation is more expensive,
but still polynomial.

We demonstrate how to compute the saturated cost function for abstractions in Figure 8. It shows
the abstract transition system of an example abstraction heuristic. The transitions are weighted by a

556



COUNTEREXAMPLE-GUIDED CARTESIAN ABSTRACTION REFINEMENT FOR CLASSICAL PLANNING

h = 3 h = 2

h = 1

h = 4

h = 0

o3

o4

o 2

o7

o
6

o5

o7

o
3

o1

o 1

o ∈ O cost(o) scf(o)

o1 5 max(4− 0, 2− 0) = 4
o2 2 max(3− 1) = 2
o3 1 max(3− 3, 1− 0) = 1
o4 4 max(1− 1) = 0
o5 1 max(2− 1) = 1
o6 7 max(3− 4) = −1
o7 2 max(3− 2, 4− 2) = 2

Figure 8: Left: abstract transition system of an example planning task. Every transition is associated
with an operator. Right: original costs and saturated costs that suffice to preserve all goal distances
in the abstract transition system.

Algorithm 7 Saturated Cost Partitioning. For a given sequence of heuristics and a cost function,
compute the saturated cost partitioning.

1: function SATURATEDCOSTPARTITIONING(〈h1, . . . , hn〉, cost)
2: for 1 ≤ i ≤ n do
3: scfi← saturate(hi, cost)
4: cost← cost− scfi
5: return 〈scf1, . . . , scfn〉

given cost function cost. The states in the abstract transition system show the abstract goal distances
(h = X). The table on the right in Figure 8 lists both the original and the saturated cost of each
operator. Note that the transition from h = 2 to h = 0 must have at least a weight of 4. Otherwise,
the transition between h = 4 and h = 0, which is induced by the same operator, would also be
assigned a weight smaller than 4 and thus the goal distance for h = 4 would decrease.

Splitting the cost of each operator o into the cost needed for preserving the goal distances scf(o)
and the remaining cost cost(o) − scf(o) produces a cost partitioning: we associate the saturated
cost function scfi with the current heuristic hi and use the remaining cost cost − scfi to define
further cost functions for subsequent heuristics. Algorithm 7 shows pseudo-code for the saturated
cost partitioning procedure. For operators o that have a saturated cost of −∞ in abstraction i,
the remaining cost of o is ∞ in all subsequent abstractions. Strictly speaking, this means that the
remaining cost function is no longer a normal cost function. However, such infinite costs can be
handled easily by removing all transitions induced by o in these abstractions.

In our implementation, we exploit the fact that saturated cost partitioning only needs to hold
one abstract transition system in memory at a time by interleaving abstraction computation and
cost partitioning: we iteratively create an abstract transition system T ′ using the remaining cost
function cost, compute the saturated cost function scf for T ′, subtract scf from cost and build the
next abstraction using the reduced cost function.
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A further modification we apply in our implementation is ignoring abstract states (and their
outgoing transitions) that are unreachable from the abstract initial state. Since we want to apply the
resulting heuristic to forward search, heuristic values of unreachable states are irrelevant, and using
lower costs is always preferable if we can still preserve the heuristic values of all reachable states.

5.2 Multiple Abstractions of the Original Task

Having discussed how we can combine multiple abstraction heuristics, we now need a way to come
up with different abstractions to combine. We have shown above how to build a single Cartesian
abstraction using a timeout of X seconds. The simplest idea to come up with n abstraction heuris-
tics, then, is to repeat the CEGAR algorithm n times with timeouts of X/n seconds, computing the
saturated cost function after each iteration, and using the remaining cost in subsequent iterations.

Table 1 shows the number of solved tasks from previous International Planning Competitions
for X = 900s and different values of n. All versions use A∗ and the saturated cost partitioning
heuristics computed over the n abstraction heuristics to find a plan. We give each run a time limit
of 1800 seconds (of which at most X seconds are used to construct the abstractions) and a memory
limit of 2 GiB.

We see that building more than one abstraction is usually detrimental. In only 4 out of 40 do-
mains it is beneficial to use multiple abstractions: we obtain the highest coverage in Logistics when
using 10 abstractions, for Sokoban it is preferable to use 5 or 10 abstractions and for Openstacks and
Tetris we obtain the best results with 2–50 abstractions. The total coverage score remains roughly
the same when going from 1 to 10 abstractions but it decreases when we use 20 or more abstrac-
tions. We hypothesize that this is the case because the computed abstractions are too similar to
each other, focusing mostly on the same parts of the task. Computing multiple abstractions does not
yield a more informed additive heuristic and instead just consumes time that could have been used
to further refine a single abstraction.

To see why diversifying abstractions is essential, consider the extreme case where we evaluate
the same abstraction heuristic h under two different cost functions cost1 and cost2. For every state
s we have h(s, cost1) + h(s, cost2) ≤ h(s, cost1 + cost2), i.e., using the sum of heuristic values
is dominated by using h only once with cost function cost1 + cost2. (This follows from the ad-
missibility of cost partitioning and the fact that abstraction heuristics are based on shortest paths in
transition systems.) So we need to make sure that the abstractions computed in different iterations
of the algorithm are sufficiently different.

There are several possible ways of ensuring such diversity within the CEGAR framework. One
way is to make sure that different iterations of the CEGAR algorithm produce different results even
when presented with the same input planning task. This is quite possible to do because the CEGAR
algorithm has several choice points that affect its outcome, in particular in the refinement step where
there are frequently multiple splits to choose from. By ensuring that these choices are resolved
differently in different iterations of the algorithm, we can achieve some degree of diversification.
We call this approach diversification by refinement strategy.

Another way of ensuring diversity, even in the case where the CEGAR algorithm always gener-
ates the same abstraction when faced with the same input task, is to modify the inputs to the CEGAR
algorithm. Rather than feeding the actual planning task to the CEGAR algorithm, we can present
it with different “subproblems” in every iteration, so that it will naturally generate different results.
To ensure that the resulting heuristic is admissible, it is sufficient that every subproblem we use as
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Abstractions 1 2 5 10 20 50 100 200 500 1000

airport 22 22 22 22 22 22 21 21 18 18
barman 4 4 4 4 4 4 4 4 0 0
blocks 18 18 18 18 18 18 18 18 16 16
depot 5 5 5 5 5 4 4 4 4 2
driverlog 10 10 10 10 10 10 10 10 8 7
elevators 29 29 29 29 29 29 29 26 20 16
floortile 2 2 2 2 2 2 2 2 2 0
freecell 19 19 18 18 18 17 15 15 14 14
ged 15 15 15 15 15 15 15 15 13 12
grid 2 2 2 2 2 2 2 2 2 1
gripper 8 8 8 8 8 7 7 6 6 6
hiking 12 12 12 12 12 12 12 11 11 10
logistics 17 17 17 18 17 17 17 16 13 13
miconic 55 55 55 55 55 55 55 52 50 45
mprime 27 27 27 27 26 27 25 25 24 24
mystery 18 18 17 17 17 17 17 17 17 16
nomystery 10 10 9 9 9 8 8 8 8 7
openstacks 45 47 47 47 47 47 42 40 31 27
parcprinter 18 18 18 18 18 18 18 18 14 14
pegsol 44 44 44 44 44 44 44 44 42 42
pipes-nt 17 17 17 17 17 17 16 14 13 12
pipes-t 12 12 12 12 12 12 10 10 10 7
psr-small 49 49 49 49 49 49 48 48 48 48
satellite 6 6 6 6 6 6 6 5 5 5
scanalyzer 21 21 21 21 21 21 21 21 9 9
sokoban 39 39 41 41 39 37 32 31 27 20
storage 15 15 15 15 15 15 14 14 13 13
tetris 7 9 9 9 9 9 8 7 5 5
tidybot 22 22 22 22 22 19 19 18 12 9
tpp 6 6 6 6 6 6 6 6 5 5
transport 23 23 23 23 23 22 22 21 21 19
trucks 8 7 7 7 6 6 6 6 4 4
visitall 13 13 13 13 13 13 12 12 12 12
woodwork 15 13 13 13 13 13 9 9 9 9
zenotravel 9 9 8 8 8 8 8 8 8 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sum (1667) 682 683 681 682 677 668 642 624 554 515

Table 1: Number of solved tasks for a growing number of Cartesian abstractions. We omit domains
in which coverage does not change and highlight best results in bold.
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an input to the CEGAR algorithm is itself an abstraction of the original task. We call this approach
diversification by task modification. We discuss these two approaches in the following sections.

5.3 Diversification by Refinement Strategy

As discussed in Section 4.3, when handling a flaw 〈s, c〉, there are often multiple variables V ′ ⊆
V for which a split is feasible. Our first diversification method changes how CEGAR chooses
one of these variables. It bases this decision on the hadd values (Bonet & Geffner, 2001) of the
values in dom(v, c). More concretely, it chooses among the feasible candidates by selecting the
variable that has a value in c with the highest hadd value, i.e., the variable v ∈ V ′ that maximizes
maxv 7→x∈dom(v,c) h

add(v 7→ x), breaking ties in favor of variables with a smaller index.

This “max-hadd” refinement strategy (unlike the default strategy “max-refined”) is affected by
the costs of the operators, which change from iteration to iteration as costs are used up by previously
computed abstractions. This inherently biases CEGAR towards regions of the state space where
operators still have high costs.

Table 2 shows the results for this approach. We see that the hadd-based refinement strategy leads
to better results than the default refinement strategy on average. While both methods solve the same
number of tasks in the basic case of only one abstraction (682 tasks), for values of n between 2 and
1000 we obtain 16–40 additional solved tasks compared to the corresponding columns in Table 1.
We also see that 10 out of 40 domains benefit from using more than one abstraction, whereas for the
original refinement strategy this only holds for 4 domains. The total coverage score increases from
682 to 700–705 tasks when using 2–50 abstractions instead of a single abstraction. If we use 100 or
more abstractions, total coverage decreases again.

Overall, we see that using a refinement strategy that takes into account the operator costs and
hence interacts well with cost partitioning can lead to better scalability for additive CEGAR heuris-
tics. However, the improvements obtained in this way are quite modest. This motivates diversi-
fication by task modification, which is a somewhat more drastic approach than diversification by
refinement strategy. The basic idea is that we identify different aspects of the planning task and
then generate an abstraction of the original task for each of these aspects. Each invocation of the
CEGAR algorithm uses one of these abstractions as its input and is thus constrained to exclusively
focus on one aspect.

We propose two different ways for coming up with such “focused subproblems”: abstraction
by goals and abstraction by landmarks.

5.4 Abstraction by Goals

Our first approach, abstraction by goals, generates one abstract task for each goal atom of the plan-
ning task. The number of abstractions generated is hence equal to the number of goals.

If v 7→ d is a goal atom, we create a modified planning task which is identical to the original
one except that v 7→ d is the only goal atom. This means that the original and modified task have
exactly the same states and transitions and only differ in their goal states. In the original task, all
goals need to be satisfied in a goal state, but in the modified one, only v 7→ d needs to be reached.
The goal states of the modified task are hence a superset of the original goal states, and we can
conclude that the modification defines a non-induced abstraction in the sense of Definition 3 (where
the abstraction mapping is the identity function).
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Abstractions 1 2 5 10 20 50 100 200 500 1000

airport 21 22 23 23 23 23 22 22 19 19
barman 4 4 4 4 4 4 4 4 3 0
blocks 18 18 18 18 18 18 18 18 18 16
depot 5 5 5 5 5 5 4 4 4 4
driverlog 10 10 10 10 10 10 10 9 9 9
elevators 26 26 26 26 26 26 26 20 16 14
freecell 19 19 19 19 19 17 17 15 14 14
ged 15 15 15 15 15 15 15 15 15 13
grid 2 2 2 2 2 2 2 1 1 1
gripper 8 8 8 8 8 8 8 8 7 6
hiking 11 11 11 11 11 11 11 11 10 9
logistics 18 24 23 23 23 22 21 20 20 19
miconic 55 61 60 60 60 60 58 55 52 50
mprime 26 26 26 26 26 25 24 24 23 23
mystery 17 17 17 17 17 17 17 17 16 16
nomystery 10 11 13 12 10 10 9 8 8 8
openstacks 47 47 47 47 47 47 43 39 36 31
parcprinter 20 20 20 20 20 20 20 17 18 16
pegsol 44 44 44 44 44 44 44 44 42 42
pipes-nt 17 17 17 17 17 17 17 16 15 13
pipes-t 14 14 14 14 14 14 12 11 10 10
psr-small 49 49 49 49 49 49 49 49 48 48
rovers 6 7 8 7 8 8 8 8 7 7
scanalyzer 21 21 21 21 21 21 21 21 9 9
sokoban 39 39 39 39 39 38 37 29 24 21
storage 15 15 15 15 15 15 14 14 14 13
tetris 8 9 9 8 8 9 8 7 6 5
tidybot 22 24 24 24 24 26 24 22 18 17
tpp 6 7 7 7 7 7 7 7 6 6
transport 23 23 23 23 23 22 22 21 19 17
trucks 7 9 9 9 9 9 9 7 8 5
visitall 13 13 13 13 13 13 13 13 12 12
woodwork 15 15 15 15 15 17 17 13 10 9
zenotravel 9 9 9 9 9 9 9 9 9 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sum (1667) 682 703 705 702 701 700 682 640 588 552

Table 2: Number of solved tasks for a growing number of Cartesian abstractions. All abstractions
are computed by CEGAR using the max-hadd refinement strategy. We omit domains in which
coverage does not change and highlight best results in bold.
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Algorithm 8 Construct modified task for landmark v 7→ d.
1: function LANDMARKTASK(Π, v 7→ d)
2: 〈V,O, s0, s?〉 ← Π
3: V ′← V
4: F ← POSSIBLYBEFORE(Π, v 7→ d)
5: for all v′ ∈ V ′ do
6: dom(v′)← {d′ ∈ dom(v′) | v′ 7→ d′ ∈ F ∪ {v 7→ d}}
7: O′← {o ∈ O | pre(o) ⊆ F}
8: for all o ∈ O′ do
9: if v 7→ d ∈ eff(o) then

10: eff(o)← {v 7→ d}
11: return 〈V ′,O′, s0, {v 7→ d}〉

12: function POSSIBLYBEFORE(Π, v 7→ d)
13: 〈V,O, s0, s?〉 ← Π
14: F ← s0
15: while F has not reached a fixpoint do
16: for all o ∈ O do
17: if v 7→ d /∈ eff(o) ∧ pre(o) ⊆ F then
18: F ← F ∪ eff(o)
19: return F

Abstracting by goals has the obvious drawback that it only works for tasks with more than one
goal atom. Since any task could potentially be reformulated to only contain a single goal atom, a
smarter way of diversification is desirable.

5.5 Abstraction by Landmarks

Our next diversification strategy solves this problem by using fact landmarks instead of goal atoms
to define subproblems of a task. Fact landmarks are atoms that have to be true at least once in all
plans for a given task (e.g., Hoffmann, Porteous, & Sebastia, 2004). Since obviously all goal atoms
are also fact landmarks, this method can be seen as a generalization of the previous strategy.

More specifically, we generate the causal fact landmarks of the delete relaxation of the planning
task Π with the algorithm by Keyder et al. (2010) for finding hm landmarks with m = 1. Then for
each landmark l = v 7→ d we compute a modified task Πl that considers l as the only goal atom.

Without further modifications, however, this change does not constitute an abstraction (not even
a non-induced abstraction), and hence the resulting heuristic could be inadmissible. This is because
landmarks do not have the same semantics as goals: goals need to be satisfied at the end of a plan,
but landmarks are only required at some point during the execution of a plan.

Existing landmark-based heuristics address this difficulty by remembering which landmarks
have been achieved en route to any given state and only base the heuristic information on landmarks
which have not yet been achieved (e.g., Richter, Helmert, & Westphal, 2008; Karpas & Domsh-
lak, 2009). This makes these heuristics path-dependent, i.e., their heuristic values are no longer a
function of the state alone.
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x 7→ 0 x 7→ 1 x 7→ 2
o1 o2

Figure 9: Example task in which operators o1 and o2 change the value of the single variable x from
its initial value 0 to 1 and from 1 to its desired value 2.

Path-dependency comes at a significant memory cost for storing landmark information, so we
propose an alternative approach that is purely state-based. For every state s, we use a sufficient
criterion for deciding whether the given landmark might have been achieved on the path from the
initial state to s. If yes, s is considered as a goal state in the modified task and hence will be assigned
a heuristic value of 0 by the associated abstraction heuristic.

Without path information, how can we decide whether a given landmark could have been
reached prior to state s? The key to this question is the notion of a possibly-before set for atoms
of delete relaxations, which has been previously considered by Porteous and Cresswell (2002). We
say that an atom f ′ is possibly before atom f if f ′ can be achieved in the delete relaxation of the
planning task without achieving f . We write pb(f) for the set of atoms that are possibly before f ;
this set can be computed using a fixpoint computation shown in Algorithm 8 (function POSSIBLY-
BEFORE). This simple implementation runs in time O(n2) for a task of size n, but a linear time
version is possible by using suitable data structures. From the monotonicity properties of delete
relaxations, it follows that if l is a delete-relaxation landmark and all atoms of the current state s are
contained in pb(l), then l still has to be achieved from s.

Based on this insight, we can construct Πl as follows. First, we compute pb(l). The modified
task Πl only contains the atoms in pb(l) and l itself; all other atoms are removed. The landmark
l is the only goal. The initial state and operators are identical to the original task, except that we
discard operators whose preconditions are not contained in pb(l) (by the definition of possibly-
before sets, these can only become applicable after reaching l) and for all operators that achieve l,
we make l their only effect. (Adapting such operators is necessary because they might have other
effects that fall outside pb(l). Note that such operators are guaranteed to achieve a goal state, and
for an abstraction heuristic it does not matter which exact goal state we end up in.) The complete
construction is shown in Algorithm 8.

The states S(Πl) of the modified task are exactly the states s of the original planning task where
s ⊆ pb(l) ∪ {l}. The abstraction function that is associated with the modified task maps every
state in S(Πl) to itself. In all other states the landmark might potentially have been achieved, so
they should be mapped to an arbitrary goal state of the modified task. This mapping is easy to
represent within the framework of Cartesian abstraction because S(Πl) is a Cartesian set and its
complement can be represented as the disjoint union of a small number of Cartesian sets (bounded
by the number of variables of the planning task). Like in the case of abstraction by goals, the goal
states of the landmark task are a superset of the goal states in the original task. Therefore, the
resulting abstraction is not induced in the sense of Definition 3.

5.6 Abstraction by Landmarks: Improved

In the basic form just presented, the tasks constructed for fact landmarks do not provide as much
diversification as we would desire. We illustrate the issue with the example task depicted in Figure 9.
The task has three landmarks x 7→ 0, x 7→ 1 and x 7→ 2 that must be achieved in exactly this order
in every plan. When we compute the abstraction for x 7→ 1, the CEGAR algorithm has to find
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x 7→ 0 x 7→ 1 x 7→ 2

y 7→ 0

y 7→ 1

y 7→ 2

Figure 10: Example landmark orderings. Orderings implied by transitivity are omitted. For exam-
ple, the ordering x 7→ 0 ≺ x 7→ 2 is represented by x 7→ 0 ≺ x 7→ 1 and x 7→ 1 ≺ x 7→ 2. (Note
that natural landmark orderings are transitive.) To avoid focusing on the same parts of the task in
multiple subtasks, the improved abstraction-by-landmarks procedure combines the atoms y 7→ 0
and y 7→ 1 before building the abstraction for x 7→ 1. For the subtask x 7→ 2, it combines the atoms
y 7→ 0, y 7→ 1, y 7→ 2, and it also combines the atoms x 7→ 0 and x 7→ 1.

a plan for getting from x 7→ 0 to x 7→ 1. Similarly, the abstraction procedure for x 7→ 2 has to
return a plan that takes us from x 7→ 0 to x 7→ 2. Since going from x 7→ 0 to x 7→ 2 includes the
subproblem of going from x 7→ 0 to x 7→ 1, we have to find a plan from x 7→ 0 to x 7→ 1 twice,
which runs counter to our objective of finding abstractions that focus on different aspects on the
planning task.

To alleviate this issue, we propose an alternative construction for the planning task for landmark
l. The key idea is that we employ a further abstraction that reflects the intuition that at the time we
achieve l, certain other landmarks have already been achieved.

In detail, the alternative construction proceeds as follows. We start by performing the basic
landmark task construction described in Algorithm 8, resulting in a planning task for landmark l
which we denote by Πl.

Furthermore, we use a sound algorithm (Keyder et al., 2010) for computing natural landmark
orderings (e.g., Hoffmann et al., 2004; Richter et al., 2008) to determine a set L′ of landmarks that
must necessarily be achieved before l. Note that, unless l is a landmark that is already satisfied in
the initial state (a trivial case we can ignore because the Cartesian abstraction heuristic is identical
to 0 in this case), L′ contains at least one landmark for each variable of the planning task because
initial state atoms are landmarks that must be achieved before l.

Finally, we perform a domain abstraction (Hernádvölgyi & Holte, 2000) that combines, for
each variable v′, all the atoms v′ 7→ d′ ∈ L′ based on the same variable into a single atom and keeps
all other values separate from each other.

For example, consider again the landmark l = x 7→ 2 in the example task from Figure 9. We
detect that x 7→ 0 and x 7→ 1 are landmarks that must be achieved before l. They both refer to
the variable x, so we combine the values 0 and 1 into a single value, i.e., we partition dom(x) into
{0, 1} and {2} in the domain abstraction. The effect of this is that in the task for l, we no longer
need to find a subplan from x 7→ 0 to x 7→ 1. Figure 10 illustrates the procedure with a slightly
more complex example.

6. Experiments

We implemented our counterexample-guided Cartesian abstraction refinement and saturated cost
partitioning algorithms in the Fast Downward planning system (Helmert, 2006). For running exper-
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iments, we use the Downward Lab toolkit (Seipp, Pommerening, Sievers, & Helmert, 2017c). Our
benchmark set consists of all 1667 tasks from the optimization tracks of the 1998–2014 Interna-
tional Planning Competitions. All tasks are given in the PDDL format (Fox & Long, 2003), and we
use the translator component of Fast Downward to convert them into SAS+ tasks (Helmert, 2009).
In our analyses we ignore the time taken for this conversion since it is the same for all compared
algorithms. Our code, benchmarks and experimental data are available online.1

We evaluate five ways of creating Cartesian abstraction heuristics with counterexample-guided
abstraction refinement: a single abstraction (hCEGAR, Section 4), abstraction by goals (hCEGAR

s? ,
Section 5.4), abstraction by landmarks (hCEGAR

LM , Section 5.5), improved abstraction by landmarks
(hCEGAR

LM+ , Section 5.6), and a combination of the latter two methods (hCEGAR
LM+s? ), which we describe

below.
In addition to comparing the resulting heuristics to each other, we contrast them to some of the

strongest abstraction heuristics from the literature:

• hiPDB: the canonical heuristic using pattern databases found by 15 minutes of hill climbing
(Haslum, Botea, Helmert, Bonet, & Koenig, 2007; Sievers, Ortlieb, & Helmert, 2012)

• hM&S: merge-and-shrink using bisimulation, the DFP merge strategy and at most 100 000
abstract states (Helmert et al., 2014; Sievers et al., 2014)

• hPhO: post-hoc optimization using systematic patterns of sizes 1 and 2 (Pommerening et al.,
2013)

We apply a time limit of 30 minutes and a memory limit of 2 GiB to all algorithm runs and
let all versions that use CEGAR refine for at most 15 minutes. We also stop refining and start the
A∗ search when the refinement loop is about to exhaust the 2 GiB memory limit. For the CEGAR
versions using multiple (additive) abstraction heuristics we distribute the refinement time equally
among the abstractions. We let the saturated cost partitioning algorithm consider the subtasks in a
randomized order.2 Table 3 shows the number of solved instances from the benchmark set for the
compared heuristics.

6.1 Comparison of CEGAR to Other Abstraction Heuristics

We begin our analysis by comparing the basic hCEGAR heuristic based on a single abstraction to the
heuristics from the literature. While the total coverage of hCEGAR (682 tasks) is lower than that of
hiPDB (860 tasks), hM&S (752 tasks) and hPhO (737 tasks), it outperforms them in several domains.
Table 4 compares the heuristics on a per-domain basis and shows that hCEGAR solves more tasks
than hiPDB, hM&S and hPhO in 2, 7 and 13 domains, respectively. However, the opposite is true in
27, 25 and 15 domains.

Although hCEGAR is outperformed by hiPDB, the former still has a theoretical advantage over
the latter. While the CEGAR loop is guaranteed to converge to a plan, hiPDB can get stuck in

1. Code: https://doi.org/10.5281/zenodo.1240992
Benchmarks: https://doi.org/10.5281/zenodo.1205019
Experimental data: https://doi.org/10.5281/zenodo.1240998

2. To evaluate the influence of randomness, we ran the hCEGAR
LM+s? version ten times with different random seeds in a

preliminary experiment. The resulting arithmetic mean of the total coverage scores was 782.9 with a sample standard
deviation of 4.09 tasks. Due to this low variance, we only use a single random seed for each randomized algorithm.
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hiPDB hM&S hPhO hCEGAR hCEGAR
s? hCEGAR

LM hCEGAR
LM+ hCEGAR

LM+s?

airport (50) 29 18 27 22 31 30 29 33
barman (34) 4 4 4 4 4 4 4 4
blocks (35) 28 22 26 18 18 18 18 18
childsnack (20) 0 0 0 0 0 0 0 0
depot (22) 11 6 7 5 6 5 6 6
driverlog (20) 13 13 13 10 13 13 13 13
elevators (50) 40 29 36 29 37 37 37 37
floortile (40) 2 8 2 2 2 2 2 2
freecell (80) 20 20 15 19 17 17 34 33
ged (20) 19 17 15 15 15 15 15 15
grid (5) 3 2 2 2 2 2 2 2
gripper (20) 8 20 7 8 8 8 8 8
hiking (20) 12 13 11 12 12 11 12 12
logistics (63) 30 25 26 17 26 26 22 27
miconic (150) 67 74 54 55 62 65 70 71
movie (30) 30 30 30 30 30 30 30 30
mprime (35) 23 24 21 27 27 27 27 27
mystery (30) 16 16 15 18 18 18 18 18
nomystery (20) 20 18 16 10 14 14 14 14
openstacks (100) 47 47 47 45 47 47 47 47
parcprinter (50) 39 24 30 18 22 20 34 34
parking (40) 13 1 3 0 0 0 0 0
pathways (30) 4 4 4 4 4 4 4 4
pegsol (50) 48 48 44 44 44 44 44 44
pipes-nt (50) 21 16 15 17 17 17 17 17
pipes-t (50) 17 15 9 12 11 14 14 14
psr-small (50) 49 50 49 49 49 49 49 49
rovers (40) 8 8 7 6 7 7 7 7
satellite (36) 6 7 6 6 6 6 6 6
scanalyzer (50) 23 23 11 21 21 21 21 21
sokoban (50) 50 48 49 39 41 40 41 41
storage (30) 16 15 15 15 16 16 16 16
tetris (17) 10 2 3 7 9 9 9 9
tidybot (40) 22 1 21 22 24 26 24 25
tpp (30) 6 7 6 6 11 8 6 7
transport (70) 33 25 21 23 23 23 23 23
trucks (30) 9 7 7 8 10 12 12 12
visitall (40) 28 13 27 13 13 13 13 13
woodwork (50) 23 20 25 15 15 19 19 19
zenotravel (20) 13 12 11 9 12 12 12 12

Sum (1667) 860 752 737 682 744 749 779 790

Table 3: Coverage scores by domain for different heuristics. We highlight best results in bold.
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Coverage

hiPDB – 21 29 27 22 23 20 20 860
hM&S 8 – 19 25 19 20 19 17 752

hPhO 1 12 – 15 8 8 8 7 737

hCEGAR 2 7 13 – 2 2 0 0 682

hCEGAR
s? 6 11 18 17 – 6 3 1 744

hCEGAR
LM 6 11 17 18 5 – 4 2 749

hCEGAR
LM+ 6 11 18 19 6 6 – 1 779

hCEGAR
LM+s? 8 12 20 20 9 8 5 – 790

Table 4: Left: Pairwise comparison of different abstraction heuristics. The entry in row r and
column c holds the number of domains in which heuristic r solved more tasks than heuristic c. For
each heuristic pair we highlight the maximum of the entries 〈r, c〉 and 〈c, r〉 in bold. Right: Total
number of solved tasks by each heuristic.
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Figure 11: Initial state heuristic values for transport-08 #23.
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local minima. Also, the hCEGAR estimates tend to grow much more smoothly towards the perfect
estimates than the ones by hiPDB. Figure 11 illustrates this by comparing how the cost estimates for
the initial state grow with the number of abstract states on an example task. The hCEGAR estimates
are generally higher than those of hiPDB. This behavior can be observed in many domains.

6.2 Comparison of CEGAR Heuristics

Comparing the results for hCEGAR and hCEGAR
s? , we see that decomposing the task by goals and

finding multiple abstractions separately instead of using only a single abstraction raises the number
of solved tasks from 682 to 744. This substantial improvement is due to the fact that 17 domains
profit from using hCEGAR

s? while coverage decreases in only 2 domains (see Table 4).
In total, hCEGAR

s? and hCEGAR
LM solve roughly the same number of tasks (744 and 749), and also

for the individual domains coverage does not change much between the two heuristics: hCEGAR
s?

solves more tasks than hCEGAR
LM in 6 domains, while the opposite is true in 5 domains. Only when

we employ the improved hCEGAR
LM+ heuristic that uses domain abstraction to avoid duplicate work

during the refinement process, the number of solved tasks increases to 779.

6.3 Abstraction by Landmarks and Goals

In Table 4, we can observe that hCEGAR
s? and hCEGAR

LM+ outperform each other in multiple domains: for
maximum coverage hCEGAR

s? is preferable in 3 domains, whereas hCEGAR
LM+ should be preferred in 6

domains. This suggests trying to combine the two approaches.
We do so by first computing abstractions for all subproblems returned by the abstraction by

landmarks method. If afterwards the refinement time has not been consumed, we also calculate
abstractions for the subproblems returned by the abstraction by goals decomposition strategy for
the remaining time. The results for this approach (hCEGAR

LM+s? ) are shown in the last column in Table 3.
Not only does this approach solve as many problems as the better performing ingredient technique in
many individual domains, but it sometimes even outperforms both original diversification methods,
raising the total number of solved tasks to 790.

6.4 Single vs. Multiple Abstractions

Comparing hCEGAR
LM+s? to hCEGAR, we see that hCEGAR

LM+s? solves 108 more tasks than hCEGAR (790 vs.
682). This difference in coverage of 15.8% is substantial because in most domains solving an
additional task optimally becomes exponentially more difficult as the tasks get larger.

The big increase in coverage can be explained by the fact that for the majority of tasks hCEGAR
LM+s?

estimates the plan cost much better than hCEGAR, as shown in Figure 12. One might expect that
the increased informativeness would come with a time penalty, but in Figure 13 we can see that in
fact hCEGAR

LM+s? takes less time to compute the abstractions than hCEGAR. Since all individual CEGAR
invocations only stop if they run out of time or find a concrete plan, Figure 13 tells us that for most
tasks hCEGAR does not find a plan, but instead uses the full 15 minutes for the refinement whereas
hCEGAR

LM+s? almost always needs less time.
While hCEGAR has a lower total coverage than the three abstraction heuristics from the literature,

hCEGAR
LM+s? outperforms hM&S and hPhO with regard to total coverage. In Table 4 we see that hCEGAR

LM+s?
solves more tasks than hiPDB, hM&S and hPhO in 8, 12 and 20 domains, respectively. The opposite
is true in 20, 17 and 7 domains.
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6.5 Heuristic Orders

The strongest heuristic in this comparison, hiPDB, uses a collection of pattern database heuristics.
In each state hiPDB computes the canonical heuristic, i.e., the maximum over all sums of heuristic
values of maximal independent heuristic subsets. Seipp et al. (2017b) used a similar approach for
saturated cost partitioning. They showed that maximizing over saturated cost partitioning heuristics
computed for multiple different orders increases heuristic accuracy significantly compared to a sin-
gle order. As a result, computing the maximum over multiple saturated cost partitioning heuristics
using Cartesian abstractions of landmark and goal task decompositions leads to more solved tasks
than iPDB (Seipp et al., 2017b). We can obtain even stronger results by adding pattern database
heuristics to the set of component heuristics (Seipp, 2017).

7. Related Work

Abstraction is an important technique for model-checking large systems (Clarke, Grumberg, &
Peled, 1999). Counterexample-guided abstraction refinement was developed in this context to let
abstractions focus on the system parts that matter for proving correctness or finding errors (Clarke
et al., 2003).

Ball et al. (2001) were the first to use Cartesian abstractions for model checking. They use
Boolean abstraction (a.k.a. predicate abstraction) to obtain a coarser version of the program they
want to verify. For n Boolean predicates, each abstract state can be represented by a bit vector of
size n. Since computing the transitions between abstract states in Boolean abstractions is often too
expensive, they compute a Cartesian abstraction on top of the Boolean abstraction. For a given set
of bit vectors they compute the corresponding abstract state as the smallest Cartesian product that
contains all bit vectors. In contrast to our work, the Cartesian sets in their abstraction can therefore
overlap.

Similarly to our work, they iteratively refine the abstractions with CEGAR. The main differ-
ence to our work is that they use symbolic model-checking, the predominant approach in that field,
whereas we represent Cartesian abstractions explicitly. Another difference to our work is that they
use CEGAR until an error is found or the system is proven correct, whereas we can stop the refine-
ment at any time and use the resulting abstraction as a heuristic for A∗ search.

Smaus and Hoffmann (2009) have explored the idea of using CEGAR to derive informative
heuristics for model checking, although not with a focus on optimality. They use CEGAR to it-
eratively refine predicate abstraction heuristics for directed model-checking of timed automata via
greedy best-first search. As in our evaluation, they show that computing separate abstractions for
each error condition is often beneficial. Since they do not enforce admissibility, they can combine
the heuristics by maximizing or summing over them. Their results also show that there is no advan-
tage in refining multiple paths instead of a single path in each iteration of the refinement loop. It
remains to be tested if the same holds in our setting.

Despite the similarity between model checking and planning, CEGAR has not been thoroughly
explored by the planning community. The work that comes closest to ours in a planning setting uses
CEGAR for stochastic perfect information games, a generalization of Markov decision processes
(Chatterjee, Henzinger, Jhala, & Majumdar, 2005). Stochastic perfect information games model
two adversarial players and an uncertain environment. Markov decision processes and deterministic
single-agent search problems are covered as special cases by the model. (Consider first the special
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case where player 2 never gets to act, and then the further special case where no random choices
occur.)

The authors propose an algorithm that iteratively refines an abstraction of the game using CE-
GAR. In each step, the algorithm searches for a winning strategy for player 1 in the abstract game.
If it can find such a winning strategy, then player 1 also wins in the concrete game because the ab-
straction underapproximates player 1 and overapproximates player 2. If player 2 wins in the abstract
game, the algorithm checks if the proposed abstract winning strategy can be turned into a concrete
winning strategy. If yes, player 2 wins in the concrete game. If not, the algorithm attempts to refine
the abstraction and continues the CEGAR loop.

Unfortunately, the paper has several critical technical errors which make the main contribution
(Algorithms 1 and 2) unsound. One issue is that the formalization requires that every state has an
outgoing transition, but the considered notion of abstraction fails to preserve this requirement due to
its use of underapproximation for player-1 states. If we restrict attention to transition systems where
this issue does not arise, the algorithm is still incorrect because the proposed refinement operators
Focus and ValueFocus are insufficient to identify all relevant refinements.3

The authors also propose a variant of their algorithm for deterministic transition systems. It first
compiles the planning task to a Boolean formula and then iteratively refines an abstraction that takes
more and more Boolean variables into account. The paper contains no experimental evaluation or
indication that either algorithm variant has been implemented. Both variants are based on blind
search, and we believe they are very unlikely to deliver competitive performance.

Haslum (2012) introduces an algorithm for finding lower bounds on the solution cost of a plan-
ning task by iteratively “derelaxing” its delete relaxation. Our approach is similar in spirit, but
technically quite different from Haslum’s because it is based on homomorphic abstraction rather
than delete relaxation. As a consequence, our method performs shortest-path computations in ab-
stract state spaces represented as explicit graphs in order to find abstract solutions, while Haslum’s
approach exploits structural properties of delete-free planning tasks. More concretely, his algo-
rithm iteratively traces solutions for the (refined) relaxed task in the original task (similarly to our
algorithm) and combines atom conjunctions into additional atoms whenever tracing fails.

Another difference to our work is that Haslum (2012) uses his algorithm to prove lower bounds,
whereas we use the obtained abstractions to compute admissible heuristics for A∗ search. In prin-
ciple, both methods can be used for both purposes, but Haslum’s algorithm suffers from the fact
that the number of operators grows exponentially in the number of added conjunctions. This makes
evaluating a heuristic based on Haslum’s algorithm in a large number of states infeasible (Keyder,
Hoffmann, & Haslum, 2012).

Keyder et al. (2012) address this problem by proposing a new refinement scheme for delete
relaxations which uses conditional effects to keep the number of operators linear in the number
of added conjunctions. They iteratively refine the relaxed task until a given resource limit is hit.

3. For example, consider a transition system (no random states, no player-2 states) with the states {I, A,B,C}, initial
state I , reward 2 for I , reward 1 for A and B, reward 0 for C, and the following transitions: I → A, A → A,
A → C, B → C, and C → B. The maximal achievable average reward is 1, by going from I to A, then looping in
A forever. Suppose that the goal is to achieve an average reward of at least 0.75. Starting from the initial abstraction
which separates {I} from {A,B,C}, the proposed algorithm would split {A,B,C} into {A,B} and {C} using the
ValueFocus operator, compute a maximal achievable average reward of 0.5 for the resulting abstract transition system
(note that this transition system contains no self-loop in {A,B} due to the use of underapproximation, as B has no
outgoing transitions to A or B), and then falsely report that no larger value can be obtained.
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Afterwards, they compute a satisficing solution for the relaxed task with the FF heuristic (Hoffmann
& Nebel, 2001) and use it as a heuristic in greedy best-first search.

The same authors showed later that both Haslum’s original compilation method (Haslum, 2012)
and their compilation method using conditional effects (Keyder et al., 2012) greatly benefit from
ignoring operators that violate mutexes (Keyder, Hoffmann, & Haslum, 2014). In fact, their eval-
uation shows that Haslum’s approach together with mutex pruning is the compilation method of
choice when refining relaxed tasks for LM-Cut (Helmert & Domshlak, 2009).

Fickert and Hoffmann (2017) use Keyder et al.’s refinement algorithm to refine relaxed tasks on-
line during search. Whenever they encounter local minima of the resulting heuristic, they learn new
atom conjunctions and use them to improve the heuristic. Seipp (2012) briefly touches on online
Cartesian abstraction refinement with CEGAR at the end of his master’s thesis, but the prelimi-
nary results are rather discouraging. The topic is studied in significantly more depth by Eifler and
Fickert (2018). They refine a set of Cartesian abstractions (obtained with the goal decomposition
method) online during search and maximize over multiple saturated cost partitionings computed for
different orders of the abstractions. When limiting the time spent for online refinement, their ap-
proach solves more tasks in many domains than a heuristic based on a single Cartesian abstraction
refined offline. However, it is not clear whether this improvement is due to the online refinement or
due to their use of multiple orders.

8. Conclusion

We introduced a CEGAR approach for classical planning and showed that it delivers promising
performance. We believe that further performance improvements are possible through speed opti-
mizations in the refinement loop, which will enable larger abstractions to be generated in reasonable
time. One possibility is to refute not one but all optimal plans in one iteration. This should shift a
big proportion of the time needed to build the abstraction from looking for abstract plans to actually
refining the abstraction.

When handling a flaw, we often have many options for selecting the variable on which to split
and how to partition its values. Therefore, another approach for improving the resulting Cartesian
abstractions could be to investigate the choice of refinement strategy in more depth. For example, it
could be beneficial to always choose the split that increases the estimated accuracy of the resulting
heuristic the most.

As is the case for pattern databases, switching from one Cartesian abstraction to multiple Carte-
sian abstractions is highly beneficial. We showed that constructing diverse sets of abstractions and
combining them with saturated cost partitioning yields heuristics that outperform single Cartesian
abstractions and are competitive with many state-of-the-art abstraction heuristics.

All in all, we believe that Cartesian abstractions, counterexample-guided abstraction refinement
and our task decomposition methods are useful concepts that can contribute to the further develop-
ment of strong abstraction heuristics for automated planning.
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Appendix A. Pseudo-Code for Efficiently Rewiring Transitions

Algorithm 9 Rewiring of incoming transitions. The refinement in progress splits state [s] into states
d and e on variable v. This means that d and e partition [s] and for all variables u, dom(u, v) =
dom(u, e) iff u 6= v. For the old transition a o−→ [s] this procedure adds new transitions from a to
the new states d and e where necessary.

1: procedure REWIREINCOMINGTRANSITION(a o−→ [s], d, e, v)
2: if v /∈ vars(post(o)) then
3: if dom(v, a) ∩ dom(v, d) 6= ∅ then
4: ADDTRANSITION(a, o, d)
5: if dom(v, a) ∩ dom(v, e) 6= ∅ then
6: ADDTRANSITION(a, o, e)
7: else if post(o)[v] ∈ dom(v, d) then
8: ADDTRANSITION(a, o, d)
9: else

10: ADDTRANSITION(a, o, e)

Algorithm 10 Rewiring of outgoing transitions. The refinement in progress splits state [s] into states
d and e on variable v. This means that d and e partition [s] and for all variables u, dom(u, v) =
dom(u, e) iff u 6= v. For the old transition [s]

o−→ b this procedure adds new transitions from the new
states d and e to b where necessary.

1: procedure REWIREOUTGOINGTRANSITION([s] o−→ b, d, e, v)
2: if v /∈ vars(post(o)) then
3: if dom(v, d) ∩ dom(v, b) 6= ∅ then
4: ADDTRANSITION(d, o, b)
5: if dom(v, e) ∩ dom(v, b) 6= ∅ then
6: ADDTRANSITION(e, o, b)
7: else if v /∈ vars(pre(o)) then
8: ADDTRANSITION(d, o, b)
9: ADDTRANSITION(e, o, b)

10: else if pre(o)[v] ∈ dom(v, d) then
11: ADDTRANSITION(d, o, b)
12: else
13: ADDTRANSITION(e, o, b)
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Algorithm 11 Rewiring of self-loops. The refinement in progress splits state [s] into states d and e
on variable v. This means that d and e partition [s] and for all variables u, dom(u, v) = dom(u, e)
iff u 6= v. This procedure adds new self-loops and/or transitions between the new states d and e for
the old self-loop [s]

o−→ [s] where necessary.

1: procedure REWIRESELFLOOP([s] o−→ [s], d, e, v)
2: if v /∈ vars(pre(o)) then
3: if v /∈ vars(post(o)) then
4: ADDSELFLOOP(d, o)
5: ADDSELFLOOP(e, o)
6: else if post(o)[v] ∈ dom(v, d) then
7: ADDSELFLOOP(d, o)
8: ADDTRANSITION(e, o, d)
9: else

10: ADDTRANSITION(d, o, e)
11: ADDSELFLOOP(e, o)
12: else if pre(o)[v] ∈ dom(v, d) then
13: if post(o)[v] ∈ dom(v, d) then
14: ADDSELFLOOP(d, o)
15: else
16: ADDTRANSITION(d, o, e)
17: else
18: if post(o)[v] ∈ dom(v, d) then
19: ADDTRANSITION(e, o, d)
20: else
21: ADDSELFLOOP(e, o)
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Hernádvölgyi, I. T., & Holte, R. C. (2000). Experiments with automatically created memory-based
heuristics. In Choueiry, B. Y., & Walsh, T. (Eds.), Proceedings of the 4th International Sym-
posium on Abstraction, Reformulation and Approximation (SARA 2000), Vol. 1864 of Lecture
Notes in Artificial Intelligence, pp. 281–290. Springer-Verlag.

575



SEIPP & HELMERT

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research, 14, 253–302.

Hoffmann, J., Porteous, J., & Sebastia, L. (2004). Ordered landmarks in planning. Journal of
Artificial Intelligence Research, 22, 215–278.

Holte, R. C. (2013). Korf’s conjecture and the future of abstraction-based heuristics. In Frisch,
A. M., & Gregory, P. (Eds.), Proceedings of the Tenth Symposium on Abstraction, Reformu-
lation, and Approximation (SARA 2013), pp. 128–131. AAAI Press.

Holte, R. C., Felner, A., Newton, J., Meshulam, R., & Furcy, D. (2006). Maximizing over multiple
pattern databases speeds up heuristic search. Artificial Intelligence, 170(16–17), 1123–1136.

Karpas, E., & Domshlak, C. (2009). Cost-optimal planning with landmarks. In Boutilier, C.
(Ed.), Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJ-
CAI 2009), pp. 1728–1733. AAAI Press.

Karpas, E., Katz, M., & Markovitch, S. (2011). When optimal is just not good enough: Learning
fast informative action cost partitionings. In Bacchus, F., Domshlak, C., Edelkamp, S., &
Helmert, M. (Eds.), Proceedings of the Twenty-First International Conference on Automated
Planning and Scheduling (ICAPS 2011), pp. 122–129. AAAI Press.

Katz, M., & Domshlak, C. (2007). Structural patterns of tractable sequentially-optimal planning.
In Boddy, M., Fox, M., & Thiébaux, S. (Eds.), Proceedings of the Seventeenth International
Conference on Automated Planning and Scheduling (ICAPS 2007), pp. 200–207. AAAI Press.

Katz, M., & Domshlak, C. (2008). Optimal additive composition of abstraction-based admissible
heuristics. In Rintanen, J., Nebel, B., Beck, J. C., & Hansen, E. (Eds.), Proceedings of the
Eighteenth International Conference on Automated Planning and Scheduling (ICAPS 2008),
pp. 174–181. AAAI Press.

Katz, M., & Domshlak, C. (2010). Optimal admissible composition of abstraction heuristics. Arti-
ficial Intelligence, 174(12–13), 767–798.

Keyder, E., Hoffmann, J., & Haslum, P. (2012). Semi-relaxed plan heuristics. In McCluskey, L.,
Williams, B., Silva, J. R., & Bonet, B. (Eds.), Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling (ICAPS 2012), pp. 128–136. AAAI Press.

Keyder, E., Hoffmann, J., & Haslum, P. (2014). Improving delete relaxation heuristics through
explicitly represented conjunctions. Journal of Artificial Intelligence Research, 50, 487–533.

Keyder, E., Richter, S., & Helmert, M. (2010). Sound and complete landmarks for and/or graphs.
In Coelho, H., Studer, R., & Wooldridge, M. (Eds.), Proceedings of the 19th European Con-
ference on Artificial Intelligence (ECAI 2010), pp. 335–340. IOS Press.

Korf, R. E. (1997). Finding optimal solutions to Rubik’s Cube using pattern databases. In Pro-
ceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI 1997), pp.
700–705. AAAI Press.

McDermott, D. (2000). The 1998 AI Planning Systems competition. AI Magazine, 21(2), 35–55.
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