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Air quality monitoring across Europe is mainly based on in situ ground stations, which are too sparse to accu-
rately assess the exposure effects of air pollution for the entire continent. The demand for precise predictive
models that estimate gridded geophysical parameters of ambient air at high spatial resolution has rapidly grown.
Here, we investigate the potential of satellite-derived products to improve particulate matter (PM) estimates.
Bayesian geostatistical models addressing confounding between the spatial distribution of pollutants and re-
motely sensed predictors were developed to estimate yearly averages of both, fine (PM,s) and coarse (PM1o)
surface PM concentrations, at 1km? spatial resolution over 46 European countries. Model outcomes were
compared to geostatistical, geographically weighted and land-use regression formulations. Rigorous model se-
lection identified the Earth observation data which contribute most to pollutants' estimation. Geostatistical
models outperformed the predictive ability of the frequently employed land-use regression. The resulting esti-
mates of PM;o and PM, s, which represent the main air quality indicators for the urban Sustainable Development
Goal, indicate that in 2016, 66.2% of the European population was breathing air above the WHO air quality
guidelines thresholds. Our estimates are readily available to policy makers and scientists assessing the effects of
long-term exposure to pollution on human and ecosystem health.

1. Introduction

Vienneau et al., 2013), kriging (Beelen et al., 2009) and geographically
weighted regression (GWR) (van Donkelaar et al., 2016).

The contribution of particulate matter (PM) concentration to air
pollution and the effects of high levels of these pollutants to human
health and wellbeing have been documented extensively in the litera-
ture. Exposure to high concentrations of PM has been associated with
increased rates of morbidity and mortality, caused primarily by cardi-
ovascular, respiratory and, to a lesser extent, cerebrovascular diseases
(Anderson et al., 2012).

Although a relatively dense air quality monitoring network exists in
Europe, maintained by the European Environment Agency's (EEA)
member states, large areas within the continent remain unmonitored. A
number of approaches have been used to provide gridded pollutants'
concentration estimates. On European and global scale, these include
empirical models based on chemistry transport model outputs (van
Donkelaar et al., 2006), land-use regression (LUR) (Beelen et al., 2009;

Unlike the aforementioned implementations, Bayesian inference
allows the uncertainty in predictions to be assessed and taken into ac-
count in further analyses. The assessment of exposure burden by uti-
lizing high-resolution population estimates becomes straightforward, in
a way that is not possible in traditional approaches, since full posterior
predictive distributions can be derived. However, predictions of pol-
lutant levels at high-spatial resolution over the entire Europe are
computationally complex (Shaddick et al., 2013). The computational
burden can be reduced through approximate Bayesian inference using
integrated nested Laplace approximation (INLA) (Rue et al., 2009;
Lindgren et al., 2011). The potentials of this approach have been de-
monstrated on PM;, data covering a small study area in northern Italy
(Cameletti et al., 2013).

Most of the data-driven air-quality assessments incorporate
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geographical covariates derived from satellite-based observations.
Remotely sensed products provide spatial coverage over the entire
domain of interest allowing regular monitoring of the pollutants' spatial
distributions. The main satellite-derived product used for the estimation
of surface PM concentration is the aerosol optical depth (AOD), which
represents the integrated radiation scattering and absorption by aero-
sols in an atmospheric column from the surface to the top of the at-
mosphere. AOD is used as a proxy for PM since it depends on the mass
concentration and size distribution of the particles. A number of
methods have been developed for near-surface PM estimation using
columnar AOD (Chu et al., 2016). Large geographical scale predictions
are usually based on Moderate Resolution Imaging Spectroradiometer
(MODIS) Dark Target AOD (Levy et al., 2013) available at ~10 km?
spatial resolution. The recently developed multi-angle algorithms for
AQOD retrievals using spaceborne observations such as the Medium
Resolution Imaging Spectrometer (MERIS)/Advanced Along-Track
Scanning Radiometer (AATSR) (North et al., 2009) and the Multi-Angle
Implementation of Atmospheric Correction (MAIAC) (Lyapustin et al.,
2011) algorithms provide AOD distributions at 1 km? spatial resolution
rendering the product suitable for high resolution PM modelling
(Chudnovsky et al., 2014; Hu et al., 2014; Beloconi et al., 2016).
However, there are many challenges in predicting PM conditioning on
observed AOD. Due to the vertical structure of AOD, the strength of the
PM-AOD relationship varies greatly in both space and time (Lee et al.,
2011; Hu et al., 2014). Thus, it was shown that MODIS Dark Target
AQOD provides little additional information in a model that already ac-
counts for local emissions, meteorology, land-use and regional varia-
bility at monthly and annual averaged temporal resolution level
(Paciorek and Liu, 2009).

The primary objective of this work was to assess the benefits of
combining satellite-derived products in a rigorous geostatistical mod-
elling framework to estimate pollutants' spatial variability over 46
European countries. Particularly, the contribution of the MAIAC aerosol
information adjusted with a set of georeferenced predictors, including
the novel Copernicus land products (Copernicus, 2018) and meteor-
ological data was evaluated for estimating high-resolution (1 km?)
pollutant maps of PM;, and PM> s using hierarchical Bayesian spatial
models. We compared different model formulations and assessed the
effect of confounding between spatially varying predictors and the
spatial process, which incorporates geographical correlation in the
pollutants' concentration. Furthermore, the Bayesian formulation al-
lowed us to quantify the prediction uncertainty, to determine at high
spatial resolution areas that exceed the European Union (EU) and World
Health Organization (WHO) air quality guidelines' (AQG) thresholds as
well as to estimate the number of people living in such areas. Model fit
was done using the INLA algorithm. The models provide improved
gridded air-quality estimates for policy makers and scientists assessing
the effects of pollution on human and ecosystem health.

2. Materials and methods
2.1. Study area and data

The PM;o and PM, s data were obtained from the Air Quality e-
Reporting database (Air Quality e-Reporting, 2018) maintained
through the Eionet (European environment information and observa-
tion network). The monitoring network covers up to 38 European
countries, including the 28 EU member states and 33 member countries
of the EEA. The repository consists of a multi-annual hourly time series
data for a list of air pollutants. In this work the analysis is based on the
yearly averaged data (reported in ug/m>) of 2016 (currently the most
recent year with available raw data) at stations with =75% data cap-
ture. Fig. 1 (a-b) illustrates the locations of the monitoring sites used in
this work, together with the yearly averaged measured concentrations
of PM;o and PM, 5. All data used in our analyses were converted to the
Lambert Azimuthal Equal Area (ETRS89-LAEA5210) projection
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recommended by the EEA (European Environment Agency, 2006) for
storing raster data, statistical analysis and map display purposes.

The satellite-derived product of columnar aerosol optical depth was
considered as proxy of surface PM concentration. The recently-devel-
oped MAIAC algorithm for aerosol retrievals is based on time-series
analysis and image processing of MODIS satellite data. MAIAC uses
empirically tuned, regionally prescribed, aerosol properties following
the AERONET (AErosol RObotic NETwork) climatology and provides
AOD values over land at 1km? spatial resolution globally. A total
number of 19 tiles from each of the MODIS Terra and Aqua satellites,
covering the study area (ftp://dataportal.nccs.nasa.gov/DataRelease/
Europe_Sept-2017/), were downloaded and preprocessed. Each image
was reprojected to our study area using the MODIS Reprojection Tool
(MRT, 2016) accessed through the R environment (R Core Team, 2015).
The raster package (Hijmans, 2015) was used to mosaic the resulting
products. To reduce the number of the missing pixels, first daily, and
then yearly averages from two satellites (i.e. Terra and Aqua) were
computed.

Several studies have evaluated the effects of land-use/cover, urban
mapping, local climate and meteorology information on the estimation
of both PM;y and PM, 5 (e.g. Liu et al., 2005, 2009; Benas et al., 2013;
Vienneau et al., 2013; Chudnovsky et al., 2014; Stafoggia et al., 2016;
He and Huang, 2018). These parameters influence the relationship
between AOD and PM and can be used as predictors in assessing the
geographical variation of pollutants' concentration. In order to be able
to estimate PM over the whole Europe, we analysed satellite-derived
products only with continental or global coverage. Table 1 summarizes
the covariates used in this work. On its own, this data portfolio re-
presents a powerful resource for numerous environmental applications
in Europe.

The land-use/cover data were extracted from the pan-European
component of the Copernicus Land Monitoring Service (Copernicus,
2018). For the temporal alignment with the observations from stations
the latest CORINE Land Cover (CLC) dataset (year 2012) was used. To
better understand the urban surface characteristics that surround the
monitoring stations, a squared buffer zone of 1 km? spatial resolution
around each station was created and the dominant CLC category within
each buffer zone was computed and assigned to the respective site. The
45 land classes available in CLC were aggregated to form the following
4 main categories: (i) continuous urban fabric - road and rail networks
and associated land - port areas (LC1); (ii) discontinuous urban fabric -
industrial or commercial units - mine, dump and construction sites -
artificial, non-agricultural vegetated areas (LC2); (iii) agricultural areas
- wetlands - water bodies (L.C3); and (iv) forest and semi-natural areas
(LC4). Thus, it was expected that the pollution levels gradually decrease
for stations situated in LC2-LC4 categories compared to the LC1, con-
sidered as the baseline.

Additionally, the high resolution layers of tree cover density (TCD)
and imperviousness (IMP), as well as the European settlement map
(ESM) were accessed from the same source (Copernicus, 2018). The
PM;, and PM, 5 levels were expected to be higher in build-up areas and
lower in zones with higher tree density and therefore less emission
sources. The digital elevation model (DEM) product (DEM, 2012), ob-
tained from the EEA website, was used to assess the change in pollu-
tants' concentration with increasing altitude. In general, locations at
higher altitudes are less populated; the pollution dispersion processes
are also easier to occur (Hu et al., 2014).

The land surface temperature (LST, 2016) and the normalized dif-
ference vegetation index (NDVI, 2016) generated from the MODIS Aqua
and Terra platforms, the night time lights (NTL, 2012) product from the
National Oceanic and Atmospheric Administration (NOAA), as well as
the climatic data (humidity, precipitation and wind speed) from the
National Centers for Environmental Prediction (NCEP) Climate Forecast
System (CFSv2) (Saha et al., 2011) were pre-processed using the Google
Earth Engine (GEE) API (Google Earth Engine Team, 2015). GEE makes
it possible to rapidly process vast amount of satellite imagery on global
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Fig. 1. Particulate matter. a, b: Annual average concentrations of PM;, and PM, 5 in 2016 at 2289 and 1091 monitoring sites across Europe, respectively. c, d:
Predicted annual average of PM;, and PM, 5 concentrations (i.e. median of the posterior predictive distribution) at 1 km? spatial resolution in Europe in 2016. e, f:
Prediction uncertainty (i.e. standard deviation (sd) of the posterior predictive distribution) of PM;, and PM, s.

scale with the power of Google's cloud computing. The climatic data surface temperature can enhance the photochemical reactions in the
were included in the models since the weather conditions can greatly atmosphere, and hence, the production of PM (Gupta and Christopher,
affect the aerosol dilution and dispersion processes. In particular, 2009). The relative humidity influences the hygroscopic growth of
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Table 1

Data sources and spatio-temporal resolution of the predictors used in our models.

Environment International 121 (2018) 57-70

Product Temporal resolution

Spatial resolution Source

Aerosol optical depth (AOD)

Corine land cover v.18_5 (LC) Year 2012
Tree cover density (TCD) Year 2015
Imperviousness (IMP) Year 2015
European settlement map (ESM) Year 2012
Digital elevation model (DEM) Year 2000
Night time lights (NTL) Year 2012

Land surface temperature day & night (LST)
Normalized difference vegetation index (NDVI)

Road density (RD) February 2016

Specific humidity (SHUM) Every 6 h
Precipitation (PREC) Every 6h
Wind speed (WS) Every 6h
Distance to sea (DISS) Year 2015

Distance to roads (DISR) February 2016

Terra (~10:30 GMT) and Aqua (~13:30 GMT)

Terra (~10:30 GMT) and Aqua (~13:30 GMT)
Terra (~10:30 GMT) and Aqua (~13:30 GMT)

1km MODIS MAIAC

100m Copernicus

20m Copernicus

20m Copernicus

100m Copernicus

30m EEA

1km NOAA

1km MODIS Aqua and Terra
1km MODIS Aqua and Terra
1km OpenStreet maps
~22km NCEP/CFSv2

~22km NCEP/CFSv2

~22km NCEP/CFSv2

Vector EEA

Vector OpenStreet maps

particles and consequently the estimated AOD relative to the ground
level PM, as the latter is measured at controlled relative humidity (Liu
et al., 2005; Paciorek et al., 2008). The NDVI was found to be a sig-
nificant predictor of PM concentration in several previous works (e.g.
Chudnovsky et al., 2014; Stafoggia et al., 2016). The wind speed can
increase the vertical mixing and therefore dilute PM concentrations (Liu
et al., 2007; Chudnovsky et al., 2013).

Road density (RD) was computed using the OpenStreet Maps pro-
ject's collection of road shapefiles covering the continent. Particularly,
the major roads comprising the motorway, trunk, primary and sec-
ondary road categories, as well as the links between them were taken
into consideration. The same dataset was used to compute the distance
to roads (DISR) covariate applying simple geographic information
system (GIS) techniques. Distance to sea (DISS) was calculated using the
Europe coastline shapefile (ECS, 2015) downloaded from the EEA
website. The contribution of these predictors (or their proxies) to the
estimation of PM;, and PM,s spatial distributions was previously
evaluated in literature (Vienneau et al., 2013; Chudnovsky et al., 2014;
Hu et al., 2014; Yanosky et al., 2014; Stafoggia et al., 2016).

High-resolution gridded population data were obtained from the
Gridded Population of the World, Version 4 (GPWv4) database.
Particularly, the population density (adjusted to match 2015 revision
UN WPP country totals) dataset (SEDAC, 2016), available at 30 arc-
second (~1km?) spatial resolution for the years 2000, 2005, 2010,
2015 and 2020 was employed to estimate the population in 2016 at
1 km? pixel level by applying cubic splines interpolation. The resulting
estimates were aggregated at country level using the European ad-
ministrative country boundaries shapefile from Eurostat's GISCO ser-
vice (EuroStat, 2016).

2.2. Methods

The pollutants' concentration data are likely to be spatially corre-
lated. In the geostatistical framework location specific random effects
are introduced and modelled by a Gaussian process which captures the
spatial correlation via the covariance matrix as a function of distance
between locations. In linear geostatistical models covariates that are
spatially smooth (in our case most of the satellite-derived products) are
often collinear with the spatially smooth random effects. This is known
as spatial confounding (Hodges and Reich, 2010) and it can have a
significant effect on the estimation and interpretation of regression
parameters. Within the Bayesian formulation, we developed restricted
geostatistical regression (RGR) models (Hanks et al., 2015) which ad-
dress spatial confounding by imposing a linear orthogonality constraint
and compared them to classical geostatistical regression (GR) and the
frequently applied non-spatial LUR models. For each of these for-
mulations, we fitted all possible combinations of the covariates, i.e. 32

60

768 (=2'°) distinct models for each pollutant and ordered them ac-
cording to Bayesian model comparison criteria.

Let Y ; represent the log-observed annual average of PM;, or PM, 5
concentration at site s (s = 1,...S). The following stationary, isotropic
GR model is considered for each pollutant:

Yy =By + Xif + w5 + & @

where f3, is the intercept term, f the k x 1 vector of regression coeffi-
cients associated with X, w, the spatial random effect and ¢, the random
error which is assumed to be independent and identically distributed
(i.i.d.) .#7(0, g?). All the continuous covariates were standardized by
subtracting the mean and dividing by the standard deviation calculated
using the yearly averaged measurements from all the monitoring sta-
tions. For the estimation of model parameters the data were extracted at
the locations of the stations, while for the prediction at unknown lo-
cations, each covariate was aggregated within a fixed 1km? grid using
bilinear or nearest neighbour interpolation methods (for continuous
and categorical data, respectively). We assumed that the spatial random
effect wy = (W1,...,ws)” arise from a multivariate normal distribution:

w ~ A (05, 02%,) @)

with Og a S x 1 zeros vector, o2 the spatial process variance and X, is
the S X S dense correlation matrix with elements (Z.); = % (Ils; — s;l)),
where #'(-) is the Matern function given by

1

= o

(Kdij )VKV (Kdu) (3)
with dj the distance between stations i and j, « is a scaling parameter, v
a smoothing parameter (fixed to 1 in our application) and K, is the
modified Bessel function of second kind and order v. This specification
implies that the range r (the distance at which the spatial variance
becomes less than 10%) is given by r = g

We addressed spatial confounding by running RGR models for each
pollutant. These models separate the linear effects 8 from the spatial
effects w; through the following linear orthogonality constraint:
J; Xswgds =0 )

Restricting the random field to be orthogonal to the spatial cov-
ariates changes the interpretation of the spatial field to be a Bayesian
version of the restricted maximum likelihood (Ingebrigtsen et al., 2015)
where the spatial effects are estimated conditional on the covariate
effects.

The Bayesian model formulation is completed by specifying prior
distributions for the parameters and the hyperparameters. Particularly,
the log-gamma priors were chosen for the 0.2, 0% and r parametrized
on the log-scale, i.e. log(c.2), log(c,2) ~ log Ga(1, 5-10~5) and log(r) ~
log Ga(1,10%). Normal priors .#°(0, 10°) were assigned for the
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s (ordered according to the logscore values) arising from all possible combinations of

covariates (i.e. 32768 models) for each pollutant. The black dots indicate the models which include all the covariates.

regression coefficients and a vague normal one for the intercept.

Bayesian inference estimates the marginal posterior distributions
p@@lY) = fp(qule, Y)p(61Y)d6 of the elements ¢ = (8,w)” where 0 is
the vector of hyperparameters and Y are the data. Geostatistical models
often rely on Markov chain Monte Carlo (MCMC) simulation techniques
to estimate the p(¢;|Y). However, for large number of locations, the
computations involving the spatial covariance matrix are not feasible.
One solution to overcome this drawback is using the stochastic partial
differential equations (SPDE) approach and integrated nested Laplace
approximation (INLA) algorithm for the fast approximation of the
marginal posterior distributions (Rue et al., 2009; Lindgren et al.,
2011). This method is only briefly described here; the extensive theo-
retical explanations are provided elsewhere (Blangiardo and Cameletti,
2015).

In the SPDE/INLA approach the spatial process is represented as a
Gaussian Markov random field (GMRF) with mean zero and a sym-
metric positive definite precision matrix Q (defined as the inverse of
X,). First, a GMRF representation of the Matern field is constructed on a
set of non-intersecting triangles partitioning the domain of the study
area (Lindgren et al., 2011). Subsequently, the INLA algorithm is used
to estimate the posterior distribution of the latent Gaussian process and
hyperparameters using Laplace approximation (Rue et al., 2009).

Furthermore, we fitted the LUR and the GWR models. LUR is a non-
spatial multiple linear regression model and is formulated as the one in
Eq. (1) without the structured spatial effect w;. In GWR the spatially-
varying relationships are explored between the dependent and in-
dependent variables with equation taking the following form:

k
Y, = BsO + z ﬁstsj + &
=1 %)

where Y; again denotes the log-observed annual average of PM;, or
PM, 5 concentration at site s (s = 1,...S), s is the intercept parameter
at s, X;; is the value of the jth covariate at s, k is the number of in-
dependent variables, f; is the local regression coefficient for the jth
covariate at s and ¢ is the random error at s. As data are geographically
weighted, nearer observations have more influence in estimating the
local set of regression coefficients than observations farther away; the
model measures the inherent relationships around each regression
point s, where each set of regression coefficients is estimated by a
weighted least squares approach (Gollini et al., 2015). The matrix ex-
pression for this estimation is

B, = XTWX)'XTWY, 6)

where X is the matrix of the independent variables with a column of 1s
for the intercept, B, = (Bygr By )T s the vector of k + 1 local regression
coefficients and W is the diagonal matrix denoting the geographical
weighting of each observed data at location s. This weighting is de-
termined by a kernel function. In this work the gaussian, exponential,
boxcar, bisquare and tricube kernels were tested and the optimal kernel
bandwith was selected using the leave-one-out cross-validation (CV)
score which accounts for model prediction accuracy. The GWR models
were fitted using the GWmodel package (Lu et al., 2014) available in
the R software.

The GR, RGR and LUR models with the best predictive performance
were selected based on the lowest logarithmic score (logscore) — mea-
sure of the predictive ability of an individual model (Ntzoufras, 2011):

s
Ley = — Z log CPOq
s=1 @

where the leave-one-out conditional predictive ordinate (CPO) is based
on the cross-validatory predictive densities n(Ys, Y_;) and is given by
CPO; = m(Ys , Y_,) for each excluded location s. For the GWR, the
optimal models were obtained using the model.selection.gwr function
(Gollini et al., 2015), which uses a pseudo stepwise procedure to select
the independent variable subset based on the corrected Akaike in-
formation criterion (AIC.) (Hurvich et al., 1998) values.

Subsequently, we validated all the models using the 5-fold-cross-
validation method; each dataset was randomly divided 5 times in 80%
(training set) and 20% (validation set) splits of the total number of PM
sites and the following performance metrics were examined for each
fold: mean absolute error (MAE), mean absolute prediction error
(MAPE), root mean squared error (RMSE) and the coefficient of de-
termination (R?).

For each pollutant, prediction was obtained at the cell centroids of a
1 km? resolution grid covering the study area (approximately 5.8 mil-
lion pixels) after fitting the models to the full datasets (for a better
spatial coverage and therefore for obtaining more accurate parameter
estimates and predictions). The results were based on 1000 samples
drawn from the posterior predictive distributions. The sample-based
medians and the standard deviations (measure of the uncertainty of the
predictions) of these distributions were used for mapping. Fit of the best
model and prediction took less than half an hour for each pollutant on
an Intel Xeon E5-2697 CPU machine (2 X 2.60 GHz, 128 GB RAM).
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Table 2

First five covariate combinations with the highest predictive ability (i.e. lowest
logscore) for restricted geostatistical regression (RGR), geostatistical regression
(GR) and land-use regression (LUR) models.

Pollutant Model Covariates Logscore
PM;o RGR TCD + IMP + DEM + LST + SHUM + WS + DISS 2.68271
TCD + IMP + DEM + NTL + LST + SHUM + WS 2.68307
TCD + IMP + DEM + LST + SHUM + DISS 2.68355
IMP + DEM + LST + SHUM + WS + DISS 2.68412
IMP + DEM + NTL + LST + SHUM + WS 2.68423
GR TCD + IMP + DEM + NTL + NDV 2.66186
I+ SHUM + PREC + LC
IMP + DEM + NTL + NDV 2.66190
I+ SHUM + PREC + LC
TCD + IMP + DEM + NTL + NDV 2.66207
I+ RD + SHUM + PREC
IMP + DEM + NTL + NDV 2.66208
I+ RD + SHUM + PREC + LC
TCD + IMP + DEM + NTL + NDV 2.66215
I+ SHUM + PREC + WS + LC
LUR AOD+IMP +ESM +DEM +NTL+LST +NDV I 3.07056
+SHUM +PREC+ WS+ DISS+DISR+LC
AOD+IMP +ESM +DEM +NTL+LST +NDV I 3.07066
+SHUM +PREC +DISS +DISR+LC
AOD+IMP +ESM +DEM +NTL+LST +NDV I 3.07067
+SHUM + WS +DISS +DISR+LC
AOD+IMP +ESM +DEM +NTL+LST +NDV 3.07071
I+RD+SHUM + PREC+ WS+ DISS+DISR+LC
AOD+ESM +DEM +NTL+LST +NDVI +SHUM  3.07077
+PREC + WS +DISS +DISR+LC
PM, 5 RGR IMP + DEM + LST + SHUM + WS + DISS 2.27595
IMP + DEM + LST + WS + DISS 2.27803
IMP + DEM + LST + SHUM + DISS 2.28041
IMP + DEM + LST + DISS 2.28149
IMP + DEM + NTL + LST + SHUM + WS + DISS 2.28541
GR IMP + ESM + DEM + NTL + WS + DISS 2.27044
IMP + ESM + DEM + NTL + LST + WS + DISS 2.27049
IMP + DEM + NTL + LST + WS + DISS 2.27070
IMP + DEM + NTL + WS + DISS 2.27071
IMP + ESM + DEM + NTL + NDVI+ WS + DISS  2.27090
LUR AOD+ESM +DEM +NTL+LST +NDV I 2.74321
+RD+SHUM +PREC +DISS +DISR+LC
AOD+IMP +ESM +DEM +NTL+LST +NDV I 2.74326
+RD+SHUM +PREC +DISS+DISR+LC
AOD+IMP +DEM +NTL+LST +NDV I 2.74340
+RD+SHUM +PREC +DISS +DISR+LC
AOD+TCD+IMP +ESM +DEM +NTL+LST 2.74376
+NDV I+RD+SHUM + PREC +DISS +DISR+LC
AOD+TCD+IMP +DEM +NTL+LST +NDV I 2.74388

+RD+SHUM +PREC +DISS +DISR +LC

To determine the most polluted European areas, the first-level
Nomenclature of Territorial Units for Statistics (NUTS) (EuroStat, 2016)
classification of the EU was used to define the regions' borders. To
identify the most polluted capitals, buffer zones with radius varying
from 1 to 30 km away from the center of each city (SimpleMaps, 2016)
were considered. The high-resolution PM;, and PM, s estimates (pixel-
level posterior medians) were first clipped by each region and then
averaged over the resulting sectors (i.e. over the NUTS areas and buffer
zones). For every capital spline curves were employed to profile the
relationship between pollutants' concentration and distance from the
city center within a 30 km buffer.

3. Results
3.1. Model selection and comparison

Fig. 2 shows the variation in the predictive performances of the GR,
RGR and LUR models. The geostatistical models highly outperformed
the LUR in terms of predictive ability (based on the lowest logscore
values). The models without the orthogonality constraint (GR) were
slightly better compared to their RGR counterparts. The figure also
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highlights the importance of carrying out the variable selection process.
In fact, for PM, concentration, the models which include all the cov-
ariates had the 19th best predictive performance for LUR, the 596th
best for GR, and the 6586th best for RGR formulations. Similar results
were observed for the PM, 5 dataset. The five best selected combina-
tions of covariates for each of these three set of models are shown in
Table 2. For the GWR models, the pseudo stepwise model selection
procedure resulted in all the predictors being important for both PM;,
and PM, s concentration. The set of covariates giving the best predic-
tions differ between the GR/RGR and the GWR/LUR models. Particu-
larly, the MAIAC AOD covariate is included in each of the five best LUR
models for both PM;, and PM, s concentrations and also in the best
GWR model. However, Bayesian geostatistical models indicated that
AOD does not improve the predictions of annual averages of PM con-
centrations. Furthermore, the number of covariates resulting in best fit
of the geostatistical models was much lower than the ones in GWR/
LUR. The GR models provided the highest cross-validated R values of
0.72 for PM;, and 0.78 for PM, 5 concentration (Tables 3 and 4). The
out-of-sample MAE, MAPE and RMSE metrics of the predictive perfor-
mance were also the lowest for the spatial models without the ortho-
gonality constraint. The estimated range parameters (r) as well as the
variances of the spatial process (c2) were lower in RGR compared to the
geostatistical models without the orthogonality constraint. This was
expected, since, the spatial effects in RGR account for the variation after
the linear effect in mean of each covariate is assessed. Thus, potential
confounding between the spatial random effect and the spatially-
smooth covariates is avoided.

The above results indicate that for both pollutants, the GR model
had the best predictive ability. Therefore, we present estimates and
inference based on GR models with the covariate combination giving
the lowest logscore (i.e. the 1st GR model in Table 2). All the parameter
estimates (i.e. the regression coefficients) presented in Tables 3 and 4
were obtained using the Laplace approximation implemented within
the INLA framework. We found a significant positive association of
PM;, concentration with imperviousness layer and night time light
intensity and a negative association of PM;o with tree cover density,
elevation, normalized difference vegetation index (NDVI), surface hu-
midity and precipitation; highest levels of PM;o concentration were
estimated in urban and industrial areas (i.e. over land cover categories
LC1 and LC2), followed by agricultural (LC3) and forest (LC4) areas
(Table 3). The PM, 5 concentration was positively associated with im-
perviousness surfaces, human settlements, night time lights intensity
and distance to sea and negatively correlated with elevation and wind
speed (Table 4).

3.2. High-resolution model-based pollutant maps

Fig. 1 (c—f) depicts the predictions and their uncertainty (i.e. the
median and the standard deviation of the posterior predictive dis-
tribution based on 1000 samples) for both pollutants at 1 km? spatial
resolution based on the best GR model. The highest levels of PM;,
concentration were estimated in Macedonia (FYROM), Poland, Bulgaria
and Malta (Table 5). The most heavily polluted regions in terms of
PM, 5 concentration included Poland, FYROM, Croatia, Berlin region
and northern Italy (the Po Valley). As expected, higher uncertainty was
estimated in areas away from monitoring stations. Thus, for most of
central Europe, the uncertainty is low and increases in northern and
south-eastern parts of the continent. The most polluted capitals (Fig. 3f)
in terms of PM are Skopje, Sofia and Sarajevo (Fig. 4). The same figure
shows that for most of the European capitals, the PM concentration
decrease with increasing distance away from their centre. Furthermore,
for some capitals, such as Tirana and Skopje, there is a steep decrease in
PM with distance, while for others, like Bucharest and Warsaw, the
reduction is moderate and even increasing in case of San Marino.
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Table 3

Posterior medians, 95% Bayesian credible intervals and cross-validation performance metrics of the restricted spatial regression, geostatistical regression, geo-
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graphically weighted regression and non-spatial land-use regression models with the best predictive ability of PM;, concentrations.

PM;

Restricted geostatistical regression

Geostatistical regression

Land-use regression

Geographically weighted regression

Covariate Median (2.5%, 97.5%) Median (2.5%, 97.5%) Median (2.5%, 97.5%) Median (2.5%, 97.5%)

Intercept 2.98 (2.97, 2.99) 2.84 (2.59, 3.07) 3.02 (2.98, 3.05) 3.00 (2.96, 3.05)

AOD - - 0.13 (0.12, 0.14) 0.09 (0.05, 0.11)

TCD —0.01 (—0.01, —0.00) —0.01 (—0.01, —0.00) - —0.00 (—0.01, —0.00)

DEM —0.13 (—0.14, —0.13) —0.14 (—0.16, —0.13) —0.08 (—0.09, —0.06) —0.11 (—0.16, —0.08)

IMP 0.03 (0.03, 0.04) 0.03 (0.02, 0.04) 0.01 (0.00, 0.03) 0.02 (0.00, 0.03)

ESM - - 0.02 (0.00, 0.03) 0.00 (0.00, 0.02)

NTL - 0.04 (0.03, 0.05) 0.05 (0.03, 0.07) 0.05 (0.04, 0.07)

LST 0.14 (0.13, 0.15) - 0.11 (0.09, 0.13) 0.05 (0.00, 0.12)

NDVI - —0.02 (—0.04, —0.01) 0.06 (0.05, 0.07) 0.01 (—0.02, 0.04)

SHUM —0.05 (—0.06, —0.04) —0.05 (—0.08, —0.02) —0.06 (—0.08, —0.04) —0.05 (—0.10, —0.00)

PREC - —0.05 (—0.08, —0.02) —0.01 (—0.02, —0.00) —0.01 (—0.04, 0.02)

DISS 0.09 (0.08, 0.10) - 0.05 (0.03, 0.06) 0.02 (—0.02, 0.07)

RD - - - 0.00 (—0.01, 0.01)

DISR - - 0.06 (0.05, 0.07) 0.03 (0.00, 0.05)

LC
LC2 - —0.02 (—0.04, 0.01) —0.02 (—0.06, 0.02) —0.04 (—0.07, —0.00)
LC3 - —0.03 (—0.07, —0.00) —0.08 (—0.13, —0.02) —0.05 (—0.11, —0.01)
LC4 - —0.12 (—0.17, —0.08) —-0.18 (-0.25, —0.11) —-0.14 (-0.21, —0.07)

252 0.02 (0.02, 0.03) 0.02 (0.02, 0.03) 0.07 (0.07, 0.07) 0.03

bo2 0.10 (0.07, 0.14) 0.21 (0.13, 0.35) - -

°r (km) 376.3 (305.6, 478.9) 748.0 (563.3, 1031.3) - -

MAE 0.14 0.14 0.20 0.16

“MAPE 0.05 0.05 0.07 0.05

‘RMSE 0.19 0.19 0.27 0.21

¢R? 0.71 0.72 0.43 0.66

@ g2 - variance of the random error.

b 52 . variance of the spatial process.

¢ r - range (the distance at which the spatial variance becomes less than 10%).

4 MAE - mean absolute error.

¢ MAPE - mean absolute prediction error.
f RMSE - root mean squared error.

8 R? . coefficient of determination.

3.3. Population living in areas that exceed the international air quality
thresholds

The Bayesian framework allowed us to make probabilistic state-
ments about areas exceeding the international air quality thresholds.
We evaluated the compliance with the AQGs based on long-term, rather
than on the short-term or episodic exposure to pollutants. Particularly,
two different limit values were taken into consideration: the European
Air Quality Directive with annual thresholds of 40 ug/m? for PM;, and
20 ug/m?® for PM, 5 concentrations and the WHO air quality guideline
with values of 20 ug/m3 and 10 ug/mS, respectively (EU, 2008; WHO,
2006). Fig. 3 (a—d) depicts the probabilities of PM;, and PM, 5 con-
centrations exceeding the thresholds in 2016. They were calculated by
the proportion of samples drawn from the posterior predictive dis-
tributions of PM that have pollution levels above the thresholds. While
most parts of the continent meet the requirements of the EU Directive,
the stricter WHO threshold standards, which are considered as an
achievable objective to minimize the health impact, are still to be
reached, especially for the PM, 5 concentrations. The European capitals
that have not reached the WHO limits and the distances from the city
centres at which the pollution levels meet the standards are illustrated
in Fig. 4. The exceedance maps (Fig. 3b, d) were used to estimate the
total number of population exposed to elevated levels of the above-
mentioned pollutants. In particular, we overlayed the gridded popula-
tion data at 1 km? spatial resolution with the threshold maps and cal-
culated the total population in pixels that have exceedance probability
higher than 50% (Fig. 3e). Results show that in 2016, 35.6% and 63.9%
of the population within the study area were exposed to PM;, and PM, 5

63

levels above the WHO thresholds, respectively, while more than 66.2%
were living in areas exceeding both thresholds (Table 6). Our high-re-
solution results indicate a decrease in PM, 5 exposure in Europe in 2016
when compared to findings put forth in a recent WHO report (WHO
et al., 2016) based on global estimates at ~10 km? spatial resolution.
Indeed, in 2014 just 1% of the population in low- and middle-income
(World Bank, 2016) European countries and only 18% of the population
in high-income countries breathed clean (below the AQGs limit values)
air.

4. Discussion

Over the past decade, the demand for rigorous predictive models
incorporating satellite-derived products to estimate continent-wide
geophysical parameters of ambient air at high spatial resolution, has
rapidly grown. Our work is the first to estimate surface PM;, and PM> 5
concentrations at 1km? geographical resolution over 46 European
countries, incorporating remotely sensed data and validated models
using rigorous methodology. We compared different model formula-
tions and determined the predictive performance of satellite-derived
products in estimating the burden of air pollution.

The geostatistical models outperformed the non-spatial LURs which
assume statistical independence, overestimating the significance of the
predictors. Our results showed that modelling the spatial correlation
present in air pollution data not only corrects for the bias in the cov-
ariate effects but also improves considerably the pollutants' con-
centration estimates as indicated by the improved predictive perfor-
mances. Small differences in the logscore values of the competing (in



A. Beloconi et al.

Table 4

Posterior medians, 95% Bayesian credible intervals and cross-validation performance metrics of the restricted spatial regression, geostatistical regression, geo-
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graphically weighted regression and non-spatial land-use regression models with the best predictive ability of PM, s concentrations.

PM, 5

Restricted geostatistical regression

Geostatistical regression

Land-use regression

Geographically weighted regression

Covariate Median (2.5%, 97.5%) Median (2.5%, 97.5%) Median (2.5%, 97.5%) Median (2.5%, 97.5%)
Intercept 2.51 (2.51, 2.52) 2.29 (2.06, 2.50) 2.58 (2.52, 2.63) 2.64 (2.59, 2.71)
AOD - - 0.14 (0.12, 0.16) 0.13 (0.08, 0.16)
TCD - - - —0.00 (-0.01, 0.01)
DEM —0.15 (-0.16, —0.14) —-0.13 (—0.15, —0.11) —0.10 (-0.13, —0.07) —0.10 (-0.13, —0.05)
IMP 0.04 (0.03, 0.05) 0.03 (0.02, 0.05) - 0.01 (0.00, 0.02)
ESM - 0.01 (0.00, 0.03) 0.03 (0.00, 0.05) 0.01 (0.00, 0.02)
NTL - 0.05 (0.03, 0.07) 0.07 (0.04, 0.10) 0.07 (0.04, 0.09)
LST 0.11 (0.10, 0.13) - 0.11 (0.08, 0.15) 0.07 (-0.01, 0.17)
NDVI - - 0.12 (0.09, 0.14) 0.06 (0.04, 0.08)
SHUM 0.02 (0.01, 0.04) - —0.04 (-0.08, —0.01) —0.08 (-0.11, —0.03)
PREC - - 0.05(0.03, 0.07) 0.03 (0.01, 0.05)
WS —0.05 (—0.06, —0.04) —0.05 (—0.08, —0.02) - —0.01 (-0.03, 0.01)
DISS 0.21 (0.20, 0.23) 0.15 (0.06, 0.24) 0.16 (0.13, 0.18) 0.06 (0.02, 0.12)
RD - - —0.02 (—0.04, 0.00) —0.01 (—-0.02, 0.00)
DISR - - 0.06 (0.04, 0.08) 0.03 (0.01, 0.04)
LC
LC2 - - —0.03 (—0.09, 0.02) —0.05 (—0.09, —0.01)
LC3 - - —0.08 (—-0.17, 0.02) —0.05 (—0.10, —0.01)
LC4 - - —0.28 (-0.41, —0.16) —-0.17 (-0.25, —0.10)
"UEZ 0.02 (0.02, 0.03) 0.03 (0.02, 0.03) 0.09 (0.08, 0.10) 0.03
bol 0.18 (0.12, 0.29) 0.18 (0.12, 0.28) - -
r (km) 588.6 (445.5, 807.5) 698.1 (522.2, 964.4) - -
MAE 0.15 0.14 0.23 0.17
‘MAPE 0.06 0.06 0.10 0.07
'RMSE 0.21 0.20 0.30 0.24
R2 0.77 0.78 0.50 0.69

@ g2 - variance of the random error.

b 52 . variance of the spatial process.

c

4 MAE - mean absolute error.

¢ MAPE - mean absolute prediction error.
f RMSE - root mean squared error.

8 R? . coefficient of determination.

terms of variable selection) models (differences in 4th or 5th decimal
digit in Table 2) correspond to small differences in the optimal models'
predictive performances. However, as this measure represents the
likelihood of observing the data given the model estimates, the smallest
logscore indicates the best model. The range of the logscore values
among models comprising all possible combination of the covariates
shows that there is variation in their predictive performances and that
the models which include all the covariates do not have the best pre-
dictive ability. Therefore, the variable selection process should be part
of the modelling procedure to identify the most parsimonious model.
The predictive ability of the RGR models was slightly lower com-
pared to GR; however, the use of these models allowed us to identify the
most important satellite-derived products that are associated with PM
by addressing potential confounding due to similar spatial structures in
the pollutants and their predictors. Thus, there is a different set of
covariates in the optimal models for GR and RGR formulations.
Particularly for the PM;, concentration, the effects of land surface
temperature and of distance to the sea covariates are positive and sta-
tistically important in the RGR models (regression coefficients of 0.14
and 0.09, respectively) but not important in the GR models. Notably,
these predictors have the largest spatial structure among all the tested
covariates. Similarly, for the PM, s models, land surface temperature
and surface humidity, that have the largest spatial correlation, are
important predictors in RGR but not in GR models. These results in-
dicate the presence of spatial confounding and suggest that when
confounding is addressed by orthogonalizing the spatial random effect,
the covariates with an important association with PM concentration

r - range (the distance at which the spatial variance becomes less than 10%).
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and large spatial correlation, can be better identified in RGR than in GR
models. This is very important when the main aim of the study is to
determine the most important factors related to the outcome. Here our
main aim was to obtain the most accurate predictions of PM;, and
PM, 5. The GR models outperformed the RGR in terms of predictive
ability (based on the lowest logscore values) and therefore, they were
chosen for subsequent analyses. It is also worth mentioning that the
Bayesian credible intervals obtained from the RGR models are much
narrower compared to those from GR. Similar conclusion were drawn in
the Hughes and Haran (2013) work on simulated data. Last but not
least, the RGR models offer an increased computational efficiency.
The optimal set of covariates with the highest predictive perfor-
mance also differs between LUR/GWR and geostatistical models.
Specifically, the MAIAC AOD covariate was included in each of the best
five LUR models and in the optimal GWR model with a significant
positive estimated coefficient. This is in line with the results of other
studies which showed the importance of the high-resolution MAIAC
AOD in improving predictions of both fine and coarse particle con-
centrations (Chudnovsky et al., 2014; Hu et al., 2014; Kloog et al.,
2015; Stafoggia et al., 2016). However, when the spatially structured
random term was added, the inclusion of the AOD covariate did not
improve the model-based predictions. Similar results were observed in
works which incorporated alternative AOD sources such as the MODIS
Dark Target and the visible infrared imaging radiometer suite (VIIRS)
AOD (available at 6 km? spatial resolution) products in the geostatis-
tical framework (Paciorek and Liu, 2009; Schliep et al., 2015). In
general, there is a much larger number of significant covariates
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Table 5
Pollution levels (in ug/m3) at the first-level nomenclature of territorial units for statistics (NUTS) classification of the European Union.
Region PM;o PM, 5 Region PM;o PM, 5
(AT1) East Austria 14.20 10.22 (DEF) Schleswig-Holstein 14.69 9.85
(AT2) South Austria 11.01 7.75 (DEG) Thuringia 12.73 9.62
(AT3) West Austria 8.88 6.75 (DKO) Denmark 14.29 7.80
(BE1) Brussels Capital Region 20.93 13.56 (EEO) Estonia 10.86 5.58
(BE2) Flemish Region 19.30 12.29 (EL3) Attica 21.82 9.82
(BE3) Walloon Region 14.47 9.46 (EL4) Aegean Islands, Crete 15.83 7.20
(BG3) North and East Bulgaria 25.27 13.58 (EL5) North Greece 27.63 13.06
(BG4) South-West and South-Central Bulgaria 22.84 12.87 (EL6) Central Greece 21.18 9.73
(CHO) Switzerland 8.45 6.54 (ES1) North-West Spain 10.98 6.77
(CYO) Cyprus 22.33 9.62 (ES2) North-East Spain 11.43 5.96
(CZ0) Czech Republic 17.17 13.39 (ES3) Community of Madrid 15.31 8.40
(DE1) Baden-Wiirttemberg 13.57 8.96 (ES4) Central Spain 14.09 6.35
(DE2) Bavaria 12.89 9.50 (ES5) East Spain 12.73 6.80
(DE3) Berlin 20.88 15.19 (ES6) South Spain 19.57 6.47
(DE4) Brandenburg 16.27 12.39 (FI1) Mainland Finland 7.58 5.19
(DE5) Free Hanseatic City of Bremen 17.71 12.03 (FI12) Aland 9.48 3.72
(DE6) Hamburg 17.03 12.87 (FR1) Région parisienne 17.76 10.96
(DE7) Hessen 13.78 9.67 (FR2) Bassin parisien 13.51 9.05
(DE8) Mecklenburg-Vorpommern 14.94 10.52 (FR3) North France 17.02 11.40
(DE9) Lower Saxony 14.92 10.35 (FR4) East France 12.57 9.19
(DEA) North Rhine-Westphalia 15.69 10.43 (FR5) West France 13.33 8.36
(DEB) Rhineland-Palatinate 12.65 8.75 (FR6) South-West France 11.25 7.12
(DEC) Saarland 12.95 9.39 (FR7) Central-East France 10.94 7.63
(DED) Saxony 15.43 11.91 (FR8) Mediterranean France 12.03 7.56
(DEE) Saxony-Anhalt 14.85 11.00 (HRO) Croatia 22.37 16.90
(HU1) Central Hungary 21.27 13.17 (PL4) North-West Poland 22.33 16.38
(HU2) Transdanubia 20.48 14.10 (PL5) South-West Poland 25.33 18.38
(HU3) Great Plain and North 20.95 14.18 (PL6) North Poland 20.49 13.57
(IEO) Ireland 11.05 7.37 (PT1) Mainland Portugal 14.37 6.92
(IS0) Iceland 7.13 4.36 (RO1) North-West and Central Romania 15.23 9.45
(ITC) North-West Italy 17.69 13.36 (RO2) North-East and South-East Romania 19.42 11.30
(ITF) South Italy 16.03 10.12 (RO3) South Romania - Muntenia, Bucuresti 23.78 13.36
(ITG) Sardinia, Sicily 17.99 7.80 (RO4) South-West Oltenia, West Romania 17.90 14.26
(ITH) North-East Italy 17.29 12.51 (SE1) East Sweden 10.13 4.57
(ITT) Central Italy 16.11 10.48 (SE2) South Sweden 10.46 6.24
(LIO) Liechtenstein 9.36 8.05 (SE3) North Sweden 7.04 3.42
(LTO) Lithuania 17.73 10.87 (S10) Slovenia 16.00 11.94
(LUO) Luxembourg 13.35 9.08 (SKO) Slovakia 19.00 14.19
(LVO) Latvia 15.75 10.36 (UKC) North-East UK 9.39 5.96
(MEO) Montenegro 17.51 10.82 (UKD) North-West UK 11.65 6.93
(MKO) Macedonia (FYROM) 32.00 17.06 (UKE) Yorkshire and the Humber 12.67 8.16
(MTO0) Malta 29.14 10.10 (UKF) East Midlands 15.02 8.97
(NL1) North Netherlands 16.80 9.72 (UKG) West Midlands 13.82 8.55
(NL2) East Netherlands 17.01 9.93 (UKH) East of England 15.56 9.55
(NL3) West Netherlands 17.67 10.58 (UKI) Greater London 19.73 11.29
(NL4) South Netherlands 17.54 10.42 (UKJ) South-East UK 15.97 9.22
(NOO) Norway 8.71 3.98 (UKK) South-West UK 12.83 7.81
(PL1) Central Poland 25.48 18.88 (UKL) Wales 11.42 7.11
(PL2) South Poland 29.27 21.91 (UKM) Scotland 7.52 4.33
(PL3) East Poland 22.08 17.67 (UKN) Northern Ireland 10.08 6.88

included in optimal LUR and GWR models compared to GR and RGR
formulations for both PM,, and PM- 5 concentrations. The dense in situ
network available in Europe allows for an accurate estimation of the
spatial correlation structure, especially over shorter distances. In-
corporation into the model of this supplementary information in the
data, i.e. the large spatial correlation, via the Gaussian process, im-
proved model fit and prediction more than the set of geo-referenced
predictors alone. In continents such as Africa, the number of stations is
sparse and reliable estimation of the spatial correlation is not possible
due to the large distances between the stations. Therefore we expect
that the geostatistical models would require more predictors than those
developed for Europe.

Rigorous variable selection indicated that the novel pan-European
Copernicus land products, including the tree cover density, impervious
surfaces, European settlement map and land-use/cover datasets were
significant predictors for PM estimation. The elevation, night time
lights intensity, NDVI, humidity, precipitation, distance to the sea and
wind speed also increased the predictive ability of the optimal (based
on logscore) models. The positive/negative associations of these
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covariates estimated using the GR models generally agree with those
reported in the literature. The important positive association of PM;,
with impervious surface areas and the important negative effects of
NDVI and elevation on PM;, were also found in Stafoggia et al. (2016).
The negative association of PM;, with humidity and precipitation is
also consistent with previous studies (Benas et al., 2013; Yanosky et al.,
2014). For PM, s, negative associations with the wind speed and ele-
vation were estimated in Hu et al. (2014) and Yanosky et al. (2014).
However, in contrast to other studies (Vienneau et al., 2013;
Chudnovsky et al., 2014), we did not find an important effect of road
density and distance to the roads on PM concentration in GR models.
The advantage of the geostatistical models is their ability to provide
information about air pollution in areas where there is no monitoring
(i.e. no stations). Furthermore, unlike previous implementations of LUR
or GWR, the Bayesian framework allows the quantification of the pre-
diction uncertainty, which can be taken into account in further ana-
lyses. In fact, samples of the posterior predictive distributions sum-
marized by their quantiles provide estimates of the pollutant
concentration and their uncertainty at pixel level. These samples can be
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Fig. 3. Exceedance probability maps in 2016 based on international air quality guidelines thresholds. a, b: Probability that PM;, concentration exceeds the EU
Directive and WHO thresholds, respectively. ¢, d: Probability that PM, 5 concentration exceeds the EU Directive and WHO thresholds, respectively. e: Population
exposed to PM;, and PM, s concentrations above the WHO thresholds. f: Location of the European capitals.

used to obtain other quantities of interest such as exceedance prob- economically developed regions, like Bulgaria and FYROM, where solid
abilities. The results from these analyses clearly show areas of elevated fuels are used for home heating and energy production/distribution
levels of PM;, and PM,s within Europe, notably in either less systems are often aged, inefficient, unreliable and polluting; or in the
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Fig. 4. Air quality in 41 European capitals in 2016. The air pollution profiles of PM;, and PM, s within 30 km buffer zone from the centre of each capital. The black

horizontal line corresponds to the WHO thresholds.

industrial regions, like Po Valley in northern Italy, where the polluted
air is effectively trapped by the Alps on the north, and Poland, where
coal-burning predominates in electricity production and adds to the
problems caused by high levels of car use and industrial plants.
Estimates of people exposed to excess levels of PM;o, and PM, s per
country (Table 6) provide important information to policy makers, i.e.
national governments and environmental agencies.
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The developed methodology can be applied to estimate pollutants'
concentration and evaluate international AQGs for any specific year or
spatial domain. The operational application of the models for a dif-
ferent year or area of investigation requires re-estimation of the re-
gression parameters and spatial process for each pollutant.
Furthermore, since most of the spatio-temporal covariates are available
at daily level and the raw PM;o and PM, s data are measured every
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Table 6

Environment International 121 (2018) 57-70

Estimated number of people exposed to PM;, and PM, 5 levels above the WHO thresholds in 2016 (median and 95% credible intervals of the posterior distributions).

Country Population® Exposed to PM;, Exposed to PM, 5 Exposed to both

(AD) Andorra 67 462 0 (0, 8187) 0 (0,0) 0 (0, 8187)

(AL) Albania 2925 168 2760 328 (2 372 165, 2 872 254) 2773118 (2 317 413, 2 899 536) 2839 928 (2 711 134, 2 902 285)
(AT) Austria 8731 711 552 133 (205 305, 1 418 388) 5 622 958 (3 499 525, 6 841 414) 5552 144 (3 456 660, 6 741 482)
(BA) Bosnia and Herzegovina 3 817 952 3211 730 (2 930 650, 3 469 739) 3 621 987 (3 360 840, 3 769 263) 3 623 988 (3 396 449, 3 769 263)
(BE) Belgium 11 469 758 4795 731 (2 712 409, 6 737 162) 10 216 848 (8 895 370, 10 780 086) 10 216 848 (8 961 789, 10 780 371)
(BG) Bulgaria 7 153 089 5 833 643 (5 149 469, 6 397 074) 6 074 697 (2 290 590, 7 115 259) 6 536 242 (5 686 108, 7 120 149)
(CH) Switzerland 9 202 540 74 374 (22 227, 217 827) 3709 464 (771 040, 7 446 925) 3 186 486 (749 640, 6 040 566)

(CY) Cyprus 1190 214 1 065 339 (808 584, 1 169 544) 946 342 (435 091, 1 148 452) 1107 591 (939 295, 1 171 135)

(CZ) Czech Republic 10 618 625 4 894 115 (3 449 455, 6 256 099) 10 319 289 (8 640 556, 10 581 769) 10 319 289 (8 676 605, 10 581 769)
(DE) Germany 81 848 649 6 454 538 (3 459 511, 10 084 160) 57 079 581 (39 626 291, 71 089 190) 57 129 401 (40 103 236, 71 081 848)
(DK) Denmark 5766 524 79 320 (93, 1 223 356) 1 425 992 (21 645, 3 976 153) 1 483 493 (26 436, 3 630 736)

(EE) Estonia 1 349 753 10 (10, 70 510) 2042 (2042, 60 279) 3244 (2003, 69 737)

(EL) Greece 11 050 816 9113 513 (3 765 692, 10 822 578) 8 645 062 (2 474 767, 10 803 008) 10 075 255 (5 535 995, 10 958 087)
(ES) Spain 44 529 778 14 091 655 (11 108 136, 17 585 244) 12 751 382 (7 688 226, 18 846 075) 20 024 311 (16 152 157, 23 524 607)
(FI) Finland 5979 902 505 (505, 562) 14 749 (14 532, 135 929) 14 804 (14 532, 135 931)

(FO) Faroe Islands 48 175 48 175 (48 175, 48 175) 48 175 (48 175, 48 175) 48 175 (48 175, 48 175)

(FR) France 65 346 726 15 339 351 (12 454 680, 18 158 156) 38 463 737 (34 478 334, 43 008 767) 38 727 999 (34 805 552, 43 279 674)
(GG) Guernsey 53 479 0 (0, 22 306) 1877 (1877, 53 099) 1877 (1877, 53 104)

(GI) Gibraltar 31 233 31 233 (31 233, 31 233) 26 873 (26 873, 31 233) 31 233 (31 233, 31 233)

(HR) Croatia 4 221 881 3001 732 (2 675 240, 3 343 463) 3 816 375 (3 254 063, 4 065 225) 3823 186 (3 371 975, 4 065 225)
(HU) Hungary 10 027 750 6 871 493 (4 957 358, 8 293 607) 9 856 885 (4 483 879, 10 027 742) 9 876 097 (7 840 786, 10 027 742)
(IE) Ireland 4 814 831 14 560 (97, 352 894) 351 192 (12 511, 2 486 106) 418 148 (26 281, 2 492 510)

(IM) Isle of Man 93 479 93 479 (93 479, 93 479) 93 479 (93 479, 93 479) 93 479 (93 479, 93 479)

(IS) Iceland 330 470 6332 (6332, 13 532) 6645 (6645, 20 139) 6750 (6645, 22 464)

(IT) Italy 60 499 999 39 357 298 (33 111 421, 43 803 501) 50 068 301 (44 846 328, 54 193 507) 51 888 148 (48 081 086, 54 671 205)
(JE) Jersey 92 559 0 (0, 28 991) 922 (922, 92 559) 922 (922, 92 559)

(LD Lichtenstein 37 363 0 (0, 0) 19 213 (0, 23 289) 19 213 (0, 23 289)

(LT) Lithuania 2923123 1 037 226 (400 488, 1 821 479) 2 089 688 (1 197 846, 2 875 473) 2 257 227 (1 482 890, 2 858 680)
(LU) Luxembourg 570 985 0 (0, 9736) 324 255 (16 766, 507 908) 324 255 (18 868, 507 908)

(LV) Latvia 2125 289 770 177 (78 541, 1 338 556) 1 663 388 (717 373, 2 012 122) 1 531 437 (895 565, 1 748 986)
(MC) Monaco 13 681 13 681 (13 681, 13 681) 13 681 (13 681, 13 681) 13 681 (13 681, 13 681)

(ME) Montenegro 664 404 248 443 (132 918, 400 326) 408 590 (214 787, 594 498) 413 032 (258 897, 594 498)

(MK) Macedonia (FYROM) 2123 204 1 931 983 (1 784 536, 2 059 485) 1 918 138 (1 586 410, 2 076 636) 1 997 365 (1 887 069, 2 091 835)
(MT) Malta 420 872 420 872 (403 898, 420 872) 359 704 (330, 420 872) 420 872 (408 539, 420 872)

(NL) Netherlands 17 718 000 1 861 514 (496 752, 4 887 712) 12 815 012 (6 248 996, 17 079 090) 12 990 321 (6 671 072, 17 085 633)
(NO) Norway 5372 166 21 485 (2160, 147 472) 22 513 (19 430, 278 578) 57 357 (19 649, 328 364)

(PL) Poland 39 149 578 33 941 244 (31 587 503, 35 909 074) 38 845 342 (37 714 562, 39 119 913) 36 887 515 (36 525 696, 37 006 924)
(PT) Portugal 9 700 000 1 934 276 (404 008, 4 105 513) 2 022 657 (17 612, 5 682 987) 3 336 004 (864 776, 6 371 533)

(RO) Romania 19 740 811 12 536 787 (9 991 581, 14 301 109) 16 197 842 (10 628 372, 18 899 966) 17 070 172 (14 151 233, 18 953 342)
(RS) Serbia 8 995 232 8 590 739 (7 856 825, 8 839 038) 8 899 419 (8 698 848, 8 971 016) 8 914 417 (8 797 323, 8 972 319)
(SE) Sweden 10 521 396 27 883 (10 427, 154 071) 167 516 (30 336, 1 211 812) 206 439 (30 934, 1 211 871)

(SI) Slovenia 2112593 1 046 006 (695 290, 1 368 354) 1945928 (1 761 175, 2 049 285) 1945 928 (1 761 195, 2 049 285)
(SK) Slovakia 5 486 419 3266 930 (2 071 944, 4 163 482) 5412 775 (3 801 816, 5 486 387) 5414 138 (4 300 177, 5 486 387)
(SM) San Marino 30 187 17 017 (6643, 26 368) 30 187 (22 784, 30 187) 30 187 (23 308, 30 187)

(UK) United Kingdom 65 644 463 8 585 732 (950 331, 16 103 147) 29 162 597 (14 031 534, 43 841 121) 29 798 616 (16 620 607, 43 952 210)
(VA) Vatican 1970 1970 (1970, 1970) 1970 (1970, 1970) 1970 (1970, 1970)

Whole study area 544 614 259 193 944 552 (146 251 722, 238 593 466) 348 258 387 (254 015 642, 420 790 160) 360 659 184 (285 453 499, 423 103 297)

35.6% (26.9%, 43.8%)

63.9% (46.6%, 77.3%)

66.2% (52.4%, 77.7%)

@ Estimate obtained via cubic spline interpolation of 2000, 2005, 2010, 2015 and 2020 population data at 1 km? pixel level.

hour, it is possible to fit spatial models at higher temporal resolution
(e.g. to daily or monthly averaged data) and evaluate the effects of the
short-term or episodic exposures to air pollution. In particular, many
recent works indicate large variability in the daily PM-AOD association
(Lee et al., 2011; Hu et al., 2014) and therefore yearly aggregation of
the data, considered here, may not capture the true physical association
between two products, explaining the lack of the statistical importance
of the AOD in the developed GR/RGR models. Stafoggia et al. (2016)
have shown that MAIAC AOD has better predictive ability when daily
calibrations of the AOD-PM relations are considered. However, the
spatio-temporal Bayesian geostatistical models applied to predict daily
PM data for such a large area of investigation at high spatial resolution
cannot be fitted in a reasonable computational time.

The importance of the AOD within a temporal geostatistical model
on daily pollution data remains to be investigated. It should be also
noted that the number of days with missing AOD varies in space with
higher proportion of missing values in the northern part of the con-
tinent and at high altitudes due to the presence of clouds and higher
surface reflectance. The results have shown, that even with missing
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values, annual averaged AOD was a significant predictor in both LUR
and GWR models and not statistically important in geostatistical (GR/
RGR) models. In order to evaluate the impact of missing AOD data on
the predictive ability of the geostatistical models, we further aggregated
the daily PM;o and PM, s data only at locations and days when AOD is
available. The results (not shown) indicated that despite of a positive
and significant effect of AOD, the predictive ability of the geostatistical
models was lower when it was included, leading to the conclusion that
the missing values have not influenced the results. Several empirical
gap-filling methods have been developed to fill missing AOD data
(Kloog et al., 2011). These analyses are crucial in models which take
into account temporal component (e.g. for daily predictions); however,
for yearly averaged predictions, filling AOD gaps using additional sta-
tistical approaches will inevitably introduce measurement errors and
complicate result interpretation. Another drawback is the temporal
misalignment between the observations at stations and some of the
evaluated covariates (i.e. Corine land cover, night time lights) as well as
the varying spatial resolution of the covariates. We analysed publicly
available data (with continental or global coverage) at the original scale
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assuming homogeneity of their values within the coarser spatial re-
solution. Approaches have been proposed to address fusion of data with
different spatial supports (Berrocal et al., 2012; Nguyen et al., 2012),
however this is an active field of research.

We have shown the benefits of combining high-resolution satellite-
derived products in a rigorous geostatistical modelling framework to
estimate the spatial distribution of PM;, and PM,s concentrations
across Europe. Investigation over such large areas are usually compu-
tationally complex, especially when the spatial correlation structure is
taken into account. Furthermore, the need of predictors at continental
level and their accurate pre-processing is crucial. However, rather than
working with data for a particular country, modelling at continental
scale, where large number of monitoring stations are available, allowed
us to better estimate the spatial correlation structure as well as the
relationship between the pollutants' concentration and the covariates
and therefore obtain more accurate predictions. The recent develop-
ments in remote sensing and ‘approximate’ Bayesian inference allowed
us to fit such models in a reasonable computational time, to evaluate
the importance of each covariate and to estimate gridded pollutants'
concentration at high spatial resolution with high predictive ability.

5. Conclusions

Our model-based high-resolution air-pollution exposure estimates
are readily available and can contribute to human and ecosystem health
research in Europe. Most of the previous Europe-wide estimations were
based on LUR and GWR models which have lower predictive ability
compared to the geostatistical models, as demonstrated in the present
work. The Bayesian formulation allowed us to quantify the uncertainty
in the predictions and to make probabilistic statements at high geo-
graphical resolution about the areas that exceed the AQGs thresholds.
To our knowledge this research is the first to compute and compare
continental exceedance maps of PM;, and PM, s using the EU Directive
and WHO guidelines. Quantification of the prediction uncertainty can
also be incorporated in future studies related to health risks assess-
ments. Furthermore, by taking into account the spatial distribution of
the population within the study area, we estimated the total number of
people living in regions that exceed the international thresholds. This
information can support governmental decisions in areas where the
implementation of the air-quality policies has to be given priority.
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