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Summary

Image registration is the process of aligning images of the same object taken at different time

points or with different imaging modalities with the aim to compare them in one coordinate

system. Image registration is particularly important in biomedical imaging, where a multi-

tude of imaging modalities exist. For example, images can be obtained with X-ray computed

tomography (CT) which is based on the object’s X-ray beam attenuation whereas magnetic

resonance imaging (MRI) underlines its local proton density. The gold standard in pathology

for tissue analysis is histology. Histology, however, provides only 2D information in the selected

sections of the 3D tissue. To evaluate the tissue’s 3D structure, volume imaging techniques,

such as CT or MRI, are preferable. The combination of functional information from histology

with 3D morphological data from CT is essential for tissue analysis. Furthermore, histology

can validate anatomical features identified in CT data. Therefore, the registration of these

two modalities is indispensable to provide a more complete overview of the tissue. Previously

proposed algorithms for the registration of histological slides into 3D volumes usually rely on

manual interactions, which is time-consuming and prone to bias. The high complexity of this

type of registration originates from the large number of degrees of freedom. The goal of my

thesis was to develop an automatic method for histology to 3D volume registration to master

these challenges.

The first stage of the developed algorithm uses a scale-invariant feature detector to find common

matches between the histology slide and each tomography slice in a 3D dataset. A plane of

the most likely position is then fitted into the feature point cloud using a robust model fitting

algorithm.

The second stage builds upon the first one and introduces fine-tuning of the slice position

using normalized Mutual Information (NMI). Additionally, using previously developed 2D-2D

registration techniques we find the rotation and translation of the histological slide within the

plane. Moreover, the framework takes into account any potential nonlinear deformations of the

histological slides that might occur during tissue preparation.

The application of the algorithm to MRI data is investigated in our third work. The devel-

oped extension of the multi-modal feature detector showed promising results, however, the

registration of a histological slide to the direct MRI volume remains a challenging task.
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Chapter 1

Introduction

There is an unmet need for accurate and robust image processing methods in science and

medicine. My thesis contributes to the field by developing an automatic multi-modal 2D to 3D

image registration method.

1.1 Motivation

The motivation for my project comes from a dental study that was performed in our group.

In this study by Stalder et al. [2014], the authors compared osteogenic potential of several

bone grafting materials after a tooth extraction. In order to analyze integration of the grafting

material in patients’ jaws, cylindrical biopsies were extracted with a trephine bur. The entire

sample volume was obtained using µCT which was followed by histological sectioning. To

extrapolate the histological findings from 2D images to 3D volume, registration of the slide to

µCT data was needed. The registration also enabled to determine if the histological slide was

representative for the entire specimen. Moreover, based on the joint histogram of the registered

images, it is possible to subdivide soft and hard tissue [Stalder et al., 2014, Schulz et al., 2010].

In our group, registration of a histological slide to a 3D volume so far has been performed

manually. The expert-based search of the corresponding slice in the volume is a very time-

consuming task that can take up to one day per slide. Moreover, manual results may vary from

1



2 Chapter 1. Introduction

expert to expert and are hardly reproducible. Therefore, an automatic approach to register

histological slides to 3D data was highly desired. The most popular methods for histology to

3D registration either rely on manual interaction, inclusion of artificial landmarks or additional

modalities such as blockface images. These methods could not be applied to our problem as

there were no artificial landmarks that could be easily segmented, no additional modality, and

manual corrections were not appreciated either. Therefore, my thesis aimed at filling this gap

and providing a versatile automated solution for registration of 2D histological slides to 3D

µCT data.

1.2 Contribution

The contribution of the thesis consists of three parts. First, we developed an approach to

find the best estimate of a histological slide’s position and tilt in 3D space [Chicherova et al.,

2014]. The most important advantages of our algorithm are that it does not require manual

interaction and it can find slices under arbitrary tilt up to 25◦. The core element of the pipeline

is the feature detector. Therefore we evaluated different feature detection algorithms. The

performance analysis of the three most efficient detectors is summarized in our recent work

[Chicherova et al., 2016]. We found that the feature detector Speeded-up Robust Features

(SURF) produces the most robust results compared to the selected detectors. Moreover, in

this work we applied our pipeline to three X-ray tomography datasets of a human cerebellum

biopsy. We showed that our 2D-3D localization method is robust to change of contrast and

tissue type.

After analyzing the results of the first framework we noticed that a number of the estimated

plane positions of histological slides could be improved. Hence, we extended the pipeline with

an optimization of the slice parameters in 3D space performing a more reliable registration of

the histology slide to the 3D volume. Two types of frameworks were developed – rigid and

deformable. The difference between these frameworks is that in the rigid version we optimized

the positioning of the plane, i.e. three degrees of freedom, and in the deformable version, we
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allowed for more degrees of freedom. We complemented the three Cartesian basis vectors with

Legendre polynomial basis functions. The registration of the soft tissue specimens benefits

from the deformable framework, due to nonrigid deformation occurring during specimen re-

embedding it could not be modeled by a plane [Khimchenko et al., 2016]. The rigid approach

was evaluated on 10 jaw-bone datasets. The method localized 81 % of histological sections with

a median position error of 8.4µm. The elastically deformable framework was evaluated on a

cerebellum dataset where it improved slice localization by 33 µm [Chicherova et al., 2017b].

Last, we automatically validated the rigid framework on 3D µCT and µMRI datasets [Chicherova

et al., 2017a]. In contrast to the previous studies, here, we compared the registered parameters

to automatically generated ground truth, hence, leaving out any bias from evaluation. An

important contribution of this work is an extension of the feature detection strategy based on

Self-similarity descriptor (SS) [Shechtman and Irani, 2007] that we called SL1. Our master

student Khalili [2015] showed that using SS descriptor performed better in most of the jaw

bone datasets. More importantly, the SS descriptor is built on local correlation in an image,

hence, more suitable for multi-modal matching. Based on these ideas we combined the rotation

invariant self-similarity descriptor and L2 and L1-norm outlier rejection. The densely extracted

SL1 descriptor made it possible to take into account homogeneous areas of the tissue where

SURF was not able to detect features. Additionally, we registered one histological slide to the

two datasets. We found that histology to the µCT registration is more reliable than histology

to the µMRI where the gray value gradient is very different from the histological one. Reason-

able registration of the slide could be achieved through the 3D-3D registration of the µCT and

µMRI.

1.3 Outline

In Chapter 2, we outline the most important studies in the field of 2D-2D and 2D-3D regis-

tration. The variety of rigid and nonrigid techniques in combination with dense and sparse

similarity measures were previously applied to the problem. In Section 2.2, we introduce a
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multi-modal 2D histology to 3D data registration and describe the main challenges that need

to be faced.

Chapter 3 combines the main paper contributions. In Section 3.1, the first pipeline for localizing

a histological slide in a 3D volume is presented. The automatization of an initial slide position

is achieved using a combination of fast feature detection and a robust plane fitting. Further

improvement of the algorithm is described in Section 3.2 where we show that coarse to fine

registration strategy can achieve better results. Moreover, we propose a solution for nonlinear

deformations of the histological slide using polynomials. Lastly, in Section 3.3, we present an

attempt to extend an application of the algorithm to histology and MRI data registration and

propose a potential feature detection approach, namely SL1, to solve it.

Chapter 4 discusses the limitations of the algorithm and outlines future work to overcome them.



Chapter 2

Background

2.1 2D-3D image registration

Matching images acquired with different modalities (multi-modal images) plays an important

role in biomedical research. Alignment of the images or registration is a process of bringing

images to a consistent coordinate system. In other words, registration can be defined as find-

ing a geometric transformation that maps points from one image to points in another image.

The variety of image transformation techniques include basic linear transformation (transla-

tion, rotation, affine) as well as more sophisticated nolinear ones such as thin-plate splines,

polynomials, a B-splines [Pluim et al., 2003].

Registration methods can be classified with respect to the chosen similarity measure into in-

tensity based and landmark based. In intensity based approaches the similarity metric is

calculated by taking every pixel value of an image into account. Most commonly used metrics

are Mean Squared Distance, Normalized Cross-correlation or Mutual Information (MI) [Viola

and Wells III, 1997]. These metrics are able to align images with very high accuracy, however,

due to dense sampling are time consuming for large scale data. In contrast, landmark based ap-

proaches find distinctive features which represent the entire image with a sparse set of points.

The matching of the images is then reduced to calculating distances between the descriptor

vectors of these features.

5



6 Chapter 2. Background

Another way to classify the registration methods is based on data dimensionality, i.e. 2D-

2D, 3D-3D and 2D-3D methods. A large variety of techniques to register data of consistent

dimensionality (2D-2D and 3D-3D) has been published [Pluim et al., 2003]. For example,

various techniques for 3D-3D registration are based on MI as a measure of similarity between

images, e.g. registration of MRI and CT volumes [Andronache et al., 2008], PET and MRI

[Maes et al., 1997]. The 2D-2D rigid approaches are often based on feature point correspondence

(landmark based). A mapping function for every pixel from one image to another is then found

using a set of correspondences.

One of the most common approaches to estimate the mapping function is called RANSAC

Homography [Fischler and Bolles, 1981]. This algorithm finds a transformation matrix by

randomly selecting four point pairs among the found correspondences. The coordinates of the

points are then used to solve a linear system of equations and to calculate the values of the

transformation matrix H (Eq. 2.1). Hence, every point of one image PI = (xi, yi) is transformed

to a point in the other image PJ = (xi, yi) by multiplying with the matrix H (Eq. 2.1), where

i goes through all the corresponding points in the image I or J .




xJi

yJi

1




=




h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3




︸ ︷︷ ︸
:=H




xIi

yIi

1



. (2.1)

Due to its robustness, the RANSAC Homography algorithm became the state of the art tech-

nique in many image analysis fields. The key to the robust performance lies in iterative thresh-

olding of false feature correspondences (outliers). The final transformation matrix H is then

calculated based on correctly matched features (inliers). Another robust approach for 2D-2D

rigid registration was recently proposed by Ask et al. [2014]. It determines rotation and trans-

lation between the matching points using their absolute distance or L1-norm. There also exist

numerous non-rigid methods for 2D-2D registration [Kybic and Unser, 2003, Andronache et al.,

2008, Heinrich et al., 2012].
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Although a wide variety of these techniques have been proposed in the literature, the multi-

modal 2D-3D registration remains a challenging problem. A recent review by [Markelj et al.,

2012] outlines main 2D-3D registration approaches used for image-guided surgeries. The sug-

gested approaches mainly address registration of 2D fluoroscopy projections with 3D computed

tomography volumes. This, however, makes these approaches not entirely multi-modal because

both of the modalities utilize an X-ray source for image acquisition. Several reviewed methods

investigate 2D fluoroscopy to MRI volume registration [Fei et al., 2003, Bullitt et al., 1999].

Most of the proposed 2D-3D registration techniques are based on contour or surface alignment

and consequently require segmentation. The segmentation, in turn, is often data specific or

utilizes manual correction, hence, not desired in the framework.

Another type of 2D-3D multi-modal registration is concerned with aligning optical microscopy

images with 3D data such as CT or MRI. The need for 2D microscopy to 3D volume registration

is growing fast with the arrival of novel image acquisition techniques and increase of application

in biomedicine. Indeed, microscopy imaging is a gold standard technique in such fields as cancer

research, dentistry or bacteriology. For example, histological sectioning is a usual procedure to

analyze jaw bone biopsies.

Histological sectioning can be reduced to three main steps. First, a slide is cut through the

specimen volume. Then, the slide is stained with chemicals to highlight the tissue components

of interest. And last, an optical microscopy image of this slide is taken. Histology is an essential

tool to obtain functional information about the tissue which allows to differentiate between the

tissue types. It also serves as a validation technique that complements other imaging modalities.

However, arbitrarily selected histological cuts provide information only about a small part of

the volume. To visualize the entire tissue distribution in the specimen the 3D acquisition

techniques such as micro CT (µCT) or MRI are needed. Combining the 2D histological slides

with 3D imaging modalities provides a more complete overview of functional and morphological

structure of the sample. This challenging problem of 2D-3D multi-modal registration was the

main focus of my research.
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2.2 Previous work

The available works on histology slide to 3D data registration can be classified into two classes.

The first class reconstructs prior to registration the 3D volume out of the histological sections

and then performs 3D-3D registration [Alic et al., 2011, Nir et al., 2014, Ourselin et al., 2001].

The second class registers a single histological 2D slide to the 3D volume [Sarve et al., 2008,

Hoerth et al., 2015, Wachowiak et al., 2004]. The first type is built upon the position information

about the histological cut which allows reconstructing a volume from the slides. To determine

this information one can use a complementary modality such as blockface photographs [Dauguet

et al., 2007, Goubran et al., 2013, Kim et al., 1997, Meyer et al., 2006, Park et al., 2008,

Schormann and Zilles, 1998, Uberti et al., 2009] or photographs of an unstained sample [Yelnik

et al., 2007]. Other studies rely on implanted artificial markers [Breen et al., 2005, Humm

et al., 2003, Lazebnik et al., 2003] or colour-coding [Alic et al., 2011]. However, all these

techniques make the histological sectioning procedure more labor intensive, and the additional

facilities are not always available in the laboratory. Other algorithms reconstruct the volume

using segmentation, which is then used for distance minimization between contours [Ou et al.,

2009, Taylor et al., 2004, Zhan et al., 2007] or for more robust similarity measure calculation

[Mosaliganti et al., 2008, Nir et al., 2014, Ourselin et al., 2001, Seise et al., 2011]. To summarize,

the 3D histology volume to 3D CT or MRI data registration approaches are a reasonable choice

in case of serial histological sectioning and availability of additional imaging modalities. They

are also very useful when the data are easily segmented.

Limited amount of research has also been done on 2D-2D registration of histology to CT, MRI

or US slices [Andronache et al., 2008, Arganda-Carreras et al., 2010, du Bois d’Aische et al.,

2005, Li et al., 2006, Pitiot et al., 2003]. Li et al. [2006] performed coarse-to-fine registration

of histology and 2D MRI slices. Starting with affine transformation non-rigid thin plate spline

registration was applied based on manual corresponding landmarks.

In this thesis we concentrate on a more challenging type of histology registration that is a single

slice-to-volume registration. In contrast to the methods described above, here, there is only

one slide available. Hence there is no information to compensate for rotation and translation as
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in serial sectioning. Second, the position of the slice in 3D space is not known. The aforesaid

reason is in fact the main challenge of the field and according to our knowledge so far no

automatic solution existed. For example, a recently proposed algorithm based on generalized

Hough transform provides a semi-automatic solution to the slice-to-volume registration [Hoerth

et al., 2015]. In another study by Sarve et al. [2008], the authors first minimized edge distances

between a segmented implant to find a position of histology in 3D µCT. Then, registration was

achieved by rotating the histological slide around the main axis of the implant. The best slice

was selected in the interval ±20◦ by choosing the one with the highest normalized MI (NMI).

In Wachowiak et al. [2004] the authors investigated a global optimization algorithm for rigid

registration of a 3D histology stack to 2D tomograms and ultrasound images. The paper gave

an extensive assessment of the performance for different global optimization algorithms and

presented an adapted evolutionary approach called particle swarm optimization. Nonlinear

deformations perpendicular to the slicing plane are also explored in the literature [Dauguet

et al., 2007, du Bois d’Aische et al., 2005, Goubran et al., 2015, Kim et al., 2000, Schormann

et al., 1995]. However, only some of them investigated nonrigid registration techniques in

application to histology [Dauguet et al., 2007, Goubran et al., 2015, Osechinskiy and Kruggel,

2010, Schormann and Zilles, 1998]. A general framework for slice deformation in 3D space

was evaluated by Osechinskiy and Kruggel [2010] for different registration techniques and an

optimal set of parameters was identified. Non-rigid 2D-3D registration was also investigated

by Kim et al. [2000]. They used non-linear polynomial functions to relate the coordinates of

2D histology to 3D MRI. By calculating the intensity difference between voxels, coefficients

of polynomials were optimized. The initialization for the optimization was calculated based

on the minimal value of the similarity measure along the MRI volume, which is sub-optimal

in case of high similarity within the volume. The described methods for the slice-to-volume

registration achieve reasonable results and require minimal manual intervention either at the

stage of segmentation or registration initialization.



Chapter 3

Publications

3.1 Histology to µCT Data Matching using Landmarks

and a Density Biased RANSAC

Natalia Chicherova, Ketut Fundana, Bert Müller, Philippe Cattin

In the following paper we introduced an automatic algorithm that finds a position of a 2D

histological slide in a 3D µCT data.

Authors contribution. Natalia Chicherova and Prof. Philippe Cattin equally contributed

to the algorithm development, figure design, data analysis and wrote the main parts of the

manuscript. The implementation of the pipeline was performed by Natalia Chicherova. Dr.

Ketut Fundana contributed to the algorithm development and manuscript writing. Prof. Bert

Müller provided the data. Prof. Philippe Cattin and Prof. Bert Müller designed the study.
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Histology to µCT Data Matching Using

Landmarks and a Density Biased RANSAC

Natalia Chicherova1,2, Ketut Fundana1, Bert Müller2, and Philippe C. Cattin1

1 Medical Image Analysis Center, University of Basel, Basel, Switzerland
2 Biomaterials Science Center, University of Basel, Basel, Switzerland

natalia.chicherova@unibas.ch

Abstract. The fusion of information from different medical imaging
techniques plays an important role in data analysis. Despite the many
proposed registration algorithms the problem of registering 2D histolog-
ical images to 3D CT or MR imaging data is still largely unsolved.

In this paper we propose a computationally efficient automatic
approach to match 2D histological images to 3D micro Computed To-
mography data. The landmark-based approach in combination with a
density-driven RANSAC plane-fitting allows efficient localization of the
histology images in the 3D data within less than four minutes (single-
threaded MATLAB code) with an average accuracy of 0.25mm for
correct and 2.21mm for mismatched slices. The approach managed to
successfully localize 75% of the histology images in our database. The
proposed algorithm is an important step towards solving the problem of
registering 2D histology sections to 3D data fully automatically.

1 Introduction

Image registration is the art of automatically aligning or warping medical imag-
ing data. Registered data allows a more in depth analysis of the probed tissues
as different modalities often represent different physical properties important to
better understand and interpret the data at hand. Many approaches have been
proposed in the last decades for 2D-to-2D and 3D-to-3D registration of the same
or even different modalities [11]. However, registering 2D histological images to
3D data is a largely unexplored problem.

The need for reasonable 2D histology to 3D data registration becomes more
and more important with the availability of affordable micro Computed Tomog-
raphy (μCT) devices with high spatial resolution and tissue contrast. Combining
the functional information from histology with the structural imaging data of
the μCT provides better insights in identifying anatomical features of hard and
soft tissues.

Only few papers are insofar directly related to the research at hand as they
describe the registration of histological sections to CT and MR data. Seise et al.
[9] proposed an interactive registration of histological sections to CT in the con-
text of radiofrequency ablation. However, this approach highly relied on manual
intervention in the registration step as well as in segmentation. Sarve et al. [8]

P. Golland et al. (Eds.): MICCAI 2014, Part I, LNCS 8673, pp. 243–250, 2014.
c© Springer International Publishing Switzerland 2014
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registered histological images of bone implants with synchrotron radiation-based
μCT data. Their algorithm was based on segmentation of the implant by thresh-
olding, which is not possible in our datasets, as the implant material is hardly
visible and highly assimilated in the jaw bone. Other approaches deal with the
registration of histological sections with soft tissue such as in the prostate [7] or
the human brain [6] where MRI is more useful than CT. An additional factor is
that the acquired μCT or μMR imaging data is generally of large size, amount-
ing up to several hundred megabytes of data. However, only very little research
has been devoted to efficiently register these type of datasets [5].

Using images of histological cross sections poses additional challenges to the
already ill-posed problem of image registration. First, the histology images are
susceptible to uneven lighting (vignetting artifact) and different contrasts from
staining. Second, the histological sections may suffer from severe non-rigid defor-
mations originating from the cutting process. Moreover, the histological images
generally show different contrasts as compared to the μCT or μMR data that
must be handled appropriately. Lastly, the potentially non-uniform background
of the histological cuts may lead to erroneous results in the registration process.

In this paper we propose a novel approach for automatic registration of 2D
histological cross sections to 3D μCT scans. This fully automatic feature-based
registration approach makes use of the scale- and rotation-invariant feature de-
tector SURF[2] and a modified density-driven RANSAC[3] plane-fitting. The
main advantage of our method is that it can detect corresponding slices under
different angulation that often appears in histological sectioning experiments.
Furthermore, the computation time of our algorithm is notably shorter than of
manual registration. The latter is estimated at 8 hours per slice. Finally, it does
not require insertion of any additional landmarks hence can be readily applied
to numerous biological data, where auxiliary inclusions are impossible.

2 Method

An illustration of the algorithmic pipeline is depicted in the Fig. 1. First, we
determine corresponding feature points between the histological image and each
image in the μCT volumetric data and extract their associated coordinates.
Then, based on these coordinates, we build a 3D point cloud, where the third
dimension corresponds to the slice number in the μCT data. As the distribution
of the matched points is higher in the plane that corresponds best to a given
histological slice (see Fig. 1(middle)) the remaining step reduces to a robust
plane fitting in a noisy point cloud.

2.1 Data Acquisition

The sample data used for this work [10] originates from a jaw bone volume
augmentation after tooth extraction study. In total ten clinical patients were
included in this study. Biopsies of the jaw bones were taken from 4 to 11months
after implantation. The inner diameter of the specimen tubes was around 3mm
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Fig. 1. Pipeline of the algorithm: (left) Feature matching of μCT data and histological
image, (middle) 3D point cloud of matched points, (right) optimized RANSAC plane
fitting

and the length was around 12mm. The μCT of the whole specimen was acquired.
Then five to nine histological cross-sections through the horizontal plane of the
specimen were taken. Each histological slice (thickness 300μm) resulted in an
RGB image of size 2592 × 1944pixels. The μCT data were 8 bit gray-scale 3D
matrices with a range of data size 764 × 764 × (416 ÷ 1939) pixels, where the
vertical axis corresponds to the third dimension. The corresponding resolution
along vertical axis differed from 0.03mm to 0.006mm per slice.

2.2 Feature Detection and Matching

Let I(x, y) and V (x, y, z) denote the histological image and the μCT data volume
accordingly, where z is associated with a slice number in the μCT dataset. Hence,
I : ΩI ⊂ R2 → R and V : ΩV ⊂ R3 → R. The rigid registration problem
between these two modalities can be formulated as finding coefficients of the
plane section in the μCT space that corresponds best to the histological image. In
a first step we match each of the histological images to all axial μCT slices using a
landmark-based approach. As a feature detection algorithm we rely on the scale-
and rotation-invariant feature detector and descriptor SURF [2]. The choice
of this detector is based on performed comparative analysis with SIFT[4]. We
have found that SURF was more accurate and computationally efficient for our
application. For a Matlab implementation of the SURF algorithm we used the
opensource code by D. Kroon of Sep 20101, saving the default parameters. The
number of octaves was set to 5, threshold to 0.0002. The main principal of this
detector is based on scale-space extrema detection and stable feature localization.
Applying the feature detector to an image, e.g. histological image I, we obtain
a small subset of distinctive feature points P (x, y) ⊂ I. The descriptor vectors
are then used for matching the feature points between the μCT and histological
images. As the matching algorithm, we use the second-nearest-neighbor-criteria
[4,1] that calculates the Euclidean distance between the descriptor vectors. A
match is only accepted when the smallest Euclidean distance is less than 0.8

1 http://www.mathworks.ch/matlabcentral/fileexchange/

28300-opensurf--including-image-warp-
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times the second smallest Euclidean distance. This process is then repeated for
all the axial slices in the μCT dataset.

2.3 The 3D Feature Point Cloud

Suppose that the result of the above matching step is a set of feature points
Pz ⊂ Vz with coordinates (xi, yi), where i = 1...κj and κj is the number of
found matching feature points in a slice z. Having matched features for each
of the N slices in the μCT volume will subsequently allow us to plot them as
a point cloud, i.e. the 3D set of the keypoints C = {(xij , yij , zj)} (j = 1...N)
with the third dimension z representing the slice number in the μCT data, see
Fig. 1(middle). Here, the total number of feature points for the whole μCT data

is determined as M =
∑N

j=1 κj .
As one would expect, the resulting point cloud shows an increased density of

found matches at the correct location of the histology section. This holds true
even for histological images that are tilted with respect to the z-axis of the μCT
dataset. This plane - well visible in the point cloud of Fig. 1(middle) - corresponds
to the best position for the histological slice. In order to efficiently extract the
plane parameters, we define a binary matrix B(x, y, z) : ΩV ⊂ R3 → R as

B(x, y, z) =

{
1 if (x, y, z) ∈ C
0 otherwise,

which is then convolved with a 3D Gaussian as Bσ = Gσ ∗B. Thus, in each point
we obtain a new intensity value that is influenced by the neighboring keypoint
distribution across the μCT space and thus reflects the local density of matched
points.

2.4 Density-Driven RANSAC for Robust Plane Fitting

One of the most widely used robust algorithms for extracting shapes from a data
set with outliers is RANSAC [3]. The algorithm randomly selects a minimum
number of points that uniquely defines a fitting shape. Then the corresponding
primitive is constructed. In our problem, the model of interest is a plane Ax +
By+Cz+D = 0 and the minimum number of points is 3. Therefore, the output
parameter of the algorithm is a four dimensional normal vector n = [ABC D]T .
RANSAC then counts the number of points within the distance threshold t to
the obtained candidate model (inliers). If the number of inliers for one model
is larger than in the previous iteration, the new model parameters are retained.
Otherwise, another subset is randomly selected. Depending on the ratio of inliers
over outliers, this process has to be repeated multiple times to assure with a high
probability that a solution is found when present. The large amount of outliers
in our data would result in a large number of iterations.

In this work we thus propose to bias the random sampling of the RANSAC
plane fitting process towards points with high density i.e. points that are close
to the plane of interest. To optimize the plane detection algorithm, the dataset
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Bσ is further reduced to ρ < M points by retaining features with the largest
density values. However, the new dataset Bρ ⊂ Bσ still contains some outliers
due to high similarities within a specimen along the vertical axis.

To further reduce the number of required sampling iterations, we bias the
random sampling code towards preferring points with a higher local density.
Thus points with a high local density have a higher probability of being selected.
Suppose that each density value of the dataset Bρ is assigned to the weighting
vector w = {wl}, where l = 1...ρ. Therefore, instead of using the unbiased
classical sampling of the original RANSAC, the probability of picking an element
bm ∈ Bρ is then defined as pm=wm/

∑ρ
l=1 wi.

A further optimization is associated with the angle α between the z-axis and
the plane formed by the currently randomly sampled points from the dataset.
Based on our observations we restrict this angle to lie between −αhist < α <
αhist. In other words, for every iteration, the 3D coordinates of the sampled
points {b1, b2, b3} ∈ Bρ are used to calculate the normal of the plane that goes
through these points n = (b2 − b1) × (b3 − b1). We then find the angle α =
arccos(nz /‖n‖), subject to −αhist < α < αhist. Therefore, only planes that
satisfy this constraint are considered for further procession in RANSAC. These
two modifications allow to robustly fit a plane to the selected points and to
obtain its parameters. An example of the point cloud with corresponding plane
fit is shown in the Fig. 1.

Finally, we make a cut through the μCT data matrix along the fitted plane.
The image in this cut is the result of our algorithm and should be maximally
similar to the histological image.

Algorithm 1. 2D-3D matching

Input: Histological image I and μCT 3D dataset V , RANSAC threshold t=10, ρ=1000,
αhist =

π
8

Output: Plane parameters n

Convert I to gray scale
for all Vj , (j = 1...N) do � Detect coordinates of matching points

(xi, yi) = SURF (I, Vj)
Build 3D set of coordinates C = {(xij , yij , zj)}

end for
Create a binary 3D matrix B(x, y, z)
for (x, y, z) ∈ B do

if (x, y, z) ∈ C then
set B(x, y, z) to 1

end if
end for
Convolve with Gaussian: Bσ = Gσ ∗ B
Find ρ highest values in Bσ

Define Bρ ⊂ Bσ, i.e. keep ρ points with the highest values
n=RANSAC(Bρ,t,αhist,w) � Fit a plane into Bρ using its values as weights w
return n
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3 Results

Our framework was validated on ten μCT datasets with overall 60 histological
cross section images. For each histological slice we obtained a four dimensional
vector which uniquely describes a plane in a 3D space. To compare the automati-
cally found results with manually found locations we estimated the z-coordinate
along the μCT volume and the angle between z-axis and the normal to the
plane which represents a cut of the specimen. The z-coordinate was calculated
as a center point of the obtained plane. All manually found matching parame-
ters were obtained from VG studio which provides a four-dimensional vector of
the searching plane and automatically computes the center point of the plane,
i.e., z-coordinate. We also performed a visual assessment of the automatically
found images. In Fig. 2, we showed two examples of a matched slice found au-
tomatically ((a) and (d)) in comparison with manually found ((b) and (e)) and
histological image ((c) and (f)). The complete result of the visual estimation
with corresponding comparison with the ground truth values is summarized in
Table 1. In nine out of ten datasets our approach has allocated at least half of
the histological slices with an average difference of 0.25mm. For the datasets
4, 5 and 10 the algorithm showed poor performance. The average distance for
mismatched slices averaged around 286 slices and an overall accuracy for mis-
matched slices reached 2.21mm. This might be due to high intensity variations
within the μCT dataset and the inhomogeneous dying of the histological slices
(see Fig. 3(a)). The extrema detector was very sensitive to intensity changes
and dirt spots on the histological slices. This caused wrong feature responses
and consequently incorrectly matched images.

The comparison of the angles with the ground truth is shown in Table 2. For
intuitive reasons, we provided negative angles instead of angles around 360◦ to
stress small alternation of the cutting section slopes. For small angles (around
5◦) our approach showed high efficiency, whereas, for the angles of more than
10◦, which corresponded to 0.53 mm of the specimen, it often found only a
close approximation to the desired section of the μCT volume. For example, for
the dataset 10, it has found a very close slice number, but determined a wrong
angulation.

(a) (b) (c) (d) (e) (f)

Fig. 2. (a),(d) Automatically found image. (b),(e) Manually found image. (c),(f) His-
tological image.
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Table 1. Number of matched and mismatched images with corresponding average
differences between automatically and manually found slices

Data set 1 2 3 4 5 6 7 8 9 10

Number of Matched slices 6 9 6 1 3 5 5 3 3 3
Average distance [mm] 0.06 0.04 0.9 0.17 0.05 0.59 0.24 0.07 0.16 0.13
Average difference [slices] 10 3 8 6 3 63 10 4 10 9

Number of Mismatched slices 0 0 1 4 3 1 1 1 2 3
Average distance [mm] - - 0.17 2.71 4.56 2.96 1.07 0.67 0.76 1.37
Average distance [slices] - - 15 94 286 314 45 40 47 91

*Note that number of slices per 1mm is different for different samples.

Table 2. Comparison of average automatically found angles for matched slices with
manually found angles

Data set 1 2 3 4 5 6 7 8 9 10

Average automatic angle [◦] 1 1 1 -23 4 -1 -4 5 5 19
Manual angles [◦] -2 -5 5 -22 4 -19 -7 19 -8 -13

4 Discussion

Our novel algorithm for automatic 2D-3D registration showed a very high effi-
ciency and small computational complexity and can be readily applied to the
matching problem.

However, it has certain limitations regarding the feature detection step. De-
spite the good feature matching performance of SURF for most images it can
not be considered a multi-modal approach but rather one that is robust against
lightning changes. This also explains its poor performance when matching his-
tological sections with non-uniform intensity variations. Moreover, additional
complication arose from the histological slices that were compiled from disinte-
grated pieces (see Fig. 3(b)) and could not be readily matched with the same
specimen. To overcome these limitations we want, firstly, to focus on develop-
ing a feature detector and descriptor that better will account for these specific
characteristics and will efficiently work for multi-modal 2D-3D registration. Sec-
ondly, we want to include a non-rigid deformation estimation once the initial
plane has been found. Lastly, we plan on further speeding up the calculation
time by parallelization and GPU implementations. With a computation time
of less than four minutes on a single-threaded MATLAB implementation, the
algorithm still leaves room for further optimization and parallelization. This is
irrespective of any angulation between the histology sections with respect to the
μCT data.
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(a) (b)

Fig. 3. (a) Inhomogeneous dying of the histological slice from the 5th dataset.
(b) Compiled from pieces histological slice from the 8th dataset.
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Summary

Localizing a histological section in the three-dimensional
dataset of a different imaging modality is a challenging 2D-
3D registration problem. In the literature, several approaches
have been proposed to solve this problem; however, they can-
not be considered as fully automatic. Recently, we developed
an automatic algorithm that could successfully find the posi-
tion of a histological section in a micro computed tomography
(μCT) volume. For the majority of the datasets, the result of
localization corresponded to the manual results. However, for
some datasets, the matching μCT slice was off the ground-
truth position. Furthermore, elastic distortions, due to histo-
logical preparation, could not be accounted for in this frame-
work.
In the current study, we introduce two optimization frame-
works based on normalized mutual information, which en-
abled us to accurately register histology slides to volume data.
The rigid approach allocated 81 % of histological sections with
a median position error of 8.4 μm in jaw bone datasets, and
the deformable approach improved registration by 33μm with
respect to the median distance error for four histological slides
in the cerebellum dataset.

Introduction

Histology slides generally form the basis of a quantitative anal-
ysis of tissue morphology. Because the two-dimensional slide
represents only a part of the three-dimensional object, the
conclusions may depend on the slide selection, see, e.g. (Bern-
hardt et al., 2004). Micro computed tomography (μCT) yields
the full three-dimensional information in a nondestructive
fashion and is, therefore, complementary to the histological
analysis. If the morphological information is at least partially
available in both data, one can extrapolate the information

Correspondence to: Simone E. Hieber, Biomaterials Science Center, Department of

Biomedical Engineering, University of Basel, Allschwil 4123, Switzerland. Tel: +41

61 207 54 33; fax: +41 61 207 54 99; e-mail: simone.hieber@unibas.ch

from histology to the third dimension (Hieber et al., 2016;
Khimchenko et al., 2016). Furthermore, it is well known that
the preparation of histology slides gives rise to artefacts, in-
cluding cracks and location-dependent shrinkage (Germann
et al., 2008; Schulz et al., 2011). Using even less detailed CT
data, one can correct the slides to obtain more reliable results.
For the artefact correction, the selection of an optimized cut-
ting direction and the extrapolation into the third dimension,
a sound identification of the two-dimensional counterpart of
the histological slide in the three-dimensional tomography
dataset is necessary. Image registration is the basis for numer-
ous image analysis techniques. In particular, the registration
of images from different modalities enables practitioners to ob-
tain a large amount of complementary information for accu-
rate diagnosis (Zhan et al., 2007; Alic et al., 2011; Seise et al.,
2011; Goubran et al., 2015), the combination of functional
and morphological data (Schormann & Zilles, 1998; Müller
et al., 2012; Particelli et al., 2012; Schulz et al., 2012; Stalder
et al., 2014) or atlas construction (Ourselin et al., 2001; Tsai
et al., 2008; Krauth et al., 2010; Tsai et al., 2011), to name but
a few. The task is particularly challenging when aligning mul-
timodal data of different dimensions, such as 2D to 3D. There
exist many techniques for 2D projections to 3D volume regis-
tration (Markelj et al., 2012). None of them can be applied to
our problem, i.e. matching a histological slide to a tomographic
volume dataset acquired from the same specimen, because of
two main reasons. First, the basic goal of these algorithms is
to find a mapping between the projections and the 3D volume.
Second, the methods often require manual feature identifica-
tion. In contrast, our 2D-3D registration problem is concerned
with registering a 2D slide such as histological section to a 3D
dataset, i.e. slide-to-volume registration. In the literature, it is
commonly referred to as slice-to-volume registration (Ferrante
& Paragios, 2017) and only a few approaches investigate the
problem of registering 2D histology images to 3D datasets as
well as 2D-2D multimodal registration of histological images
(Jacobs et al., 1999; du Bois d’Aische et al., 2005; Li et al.,
2006; Pitiot et al., 2006).

C© 2018 The Authors
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The most common approaches for registering histological
sections to the 3D space initially reconstruct a 3D volume from
histology serial sections and then apply 3D-3D registration
(Ourselin et al., 2001; Ceritoglu et al., 2010; Alic et al., 2011;
Nir & Salcudean, 2013). Reconstructing a 3D volume from 2D
histological sections, however, requires information about the
sectioning location in 3D space, which is not always available.
One way of determining this information is to use a comple-
mentary modality such as blockface photographs (Kim et al.,
1997; Schormann & Zilles, 1998; Meyer et al., 2006; Dauguet
et al., 2007; Park et al., 2008; Liu et al., 2012; Goubran et al.,
2013; Hallack et al., 2015) or photographs of an unstained
brain (Bardinet et al., 2002). Hallack et al. (2015) performed a
three-stage procedure for the registration of a histology stack
to an ex-vivo MRI dataset using feature points: (1) Matching
image stack to MRI dataset, (2) rigid registration of each histo-
logical slide to MRI slice (3) and nonrigid registration. Some of
the methods rely on implanting artificial markers (Humm et al.,
2003; Lazebnik et al., 2003; Breen et al., 2005) or color-coding
(Alic et al., 2011). Many reconstruction strategies utilize seg-
mentation (Taylor et al., 2004; Zhan et al., 2007; Ou et al.,
2009) for volume reconstruction or for more robust similar-
ity calculations (Ourselin et al., 2001; Mosaliganti et al., 2006;
Seise et al., 2011; Nir & Salcudean, 2013). There are also 3D re-
construction techniques based on mutual similarities between
2D histological images and known or fixed spacing between
slides (Ourselin et al., 2001; Arganda-Carreras et al., 2010;
Nir & Salcudean, 2013). The main limitation of these 3D-3D
registration techniques is that they require a high number of
histological sections that are not always available.

Our approach differs from the one of Hallack et al. (2015)
in the respect that one single slide can be registered directly to
the 3D dataset and that the matching surface can be curved
to adapt to large deformations. In our work, we focus on a
more challenging type of histology registration, namely single
slide-to-volume registration (Sarve et al., 2008). One of the
most recent approaches by Hoerth et al. (2015) registered
semiautomatically 2D images within 3D μCT data, using the
generalized Hough transform. Lundin et al. (2017) presented
an accurate approach based on binary data that requires a
presegmentation step and is tailored to trabecular bone. In Wa-
chowiak et al. (2004), the authors applied a global optimiza-
tion for rigid 2D CT and simulated ultrasound slices (USs) to 3D
histology registration. With normalized mutual information
(NMI) as a cost function, the optimal parameters for particle
swarm optimization were determined. Ferrante & Paragios
(2013) based the registration on a grid of control points that
represents both in- and out-of-plane deformation. By pairwise
over-parametrization of the graphical model, they overcome
inefficiency of the proposed model. The real-time registration
of US slices to MRI explored by Pardasani et al. (2016) was
able to improve the initial pose using patch-based similarity.
Several methods also account for nonlinear deformations
perpendicular to the slicing plane, which can often occur

in soft tissue specimens (Schormann et al., 1995; Kim et al.,
2000; Dauguet et al., 2007; Goubran et al., 2015). Among
nonrigid registration techniques applied to histology, one
can find methods based on splines (Dauguet et al., 2007;
Osechinskiy & Kruggel, 2010) or on a radial basis (Goubran
et al., 2015) which require a selection of control points and
a full multigrid approach (Schormann & Zilles, 1998). One
of the attempts to incorporate nonrigid deformation was
made by Osechinskiy & Kruggel (2010), who introduced a
general framework for slice deformation in 3D space and im-
plemented different techniques to identify the best-performing
set of parameters. Slide-to-volume registration was also
investigated by Kim et al. (2000), who used nonlinear
polynomial functions to relate the coordinates of 2D histology
to 3D MRI. Although these methods achieve reasonable
results in registration, they need manual interventions
at the stage of either segmentation or near ground truth
initialization, where the ground truth corresponds to the
best fit.

Manual detection of the histological slide in a 3D volume is
a very time-consuming task and can last up to 1 day for one
slide. Recently, we have developed an automatic algorithm for
2D histology to 3D μCT localization (Chicherova et al., 2014)
and showed its application on jaw bone data. Although the
algorithm performed very well for most of the specimens, in
some cases localization improvement was needed. In this pa-
per, we extend the framework by registering more accurately
each histological slide into the volume. We propose a combined
rigid and deformable registration approach for hard and soft
tissue samples. The main elements of the proposed method are
NMI (Viola & Wells III, 1997; Studholme et al., 1999; Pluim
et al., 2003) and Legendre polynomials, which are used as
basis functions to approximate surface deformation. In addi-
tion to being fully automatic, the proposed method is signif-
icantly more accurate than the first approach introduced by
Chicherova et al. (2014).

Materials and methods

We used two datasets to evaluate the performance of the
two-step optimization frameworks. The first dataset origi-
nated from a dental study about jaw bone augmentation
materials (Stalder et al., 2014). The bone specimens were
extracted from patients directly before inserting the dental
implants. The procedure was approved by the responsible
Ethical Committee, study protocol number 290/13, to
perform a combined histology and tomography study. Five
male and four female patients, aged between 46 and 75
years, obtained treatments of bone defects at the molars in
the upper and lower jaw (n = 8 and n = 1, respectively).
The bone graft materials used were BoneCeramic

R©
(Institute

Straumann AG, Basel, Switzerland) in one case, easy-graftTM

(SUNSTAR Degradable Solutions AG, Schlieren, Switzerland)
in four cases and Bio-Oss

R©
(Geistlich Biomaterials, Wolhusen,

C© 2018 The Authors
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Table 1. List of tomograms including specimen specifications.

# Patient
age (Gender)

[years]
Biopsy location ISO

3950 Grafting material
Dataset voxel
length [μm] Dataset size [voxel] No. of slides

1 A 70(m) 11 easy-graftTM 4.3 861×861×1939 6
2 B 74(f) 11 easy-graftTM 8.6 301×301×969 9
3 C 46(m) 23 Bio-Oss

R©
8.6 301×301×1093 7

4 D 47(m) 16 BoneCeramic
R©

8.6 421×421×753 6
5 E 57(m) 34 easy-graftTM 8.6 301×301×507 6
6 F 75(m) 16 Bio-Oss

R©
8.6 320×320×718 4

7 G 63(f) 15 BoneCeramic
R©

8.6 440×440×738 5
8 H 46(f) 21 easy-graftTM 8.6 300×300×799 6
9 I 47(f) 26 Bio-Oss

R©
8.6 381×381×416 4

10 E 57(m) 34 easy-graftTM 4.3 621×621×1269 5

Datasets #9 and #10 were not considered in the standard error analysis because they required an adjustment of the setup (see Section 3.1) for a successful
registration.

Switzerland) in three cases (Table 1). After 5 months, the
biopsy was harvested with a trephine bur 3 mm in diameter
exactly at the position for implant placement. These biopsies
were composed of soft tissues, existing and newly formed
bone, as well as augmentation and embedding materials
(Stalder et al., 2014). The pathology samples were cylindrical
biopsies with a diameter of around 2 mm and a length of
approximately 4 mm. In order to analyze the integration
of the graft in the jaw, a μCT of the whole specimen was
acquired. The jaw biopsies were scanned using synchrotron
radiation-based micro computed tomography (SRμCT). The
measurements were performed at the beamline W2 (HASY-
LAB/DESY, Hamburg, Germany, operated by HZG Research
Center, Geesthacht, Germany) in conventional absorption
contrast mode. The photon energy corresponded to 25 keV.
The detector featured 3056 × 3056 pixels (effective pixel
length 2.2 μm), which were binned by a factor of two before
reconstruction to increase the density resolution (Thurner
et al., 2004). The tomogram was obtained from a set of
721 equiangular radiographs along 180◦ using the standard
filtered back-projection reconstruction algorithm (Stalder
et al., 2014). The cerebellum specimen was scanned using
the CT-system nanotom

R©
m (phoenix | X-ray, GE Sensing

& Inspection Technologies GmbH, Wunstorf, Germany) in
absorption contrast mode with an accelerating voltage of
60 kV and a voxel length of 3.5 μm. The dataset was resized
to a voxel length of 7 μm using MATLAB

R©
R2016a (The

MathWorks, 135 Inc., Natick, MA, U.S.A.). Subsequently,
five to nine histological cross-sections through the hori-
zontal plane of the specimen were taken. After the SRμCT
data acquisition, the biopsies were placed in customized
polytetrafluoroethylene molds and embedded with a methyl
methacrylate solution consisting of methacrylate-methyl
ester (Sigma-Aldrich Chemie GmbH, Buchs, Switzerland);
dibutyl phthalate (Merck-Schuchardt OHG, Hohenbrunn,
Germany) and Perkadox (Dr. Grogg Chemie AG, Stetten,

Switzerland) with a ratio of 89.5:10.0:0.5. After embedding,
the specimens were stored and dried at room temperature.
A diamond saw (Leica 1 SP 1600, Leica Instruments GmbH,
Nussloch, Germany) served for cutting circularly shaped
sections of the cylindrically shaped biopsies. The sections were
glued (Cementit CA 12, Merz+Benteli AG, Niederwangen,
Switzerland) on opal acrylic slides (Perspex GS Acrylglas
Opal 1013, Wachendorf AG, Basel, Switzerland), wrapped
in aluminium foil and pressed overnight under a metal block
of 1 kg weight. Further, thinning down to a thickness of
300 μm was achieved through grinding (EXACT CS400,
EXACT Apparatebau, Norderstedt, Germany) and treatment
with sandpaper (grit size 1200, Struers GmbH, Birmensdorf,
Switzerland). Subsequently, the surfaces were polished on
a Struers Planopol-V (Struers GmbH) with sandpaper (grit
size 4000, Struers GmbH). The polished sections were etched
with formic acid (0.7%, Sigma Aldrich) for 2 min, cleared
and etched for another 2 min, rinsed with water and later
surface-stained with toluidine blue (1% stock solution in 0.1 M
phosphate buffer pH 8.0, Sigma Aldrich) for a duration of 10
min. The sections were digitally recorded with a microscope
(Leica M420, Camera DFC 320, Leica Microsystems, Heer-
brugg, Switzerland, magnification 1.0 × 18.6 – 22.3) using
the software Image Manager 1000 (Leica Microsystems)
(Stalder et al., 2014). The histology images were scanned with
a lateral pixel length of 1.6 μm. Before applying the registra-
tion pipeline, the images were down-sampled to approximate
the voxel length of the CT data. The thickness of histological
sections was limited to 300 μm in the present study, because
the biopsies were not de-calcified and contain the brittle
grafting material. The slide, however, was only stained in the
surface-near region in a thickness of approximately 10 μm.
Each histological slide resulted in an RGB image ranging from
300 × 300 to 861 × 861 pixels. TheμCT data are 3D matri-
ces of eight-bit gray-scale values. The data comprise a volume
between 301 × 301 × 507 and 301 × 301 × 1093 voxels
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with a binned isotropic voxel length of 8.6 μm. Two datasets
were recorded with a voxel length of 4.3 μm and comprise of
861 × 861 × 1939 and 621 × 621 × 1269 voxels, respec-
tively. Ten datasets of nine patients were included in this study
(Table 1).

The second dataset corresponds to a cylindrical specimen,
obtained post-mortem from the cerebellum of a 73-year-old
male. The specimen was 6 mm in diameter and 4.5 mm in
length. It was extracted from the donated human brain and
fixed in 4% histological-grade buffered formalin. The sample
was dehydrated and paraffin-embedded according to standard
pathology procedures. The cylindrical sample for the tomogra-
phy measurement was extracted from the paraffin block using
a metal punch with an inner diameter of 6 mm. The cerebel-
lum specimen was scanned using the CT-system nanotom

R©

m (phoenix|X-ray, GE Sensing & Inspection Technologies
GmbH) in absorption contrast mode with an accelerating volt-
age of 60 kV and a voxel length of 3.5μm. These data were then
filtered with a median filter followed by an adaptive Gaussian
filter in VGStudio MAX 2.0 (Volume Graphics GmbH, Heidel-
berg, Germany), were resized to a voxel length of 7 μm using
MATLAB

R©
R2016a (The MathWorks, 135 Inc.), cropped and

saved in 8 bit grayscale 3D matrix 860 × 860 × 901 pixels. In
total, four histological slides were sectioned (thickness 4 μm)
resulting in RGB images 860 × 860 pixels in size with a res-
olution of about 7 μm. To obtain the histological slides, the
paraffin cylinder was re-embedded in a standard paraffin block
by partial melting and the addition of fresh paraffin. Sections
were cut using a microtome from the upper part of the sample,
left to float on a water bath and then collected one by one
and mounted on glass slides by hand. The slides were then
dried out and stained with haematoxylin and eosin (H &E ),
following a standard protocol. Images of the resulting slides
were taken at 2× optical magnification on a combined light
microscope/digital camera system (Olympus DP73+Olympus
BX43, Olympus Schweiz AG, Volketswil, Switzerland). All of
the histological images were converted to grayscale, cropped
and flipped, if needed.

Our approach for deformable 2D-3D registration consists
of three main steps (Fig. 1). First, we find a matching slice
to the histological image in the 3D μCT dataset, using our
previously presented approach (Chicherova et al., 2014), that
matches histological slides to CT data using feature detection
and matching followed by an optimal plane search based on a
density-biased random sample consensus (RANSAC). Second,
we rigidly register the histological image to the found slice.
And lastly, starting from the initial match, we deform the
plane by using an optimization framework based on NMI (see
also, Table 2).

The ground truth for the counterpart of histological slide in
the CT data corresponds to the registration result manually
identified by four experts. The pipeline was implemented in
MATLAB

R©
R2016a (The MathWorks, 135 Inc.) for a Linux

system running Ubuntu 15.10.

Initialization

Initialization is the first step in our method that roughly lo-
calizes the histological slide in the 3D space of the μCT data.
Histological sectioning can be represented as a plane within
the 3D volume of the μCT dataset, defined by the plane equa-
tion Ax + By + C z + D = 0. To find the plane coefficients,
we start by computing matching points between the histology
image and each image of the μCT data. Corresponding points
between histology images and μCT images are found with
the scale and rotation invariant feature detector Speeded Up
Robust Features (SURF) (Bay et al., 2008). In comparison to
Scale-Invariant Feature Transform (SIFT) (Lowe, 2004) and
Affine SIFT (ASIFT) (Yu & Morel, 2011), it provides either more
matching points or more robust correspondences (Chicherova
et al., 2016). The matched keypoints for each μCT image are
subsequently stored in a 3D matrix. We assume that the den-
sity of the points is higher in the area which corresponds best to
the histological slide. Therefore, next, we solve a density prob-
lem in 3D space, using a modified RANdom SAmple Consen-
sus (RANSAC) algorithm (Fischler & Bolles, 1981; Chicherova
et al., 2014). After 15 000 iterations of the modified RANSAC,
estimates of the normal vector parameters for the plane that
includes the most inliers are chosen. The search parameters
are constrained so that only planes within a certain tilting an-
gleαjaw, αcereb are considered. For the complete pipeline and
details of this method, we refer the reader to our previous work
(Chicherova et al., 2014). Herein, we just mention that in com-
parison to the previous method, we introduce an additional
parameter, namely a filter radius. The specimen’s background
and borders often produce wrong correspondences, and so to
remove them we crop the points by taking only those lying in-
side a circular region in the specimen (Chicherova, 2015). We
calculate the filter radius as M/2.8, where M is the size of the
square μCT image. Another modification is associated with
the number of selected points for RANSAC fit Pleft, which is
calculated depending on the total number Ptotal of matching
points:

Pleft =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ptotal if Ptotal < 1500
1500 if 1500 < Ptotal < 5000
Ptotal/3 if 5000 < Ptotal < 10000
Ptotal/4 if 10000 < Ptotal < 40000
10000 if 40000 < Ptotal

. (1)

These parameter values were selected empirically. The pa-
rameters for SURF1 are left to default as well as for the sec-
ond nearest neighbour criterion (distance ratio = 0.8). The
angle between the normal to the plane and z-axis is set to
αjaw = π/8 andαcereb = π/36 for the jawbone and the cere-
bellum datasets according to their pixel size. The proposed val-
ues of specific parameters are successfully applied to other X-
ray based modalities as well (Chicherova, 2015; Chicherova

1 http://www.mathworks.ch/matlabcentral/fileexchange/28300-

opensurfâincluding-image-warp-
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Fig. 1. Deformable 2D-3D registration pipeline. (A) Matching histology with every slice in the μCT. (B) Plane fitting to 3D keypoints cloud. (C) Affine
2D registration of histology to the matching tomogram. (D) Deformable optimization of the found plane. The voxel positions are provided in x-, y-, and
z-direction.

et al., 2016; Hieber et al., 2016; Khimchenko et al., 2016).
Default parameters were applied for the built-in routines of
RANSAC and the feature detection algorithms. The parame-
ters, to be adjusted, are the maximal angle, the radius of the
specimen, the number of iterations of RANSAC (10 000 by de-
fault) and the number of cloud points (10 000 by default). In

the computational experiments only, the maximal angle and
the radius had to be adjusted to the specimen type. The radius
is given by the geometry of the specimen. The maximal angle is
estimated by the operator. For homogeneous specimens, such
as the tissue of the cerebellum, a relatively small angle has to
be selected to obtain reasonable results.
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Table 2. Algorithm: deformable slide-to-volume registration.

Input: Histological image I and μCT 3D dataset V , RANSAC default
parameters (threshold = 10, # iterations 10 000, # cloud points
10’000), αjaw = π/8, αcereb = π/36
Output: Surface coefficients coptim

1. Find matching feature points between histological slide and each
image in the 3D μCT dataset

2. Create a binary 3D matrix out of the μCT corresponding points
3. Assign weights to each point and filter the 3D point cloud based

on weights and radius
4. Fit a plane into the filtered 3D cloud and extract matching μCT

slice
5. Register the histology and the μCT image in 2D
6. Find coefficients c0 of the plane in Legendre bases
7. Starting from c0, optimize the surface coefficients coptim using NMI

return coptim

2D-2D registration

Having obtained the plane normal vector coordinates ninit

from the previous step, we interpolate an image out of the
μCT dataset. In order to improve the slice position in 3D with
NMI, 2D-2D registration is required. Our 2D-2D automatic
registration framework is divided into two subsequent trans-
formations, first a coarse rigid transformation and then re-
finement with affine registration. Let I (x, y) and J (x, y) be
the histology image and theμCT image obtained from the ini-
tialization. Here, I : � ⊂ R2 → R and J : � ⊂ R2 → R. For
coarse registration, we use a very efficient approach, called the
RANSAC homography algorithm, which calculates the pro-
jective transformation matrix H between two images by using
two sets of corresponding points. We use SURF to identify new
corresponding points between the two images. Let {xI

n , yI
n },

{xJ
n , yJ

n } be the matching points from the SURF algorithm,
where n = 1, ..., N and N are numbers of putative matched
points in the two images. We are looking for a linear mapping
between the two sets of points that will satisfy the following
equation:

⎛
⎝

xJ
n

yJ
n

1

⎞
⎠ =

⎛
⎝

h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

⎞
⎠

︸ ︷︷ ︸
:=H

⎛
⎝

xI
n

yI
n

1

⎞
⎠. (2)

The RANSAC homography algorithm solves the problem by
randomly picking four corresponding point pairs and calcu-
lating the transformation matrix. Then, it counts the number
of inliers, i.e. points that are mapped within a certain thresh-
old (t = 0.01 voxel length), from one image to another. If the
number of inliers is higher for one matrix than for the previous
best one, it saves it as a possibly better homography matrix.
The final matrix with the maximum number of inliers is pro-

duced after 10 000 iterations. This choice is a trade off between
robustness and speed.

The main limitation of this algorithm is that it very much de-
pends on the ratio of correctly versus wrongly matched pairs.
It may produce an unrealistic transformation if the supplied
points are incorrect. In some cases, the μCT images from the
initialization look quite dissimilar from the histology, which
on top of the multimodal nature of the images leads to a high
number of unreliable inliers. Hence, to improve the robustness
of the registration, we limit the transformation to rotation and
shifting, leaving only three degrees of freedom. Thus, the trans-
formation matrix becomes for any α ∈ [0,2π ]

⎛
⎝

xJ
n

yJ
n

1

⎞
⎠ =

⎛
⎝

cosα −sinα t1

sinα cosα t2

0 0 1

⎞
⎠

⎛
⎝

xI
n

yI
n

1

⎞
⎠ = S

⎛
⎝

xI
n

yI
n

1

⎞
⎠. (3)

For �x in the domain of image I , we define IS = I ◦ S−1(�x) :=
I (S−1�x) as an output histology image after rotation and trans-
lation. To find the new transformation matrix, we integrated
the Kabsch2 algorithm into the RANSAC framework. As soon
as the coarse rigid registration is obtained, we improve regis-
tration with an affine transformation T . The transformation
matrix T ∗ of the image in this case is determined by maximiz-
ing NMI between the histology image IS and the CT image J :

T ∗ = arg max
T

NMI[IS ◦ T −1, J ], (4)

where T is a matrix in the space of all the affine transformations
and NMI is calculated based on images’ marginal and joint
entropies E as

NMI = E (IS ◦ T −1) + E (J )
E (IS ◦ T −1, J )

. (5)

The final image is then calculated as IAS = IS ◦ (T ∗)−1. The
optimizer follows the ‘one plus one’ evolution strategy (Styner
et al., 2000). The maximum number of iterations of the opti-
mizer is set to 300, with an initial radius of 0.004. The num-
ber of histogram bins is calculated as the median value of the
Freedman–Diaconis, Scott’s and Sturges’ methods.

Deformable and rigid 2D-3D registration

After registering the histological image to the μCT image in
2D, we now exploit the benefit of mutual information, which
is a well-known similarity measure employed for multimodal
images. NMI takes into account a dense representation of
the image, whereas SURF compares only sparsely distributed
points. By using every pixel intensity, more sensitive regis-
tration is achieved. In an iterative optimization framework,

2 http://ch.mathworks.com/matlabcentral/fileexchange/25746-kabsch-

algorithm
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we calculate NMI between the histology and an image inter-
polated from a deformed surface in the μCT volume. Surface
deformations are calculated as the sum of a set of bases. With
this limited set of basis functions, we approximate a function
space for all possible deformations between the two modal-
ities. As basis functions, we use associated Legendre poly-
nomials P m

l (x) = (−1)m(1 − x2)m/2 d m

d xm Pl (x) on the interval

−1 ≤ x ≤ 1, where Pl (x) = 1
2l l ! [ d l

d xl (x2 − 1)l ] are nonassoci-
ated Legendre polynomials, l ∈ Z is a degree of the polynomial
and m = 0, ..., l is an order of the polynomial. Legendre poly-
nomials are solutions to the Legendre differential equation and
are spherical harmonics. The choice of Legendre polynomials
is based on their orthogonality, which enables linear least
squares of an independent system of equations. Furthermore,
they constrain surface deformations allowing for reasonable
slice transformations. However, one can choose other orthog-
onal polynomials as bases, depending on the deformation of
the specimen. Although B-splines are a commonly used basis
for nonrigid deformation, this is not a reasonable solution for
our case. B-spline is a piecewise deformation model for local
deformations which requires control points and consequently
brings a lot of degrees of freedom. This is not only computa-
tionally demanding, but it may also lead to unrealistic defor-
mations.

We built the Legendre basis functions on a regular grid in
the 3D Cartesian coordinate system. The first basis is the Leg-
endre polynomial of zero degree (l = 0), p1 = P 0

0 , which is a
plane parallel to the xy-plane. This basis accounts for shifting
along the z-axis. The next two bases are Legendre polynomi-
als of first degree (l = 1), p2 = P 0

1 , p3 = P 1
1 . The first order

P 0
1 , (m = 0) corresponds to an angled plane and the second

order P 1
1 (m = 1) corresponds to a paraboloid. These bases ac-

count for angulation of the plane and parabolic deformation of
the tissue. We enrich our bases with p4 = P 0

2 , p5 = P 2
3 , p6 =

P 0
4 , p7 = P 1

4 , p8 = P 1
5 Legendre polynomials. In total, we ob-

tain 15 bases P = ⋃15
k=1 pk , including the transposed ones of

each basis except the first one. The initial search starts from
the plane obtained from the initialization step. We represent
this plane with our base functions and extract associated co-
efficients. Let F = f (x, y) be the plane obtained from fitting
RANSAC to the matching points. To represent this function
with Legendre polynomials, we sample randomly M times this
plane F1 = f (x1, y1), ..., FM = f (xM, yM) and obtain a vector
ψ = [F1, ..., FM]T ∈ R of z coordinates that lie on this plane.
The same x, y coordinates of the sample points are then used
to select z-values of the Legendre basis functions. Thus, for
each basis, we obtain a vector p̃k = [ pk (x1, y1)...pk (xM, yM)]T .
Therefore, the plane can be represented in Legendre
bases as ψ = ∑15

k=1 ck p̃k , where ck ∈ R are the basis
coefficients.

We calculate the coefficients as a least square solution of a
system of linear equations. These coefficients are then provided
as arguments in an optimization framework which maximizes
NMI.

Table 3. Median errors for the rigid NMI-based registration.

Dataset # 1 2 3 4 5 6 7 8

Tilting angle error [deg] 1.4 0.6 0.9 0.3 0.8 1.9 0.7 0.6
Distance error [μm] 36 7 12 2 8 34 8 8

coptim = arg max
c

NMI[J (c), IAS], (6)

where J (c) is an interpolated image from a surface obtained
with p̃k basis functions. As an optimization algorithm, we use
a bounded version of the Nelder–Mead simplex direct search3,
which is one the best solutions for non-smooth objective func-
tions (Maes et al., 1999; Wachowiak et al., 2004). The Nelder–
Mead simplex is a local optimizer that provides accurate results
when the initial orientation is close to the true transformation.
To increase the search space, we initialize the optimization
with 20 random planes close to the initialization plane. After
20 iterations, we choose the one with the highest NMI.

In this work, we explore both rigid and nonlinear defor-
mation models. The difference between them is the number
of bases in the optimization. For rigid 2D-3D registration, we
take only the three Cartesian bases x, y, z. Therefore, the rigid
pipeline optimizes the normal vector coordinates to the plane
�n = [A B C ]T . For nonlinearly deformable surfaces, we use
the Legendre polynomials. The following constraints are used
in both frameworks. The plane angle is set to αjaw and αcereb
for the corresponding data, and the shift along the vertical
axis is ±80 slices. The brute force constraints lie in the same
interval. We also limit the Legendre bases to exploit only feasi-
ble deformations [104,104,104,5 · 103,102,102] for the p3

until p8 correspondingly.

Results

Jaw bone dataset - the rigid registration framework

The rigid NMI-based registration framework was evaluated
on jaw bone datasets. The histological slides in these datasets
contained only limited nonrigid deformations perpendicular
to the cutting plane, due to the presence of hard, bony tis-
sue. Therefore, for these datasets, it was sufficient to perform
rigid registration. To assess the performance of the framework
quantitatively, we calculated the angle between the normal
vector obtained with optimization and the manually found ex-
ample (Table 3), which gave us an idea of how well the tilting of
the plane had been determined with the method. We also com-
puted the distance between the two planes to determine how
far the found plane was from the ground truth. We calculated
the distances from the origin along the z-axis for the optimized
plane and the ground truth, and then we subtracted them

3 http://ch.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd–

fminsearchcon
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from each other. The median values of these errors for eight
datasets are summarized in Table 3. Manual registrations were
subsequently improved by four experts, which is regarded as
the ground truth in this study. In addition, to evaluate the
variability of the ground truth, we calculated mean standard
variation of further manual registration values for four his-
tological slides. Deviation of vertical position was seven slices
and of the tilting angle was 2◦. As the high-resolution CT data
exhibit many anatomical details, the manual results were very
similar to histological images (see Khimchenko (2016)).

The method accurately determined the tilting angle of the
plane. Indeed, the angle error did not exceed 1.4◦. The median
distance error for the optimized rigid registration was also very
low for most of the datasets. The largest errors were in the first
and sixth datasets, 36 and 34 μm, respectively. From a vi-
sual assessment, we consider a distance error of 60 μm as a
reasonable registration. This length corresponds to the size of
the characteristic anatomical structures of the human jaw, i.e.
the Haversian canals with a diameter of about 60 μm. There-
fore, according to this assessment, our algorithm registered
well 47 out of 58 histological slides. The time needed for the
linear interpolation of a 2D image from a 3D volume grows as
O (N ), where N is the number of voxels in the 3D datasets.
We compared the computational effort of two datasets from the
same patient E, where two pieces of the biopsy were processed
separately. The average computational time for registering
one histological slide in a volume of 621 × 621 × 1269 vox-
els was 26.2 min (3.6 min for SURF) compared to 2.8 min
(0.3 min for SURF) in a 301 × 301 × 507 voxel dataset. Con-
sequently, a 10 times larger volume gives rise to an increase of
the computational effort by a factor of approximately nine. All
the calculations were performed sequentially in MATLAB

R©

R2016a on Ubuntu 15.10 with 64 GB of RAM and Intel
R©

Xeon E5-2620 v3 (6 cores, 2.4 GHz/3.2 GHz Turbo).
To determine if the new pipeline had improved the initial

matching, we compared the SURF-based and the rigid NMI-
based pipelines with the ground truth. We calculated the tilting
error and the distance error for both methods (Fig. 2).

From the comparative distance errors, one can see that in
the majority of the cases, slice localization improved. Further-
more, the dispersion of the results decreased, which suggests
a more stable behaviour. However, for the first dataset, there
is a small deterioration. This dataset had a very high resolu-
tion, so there were several reasonable registration positions.
Hence, for most of the histologies, the difference in registra-
tion between the two methods was not significant. The largest
improvement was achieved in dataset #7, e.g. the distance
error dropped from 251 to 0 μm. The method shows a gen-
eral improvement for the tilting angle. The median error for
the tilting angle does decrease, but there are outliers in some
of the datasets. This is due to poor 2D-2D registration when
the found initialization slice was far from the ground truth.
Two examples of histological sections along with the registra-
tion results from both methods are shown in Figure 3. The
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Fig. 2. Comparative error for the position (A) and the angle (B) of the plane
for eight jawbone datasets. On the x-axis are shown the performance of the
SURF- (left) and NMI (right)-based methods for each dataset. The median
values are shown as black horizontal lines inside the boxes, 25th and 75th

percentiles as bottom and top lines of the box, minimum and maximum
values as bottom and top whiskers.

first method found a relevant match for the histology, but
there are numerous local dissimilarities between the images.
The nonparametric significance test shows that the pipeline
with optimization improves registration (Kruskal–Wallis test
p-value = 0.0013).

In datasets #9 and #10, the proposed method with the
default setup failed to find a reasonable registration for the
majority of the slides due to a large tilting angle of approxi-
mately 20◦ combined with an additional issue. For dataset #9,
the registration was successful after having adjusted the con-
trast of the individual histological slides or a rotation of the
CT data to match the histological cutting direction (Stalder
et al., 2014). The broken specimen of dataset #10 showed
an incomplete cylindrical shape and required a rotation of
the CT data or an adaptation of the filter radius for a suc-
cessful registration. The illumination invariance of the SURF
descriptor could not account for a 100 gray value difference.
Furthermore, in one of these datasets, on top of the high titling
angle (22◦), X-ray absorption values differed for the same tis-
sue in the bottom of the specimen and on the top. This is why
it was especially challenging to register this dataset and the
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Fig. 3. Comparative slide registration for the datasets #4 (right) and #7
(left).

approach found only one reasonable registration out of four.
In the dataset #2, however, the algorithm localized two his-
tological images which were only one slice away from the
ground truth. Also, the distance error for one histological slide
in the dataset #8 would not fit into the boxplot region, and so
it was removed for better visualization.

Jaw bone dataset - the deformable registration framework using
simulations

Additionally, we evaluated the deformable registration frame-
work on the jawbone datasets, using simulation. We created
artificial histological slides by simulating deformed surfaces in
3D space. With these surfaces, we extracted an image from
the μCT volume, following which we used this image as an

artificial histology section and ran it through the entire NMI-
based deformable pipeline. An example of the surface and the
resulting fit of the deformable pipeline for two artificial his-
tologies is shown in Figure 4. With a color bar, we show the
distance difference between the found surface and the artificial
ground truth. In total, we evaluated five histological slides, and
on average it took 58 min per slide. The maximum difference
in the region of interest did not exceed 50 μm.

Cerebellum datasets - the deformable registration framework

In contrast to the bone data, the cerebellum specimen in-
cluded large non-linear deformations (Hieber et al., 2016;
Khimchenko et al., 2016). Hence, we evaluated the deformable
registration framework on this dataset. In total, four histolog-
ical sections were available. The average computation time
for one slide grew to 6.8 h, owing to the effort in optimization
that is required to determine the deformations. In addition,
the homogeneity of the tissue requires a larger number of
optimization steps. For a quantitative assessment, we com-
pared distances from the found surface to the manually found
landmarks (Fig. 5). Manual registration was based on point-
to-point correspondence of characteristic features such as ves-
sels, cell groups and cracks. Then, a polynomial surface using
the Matlab Curve Fitting Toolbox was fitted into the points. In
three out of four histological slides, there was an improvement
in registration. The median distance error improved by 33μm
for all slides. For the histology #2, registration did not improve
as the result of an image artefact. The histological section was
cut from the top part of the specimen, where the tomography
slices were distorted and part of the volume was removed.

Figure 6 shows an example of the first histological image and
corresponding slices found with both approaches. The SURF-
based method found a slice which was 0.8 mm away from the
manual surface for more than half of the histology. Moreover,
the deformable fit improved registration by reducing the area
of high distance difference. Even though the median distance
from the manual landmarks increased by 21.6 μm, the over-
all registration of this histological slide improved, due to the
decreased dispersion of the distances.

Discussion

The proposed algorithm is a coarse-to-fine registration tech-
nique that starts with the localization of a sectioning plane and
finishes with the complete registration of 2D histology into the
3D space. Although hard X-ray tomography provides the 3D
spatial distribution of the X-ray attenuation coefficients, the
histology images exhibit the 2D spatial distribution of the stain
intensity integrated perpendicular to the slide. Therefore, the
contrast mechanisms are complementary. In order to exclude
the impact of the contrast mechanisms, intentionally distorted
CT slices were registered to the measured 3D CT data. This ap-
proach permits the error estimation excluding the impact of
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Fig. 4. Optimized fitting surfaces for the simulated histological slides colored according to the distance error from the ground truth. The voxel positions
are provided in x-, y-, and z-direction.
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histological sections in the cerebellum dataset. On the x-axis are shown
the performance of the SURF- (left) and NMI- (right) based methods for
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the contrast mechanism and precise error can be evaluated
because the ground truth is predefined. The application of the
proposed method is not limited to histology toμCT registration
– it can be applied easily to any slide-to-volume registration
(Markelj et al., 2012). For example, another interesting po-
tential application is registering 2D histology to 3D MRI data
(Dauguet et al., 2007; Liu et al., 2012; Goubran et al., 2015).
The important feature of our approach is that in contrast to
other methods, it does not require any segmentation or other
data-dependent preprocessing for images of the same size.

Overall, the method showed high accuracy in slice local-
ization. Indeed, it allocated 47 out of 58 histological slides
with high precision (distance error < 62 μm). Furthermore,
after visual inspection, we identified that eight more slices
were in fact close to the ground truth position (distance

Histology Manual

SURF based NMI based

0 1
Distance (mm)

1 mm

Fig. 6. Comparative slide registration for the first slide colored according
to the distance error from the ground truth.

error < 1 mm). The median registration error for the 10 jaw
bone volumes of 8.4 μm is well below the slide thickness of
300 μm and below the near-surface region that contributes
to the stain intensity of the histology slide. Hence, one can
conclude that the proposed procedure provides a sound reg-
istration result. The identification of the correct cutting angle
correlates with the correct localization of the slide; indeed, the

C© 2018 The Authors
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improvement in the tilting angle shows a pattern similar to
the distance error improvement (Fig. 2), whereas deformable
registration shows high accuracy in simulations, even for
highly deformed artificial slices. The distance from the ground
truth surface was less than 20 μm for the majority of the
slices.

The initialization provides a plane in the 3D dataset where
the most matching points are found. To accelerate the later
optimization based on NMI, the histology slide should be reg-
istered rigidly to the obtained CT slice. Unfortunately, as this
step relies on feature correspondences and the heuristic trans-
formation matrix calculation, the resulting 2D-2D registration
can vary for different iterations. The solution to this problem is
either visual inspection or parameter optimization. However,
in the majority of cases, the result of initialization is of sufficient
quality and the algorithm does not need any intervention. Ad-
ditional improvements to this step could be achieved with one
of the multimodal histology 2D-2D registration algorithms (Ja-
cobs et al., 1999; du Bois d’Aische et al., 2005; Li et al., 2006;
Pitiot et al., 2006; Hallack et al., 2015).

Another limitation of our method is that it uses the SURF
algorithm for feature detection. This descriptor is built using
the neighbourhood gradient around the keypoint. Hence, low-
contrast images or images of mostly homogeneous tissue are
likely to produce a lot of false matching points, which in turn
hampers registration. One potential solution is to use another
feature detector (Self-Similarity (Shechtman & Irani, 2007),
ORB (Rublee et al., 2011), etc.) or image preprocessing, for
example, by attenuating the illumination difference between
grayscale histology and μCT images.

Furthermore, output-matching slices after the SURF-based
method can vary somewhat, depending on the parameters –
sensitive parameters are the filter radius and the plane angu-
lation constraints. For example, in dataset #4, the registration
could not be achieved without radial filtering of the point cloud.
With adjusted values, however, we were able to register all of
the histological slides accurately.

The computation time of the algorithm is dominated by
the optimization part of the method. Therefore, the method
could benefit from faster 3D pixel interpolation approaches.
Another possible improvement to 2D-3D optimization could
be achieved by using a global optimizer such as swarm (Wa-
chowiak et al., 2004), which would make the time-consuming
brute-force search unnecessary or by patch-wise registration
(Ferrante & Paragios, 2013). Computational speed-up can be
also attained by implementing the pipeline in C++, using par-
allel programming.

In conclusion, we have proposed a fully automatic approach
for multi-modal 2D-3D registration which combines feature-
and intensity-based approaches to accurately register a 2D
slice to volume data. We have also demonstrated the high
accuracy and reliability of the method and outlined potential
applications beyond the particular histology-μCT registration
analyzed herein.
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The manuscript presented in this chapter presents two pipelines evaluations. First, we evaluated

the limitations of the 2D-3D slice-to-volume registration technique. And second, we registered

a histological slide to the MRI data though CT volume. Both pipelines exploit a known

transformation of the a-priory registered MRI and CT data. Moreover, we introduced an

extension of a self-similarity feature detector to explore the potential improvement of the initial

slide localization step.
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Abstract: Multimodal imaging of tissue can be used for validation purposes or provide more
information than one modality alone. Multimodal tissue evaluation requires a mapping between
the images in two or three dimensions. In particular, the task of registering a histological slide to
magnetic resonance imaging (MRI) data is challenging because of numerous imaging artifacts
including inconsistent contrast and is mostly performedmanually. Here, we present a methodology
to register a fractured histological slide to MRI volume data of a human cerebellum specimen.
The location of matching slice is first found in a computed tomography (CT) volume data set of
the same specimen that transferred to the MRI data via 3D-3D registration. Here, we propose
the usage of an extension of the Self-similarity feature detector SL1, which combines rotation
invariant feature extraction and L1-norm outlier rejection. We show that the consideration of
both SL1 and SURF features leads to an improvement in the registration. The performance of the
proposed registration frameworks is evaluated using the a-priori 3D registered MRI and CT data
as a ground truth to exclude manual bias.
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Introduction

Combining two or more imaging modalities can be beneficial; for example, microscopy images
can show functional information which can differentiate, say, cancer from healthy tissue. X-ray
tomography is indispensable for hard tissue visualisation, whereas magnetic resonance imaging
(MRI) is a perfect choice for in vivo brain tissue imaging. Very often, to make an accurate
diagnosis, two or more imaging modalities are needed. The first important step in multi-modal
image analysis is to transform images into the same coordinate system, i.e. to establish a
pixel-by-pixel correspondence between the images.

Extensive research has been done on multi-modal 2 dimensional (2D) - 2D and 3 dimensional
(3D)-3D data registration [1,2], such as the numerous algorithms avaialble for MR and computed
tomography (CT) volume registration [3, 4], MRI and positron emission tomography (PET) or
single photon emission computerised tomography (SPECT) [5,6]. 2D-2D registration techniques
vary from rigid (rotation and translation) corrections [7] to non-rigid approaches [8–10].

The majority of previously developed algorithms focus on 2D-2D and 3D-3D registration
because usually one needs to keep the degrees of freedom reasonably small. However, several
modalities exist only in 2D space, such as brightfield microscopy images, and others only in 3D.
Registration in this case is still very beneficial for analysis. One 2D-3D example of registration
comes from image-guided therapy, whereby the data of a patient before and during intervention
should be directed to the same coordinates for better guidance [11]. Pre-interventional data are
3D CT or MRI volumes, and intra-interventional are fluoroscopy, ultrasound (US) or optical 2D
images.

Almost every paper that has researched 2D-3D registration usually deals with the registration
of 2D fluoroscopy projections to 3D CT data [12–14]. Fluoroscopy projections can provide
spatial information about a volume as well as correspondence between coordinate systems.
Most of the registration methods in this category can be reduced to contour or surface distance
minimisation [15]. Several studies have investigated 2D slice to 3D volume registration, or so-
called slice-to-volume registration [16–18], among which only a few have developed approaches
to multi-modal registration [17, 19, 20]. Nonetheless, these methods rely on expert visual
matching [17, 19] or slice pose initialisation [20].
Single CT slice-to-MRI volume registration was also explored in [7], in which the authors

developed an algorithm that searched for the best matching slice in 3D by calculating the number
of corresponding feature points. This method, though, can only compensate for translation in 3D
space and does not allow for tilting of the slice. Another type of 2D-3D registration is concerned
with histological slide-to-3D volume registration. These approaches, however, rely to a great
extent on manual corrections and cannot be considered as fully automatic. Hallack et al. [21]
performed a registration of histological slides to an ex-vivo MRI data set, but the procedure
requires the matching of several slides in a stack as a first step. It follows a rigid and nonrigid
registration of each histological slide.
In a recent article [22], we developed an algorithm which localises histological slides in a

µCT volume data in jawbone samples, i.e. a slide-to-volume registration. The main advantage of
the method is that it is fully automatic and can localise tilted slides in 3D space. The median
translation error for 81% of the sections was 8.4 µm, i.e. less than 0.002% of the sample size. In
this study, we sought to extend its application to other modalities, and present the registration of
a single histological slide to a 3D MRI data set via a µCT data set and single-slice CT to MRI
data. Another motivation was that in both of the studies registration accuracy was analysed by
comparing automatic results with manually found slice positions. As manual identification of
correct position can be prone to errors and might change from expert to expert, we decided to



validate the framework against two previously registered MRI and CT volumes.
In this work, we also investigated a potential improvement in the framework, by designing a

feature detector pipeline – more suitable for multi-modal matching – as a competitive alternative
to the original feature detector. In our recent study, N. Khalili proposed employing a self-similarity
descriptor (SS) [?], which has been already successfully applied for 2D-3D registration [23].
Moreover, we exploited rotation invariant SS descriptors studied in the literature [24,25]. The
adapted framework showed better accuracy than the SURF-based approach in most of the datasets
applied to histology and µCT jawbone samples. However, high computational time for dense
extraction of the SS descriptor made it impossible to apply it to the slide-to-volume registration in
its original form. Therefore the SS was assigned to feature points found with SURF [26]. Herein,
we propose a feature detection strategy based on SS while diminishing dense extraction of the
feature points. We achieve this aim by developing a speeded-up version of the SS descriptor
extraction using the code provided by Chatfield et al. [27]. Our implementation allows for
densely computing rotation-invariant features within a time frame of one second for the entire
image with a size of 200 × 200 pixels. The next contribution of this work is a modification
of the matching pipeline of descriptors, in order to make it more robust. A recently proposed
L1-norm based outlier rejection finds stable correspondences between two sets of points [7]. In
our work we introduce a combination of the second nearest neighbour and L1-norm, which forms
a novel feature detector self-similarity-L1-norm (SL1). We show that the SL1-based framework
performs equally in slide-to-volume registration and can be considered a reliable alternative in
the feature-matching task. The main contribution of this study is to study its performance for
multi-modal registering a histological slide to MRI and CT volume data and an slice-to-volume
registration between MRI and CT datasets. We show that the initially developed framework for
2D histology to 3D µCT volume registration can be applied to non-invasive modalities such as
MRI and CT.

Materials and Methods

A human cerebellum block (6×6×11mm3) was extracted from the donated body of a 68-year-old
male in accordance with the Declaration of Helsinki and according to the ethical guidelines
of the Canton of Basel. The phase-contrast SRµCT scan was performed at the beamline ID19
(ESRF, Grenoble, France), using a photon energy of 23 keV [28]. The µMRI dataset was acquired
using a 9.4 T, 30 cm horizontal small animal MR unit (Bruker BioSpec, Bruker BioSpin MRI,
Ettlingen, Germany) equipped with a transceiver cryogenic quadrature radio frequency surface
coil (CryoProbeTM). For acquisition purposes a T?2 -weighted 3D FLASH sequence with an
isotropic voxel size of 45 µm was used. Further selected parameters for the scan were: acquisition
matrix 300×200×300, echo time 12ms, repetition time 400ms, flip angle 15°, number of averages
one and a total acquisition time of 400minutes [29]. To correct the intensity inhomogeneity in
theµMRI dataset, induced by the coil sensitivity profile, a modified fuzzy C-means algorithm
was applied slice-wise [30].

Slides of the cerebellum block were prepared with a thickness of 50 µm using a microtome with
vibrating bladeHM650 V (Microm International GmbH, Walldorf, Germany). The sections were
mounted on gelatinized slides and stained for Nissl with cresyl violet [31] . Microphotographs of
selected slices were taken using a Leica MZ16 microscope and DFC420-C digital camera.
For further analysis the 3D datasets were rigidly registered using the classical maximisation

of mutual information (MI) principle [4]. Registration parameters were identified by using
the Powell multi-dimensional search algorithm, such that the MI between the reference and
the floating sub-images was maximised. After registering the µMRI, data were over-sampled
along the vertical axis to 15.3 µm as well as in horizontal axes. Hence, the final voxel size was
15.3 × 15.3 × 15.3 µm3. The µCT volume consisted of 2048 × 2048 × 2048 voxels with a voxel
length of 5.1 µm. For registration the dataset was binned by a factor of three, resulting in a
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Fig 1. Slice-to-volume registration pipeline: Step I - feature matching of a 2D slice with
each slice in a 3D volume; Step II - plane fitting to the 3D feature point cloud; Step III - 2D
registration of the given 2D slice with an identified matching slice; Step IV - optimisation of
the slice pose in 3D.

voxel length of 15.3 µm. In addition, we filtered out bright blood intensities by thresholding
(t = 125) [29] for the matching MR data.

To register 2D slices into 3D data we used a combination of feature- and pixel-based methods
(Fig. 1). The entire pipeline could be described in four steps. First, we computed matching feature
points between the 2D slice and each image in the 3D dataset (Step I). Second, we fitted a plane
into the 3D feature point cloud, using the modified model-fitting algorithm RANSAC [32] (Step
II). Third, we rigidly registered the 2D slice and found the matching image by translating and
rotating (Step III), and lastly we refined the initial position in 3D by maximising the dense
similarity measure (Step IV). All the calculations were done in MATLAB on Ubuntu 15.10 with
64 GB of RAM and 12 CPUs.

Step I. Feature matching

The 2D slices were extracted from both the MRI and the µCT volumes. In total, we selected
100 virtual slices from the µCT dataset and extracted corresponding slices from the MRI data.
Three parameters were required to represent a plane in spherical coordinate system, i.e. distance
from the origin along vertical axis, polar and azimuthal angles. We defined ten vertical position
with an interval of around 34 slices. We took ten polar angles in an interval from zero to nine
degree for all slice positions except the first two and the last two slices. In that case the polar
angle was from zero to three degree, because large tilting angles go beyond the limits of the 3D
dataset. The 100 azimuthal angles were randomly generated withing an interval of zeros to 360
degree using uniform distribution. Therefore, for each out of ten slice positions we obtained
ten tilting angles of a plane. The ground truth registration positions in the MRI dataset were
estimated using known 3D transformations between the datasets.
In order to register a 2D slice extracted from, for example, an MRI dataset to a 3D µCT

dataset, we first calculated corresponding feature points between the images (Fig. 1 (Step I)). We
matched the 2D MRI image with each slice in the 3D µCT dataset and extracted corresponding



feature point coordinates. Based on the volume feature coordinates, the 3D point cloud was
built (Fig. 1 (Step II)). Hence, the 3D dataset was now represented with a sparse point cloud
which considerably reduced the complexity of registration. In the original implementation of the
pipeline we used the scale- and rotation-invariant feature detector SURF [22, 26]. Here, however,
due to low contrast inside the cerebellum tissue, the SURF feature points were extracted mainly
from the borders of the region of interest (ROI). In order to increase the number of feature points,
dense matching algorithms could be beneficial, as these approaches compute descriptor vectors
on a regular grid of points and thus include landmarks of internal parts of the tissue. In a previous
study by N. Khalili the SS descriptor showed reliable performance in slice-to-volume registration.
Furthermore, in the application to multi-modal non-rigid CT-MRI registration, the SS-based
feature detector demonstrated great potential [10]. Inspired by these works, we introduced another
feature detector, namely self-similarity-L1-norm (SL1), and combining dense feature extraction
with L1-norm filtering allowed us to include ROI information when finding correspondences.

To calculate the SS descriptor for one pixel p = (x, y) of an image, two image parts centred on
this pixel were required – an image patch and an image region (Fig. 2). The SS descriptor is a
measure of a sum of squared distances (SSDs) between the image patch and the image region
that surrounds it. SSD similarity within the image region builds a distance surface SSDp at one
pixel.

To account for illumination variations varnoise and maximal variance of intensity difference
within the pixel neighbourhood varauto the distance surface is divided by the maximum of these
values. More precisely, the final surface is calculated as follows:

Sp = exp(− SSDp

max(varnoise, varauto)
). (1)

Next, the descriptor matrix is converted to a binned log-polar representation (Fig. 2). We
obtained SS descriptors using the public implementation made available by Chatfield et al. [27].
Obtaining these descriptors can result in significant computational cost, and this is especially
time-consuming for dense feature extraction. We optimised the original code base, in order to
better exploit memory locality, and tuned it to perform best for batch processing and our chosen
parameter values.
Another important modification to the code provided by Chatfield et al. is the rotation

invariance of the descriptor. Inspired by the SIFT orientation histograms [33], we implemented a
similar idea for SS [24, 25] based on rotating the SS descriptor so that the dominant orientation
for each descriptor is located at the same position. In contrast to SIFT, where the descriptor is
obtained from neighbourhood gradients, here the Sp distance surface of the descriptor was used.
To register 2D point sets robustly in the presence of outliers and false correspondences, we

follow a recent work by Ask et al. [7] on the exact minimisation of the truncated registration
error. Given sets of corresponding feature points, this method computes optimal rotation and
translation values that minimise the truncated L1 norm of the registration error. They show that
the translation vector can only take on one of a finite set of values, which can be enumerated easily.
Given a translation vector, the problem of finding the rotation is reduced to testing a finite set of
candidate rotations that correspond to extrema of the L1 norm. Brute force iteration of these two
sets is performed in O(n3 log n) asymptotic time, where n is a size of an input. Therefore, after
extracting SS descriptors and matching them with second-nearest neighbour criteria (threshold
= 0.8), we filter outliers from the dense correspondence with L1-norm minimisation. As soon
as the rotation and translation between the two sets of corresponding points are found, we map
one set to another. By setting the threshold distance (e.g. to 10 pixels) between the mapped
points, we reject points that do not satisfy this criterion. The proposed self-similarity-L1-norm
(SL1) matching algorithm enables us to find corresponding features within the whole ROI of the
image. The image patch and the image region sizes for the SS descriptor were set to the default
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Fig 2. Calculation of the SL1 feature detector. For each pixel in an image the descriptor is
calculated based on the sum of squared distances between a patch and a region (red boxes),
following which the descriptor is converted to a binned log-polar coordinate system. Finally,
the obtained descriptors of the two images are matched using a combination of L1 and L2
norms.

(5 pixel and 40 pixels respectively). The step size for descriptor extraction was 20 pixels in x−
and y−directions of the image.

Step II. Plane localisation

The corresponding points found for each µCT image (Step I) were subsequently stored in the 3D
space of the µCT dataset. An example of a 3D point cloud is shown in Fig. 1 (Step II). One can
reasonably assume that the density of the point cloud increases in the event of a correctly matching
slice. Therefore, the slice-to-volume registration problem can be viewed as a density problem in
3D space. The position of a 2D section within the related volume might be approximated by a
plane Ax + By + Cz + D = 0, the parameters of which need to be optimised.

To find the corresponding slice in 3D, first we filter the 3D point cloud to enhance areas with a
denser distribution of corresponding points. We crop the outliers that are located further than
M/2.2 from the centre, where M is the size of the image in the 3D dataset. Then, we weight the
points with a 3D Gaussian, and depending on the total number of points we remove the ones with
the lowest weights. If the total number of points left after radial cropping is defined as Ptotal ,
then the final number of points with the highest weights for RANSAC fit Ple f t is calculated as

Ple f t =



Ptotal if Ptotal < 1500
1500 if 1500 < Ptotal < 5000
Ptotal/3 if 5000 < Ptotal < 10000
Ptotal/4 if 10000 < Ptotal < 40000
10000 if 40000 < Ptotal

(2)

The thresholding values were found empirically. To find the best matching plane coefficients



we use a modified heuristic model fit approach, RANSAC [22,32]. The weights-driven RANSAC
fits a plane into the 3D cloud and chooses the one with the highest number of points. The main
modification of the RANSAC is concerned with fixing the total number of iterations to 15 000
and limiting the plane tilt. This way we found a slice which was located in the densest part of the
3D cloud. The limit of the tilting angle between the normal to the plane and z-axis was set to
α = π/10.

Step III. 2D-2D Rigid Registration

Slice localisation with the modified RANSAC gives a reasonable approximation of the correct
position. Often this step is sufficient to find a reasonable registration for the given 2D image [22].
In some cases, however, an improvement of localisation through pixel-based similarity measures
such as NMI or NCC is desired [34]. As a prerequisite for reliable NMI calculation, we
need to register the 2D MRI image with the matching slice. Due to an insufficient ratio of
correct correspondences over wrong ones for MRI and CT images, the application of RANSAC
homography [32] was not reasonable. Therefore, for the 2D-2D registration we relied on the
NCC as a similarity measure. As the scale for the data is given from the data preferences, in this
step we needed only compensate for rotation and translation. We divided the 2D registration into
two subsequent steps: rotation and translation. Let I : Ω ⊂ R2 → R be a 2D image we want to
register to the 3D volume and J : Ω ⊂ R2 → R the matching image found above.

The images from these datasets were easily segmented from the background. The histograms
of the images from both modalities had a distinctive bimodal distribution. Therefore, we used
Otsu’s method to automatically segment the foreground of both images [35], following which
we used the binarised images to find the highest NCC for the preselected rotations. We rotated
IS from zero to 359° with a step of one degree and calculated the NCC between the images,
before we picked the rotation angle with the highest similarity value. We defined IS and JS as
the corresponding segmented images. The rotation matrix R? was hence calculated as

R? = arg max
R

NCC[IS ◦ R−1, JS]. (3)

where I ◦ R−1(~x) := I (R−1~x) and R was a rotation matrix in the space of all the rotation
transformations.

Subsequently, the translation T? of the image was determined by maximising NCC1 between
the rotated images IR = I ◦ R?−1(~x) and extracting from the 3D data image J. Translation
mapping was hence obtained as

T? = arg max
T

NCC[IR ◦ T, J], (4)

where T (~x) = ~x + ~t and ~t were translation vectors. The final registered image was then
I? = I ◦ R?−1 ◦ T?.

Step IV. Rigid 2D-3D registration

The position initialisation of the given 2D slice in a 3D volume allows for improving slice
localisation by using dense similarity metrics such as NMI [36], NCC [37], MSD, etc. Our
optimisation framework searched for the plane coefficients that would maximise the similarity
measure. On each iteration, an image was extracted based on new plane coefficients, and the
similarity was then calculated. Here we considered only rigid deformation, namely tilting and
shifting of the plane. The applied optimisation algorithm was a bounded Nedler-Mead simplex2

1http://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-
correlation

2http://ch.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd– fminsearchcon



with bounding constraints of 80 slices above and below the initial position and the tilting angle
was restricted to a range of ±π/10. Therefore, the optimised coefficients were obtained from
equation

noptim = arg max
n

NCC[J (n), I?], (5)

where J (n) is an image interpolated from the volume.

Results

Generally, the SL1-SURF approach with optimisation provides the best result as shown in Fig. 3
and Fig. 4. Here, the measure of the mutual information yields a maximum for the CT data
with 1.118 compared to 1.069 with SL1 and 1.116 with SURF. The registration of the MRI data
basically fails for SURF and SL1 (Fig. 4). But the matching slice can be found in the MRI data
using the 3D pre-registered CT data and the location of the registered CT slice. SL1 improves
the registration of the MRI data compared to SURF, but it is slightly the opposite for the CT
data. In this case, the slice found by the Ransac algorithm with SL1 match better than the one
using SURF, but the 2D-2D registration is not sufficient to provide a good starting point for the
optimisation procedure. The combination of both seems to be the best choice for both modalities,
while the CT slice provides the better representations. Registering the histological slide to the CT
data always yields the best results using the present descriptors.

To estimate the performance of the proposed frameworks, we compared the ground truth slice
parameters and those found in the 2D-3D registration method. In particular, we calculated the
absolute vertical position error (Table 1) and absolute angle differences (Table 2) between normal
vectors.

Table 1. Vertical position error for 3D µMRI and 3D µCT datasets in six pipeline
settings [mm].

Methods SURF SL1 SURF-SL1
Data NCC NMI NCC NMI NCC NMI
CT 1.5± 1.1 1.6 ± 1.2 1.1 ± 0.9 1.1 ± 0.9 1.3 ± 1.1 1.5 ± 1.2
MRI 1.8± 1.4 1.8± 1.4 1.8±1.6 1.8± 1.5 1.9± 1.5 1.9±1.5

Table 2. Angle between normal vector values for 3D µMRI and 3D µCT datasets in six
pipeline settings [degree].

Methods SURF SL1 SURF-SL1
Data NCC NMI NCC NMI NCC NMI
CT 10 ± 4.7 10 ± 4.8 7 ± 5 7 ± 5 10 ± 4.7 10 ± 4.8
MRI 5.4± 3.6 5± 3 5± 3 4.7± 3 6± 4 5.8± 4

Three different initialisation strategies in Step I and two similarity metrics in the optimised
search (Step IV) were explored. The total median error for the MRI dataset was 1.9mm and for
the CT dataset was 1.3mm. To determine whether the proposed techniques were significantly
different we performed the Wilcoxon test on vertical position error values. Three groups were
formed: the first group was the initialisation approaches in Step I, the second group was similarity
metrics in Step IV and the third was data type (MRI or CT). As a result we found that the
initialisation with SL1 was significantly better than SL1-SURF (p < 0.05) as well as SURF
(p < 0.005), whereas there were no difference between SURF and SL1-SURF detectors (p = 0.3).
With a high confidence (p = 5 ∗ 10−8) the registration of MRI slices to 3D CT dataset was better
than registering CT slices to 3D MRI volume. However, no difference was found for similarity
metrics in Step IV (p > 0.5).



Fig 3. Registration of histological slide (1) to CT data (2) using a) SURF , b) SL1 and c)
SL1-SURF. The matching slice in the MRI data (3) is extracted in a data set pre-registered to
the CT data using the plane location determined in the CT data set. In this manner a proper
registration can be achieved, while the direct registration of the histological slide to the MRI
data is not satisfactory (see also Fig. 4).

In Table 1 a) we can see that for the MRI volume no significant difference was found between
the pipelines. Slightly better localisation of the 2D CT slices in the 3D MRI volume was achieved
with the SL1-based initialisation (Step I) as opposed to other initialisation strategies. The best
performance in the 3D CT dataset was provided by the SL1 features detector and NMI similarity
measure. The median error was 1mm, achieving the smallest error among all the proposed
registration techniques. Determining the plane angulation (Table 2) was significantly better with
SL1 than with other detectors (p < 6 ∗ 10−8). In contrast to distance error finding angle was
significantly better in the MRI than in the CT dataset (p = 3 ∗ 10−38). Similarly, there were no
difference between NCC and NMI. The total median angle between the planes was around 5° for
the MRI and 9° for the CT datasets.
In order to estimate the number of correctly registered slices we needed to account for the

intrinsic properties of the 3D data. The difference in resolution in the datasets can allow for a
correct registration position within a certain range. To estimate this range, we took a slice out of
a volume at the centre of the vertical axis and compared it with the rest of the slices in the 3D
volume. The NCC metric gives a perception of the similarity values range by setting identical
slice similarity values to 1 (NCC = 1) and absolutely dissimilar ones to 0 (NCC = 0). To estimate
the number of correctly registered slices, we found the slice’s vertical positions at the NCC where



Fig 4. Registration of histological slide (1) to MRI data using SURF (2), SL1 (3) and
SL1-SURF (4). The descriptor SL1 improves the registration result compared to SURF, but
the best result is provided by the consideration of both SL1 and SURF descriptors.

it drops by approximately half. We found that for our datasets the vertical position error was less
than 100 slices (1.5mm), which was acceptable. Based on the estimation of the vertical position
interval, Table 3 shows the percentage of correctly registered slices for each framework.

Table 3. Relative number of correct registrations.
Methods MRI with NCC MRI with NMI CT with NCC CT with NMI
SURF 48% 46% 56% 56%
SL1 51% 47% 79% 79%
SL1-SURF 50% 47% 67% 62%

On average the method was able to allocate more than half of the randomly selected slices.
The best performance for the MRI dataset showed the SL1 feature point matching with NCC
in the optimisation search. Here, 51% of the 2D CT slices were correctly localised. In the CT
dataset, the best performing parameter was the SL1 based feature detector (Step I). The total
number of correctly registered slices in the CT datasets was 1.4 times higher than in the MRI,
which is a consequence of higher pixel resolution.

In addition to the semi-automatic algorithm evaluation we also performed manual assessment
of the registration algorithms (Table 4). Here, the registration pipelines used NMI in optimization
step (Step IV) and three initialization strategies in Step I: SURF, SL1 and SURF-SL1. However,
in Step I we utilize the descriptors that are not invariant to rotation and, hence, relative number of
correct registration using semi-automatic evaluation differs from Table 3. Three experts evaluated
100 images per dataset found using three feature detectors. A successful registration was counted
as 1 and a failed registration as 0. The experts were mostly consistent in their estimates for the CT
dataset. On average difference in estimation of correct registration did not exceed 2.6%. Whereas
for the MRI dataset average differences between experts were 5.3%, 4.6% and 14.6% for the
SURF, SL1 and SURF-SL1 pipelines correspondingly. Moreover, semi-automatic performance
estimation was from 15% to 25% higher than the one from the experts suggesting that the lower
value would provide a better representation of the errors.

To calculate the SURF descriptor it takes approximately one second per image. The computation
time of SL1 features achieves computationally fast SURF with the patch size 5 × 5 pixels and
40 × 40 pixels, as proposed in the original paper [38]. In order to reduce the number of feature
points found with SL1 we take every 20 pixel. The entire pipeline for 2D-3D registration was
performed in parallel, using the GNU Parallel software package [39]. The computation time for
2D-3D registration per one slice was around 15minutes.
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Fig 5. Examples of the registration of MRI (a) and CT (b) datasets for three pipelines: SURF,
SL1 and SURF-SL1 based on NCC similarity in Step IV. The first column depicts randomly
extracted µCT (a) and µMRI (b) slices. The following column shows the corresponding
slices in another dataset.

Table 4. Manual evaluation of registration.
Methods SURF SL1 SURF-SL1

CT MRI CT MRI CT MRI
Expert 1 66% 67% 73% 79% 73% 76%
Expert 2 66% 63% 76% 87% 72% 73%
Expert 3 65% 59% 77% 65% 72% 80%
Semi-automatic 91% 83% 91% 92% 93% 94%

Discussion

The registration to MRI data set is challenging to due several reasons. First, the data set features a
low resolution which leads to a loss of small scale structures recognizable by the SURF descriptor.
Second, the contrast between the outer brain layers is smaller. Third, blood vessels that usually
lead to reliable matching points are invisible. On the other hand, the histological slide shows
significant fractures as a result of the preparation and intensity gradients. Despite these artifacts
the registration to the CT data set performs well due to the higher number of matching points and
provides a good basis for the final determination of the matching slice in the MRI data set. Here,
the 3D-3D registration of CT and MRI offers a valuable mapping that can be achieved a-priori in
a reliable manner.

Locating a 2D histological slice in a 3D dataset is very challenging and mainly done manually.
Manual methods, however, are time-consuming and not reproducible, which motivated us to
develop an automatic solution for slice localisation in 3D space [22]. Although the slice position
was calculated in a fully automatic manner, the validation of the algorithm was performed
through comparison with manual coordinates, as often done in the field. This approach, however,
has an apparent drawback – manual results may vary from expert to expert, so the algorithm
cannot be evaluated straightforward. For example, an attempt to validate registration results
with an artificially generated ground truth was made in Schnabel et al. [40]. To overcome this
problem and create a fair platform for comparing different algorithms, a test dataset can be used
which is pre-registered using established automatic methods. The 2D slices are then extracted
randomly and the performance of 2D-3D registration algorithms is evaluated based on the known
location of the slice. Similarly, herein, we validate the developed slice-to-volume registration



algorithm on already registered MRI and CT datasets calculated the errors of the algorithm,
excluding any manual interactions. Moreover, we show that our pipeline can be applied to a
general slice-to-volume registration problem, not only to the histology-CT data for which it was
originally developed [41]. Indeed, the total median vertical position error is 1.5mm. The smallest
median error (1mm) is observed for SL1 slice position initialisation, at the same time achieving
the highest number of correctly registered slices.

Another valuable contribution of this work is a novel feature detection strategy, which we call
SL1. The feature points extracted with SURF are not able to find a sufficient gradient inside
the ROI of the image. Consequently, matching with SURF is based largely on contours on the
outside edge of the specimen. In contrast, the SL1 can allocate features even inside the slice ROI.
Moreover, the computationally speeded-up version of SL1 makes it possible to take into account
larger patch sizes. However, the computation time of the SL1 for large images is still quite high
compared to the SURF. Nevertheless, for future applications, we plan to exploit the full potential
of cross-correlation descriptors and investigate other matching strategies, both in 2D and 3D, to
improve performance.
One of the promising improvements to the slice-to-volume registration could be associated

with the shape of the specimen. Indeed, samples often have different amounts of tissue in the
top and the bottom parts. Therefore, incorporating contour or shape information, so that the
3D search also depends on the size of the ROI, would be beneficial. For example, penalising a
change to an ROI square, or using more sophisticated approaches to shape analysis like Procrustes
analysis [42], would reduce the search space of plane parameters.
To conclude, our frameworks for 2D slide to 3D volume registration performed well for

histology and µCT and enables the registration to MRI data which was impossible before. In
addition, the automatic validation of the algorithms checked their robustness for a challenging
MRI-CT correspondence problem. Furthermore, to leverage research in the field of multi-modal
registration we will make publicly available the code for slice-to-volume registration as well as
for the SL1 feature detector.
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Chapter 4

Discussion

The main goal of my thesis was to develop an automatic approach to register histology images to

µCT volumetric data. This goal was successfully accomplished by introducing a fully automatic

slice-to-volume registration method [Chicherova et al., 2014, 2017b]. An important step towards

this goal was the development of an extended version of a multi-modal feature detector - SL1.

This detector showed competitive results, and in our opinion, deserves further investigation.

To register a light microscopy image (e.g., a histological slide) and an X-ray tomography image,

one needs first to find a robust measure of similarity. To this end, we considered the most

popular multi-modal similarity measures such as normalized mutual information (NMI) and

normalized cross-correlation (NCC). However, we found that these measures were not suitable

for our problem because they are not invariant to rotation. Invariance to rotation is, however,

a crucial property because histological slides are arbitrarily rotated. Therefore, we decided to

use landmark based algorithms due to their ration invariance and fast computation time. In

particular, we chose the SIFT detector and its variations (SURF, ASIFT, etc.) because they

are invariant not only to rotation but also to a large extent to contrast. Inhomogeneities of

image contrast are very common and originate for example from uneven dying of histological

slides. Next, we showed that from the SIFT family, the SURF was the most robust solution

[Chicherova et al., 2016]. For this reason, in all our studies we used SURF as the benchmark.

However, simply summing up matching SURF features per slice and then choosing the one
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with the highest number of matching points was not sufficient to register a 2D slide to a 3D

volume. Along with correct matching points (inliers), SURF feature matching resulted in many

outliers which biased the results. The key idea to overcome this problem was complementing

the pipeline with a robust RANSAC model fitting algorithm [Chicherova et al., 2014]. This

enabled us to automatically localize a plane in 3D space under arbitrary tilting angles, which

has never been tackled before in previous studies. Moreover, the sparse representation of the

3D volume with distinctive features markedly reduced the computation time. In a follow-

up study, we tested the robustness of the developed techniques on datasets of different X-ray

based modalities [Chicherova et al., 2015, 2016] and MRI [Chicherova et al., 2017a]. We showed

that our method can be applied to a range of different modalities, which broadens the scope

of potential applications. Importantly, the method’s invariance to rotation and scale allows

avoiding manual pre-processing steps and, in contrast to other approaches, no serial or multiple

histology sections are needed. These properties make the method not only easily applicable

but also reduce the experimental work in labor-intensive histological sectioning.

Being able to localize a slice in a 3D data volume is necessary but not sufficient to achieve a

complete registration. Our initial approach [Chicherova et al., 2014] could find the place where a

histological cut was most probably extracted. However, a fully-registered 2D histological image

also needs to be aligned with the 2D CT slice so that one can see corresponding tissues at the

same location. Therefore, we continued our research and developed a pipeline that could both

improve the localization accuracy and additionally register the slice in 3D space [Chicherova

et al., 2017b]. In this study, we also introduced nonlinear deformations of histological slides

which often occur in soft tissue sectioning [Hieber et al., 2016, Khimchenko et al., 2016] further

improving registration quality.

We also investigated a different way to improve the 2D-3D matching. In particular, we worked

on optimizing the first part of the algorithm, i.e. the feature detection. In all previous studies,

we used SURF as a feature detector to find matching points. However, using SURF might

be suboptimal given the multi-modal nature of the images, because it is based on gradients

which might not be similar between modalities. Thus, we decided to develop a feature detector

that could better fit our needs. A Master thesis was completed on this subject in our group
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[Khalili, 2015] based on which we developed a multi-modal alternative to SURF named SL1

[Chicherova et al., 2017a]. The SL1 is in fact a combination of the SS descriptor [Shechtman

and Irani, 2007] with the L1-norm as a cost function for robust outlier rejection. An important

advantage of SL1 is its dense feature extraction. In particular, it finds significantly more feature

points and correspondences in low-contrast regions, which is very advantageous when using soft,

highly homogenous tissue samples such as human brain. Another important conclusion from

Chicherova et al. [2017a] is that our pipeline was automatically validated excluding manual

bias from the assessment.

We will make the developed slice-to-volume registration algorithm publicly available on a

GitHub repository at https://github.com. It has already been extensively used in our group

and became a routine analysis procedure in our histology projects [Thalmann et al., 2015,

Hieber et al., 2014, Buscema et al., 2014, Hieber et al., 2016, Khimchenko et al., 2016]. We will

also make our feature detector and descriptor SL1 open source. Although the implementation

of the original SS descriptor already exists, our implementation is significantly faster which

allows this descriptor to be used for high-resolution images. Apart from the SL1 descriptor

which is written in C++, the pipeline is implemented in Matlab.

Future research needs to focus on further increasing the robustness of the algorithm. Often

biological samples have irregular shapes that interfere with feature detection and consequently

lead to registration deviations. For example in the case of dental cylinderic-shaped samples the

amount of tissue may decrease around the top or bottom parts of the sample. This sometimes

misleads optimization. This is likely due to the way mutual information is calculated. Specif-

ically, when two images are almost entirely black, mutual information is very large. This is

why, when calculating MI between a histology slice and an image with large background parts,

the MI estimation is biased and registration is likely to converge to these low region of interest

slices. Even though this occurs only for a small number of slices and can be partly eliminated

by normalizing MI, future work is needed to handle these cases better. For example, one can

try to include contour information in the pipeline. Contours that are very different from the

histological slide contours should be penalized. The cost function could then be augmented by

using NMI and a term for the distance between contours.

https://github.com
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Another promising direction of research is to implement our pipeline in various MRI applica-

tions. Registration of histological slides to MRI data has been well studied [Ourselin et al., 2001,

Ou et al., 2009]. The MRI modality is the standard choice for soft tissue investigation and can

be found in many clinical applications. The existing approaches, however, do not provide fully

automated solutions. We showed that our method can be applied to CT-MRI correspondence

and we believe that it has the potential to improve histology to MRI registration as well.

Independently of the main pipeline, an extension of the SS-based detector, namely SL1, de-

serves further investigation. The application to other types of images and an extensive com-

parison with existing detectors could unravel its limitations and advantages.
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