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Summary 

Malaria is one of the oldest infectious diseases that has had global health significance on humans 

for several centuries. In recent times, its burden has been concentrated in the Sub-Sahara Africa 

(SSA) region where almost 90% of the global malaria morbidity and mortality burden is 

shouldered. In these countries, transmission is high mainly due to suitable weather conditions, 

yet control and prevention activities are hampered by weak national health systems and low 

socioeconomic development. This situation leads to a significant loss of lives in endemic 

countries particularly in the vulnerable groups of children less than 5 years and pregnant women, 

as well as pain, suffering, and economic losses due to lost workdays. This further undermines 

socioeconomic development and perpetuates the vicious cycle of poverty in the affected 

countries. Uganda ranks number four among the 15 high-burdened countries, with the disease 

being the leading cause of hospitalization and death. 

The launch of Roll Back Malaria (RBM) initiative in the mid-2000s heralded renewed 

global interest and financial investment towards malaria control and elimination leading to 

accelerated scale-up of proven malaria control, prevention, and treatment interventions. These 

interventions are; Insecticide Treated Nets (ITNs), Indoor Residual Spraying (IRS), and case 

management with Artemisinin-based Combination Therapies (ACTs). The scale-up has been 

followed by a decline in malaria burden in Uganda and other endemic countries. This increased 

financial support has also been extended to malaria surveillance, specifically in the strengthening 

of the national Health Management Information System (HMIS) used for routine reporting of 

health facility data, and the implementation of nationally representative household surveys and 

facility assessment surveys. The routine data facilitates the assessment of inter and intra annual 

variation of malaria burden in the country, whereas data from the national household surveys are 

spatially structured and therefore can be used to identify the population groups and areas most 
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affected as well as track the progress of malaria interventions coverage at national and 

subnational scale.  

Despite the availability of these rich data, their utilization remains low in the country. 

The information extracted from surveillance data by the Ministry of Health (MoH) and National 

Malaria Control Program (NMCP) is limited to national averages that neither take into account 

subnational heterogeneities and disparities nor evaluate the effects of interventions on malaria 

burden changes in space and time. This is because the standard statistical methods are ill-suited 

for analysis of malaria surveillance data, yet NMCP lack the capacity to develop and apply the 

advanced state-of-the-art methods appropriate for such data. For instance, the usual statistical 

assumption of independence of data observations in standard statistical software does not hold 

for malaria surveillance data due to the presence of spatial correlation arising out of similarity of 

common exposures such as the environment and the mosquito flying distance in neighboring 

areas. Also, the longitudinal nature of routine data introduces temporal correlation due to 

proximal time points. Failure to take into account spatial and temporal correlation in inference 

results in incorrect estimates of the risk, imprecise predictor effects, and erroneous predictions 

and forecasts that are necessary for surveillance.  

Bayesian hierarchical geostatistical and spatio-temporal models fitted via Markov Chain 

Monte Carlo (MCMC) simulations are flexible to incorporate correlations in time and space and 

can be easily extended to capture complex relationships. They can accurately estimate malaria 

burden at high spatial resolution, assess interventions and health system-related effects, and can 

support Early Warning Systems (EWS) for effective surveillance.  

The objectives of this thesis is to develop Bayesian spatio-temporal models for malaria 

surveillance in Uganda, to i) assess the effect of interventions on the geographical distribution of 

malaria prevalence in  the country; ii) determine the contribution of  interventions on spatio-

temporal changes of parasitaemia risk; iii) estimate the effects of interventions on space-time 
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patterns of malaria incidence; iv) investigate interactions between climatic changes and 

intervention effects on malaria incidence spatio-temporal dynamics; v) assess the role of health 

facility readiness on severe malaria outcomes; and vi) develop forecasting models to support 

malaria early warning system in the country. 

In Chapter 2, Bayesian geostatistical models with spatially varying coefficients were 

developed to determine the interventions’ effects on malaria prevalence in 2014 at national and 

subnational levels and to predict malaria risk at unsampled locations. Interventions had a 

significant but varying protective effect on malaria prevalence. The highest prevalence was 

predicted for regions of East Central, North East, and West Nile, whereas the lowest prevalence 

was predicted in Kampala and South Western regions.  

In Chapter 3, Bayesian geostatistical and temporal models were applied on Malaria 

Indicator Survey (MIS) data of 2009 and 2014 to quantify the effects of interventions on spatio-

temporal changes of parasitaemia risk during 2009-2014. The models took into account 

geographical misalignment in the locations of the surveys. During this period, the coverage of 

interventions more than doubled, and interventions had a strong effect on the decline of 

parasitaemia risk, albeit with varying magnitude in the regions. The estimated number of 

children <5 years infected with malaria declined from 2,480,373 to 825,636.   

We developed Bayesian spatio-temporal negative binomial models in Chapter 4 to assess 

the effects of case management with artemisinin combination therapies and vector-control 

interventions on space-time patterns of malaria incidence using HMIS data reported during 

2013-2016. Heterogeneity in incidence was taken into account via year-specific, spatially 

structured and unstructured random effects modeled at district level via Conditional 

Autoregressive (CAR) and Gaussian exchangeable prior distributions, respectively. The nested 

space–time structure allowed the geographical variation of malaria to vary from year to year. 

Temporal correlation across months was captured by monthly random effects modeled by an 
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autoregressive process of order 1 (AR1). Models were adjusted for seasonality by including 

Fourier terms as a mixture of two cycles with periods of 6 and 12 months, respectively. A yearly 

trend was fitted to estimate changes of the incidence rates over time. The temporal variation in 

incidence was similar in both age groups and depicted a steady decline from 2013 to 2014, 

followed by an increase in 2015. The trends were characterized by a strong bi-annual seasonal 

pattern with two peaks during May-July and September-December. Increases in interventions 

were associated with a reduction in malaria incidence in all age groups. The space-time patterns 

of malaria incidence in children < 5 years were similar to those of parasitaemia risk predicted 

from the MIS of 2014-15 in Chapter 3. 

In Chapter 5 we assessed the relationship between climatic changes and their interactions 

with malaria interventions on changes in malaria incidence between 2013 and 2017. Bayesian 

spatio-temporal negative binomial CAR models were applied on district-aggregated monthly 

malaria cases reported in the District Health Information System version 2 (DHIS2) during 2013-

2017. The models were adjusted for socioeconomic factors and treatment-seeking behaviour 

patterns. The annual average of rainfall, Day Land Surface Temperature (LSTD) and Night Land 

Surface Temperature (LSTN) increased whereas Normalized Difference Vegetation Index 

(NDVI) decreased. The increase in LSTD and decrease in NDVI were associated with a 

reduction in the incidence decline. Important interactions between interventions with NDVI and 

LSTD suggest a varying impact of interventions on malaria burden in different climatic 

conditions.  

In Chapter 6, we linked USDI survey data of 2013 with severe malaria outcomes data 

reported in the Health Management Information System (HMIS) to construct a multidimensional 

readiness index for health facilities in Uganda. Bayesian geostatistical negative Binomial models 

were used to assess the effects of facility readiness on severe malaria incidence and mortality.  

The index was created using Multiple Correspondence Analysis (MCA) based on more than one 



Summary 

 

 

xx 

 

dimension of the most relevant general service and malaria service readiness indicators for 

severe malaria outcomes identified through stochastic variable selection. Exploiting more than 

one dimension in the multiple correspondence analysis produces a more robust index of facility 

readiness Malaria-specific readiness was achieved in only one quarter of the facilities. Malaria 

specific readiness was higher in HCIIIs and in private managed compared to HCIIs and 

government managed facilities. In both HCIIIs and HCIIs, mortality and incidence rates of 

severe malaria cases decreased with increasing facility readiness.  

In chapter 7 we developed polynomial distributed lag models to forecast malaria cases in 

different malaria endemic settings in Uganda using weekly surveillance data of parasitologically 

confirmed malaria cases extracted from the Integrated Disease Surveillance and Response 

(IDSR) during 2013-2016 and remote sensing climatic data. We employed stochastic variable 

selection to identify the optimal order that provided the best description to the malaria-climate 

relationship in each endemic setting in Uganda. The developed models were used to estimate the 

distributed lag effect of climatic factors on malaria cases.  The third and first order polynomial 

distributed lag models explained maximal variation in the low endemic and very high endemic 

settings, respectively, whereas the second order polynomial distributed lag model provided 

superior fit in the moderate and high endemic settings. Predictive performance at different lead 

times varied by endemic setting, but overall, the best predictive performance was produced in the 

moderate and high endemic settings. Rainfall was associated with a delayed increase and 

immediate decrease in malaria in low and moderate endemic settings, but an immediate increase 

in malaria in the high and very high endemic settings. Day LST was associated with an 

immediate decline in malaria followed by a delayed increase in low, moderate and high endemic 

settings, but an immediate increase in malaria in very high endemic settings. 
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The results of this work will inform decision making in priority setting, timing of targeted 

deployment of interventions to maximize benefits and optimize resources in order to achieve the 

milestones of the Uganda Malaria Reduction Strategic Plan (UMRSP) 2014-2020. 

 



Acknowledgements 

 

 

xxi 

 

Acknowledgements 

I would like to acknowledge the support of various people and institutions that have contributed 

to the successful completion of this PhD training.  

First and foremost, I thank my supervisor PD Dr. Penelope Vounatsou for the wonderful 

supervision and mentorship she has provided in Bayesian spatial statistical methods and their 

application in the epidemiology of infectious diseases. Special thanks also go to my co-

supervisors in Uganda at the department of biostatistics and epidemiology in Makerere 

University school of public health, namely, Dr. Simon Kasasa, and Associate Prof. Dr. Fredrick 

Makumbi for getting me on-board and their immense support during the training. I would also 

like to convey my heartfelt thanks to Associate Prof. Dr. Noah Kiwanuka, my former Boss at the 

International AIDS Vaccine Initiative (IAVI) and all the staff for their support and 

encouragement especially at the nascent stages of the training.  

This journey would not have started had I not met with Dr. Nahya Salim of Muhimbili 

University of Health and Allied Sciences (Tanzania) three years during a training workshop in 

Entebbe. She kindly shared with me information on the availability of a PhD training opportunity 

in the Bayesian modelling and analysis unit at the Swiss Tropical and Public Health Institute 

(Swiss TPH). I would also like to offer my sincere gratitude to Mr. John Kissa and colleagues at 

the Uganda ministry of health for providing me access to HMIS data that enabled me accomplish 

this work. 

Many thanks go also to Director of Swiss TPH Prof. Dr. Jürg Urtzinger and Director 

Emeritus Prof. Dr. Marcel Tanner whose invaluable leadership and management have turned 

Swiss TPH into a leading research institution in the domain of epidemiology. 

  I probably would not have completed my training in the short period I managed if it was 

not for the extraordinary and indefatigable Christine Mensch whose exemplary professionalism 

and great attitude made my training in Switzerland less stressful.  I wish also to extend my 



Acknowledgements 

 

 

xxii 

 

appreciation to members of the Swiss TPH research secretariat name, namely, Nora Bauer, Laura 

Innocenti, Dagma Batra, Anja Schreier for day-to-day support rendered to me. Much appreciated 

also are the dedicated library staff for taking care of my literary needs and the IT team 

particularly Fesha Abebe for his immense help with IT issues.   

I dedicate this thesis to my beloved late mother Sperancia Mukagatare (May the Lord 

grant her soul eternal rest) who first sowed in me the seeds of education and piety at an early age 

that laid the foundation for this achievement. In the same vein, I thank my brothers Donnie 

Rutaisire and the late Frank Rutabingwa, Maama Nyirabalela, and Kojja Ssebikamba for also 

contributing generously to my formative education. My heartfelt thanks also go to my fiancé 

Fatuma Namugga for her patience during all this time I was overseas. Equally I am indebted to 

my family for their prayers, support, love, and encouragement. In no particular order, I thank 

Maria S. Mukagatale, Joseph M. Balikuddembe, Simon P. Sseguya, John Baptist Ssempiira, 

Theresa Naiga, Josephine Naiga, Monday Vabostine, Carol Namatovu, Francis Nsengiyumva, 

Baaba Sarah, Muteteri, Godfrey Katende, Don Nkusi, Maama Mukanziga, Maama Munkakusi, 

David Mugambe Kibirango, John Kazungu, Paul Kamoga, Fauza Namutebi and Kojja 

Kanyenzi,. 

I would also like to convey my warmest thanks to my colleagues past and present in the 

Bayesian modelling and analysis unit namely, Betty Nambusi Bukenya, Sammy Khagayi, 

Ouhirire Millogo, Sabelo Dlamini, Abbas Adigun, Oliver Bierhoff, Anton Beloconi, Eric 

Diboulo, Solomon Massoda,  Elizavetta Semenova, Christos Kokaliaris, Fredrique Charmmatin, 

Elaine, Yings Lai.  

Finally, I thank the Almighty God for his providence and grace that has enabled me to 

successfully complete this training.  

This thesis was supported and funded by the Swiss Programme for Research on Global 

Issues for Development (r4d) project no. IZ01Z0-147286 and the Canton of Basel-Stadt. 



Chapter 1: Introduction 

 

1 

 

Chapter 1: Introduction 

1.1 Background 

Malaria is the most important infectious disease in the history of mankind dating back to ancient 

times when humans started living together in food-producing communities (Webb, 2009). 

Throughout the centuries malaria caused loss of life, pain and suffering to mankind yet it was 

only until after the second world war that global-level efforts -  the Global Malaria Eradication 

Campaign (GMEC) -  were undertaken by the World Health Organisation (WHO) to eliminate 

the disease (Snow and Marsh, 2010). This campaign which relied heavily on residual spraying of 

house walls with Dichlorodiphenyltrichloroethane (DDT) and treatment of cases with 

chloroquine antimalarial drugs was formally abandoned in 1969 after failing to achieve 

elimination in the least developed parts of the world especially in SSA owing to weak public 

health infrastructure and the emergence of insecticide and parasite resistance (Müller, 2011). 

This failure to control malaria in SSA continued unabated through decades and was later to turn 

into a public health disaster in the early 1990s with the emergence of HIV/AIDS pandemic, a 

combination which culminated into high morbidity and mortality rates unprecedented in the 20th 

century (White et al., 1999).  

To halt the disastrous situation from further aggravation, the African Heads of states in 

conjunction with the leading international health initiatives launched the Roll Back Malaria 

(RBM) initiative at the Abuja Declaration summit of 1998 (Snow and Marsh, 2010). This 

marked the first serious international efforts to control, prevent and treat malaria in endemic 

countries of SSA unrivalled since the demise of GMEP. The major players in the RBM 

partnership include the US Presidential Malaria Initiative (PMI) and the Global Fund to Fight 

AIDS, tuberculosis, and malaria (Global Fund). These have made significant investments in 

malaria control and prevention resulting in accelerated scale-up of highly proven malaria 

interventions, namely, ITNs, IRS, and ACTs (Snow et al., 2015). These efforts have led to a 

global decline of malaria morbidity and mortality including in countries of high endemicity in 
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SSA (Bhatt et al., 2015a; Lengeler, 2004). For instance, during 2000-2015, the global malaria 

prevalence, incidence, and mortality declined by up to 24%, 41%, and 62%, respectively, and the 

number of people infected with malaria parasites in SSA declined from 131 million to 114 

million (World Health Organisation, 2017).  As a result, the number of countries with on-going 

malaria transmission reduced from 106 in 2000 to 91 in 2015, and malaria went down from the 

first to the fourth highest cause of mortality in children less than 5 years during 2000-2015 

(World Health Organization, 2015a).  

1.2 Species, vectors and transmission cycle 

Malaria is transmitted to humans by female Anopheles mosquitoes. Although over 100 vectors 

are known to have the capacity to transmit malaria, the most dominant vectors are Anopheles 

gambiae complex (An. gambiae sensu stricto, An. arabiensis, An. bwambae) and Anopheles 

funestus  (Wiebe et al., 2017). A. gambiae species complex is the most dominant species in SSA 

and most effective among all vectors and breeds in small temporary pools and puddles, while A. 

funestus is commonly found at higher altitudes and breeds mainly in permanent water bodies 

(Bass et al., 2007). Within the A. gambiae complex, Anopheles gambiae s.s. is the most common 

and is predominantly anthropophilic (feeds on humans)  and endophilic (feeds indoors),  hence 

making vector control strategies feasible for its control (The Anopheles gambiae 1000 Genomes 

Consortium, 2017). 

Four protozoan parasites cause malaria in humans, namely, Plasmodium falciparum, P. 

vivax, P.ovale, and P. malariae, and most recently a fifth parasite, P.knowles, has been 

discovered which infects both humans and animals  (Cox, 2010). P. falciparum is the most 

prevalent species in SSA and the most fatal in killing young children (Loy et al., 2017).  

The parasite transmission cycle takes place in two stages; the asexual stage in the human 

host and the sexual stage in the vector. The asexual stage begins when an infected mosquito 

injects sporozoites into the body of a human host where they move to the liver cells where they 

undergo asexual multiplication leading to the production of merozoites. These move into the 
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bloodstream and invade the red blood cells when they undergo another cycle of asexual 

multiplication resulting in the production of 6-24 merozoites that again invade red blood cells. 

This process is repeated several times each time marked by a bout of fever caused by rupture of 

the red blood cells. During this course, some merozoites transform into male and female 

gametocytes that circulate in the bloodstream which are sucked by a mosquito during feeding.  In 

the sexual stage, the gametocytes grow into male and female gametes. Fertilization follows 

leading to the formation of ookinete in the mosquito gut and this marks the beginning of 

sporogony. The ookinete goes into the gut wall of the mosquito and transforms into an oocyst 

and sets off another multiplication phase that results into formation of sporozoites that move to 

the salivary glands of the mosquito where they are inoculated into another human host at the next 

feeding (Cox, 2010). 

1.3 Clinical features and malaria diagnosis 

The most common symptoms of uncomplicated malaria are; fever, chills, headaches, 

perspiration, body weakness, general malaise, body aches, vomiting and nausea (Bartoloni and 

Zammarchi, 2012).  

An enlarged spleen is also common in endemic countries. In addition, severe malaria may cause 

cardiovascular collapse and shock, anemia due to the destruction of red blood cells, and cerebral 

malaria which impairs consciousness leading to seizures and coma (Pasvol, 2005).  

In the absence of other sensitive parasitological-based diagnostic techniques such as Rapid 

Diagnostic Tests (RDTs) and microscopy, diagnosis by clinical symptoms is less sensitive as 

most symptoms resemble those manifested by acute respiratory infections in young children 

(Luxemburger et al., 1998).   

1.4 Malaria epidemiology 

Despite the decline in malaria achieved following RBM-supported interventions scale-up since 

the mid-2000s, malaria remains a global public health challenge with over three billion people at 
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risk. In 2016 alone, malaria was responsible for over 216 million cases most of them in SSA 

(Figure 1.1) and over 438,000 deaths of which 90% occurred in children less than 5 years (World 

Health Organisation, 2017).  

 

 

 

 

 

  

 

 

 

 

Figure 1.1: Global malaria burden distribution (source: World malaria report 2015) 

 

In Uganda, malaria  is ranked fourth among the 15 high- burden countries that carry 80% 

of the global malaria burden (World Health Organisation, 2017). Malaria transmission in the 

country is high, stable and perennial with almost the entire population at risk (President’s 

Malaria Initiative, 2017). Approximately 16 million cases and over 10,500 deaths are reported 

annually making malaria one of the most important diseases in the country (Ministry of Health, 

2014). P. falciparum is the most dominant malaria species, and A. gambiae s.s is the commonest 

vector  (Yeka et al., 2012). Since 2006, RBM has funded malaria control, prevention and 

treatment activities in Uganda up to the tune of US$600 mainly to support interventions scale-up 

(Talisuna et al., 2015).  

1.4.1 Socioeconomic burden of malaria 

Malaria is responsible for direct and indirect socio-economic costs to countries, households, and 

individuals (Gallup and Sachs, 2001). Countries with high malaria transmission are much more 
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poorer, have lower living standards and are less developed compared to countries with a lower 

transmission (Sachs and Malaney, 2002). At global level, over 56 million Disability Adjusted 

Lost Years (DALYs) are lost due to malaria annually (GBD 2016 DALYs and HALE 

Collaborators, 2017). Households in endemic countries incur high costs for meeting out-of-

pocket payments for medical consultation fees, drugs, and transport to health facilities leading to 

substantial financial losses to families (Wang et al., 2005). At individual level, malaria results in 

lost productivity due to sickness, decreased school attendance due to absenteeism which impacts 

school performance and overall quality of life. This in turn impacts negatively on growth of 

industries and agriculture making the country unattractive to investors leading to a loss in 

investment and retarded socioeconomic development. In Uganda, it is estimated that households 

incur about $9 per bout of malaria equivalent to 3% of their annual income (Ministry of Health, 

2014).   

1.4.2 Malaria risk factors  

Malaria risk is known to be influenced by several factors such as environmental/climatic (Siraj et 

al., 2014), interventions (O’Meara et al., 2010), socioeconomic (Protopopoff et al., 2009) and 

demographic factors (Graves et al., 2009).   

1.4.2.1 Environmental/climatic factors 

Malaria transmission is chiefly driven by environmental factors due to their influence of the 

development of malaria vectors and parasites (Thomson et al., 2017). Temperature determines 

the duration of parasite and larval development, as well as and vector survival (Tanser et al., 

2003).  Rainfall contributes to the formation of mosquito breeding sites, thus increasing vector 

populations (Thomson et al., 2017). Altitude is inversely related with temperature, and thus 

higher altitudes prolong stages of parasite development resulting in low transmission (Drakeley 

et al., 2005).   

1.4.2.2 Interventions 

The WHO recommended interventions of ITNs, IRS and ACTs have been shown to control and 
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prevent malaria in endemic settings due to their role in reducing human-vector contact, directly 

killing mosquitoes and lowering malaria parasite load in humans and populations at large 

(Bhattarai et al., 2007; Ceesay et al., 2008; Choi et al., 1995). ITNs, in particular, have shown the 

highest efficiency and cost-effectiveness in reducing malaria morbidity and mortality among 

children less than 5 years (Lengeler, 2004).  

1.4.2.3 Socioeconomic factors 

Malaria is a disease associated with low socio-economic development (Feachem and Sabot, 

2008; Greenwood et al., 2008; Protopopoff et al., 2009; Tanner and de Savigny, 2008). This is 

because low socioeconomic status is directly linked to poverty which hinders affordability of 

adequate housing facilities and access to better health services which increases susceptibility to 

high malaria risk and/or transmission (Teklehaimanot and Mejia, 2008).  

1.4.2.4 Demographic factors 

The most important demographic factors that influence malaria risk are age and level of 

education. Young children have lower immunity which makes them highly susceptible to a 

higher malaria but the risk of malaria decreases with the development of immunity in older 

individuals (Pemberton-Ross et al., 2015). A higher level of education is closely linked with 

better socio-economic status, higher prevention awareness and the means to afford treatment 

measures (Noor et al., 2006).  

1.5 Quantification of malaria risk 

A number of measures are used to assess and compare the malaria burden and its transmission in 

different geographical settings and time periods including, Entomological Inoculation Rate 

(EIR), parasite prevalence (number of infected humans out of the total screened), and case 

incidence (number of newly infected humans) (Yé et al., 2009). The EIR is defined as the 

number of infective bites per person per night. However, for clinical malaria in endemic settings, 

parasite density and not prevalence is a better measure (Müller, 2011).   
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1.6 Malaria surveillance in Uganda  

In Uganda, malaria surveillance is implemented through routine health facility data collection 

and reporting in the HMIS, and periodical execution of nationally representative household 

surveys, that is, Malaria Indicator Surveys (MIS) and Demographic Health Survey (DHS) 

(National Malaria Control Program, 2016). The national HMIS was established in the 1990s 

(Kintu et al., 2004). The system has undergone several upgrades including the most recent one of 

the adoption of the District Health Information Software System version 2 (DHIS2) in 2011 

which involved transformation of a paper-based reporting and storage system to an electronic 

web-based system (Kiberu et al., 2014). Following this upgrade, data quality reporting, facility 

reporting and report timeliness have improved significantly. The Integrated Disease Surveillance 

and Response (IDSR) system used to monitor outbreaks of major diseases including malaria has 

been incorporated in the upgraded version.  

RBM support in Uganda has been extended to the implementation of MIS and DHS 

surveys. The following surveys have been implemented since 2009; MIS 2009 and MIS 2014-15 

(Uganda Bureau of Statistics and ICF International, 2015, 2010), and DHS 2011 and DHS 2016 

(Uganda Bureau of Statistcs (UBOS) and ICF, 2017; Uganda Bureau of Statistics (UBOS) and 

ICF International Inc. 2012, 2012). These surveys facilitate the estimation of malaria prevalence 

in the country, identify the most affected population groups and high-burden areas, and track 

malaria interventions scale-up at national and subnational scale. 

Also, since the inception of RBM in Uganda, two health facility assessment surveys have been 

conducted to evaluate facility readiness to provide basic healthcare services including malaria 

(Wane and Martin, 2013).  

1.7 Major constraint to malaria surveillance in Uganda 

The RBM support to malaria surveillance activities in Uganda has resulted in the availability of 

rich sources of routinely collected and survey data in the country. Despite this availability, data 

utilization remains low and the information extracted by NMCP is limited to national averages 
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that neither take into account subnational heterogeneities and disparities nor evaluate the effects 

of interventions on malaria burden changes in space and time. This is because the standard 

statistical methods are ill-suited for analysis of malaria surveillance data, yet MoH and NMCP 

lack the capacity to develop and apply the appropriate advanced methods. For instance, the usual 

statistical assumption of independence of data observations in standard statistical software does 

not hold for malaria surveillance data due to the presence of spatial and temporal correlation.  

Also, the analysis must take into account the fact that environmental factors’ effects on malaria 

is not limited to one point in time but is distributed over time, as well as the strong seasonality 

trends originating from a high correlation between malaria and the environment, and the need to 

predict malaria risk at unsampled locations. 

1.8 Bayesian spatio-temporal modeling and applications in malaria surveillance 

Statistical modeling is used to determine important exposures for the outcome-exposure 

relationship and to predict the outcome at unobserved exposure values or future time. However, 

these models assume independence of observations, an assumption that is violated by malaria 

surveillance data due to the presence of spatial and temporal correlation arising out of similarity 

of exposures in neighboring areas, and proximal time points in time series data, respectively.  

Bayesian spatio-temporal models are the state-of-the-art methods appropriate for 

analyzing geostatistical and spatio-temporal data. The models account for correlation of malaria 

data in space and time, by allowing extra parameters to be included as random effects for 

location and time.  The spatial random effects are assumed to be latent data from an underlying 

Gaussian spatial process, and correlations between two locations are modeled as a function of the 

distance between them. On the other hand, temporal correlation can be adjusted by incorporating 

autoregressive terms in the models. The addition of these random effect results in a highly 

parameterized model making inference by maximum likelihood estimation unfeasible. However, 

this problem is easily handled by Bayesian inference via MCMC simulations (Gelfand and 

Smith, 1990). Since their first formulation by Diggle et al. (1998), these models have been 
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employed in mapping of malaria risk in Africa using contemporary and historical survey data to 

produce malaria risk maps for Mali (Gemperli et al., 2006b), West Africa (Gemperli et al., 

2006a), Malawi (Kazembe et al., 2006), Botswana (Craig et al., 2007), Cote d’Ivoire (Raso et al., 

2012), Kenya (Noor et al., 2009), Somalia (Noor et al., 2012), Nigeria (Adigun et al., 2015), 

Burkina Faso (Diboulo et al., 2016), Angola (Gosoniu et al., 2010), Tanzania (Gosoniu et al., 

2012), Senegal (Giardina et al., 2012) and Zambia (Riedel et al., 2010). They have also been 

applied to model malaria incidence in  Namibia (Alegana et al., 2013),Venezuela (Villalta et al., 

2013), Mozambique (Zacarias and Andersson, 2011), Malawi (Kazembe, 2007), Zimbabwe 

(Mabaso et al., 2006), China (Clements et al., 2009), and in  South Africa (Kleinschmidt et al., 

2002).  

The robustness of the Bayesian framework enables the extension of these models to 

capture complex features of malaria surveillance data including seasonality, changing risk 

profiles over time, and the distributed effect of the environment on malaria incidence. This 

flexibility is crucial for accurate estimation of malaria burden at national and subnational scales, 

prediction at unsampled locations, assessment of interventions and health system-related effects, 

and can be exploited in the development of forecasting models to support early warning system. 

This is crucial for improving malaria surveillance in Uganda and other settings with high 

endemicity. The results will inform priority setting, decision making, and guide timing and 

targeted deployment of interventions to maximize benefits so as to optimize resources to 

achieving the objectives in the UMRSP 2014-2020.  

1.9 Thesis objectives 

The main objective of this thesis was to develop Bayesian spatio-temporal models for malaria 

surveillance in Uganda. 

1.9.1 Specific objectives 

The specific objectives were to; 
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1) Assess the effects of interventions on the geographical distribution of malaria prevalence 

in the country  

2) Determine the contribution of  interventions on the spatio-temporal changes of 

parasitaemia risk  

3) Estimate the effects of interventions on the space-time patterns of malaria incidence  

4) Investigate interactions between climatic changes and intervention effects on malaria 

spatio-temporal dynamics  

5) Assess the role of health facility readiness on severe malaria outcomes  

6) Develop forecasting models to support a malaria early warning system in Uganda 
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Chapter 2: Geostatistical modeling of malaria indicator survey data to assess the effects of 

interventions on the geographical distribution of malaria prevalence in children less than 5 
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Abstract  

Background 

Malaria burden in Uganda has declined disproportionately among regions despite overall high 

intervention coverage across all regions.  The Uganda Malaria Indicator Survey (MIS) 2014-15 

was the second nationally representative survey conducted to provide estimates of malaria 

prevalence among children less than 5 years, and to track the progress of control interventions in 

the country. In this present study, 2014-15 MIS data were analyzed to assess intervention effects 

on malaria prevalence in Uganda among children less than 5 years, assess intervention effects at 

the regional level, and estimate geographical distribution of malaria prevalence in the country. 

Methods 

Bayesian geostatistical models with spatially varying coefficients were used to determine the 

effect of interventions on malaria prevalence at national and regional levels. The spike-and-slab 

variable selection was used to identify the most important predictors and forms. Bayesian kriging 

was used to predict malaria prevalence at unsampled locations.  

Results 

Indoor Residual Spraying (IRS) and Insecticide Treated Nets (ITN) ownership had a significant 

but varying protective effect on malaria prevalence. However, no effect was observed for 

Artemisinin Combination-based Therapies (ACTs). Environmental factors, namely, land cover, 

rainfall, day and night land surface temperature, and area type were significantly associated with 

malaria prevalence. Malaria prevalence was higher in rural areas, increased with the child’s age, 

and decreased with higher household socioeconomic status and a higher level of mother’s 

education. The highest prevalence of malaria in children less than 5 years was predicted for 

regions of East Central, North East, and West Nile, whereas the lowest was predicted in 

Kampala and South Western regions, and in the mountainous areas in Mid-Western and Mid-

Eastern regions. 
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Conclusion 

IRS and ITN ownership are important interventions against malaria prevalence in children less 

than 5 years in Uganda.  The varying effects of the interventions call for the selective 

implementation of control tools suitable to regional ecological settings. To further reduce malaria 

burden and sustain malaria control in Uganda, current tools should be supplemented by health 

system strengthening and socio-economic development. 

 

Key words: Indoor residual spraying, artemisinin combination-based therapies, insecticide 

treated nets, Bayesian geostatistical modeling, spatially varying coefficient, kriging, malaria 

prevalence, malaria indicator survey  
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2.1 Introduction  

Malaria remains one of the leading public health burdens in the world despite the remarkable 

achievements made towards its control and prevention since the beginning of the second 

millennium. Recent global estimates indicate that malaria is responsible for over 214 million 

cases and over 438,000 deaths (World Health Organization, 2015a). Most of this burden is 

concentrated in Sub-Saharan Africa (SSA) region which accounts for 90% of the mortality 

burden, most of which occur among children less than 5 years old (World Health Organization, 

2015a). However, malaria has gone down from first to the fourth highest cause of mortality in 

this age group during the last 15 years (World Health Organization, 2015a).  

Uganda has the fourth highest number of Plasmodium falciparum infections (World 

Health Organization, 2015a) and some of the highest reported malaria transmission rates in the 

world (Talisuna et al., 2015). Ninety-five percent of the country has stable malaria transmission, 

with the rest having a low and unstable transmission with potential for epidemics. Malaria is 

responsible for 33% of all outpatient visits and 30% of hospital admissions (National Malaria 

Control Program, 2016).  Ninety-nine percent of malaria cases are attributed to P. falciparum 

species - Anopheles gambiae s.1 and An. funestus being the most common vectors (Yeka et al., 

2012). 

Vector control tools, that is, Insecticide Treated Nets (ITNs), Indoor Residual Spraying 

(IRS), and case management with Artemisinin-based Combination Therapies (ACTs) are at the 

forefront of malaria control and prevention in Uganda (National Malaria Control Program, 2016). 

Malaria Indicator Surveys (MIS) are nationally representative surveys conducted every 5 years 

to estimate malaria prevalence among children of age less than 5 years and track the progress of 

coverage of control interventions. The most recent MIS conducted in Uganda showed that 

overall prevalence of malaria among children age less than 5 years was 19.0% (Uganda Bureau of 

Statistics and ICF International, 2015). Results also indicated that coverage of interventions was 
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high across all regions. However, there were wide variations in regional malaria prevalence, 

varying from less than 5% in Kampala and South Western regions to over 25% in East Central, 

North East and, West Nile regions (Uganda Bureau of Statistics and ICF International, 2015). 

Whether the differences in the prevalence are due to variations in climatic, socio-economic, and 

demographic characteristics, or as a result of intervention effects varying in space needs to be 

investigated empirically.  

MIS have been used to analyze the effect of interventions on malaria prevalence using 

both non-spatial and Bayesian geostatistical methods. The latter give reliable estimates because 

they take into account correlation of malaria prevalence in space arising from common exposures 

affecting neighboring areas similarly. Bayesian geostatistical models have been used in mapping 

of malaria burden (Gething et al., 2011)  and recently in the analysis of MIS data in high endemic 

countries of SSA, namely,  Zambia (Riedel et al., 2010), Angola (Gosoniu et al., 2010), Tanzania 

(Gosoniu et al., 2012), Senegal (Giardina et al., 2012), Nigeria (Adigun et al., 2015) and Burkina Faso 

(Diboulo et al., 2016). Despite comparable malaria transmission intensities in these countries, 

findings showed varied effects of interventions on malaria prevalence among children less than 5 

years. For instance, a protective and non-protective effects were reported for ITNs and IRS 

respectively in Zambia (Riedel et al., 2010), Angola (Gosoniu et al., 2010) and  Senegal (Giardina et 

al., 2012). On the other hand, no effects were observed for the role of interventions in Nigeria 

(Adigun et al., 2015), and Tanzania (Gosoniu et al., 2012). In Liberia (Giardina et al., 2014) and 

Burkina Faso (Diboulo et al., 2016), intervention effects were protective at sub-national level but 

had no effect at the country level.  

In the current study, we analyzed the Uganda MIS 2014-15 using Bayesian geostatistical 

models to: i) determine the effect of interventions on malaria prevalence in children less than 5 

years adjusted for environmental, demographic and socio-economic characteristics, ii) assess 

intervention effects at regional level, and iii) obtain spatially explicit estimates of malaria 
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prevalence in this age group. A malaria risk map is a vital tool for efficient planning, resource 

mobilization, monitoring, and evaluation. To date, the only map available for Uganda is the one 

extracted from the new world malaria map (Gething et al., 2011) which is now out-dated since it 

does not take into account contemporary effects of interventions, socio-economic status, and 

climatic/environmental conditions.  

2.2 Methods 

2.2.1 Country profile 

Uganda is a landlocked country located in East Africa and shares borders with South Sudan to 

the north, Kenya to the east, the Democratic Republic of Congo to the west, and Tanzania and 

Rwanda to the south. It lies between latitudes 1
0
 south and 4

0
 north of the equator, with altitude 

ranging from 620 m to 5,111 m above sea level, and mean annual temperatures between 14
0
C 

and 32
0
C. It has two rainfall seasons in a year, a shorter one during March to May and a longer 

season spanning September to December. A range of ecosystems covers the country with the 

south dominated by tropical rain forests which gradually turn into savannah woodland and semi-

desert in the north. The country is divided into 112 districts grouped into 10 regions and covers 

an area of about 241,039 square kilometres. 

Uganda has a population of 35 million people living in 7.3 million households (Uganda 

Bureau of Statistics, 2016). The population is largely young with 50% of the population constituted 

with individuals of age 0-15 years. The proportion of the population of children age less than 5 

years is 17.7% (Uganda Bureau of Statistics, 2016). 

2.2.2 Uganda MIS 2014-15 

The 2014-15 MIS was based on a stratified two-stage cluster design (Uganda Bureau of Statistics 

and ICF International, 2015). In the first stage, 20 sampling strata were created and 210 clusters 

were selected with probability-proportional-to-size sampling. At the second stage, using 
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complete lists of households in the selected clusters, 28 households were chosen from each 

cluster with equal probability systematic sampling.  

All women of age 15-49 years in the sampled households, who were either permanent 

residents or visitors in the household on the night preceding the survey, were eligible for 

interview. Similarly, all children of age less than 5 years were eligible for malaria testing. 

Blood samples were taken from fingers or heels of children age less than 5 years and 

tested on-spot using Rapid Diagnostic Tests (RDTs). In addition, thick and thin blood smears 

were prepared and tested by microscopy. Results were recorded as either positive or negative if 

malaria parasites were found or not in the blood sample, respectively. In this study, microscopy 

results were considered because of the reduced sensitivity of RDTs in populations that have 

recently been treated and cleared of malaria parasites due to the presence of the residual HRP2 

antigen (World Health Organization and others, 2015).  

2.2.3 Ethical approval  

In this study, we used secondary data that was made available by the Uganda Bureau of Statistics 

(UBOS) and the Demographic Health Survey (DHS) MEASURE group based in the United 

States of America. According to survey protocols and related documents (Uganda Bureau of 

Statistics and ICF International, 2015), the ethical approval process was described as follows; The 

Institutional Review Board of International Consulting Firm (ICF) of Calverton, Maryland, USA 

reviewed and approved the Uganda MIS 2014-15. This complied with the United States 

Department of Health and Human Services requirements for the "Protection of Human Subjects" 

(45 CFR (Code of Federal regulations) 46).  

The survey was also reviewed and approved by Makerere University School of Biomedical 

Sciences Higher Degrees Research and Ethics committee (SBS-HDREC), and the Uganda 

National Council for Science and Technology (UNCST).  
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An interview was conducted only if the respondent provided their verbal consent in 

response to being read an informed consent statement by the interviewer. Also, verbal informed 

consent for each parasitaemia test was provided by the child’s parent/guardian/caregiver on 

behalf of children less than 5 years before the test was conducted. Verbal consent was conducted 

by the interviewer reading a prescribed statement to the respondent and recording in the 

questionnaire whether or not the respondent consented or assent was provided. The interviewer 

signed his or her name attesting to the fact that he/she read the consent statement to the 

respondent. Verbal consent was preferred over written consent because of low literacy levels 

especially in rural areas of Uganda (Uganda Bureau of Statistics and ICF International, 2015). 

2.2.4 Predictor variables 

Malaria transmission is known to be influenced by several factors including interventions 

(O’Meara et al., 2010), environmental/climatic (Siraj et al., 2014), socio-economic (Protopopoff et al., 

2009) and demographic factors (Graves et al., 2009). Environmental/climatic proxy variables were 

extracted from remote sensing sources for the period February 2014 – January 2015 (Table 2.1).  

Demographic variables were captured on survey tools, namely, the age of the child, residential 

location of the household, and mother’s highest level of education.  

Data on control interventions were captured on survey questionnaires including 

ownership and use of ITNs, ACT use, and IRS. The data on IRS coverage were collected at the 

household level, whereas that of ITN and ACT use was collected for each child in the selected 

household. Intervention coverage indicators were generated following standard definitions of 

Roll Back Malaria (World Health Organisation, 2013). The ITN ownership indicators generated and 

used in the study were; the proportion of households with at least one ITN (pro_1ITN), the 

proportion of households with one ITN for every two people (pro_1ITN4two), and proportion of 

the population with access to an ITN within their household (pro_itnaccess). ITN use indicators 

were; the proportion of children less than 5 years who slept under an ITN on the night preceding 
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the survey (pro_slept5itn), the proportion of the population that slept under an ITN in the night 

preceding the survey (pro_sleptitn), and proportion of ITNs used last night preceding the survey 

(pro_itnused).  

ACT coverage was measured as the proportion of fevers reported in the last 2 weeks 

before the survey that was treated with any ACTs. The indicator on IRS coverage was derived as 

the proportion of households sprayed in the last six months.  

The wealth index available in the data and calculated as a weighted sum of household 

assets using principal component analysis (Rutstein and Johnson, 2004) was used a proxy for 

socioeconomic status. 

Prior to Bayesian model fitting, collinearity between all pairs of independent variables 

was assessed using non-spatial regression methods based on values of Variance Inflation Factor 

(VIF) and Tolerance Values (TR). 

Table 2.1: Sources, spatial and temporal resolution of environmental/climatic and 

population data 

Data  Source  Period Spatial 

resolution 

Temporal 

resolution 

Annual average Day and 

Night Land Surface 

Temperature (LST) 

 MODIS February 2014- January 

2015 

1x1km2 8 days 

Annual average 

Normalized Difference 

Vegetation Index (NDVI) 

MODIS February 2014- January 

2015 

1x1km2 16 days 

Population data  Worldpop 2014 0.1x0.1km2 na 

Annual average Rainfall  U.S. Geological Survey-

Earth Resources Observation 

Systems (USGSS) 

February 2014- January 

2015 

8x8km2 10 days 

Altitude (Digital Elevation 

Model) 

Shuttle Radar Topographic 

Mission (SRTM) 

2000 0.5x0.5km2 na 

Water bodies MODIS  - 0.5x0.5km2 na 

Urban Rural extent  Global Rural and Urban 

Mapping project 

February 2014- January 

2015 

1x1km2 na 

      MODIS: Moderate Resolution Imaging Spectroradiometer 

       na: Not applicable 

 
 

 

2.2.5 Bayesian geostatistical modeling  

Three Bayesian geostatistical logistic regression models were fitted to determine the 

geographical distribution of malaria prevalence in children less than 5 years in Uganda, assess 

the adjusted effect of interventions on malaria prevalence, and estimate the effects of 
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interventions at the regional level. The first model included only environmental predictors, the 

second comprised of environmental, demographic, and socio-economic factors, whereas the third 

was modeled with spatially varying coefficients for interventions adjusted for the effect of 

environmental, socioeconomic status and demographic predictors.  The third model  assesses  the 

effects of interventions at the regional level using spatially varying coefficients (Giardina et al., 

2014) and is  formulated assuming a conditional autoregressive (CAR) prior distribution (Cressie, 

2015) which introduces a neighbor-based spatial structure for the regression coefficients for each 

intervention effect (Bivand et al., 2013). Neighbors were defined as the adjacent areas of each 

region. This model was adjusted for the effect of environmental/climatic, socio-economic status 

and demographic factors. 

The outcome of interest was the parasitaemia test result of a child tested in a sampled 

household.  To adjust for spatial correlation present in malaria data due to similar exposure effect 

in neighboring areas, cluster-specific random effects were added to each model. The cluster 

random effects were assumed to arise from a Gaussian stationary process with a covariance 

matrix capturing correlation between any pair of cluster locations as a function of their distances. 

To improve model fit and parameter estimation, a Bayesian geostatistical variable 

selection was used to select the most important predictors and form in explaining variation in 

malaria prevalence for the three models mentioned above. In model 1, selection consisted of 

introducing an indicator variable for every climatic predictor and estimating the probabilities of 

excluding or including the predictor into the model in linear or categorical form. These 

probabilities indicate the proportion of models including a given predictor out of models 

generated from all combinations of predictors. Variables were categorized using predictor 

quartiles. Only variables with an inclusion probability of more than 50% were used to predict 

malaria prevalence in children less than 5 years at unsampled locations.   
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Similarly, in the second model, a geostatistical variable selection was performed to 

choose the most important intervention, socio-economic and demographic predictors for malaria 

prevalence. This model was adjusted for the effect of environmental predictors fitted in model 1. 

The indicator with the highest probability of inclusion per group of ITN ownership (pro_1ITN, 

pro_1ITN4two, pro_itnaccess) and ITN use (pro_slept5itn, pro_sleptitn, pro_itnused) was 

selected.   

Prediction of malaria prevalence was performed using Bayesian kriging (Diggle and 

Giorgi, 2016) over a regular grid of 52,495 pixels at 4 km
2
 resolution covering the entire country. 

The population-adjusted number of individuals infected with malaria was estimated by 

first combining the high spatial resolution population data obtained from worldpop (Worldpop 

dataset download, 2016) with the predicted pixel-level malaria prevalence estimates. The 

population data were re-scaled from their initial 100x100m spatial resolution to the 2x2km 

resolution of the gridded risk estimates. The number of children less than 5 years infected with 

malaria per pixel was estimated by multiplying population counts by a factor of 17.7% - the 

proportion of the population under 5 years (Uganda Bureau of Statistics, 2016). The pixel-level 

estimates were aggregated at the regional level to produce number infected per region. 

Data analysis was carried out in STATA (StataCorp. 2015. Stata Statistical Software: 

Release 14. College Station, TX: StataCorp LP). OpenBUGS version 3.2.3 (Lunn et al., 2000) was 

used to implement the variable selection approach and to perform model fit.  The Bayesian 

kriging was implemented using a program written by the authors in R statistical computing and 

graphics software (“R: A language and environment for statistical    computing. R Foundation for 

Statistical Computing, Vienna, Austria.    URL http://www.R-project.org/,” 2014).  Maps were 

produced using ESRI’s ArcGIS 10.2.1 for Desktop (http://www.esri.com/). 

Parameter estimates were summarized using posterior medians and the corresponding 

95% Bayesian Credible Intervals (BCI). Model estimates were exponentiated to produce Odds 
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Ratios (OR). The effect of a predictor was considered to be important if the 95%BCI of the 

coefficient did not include a zero. The details of the fitted models are given in the Appendix. 
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2.3 Results 

A total of 4939 children age 0-59 months were tested for malaria from 210 clusters. The overall 

prevalence of malaria by microscopy was 19.0%. However, in this study, we used data from only 

193(91.9%) clusters whose geo-referenced information was available at the time of analysis (Fig 

1). This reduced sample had 4591 children tested for malaria with malaria prevalence of 19.5% 

which varied from 0% in Kampala region to over 38.0% in East Central region. Table 2 shows 

the overall and regional coverage distribution of intervention indicators. 

 

                                                                         

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Observed malaria prevalence at survey locations in Uganda, MIS 2014-15 

 

Nine out of every ten households had an ITN, but the proportion of households having 

one ITN for every two people was lower, varying from 36.3% in East Central to almost 70% in 

South Western region. At the country level, 80% of the population had access to an ITN in their 

households, with coverage ranging from 67% in East Central region to over 90% in South 
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Western region. Seventy-five percent of the population slept under an ITN on the night 

preceding the survey. Comparing ITN assess and ITN use shows a surplus of 5% unused ITNs. 

Three out of every four children of age less than 5 years slept under an ITN - the lowest 

coverage was observed in Central 1 region, while the highest was reported in North East region.  

Case management using ACTs ranged from 60% in Kampala to almost 80% in East 

Central region.  

About one out of every ten households in the country had been sprayed in the last 6 

months, but this intervention was mainly implemented in the Mid-North region where almost 6 

out of every 10 households were sprayed.   

Table 2.2: Coverage of control interventions by region 

Region Number   

of 

Clusters 

Preval

ence  

pro_1ITNa pro_1ITN4t

wob 

pro_slept

5itnc 

IRSd  ACTe pro_itnaccessf pro_sle

ptitng 

North East 32 32.3 0.96  0.51  0.86  0.02  0.71 0.80 0.84 

West Nile 16 27.4  0.96  0.64  0.76  0.02  0.65 0.86 0.79 

Mid-North 31 14.8 0.94 0.54 0.77 0.55 0.71. 0.82 0.77 

Mid-Western 14 14.1 0.96  0.52  0.83  0.0  0.64 0.81 0.80 

Mid-Eastern 24 14.1 0.97  0.52 0.81  0.0  0.79 0.82 0.76 

East Central 15 38.6 0.86  0.36  0.69 0.0  0.72 0.67 0.66 

Central 2 17 20.4 0.89  0.46  0.66  0.0  0.72 0.73 0.66 

Central 1 17 11.2 0.87  0.51  0.65 0.02.  0.60 0.74 0.62 

South Western 11 4.5 1.00  0.69 0.66  0.0  0.60 0.91 0.67 

Kampala 16 0.0 0.94  0.62  0.71  0.03 0.57 0.82 0.77 

Overall  193 19.5 0.94 0.54 0.76 0.1 0.68 0.81 0.75 
     aProportion of households with at least one ITN  
    bProportion of households with at least one ITN for every two people  
    cProportion of children less than 5 years who slept under an ITN  
    dProportion of households sprayed in the last 6 months 
    eProportion of fevers treated with any ACTs 
    fProportion of population who had access to an ITN 
    gProportion of population who slept under an ITN 

 
 

In Table 2.3, results from the Bayesian geostatistical variable selection are presented. In 

model 1, day LST (categorical), night LST (linear), land cover and area type were selected.  

These selected variables were used for predicting malaria prevalence in children less than 5 years 

at unsampled locations. Results in model 2 indicate a high probability of inclusion (>90%) for 

IRS, wealth index, age and mother’s highest level of education. However, indicators for ITN and 
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ACTs were selected with low probabilities which might be indicative of a weak relationship with 

malaria prevalence. 

 

Table 2.3: Posterior inclusion probabilities for environmental, intervention, socio-economic 

and demographic factors 

Variable Posterior inclusion probability (%) 

Model 1
†
 Model 2

††
 

Land surface temperature (day) 0.0 0.0 

Land surface temperature (night) 87.6 74.1 

Normalized difference vegetation index 41.9 36.2 

Rainfall  4.6 26.9 

Altitude  12.6 27.2 

Distance to water bodies 0.0 14.1 

Land cover  100 100 

Land surface temperature (day)* 100 100 

Land surface temperature (night)* 0.0 0.0 

Normalized difference vegetation index* 0.0 0.0 

Rainfall * 0.0 0.0 

Altitude * 0.0 0.0 

Distance to water bodies*  0.0 0.0 

Area type (rural vs urban )* 100 100 

Intervention    

IRS use  100 

ITN ownership   

pro_1ITN4two 8.3 

pro_1ITN 2.3 

pro_itnaccess 27.4 

ITN use   

pro_slept5itn 14.3 

pro_sleptitn 0.0 

pro_itnused 17.6 

Case management of  malaria at health  

facilities 

 

Proportion of fevers treated with any anti-

malarial  

12.9 

Proportion of fevers treated with ACTs  53.6 

Socioeconomic status, demographic     

Wealth index   100 

Area type  93.7 

Age  100 

Mother’s highest level of education  94.4 

       * Categorical form  
           †Only climatic predictors 

       ††Intervention + climatic + SES + demographic 

 

 

Table 2.4 presents results from Bayesian geostatistical models. In model 1 results show 

that day LST, night LST, land cover, and area type was significantly associated with malaria 

prevalence. Also, increases in day and night LST were significantly associated with higher odds 
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of malaria prevalence. Moreover, the odds of malaria prevalence were more than two times 

higher in cropping areas compared to forested areas (OR=2.12 95% BCI: 1.25-2.29).  

The adjusted effects of interventions on malaria prevalence are shown in model 2. The 

odds of malaria in children who lived in households that had been sprayed were 78% less than 

those living in unsprayed houses (95% BCI: 58%-86%). ITN access was associated with 

decreased odds of malaria prevalence. However, results show a risk factor effect for ITN use and 

no effect for ACTs use.  

A decreasing trend of malaria odds with increasing wealth quintile was observed. Malaria 

odds were 48% (95% BCI: 39%-58%) and 81% (95% BCI: 73%-86%) lower for richer and 

richest wealth quintile respectively compared to the poorest quintile.  

Rural areas had more than two times the prevalence of malaria compared to urban areas 

(OR=2.06 95% BCI: 1.96-2.19). 

The prevalence of malaria increased with age of a child reaching almost 5 times higher in 

children age 49-59 months compared to children age <=12 months (OR=4.77 95% BCI: 4.47-

5.97). 

A decreasing trend of malaria prevalence was observed with mother’s highest level of 

education. Malaria prevalence was 15% (95% BCI: 11-26%) and 43% (95%BCI: 33- 43%) 

lower in children whose mothers had attained primary and post-primary education compared to 

children whose mothers had no education respectively.  

Also, results indicate a strong spatial correlation of malaria prevalence of up to 47.7km 

(Range: 40.7-56.4).   

In Table 2.5 results from the spatially varying coefficient model are presented and 

indicate that intervention effects varied by region. The effect of ITN ownership was protective in 

the regions of North East, West Nile and South Western, whereas that of ITN use was protective 

in Mid-Western. ACT use was protective in Mid-western, North East, and West Nile regions. 
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Table 2.4: Posterior estimates for the effect of environmental, intervention, socio-economic 

factors 

Variable  Parasitaemia 

prevalence (%) 
Model 1

†
  Model 2

††
  

OR (95% BCI) OR (95% BCI) 

Land cover     

Forest  17.8 1.0 1.0 

Crops 27.2 2.12 (1.25, 2.29)* 1.35 (1.17, 1.42)* 

Others  10.0 0.56 (0.39, 0.73)* 0.59 (0.44, 0.71)* 

Land surface temperature (Day)    

<=31.4 11.7 1.0 1.0 

31.4-33.8 19.7 1.98 (1.69, 2.52)* 2.87 (2.42, 3.08)* 

>=33.8 26.6 3.19 (2.83, 3.85)* 1.98 (1.68, 2.01)* 

Land surface temperature (Night) - 1.75 (1.64, 1.82)* 1.25 (1.17, 1.26)* 

Area type     

Urban  6.0 1.0 1.0 

Rural  21.6 6.25 (5.62, 8.60)* 2.06 (1.96, 2.19)* 

Wealth Index    

Poorest  27.7 1.0 

Poorer  21.1 0.86 (0.72, 1.04) 

Middle 20.8 0.77 (0.85, 1.15) 

Richer  11.9 0.52 (0.42, 0.61)* 

Richest  3.3 0.19 (0.14, 0.27)* 

ITN ownership   

Proportion of population with access to an ITN 

in their households 

 0.78 (0.67, 0.89)* 

ITN use   

Proportion of ITNs used the previous night   1.68 (1.52, 1.77)* 

Indoor Residual Spraying    

Not sprayed  21.0 1.0 

Sprayed  5.0  0.22 (0.14, 0.42)* 

Case management   

Proportion of fevers treated with ACTs   1.29 (1.00, 1.38) 

Age (months)   

<=12 9.6 1.0 

13-24 16.1 2.16 (1.85, 2.41)* 

25-36 22.5 3.67 (3.08, 4.16)* 

37-48 23.1 3.54 (2.83, 3.83)* 

49-59 26.0 4.77 (4.47, 5.97)* 

Mother’s education    

None  26.4 1.0 

Primary  17.8 0.85 (0.74, 0.89)* 

Post primary  8.2 0.57 (0.57, 0.67)* 

Variances     

Gaussian process   0.45 (0.40, 0.48) 0.77 (0.62, 0.80) 

Range (km) 52.2 (33.9, 69.5) 47.7 (40.7, 56.4) 
†
Only climatic factors 

††
Intervention + climatic + SES + demographic 

*Statistically important 
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Table 2.5: Posterior median and 95% credible intervals for spatially varying effect of 

interventions on malaria prevalence 

Region  ITN Ownership ITN Use ACTs 

OR (95% BCI) OR (95% BCI) OR (95% BCI) 

Central 1 0.93 (0.69, 1.28) 1.58 (0.85, 1.72) 1.75 (1.42, 2.40) 

Central 2 0.93 (0.70, 1.53) 1.09 (0.73, 2.44) 1.52 (1.19, 1.90) 

East central 1.50 (0.77, 1.86) 0.94 (0.63, 1.11) 2.11 (1.69, 4.25) 

Kampala 1.17 (0.38, 1.25) 1.44 (0.28, 2.26) 1.03 (0.22, 1.67) 

Mid-North 1.16 (0.93, 1.41) 0.92 (0.58, 1.38) 0.36 (0.21, 0.71)* 

Mid-western 1.02 (0.84, 1.73) 0.92 (0.75, 0.98)* 0.91 (0.85, 1.21) 

Mid-eastern 1.09 (1.00, 1.50) 1.13 (0.91, 1.33) 1.39 (0.90, 2.30) 

North East 0.85 (0.73, 0.94)* 0.93 (0.66, 1.09) 0.61 (0.46, 0.68)* 

South Western 0.87 (0.50, 0.98)* 0.98 (0.77, 2.06) 1.85 (1.07, 2.19) 

West Nile 1.44 (1.14, 1.51) 1.01 (0.68, 1.43) 0.45 (0.41, 0.67)* 

Variance Median (95% BCI) Median (95% BCI) Median (95% BCI) 

Spatially varying  3.27 (1.60, 3.92) 2.97 (1.73, 7.61) 1.01 (0.66, 3.22) 

*Statistically important and protective 

 

 

 

Fig 2.2 shows maps of the predicted median malaria prevalence, the 2.5
th

 and 97.5
th

 

percentiles of the posterior predictive distribution. Malaria prevalence varied from as low as 

0.03% to 77.0% with a median of 17.4%. A high prevalence (>20.0%) was predicted for regions 

of East Central, North East, and West Nile, while low prevalence (<5.0%) was predicted for 

Kampala and South Western regions. More so, a low prevalence was predicted for mountainous 

areas of Rwenzori and Elgon located in the Mid-Western and Mid-Eastern regions, respectively. 
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Figure 2.2:  Predicted malaria prevalence in children less than 5 years; median (top), 2.5th 

percentile (bottom left) and 97.5th percentile posterior predictive distribution (bottom 

right) 

The estimated number of children less than 5 years infected with malaria and the 

population adjusted prevalence are shown in Table 2.6. The distribution of infected children in 

the country is presented in Fig 2.3.   
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Figure 2.3: Estimated number of children less than 5 years infected with malaria 

A total of 825,636 (812,316-839,958) children were estimated to have malaria in 2014. 

The regions with the highest estimated number of infected children were; East Central, North 

East, and West Nile. Kampala region had the lowest number of infected children. Population-

adjusted prevalence was 17.6% (95%BCI 17.1%, 17.7%), and varied from 0.9% in Kampala to 

26.0% in West Nile. The map shows the highest concentration of infected children in East 

Central.  

Table 2.6: Estimated number of infected children less than 5 years and population-adjusted 

prevalence 

Region  Observed 

prevalence 

Population of 

under 5 children 

Estimated number of 

infected children  

Population adjusted 

estimated prevalence 

(n/N) n (95%BCI) % (95%BCI) 

North East 32.3 (277/857) 479,691 119,871 (119,872, 125,485) 23.3 (23.1, 23.4) 

West Nile 27.4 (116/423) 414,062 106,377 (100,986, 111769) 25.8 (25.5, 26.0) 

Mid-North 14.8 (111/748) 515,113 98,846 (95,745, 101,948) 20.0 (19.8, 20.2) 

Mid-Western 14.1 (68/482) 660,687 77,027 (74,023, 80,032) 12.9 (12.7, 13.1) 

Mid-Eastern 14.1 (70/498) 524,051 79,734 (76,270, 83,200) 16.8 (16.4, 17.2) 

East Central 38.6 (125/324) 516,382 138,191 (132,283, 144,100) 25.3 (24.8, 25.8) 

Central 2 20.4  (76/373) 596,969 87,562 (83,516, 91,609) 14.4 (14.2, 14.6) 

Central 1 11.2 (34/305) 652,194 58,314 (56,819, 59,208) 10.6 (10.4, 10.8) 

South Western 4.5 (19/425) 752,314 56,819 (55,958, 60,671) 8.8 (8.6, 9.1) 

Kampala 0.0  (0/156) 357,783 2,895 (2313, 3479) 0.9 (0.8, 1.1) 

Overall  19.5 (896/4591) 5,469,245 825,636 (812,316, 838,958) 17.6 (17.1, 17.7) 
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2.4 Discussion 

In this study, we analyzed the Uganda 2014-15 MIS data using Bayesian geostatistical models to 

determine the effect of interventions on the geographical distribution of malaria prevalence in 

children less than 5 years in Uganda and its regions and obtained spatially explicit estimates of 

malaria prevalence burden in this high-risk age group. Indicator variables pertaining to the 

coverage of interventions of IRS, ITNs, and ACTs were calculated from the data using standard 

definitions (World Health Organisation, 2013).  

Bayesian geostatistical models fitted via Markov Chain Monte Carlo simulation methods 

were used to determine the adjusted effect of interventions on malaria prevalence. A 

geostatistical variable selection was used to choose the most important predictors for explaining 

variation in malaria prevalence, and their best functional form to improve model predictive 

ability and efficiency in parameter estimation.  

Land cover, day LST, night LST, and area type were the most important 

environmental/climatic factors. These variables were among the list of climatic factors compiled 

in a systematic audit by Weiss et al, 2015 (Weiss et al., 2015) as important for malaria mapping.  

Also, these findings are similar to results reported from analyses of MIS data in  Nigeria (Adigun 

et al., 2015) and Burkina Faso (Diboulo et al., 2016). 

IRS and ITN ownership had a protective effect against malaria prevalence. Similar results 

were reported by Roberts and Matthews (2016) (Roberts and Matthews, 2016) who analysed the 

Uganda MIS 2014-15 data using a classical generalized linear model. The observed strong effect 

of IRS may be attributed to its effectiveness in killing adult mosquitos as they rest on walls after 

feeding which cuts short their development cycle and thus reduce vector density resulting in 

decreased malaria transmission intensity (WHO, 2006).  However, IRS coverage was low in the 

country with the exception of the Mid-North region where this intervention implemented in 10 

districts.  Bukirwa et al., (2009)  (Bukirwa et al., 2009) have attributed significant reduction of 
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malaria prevalence, morbidity and mortality in this region to IRS intervention. In other regions, 

IRS coverage is still very low (Uganda Bureau of Statistics and ICF International, 2015). The 

low coverage of this intervention has also been reported in other high endemic countries, 

namely, Tanzania (Gosoniu et al., 2012), Burkina Faso (Diboulo et al., 2016), Senegal (Giardina 

et al., 2012), Angola and Mozambique (Giardina et al., 2014). This could be attributed to the 

negative campaign against the use of DDT (Munguambe et al., 2011).   

The protective effect of ITN ownership has been demonstrated in other studies (Giardina 

et al., 2014; Gosoniu et al., 2010; Lengeler, 2004). However, the observed lower effect of ITNs 

compared to IRS is inconsistent with results from other studies which showed that ITNs are a 

more effective and cost-effective tool (Fullman et al., 2013). 

Unexpectedly, study results showed an increase in malaria prevalence with ITN use. This finding 

contradicts findings from other studies that have reported ITN efficacy (Choi et al., 1995; 

Lengeler, 2004; ter Kuile et al., 2003) and effectiveness (Dhimal et al., 2014; O’Meara et al., 

2010; Snow and Marsh, 2010). However, these results are consistent to recent findings for 

Burkina Faso (Diboulo et al., 2016), Nigeria (Adigun et al., 2015), Tanzania (Gosoniu et al., 

2012), and Senegal (Giardina et al., 2012). The lack of protective effect for high ITN use 

coverage could be attributed to human behaviour such as sleeping patterns where the population 

tends to stay longer outdoors at night (Stevenson et al., 2012), inconsistent ITN use especially 

during the dry season (Atieli et al., 2011), incorrect use and/or use of worn out ITNs (Githinji et 

al., 2010), the emerging pyrethroid resistance to insecticides in Uganda (Morgan et al., 2010; 

Ramphul et al., 2009; Verhaeghen et al., 2010), and high ITN use in areas of high malaria 

transmission. 

Furthermore, results showed a lack of effect of ACTs on malaria prevalence unlike in 

other studies that demonstrated that ACTs were associated with a reduction in malaria 

transmission and risk (Bhatt et al., 2015a; Mehta and Pandit, 2016).  However, this finding 
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should be interpreted cautiously because the data for this intervention was based on reported 

fevers which had been treated with any ACTs. This unexpected finding may be due to the fact 

that data for this intervention was based on reported fevers which had been treated with any 

ACTs. However, no data was available to confirm whether the reported fevers were malaria-

related or not (Uganda Bureau of Statistics and ICF International, 2015), yet fevers in young 

children can be caused by several illnesses other than malaria (D’Acremont et al., 2014). A 

similar finding was reported in the Burkina Faso MIS study (Diboulo et al., 2016). 

Environmental conditions were important predictors of malaria prevalence. This finding 

further augments the evidence that the environment is a key driver of malaria transmission 

(Reiner et al., 2015).  Increases in day and night LST were associated with a high malaria 

prevalence. This relationship can be attributed to the fact that warmer temperatures accelerate 

larva stages of mosquito lifecycle (Gullan and Cranston, 2014). Other studies have also arrived 

at the same conclusion (Koita et al., 2012).  

Areas where crops were grown had a higher risk of infection compared to forested areas 

which may indicate the agricultural transformation effect on the ecological landscape which 

results in the creation of suitable breeding habitats for mosquitoes. Similar results have been 

reported by Munga et al., (2016) (Munga et al., 2006). 

Living in rural areas was associated with a higher burden of malaria prevalence compared 

to urban areas. This may be due to the fact that rural areas in Uganda are characterized with 

inadequate health services and poor housing conditions which predispose individuals to higher 

malaria prevalence (Ministry of Finance, 2014; Yeka, 2012). 

Furthermore, older children were at a higher risk of being infected with malaria compared 

to infants. This relationship may be due to the fact that infants are partially protected earlier in 

life by the antibodies from their mothers and passive transfer of the same antibodies through 
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breastfeeding (Dobbs and Dent, 2016; Teo et al., 2016).  Hendriksen et al., (2013) (Hendriksen et 

al., 2013) reported similar findings. 

Social economic status was negatively correlated with malaria risk. Children living in 

wealthier households had a significantly lower malaria risk compared to those living in poorer 

households. This finding is expected because wealthier people are more likely to afford better 

health services and afford adequate housing facilities with screens that block mosquitoes 

resulting in reduced transmission. This finding confirms previous results that showed that 

malaria burden is highly correlated with poverty (Owens, 2015).     

Furthermore, higher mother’s education was associated with reduced malaria prevalence. 

The role of education in disease prevention cannot be overstated. Highly educated mothers in 

addition to being more likely to have better socioeconomic means, are also most likely to have 

knowledge and means to afford malaria preventive measures. This finding is in agreement with 

results reported by Fana et al., (2015)(Fana et al., 2015). However, mother’s education had no 

effect on malaria prevalence in Burkina Faso (Diboulo et al., 2016). 

Results also showed that effects of intervention vary with region - which partially may 

explain wide variations in malaria prevalence among regions in spite of a high coverage of ITN.  

Despite the lack of country-level effect for ITN use, the effect of this intervention is significant 

in the Mid-western region. The varying effects of interventions in different regions may be 

explained by differences in regions with respect to ecological settings, access to health services, 

and socio-economic development which are important drivers of malaria transmission. Similar 

findings were reported in Burkina Faso (Diboulo et al., 2016), Angola, Liberia, Mozambique, 

Rwanda, Senegal, and Tanzania  (Giardina et al., 2014). 

The high malaria prevalence burden predicted for East Central region can be attributed to 

rice growing (Pullan et al., 2010) which is a predominant economic activity in this region. The 

rice paddies in which rice is grown serve as suitable habitats for malaria vector breeding. 
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Similarly, the high parasitaemia burden in the North East and West Nile may be due to a very 

low access to health services (Yeka, 2012) and high poverty levels in these regions (Ministry of 

Finance, 2014). On the other hand, a low malaria burden in Kampala region  (capital city) can be 

attributed to better socio-economic conditions (Ministry of Finance, 2014), reduction in potential 

mosquito breeding sites as swamps are reclaimed for residential houses construction (Mukwaya 

et al., 2010), and a high access to health services (Kiwanuka et al., 2008). In South-western 

region, malaria is low largely due to its location in highlands whose lower temperatures 

negatively affect vector survival (Yeka, 2012). 

The risk map illustrates the contemporary malaria situation in the country and can be 

used for planning, implementation, resource mobilization, monitoring and evaluation of 

interventions in the country. This map differs from that extracted from the 2010 world malaria 

MAP (Gething et al., 2011)  although the outright comparison between these two maps is not 

possible majorly due to differences in malaria metrics estimated and data sources used. The map 

from the current study estimates malaria prevalence in the group of children less than 5 years 

only, whereas the world malaria MAP estimates the burden in the whole population. However, 

the malaria map produced in this study shows considerable shrinkage in malaria burden in 

comparison to results from the first MIS survey of 2009 that showed a high burden of malaria in 

the whole country with the exception of Kampala and highland areas in South Western region 

(Uganda Bureau of Statistics and ICF International, 2010). 

There are some limitations of the current study that should be taken into account when 

interpreting these findings. Firstly, the current study relied on malaria test results from 

microscopy instead of the gold standard molecular method of polymerase chain reaction (PCR) 

which is more sensitive than microscopy. Secondly, prediction using spatial methods for data 

collected from population-weighted sampling designs as the case in MIS may produce imprecise 
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estimates as areas expected to have higher malaria risk are undersampled resulting in higher 

prediction errors (Jacquez, 2004). 

Furthermore, we did not rescale the varying spatial resolutions of the 

environmental/climatic remote sensing proxies to a common scale prior to adding them to the 

models. This may lead to invalid inferences of our study estimates (Gotway and Young, 2002). 

2.5 Conclusions 

This study has demonstrated that IRS and ITN ownership are important interventions against 

malaria prevalence in children less than 5 years in Uganda, but the effects of all intervention vary 

by region. Varying intervention effects across regions indicate that interventions do not have a 

similar effect in different regions. This calls for epidemiological and entomological research in 

the different settings of the regions to determine the best tools suitable for each region. As well 

as scaling up of IRS intervention in areas of high transmission and replacing worn-out  ITNs 

with new ones, the government should further strengthen the health system  especially in rural 

areas, embark on socio-economic transformation programs, and introduce new tools such as 

environmental modification because of the role of these factors on malaria burden in the country.  
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2.6 Appendix 

Statistical modeling details  

Let be a binary outcome variable taking value 1 or 0 if a child i at location sj tested positive 

for malaria.  is assumed to follow a Bernoulli distribution and is related to its 

predictors using a logistic regression model as follows; + wi 

where is the risk of child at location  of having malaria,  is the vector 

of regression coefficients. Employing a geostatistical model formulated in (Cressie, 2015),  

spatial dependence is introduced by  adding location-specific random effects at every sampled 

location sj modeled by a Gaussian process,  where ∑ is the  

variance-covariance matrix and each element is defined by an exponential parametric function of 

the distance  between two location  and , that is, . The parameter  is the 

spatial variation and  is a smoothing parameter that controls the rate of correlation decay with 

increasing distance. For exponential correlation function, the range parameter calculated as 3/  

is an estimate of the minimum distance beyond which spatial correlation is negligible.  Non-

spatial variation is estimated by the random effects wi, assumed independent and normally 

distributed with mean 0 and variance w. Model fit, parameter estimation and prediction was 

done using Bayesian formulation and MCMC estimation. Model specification was completed by 

assigning prior distributions to model parameters. -  An inverse-gamma prior for the variance, a 

gamma distribution for the spatial decay parameter, and non-informative Gaussian distributions 

for regression coefficients with mean 0 and variance 100.  

To identify the best set of predictor variables and their functional form Bayesian variable 

selection was done using Spike and Slab approach (Chammartin et al., 2013). For every predictor

 a categorical indicator parameter  was introduced and indicating exclusion of the 
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predictor from the model ( ), inclusion in linear ( ) or categorical form ( ). 

has a probability mass function  where  are the inclusion probability of functional 

form j (i.e. ) such that  and is the Dirac function, 

. In addition, a spike and slab prior was assumed for the corresponding 

regression coefficient. For the coefficient of the predictor in linear form we take 

 proposing a non-informative prior for in case 

is included in the model in linear form (slab) and an informative normal prior shrinking  

to zero (spike) if is excluded from the model. Similarly, for the coefficient  

corresponding to the categorical form of  with categories, we assume that

. For the inclusion probabilities, we adopt a non-

informative Dirichlet distribution with hyper-parameter
 

that is,
 

.
 For better correlation properties and speed up MCMC 

computational time, continuous covariates were standardized. 

Model parameters were estimated using MCMC simulation (Gibbs sampling). Starting 

with some initial values for the parameters, two chains sampler were run discarding the first 

5000 iterations. Convergence was assessed by Gelman and Rubin diagnostic
 
(Gelman and Rubin, 

1992) and kernel density plots were used to assess for convergence of the chains. 

Estimating the effect of intervention at regional level 

The model above was extended to include intervention coverage effects with spatially varying 

coefficients, that is: , where is the 
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 intervention coverage aggregated over region of the location, is the corresponding 

spatially varying coefficient (i.e. intervention effect at region) and  is the number of 

spatially varying interventions. Gaussian conditional autoregressive (CAR) prior distributions 

were assumed for the , that is where is the global effect of the 

intervention at country level and ,  is a diagonal matrix with elements, the 

sum of the neighbours of each region, is a proximity matrix. 

(a)                                                    (b)                                                    (c)  

   

             

 

         

 

  

   

                             (d)                                       (e)                               (f)  

 

 

 

 

 

 

 

 

Figure 2.4:  Malaria intervention coverage in Uganda in 2014; (a) Prop of HHs with 1 ITN, 

(b) Prop of HHs with 1 ITN for two people, (c) Pop with access to an ITN, (d) Prop who 

slept under an ITN, (e) Prop under 5 slept who under ITN, (f) Prop of fevers with ACTs 
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(a)                                              (b)                                                  (c) 
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Figure 2.5: Distribution of climatic/environmental factors in Uganda in 2014; (a) Altitude, 

(b) Night LST, (c) Day LST, (d) Rainfall, (e) NDVI, (f) Distance to water bodies 
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Abstract  

Background 

In Uganda, malaria vector control interventions and case management with Artemisinin 

Combination Therapies (ACTs) have been scaled up over the last few years as a result of 

increased funding. Data on parasitaemia prevalence among children less than 5 years old and 

coverage of interventions was collected during the first two Malaria Indicator Surveys (MIS) 

conducted in 2009 and 2014, respectively. In this study, we quantify the effects of control 

interventions on parasitaemia risk changes between the two MIS in a spatio-temporal analysis.  

Methods 

Bayesian geostatistical and temporal models were fitted on the MIS data of 2009 and 2014. The 

models took into account geographical misalignment in the locations of the two surveys and 

adjusted for climatic changes and socio-economic differentials. Parasitaemia risk was predicted 

over a 2  2 km
2
 grid and the number of infected children less than 5 years old was estimated. 

Geostatistical variable selection was applied to identify the most important ITN coverage 

indicators. A spatially varying coefficient model was used to estimate intervention effects at a 

sub-national level. 

Results 

The coverage of Insecticide Treated Nets (ITNs) and ACTs more than doubled at country and 

sub-national levels during the period 2009–2014. The coverage of Indoor Residual Spraying 

(IRS) remained static at all levels. ITNs, IRS, and ACTs were associated with a reduction in 

parasitaemia odds of 19% (95% BCI: 18–29%), 78% (95% BCI: 67–84%), and 34% (95% BCI: 

28–66%), respectively. Intervention effects varied with region. Higher socioeconomic status and 

living in urban areas were associated with parasitaemia odds reduction of 46% (95% BCI: 0.51–

0.57) and 57% (95% BCI: 0.40–0.53), respectively. The probability of parasitaemia risk decline 

in the country was 85% and varied from 70% in the North-East region to 100% in Kampala 
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region. The estimated number of children infected with malaria declined from 2,480,373 in 2009 

to 825,636 in 2014.    

Conclusions 

Interventions have had a strong effect on the decline of parasitaemia risk in Uganda during 

2009–2014, albeit with varying magnitude in the regions. This success should be sustained by 

optimizing ITN coverage to achieve universal coverage.  

Keywords: Malaria, Malaria indicator survey, Spatio-temporal, Parasitaemia, ITNs, IRS, ACTs, 

Spatially varying, Bayesian kriging, Malaria interventions 
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3.1 Introduction 

Although malaria is still a leading global health problem, its burden has been on a decline in 

recent years (World Health Organization, 2016). This decline which started in the early 1990s 

prior to the global campaign of scaling up of control interventions in mid-2000s continued 

through the post-scale-up period (Snow et al., 2015). The downward trend of malaria burden in 

the pre-intervention period notwithstanding, sufficient evidence from randomized trials and field 

settings indicate that malaria decline during the post-scale-up period has been unprecedented 

(Bhatt et al., 2015a; Bhattarai et al., 2007; Lengeler, 2004; Snow et al., 2015). For instance in 

sub-Saharan Africa (SSA), parasitaemia prevalence declined from 17% in 2010 to 13%  in 2015 

(World Health Organization, 2016). Also, during the period 2000-2015, declines in global 

malaria incidence and deaths of up to 37% and 60%, respectively were reported (Bhatt et al., 

2015a; WHO and UNICEF, 2015). These declines were mainly attributed to the impact of 

Insecticide Treated Nets (ITNs) and malaria case management with Artemisinin Combination 

Therapies (ACTs). 

In spite of these higher declines in malaria at the global level, slower declines were 

reported in the 15 most high burden countries, the majority of which are situated in SSA(World 

Health Organization, 2015a).  This region bears the heaviest burden and accounts for an 

estimated 90% of all malaria deaths mainly among children less than 5 years. Uganda is ranked 

fourth among these high malaria burden countries and has some of the highest malaria 

transmission rates in the world (President’s Malaria Initiative, 2017).  

Since 2006, Roll Back Malaria (RBM) has funded malaria control and prevention 

activities in the country and periodically supports the conducting of Malaria Indicator Surveys 

(MIS) (National Malaria Control Program, 2016).  The MIS are standardized nationally 

representative surveys that collect high-quality data for estimating the prevalence of parasitaemia 

risk in children less than 5 years and track the progress of interventions coverage. To date, two 
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MIS have been conducted in Uganda; MIS 2009 and MIS 2014-15 (Uganda Bureau of Statistics 

and ICF International, 2015, 2010).   Findings from the first MIS revealed a high parasitaemia 

risk in most regions. Malaria was hyperendemic (prevalence 50%-75%) in three regions, 

mesoendemic (prevalence 10%-50%) in six, and only hypoendemic (prevalence <10%) in one 

region (Uganda Bureau of Statistics and ICF International, 2010).  Results of the second MIS 

showed tremendous improvement in the coverage of ITNs and ACTs intervention at all levels 

and a reduction of parasitaemia risk of 50%. Additionally, parasitaemia risk in the majority of 

regions had declined to mesoendemic and hypoendemic proportions (Uganda Bureau of 

Statistics and ICF International, 2015). The true effect of each intervention on parasitaemia 

reduction is not known at national and sub-national level, and yet a new framework has been 

adopted by the Ministry of Health (MoH) to speed up malaria control efforts. In this framework 

known as  Uganda Malaria Reduction Strategic Plan (UMRSP) 2014-2020, ambitious targets 

have been set to reduce malaria mortality to near zero, morbidity to 30 cases per 1,000 

population, and parasite prevalence to less than 7% (National Malaria Control Program, 2016).  

To achieve these targets and ensure efficient use of scarce resources and effective programming 

and implementation, it is vital to understand the effect that each intervention has had on 

parasitaemia risk decline.   

Declines in malaria parasitaemia risk, morbidity and mortality have been achieved in 

other malaria-endemic countries following scaling up of control interventions. Bhat et al., 2015 

(Bhatt et al., 2015a) reported a  reduction of 50% in Plasmodium falciparum prevalence and 40% 

in the incidence of clinical disease in endemic African countries between 2000 and 2015.  

Similarly, the number of malaria cases and deaths decreased by more than 50% in southern 

African countries after introducing interventions during 2000-2008 (O’Meara et al., 2010). In the 

Kilifi district of Kenya, parasitaemia prevalence declined from 35% to 1% after a mass 

distribution of ITNs and ACTs (O’Meara et al., 2010). Also, Giardina et al., (2014) (Giardina et 
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al., 2014) demonstrated that ITNs and IRS were significantly associated with  parasitaemia risk 

reduction in Rwanda, Tanzania, Senegal, Angola, Liberia and Mozambique.   

Our study aims to estimate spatio-temporal trends of parasitaemia risk changes among 

children less than 5 years in Uganda during 2009–2014, and to determine the effect of 

interventions on parasitaemia risk decline at national and subnational levels. We analyzed MIS 

data using Bayesian spatio-temporal geostatistical models. The results from this study provide 

insight on the effectiveness of interventions and can be used by MoH and Malaria Control 

Program (MCP) to evaluate interventions and optimize resources for the achievement of 

objectives of UMRSP 2014-2020. 

3.2 Methods 

3.2.1 Country profile 

Uganda is located in the great lakes region in East Africa neighboring Kenya, Tanzania, Rwanda, 

Democratic Republic of Congo, and South Sudan. It has a population of 37.1 million, all of 

which are at risk of malaria. Malaria is the leading cause of morbidity and mortality in the 

country, accounting for 3,631,939 (4,400,000 – 12,000,000) cases and 5,921 (5,300 – 17,000) 

deaths in 2015 (WHO, 2015). The most dominant malaria parasite is Plasmodium falciparum, 

and the major transmission vectors are Anopheles gambiae and Anopheles funestus. In recent 

times, vector resistance to both pyrethroid and carbamates has been reported. 

3.2.2 Data sources 

Parasitological and interventions data were obtained from the MIS data of 2009 and 2014-15. 

The two surveys were conducted at the peak of a high malaria transmission season towards the 

end of the long rainy season (December 2009 and December 2014-January 2015, respectively). 

The MIS are nationally representative surveys which employ a two-stage stratified cluster 

design. The clusters also known as census enumeration areas are selected at first stage with 

probability-proportional-to-size sampling, and households are selected at second stage using 

systematic sampling. The surveys are designed to provide information on key malaria control 
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indicators, such as the proportion of households having at least one ITN, the proportion of 

children under 5 who slept under an ITN the previous night. Also, the survey is designed to 

produce representative key indicator estimates key for urban and rural strata separately, as well 

as for the ten regions that constitute the country. The regions are; Kampala, Central 1, Central 2, 

East Central, Mid North, Mid-Western, Mid-western, North East, South Western and West Nile. 

At the first stage of sampling, 170 and 210 clusters were selected in 2009 and 2014, respectively.  

At the second stage, 28 households were selected from each cluster in both surveys resulting in a 

total of 4,000 and 5,880 households selected in the first and second survey, respectively (Uganda 

Bureau of Statistics and ICF International, 2015, 2010). 

Coverage of ITNs was defined in terms of ownership and use indicators that were generated 

from data captured on the survey tools using standard definitions (World Health Organisation, 

2013). The following ITN ownership indicators were defined; the proportion of households with 

at least one ITN, the proportion of households with one ITN for every two people, and the 

proportion of population with access to an ITN within their household. The ITN use indicators 

were; the proportion of children less than 5 years who slept under an ITN, the proportion of 

population that slept under an ITN, and the proportion of ITNs used the night preceding the 

survey.  IRS coverage was defined as the proportion of households that were sprayed during the 

last 12 and 6 months in the MIS 2009 and MIS 2014-15, respectively. The wealth index derived 

from household possessions was used as a socioeconomic proxy.  A case management indicator 

was defined as the proportion of fever episodes in children of less than 5 years during the last 

two weeks preceding the survey which were treated with any Artemisinin Combination 

Therapies (ACTs). In addition, information on the location of the cluster (i.e. rural/urban) was 

obtained from survey data and from the Global Rural-Urban Mapping Project (GRUMP) 

database (“Global Rural-Urban Mapping Project (GRUMP), v1 | SEDAC,” 2017) . The GRUMP 

database provides gridded data at 1km
2
 spatial resolution.  
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Malaria transmission depends on the environment which affects the disease distribution, 

seasonality, and transmission intensity. Environmental/ climatic factors were extracted from 

Remote Sensing (RS) sources. Weekly day and night Land Surface Temperature (LST), bi-

weekly Normalized Difference Vegetation Index (NDVI) and land cover data were obtained 

from Moderate Resolution Imaging Spectroradiometer (MODIS) at 1 km
2
 spatial resolution. 

Dekadal rainfall data at 8x8 km
2
 resolution were extracted from the US Early Warning and 

Environmental Monitoring System (EWES). Altitude was obtained from the shuttle radar 

topographic mission using the digital elevation model. Also, distances from cluster centroid to 

major water bodies were estimated using ESRI’s ArcGIS 10.2.1 for Desktop. The high spatial 

resolution population data was downloaded from WorldPop (Worldpop dataset download, 2016). 

Data from remote sensing sources was acquired for the 12 month period preceding the 

survey and the average (cumulative value for rainfall) was calculated and extracted for each 

cluster. The one-year period was considered long enough to capture the actual climatic 

conditions that affected malaria transmission throughout the year of the survey.  

3.2.3 Statistical analysis 

Bayesian geostatistical models were developed to predict parasitaemia risk at the two survey 

time points using environmental/climatic factors as predictors. Bayesian kriging was applied to 

obtain parasitaemia risk estimates over a 2x2 km
2
 resolution grid. Predictions were used to 

determine the probability of parasitaemia risk reduction between the two surveys.  

The number of children infected with malaria in the two surveys was estimated by 

combining high spatial resolution population data obtained from WorldPop (www.worldpop.org) 

with the predicted pixel-level malaria prevalence estimates. The number of children less than 5 

years was estimated by multiplying population counts by a factor of 17.7%,  the proportion of 

the population under 5 years (Uganda Bureau of Statistics, 2016). Regional estimates of the 

number of infected children were computed by aggregating pixel-level estimates at the regional 

level. The number of infected children per pixel was obtained by multiplying pixel-wise spatially 
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explicit prevalence estimates with high spatial resolution population estimates of the number of 

children less than 5 years. In both surveys, the population-adjusted prevalence was estimated by 

summing up estimates of the number of infected children per pixel divided by the total estimated 

number of children less than 5 years. 

The effects of interventions were estimated by modeling the change of parasitaemia risk 

between the two surveys on the logit scale as a function of the effect of intervention coverage at 

the second survey adjusted for socioeconomic status, cluster location, and the difference in 

environmental/climatic factors. Geographical misalignment of the locations between the two 

surveys was carried out by predicting parasitaemia risk of the first survey at the second survey 

locations. The prediction uncertainty was incorporated by fitting an error term in the model. A 

spatially varying coefficients model was used to estimate intervention effects at regional level 

and to account for potential interactions of interventions with endemicity level.  

A spike and slab geostatistical Bayesian variable selection procedure was applied to 

select the most important ITN and environmental predictors that explain maximum variation in 

the change in parasitaemia risk between 2009 and 2014 (Chammartin et al., 2013). Variables 

with the highest inclusion probability in the model were selected. 

Descriptive analyses were carried out in STATA (StataCorp. 2015. Stata Statistical 

Software: Release 14. College Station, TX: StataCorp LP). Geostatistical modeling was 

implemented in OpenBUGS version 3.2.3 (Lunn et al., 2000). Since implementing Bayesian 

kriging in OpenBUGS is very slow especially for large grids, we implemented it in R statistical 

software using posterior estimates of the model parameters obtained from OpenBUGS.  Maps 

were produced in ESRI’s ArcGIS 10.2.1 (http://www.esri.com/). 

Parameter estimates were summarized by their posterior medians and their corresponding 

95% Bayesian Credible Intervals (BCI). The effect of a predictor was considered to be 

statistically important if its 95%BCI did not include zero. 

Detailed explanations of the fitted statistical models are presented in the Appendix. 
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3.3 Results  

3.3.1 Descriptive results 

A summary of the survey data is given in Tables 1 and 2, and maps of survey locations are 

presented in Figures 3.1 and 3.2.  A higher number of clusters, households, and children were 

tested in the second survey (Table 3.1). 

Table 3.1 Survey information and malaria intervention coverage indicators in 2009 and 

2014 

Indicator  MIS 2009 MIS 2014–2015 

Number of clusters 170 210 

Number of households 4,421 5,345 

Number of children tested  3,972 4,939 

Interventions  % (95%CI) % (95%CI) 

Parasitaemia prevalence  42.4 (37.7–47.0) 19.0 (16.3–21.8) 

Proportion of households with at least one ITN 46.7 (42.7–50.6) 90.2 (88.7–91.7) 

Proportion of households with at least one ITN for every 

two people 

16.4 (14.2–18.5) 62.3 (60.1–64.5) 

Proportion of population with access to an ITN in their 

household 

32.2 (29.3–35.1) 80.6 (78.9–82.4) 

Proportion of the population that slept under an ITN the 

previous night 

26.3 (23.5–29.2) 70.8 (68.9–72.8) 

Proportion of children less than 5 years old who slept 

under an ITN the previous night 

32.9 (29.0–36.9) 74.5 (72.2–76.9) 

Proportion of existing ITNs used the previous night 26.1 (23.3–28.9) 70.4 (68.5–72.4) 

Proportion of households sprayed in the last 6 months 5.5 (3.0–7.9) 5.2 (3.4–6.9) 

Proportion of households with at least one ITN and/or 

sprayed by IRS in the last 12 months 

49.2 (45.3–53.1) 90.5 (89.0–92.0) 

Proportion of fever episodes treated with ACT 23.3 (19.9–26.7) 66.8 (63.2–70.5) 
Abbreviations: MIS, Malaria Indicator Survey; TNs, Insecticide Treated Nets; ACTs, Artemisinin Combination Therapies; IRS, 

Indoor Residual Spraying 

            (a)       (b) 

 

 

 

 

 

 

 

 

Figure 3.1: Observed malaria prevalence and survey locations of MIS 2009 (a) and MIS 

2014–15 (b)
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Table 3.2: Coverage of malaria intervention coverage indicators by region in 2009 and 2014 

Indicator Central 1 Central 2 Kampala  East-Central  Mid-Eastern  North-East Mid-North West Nile Mid-Western South-Western 

2009 2014 2009 2014 2009 2014 2009 2014 2009 2014 2009 2014 2009 2014 2009 2014 2009 2014 2009 2014 

Parasitaemia prevalence  39.0 10.4 51.0 23.6 4.9 0.4 56.2 36.4 37.4 13.5 39.7 27.2 62.1 19.5 45.6 27.5 42.7 17.5 11.8 4.1 

Proportion of households 
with at least one ITN 

35.3 80.8 23.5 81.6 49.1 86.3 33.5 82.1 59.5 94.6 76.6 97.0 63.7 94.3 52.4 96.3 33.9 93.6 33.7 96.9 
 

Proportion of households 

with at least one ITN for 

every two people 

14.6 56.7 9.3 53.4 32.4 66.5 7.8 46.7 17.0 61.7 33.1 60.6 20.1 66.7 12.8 72.1 12.1 64.0 14.7 76.6 

Proportion of population 

with access to an ITN  

25.4 71.8 16.4 70.8 42.4 79.2 21.6 68.7 37.1 83.7 57.0 84.2 43.7 85.8 33.0 88.8 23.0 83.7 30.0 91.1 

Proportion of the 

population that slept 
under an ITN  

19.1 60.1 10.3 58.6 36.9 73.0 18.7 62.8 31.4 76.3 54.3 85.5 32.1 77.6 33.1 77.7 17.0 78.6 22.6 67.0 

Proportion of children 

less than 5 years old who 
slept under an ITN  

21.5 67.6 11.3 65.3 42.5 73.9 19.3 69.7 41.4 78.8 65.1 87.0 41.7 79.0 37.2 76.8 20.4 82.3 33.1 64.4 

Proportion of existing 

ITNs used the previous 

night 

19.1 59.6 10.3 58.5 36.7 72.7 18.7 62.6 31.1 75.9 52.5 84.3 32.0 77.1 32.9 77.0 16.8 78.5 22.6 66.6 

Proportion of households  

sprayed  

0.2 1.0 4.6 0.4 5.5 1.3 0.4 0.0 0.6 0.4 4.2 0.1 31.6 44.6 0.0 1.2 0.2 0.3 1.8 0.0 

Proportion of households 

with at least one ITN 

and/or sprayed by IRS in 

the last 12 months 

35.3 80.8 26.3 81.9 52.3 86.3 33.8 82.1 59.6 94.6 77.1 97.0 77.8 97.2 52.4 96.3 34.1 93.6 44.7 96.9 

Proportion of fever 
episodes treated with any 

artemisin combination 

therapy 

17.4 55.2 18.0 71.7 22.5 51.5 13.4 71.1 16.6 68.0 25.1 73.3 40.8 69.2 27.7 67.0 19.4 61.1 10.0 53.3 
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Results show that at country level parasitaemia prevalence declined from 42.4% in 

2009 to 19.0% in 2014, a decline of 50%. At the regional level, the highest malaria reduction 

was observed in the regions of Kampala (91.8%), Central 1 (74.0%) and Mid-North (68.6%), 

and the lowest in North East (30.2%) and East Central region (35.2%). 

Generally, interventions coverage increased at country and regional levels (Appendix). 

At the country level, ITN ownership (the proportion of households with at least one ITN and 

the proportion of households with at least one ITN for every two people) increased by four-

fold. Among regions, the biggest increase in ITN ownership was reported in East Central (six-

fold), while the smallest was observed in Mid-North (two-fold). More so, the proportion of 

children less than 5 years that slept under an ITN increased by more than two times at country 

level. The improvement in this indicator coverage was highest in Central 2 region (5.8 times) 

and lowest in North East (1.3 times).  

Overall, the proportion of fever episodes treated with ACTs increased by three times. 

The highest increase was achieved in South Western, East Central and West Nile regions 

where coverage increased by more than five times. The least gain in ACTs coverage was 

observed in Mid North region where it increased by almost two times. The national IRS 

coverage remained static at 5% except in the Mid North region where an increase of 41% was 

achieved.  

3.3.2 Spatio-temporal trends of parasitaemia risk during 2009 - 2014 

The effects of the most important environmental factors identified through geostatistical 

variable selection are shown in Table 3.3. Results indicate that more environmental factors 

were related to parasitaemia risk in 2009 compared to 2014. Also, the spatial correlation was 

stronger in 2009.  

Figure 3.2 depicts the predicted parasitaemia risk for 2009 and 2014 based on 

environmental/climatic factors over a 2x2 km
2
 resolution grid. Estimates suggest a high 

parasitaemia risk in 2009 where in some areas the predicted prevalence was over 80%.  
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In 2014, parasitaemia risk was much lower in most parts of the country except in some areas 

of the East Central, North East, and West Nile regions where the burden still remained high.  

Table 3.3: Posterior estimates of the effect of environmental factors on parasitaemia risk 

in 2009 and 2014 

Predictor  MIS 2009 MIS 2014-15 

OR (95%BCI) OR (95%BCI) 

Day LST
a
   

< 27.84 / < 31.4 1 1 

27.84–30.18 / 31.4–33.8 1.68 (1.44–2.14)* 2.75 (2.03–3.64)* 

> = 30.19 / > = 33.8 1.41 (1.28–1.76)* 2.19 (1.79–3.39)* 

Night LST  1.55 (1.39–1.67)* 1.44 (1.19–1.60)* 

Area type    

Rural vs urban 7.80 (4.88–11.09)* 3.70 (2.56–4.88)* 

NDVI 1.25 (1.10–1.51)*  

Rainfall
a
  

< 17.11 / < 17.14 1 

17.11–18.49 / 17.14–18.79 1.13 (0.93–1.23) 

> = 18.50 / > = 18.79 1.39 (1.12–1.49)* 

Altitude
a
  

< 1098 1 

1098–1201 0.89 (0.81–0.95)* 

> = 1202 0.43 (0.38–0.47)* 

Land cover    

Others  1 

Crops 1.19 (1.13–1.43)* 

Spatial parameters   

Spatial variance 1.12 (0.99–1.20) 0.54 (0.49–0.59) 

Range (km) 43.3 (12.2–57.8) 43.8 (36.3–48.2) 

*Statistically important effect 

a
Cut-offs before and after the slash (/) are for 2009 and 2014 respectively 
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Figure 3.2: Predicted parasitaemia risk in 2009 and 2014. 2.5th percentile posterior 

predictive distribution (a), median posterior predictive distribution (b), 97.5th percentile 

posterior predictive distribution (c) 
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The probability of parasitaemia decline in the country was 85%. The highest decline in 

malaria occurred in the regions of Central 2 and Kampala while the least was estimated in the 

North East region (Figure 3.3).  

 

 

 

 

 

 

 

 

 

Figure 3.3: Probability of parasitaemia risk decline from 2009 to 2014 

 

           Overall, the number of infected children reduced from over 2,480,000 to less than 

830,000 between 2009 and 2014 (Table 3.4). This translates into a reduction of over 66%. 

Reduction in the estimated number of infected children was achieved in all regions. 
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Table 3.4: Estimated number of infected children and population adjusted prevalence in 

2009 and 2014 

Region No. of 

infected 

children in 

2009 

No. of 

infected 

children in 

2014 

Percentage 

reduction 

in no. of 

infected 

children  

Population 

adjusted 

prevalence in 

2009 

Population 

adjusted 

prevalence in 

2014 

Population 

adjusted 

prevalence 

difference 

(%) % (95% BCI) % (95% BCI) (%) 

North-East 212,159 119,871 43.5 37.6 (37.4–37.8) 23.3 (23.1–23.4) 14.3 

West Nile 276,237 106,377 61.5 56.8 (56.4–57.2) 25.8 (25.5–26.0) 31.0 

Mid-North 332,162 98,846 70.2 52.4 (52.2–52.5) 20.0 (19.8–20.2) 32.4 

Mid-Western 269,487 77,027 71.4 39.6 (39.3–39.9) 12.9 (12.7–13.1) 26.7 

Mid-Eastern 274,376 79,734 70.9 46.3 (45.6–47.1) 16.8 (16.4–17.2) 29.5 

East-Central 375,575 138,191 63.2 64.7 (64.3–65.1) 25.3 (24.8–25.8) 39.4 

Central 2 338,097 87,562 74.1 50.1 (49.8–50.3) 14.4 (14.2–14.6) 35.7 

Central 1 232,426 58,314 74.9 38.2 (37.8–38.6) 10.6 (10.4–10.8) 27.6 

South-Western 148,799 56,819 61.7 22.2 (22.0–22.5) 8.8 (8.6–9.1) 13.4 

Kampala 21,060 2,895 86.3 5.9 (5.2–6.5) 0.9 (0.8–1.1) 5.0 

Overall 2,480,373 825,636 66.7 44.0 (43.9–44.2) 17.7 (17.6–17.7) 26.3 

             

 

             The biggest reduction occurred in Kampala (86%), Central 1 (75%), Central 2 (74%), 

Mid-Eastern (71%) and Mid North region (70%), whereas the least happened in North East 

(44%). In both surveys, the highest and lowest numbers of infected children were estimated in 

the East Central and Kampala regions, respectively.  

Overall, a reduction in population adjusted-prevalence of over 26% was achieved. The 

highest reduction (39.4%) was observed in East Central while the least one (5.0%) was 

registered in Kampala.  

Figure 3.4 further shows that the number of infected children in 2014 shrank 

considerably compared to 2009 in all regions except in the East Central region. The map also 

depicts a strong statistically important reduction in the concentration of infected children in 

Mid North region in 2014. 
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(a)      (b) 

 

 

 

 

 

 

 

 

 

Figure 3.4: Distribution of estimated number of infected children per pixel in 2009 (a) 

and 2014 (b) 

 

Results from geostatistical variable selection (Table 3.5) indicate that the proportion of the 

population with access to an ITN in their household was the only indicator able to capture the 

effect of ITN interventions as it has the highest inclusion probability. This indicator was used 

to quantify the effect of ITNs on the parasitaemia odds change.  

Table 3.5: Posterior inclusion probability for ITN coverage indicator for MIS 2014 

Indicator  Probability of inclusion 

(%) 

Proportion of households with at least one ITN  5.8 

Proportion of households with at least one ITN for every two people  6.1 

Proportion of population with access to an ITN in their household  42.7 

Proportion of the population that slept under an ITN the previous night  4.7 

Proportion of children under five years old who slept under an ITN the 

previous night  

12.3 

Proportion of existing ITNs used the previous night  0.2 

Abbreviations: MIS, Malaria Indicator Survey; ITN, Insecticide Treated Net 

 

3.3.3 Effects of interventions on parasitaemia odds decline  

The effects of interventions on the change of parasitaemia odds adjusted for socioeconomic 

status and changes in environmental conditions between the two surveys are shown in Table 
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3.6. Results demonstrate an important protective effect of interventions on the decrease of 

parasitaemia odds from 2009 to 2014. ITNs, IRS and ACTs were associated with a 

parasitaemia odds reduction of 19% (95%BCI: 18%-29%), 78% (95% BCI: 67%-84%), and 

34% (95%BCI: 28%-66%), respectively.   

Similarly, higher socio-economic status had a strong effect on parasitaemia odds 

reduction. More so, living in urban areas was associated with a decrease in malaria odds of 

57% (95%BCI: 47-60%) compared to living in rural areas. 

On average, rainfall, day and night LST increased from 2009 to 2014, and these increases 

were significantly associated with increased parasitaemia odds. However, changes in the 

NDVI had no effect on changes in parasitaemia odds. 

 

Table 3.6: Posterior estimates for the effect of interventions adjusted for socio-economic 

status and changes in climatic/environmental conditions 

Covariate OR (95% BCI)  

Difference in LST (day) 1.10 (1.02–1.13)* 

Difference in LST (night) 1.09 (1.03–1.18)* 

Difference in NDVI 1.00 (0.94–1.08) 

Difference in rainfall 1.14 (1.08–1.23)* 

Area type (urban vs rural) 0.43 (0.40–0.53)* 

Wealth index 0.54 (0.51–0.57)* 

ITN 0.81 (0.71–0.82)* 

IRS 0.22 (0.16–0.33)* 

ACTs 0.66 (0.34–0.72)* 

Spatial variance 0.63 (0.56–0.76) 

Range (km) 35.4 (24.3–37.0) 

*Statistically important effect 

 

Intervention effects on parasitaemia odds decline varied by region (Figure 3.5). The 

effect of ITNs at regional level was significantly higher than the national effect in Mid-North 

and West Nile. ITNs’ effects were significantly lower in East Central, Mid-Eastern, Mid-

Western, and South western. Likewise, the effect of ACTs was significantly higher than the 

national average in most regions except in Central 1, Mid North, Mid-Western, and West 

Nile.   
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                      (a)       (b) 

 

 

 

 

 

 

 

  * Statistically important effect higher than national effect  

   † Statistically important effect less than national effect  

 

Figure 3. 5: Spatially varying effects of interventions for ITNs (a) and ACTs (b) 
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3.4 Discussion 

In this study, we have determined the spatio-temporal trends of parasitaemia odds and the 

effect of control interventions on the change of parasitaemia risk in Uganda during 2009-

2014.  Furthermore, we estimated the probability of parasitaemia risk decline and the number 

of infected children at the two survey time points.   

Our study results showed a strong ITNs effect on parasitaemia risk reduction during 

2009-2014 following a two-fold increase in coverage in the five years. These results support 

findings in similar malaria-endemic settings (Bhatt et al., 2015a). This protective effect can be 

attributed to the physical barrier  provided by ITNs to block mosquitoes from infecting 

humans with Plasmodium sporozoites, thus preventing parasites from completing their 

development cycle (Bueno-Mari and Jimenez-Peydro, 2010). Also, the insecticide in ITNs  

reduce the lifespan of vectors when they come into contact, thus decreasing the chances of 

transmission (WHO and UNICEF, 2015). Furthermore, the high coverage and utilization 

registered in the country may have achieved a ‘mass effect’ that reduces the mosquito 

population and thus protects people in communities who are not using ITNs but live in close 

proximity to households with ITNs (Louis et al., 2012; Maxwell et al., 2002).  

The high increase in ITNs coverage can be credited to increased donor support that 

funded ITNs purchase and distribution through effective distribution outreach channels 

(National Malaria Control Program, 2016). These channels include mass distribution 

campaigns, antenatal care clinics, Expanded Program for Immunization (EPI), and 

commercial sale of subsidized ITNs through the private sector. These distribution channels 

have had an immediate success of raising the proportion of households possessing at least one 

ITN from less than 50% to more than 90%. In spite of the high ITN coverage across the 

country, ITN effects on parasitaemia odds reduction varied with region. Effects were highest 

in regions which were initially the highest burdened in 2009. The varying effects of 
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interventions could be explained by regional heterogeneities in malaria transmission rates 

(Okello et al., 2006b), ecology, and access to health services (Yeka, 2012).  

Furthermore, case management with ACTs was strongly associated with parasitaemia 

risk reduction following a three-fold increase in coverage during the study period. Prompt 

treatment of malaria with ACTs suppresses and kills malaria parasites in the body which 

prevents progression to severe disease, thus reducing transmission and subsequently 

parasitaemia load in the population (Baird, 2008). In line with our study findings, Bhat et al., 

2015 (Bhatt et al., 2015a) also found that ACTs together with ITNs were the most impactful 

interventions on malaria risk reduction in African endemic countries during 2000-2015. Also, 

effects of ACTs also varied with region. However, despite the two-fold increase in ACTs 

coverage in the five years, its coverage was still lower than targeted. This could possibly be 

attributed to supply chain constraints (Kiwanuka et al., 2008), the semi-regulated private 

health facilities and drug stores and the inadequate laboratory diagnostic capacity in most of 

the lower level facilities (National Malaria Control Program, 2016).   

Indoor residual house spraying also had a very strong effect on parasitaemia odds 

reduction despite its coverage remaining static between 2009 and 2014. The endophilic 

behavior of the predominant anopheles mosquito makes this intervention highly effective in 

Uganda as vectors are killed by the insecticide as they rest on house walls after taking a blood 

meal (Becker et al., 2010). The static coverage is perhaps explained by the high costs involved 

in IRS implementation. This prompted NMCP to roll out IRS gradually initially starting in 

2009 with the 10 most high malaria burden districts located in the Mid-North region (National 

Malaria Control Program, 2016). Following a significant reduction in malaria transmission in 

the 10 districts (Bukirwa et al., 2009), IRS was later extended to another 14 high burden 

districts in the North East, Mid-Eastern, and East Central regions. The effectiveness of IRS on 

malaria risk reduction has been reported in other studies in Uganda (Bukirwa et al., 2009), 
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Kenya (Zhou et al., 2010), Bioko, Equatorial Guinea, and Mozambique (Kleinschmidt et al., 

2009). 

Our results further showed that urban areas were associated with a decreased 

parasitaemia risk compared to rural areas. This could be explained by uneven access to 

healthcare services between urban and rural areas in developing countries (Dolea, 2010). In 

Uganda, lower level health facilities which are the major source of health services in rural 

areas are poorly equipped and understaffed (Pariyo et al., 2009). On the other hand, urban 

areas are served by a much bigger network of better equipped higher level facilities both 

public and private.  Indeed urbanization is one of the reasons that has been suggested as a 

strong possible causal factor of the downward trend of malaria risk in the pre-intervention 

period (Tatem et al., 2013). This has been attributed to the effect of urbanization on socio-

economic and landscape changes which mitigates the risk of malaria transmission.  The 

inverse relationship between urbanization and malaria risk has also been reported in other 

malaria-endemic settings (Omumbo et al., 2005; Ramroth et al., 2009; Tatem et al., 2013; 

Wang et al., 2005). 

Higher socioeconomic status was strongly associated with parasitaemia odds 

reduction. Related to this finding, our results also showed that the highest probability of 

parasitaemia decline was attained in Kampala region and the lowest in the North East. The 

former is the capital city and the most developed region, while the latter is the least developed 

and most hard-to-reach region in Uganda. Socio-economic status affects the ability to afford 

healthcare services, better housing conditions, and knowledge of malaria prevention (Yadav et 

al., 2014) -  which are important determinants of severity and outcome of the disease. These 

results are in agreement with other studies that reported a higher burden of malaria among 

poor countries (Snow and Marsh, 2010) [135]and in hard-to-reach areas (WHO and UNICEF, 

2015). This finding augments evidence that malaria is a disease associated with poverty 

(Sachs, 2002; Tanner and de Savigny, 2008) and low socio-economic development (Feachem 
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and Sabot, 2008; Greenwood et al., 2008; Protopopoff et al., 2009; Tanner and de Savigny, 

2008).  

Furthermore, increased land surface temperature and rainfall between 2009 and 2014 

were associated with a higher parasitaemia risk. This result is expected since malaria is a 

vector-borne disease sensitive to changes in climatic conditions (Snow et al., 2015). 

Temperature influences the speed of development of mosquitoes and Plasmodium parasites 

(Gullan and Cranston, 2014). Rainfall is the most important driver of mosquito population 

dynamics and malaria transmission because it provides the optimal humidity and medium for 

mosquito fertilization and breeding (Githeko and Ndegwa, 2001a; Kynast-Wolf et al., 2006).     

Although a reduction in parasitaemia risk was achieved in all regions, nevertheless, 

parasitaemia risk was still high in the regions of North East, West Nile, and East Central 

compared to other regions. This disproportionately high risk in these regions in spite of the 

high intervention coverage might be attributed to low socio-economic development (Ministry 

of Finance, 2014), and limited access to health services (Yeka, 2012). In the case of East 

Central region, rice growing practiced in this region has been documented as a potential driver 

of malaria risk transmission due to the large swamps that provide a favorable habitat for 

mosquito breeding (Pullan et al., 2010). Similarly, other studies have reported a higher 

malaria risk in settings with low socio-economic status (Protopopoff et al., 2009), poor access 

to health services (Tanner and de Savigny, 2008), and rice paddies (Diboulo et al., 2016). 

  The strong reduction in the estimated number malaria-infected children may also 

underline the effect of increases in interventions coverage  (Uganda Bureau of Statistics and 

ICF International, 2015),  urbanization (Kigozi et al., 2015), and generally improving socio-

economic conditions (Tusting et al., 2016).  

3.5 Conclusions  

Our study demonstrates that malaria control interventions have had a strong effect on the 

decline of parasitaemia risk in Uganda during 2009-2014, albeit with varying magnitude in 
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the regions. This success should be sustained by optimizing ITN coverage to achieve 

universal coverage and by timely replacing worn-out ITNs. NMCP should sustain the malaria 

prevention awareness campaigns through the use of Information, Education, and 

Communication (IEC) materials to further promote the use of ITNs. In the high burden 

districts where IRS implementation is on-going, efforts should be made to ensure that all 

households are sprayed periodically every six months.  

NMCP should address the problems limiting ACTs coverage scale-up by providing 

free RDTs to all healthcare providers in line with the WHO ‘Test and Treat’ campaign, and 

increasing supervision for private health facilities.  

The varying intervention effects in different regions may be an indication that 

interventions work differently in different regions of the country. This, therefore, calls for a 

better understanding of the environmental and entomological conditions in each region to 

tailor a combination of interventions suitable to local settings that will have a maximum 

reduction on transmission.   

Also, in the regions where the risk remains disproportionately high, NMCP needs to 

conduct specific studies to understand human and/or vector behavior responsible for this 

problem. In these regions, other tools should be introduced such as chemoprevention 

especially in the high-risk group of children less than 5 years and mass drug administration to 

reduce the parasite load in the population. In order to maximize intervention effects and avert 

reversal in malaria risk reduction, government, and donor-funded poverty reduction programs 

should prioritize regions/districts where socio-economic conditions are low.    

In summary, the ambitious targets of UMRSP 2014-2020 can be achieved if the 

country commits to implementing an integrated package to cover all aspects of disease 

prevention, management, and health. However, this will only be possible if the current 

funding portfolio is increased from the contemporary less than $1 average per head per year to 
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the recommended $4 per head per year (Teklehaimanot et al., 2007) which is equivalent to 

$140million per year. 
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3.6 Appendix 

Statistical modeling details  

A1. Estimating parasitaemia risk at two survey time periods 

A geostatistical model was developed to assess the effect of environmental/climatic factors on 

parasitaemia risk for the first survey. Let Y1(si) be the number of children less than 5 years 

who tested positive in cluster si in the first survey, and  N1(si), the total number of children 

tested. We assume that Y1(si) follows a Binomial distribution, that is, 

Y1(si)|N1(si), π1(si)~Bin(N1(si), π1(si))  ∀i ∈ 1,…,n1, where s={s1, s2,…,sn} is the set of 

locations surveyed, si ⊂ R2 and π1(. ) indicates the parasitaemia risk. A Bayesian 

geostatistical model to analyze parasitaemia risk was formulated as follows:  

logit(π1(si)) = 𝛃𝟏
T𝐗𝟏(si) + ω1(si), where 𝐗𝟏(si) is the set of environmental/climatic 

predictors at location  si, 𝛃𝟏 = (β11, β12, … , β1k)
T
 is the vector of regression coefficients and 

𝛚1 = (ω1(s1), ω1(s2), … , ω1(sn1))T is a zero-mean latent spatial process that follows a 

multivariate normal distribution, that is, 𝛚1~MVN(0, σ1
2R1). R1 is the correlation matrix 

defined by an exponential parametric function of the distance dij  between two location si 

and  sj that is, R(si, sj) = exp (−dijρ1). The parameter σ1
2 is the spatial variation and ρ1 is a 

smoothing parameter that controls the rate of correlation decay with increasing distance. The 

range parameter was calculated by the ratio 
3

ρ1
 to estimate the minimum distance beyond 

which spatial correlation is negligible (<5%).  Following standard formulation of Bayesian 

regression models, we assumed vague priors; an inverse-gamma for σ1
2, a gamma prior 

distributions for ρ1,  and non-informative Gaussian distributions with mean 0 and variance 10
2
 

for the regression coefficients.  Thus, σ1
2~IG(0.01,0.01), ρ1~Gamma(2.01,1.01), β1k~N(0, 

10
2
), k=1,…,K. 
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To produce a smooth map, Bayesian kriging was employed to predict parasitaemia risk at 

unsampled locations on a 2x2 km
2
 grid using the predictive posterior distribution, p(Y0| Y)  = 

∫ p(𝐘𝟎|𝛃𝟏, 𝛚0)p(𝛚0|𝛚1, σ1
2, ρ1)p(𝛃𝟏, 𝛚1, ρ1, σ1

2|Y1(si))d𝛃𝟏d𝛚0d𝛚1dσ1
2dρ1, where  

Y0=(Y1(s01), Y1(s02), … , Y1(s0l) )T
 is the number of infected children at unsampled location 

𝐬𝟎 = {s01, s02, … , s0l} ,  𝛚0 is the spatial random effect at 𝐬𝟎. The distribution of 𝛚0  given 𝛚1 

is multivariate normal, that is, p(𝛚0|𝛚1, σ1
2, ρ1) =MVN (R01R11

−1U, σ1
2(R01 − R01R11

−1R10)),        

with R11=cor(𝛚1, 𝛚1), R01 = R10
T   = cor(𝛚0, 𝛚) and 

p(Y(s0i)|𝛃𝟏, 𝛚(s0i) )~ Bin(Y(s0i), π0(s0i)) , and thus logit (π0(s0i))= 𝛃𝟏
T𝐗(s0i)  + 𝛚(s0i). 

For mapping purposes, predictions were made for 52,794 pixels covering a regular grid of 

Uganda.  

Using a geostatistical model similar to the one described above, estimates of malaria risk were 

obtained for the second survey. Similarly, a binomial distribution was assumed for the number 

of positive children  Y2(si
′), that is, Y2(si

′)|N2(si
′), π2(si

′)~Bin(N2(si
′), π2(si

′)), ∀i ∈ 1, … , n2 

where 𝐬′ = {s1
′ , s2

′ , … , sn2
′ }  is the set of locations sampled in the second survey, which is 

different from  𝐬.  π2(si
′) was modeled as a function of the environmental factors and a spatial 

process 𝛚𝟐, that is, 𝛚𝟐~MVN(0, σ2
2R2) with spatial variance σ2

2 and scaling parameter ρ2. On 

the logit scale, this takes the form, logit(π2(si
′)) =  𝛃𝟐

T𝐗𝟐(si
′) + ω2(si

′). Also, prediction of 

parasitaemia risk for the second survey was carried out using the 2x2 km
2
 resolution grid 

described above. 

A2. Modeling the effects of interventions on the change of parasitaemia risk  

The change of parasitaemia risk was modeled on the logit scale as a function of the difference 

in climatic conditions between the two survey times, the effect of intervention coverage, the 

socio-economic status and area type in the second survey, that is; logit(π2(si
′) = Z(s′i)  +

𝛃(𝐗𝟐(si
′) − 𝐗𝟏(si

′))T + α1ITN(si
′) + α2IRS(si

′) + α3ACT(si
′) + γ1Area(si

′) +

γ2wealth(si
′) + ωc(si

′)),  
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where Z(s′i) = logit(π1(si
′)), ITN(si

′) is the coverage indicator identified through a variable 

selection procedure among six ITN use and ITN ownership indicators, IRS(si
′)  represents the 

proportion of sprayed households in cluster si
′, ACT(si

′)  is the proportion of fevers treated 

with any ACT, and 𝛚𝐜(si
′)   corresponds to the latent spatial process, that is, 

𝛚𝐜~MVN(0, σc
2Rc) with spatial variance σc

2. The coefficients α1, α2 and α3 measure the 

effect of interventions on the change in parasitaemia risk, thus, exp (α1), exp (α2) and 

exp (α3) are the expected change in odds of parasitaemia (second survey versus first survey) 

associated with a 1% increase in the coverage of ITNs, IRS and ACT,  respectively. Area(si
′) 

is a binary variable indicating whether si
′  is an urban or rural cluster, and wealth(si

′) is the 

median wealth score of cluster si
′. Coefficients γ1 and γ2 are covariate effects quantifying the 

effect of Area(si
′)  and wealth(si

′) on the parasitaemia odds reduction.  𝛚𝐜(𝐬′) are spatial 

random effects modeled by a Gaussian process as 𝛚𝐜~MVN(0, σc
2Rc) 

We assume an inverse gamma prior distribution for σc
2, a gamma distribution for the 

parameter ρc, and normal priors for the regression coefficients 𝛃, α1, α2, α3, γ1, γ2. 

Parasitaemia risk during the first survey π1(. ) was not directly available at locations 𝐬′ of the 

second survey. We addressed this spatial misalignment problem by predicting parasitaemia 

risk during the first period at the locations of the second survey using the Bayesian kriging. 

The estimation error of parasitaemia prediction was taken into account in the modeling as a 

measurement error in the covariate. 

The joint posterior distribution of the parameters was obtained by  

p(𝛃, 𝛃1, Z(s′), α1,α2,α3,γ1, γ2, 𝛚1(s), 𝛚𝟏, ωc, σc
2, ρc, σ1

2, ρ1|Y2(s′)) ∝

p(Y2(s′)|Z(s′), 𝛃, α1, α2, α3, γ1, γ2, ωc)p(Z(s′)|𝛃1, 𝛚1)p(𝛚1|𝛚1)p(𝛚1|σ1
2, ρ1)p(𝛚𝐜|σc

2, ρc)p(𝛃)p(𝛃1) 

p(α1)p(α2)p(α3)p(γ1)p(γ2)p(σ1
2)p(ρ1)p(σc

2)p(ρc)  

A3. Spatially varying interventions effects 
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In order to estimate the intervention effects at regional level and account for potential 

interactions with endemicity levels, a second model was fitted in which we estimated 

intervention effects at regional level.  The model was expressed as; 

logit(π2(si
′)) = Z(si

′) + 𝛃(𝐗𝟐(si
′) − 𝐗𝟏(si

′)) + α1 (Asi
′) ITN(si

′) + α2(Asi
′)IRS(si

′) +

α3 (Asi
′) ACT(si

′) + ωc(si
′). 

The effects of interventions are defined at regional level and denoted as αk (Asi
′) , (k = 1,2,3) 

where Asi
′ is the region where  si

′ falls. Each αk(Ai)  was written as the sum of a conditional 

autoregressive effect that takes into account the similarity of the effects across the regions and 

an independent random component, that is, αk(Ai) =  αk
c (Ai) + εk(Ai), where 

p(αk
c (Ai)|αk

c (Aj), i ≠ j, τkc) ≡ N(
1

ni
∑ αk

c
i~j (Aj),

σkc
2

ni
)  with i~j indicates the Aj areas 

neighboring Ai  , and εk(Ai)~N(0, σε
2).  

A4. Bayesian variable selection 

To choose the most important ITN coverage indicator and functional form that explains the 

maximum variation in parasitaemia odds change, Bayesian variable selection using stochastic 

search was implemented. For each ITN coverage covariate  Xp, a categorical indicator 

parameter Ip was introduced to represent exclusion of the variable from the model (Ip = 0), 

inclusion in linear (Ip = 1) or categorical (Ip = 2) forms. Ip has a probability mass function 

∏ π
j

δj(Ip)2
j=0 , where πj denotes the inclusion probabilities of functional form j (j=0,1,2) so that 

∑ πj = 12
j=0   and δj(. )  is the Dirac function, δj(Ip) = {

1, if Ip = j

0, if Ip  ≠ j
 .  A spike and slab prior 

distribution was assumed for the regression coefficients. In particular for the coefficient βp of 

the corresponding variable Xp in linear form, we assumed βp~δ1(Ip)N(0, τp
2) +

(1 − δ1(Ip)) N(0, ϑ0τp
2) that is a non-informative prior for βp if Xp is included in the model 
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in linear form (slab) and an informative normal prior shrinking βp to zero (spike) if Xp is 

excluded from the model, setting ϑ0 to be a large number, e.g, 10
5
. Likewise, for the 

coefficients    {βp,l}l=1,..,L
   corresponding to the categorical form of Xp with L 

categories, βp,l~δ2(Ip)N(0, τp,l
2 ) + (1 − δ2)N(0, ϑ0τp,l

2 ) was assumed. For inclusion 

probabilities, a non-informative Dirichlet distribution was adopted with hyper parameter α =

(1,1,1)T, that is, 𝛑 = (π0, π1, π2)T~Dirichlet(3, α). We also assumed inverse Gamma priors 

for the precision hyper parameters τp
2 and τp,l

2 , l = 1, … , L. 

Joint posterior distributions   

A1. Estimating parasitaemia risk at first survey 

p(𝛃𝟏,𝛚𝟏, ρ1, σ1
2|𝐘𝟏) ∝L(𝛃𝟏,𝛚𝟏, ρ1, σ1

2; 𝐘𝟏) p(𝛃𝟏) p(𝛚1|σ1
2, ρ1) p(σ1

2) p(ρ1), where 

L(𝛃𝟏,𝛚𝟏, ρ1, σ1
2; 𝐘𝟏) is the likelihood,  p(𝛃𝟏), p(𝛚1|σ1

2, ρ1), p(σ1
2) and p(ρ1) are prior 

distributions of regression parameters,    spatial random effects, variance and correlation 

parameters, respectively.  

p(𝛃𝟏, 𝛚1, ρ1, σ1
2|𝐘𝟏 ) ∝ ∏i=1

n1 π1(si)
𝐘𝟏(1 − π1(si)

n1−𝐘𝟏)det(R1)
-1

exp(-
1

2
ρ1

TR1
−1ρ1)( σ1

2)
-

(a+1)
exp(−

b

σ1
2), where π1(si) =  

exp (𝛃𝟏
T𝐗𝟏(si)+ω1(si))

1+exp (𝛃𝟏
T𝐗𝟏(si)+ω1(si))

 

A1. Estimating parasitaemia risk at second survey 

p(𝛃𝟐, 𝛚2, ρ2, σ2
2|𝐘𝟐) ∝L(𝛃𝟐, 𝛚2, ρ2, σ2

2; 𝐘𝟐) p(𝛃𝟐) p(𝛚2|σ2
2, ρ2) p(σ2

2) p(ρ2), where L(𝛃𝟐, ρ2, 

σ2
2; 𝐘𝟐) is the likelihood, and p(𝛃𝟐), p(𝛚2|σ2

2, ρ2), p(σ2
2) and p(ρ2)  are the prior distributions 

of regression parameters, spatial random effects, variance and correlation parameters, 

respectively.  

p(𝛃𝟐, 𝛚2, ρ2, σ2
2|𝐘𝟐 ) ∝ ∏i=1

n2 π2(si)
𝐘𝟐(1 − π2(si)

n2−𝐘𝟐)det(R2)
-1

exp(-
1

2
ρ2

TR2
−1ρ2)( σ2

2)
-

(a+1)
exp(−

b

σ2
2), where π2(si) =  

exp (𝛃𝟐
T𝐗𝟏(si)+ω2(si))

1+exp (𝛃𝟐
T𝐗𝟐(si)+ω2(si))
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A2. Modeling the effects of interventions on the change of parasitaemia risk  

p(𝛃, 𝛃1, Z(s′), α1,α2,α3,γ1, γ2, ωc(s′), 𝛚1(s), 𝛚𝟏(s′), 𝛚𝐜, σc
2, ρc, σ1

2, ρ1|Y2(s′)) ∝

p(Y2(s′)|𝛃, α1, α2, α3, γ1, γ2, Z(s′), ωc(s′))p(Z(s′)|𝛃1, 𝛚1(s′))p(𝛚1(s′)|𝛚1(s))p(𝛚1(s)|σ1
2, ρ1) 

p(ωc(s′)|σc
2, ρc)p(𝛃)p(𝛃1)p(α1)p(α2)p(α3)p(γ1)p(γ2)p(σ1

2)p(ρ1)p(σc
2)p(ρc) 

A3. Spatially varying interventions effects 

p(𝛃, 𝛃1, Z(s′), 𝛂𝟏(As′), 𝛂𝟐(As′), 𝛂𝟑(As′), 𝛚𝐜(s′), 𝛚1(s), 𝛚𝟏(s′), 𝛚𝐜, σkc

2 , ρc, σ1
2, ρ1|Y2(s′)) ∝

p(Y2(s′)|𝛃, 𝛂𝟏(As′), 𝛂𝟐(As′), 𝛂𝟑(As′), Z(s′), 𝛚𝐜(s′))p(Z(s′)|𝛃1, 𝛚1(s′))p(𝛚1(s′)|𝛚1(s)) 

p(𝛚1(s)|σ1
2, ρ1)p(𝛚𝐜(s′)|σkc

2 , ρc)p(𝛃)p(𝛃1)p(𝛂𝟏(As′))p(𝛂𝟐(As′))p(𝛂𝟑(As′))p(σ1
2)p(ρ1)p

(σkc

2 )p(ρc) 

Prior distributions for model parameters were assumed as in A2 above except for the spatially 

varying interventions effects αk(As′) for which a CAR prior distribution was adopted, 

implying that each αk(Ai) conditional on  αk(Aj) follows a normal distribution with mean 

equal to the average of neighboring regions Aj and variance inversely proportional to the 

number of neighbor regions ni, that is  p(αk(Ai)|αk(Aj), i ≠ j, τkc)~N (
1

ni
∑ αki~j (Aj),

σkc
2

ni
).   
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               (a)                                      (b)                                  (c)                                     (d)                                   (e)                                (f) 

 

  

 

 

 

  

  

 

 

 

Figure 3.6: Malaria intervention coverage in 2009 and 2014; (a) Percentage of households with one ITN, (b) percentage of households with at least 1 ITN for every two 

people, (c) percentage of population with access to an ITN, (d) percentage of population that slept under an ITN the previous night, (e) percentage of children less than 5 years who slept under an 

ITN the previous night, (f) proportion of fever episodes treated with any ACT (f) 
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Abstract 1 

Background 2 

Electronic reporting of routine health facility data in Uganda began with the adoption of the 3 

District Health Information Software System version 2 (DHIS2) in 2011. This has improved 4 

health facility reporting and overall data quality. In this study, the effects of case management 5 

with artemisinin-based combination therapy (ACT) and vector control interventions on space-6 

time patterns of disease incidence were determined using DHIS2 data reported during 2013-7 

2016.  8 

Methods 9 

Bayesian spatio-temporal negative binomial models were fitted on district-aggregated 10 

monthly malaria cases, reported by two age groups, defined by a cut-off age of 5 years.  The 11 

effects of interventions were adjusted for socio-economic and climatic factors. Spatial and 12 

temporal correlations were taken into account by assuming a conditional autoregressive 13 

(CAR) and a first-order autoregressive AR(1) process on district and monthly specific random 14 

effects, respectively. Fourier trigonometric functions were incorporated in the models to take 15 

into account seasonal fluctuations in malaria transmission.  16 

Results 17 

The temporal variation in incidence was similar in both age groups and depicted a steady 18 

decline up to February 2014, followed by an increase from March 2015 onwards. The trends 19 

were characterized by a strong bi-annual seasonal pattern with two peaks during May-July and 20 

September-December. Average monthly incidence in children < 5 years declined from 74.7 21 

cases (95%CI: 72.4-77.1) in 2013 to 49.4 (95%CI: 42.9-55.8) per 1000 in 2015 and followed 22 

by an increase in 2016 of up to 51.3 (95%CI: 42.9-55.8). In individuals ≥5 years, a decline in 23 

incidence from 2013 to 2015 was followed by an increase in 2016. A 100% increase in 24 

insecticide-treated nets (ITN) coverage was associated with a decline in incidence by 44% 25 
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(95%BCI: 28-59%). Similarly, a 100% increase in ACT coverage reduces incidence by 28% 1 

(95%BCI: 11-45%) and 25% (95%BCI: 20-28%) in children < 5 years and individuals ≥5 2 

years, respectively. The ITN effect was not statistically important in older individuals. The 3 

space-time patterns of malaria incidence in children < 5 are similar to those of parasitaemia 4 

risk predicted from the malaria indicator survey (MIS) of 2014-15. 5 

Conclusion 6 

The decline in malaria incidence highlights the effectiveness of vector-control interventions 7 

and case management with ACT in Uganda. This calls for optimizing and sustaining 8 

interventions to achieve universal coverage and curb reverses in malaria decline.  9 

  10 

Key words: artemisinin-based combination therapy (ACT), Bayesian inference, Conditional 11 

Auto regressive (CAR) model, District Health Information Software System version 2 12 

(DHIS2), malaria interventions, insecticide treated nets (ITN), Negative binomial 13 

  14 
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4.1 Introduction 1 

The launch of the Roll Back Malaria (RBM) programme and the Global Fund to Fight AIDS, 2 

Tuberculosis and Malaria marked the first serious international efforts to control and prevent 3 

malaria in sub-Saharan Africa (SSA), since the global malaria eradication programme was 4 

abandoned in the 1970s (Snow and Marsh, 2010). These efforts have accelerated the scale-up 5 

of vector control interventions and case management with artemisinin-based combination 6 

therapy (ACT) in endemic countries leading to a significant decline in malaria morbidity and 7 

mortality (Bhatt et al., 2015a). In spite of this success, malaria still remains a public health 8 

problem in the majority of countries in SSA with the heaviest burden borne in children less 9 

than 5 years old (World Health Organization, 2016).  10 

In Uganda, the scaling-up of interventions resulted in the decline of malaria 11 

parasitaemia risk during 2009-2015 (Ssempiira et al., 2017a, 2017b), but nonetheless, the 12 

country still ranks among the top six high burdened in the world (National Malaria Control 13 

Program, 2016).  14 

The Uganda Health Management Information System (HMIS) was established in the 15 

early 1990s to facilitate reporting of routine health facility data to the Ministry of Health 16 

(MoH) (Kintu et al., 2004). The system has since undergone several revisions and multiple 17 

technological upgrades to strengthen health facility and district-based reporting and improve 18 

reporting of routine health facility data. The most crucial improvement was the adoption of 19 

the District Health Information Software System version 2 (DHIS2) in 2011 which facilitated 20 

the transition from a paper-based reporting and storage to an electronic web-based system in 21 

2011.  22 

To ensure a fast and effective roll-out process, the Ministry of Health (MoH) with 23 

support from international partners conducted 35 regional training workshops during January 24 

2011-January 2012 for all district records assistants, Biostatisticians, health officers and 25 
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HMIS focal persons. By July 2012, all districts were using DHIS2 online and reporting 1 

monthly HMIS data, thanks to the strong IT capacity of the MoH staff, technical and financial 2 

support from CDC and USAID. In spite of some challenges in the beginning, such as internet 3 

connectivity issues and limited workforce there was a great improvement in health reporting 4 

after the introduction of DHIS2 in 2012/13 compared to the period before 2012.  5 

Completeness and timeliness of outpatient reporting increased from 36% and 22% in 2011/12 6 

to 85% and 77% in 2012/13, respectively. Also, most child-related health coverage indicators 7 

increased from about 50% in 2011/12 to over 80% in 2012/13 (Kiberu et al., 2014). 8 

However, routine health facility data utilization in Uganda remains low and disease 9 

burden estimation relies mainly on population-based surveys such as the Demographic Health 10 

Survey (DHS) and Malaria Indicator Survey (MIS) (Bain et al., 1997).  MIS are conducted 11 

periodically every five years to estimate malaria parasite prevalence in children less than five 12 

years  (Uganda Bureau of Statistics and ICF International, 2015, 2010). The DHIS2 data, on 13 

the other hand, provides an opportunity to investigate inter and intra-annual variation of 14 

malaria risk in individuals for all age groups presenting with malaria to health facilities. The 15 

adoption of ‘Test and Treat’ campaign by MoH has greatly improved the number of health 16 

facility malaria cases confirmed by the Rapid Diagnostic Tests (RDTs) (National Malaria 17 

Control Program, 2016). This data can provide a wealth of information for monitoring and 18 

evaluation of malaria programming activities to support evidence-based decision making.   19 

Routine health facility data are spatially and temporally correlated due to common 20 

exposures in proximal areas and time points. Bayesian Conditional Autoregressive (CAR) 21 

models adjust for spatial correlation in district-level incidence and smooth disease rates to 22 

highlight the spatial pattern of the true burden and produce unbiased parameter estimates 23 

(Carsten et al., 2007). Bayesian space-time CAR models have been applied to analyze malaria 24 

cases routinely collected from health facilities in  Namibia (Alegana et al., 2013),Venezuela 25 
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(Villalta et al., 2013), Mozambique (Zacarias and Andersson, 2011), Malawi (Kazembe, 1 

2007),  Zimbabwe (Mabaso et al., 2006), China (Clements et al., 2009) and in  South Africa 2 

(Kleinschmidt et al., 2002). These studies investigated effects of environmental and socio-3 

economic factors on inter and intra annual variation of malaria incidence. 4 

In this work, Bayesian negative binomial CAR models were fitted on district-5 

aggregated monthly malaria cases reported in the DHIS2 during 2013-2016 to estimate the 6 

effects of malaria interventions on the spatio-temporal patterns of the disease incidence in 7 

Uganda in children less than 5 years and individuals of 5 years and above. The models were 8 

adjusted for climatic and socio-economic factors. The results provide important information to 9 

National Malaria Control Programme (NMCP) for evaluating progress and for planning the 10 

timing and priority areas to allocate malaria interventions.  11 

4.2 Methods 12 

4.2.1 Settings 13 

Uganda is located in East Africa on a large plateau in the great lakes region. Its altitude varies 14 

between 1,300–1,500 m above sea level and the mean annual temperature ranges from 16°C 15 

to 30°C. It has a diverse vegetation, mainly comprising of tropical rainforests in the South, 16 

wooded savanna in Central, and semi-arid in the North and North East regions. There are two 17 

rainy seasons; the first during March-May and the second from August to November. The 18 

population is 37 million, of which 18% are children < 5 years (Uganda Bureau of Statistics, 19 

2016). The country is divided into 112 districts and covers an area of 241,039 square 20 

kilometers. 21 

Malaria transmission rates are among the highest in the world (Talisuna et al., 2015). 22 

Transmission is stable in 95% of the country. Low and unstable transmission is mainly 23 

present in the highland areas. Malaria is responsible for 33% of outpatient visits and 30% of 24 

hospitalized cases. Anopheles gambiae sensu lato (s.l.) is the dominant vector species 25 
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followed by Anopheles funestus, which is commonly found in areas having permanent water 1 

bodies with emergent vegetation. These two vectors are strongly endophilic and endophagic 2 

that is, feeding indoors and resting on walls after feeding, which makes vector control 3 

approaches effective. Health facilities in Uganda are classified and graded according to their 4 

service scope and size of the population they serve in the following (descending) order; 5 

hospitals, Health Center (HC) IVs, HCIIIs and HCIIs. At the time of conducting this study, 6 

there were 5,418 health facilities; 160 hospitals, 197 HCIVs, 1,289 HCIIIs and 3,772 HCIIs. 7 

4.2.2 Data sources 8 

4.2.2.1 Malaria cases 9 

Data on confirmed malaria cases by RDT was extracted from the DHIS2 covering the period 10 

of January 2013 to December 2016. The data were reported by two age groups: children < 5 11 

years and individuals ≥ 5 years. Malaria incidence in each age group was estimated by 12 

dividing the district aggregated malaria cases by the district age group-specific population. 13 

The populations for 2013, 2015 and 2016 were estimated using the national housing and 14 

population census of 2014 adjusted for the annual population growth rate (Uganda Bureau of 15 

Statistics, 2016).  16 

4.2.2.2 Malaria interventions, socio-economic and climate data 17 

Malaria interventions data, that is, Insecticide Treated Nets (ITNs) and case management with 18 

Artemisinin Combination Therapies (ACTs) were obtained from the MIS 2014-15 (Uganda 19 

Bureau of Statistics and ICF International, 2015). Indoor Residual Spraying (IRS) was not 20 

included in the analysis because of its sparse distribution in the majority of the districts owing 21 

to the targeted implementation strategy used in its deployment (National Malaria Control 22 

Program, 2016).  23 

Six ITN coverage indicators were defined from the MIS 2014-15; corresponding to 24 

three ownership and three use indicators defined by Roll Back Malaria (RBM) namely; 25 
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proportion of households with at least one ITN, proportion of households with at least one 1 

ITN for every two people, proportion of population with access to an ITN in their household, 2 

proportion of the population that slept under an ITN the previous night, proportion of children 3 

under five years old who slept under an ITN the previous night, proportion of existing ITNs 4 

used the previous night.  5 

Also, the wealth score computed from household possessions captured in the MIS 6 

2014-15 questionnaires was used as a socio-economic proxy.  A wealth index of five quintiles 7 

was generated from the score based on the data distribution following the DHS methodology 8 

(Vyas and Kumaranayake, 2006). Environmental and climatic data were downloaded from 9 

remote sensing sources during October 2012-August 2016. Day and night Land Surface 10 

Temperature (LST), Normalized Difference Vegetation Index (NDVI), and land cover were 11 

extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) at a spatial 12 

resolution of 1 x 1 km
2
 and temporal resolution of 8 days, 16 days and annually, respectively.  13 

Dekadal rainfall data was obtained from the US early warning and environmental monitoring 14 

system at 8 x 8 km
2
 resolution. Altitude was extracted from the shuttle radar topographic 15 

mission using the digital elevation model. We used the ESRI’s ArcGIS 10.2.1 to estimate 16 

distances between major water bodies and district centroids (http://www.esri.com/).    17 

4.2.3 Statistical analysis 18 

The analysis was carried out separately for each age group, i.e. children < 5 and individuals ≥ 19 

5 years old. Time series plots were employed to describe inter and intra-annual variation of 20 

malaria incidence and temporal variation of environmental/climatic factors during the study 21 

period.  22 

Biological considerations of the malaria transmission cycle suggest that there is an 23 

elapsing period between climatic suitability for malaria transmission and occurrence of cases, 24 

which is related to climatic effects on the duration of the sporogony cycle i.e. the development 25 
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of the parasite within the mosquito (Teklehaimanot et al., 2004a). We took this into account 1 

by creating lagged variables for the time varying climatic predictors (i.e. rainfall, NDVI, day 2 

LST and night LST). In particular, three analysis variables were constructed for each climatic 3 

factor by averaging its values over the following periods: the current and the previous month 4 

(lag1), the current and the two previous months (lag2) and the current and the three previous 5 

months (lag3). Categorical variables were generated based on tertiles of the variables’ 6 

distributions since the relationship between malaria and environmental predictors is not 7 

always linear (Bayoh and Lindsay, 2003).  8 

Bayesian spatio-temporal negative binomial models were fitted on the incidence data. 9 

Heterogeneity in incidence was taken into account via year-specific, spatially structured and 10 

unstructured random effects modeled at district level via CAR and Gaussian exchangeable 11 

prior distributions, respectively (Banerjee and Fuentes, 2012). The nested space-time structure 12 

allowed the geographical variation of malaria to vary from year to year.  Furthermore, 13 

temporal correlation across months was captured by monthly random effects modeled by an 14 

autoregressive process of order 1.  Models were adjusted for seasonality by including Fourier 15 

terms as a mixture of two cycles with periods of six and 12 months, respectively (Rumisha et 16 

al., 2013). A yearly trend was fitted to estimate changes in the incidence rates over time. 17 

Bayesian variable selection implemented within the spatio-temporal model was applied to 18 

identify the most important ITN coverage indicator and lagged climatic factor with their 19 

functional form (i.e. linear or categorical). For the ITN indicators, a categorical variable was 20 

introduced into the model taking values 1 to 7, (six values corresponding to the six indicators 21 

and the seventh defined the absence of all indicators from the model). The probabilities of the 22 

above values were treated as parameters and used to estimate the likelihood of including the 23 

ITN indicator into the model, i.e. inclusion probability. Similarly, for each climatic factor, we 24 

introduced a categorical variable taking 3 values corresponding to its absence, or inclusion 25 
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into the model in linear or categorical form. An ITN indicator or climatic factor was selected 1 

when its posterior inclusion probability was above 50%. 2 

Intervention and wealth score data from MIS, summarized at district level may not 3 

provide reliable estimates of the coverage because the survey is designed to produce reliable 4 

estimates at country and regional level. Therefore we estimated coverage at district level by 5 

fitting Bayesian CAR binomial and Gaussian models on the aggregated intervention and 6 

wealth score data, respectively.  7 

Malaria cases seen at formal health facilities in Uganda are a fraction of the total cases 8 

due to low health seeking behavior (Ndyomugyenyi et al., 2007), therefore we adjusted the 9 

models for the proportion of malaria treatment seeking behavior reported in the most recent 10 

MIS survey (Uganda Bureau of Statistics and ICF International, 2015). However, the survey 11 

was designed to provide precise estimates of the malaria health seeking indicator at the 12 

country and regional level. Therefore we used the Conditional Autoregressive (CAR) model 13 

to obtain estimates at district-level (Banerjee and Fuentes, 2012). Modeling details are 14 

available in the Appendix. 15 

Models were implemented in OpenBUGS (Lunn et al., 2000) and parameters were 16 

estimated using Markov chain Monte Carlo (MCMC) simulation. We run a two-chain 17 

algorithm for 200 000 iterations with an initial burn-in period of 5,000 iterations Convergence 18 

was assessed by visual inspection of trace and density plots and analytically by the Gelman 19 

and Rubin diagnostic (Raftery and Lewis, 1992). Parameters were summarized by their 20 

posterior medians and 95% Bayesian Credible Intervals (BCIs). Maps of estimated, smoothed 21 

incidence rates were produced in ESRI’s ArcGIS 10.2.1 (http://www.esri.com/). Details on 22 

model formulations are provided in the Appendix. 23 

http://www.esri.com/
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4.3 Results 1 

The annual number of malaria cases declined from 16,475,631 in 2013 to 13,724,255 in 2014 2 

and to 13,057,293 in 2015, but rose to 15,016,031 in 2016, representing annual declines of 3 

16.7% and 4.9%, and an increase of 15.0%, respectively.  Malaria incidence in children < 5 4 

years during the study period (i.e. Jan 2013-December 2016) was nearly two times higher than 5 

in individuals ≥ 5 years (Figure 4.1). The average monthly incidence in children < 5 years 6 

declined steadily from 74.7 (95%CI: 72.4-77.1) in 2013 to 49.4 (95%CI: 42.9-55.8) in 2015, a 7 

decline of over 34% followed by an increase in 2016 of up to 51.3 (95%CI: 42.9-55.8). In the 8 

older age group, a steady decline in monthly incidence from 2013 to 2015 was also followed 9 

by an increase in 2016.   10 

The highest malaria incidence in children < 5 years was reported in Moroto district of 11 

North East region during December 2013 (334.5 per 1000 persons) and in older individuals, 12 

the highest incidence was observed in Ntungamo district in South western region during 13 

March 2016 (282.5 per 1000 persons). Temporal trends show a strong bi-annual seasonal 14 

pattern with two peaks during May-July and September-December (Figure 4.1). The temporal 15 

variation of incidence in both age groups is highly positively correlated with that of climatic 16 

factors, but the extreme land surface temperature was negatively related to incidence.  17 

Results from the Bayesian variable selection of the ITN coverage indicators (Table 18 

4.1) show that the proportion of the population with access to an ITN in the household had the 19 

highest probability of inclusion among all ITN indicators. Therefore, this indicator was used 20 

as a measure of ITN coverage. Climatic averages of categorical forms of lags up to 2 months 21 

(LST, NDVI), and 3 months (rain) had higher inclusion probabilities in both age groups.22 
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Figure 4.1: Temporal variation of monthly incidence and climatic factors during 2013-

2016; a) incidence, b) Rainfall (primary axis) and NDVI (secondary axis), and c) LSTD 

and LSTN 
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Table 4.1: Posterior inclusion probabilities for ITN coverage indicators 

Indicator  Probability of 

inclusion  

<5 years >=5 years 

Proportion of households with at least one ITN  10.0% 10.7% 

Proportion of households with at least one ITN for every two people  9.0% 11.9% 

Proportion of population with access to an ITN in their household  56.2% 48.5% 

Proportion of the population that slept under an ITN the previous night  2.5% 12.5% 

Proportion of children under five years old who slept under an ITN the previous night  22.3% 15.2% 

Proportion of existing ITNs used the previous night  0.0% 1.2% 

 

Table 4.2 presents spatio-temporal estimates of the effects of interventions adjusted for 

climatic and socioeconomic confounders. These results were obtained from models with only 

spatial random effects which provided a better fit to the data compared to models 

incorporating both spatial and non-spatial heterogeneities. For instance, the Deviance 

Information Criterion (DIC) was 83370 and 83579 for models on children <5 years with only 

spatial and with both spatial and non-spatial random effects, respectively. 

ITN coverage had a protective effect in children < 5 years but no statistically 

important effect in individuals ≥5 years. However, case management with ACT had a 

protective effect in both age groups. In particular, a 100% increase in the proportion of people 

sleeping under an ITN was associated with a decline in malaria incidence in children < 5 

years of 44% (95%BCI: 28-59%). A 100% increase in the proportion of fevers treated with 

ACT was related with a decline in incidence of 28% (95%BCI: 11-45%) in children < 5 years 

and of 25% (95%BCI: 20-28%) in older individuals. Socio-economic status was an important 

predictor of malaria incidence in both age groups, but the effect was much stronger in the 

younger group. The incidence is lower in the higher socio-economic levels. 
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The effects of environmental and climatic factors on malaria incidence were almost 

similar in the two age groups. In children < 5 years, incidence increased with higher rainfall, 

NDVI, and day LST, but decreased with altitude. However, excessive increase in LST was 

associated with a statistically important decrease in incidence. Similarly, for individuals ≥5 

years, incidence increased with rainfall, NDVI, and LSTD, and decreased with altitude.  Land 

cover had no effect on malaria incidence in both age groups.       

Table 4.2: Effects of interventions on malaria incidence estimated from Bayesian spatio-

temporal models adjusted for socio-economic and climatic factors 

Predictor Children less than 5 years 

(n=16,638,104) 

Individuals 5 years and above 

(n=41,345,996) 

 

IRR (95%BCI) IRR (95%BCI) 

Interventions§    

  ITNs 0.56 (0.41, 0.72)* 1.08 (1.00, 1.17) 

  ACTs 0.72 (0.55, 0.89)* 0.75 (0.72, 0.80)* 

Wealth index†   

   Poorest (11,374,365) 1 1 

   Poorer (10,602,075) 0.87 (0.77, 0.98)* 0.88 (0.83, 1.93) 

   Middle (8,076,579)  0.77 (0.70, 0.84)* 0.80 (0.77, 0.84)* 

   Richer(12,828,925) 0.75 (0.71, 0.81)* 0.81 (0.73, 0.86)* 

   Richest (15,102,156) 0.79 (0.66, 0.97)* 0.84 (0.76, 0.95) 

Proportion health seeking 

behavior  

1.09 (1.07, 1.11)* 1.07 (1.04, 1.09)* 

Rainfall (mm)   

   <=76.9 1 1 

   77.0 - 125.7 1.02 (0.99, 1.05) 1.02 (0.95, 1.11)* 

   125.8 - 348.8 1.04 (1.01, 1.09)* 1.05 (1.01, 1.12)* 

NDVI   

   <=0.6 1 1 

   0.61-0.70 1.13 (1.09, 1.16)* 1.17 (1.14, 1.25)* 

   0.71-6.54 1.15 (1.12, 1.20)* 1.21 (1.17, 1.27)* 

LSTD (0C)   

   <27.5 1 1 

   27.6-29.4 1.05 (1.02, 1.16)* 1.06 (1.02, 1.12)* 

   29.5-36.5 0.86 (0.80, 0.92)* 0.85 (0.82, 0.88) 

LSTN (0C)   

   <18.0 1 1 

   18.1-18.5 0.99 (0.95, 1.02)* 0.97 (0.95, 1.05) 

   18.6-22.0 0.90 (0.86, 0.94)* 0.91 (0.89, 0.96)* 

Altitude  0.80 (0.73, 0.88)* 0.92 (0.89, 0.94)* 

% of district covered by crops 0.98 (0.91, 1.04) 1.00 (0.97, 1.02) 

% of district covered by water 1.00 (0.95, 1.09) 1.00 (0.96, 1.04) 

Temporal trend  Median (95%BCI) Median (95%BCI) 

  2013 1 1 

  2014 0.002 (-0.03, 0.02) -0.16 (-0.19, -0.14) 

  2015 -0.13 (-0.15, -0.09) -0.06 (-0.12, -0.02) 

  2016 0.23 (0.19, 0.23) -0.12 (-0.16, -0.10) 

Amplitude    

   Annual 0.33 (0.15, 0.50) 0.28 (0.16, 0.78) 

   Semi-annual 0.11 (0.07, 0.20) 0.15 (0.09, 0.41) 

Phase  (months)    

   Annual 2.66 (1.51, 5.68) 2.19 (1.40, 5.63) 
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Predictor Children less than 5 years 

(n=16,638,104) 

Individuals 5 years and above 

(n=41,345,996) 

 

IRR (95%BCI) IRR (95%BCI) 

   Semi-annual 2.09 (1.16, 5.51) 1.56 (0.87, 4.99) 

Spatial variance   

    2013 1.20 (0.90, 1.57) 1.21 (0.91, 1.58) 

    2014 1.05 (0.79, 1.37) 1.00 (0.76, 1.30) 

    2015 1.52 (1.14, 1.99) 1.34 (1.01, 1.75) 

    2016 1.16 (0.87, 1.51) 1.04 (0.78, 1.36) 

   Temporal variance 16.89 (10.82, 25.05) 17.20 (11.06, 25.37) 

   Temporal correlation 0.94 (0.83, 0.99) 0.63 (0.10, 0.93) 

   Dispersion 14.03 (13.47, 14.60) 16.12 (15.49, 16.77) 

* Statistically important effect 

§ Coverage was modeled on the scale of 0 to 1 - therefore one unit increase in coverage corresponds to a 100% increase 

which implies a shift of the current by 100%.  

†Relative frequency distribution (a) < 5years; poorest (22%), poorer (20%), Middle (13.4%), Richer (19%), Richest (25.6%)  

(b) <=5 years; poorest (18.7%), poorer (17.6%), Middle (14.1%), Richer (23.4%), Richest (26.2%) 

 

 

Spatial variance in both age groups was highest in 2015 and lowest in 2014. In all 

years the spatial variability of incidence in young children was slightly higher than that of 

individuals ≥5 years except in 2013. However, temporal variation was much higher than 

spatial variability in all years. The temporal trend shows that malaria incidence in both age 

groups decreased during 2013 - 2015, and then increased again in 2016. The amplitude 

estimates suggest that malaria incidence was almost twice as high in children less than 5 years 

compared to older individuals. The seasonality phase parameters indicate that the peak of the 

malaria incidence occurs during February to May.  

Maps of smoothed malaria incidence estimated from the Bayesian models are 

presented in Figures 4.2 and 4.3 for the first month of each quarter and study year (i.e. 

January, April, July, and October).  The space-time patterns of incidence differ between the 

two age groups. The high malaria burden districts throughout the study period were located in 

the Northern, North West and Eastern regions. In children < 5 years, the burden of malaria 

was high in 2013 with the majority of the districts having incidence rates of over 50 cases per 

1000 persons. The districts located in the South Western and Central regions had a much 

lower malaria incidence (<25 cases per 1000 persons).  In 2014, incidence rates declined 
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except in the high burden districts of the North.  Incidence declined further during the first 

and second quarters of 2015, reaching an overall district average of fewer than 25 cases per 

1000 persons, and for the first time, the high burdened districts of North East had less than 75 

cases per 1000 persons. However, starting from the third quarter of 2015 through 2016, an 

upsurge in incidence is apparent affecting mostly the North East region. 

On the contrary, individuals ≥ 5 years had a much lower and homogeneously 

distributed burden throughout the country with small differences among districts. During 

2013, incidence rates ranged between 25-50 cases per 1000 persons per month in most of the 

districts. A decline was observed through 2014 until the second quarter of 2015. Incidence 

started increasing at the beginning of the third quarter of 2015 up to the last quarter of 2016.It 

is remarkable that the spatial patterns of malaria incidence in children < 5 years during 

October 2014 - January 2015 bear a strong similarity with the predicted prevalence estimated 

from the MIS of 2014-15 which was conducted during the same period. They both indicate 

high burden in the regions of North East, West Nile, and East Central, and a very low burden 

in Kampala and South western regions.  
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Figure 4.2: Space-time patterns of malaria incidence (cases per 1000 persons) in 

children less than five years estimated from the Bayesian spatio-temporal model 
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Figure 4.3: Space-time patterns of malaria incidence (cases per 1000 persons) in 

individuals of age five years and above estimated from the Bayesian spatio-temporal 

model 

  



Chapter 4: The effects of case management and vector-control on space-time patterns of incidence  

 

 

92 
 

4.4 Discussion 

In this study, the effects of ITN and case management with ACT on the space-time patterns of 

malaria incidence in Uganda were determined in the two age groups of below and above 5 

years, using district-aggregated health facility data reported in the DHIS2 during January 

2013– August 2016. Also, the smoothed space-time patterns of malaria incidence were 

estimated for all districts in the two age groups.   

Results showed a decline in incidence between 2013 and 2014 followed by an increase 

in 2015. The temporal trends in the two age groups were characterized by a strong seasonal, 

bi-annual pattern with two peaks, at the end of the short (March-May) and longer (August-

November) rainfall seasons, respectively. This result underlines the influence of rainfall 

patterns on inter and intra-annual variation of malaria burden in Uganda. The decline of 

malaria in children less than 5 years during 2013-2014 has been also shown in the analyses of 

the malaria indicator survey data of 2009 and 2014 (Ssempiira et al., 2017b).  

A protective effect was estimated for ITNs coverage in children less than 5 years and 

for ACTs in both age groups.  Unexpectedly the ITN effect in older individuals was 

statistically not important, a result that may reflect that most ITN distribution campaigns are 

targeting children under 5 (National Malaria Control Program, 2016) and young children have 

different sleeping patterns compared to adults.  Young children tend to go to bed early and 

therefore are less exposed to mosquito bites if they sleep under an ITN unlike adults who 

usually sleep late (Stevenson et al., 2012). However, some studies have reported no 

differences in ITN use between children and adults (Bejon et al., 2009; Buchwald et al., 

2017). The effectiveness of ITNs in young children derives from the endophagic nature of the 

Anopheles gambiae vector which feeds indoors where ITNs physically deter the vector from 

sucking a blood meal thus interrupting transmission between human and vector (Sutcliffe and 
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Yin, 2014).  Our findings agree with results reported from population surveys in Uganda 

(Ssempiira et al., 2017a, 2017b), and in other endemic settings (Bhatt et al., 2015a).     

Similarly, the effectiveness of ACTs on malaria incidence in all ages derives from 

their action of suppressing and killing malaria parasites in the body, thus lowering the parasite 

load and consequently the chances of transmission (Baird, 2008). The coverage and hence 

effectiveness of ACTs has been further enhanced by the current national MoH guidelines that 

recommend the use of ACTs and outlaw the use of other antimalarial drugs for malaria 

treatment in both private and public health facilities (National Malaria Control Program, 

2016). Similar findings have been reported in other studies (Ssempiira et al., 2017a, 2017b). 

The space-time patterns of smoothed malaria incidence revealed heterogeneously 

distributed the burden of high intensity in children under 5 years, but rather homogeneous 

spatial patterns of low intensity in older individuals. Young children have lower immunity 

which makes them highly susceptible to developing clinical malaria when they are bitten by 

infectious mosquitoes (Jenkins et al., 2015). With the development of immunity in older 

individuals, the risk of clinical malaria decreases  (Pemberton-Ross et al., 2015) and therefore 

geographical patterns of malaria incidence are more homogeneous.  

The increase in malaria burden observed in 2015 may suggest changing malaria 

transmission dynamics as a result of sustained high intervention coverage which may lead to 

loss of immunity as a result of lower exposure to malaria (World Health Organization, 2016). 

Similar increases in incidence have been reported in other endemic countries where 

interventions have been scaled up in recent times including Zambia, Tanzania, and Rwanda 

(World Health Organization, 2016). The high burden of malaria incidence in the young 

children reported in the districts of North East, Eastern and West Nile regions could be 

attributed to differences in ecological conditions, and disparities in socio-economic 

development, urbanization, and access to health services (Ssempiira et al., 2017a, 2017b). 
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Study results further showed a protective effect of socio-economic status on clinical 

malaria in both age groups which is stronger however in children under 5 years. Socio-

economic status is a key confounder for epidemiological outcomes and it is the most 

important determinant of  health in young children (Mutisya et al., 2015). The effect of 

socioeconomic status on malaria incidence is also reflected on the spatial patterns of the 

disease that revealed a lower burden in affluent districts such as Kampala and Wakiso, but a 

high burden in the socioeconomically disadvantaged districts of Moroto, Kotido, and 

Nakapiripirit in the North East.  This  finding confirms existing knowledge that higher socio-

economic regions have a much smaller malaria burden compared to poverty-stricken ones 

(WHO and UNICEF, 2015).  

Rainfall, normalized difference vegetation index, day and night land surface 

temperature, and attitude were significantly associated with malaria incidence in both age 

groups.  Land surface temperature influences the survival of the mosquito vector and the 

duration of development of the vector and the parasite (Gullan and Cranston, 2009). The 

reduced risk of incidence associated with extreme day land surface temperature is due to 

reduced mosquito survival at high temperatures (Bayoh and Lindsay, 2003; Christiansen-

Jucht et al., 2015a; Teklehaimanot et al., 2004a). These  results are in agreement with findings 

from other studies that employed spatio-temporal analyses of routine health facility malaria 

data in Zimbabwe (Mabaso et al., 2006) and in Yunan Province, China (Clements et al., 

2009), but slightly differ with results reported from a study in northern Malawi (Kazembe, 

2007).  Non-spatially structured heterogeneity was much higher than the spatially structured 

variability, which may imply high endemicity across the country irrespective of the 

geographical location. The temporal variation was higher than the spatial one in both age 

groups reflecting the stronger influence of seasonality in malaria transmission which is linked 

to climatic variability. The close relationship between malaria and climatic factors could be 
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exploited to develop a malaria early warning system for predicting malaria outbreaks (Cox 

and Abeku, 2007). Similar findings were the basis for the development of forecasting models 

in Burundi (Gomez-Elipe et al., 2007a), Ethiopia (Teklehaimanot et al., 2004a) and Botswana 

(Thomson et al., 2005a). It is interesting however to note that the seasonal pattern in malaria 

incidence varied across the country supporting the evidence of a complex relationship 

between climatic factors and malaria transmission and the need for regionally adapted 

forecasting models.  

             The space-time patterns of malaria incidence in children < 5 are similar to those of 

parasitaemia prevalence predicted from the MIS 2014-15 (Ssempiira et al., 2017a). This is an 

indication of the improved quality of routinely collected health facility data that can be 

attributed to the benefits of the DHIS2 implementation in Uganda (Kiberu et al., 2014). 

A major limitation of the current study is the use of CAR models which are prone to 

estimation biases due to the ecological fallacy (Jenkins et al., 2015). This means that 

outcome-exposure relationships at the individual level may be different at the aggregated 

level. On the other hand, point process models such as log-Gaussian Cox model (Diggle et al., 

2013) produce precise parameter estimates, but their application requires analysis of case 

locations data which is not available in the Uganda DHIS2 system. The data is instead 

reported in aggregate form at the catchment area of the health facility.  However,  the MoH 

has started piloting an electronic data record system - Open Medical Records Systems 

(OpenMRS) - with a plan to replace the current paper data collection by early 2019 

(Ainebyoona, 2017). Once the roll-out is completed, individual case data will be available 

including locations which will enable us to repeat the analyses using point process models. 

The models will be fitted using the Integrated Nested Laplace Approximation (INLA) 

approach owing to the complexity of computations involved that would otherwise make 

MCMC infeasible. 
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4.5 Conclusions 

The decline in malaria incidence during 2013-2015 highlights the success of vector-control 

interventions and case management with ACTs in the fight against malaria in Uganda. This 

calls for sustaining these prevention efforts to achieve universal coverage and curb the 

reverses in malaria decline observed in 2016. NMCP should speed up the scale-up of indoor 

residual spraying of households in the districts of North East and Eastern regions to reduce 

the persistently high burden of disease. The close similarity of disease patterns obtained in 

this study to the population-based survey estimates highlight the relevance of routinely 

collected data in disease burden estimation.  
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4.6 Appendix 

Bayesian model formulation 

Let 𝑌𝑖𝑡 be the number of malaria cases reported in calendar month t=1,…,12,  year j=1,…,4 

and district 𝑖 = 1, … ,112.  𝑌𝑖𝑗𝑡 is assumed to follow a negative binomial distribution, 

𝑌𝑖𝑗𝑡~𝑁𝐵(𝑝𝑖𝑗𝑡, 𝑟) where 𝑝𝑖𝑗𝑡 =
𝑟

𝑟+𝜇𝑖𝑗𝑡
 where   𝑟  is the dispersion parameter and 𝜇𝑖𝑗𝑡 is the 

average number of monthly malaria cases in the district. The model is formulated with a log 

link function, that is, log(𝜇𝑖𝑗𝑡) = log(𝑁𝑖𝑗𝑡) + 𝛼 + 𝑋𝑇 𝛽 + 𝑓𝑇(𝑍𝑗) + 𝑓𝑠(𝑡) + 𝜔𝑖𝑗 + 𝜃𝑖𝑗 +

𝜖(𝑗−1)∗12+𝑡  if both spatial and non-spatial random effects are incorporated, or  

 log(𝜇𝑖𝑗𝑡) = log(𝑁𝑖𝑗𝑡) + 𝛼 + 𝑋𝑇 𝛽 + 𝑓𝑇(𝑍𝑗) + 𝑓𝑠(𝑡) + 𝜔𝑖𝑗 + 𝜖(𝑗−1)∗12+𝑡, if only spatial 

random effects are assumed. 

Where 𝑁𝑖𝑗𝑡 is the offset district-month specific population, α is the intercept, 𝛽 is a vector of 

regression coefficients associated with the vector of predictors 𝑋𝑖𝑡 (interventions, 

environmental, socio-economic status). 𝜖(𝑗−1)∗12+𝑡 are monthly random effects modeled by a 

first order autoregressive process with temporal variance 𝜎1
2, that is, 𝜖𝑙~𝐴𝑅(1) where 

𝜖1~𝑁 (0,
𝜎2

1−𝜌2 ), 𝜖𝑙~𝑁(𝜌𝜖𝑙−1, 𝜎2 ), 𝑙 = 2, … ,43 and the autocorrelation parameter 𝜌  

quantifies the degree of dependence between successive months. 𝑓𝑇(𝑍𝑗) and 𝑓𝑠(𝑡) are 

parameters modeling the time trend and seasonality, 𝑓𝑇(𝑍𝑗) describes an annual trend with the 

year 𝑍 treated as categorical covariate𝜔𝑖 is the spatial random effect for district i . The 

seasonal pattern 𝑓𝑠(𝑡) was captured by a mixture of two harmonic cycles with periods 𝑇1 =6 

and 𝑇1 = 12 months, respectively, that is,  𝑓𝑠(𝑡) = ∑ 𝐴𝑗 cos (
2𝜋

𝑇𝑗
𝑡 − 𝜑𝑗)2

𝑗=1 = ∑ {𝑎𝑗 ∗2
𝑗=1

𝑐𝑜𝑠 (
2𝜋

𝑇𝑗
𝑡) + 𝑏𝑗 ∗ sin (

2𝜋

𝑇𝑗
𝑡)}, where 𝑡  is time in months.  𝐴𝑗 is the amplitude of the 𝑗𝑡ℎ cycle 

and estimates the incidence peak by the expression 𝐴𝑗 = √𝑎𝑗
2 + 𝑏𝑗

2. 𝜑𝑗is the phase which is 
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the point where the peak occurs estimated as 𝜑𝑗 = arctan (
𝑎𝑗

𝑏𝑗
), 𝑎𝑗 and 𝑏𝑗 are model 

parameters. The 𝜔𝑖𝑗 are district- year specific random effects, modeled via conditional 

autoregressive CAR(𝜎1𝑗
2 ) processes. Each 𝜔𝑖𝑗 conditional on the neighbor 𝜔𝑘𝑗  follows a 

normal distribution with mean equal to the average of neighboring districts 𝜔𝑘𝑗  , 𝑘 ∈ 𝛿𝑖 and 

variance inversely proportional to the number of neighbor districts 𝑛𝑖, that is, 

𝜔𝑖𝑗|𝜔𝑘𝑗~𝑁 (γ𝑗 ∑  𝜔𝑘𝑗,𝑘∈𝛿𝑖

𝜎2𝑗
2

𝑛𝑖
), where γ𝑗 quantifies the amount of spatial correlation present 

in the data in year 𝑗, 𝜎2𝑗
2  

measures the spatial variance. 𝜔𝑖𝑗 and 𝜔𝑘𝑗 are adjacent districts in 

the set of all adjacent districts 𝛿𝑖 of district 𝑖, and 𝑛𝑖 are the number of adjacent districts.  

𝜃𝑖𝑗  are exchangeable district-year random effects, i.e. 𝜃𝑖𝑗~𝑁(0, 𝜎2𝑗
2 ). 

A non-informative normal prior distribution was assumed for the regression coefficients,  a 

Gamma distribution with mean 1 and variance 100 for the parameter, r, an inverse gamma 

prior distribution with mean 10 and variance 100, for 𝜎1𝑗
2 , 𝜎2𝑗

2 , 𝜎2 and 𝜎2, i.e.,  

𝜎1𝑗
−2, 𝜎2𝑗

−2, 𝜎−2~𝐺𝑎(0.1,0.001), 𝑗 = 1, … 4 and a Uniform prior distribution for 𝜌, i.e. 

𝜌~𝑈[−1,1].  

Bayesian variable selection 

To choose the most important ITN coverage indicator that explains the maximum variation in 

malaria incidence, Bayesian variable selection using stochastic search was implemented 

separately for ITN indicators, and environmental and climatic factors. For ITN indicators, a 

categorical variable   Xp was introduced into the model and assigned values 1 to 7 

representing exclusion of the variable from the model (Ip = 1), and inclusion of the six 

indicators as follows; proportion of existing ITNs used the previous night (Ip = 2), 

proportion of children under five years old who slept under an ITN the previous night 

(Ip = 3), proportion of the population that slept under an ITN the previous night (Ip = 4), 
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proportion of households with at least one ITN for every two people (Ip = 5), proportion of 

households with at least one ITN (Ip = 6), and proportion of population with access to an 

ITN in their household (Ip = 7). Also, for lagged climatic predictors, a categorical variable 

  Yp was created with values 1 to 7 introduced into the model to represent exclusion of the 

variable from the model (Ip = 1), and inclusion of different variables as follows; lag1 

(continuous) (Ip = 2), lag1 (categorical) (Ip = 3), lag2 (continuous) (Ip = 4), lag2 

(categorical) (Ip = 5), lag3 (continuous) (Ip = 6) and lag3 (categorical) (Ip = 7) For non-

lagged climatic factors that is, altitude and distance to water bodies, a categorical variable   Zp 

with three values was defined representing exclusion from model (Ip = 0), inclusion of 

continuous form (Ip = 1), and inclusion of categorical form (Ip = 2). In the latter scenario, 

Ip has a probability mass function ∏ π
j

δj(Ip)2
j=1 , where πj denotes the inclusion probabilities of 

functional form j (j=1,2,3) so that ∑ πj = 13
j=1   and δj(. )  is the Dirac function, δj(Ip) =

{
1, if Ip = j

0, if Ip  ≠ j
 .  A spike and slab prior distribution was assumed for the regression coefficients. 

In particular for the coefficient βp of the corresponding variable Xp, we assumed 

βp~δ1(Ip)N(0, τp
2) + (1 − δ1(Ip)) N(0, ϑ0τp

2), that is a non-informative prior for βp if Xp is 

included in the model (slab) and an informative normal prior shrinking βp to zero (spike) if 

Xp is excluded from the model, setting ϑ0 to be a large number, e.g, 10
5
. Similarly, 

 βp,l~δ2(Ip)N(0, τp,l
2 ) + (1 − δ2)N(0, ϑ0τp,l

2 ) was assumed for the scenario of selecting one 

out of six indicators/variables or exclusion of the variable. The coefficients    {βp,l}l=1,..,7
   

corresponding to inclusion of 𝑋𝑝, p=1,…,7 in the model. For inclusion probabilities, a non-

informative Dirichlet distribution was adopted with hyper parameter α = (1,1,1,1,1,1,1)T, 
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that is, 𝛑 = (π1, π2, π3, π4, π5, π6, π7)T~Dirichlet(7, α). We also assumed inverse Gamma 

priors for the precision hyper parameters τp
2 and τp,l

2 , l = 1, … ,7. 

Climatic data processing 

The climatic data downloaded from MODIS that is, LSTD, LSTN and NDVI were available 

in the .hdf format - a raster data format. Data for each climatic factor and period was stored in 

different "granules", which are tile-shaped squares formed by borders of intersecting latitudes 

and longitudes on the earth surface. Uganda is covered by 4 such granules bounded by 

decimal latitude and longitude borders of N(4.234077), E(35.00000), S(-1.478794), and 

W(29.572774).Data for each climatic factor at a single period/time point consisted of 4.hdf 

files. The .hdf files were converted into other formats prior to extracting the values of each 

climatic factor for every district centroid using python scripts created by authors in ArcGIS.  

The conversions were carried out; i) combining granules to a single .hdf file, ii) conversion 

from .hdf file to. tiff file, iii) conversion from .tiff to ASCII format that can be read in 

statistical software such as STATA and R.  

The dekadal rainfall data was available the .bil files format from the US early warning and 

environmental monitoring system. The .bil files formats were converted directly into ASCII 

files using customised python scripts.  

For each district, monthly climatic factor estimates of LSTD, LSTN and NDVI were 

calculated using average function at the centroid. For rainfall it was the cumulative values that 

gave the total rainfall in the month. 

The data was then reshaped from wide to long format, merged with malaria cases of a specific 

month and year belonging to a given district. Finally, three month lags were created for 

climatic data. 

Estimating district-level interventions coverage, socioeconomic status, and health 

seeking behavior 
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Data for intervention coverage, wealth index and health seeking behavior were only available 

at regional level from the MIS 2014-15 and DHS 2016 surveys. This is because the 

population based surveys are designed to give precise estimates only at regional and country 

levels. A Conditional Autoregressive (CAR) model was developed to estimate district level 

estimates of formulated with a binomial distribution for intervention coverage and health 

seeking behavior indicators, and a Gaussian distribution for the wealth score, a measure of 

socioeconomic status. Slightly fewer than all the 112 districts had clusters selected in the 

original sample, therefore to fit the CAR models the districts with missing data were assigned 

a median value of the districts located within a specific region.  The models were formulated 

as follows; 

Let Y𝑖 be the number of households that possessed at least one ITN in district 𝑖 =

1, … ,112, and  Ni, the total number of households sampled and interviewed in district i. We 

assume that Y𝑖 follows a Binomial distribution, that is, Y𝑖|Ni, π(i)~Bin(Ni, π(i))  ∀i =

1, … ,112, where π(i) is the proportion of households with at least one ITN in district i. A 

Bayesian CAR model to estimate district-level ITN coverage was formulated as follows; 

logit(π(i)) = β0 + 𝜔𝑖, where β0 is a constant, and 𝜔𝑖, i=1,…,112, are modeled via a CAR 

process. Each 𝜔𝑖 conditional on the neighbor 𝜔𝑗  follows a normal distribution with mean 

equal to the average of neighboring districts 𝜔𝑗  and variance inversely proportional to the 

number of neighbor districts𝑛𝑖, that is; 𝜔𝑖|𝜔𝑗~𝑁 (γ ∑  𝜔𝑗,𝑙∈𝛿𝑖

𝜎𝜔
2

𝑛𝑖
), where γ quantifies the 

amount of spatial correlation present in the data, 𝜎𝜔
2  

measures the spatial variance. 𝜔𝑖 and 𝜔𝑗 

are adjacent districts in the set of all adjacent districts 𝛿𝑖 of district 𝑖, and 𝑛𝑖 are the number of 

adjacent districts. Following standard formulation of Bayesian regression models, we 

assumed vague priors; A non-informative Gaussian distributions with mean 0 and variance 
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10
2
 for β0, that is, β0~N(0, 10

2
). An inverse gamma prior distribution with mean 10 and 

variance 100 was considered for 𝜎𝜔
2 , i.e.  𝜎𝜔

−2~𝐺𝑎(0.1,0.001). 

Similar formulations were applied for ACTs, malaria treatment seeking behavior, and 

household asset index, however the latter was modeled by a first stage Gaussian distribution.  
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Abstract 

Background 

Although malaria burden in Uganda has declined since 2009 following the scale-up of 

interventions, the disease is still the leading cause of hospitalization and death. Transmission 

remains high and is driven by suitable weather conditions. There is a real concern that 

intervention gains may be reversed by climatic changes in the country. In this study, we 

investigate the effects of climate on the spatio-temporal trends of malaria incidence in Uganda 

during 2013–2017. 

Methods 

Bayesian spatio-temporal negative binomial models were fitted on district-aggregated 

monthly malaria cases, reported by two age groups, defined by a cut-off age of 5 years. 

Weather data was obtained from remote sensing sources including rainfall, day land surface 

temperature (LSTD) and night land surface temperature (LSTN), Normalized Difference 

Vegetation Index (NDVI), altitude, land cover, and distance to water bodies. Spatial and 

temporal correlations were taken into account by assuming a conditional autoregressive and a 

first-order autoregressive process on district and monthly specific random effects, 

respectively. Fourier trigonometric functions modeled seasonal fluctuations in malaria 

transmission. The effects of climatic changes on the malaria incidence changes between 2013 

and 2017 were estimated by modeling the difference in time varying climatic conditions at the 

two time points and adjusting for the effects of intervention coverage, socio-economic status 

and health seeking behavior. 

Results 

Malaria incidence declined steadily from 2013 to 2015 and then increased in 2016. The 

decrease was by over 38% and 20% in children <5 years and individuals ≥5 years, 

respectively. Temporal trends depict a strong bi-annual seasonal pattern with two peaks 
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during April–June and October-December. The annual average of rainfall, LSTD and LSTN 

increased by 3.7mm, 2.2°C and 1.0°C, respectively, between 2013 and 2017, whereas NDVI 

decreased by 6.8%. On the one hand, the increase in LSTD and decrease in NDVI were 

associated with a reduction in the incidence decline. On the other hand, malaria interventions 

and treatment seeking behavior had reverse effects, that were stronger compared to the effects 

of climatic changes. Important interactions between interventions with NDVI and LSTD 

suggest a varying impact of interventions on malaria burden in different climatic conditions. 

Conclusion 

Climatic changes in Uganda during the last five years contributed to a favorable environment 

for malaria transmission, and had a detrimental effect on malaria reduction gains achieved 

through interventions scale-up efforts. The NMCP should create synergies with the National 

Meteorological Authority with an ultimate goal of developing a Malaria Early Warning 

System to mitigate adverse climatic change effects on malaria risk in the country. 

 

Key words: Climatic; Malaria Early Warning System (MEWS); District Health Information 

Software System version 2 (DHIS2); Malaria interventions, Insecticide Treated Nets (ITNs); 

Negative binomial, Artemisinin-based Combination Therapies (ACTs); Bayesian inference, 

conditional autoregressive (CAR) model 
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5.1 Introduction 

Malaria is the most common parasitic infection worldwide accounting for over 210 million 

clinical cases and almost half a million deaths annually (World Health Organisation, 2017). 

The global campaign rolled out by the World Health Organization in the aftermath of the 

collapse of the malaria eradication campaign has accelerated the scale-up of vector control 

interventions and case management with Artemisinin Combination Therapies (ACTs) leading 

to a significant decline in malaria morbidity and mortality in endemic countries during 2000–

2015 (Bhatt et al., 2015a).  

Nonetheless, malaria burden remains high in the sub-Saharan Africa (SSA) region, 

where P. falciparum causes the most severe clinical form of the disease (World Health 

Organization, 2016).  Almost half a million deaths occur annually mostly in children less than 

5 years old (World Health Organization, 2016).  

In Uganda, malaria transmission remains very high and the disease ranks as the 

number one cause for hospitalization and death in the country (President’s Malaria Initiative, 

2017), despite the reduction in parasitaemia prevalence achieved during 2009 and 2014 

(Ssempiira et al., 2017b). On the one hand, this high transmission is enabled by a suitable 

climate that is characterized by ample rainfall, optimal temperature and humidity that 

enhances mosquito breeding and survival of the vector and parasite (National Malaria Control 

Program, 2016). A number of field and laboratory studies are adduced to this effect. 

Temperature co-determines the duration of parasite development within the vector, larval 

development time and vector survival (Tanser et al., 2003). Optimum temperature range 

between 28°C and 32°C (Christiansen-Jucht et al., 2015a). Very low (<17°C) or high (>35°C) 

temperatures slow down the development of the vector or increase its mortality (Bayoh and 

Lindsay, 2003).  On the other hand, rainfall contributes to the formation and continuation of 

mosquito breeding sites, thus to the increase of the vector population (Thomson et al., 2017). 
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Immature stages of the vector, i.e., eggs, larvae and pupae are aquatic forms and require 

suitable aquatic environments in which they develop prior to the emergence of adults from the 

pupae. Adult mosquitoes are dependent on moisture, as they are predisposed to dehydration in 

dry conditions having a direct negative effect on their survival (Christiansen-Jucht et al., 

2015a).  

Therefore, changes in temperature and rainfall are likely to affect the natural habitats 

of mosquitoes, alter the density of the vector while potentially exposing previously low 

endemic settings to malaria (Tanser et al., 2003). In Uganda, the occurrence of extreme 

weather conditions in the recent past such as long droughts and flooding has had an 

immediate impact on malaria transmission resulting in aberrations from the normal seasonal 

pattern in affected areas (Cox et al., 2007; Lindblade et al., 1999). Whether this short-term 

variability has had long-term ramifications in the country is not yet established. For effective 

and sustainable long-term malaria programming, it is important to investigate the potential 

effects of climate changes on malaria burden in consideration of the climate sensitivity of 

vector and parasite, and the ubiquitous human-induced global warming.  

A number of studies employing either mechanistic or statistical modeling frameworks 

have investigated climatic change effects on the distribution and intensity of malaria risk in 

different settings, but have yielded dissimilar results. In some studies, a linkage was 

established between climatic change and the exacerbation of the risk [167–171], while in 

others the climatic effect was not established and instead the increasing malaria burden was 

attributed to other factors such as drug resistance, failure of vector control operations and 

changes in land use (Hay et al., 2002). Interpretations of findings from studies that employed 

a statistical modeling framework are often limited by the absence of good quality data 

stemming from the weak and fragmented nature of national health information systems in 

malaria-endemic countries (Yeka et al., 2012).   
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The Uganda Health Management Information System (HMIS) was established in the 

early 1990s to facilitate reporting of routine health facility data to the Ministry of Health 

(MoH). The system was upgraded from a paper-based reporting and storage system to an 

electronic web-based system in 2011 giving way to the District Health Information Software 

System version 2 (DHIS2) (Kiberu et al., 2014). As a result of this development, health 

facility data completeness and timeliness increased from 36% and 22% to more than 85% and 

77%, respectively (Kiberu et al., 2014). This routine data provide an opportunity to 

investigate inter and intra-annual variation of malaria risk in the country and provides a 

wealth of information for monitoring and evaluation of malaria programming activities to 

support evidence-based decision making. The country’s adoption of ‘Test and Treat’ 

campaign is helping to increase the number of health facility malaria cases confirmed by the 

rapid diagnostic tests (RDTs) (National Malaria Control Program, 2016).   

Our study investigates the effects of climatic factors on the spatio-temporal patterns of 

malaria incidence in Uganda during 2013–2017 and assesses the relationship between 

climatic changes and changes in malaria incidence between 2013 and 2017 taking into 

account the coverage of control interventions, socio-economic factors, and malaria treatment 

seeking behavior patterns. Bayesian spatio-temporal negative binomial conditional 

autoregressive (CAR) models were fitted on district-aggregated monthly malaria cases 

reported in the DHIS2. Our results provide important information to National Malaria Control 

Programme (NMCP) for evidence-based decision making in malaria control programming in 

view of changing climatic conditions to sustain achieved gains and achieve elimination.  

5.2 Materials and methods 

5.2.1 Settings 

Uganda is located in East Africa on a large plateau in the Great Lakes region. Its altitude 

varies between 1,300–1,500 m above sea level, and the mean annual temperature ranges from 
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16°C to 30°C. It has a diverse vegetation, mainly comprising of tropical rain forests in the 

South, wooded savanna in Central, and semi-arid in the North and North East regions. There 

are two rainy seasons; the first during March–May and the second from August to November. 

The population is 37 million, of which 18% are children < 5 years (Uganda Bureau of 

Statistics, 2016). The country is divided into 112 districts and covers an area of 241,039 

square kilometers. 

Malaria transmission rates are some of  the highest in the world (Talisuna et al., 2015). 

Transmission is stable in 95% of the country. Low and unstable transmission is mainly 

present in the highland areas (>2500m) (Ministry of Health, 2014). Malaria is responsible for 

33% of outpatient visits and 30% of hospitalized cases. Anopheles gambiae s.l. is the 

dominant vector species followed by Anopheles funestus which is commonly found in areas 

having permanent water bodies with emergent vegetation. These two vectors are strongly 

endophagic and endophilic that is, feeding indoors and resting on walls after feeding, which 

makes indoor vector control approaches effective. Health facilities in Uganda are classified 

and graded according to their service scope and size of population they serve in the following 

(descending) order; hospitals, Health Center (HC) IVs, HCIIIs and HCIIs. By December 

2017, there were a total of 5,418 health facilities; 160 hospitals, 197 HCIVs, 1,289 HCIIIs and 

3,772 HCIIs (President’s Malaria Initiative, 2017). 

5.2.2 Data sources 

5.2.2.1 Malaria cases 

Data on confirmed malaria cases by RDT was extracted from the DHIS2 covering the period 

of January 2013 to December 2017. The data were reported by two age groups: children < 5 

years and individuals >= 5 years. Malaria incidence in each age group was estimated by 

dividing the district aggregated malaria cases by the district age group-specific population. 

The population size for each year was based on data from the national housing and population 
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census of 2014 adjusted for the annual population growth rate (Uganda Bureau of Statistics, 

2016).  

5.2.2.2 Environmental/climatic, interventions, socio-economic, and malaria treatment 

seeking behavior data 

Environmental and climatic data were downloaded from remote sensing sources for the period 

October 2012–December 2017. Day Surface Temperature (LSTD) and night Land Surface 

Temperature (LSTN), Normalized Difference Vegetation Index (NDVI), and land cover were 

extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) at a spatial 

resolution of 1 x 1 km
2
 and a temporal resolution of 8 days, 16 days and annually, 

respectively. Dekadal rainfall data was obtained from the US early warning and 

environmental monitoring system at 8 x 8 km
2
 resolution (Early Warning and Environmental 

Monitoring Program, 2016). Altitude was based on digital elevation model obtained from the 

Shuttle Radar Topographic Mission (SRTM). The ESRI’s ArcGIS 10.2.1 software was used 

to estimate distances between major water bodies and district centroids 

(http://www.esri.com/). 

Data on insecticide treated net (ITN) coverage and ACT use were obtained from the 

Malaria Indicator Survey (MIS) of 2014–15 (Uganda Bureau of Statistics and ICF 

International, 2015) and from the Uganda Demographic Health Survey (DHS) of 2016. Indoor 

residual spraying (IRS) was not included in the analysis because of its sparse distribution in 

the majority of the districts owing to the targeted implementation strategy used in its 

deployment (National Malaria Control Program, 2016).  

Due to lack of monitoring and evaluation data outside the survey periods, we assumed 

that intervention  coverage of 2013-14 is the same as that of  2014-15 (reported in MIS 2014-

15) and the coverage of 2017 as similar to that of 2016 (available in DHS 2016). Six ITN 

coverage indicators were defined from the MIS 2014–15 and DHS 2016, corresponding to 
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three ownership and three use indicators defined by Roll Back Malaria (RBM) namely; 

proportion of households with at least one ITN, proportion of households with at least one 

ITN for every two people, proportion of population with access to an ITN in their household, 

proportion of the population that slept under an ITN the previous night, proportion of children 

under five years old who slept under an ITN the previous night, proportion of existing ITNs 

used the previous night. Also, the wealth score computed from household possessions 

captured in the MIS 2014–15 and DHS 2016 questionnaires was used as a socio-economic 

proxy. A wealth index of five quintiles was generated from the score following the DHS 

methodology (Vyas and Kumaranayake, 2006).  

We also considered that malaria cases seen at formal health facilities in Uganda are a 

fraction of the total cases due to low health seeking behavior (Ndyomugyenyi et al., 2007). 

We obtained the proportion of malaria treatment seeking behavior reported in the most recent 

MIS survey (Uganda Bureau of Statistics and ICF International, 2015).  

However, since the survey was designed to provide precise estimates at the country 

and regional level, we used a Bayesian CAR binomial model to obtain district-level estimates 

of the health-seeking behavior (Banerjee and Fuentes, 2012).  Model formulation details are 

given in the Appendix.  

5.2.3 Statistical analysis 

Time series plots were employed to describe inter and intra-annual variation of malaria 

incidence and temporal variation of environmental and climatic factors during the study 

period.  

Biological considerations of the malaria transmission cycle suggest that there is elapsing lag 

period between weather suitable for malaria transmission and occurrence of cases which is 

related to effects on the duration of the sporogony cycle i.e. the development of the parasite 

within the mosquito (Teklehaimanot et al., 2004a). We took this into account by creating 
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lagged variables for the time varying predictors (i.e. rainfall, NDVI, day LST and night LST). 

In particular, three analysis variables were constructed for each climatic factor by averaging 

its values over the following periods: the current and the previous month (lag1), the current 

and the two previous months (lag2) and the current and the three previous months (lag3). 

Categorical variables were generated based on tertiles of the variables’ distributions since the 

relationship between malaria and environmental predictors is not always linear (Bayoh and 

Lindsay, 2003).  

Bayesian spatio-temporal negative binomial models (Banerjee et al., 2014) were fitted 

on the incidence data. Random effects at district level were used to model spatial correlation 

via CAR formulations (Banerjee and Fuentes, 2012). Temporal correlation was taken into 

account by monthly random effects modeled by autoregressive processes. Models were 

adjusted for seasonality by including Fourier terms as a mixture of two cycles with periods of 

six and 12 months, respectively (Rumisha et al., 2013). A yearly trend was fitted to estimate 

changes of the incidence rates over time. Bayesian variable selection implemented within the 

spatio-temporal model was applied to identify the most important ITN coverage indicator and 

lagged climatic factors with their functional form (i.e. linear or categorical). For ITN 

indicators, a categorical variable was introduced into the model taking values 1 to 7, (six 

values corresponding to the six indicators and the seventh defining the absence of all 

indicators from the model). The probabilities of the above values were treated as parameters 

and used to estimate the inclusion probabilities of the ITN indicator into the model, i.e. 

inclusion probability. Similarly, for each climatic factor, we introduced a categorical variable 

taking three values corresponding to its absence, or inclusion into the model in linear or 

categorical form. An ITN indicator or climatic factor was selected if its posterior inclusion 

probability was above 50%. 
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Intervention and wealth score data from the MIS and DHS, summarized at district 

level, may not provide reliable estimates of the coverage because the survey is designed to 

produce reliable estimates at country and regional levels. Therefore, we estimated coverage at 

district level by fitting Bayesian CAR binomial and Gaussian models for intervention and 

wealth score data, respectively. The details of the model formulation are given in the 

appendix. 

The effects of climatic changes on the decline in malaria incidence between 2013 and 

2017 were modeled as a function of the difference in climatic conditions between the 

respective years adjusted for the effects of intervention coverage, socio-economic status and 

health seeking behavior in 2017. 

Models were implemented in OpenBUGS (Lunn et al., 2000) and parameters were 

estimated using Markov chain Monte Carlo (MCMC) simulation. We ran a two-chain 

algorithm for 200 000 iterations with an initial burn-in period of 5,000 iterations. 

Convergence was assessed by visual inspection of trace and density plots and analytically by 

the Gelman and Rubin diagnostic (Raftery and Lewis, 1992). Parameters were summarized by 

their posterior medians and 95% Bayesian Credible Intervals (BCIs). Maps of estimated, 

smoothed incidence rates were produced in ESRI’s ArcGIS 10.2.1 (http://www.esri.com/). 

Details on model formulations are provided in the appendix. 

5.3 Results 

5.3.1 Descriptive results 

Overall, a total number of 71,664,624 malaria cases were reported from all health facilities 

during January 2013–December 2017. On annual basis, the number of reported cases declined 

from 16,364,773 in 2013 to 13,635,391 in 2014 and to 12,967,905 in 2015, but then increased 

in 2016 and 2017 to 15,016,031 and 13,680,523, respectively. This represents annual declines 

of 17%, 21%, 8% and 16% in 2014, 2015, 2016 and 2017, respectively compared to 2013. 

http://www.esri.com/
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Throughout the years during the study period, malaria incidence in children < 5 years was 

almost twice higher compared to individuals ≥5 years (Figure 5.1a).  

Temporal trends of incidence in both age groups depict a strong bi-annual seasonal 

pattern with two peaks during April–June and October–December (Figure 1a). Similarly, 

climatic conditions are characterized by a bi-modal seasonality trend that is heavily 

influenced by the rainfall pattern marked by two rainfall seasons during March–May and 

August–November (Figure 5.1b).  

The peaks of the rainfall seasons occur in the months of April and November for the 

first short and second longer season, respectively. Monthly rainfall increased from an average 

of 98.3mm in 2013 to 115.3mm in 2015, then decreased to 91.9mm in 2016 and increased 

again to 102.1mm in 2017. NDVI declined steadily from an average of 0.59 in 2013 to 0.55 in 

2017, a reduction of 0.04 (6.8%).  

Monthly LSTD and LSTN increased steadily from an average of 27.7°C and 17.3°C in 

2013 to 29.8°C and 18.3°C in 2017 –an average increase of 2.1°C and 1°C, respectively 

(Figure 5.1c).  

The temporal variation of incidence of both age groups was closely related with that of 

climatic factors. Increases in land surface temperature initially favored high incidence in both 

age groups, but very high temperatures were followed by declines in incidence in both age 

groups. Also, increases and decreases in rainfall had a reciprocal though delayed influence on 

incidence in both age groups (Figure 5.1a).  

Correlation between monthly crude incidence rates and climatic averages differed in 

the two age groups in terms of magnitude and direction (Table 5.1). For example, malaria 

incidence is significantly positively correlated with rainfall of up to three months lags in 

children <5 years. For individuals ≥5 years, the correlation is positive, though only significant 

for lags of month one and month three. Correlation between incidence and NDVI for both age 
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groups is significantly positive for the shorter lags (months 0–2), but significantly negative for 

longer lags. 
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Figure 5.1: Monthly time series; (a) malaria incidence in children <5 years and 

individuals >= 5 years, (b) mean rainfall, (c) mean temperatures (LSTD and LSTN) 
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Table 5.1: Pearson correlation between mean monthly crude malaria incidence and 

climatic averages 

Climatic factor <5 years >=5 years 

Lag0 Lag1 Lag2 Lag3 Lag0 Lag1 Lag2 Lag3 

Rainfall 0.05* 0.17* 0.18* 0.06* 0.01 0.14* 0.17 0.05* 

LSTD 0.02 0.03* 0.14* 0.26* -0.07* -0.07* 0.04* 0.18* 

LSTN 0.23* 0.27* 0.31* 0.33* 0.02 0.06* 0.10* 0.12* 

NDVI 0.05* 0.06* -0.01 -0.10* 0.13* 0.15* 0.08* -0.02 

*statistically significant 

 

5.3.2 Model-based analysis 

5.3.2.1 Variable selection 

Bayesian variable selection (Table 5.2) identified the same predictors for both age groups 

with the exception of the lag effects of rainfall. Regarding the climatic proxies with the lag 

effects, the highest inclusion probabilities were estimated for the categorical forms of LSTN 

(average of current and 3 previous months), LSTD (current and previous month), NDVI 

(current and 2 previous months) and rainfall (current and 3 previous months for children 

<5yrs; current and previous month for older individuals). Among ITN indicators, the 

proportion of households with at least one ITN was selected.  

Table 5.2: Posterior inclusion probabilities for climatic covariates and ITN coverage 

indicators 

Indicator  Probability of inclusion 

(%)  

<5 years >=5 years 

Climatic factors   

Rainfall   

Rain_01 0.0 0.0 

Rain_01* 0.0 100.0 

Rain_012 0.0 0.0 

Rain_012* 0.0 0.0 

Rain_0123 0.0 0.0 

Rain_0123* 100.0 0.0 

NDVI   

NDVI_01 0.0 0.0 

NDVI_01* 0.0 0.0 

NDVI_012 0.0 0.0 

NDVI_012* 100.0 100.0 

NDVI_0123 0.0 0.0 

NDVI_0123* 0.0 0.0 

LSTD   

LSTD_01 0.0 0.0 

LSTD_01* 100.0 100.0 

LSTD_012 0.0 0.0 

LSTD_012* 0.0 0.0 

LSTD_0123 0.0 0.0 
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LSTD_0123* 0.0 0.0 

LSTN   

LSTN_01 0.0 0.0 

LSTN_01* 0.0 0.0 

LSTN_012 0.0 0.0 

LSTN_012* 0.0 0.0 

LSTN_0123 0.0 0.0 

LSTN_0123* 100.0 100.0 

Altitude   

Altitude 100.0 100.0 

Altitude* 0.0 0.0 

Distance to water bodies   

Distance to water bodies 0.0 0.0 

Distance to water bodies* 100.0 100.0 

Interventions    

Proportion of households with at least one 

ITN  
100.0 100.0 

Proportion of households with at least one 

ITN for every two people  

0.0 0.0 

Proportion of population with access to an 

ITN in their household  

0.0 0.0 

Proportion of the population that slept 

under an ITN the previous night  

0.0 0.0 

Proportion of children under five years old 

who slept under an ITN the previous night  

0.0 0.0 

Proportion of existing ITNs used the 

previous night  

0.0 0.0 

*Categorical 

In bold: variables with highest inclusion probability that included in the final Bayesian spatio-temporal model 

 

5.3.2.2 Effects of climatic factors on spatio-temporal changes in malaria incidence 

Table 5.3 presents spatio-temporal model-based estimates of the effects of climatic factors on 

spatio-temporal changes in malaria incidence adjusted for interventions, socio-economic and 

health seeking confounders. The results were similar in both age groups. Increases in rainfall, 

NDVI, and LSTD were associated with an increase in malaria incidence. However, very high 

LSTD (above 29°C) was related with an incidence decrease. Altitude and distance to water 

bodies were negatively related to malaria incidence. More so, malaria burden was higher in 

crop cultivated areas compared to other forms of land cover. 

A 100% increase in the proportion of households having at least one ITN was 

associated with a decline in malaria incidence in children < 5 years by 73% (95%BCI: 62–

79%). The effect of ITN coverage was also protective in older individuals but not statistically 

important. A 100% increase in the proportion of fevers treated with ACTs was related with a 

reduction in incidence by 30% (95%BCI: 22–38%) in children < 5 years and by 46% 
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(95%BCI: 37–58%) in older individuals. Socio-economic status was an important predictor of 

malaria incidence in both age groups, but the effect was much stronger in the younger group. 

The incidence is lower in those from higher socio-economic levels. A higher proportion of 

malaria treatment seeking behavior was related with a reduction in spatio-temporal trends of 

incidence in both age groups. 

Table 5.3: Effects of climatic factors on the spatio-temporal patterns of malaria 

incidence estimated from Bayesian negative binomial models adjusted for interventions, 

socio-economic and health seeking behaviour proxies 

Predictor Children less than 5 

years 

Individuals 5 years and 

above 

IRR (95%BCI) IRR (95%BCI) 

Rainfall (mm) (<=77.0) 1 1 

   77.1-126.0 1.09 (1.07, 1.13)* 1.08 (1.05, 1.10)* 

   126.1-354 1.13 (1.11, 1.17)* 1.09 (1.06, 1.13)* 

NDVI (<=0.55) 1 1 

   0.56-0.66 1.13 (1.10, 1.16)* 1.18 (1.14, 1.23)* 

   0.67-0.81 1.19 (1.14, 1.24)* 1.28 (1.21, 1.32)* 

LSTD (0C)  (<=26.5) 1 1 

   26.6-29.3 1.06 (1.03, 1.09)* 1.04 (1.01, 1.06)* 

   29.4-44.6 0.94 (0.88, 0.98)* 0.94 (0.92, 0.97)* 

LSTN (0C) (<=17.1) 1 1 

   17.2-18.9 1.00 (0.93, 1.11) 1.00 (0.97, 1.04) 

   19.0-23.3 1.00 (0.94, 1.10) 1.00 (0.95, 1.05) 

Altitude  0.78 (0.72, 0.79)* 0.90 (0.86, 0.94)* 

Land cover (Others) 1 1 

   Crops 1.07 (1.04, 1.10)* 1.10 (1.05, 1.17)* 

Distance to water bodies (km)( <=16.9) 1 1 

   17.0-45.8 1.01 (0.93, 1.06) 0.87 (0.83, 0.90)* 

   46.0-152.6 0.86 (0.83, 0.90) 0.89 (0.80, 0.91)* 

Interventions§    

  ITNs 0.27 (0.21, 0.38)* 1.19 (1.00, 1.20) 

  ACTs 0.70 (0.62, 0.78)* 0.54 (0.42, 0.63)* 

Interactions    

Rainfall(mm) (<=77.0)*ITNs 1 1 

  (77.1-126.0)*ITNs 1.04 (0.67, 1.60) 1.19 (0.78, 1.79) 

  (126.1-354)*ITNs 0.79 (0.50, 1.26) 0.82 (0.52, 1.28) 

NDVI (<=0.55) *ITNs 1 1 

   (0.56-0.66)*ITNs 1.60 (1.03, 2.46)* 1.84 (1.21, 2.80)* 

   (0.67-0.81)*ITNs 3.20 (1.88, 5.43)* 3.08 (1.85, 5.13)* 

LSTD (0C)  (<=26.5)*ITNs 1 1 

   (26.6-29.3)*ITNs 1.47 (1.05, 2.31)* 1.82 (1.18, 2.82)* 

   (29.4-44.6)* ITNs 1.70 (1.03, 2.80)* 2.46 (1.52, 3.97)* 

Rainfall(mm) (<=77.0)* ACTs 1 1 

  (77.1-126.0)*ACTs 1.00 (0.76, 1.30) 1.10 (0.85, 1.42)* 

  (126.1-354)*ACTs 1.11 (0.82, 1.49) 1.26 (0.95, 1.67)* 

NDVI (<=0.55) *ACTs  1 1 

   (0.56-0.66) * ACTs 1.12 (1.07, 1.48)* 1.05 (1.01, 1.37)* 

   (0.67-0.81) * ACTs 1.26 (1.13, 1.72)* 1.18 (1.06, 1.59)* 

LSTD (0C)  (<=26.5) *ACTs 1 1 

   (26.6-29.3) * ACTs 1.18 (1.05, 1.55)* 1.37 (1.06, 1.77)* 

   (29.4-44.6) * ACTs 0.91 (0.68, 0.97)* 1.24 (0.92, 1.66) 

Wealth index (Poorest) 1 1 

   Poorer 0.82 (0.77, 0.88)* 1.09 (0.99, 1.14) 

   Middle 0.71 (0.67, 0.74)* 0.86 (0.83, 0.90)* 
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Predictor Children less than 5 

years 

Individuals 5 years and 

above 

IRR (95%BCI) IRR (95%BCI) 

   Richer 0.70 (0.68, 0.76)* 0.83 (0.78, 0.87)* 

   Richest 0.78 (0.73, 0.86)* 0.91 (0.79, 0.95)* 

Malaria treatment seeking behavior 0.47 (0.40, 0.53)* 0.54 (0.45, 0.60)* 

Temporal trend † Median (95%BCI) Median (95%BCI) 

  2014 -0.02 (-0.03, -0.01) -0.18 (-0.21, -0.16) 

  2015 -0.04 (-0.06, -0.04) -0.39 (-0.42, -0.37) 

  2016 -0.03 (-0.05, -0.02) -0.15 (-0.20, -0.10) 

  2017 -0.09 (-0.12, -0.07) -0.33 (-0.40, -0.29) 

Seasonal parameters   

Amplitude    

   Annual 0.11 (0.04, 0.17) 0.31 (0.19, 0.36) 

   Semi-annual 0.14 (0.07, 0.18) 0.08 (0.03, 0.11) 

Phase  (months)    

   Annual 2.57 (1.76, 5.90) 2.40 (1.90, 5.63) 

   Semi-annual 2.83 (1.19, 5.81) 1.76 (0.73, 4.64) 

Spatio-temporal parameters   

   Spatial variance 1.42 (1.06, 1.81) 1.27 (0.97, 1.66) 

   Temporal variance 18.15 (12.21, 26.06) 18.61 (12.44, 27.06) 

   Temporal correlation 0.94 (0.90, 0.98) 0.98 (0.95, 0.99) 

Dispersion 6.84 (6.61, 7.09) 7.95 (7.68, 8.24) 

* Statistically important effect 

† versus 2013 

§ Coverage was modeled on the scale of 0 to 1, therefore one unit increase in coverage corresponds to a 100% increase 

which implies a shift of the current by 100% .  

 

Results also suggested important interactions between interventions with land surface 

temperature and NDVI.  

Temporal variation in incidence was much higher than the spatial variability. The 

amplitude values indicate that malaria incidence variation was almost twice as high in 

children less than 5 years compared to older individuals. The seasonality phase suggests that 

the peak of the malaria incidence occurs during February to May, in both age groups.  

5.3.2.3 Space-time patterns of malaria incidence  

Maps of smoothed malaria incidence estimated from the Bayesian models are presented in 

Figures 5.2 and 5.3 for the first month of each quarter and study year (i.e. January, April, July, 

and October).  The high malaria burden districts throughout the study period were located in 

the northern and eastern Uganda. In children < 5 years, the burden of malaria was very high in 

2013 with most districts having a monthly burden of more than 75 cases per 1000 persons. In 

2014, a reduction in malaria burden is visible across the country with the exception of the 
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northern districts during the third quarter. In 2015, incidence further declined across all 

districts, reaching an overall district average of fewer than 55 cases per 1000 persons, and for 

the first time, the most of the high burdened districts in the northern region experienced a 

burden of fewer than 100 cases per 1000 persons. However, in 2016 a resurgence was 

observed, especially in the North East region. The highest reduction occurred in 2017, with 

the majority of the districts carrying a burden of 25-50 cases per 1000 persons. 

Individuals ≥ 5 years had a much lower and a more homogeneous distributed malaria 

burden throughout the country with minor differences among districts. In 2013, incidence 

rates in individuals ≥ 5 years varied between 25–50 cases per 1000 persons per month across 

all districts. A decline was observed through 2014 and 2015. However, incidence rates in this 

age group also increased in 2016 but declined in 2017 as was the case for children less than 5 

years.  
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Figure 5.2: Bayesian model-based space-time patterns of malaria incidence in children 

<5 years 
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Figure 5.3: Bayesian model-based space-time patterns of malaria incidence in 

individuals >=5 years 



Chapter 5: Interactions between climatic changes and intervention effects  

 

 

126 
 

5.3.2.4 Effects of climatic changes on malaria incidence decline  

Table 5.4 presents estimates of the effects of climatic changes on the decline in malaria 

incidence between 2013 and 2017.  

Malaria incidence decreased by over 38% and over 20% in children <5 years and individuals 

≥5 years, respectively. In the same period, rainfall, LSTD, LSTN increased by an average of 

3.7mm, 2.2°C and 1.0°C, respectively, while NDVI decreased by 6.8%. The increase in 

LSTD and decrease in NDVI during the study period were associated with a decrease in the 

reduction of malaria incidence rates in both age groups. 

However, the effect of rainfall increase between 2013 and 2017 was associated with an 

increase in malaria incidence rates reduction, although not statistically important. The 

coverage of malaria interventions and the socio-economic status in 2016 (year with the most 

recent data) were included in the model to adjust for the effects of climatic changes. ITNs and 

ACTs were associated with an increase in the reduction of incidence rates of 19% (95%BCI: 

18%–29%) and 78% (95%BCI: 67%–84%), respectively in children <5 years, and 34% 

(95%BCI: 28%–66%) and 34% (95%BCI: 28%–66%) in older individuals, respectively.  

More so, higher socio-economic status and proportion of malaria treatment seeking behavior 

were related to a statistically important increase in the decline of malaria incidence rates 

across all ages. 
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Table 5.4: Posterior estimates for the adjusted effect of climatic changes on malaria 

incidence rates decline obtained from the Bayesian spatio-temporal negative binomial 

model 

Covariate <5 years >=5 years 

IRR (95%BCI)  IRR (95%BCI) 

Climatic changes    

Difference in rainfall 1.01 (0.98, 1.04) 1.00 (0.97, 1.03) 

Difference in LSTD 0.96 (0.92, 0.98)* 0.93 (0.90, 0.96)* 

Difference in LSTN 0.98 (0.96, 1.02) 0.99 (0.97, 1.02) 

Difference in NDVI 0.95 (0.92, 0.98)* 0.94 (0.91, 0.98)* 

Interventions    

ITN 1.20 (1.06, 1.48)* 1.79 (1.53, 1.99)* 

ACTs 1.35 (1.13, 1.60)* 1.24 (1.06, 1.45)* 

Proportion of malaria treatment 

seeking behavior 

1.32 (1.12, 1.54)* 1.60 (1.39, 1.84)* 

Wealth score 1.05 (1.02, 1.08)* 1.11 (1.08, 1.14)* 

Other parameters   

   Spatial variance 1.15 (0.86, 1.52) 1.35 (1.00, 1.81) 

   Temporal variation 5.27 (2.12, 10.51) 5.73 (2.54, 11.06) 

   Dispersion 4.91 (4.54, 5.27) 6.01 (5.58, 6.50) 

*statistically important effect 
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5.4 Discussion  

We analyzed health facility, malaria case data, reported through the DHIS2 in Uganda to 

determine the effects of climatic factors on the spatio-temporal patterns of the disease and to 

assess the effects of climate changes on the changes in malaria incidence during 2013-2017, 

taking into account the effects of disease interventions.  

Our findings have indicated that incidence initially declined steadily during 2013-2015 

followed by a resurgence in 2016. In the same period, there was a steady increase in rainfall, 

day and night land surface temperature, and a steady decrease in NDVI, suggesting a more 

favorable environment for disease transmission. The temporal trends in incidence observed in 

Uganda are in line in with global malaria trends (World Health Organisation, 2017). The 

initial decline has been attributed to the effect of the scaled-up malaria interventions (Bhatt et 

al., 2015a), whereas the resurgence has been explained by  insecticide resistance (Talisuna et 

al., 2015), migration of non-immune populations such as refugees (Coldiron et al., 2017), and 

by the increasing role of climate change on malaria transmission  (Ngarakana-Gwasira et al., 

2016).  

Increases in land surface temperatures are in line with warming experienced in the past 

years at global and regional levels (Root et al., 2003).  This increase in temperatures is 

consistent with observations that indicate a changing in the geographical distribution of 

malaria in the country beyond endemic zones to epidemic-prone due to warmer temperatures 

providing suitable conditions for transmission (Lindblade et al., 2000). However, a likely 

implication of this finding is the possible development of a stronger immunity by the naïve 

populations living in these areas triggered by an increased malaria exposure which will result 

in a reduction of fatal outcomes (Färnert et al., 2015).  

The positive association observed between malaria incidence and day land surface 

temperature, rainfall and NDVI is in line with other studies that have demonstrated the 
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influence of the environment on malaria transmission (Siraj et al., 2014) and the increase of 

malaria transmission with temperature (Gullan and Cranston, 2014) and rainfall (Githeko and 

Ndegwa, 2001a; Kynast-Wolf et al., 2006).  Temperature influences the survival of the 

mosquito vector and the duration of the development of the vector and the parasite (Gullan 

and Cranston, 2009). Rainfall contributes to the creation of breeding sites for mosquitoes and 

to an increase in humidity which favors vector development (Thomson et al., 2006). 

However, the relationship of malaria with rainfall is non-linear. Excess of rainfall is 

associated with a reduction in malaria (Lindsay et al., 2000)  as it may destroy mosquito 

larvae (Paaijmans et al 2007) and  reduce  temperature (Teklehaimanot et al., 2004a).  

The decline in malaria incidence is associated with extreme day land surface temperature 

which reduces mosquito survival (>35
o
C) (Bayoh and Lindsay, 2003; Christiansen-Jucht et 

al., 2015a; Teklehaimanot et al., 2004a). The negative effect of altitude on malaria incidence 

is also expected since higher altitudes experience lower temperatures which make the malaria 

transmission slower as mosquito development cycle and the sporogony phase take much 

longer (Bødker et al., 2003). The inverse relationship between malaria incidence and distance 

to water bodies is in line with other studies that indicate a higher risk closer to breeding sites 

(Dlamini et al., 2015). The higher incidence of malaria in majorly cropping areas compared to 

forested areas may be explained by land transformation and poor agricultural practices in the 

former which may lead to the creation of shallow ditches and trenches that collect water when 

it rains and become suitable breeding sites for mosquitoes (Klinkenberg et al., 2004). These 

results are in agreement with findings from other studies that employed spatio-temporal 

analyses of routine health facility malaria data in Zimbabwe (Mabaso et al., 2006) and in 

Yunan Province, China (Clements et al., 2009), but differ with results reported from a study 

in northern Malawi (Kazembe, 2007) that reported a positive effect of altitude. Also, NDVI, a 

measure of vegetation is a direct response of rainfall which explains its positive relationship 
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with malaria incidence. A similar relationship has been described elsewhere (Liu and Chen, 

2006; Midekisa et al., 2012; Thomson et al., 1999). Results of the spatio-temporal model 

regarding the relationship between the climatic factors and malaria incidence are confirmed 

by the spatial model which directly quantifies the effects of climatic changes on the decline in 

malaria incidence between 2013 and 2017. Other studies have also reported evidence of 

malaria sensitivity to climate and indicated important associations between climatic changes 

and malaria burden changes; in Ghana (Klutse et al., 2014), Nigeria (Weli and Efe, 2015) and 

Kenya (Alonso et al., 2011). Indeed in Uganda, prolonged periods of unusually high rainfall, 

and warmer temperatures experienced from longer drought seasons have been shown to alter 

the intensity, distribution, and duration of malaria transmission (Killian et al., 1999). At the 

global level our findings agree with those of several studies that reported a linkage between 

climatic change and exacerbation of malaria risk (Alonso et al., 2010; Caminade et al., 2014; 

Endo et al., 2017; Ermert et al., 2013), and a World Bank report indicating an increase in 

susceptibility to malaria as temperatures increase (International Bank for Reconstruction and 

Development and World Bank, Washington, DC, 2012). The implication of these finding is 

that malaria distribution may increase both in space and time as a result of climate change 

spreading to areas that previously were malaria free (Tanser et al., 2003).  

The interactions of intervention effects with land surface temperature and NDVI on 

the spatio-temporal patterns of malaria incidence suggest a varying impact of interventions on 

malaria burden in different climatic conditions. This finding will inevitably call for changes in 

malaria programming in Uganda in view of the evidence of the changing climate.  

Notably, interventions had a much stronger positive effect on the decline of malaria incidence 

in both age groups compared to climatic changes further underlining the importance of 

interventions in malaria control and their potential to mitigate adverse effects of climate 

change on malaria. The effectiveness of interventions in influencing malaria reduction in 
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Uganda is further enhanced by government policies of interventions scale-up through mass 

distribution of ITNs to achieve universal coverage and the formulation of guidelines 

supporting their smooth deployment such as one that recommends the use of ACTs for 

malaria treatment and prohibits the use of other antimalarial drugs in public health facilities 

(National Malaria Control Program, 2016). Our findings are consistent with results reported 

from other studies that reported a strong effect of interventions on malaria risk reduction 

(Bhattarai et al., 2007; Müller et al., 2006; O’Meara et al., 2010; Snow and Marsh, 2010).  

More so, socio-economic status and proportion of health seeking behavior were all 

associated with an increase in odds of a reduction in malaria incidence. The improving 

socioeconomic conditions and a high rate of urbanization particularly in the central and 

southwestern regions coupled with an increase in health facility coverage probably explain the 

decline in malaria incidence and their mitigation effect on the influence of climatic change on 

malaria incidence during 2013-2017. The importance of socioeconomic factors on malaria 

burden cannot be overstated as has been shown in several studies (Feachem and Sabot, 2008; 

Greenwood et al., 2008; Protopopoff et al., 2009). Indeed the adverse effects of climatic 

factors on spatio-temporal trends of malaria incidence are highest in the northern and eastern-

based districts where poverty is very high, urbanization is low and other socio-economic 

indicators poor (Yeka, 2012). Similarly, the disparities in malaria distribution in the most-at-

risk group of children less than 5 years neither reflects that of environmental factors nor 

malaria interventions, but they mirror socioeconomic and health access inequalities between 

the north/east and south/central regions of the country (Ssempiira et al., 2017a).  

A limitation in our study is the non-availability of monthly malaria interventions data 

and of intervention data during the years 2013 and 2017. Due to lack of monitoring and 

evaluation data outside the survey periods, we assumed that intervention  coverage of 2013-14 

is the same as that of  2014-15 (reported in MIS 2014-15) and the coverage of 2017 as similar 



Chapter 5: Interactions between climatic changes and intervention effects  

 

 

132 
 

to that of 2016 (available in DHS 2016). Although, this assumption holds for ITNs since they 

have an average lifespan of three years (Ngonghala et al., 2016), it may necessarily not be true 

for ACTs. Furthermore, malaria transmission in Uganda is perennial, therefore we assumed 

that the coverage estimated from the survey data at the district level reflects the coverage for 

that district throughout the year. These assumptions may affect the conclusions from our 

findings. 

5.5 Conclusions  

Our study has elucidated inter and intra-annual relationships between climatic factors and 

malaria incidence, estimated the space-time burden of estimates, and demonstrated the effects 

of climatic changes on the decline of malaria incidence across all ages during 2013-2017. 

Malaria incidence has declined during 2013-2017, despite a major resurgence in 2016. Results 

have attested to a significant interplay between climatic and intervention effects and indicated 

that climatic factors have had a detrimental effect on malaria reduction gains achieved 

through accelerated interventions scale-up. To mitigate adverse climatic effects on malaria, 

NMCP should create synergies with the National Meteorological Authority (NMA) and 

harmonize interventions deployments after taking into account forecasts produced by the 

latter of the short-term weather and long-term climatic conditions.  This should lead to the 

development of a Malaria Early Warning System (MEWS) to forecast malaria outbreaks in 

the event of adverse climatic events. Additional funding will be required for incorporating 

climatic mitigation plans in malaria programs, designing and operationalizing MEWS to 

achieve effective and sustainable malaria control in Uganda.  
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5.6 Appendix 

Statistical model formulation 

A1. Modeling the effects of climatic factors on spatio-temporal trends of incidence 

Let 𝑌𝑖𝑗𝑡 be the number of malaria cases reported in calendar month t=1,…,12,  year j=1,…,5 

and district 𝑖 = 1, … ,112.  𝑌𝑖𝑗𝑡 is assumed to follow a negative binomial distribution, 

𝑌𝑖𝑗𝑡~𝑁𝐵(𝑝𝑖𝑗𝑡, 𝑟) where 𝑝𝑖𝑗𝑡 = 𝑟/(𝑟 + 𝜇𝑖𝑗𝑡) where   𝑟  is the dispersion parameter and 𝜇𝑖𝑗𝑡 is 

the average number of monthly malaria cases in the district. The model with a log link 

function is described below: 

log(𝜇𝑖𝑗𝑡) = log(𝑁𝑖𝑗𝑡) + 𝛼 + 𝑋𝑇 𝛽 + 𝑓𝑇(𝑍𝑗) + 𝑓𝑠(𝑡) + 𝜖(𝑗−1)∗12+𝑡 + 𝜔𝑖, where 𝑁𝑖𝑗𝑡 is the 

offset district-month specific population, α is the intercept, 𝛽 is a vector of regression 

coefficients associated with the vector of predictors 𝑋𝑖𝑡 (interventions, environmental, socio-

economic status). 𝜖(𝑗−1)∗12+𝑡 are monthly random effects modeled by a first order 

autoregressive process with temporal variance 𝜎𝑡
2.  𝑓𝑇(𝑍𝑗) and 𝑓𝑠(𝑡) are parameters modeling 

the time trend and seasonality, 𝑓𝑇(𝑍𝑗) describes an annual trend with the year 𝑍 treated as 

categorical covariate,  𝜔𝑖 is the spatial random effect for district i. The seasonal pattern 𝑓𝑠(𝑡) 

was captured by a mixture of two harmonic cycles with periods 𝑇1 =6 and 𝑇1 = 12 months, 

respectively, that is,  𝑓𝑠(𝑡) = ∑ 𝐴𝑗𝑐𝑜𝑠(
2𝜋

𝑇𝑗
𝑡 − 𝜑𝑗)2

𝑗=1 = ∑ {𝑎𝑗 ∗ 𝑐𝑜𝑠 (
2𝜋

𝑇𝑗
𝑡) + 𝑏𝑗 ∗ 𝑠𝑖𝑛(

2𝜋

𝑇𝑗
𝑡)}2

𝑗=1 , 

where 𝑡  is time in months.  𝐴𝑗 is the amplitude  of the 𝑗𝑡ℎ cycle and estimates the incidence 

peak by the expression 𝐴𝑗 = √(𝑎𝑗
2 + 𝑏𝑗

2). 𝜑𝑗is the phase which is the point where the peak 

occurs estimated as 𝜑𝑗 = arctan (𝑎𝑗/𝑏𝑗), 𝑎𝑗 and 𝑏𝑗 are model parameters. 𝜔𝑖, i=1,…,112, are 

modeled via a conditional autoregressive (CAR) process - each 𝜔𝑖 conditional on the neighbor 

𝜔𝑗  follows a normal distribution with mean equal to the average of neighboring districts 𝜔𝑗  

and variance inversely proportional to the number of neighbor districts 𝑛𝑖, that is; 
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𝜔𝑖|𝜔𝑗~𝑁 (γ ∑  𝜔𝑗 ,𝑙∈𝛿𝑖

𝜎𝜔
2

𝑛𝑖
), where γ quantifies the amount of spatial correlation present in the 

data, 𝜎𝜔
2  

measures the spatial variance. 𝜔𝑖 and 𝜔𝑗 are adjacent districts in the set of all 

adjacent districts 𝛿𝑖 of district 𝑖, and 𝑛𝑖 are the number of adjacent districts.   

Following Bayesian model formulation, prior distributions were specified for all model 

parameters. For the regression coefficients a non-informative normal prior distribution was 

assumed, a Gamma distribution with mean 1 and variance 100 was adopted for the parameter, 

r. 𝜖𝑡 =2, ..., 59 are error terms considered to be temporally correlated and modeled via an 

autoregressive process of first order i.e., 𝜖𝑡~𝐴𝑅(1), assuming that 𝜖1~𝑁 (0,
𝜎2

1−𝜌2
 ) and 

𝜖𝑡~𝑁(𝜌𝜖𝑡−1, 𝜎2 ), 𝑡 = 2, … ,59, where 𝜌 is the autocorrelation parameter that quantifies the 

degree of dependence between successive months. We assumed a Uniform prior distribution 

for 𝜌, i.e. 𝜌~𝑈[−1,1]. Since the above specification conditions on the first observation, we 

assigned it a student t prior distribution with one degree of freedom.  An inverse gamma prior 

distribution with mean 10 and variance 100 was considered for 𝜎𝜔
2  and 𝜎𝑡

2 , i.e.  

𝜎𝜔
−2, 𝜎𝑡

−2~𝐺𝑎(0.1,0.001). 

A2. Modeling the effects of climatic changes on the changes in malaria incidence  

The change in malaria incidence between 2013 and 2017 was modeled on the log scale as a 

function of the difference in climatic conditions between the two time points, the effects of 

intervention coverage, socioeconomic status, and the proportion of malaria treatment seeking 

behavior in 2017, that is, 

log(𝐼𝑅)𝑖𝑡
′ =log(𝐼𝑅𝑖𝑡)+𝛃(𝐗𝒊𝒕

′ − 𝐗𝐢𝐭)
T + 𝛂𝚿𝒊𝒕

′ + 𝜖𝑡 + 𝜔𝑖     
, where 𝐼𝑅𝑖𝑡  and 𝐼𝑅′𝑖𝑡 are the malaria 

incidence rate in 2013 and 2017, respectively, log(𝐼𝑅𝑖𝑡) = log(𝜇𝑖𝑡)-log(𝑁𝑖𝑡),  𝜇𝑖𝑡   is the 

average number of monthly malaria cases in district 𝑖, and month t. 𝐗𝐢𝐭 and  𝐗′𝐢𝐭, are climatic 

covariates in 2013 and 2017 respectively and 𝚿𝒊𝒕
′  are the non climatic covariates in 2017. The 

coefficients 𝛃  and 𝛂  represent the magnitude of the effect associated with an increase in the 
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rates of decline in malaria incidence from 2013 to 2017, 𝜖𝑡 are monthly random effects 

modeled by a first order autoregressive process with temporal variance 𝜎𝑡
2 and 𝜔𝑖 are spatial 

random effects as described in the section above.  

A3. Estimating district-level interventions coverage, socioeconomic status, and health 

seeking behavior 

Data for intervention coverage, wealth index and health seeking behavior were only available 

at regional level from the MIS 2014-15 and DHS 2016 surveys. This is because the 

population based surveys are designed to give precise estimates only at regional and country 

levels. A Conditional Autoregressive (CAR) model was developed to estimate district level 

estimates of formulated with a binomial distribution for intervention coverage and health 

seeking behavior indicators, and a Gaussian distribution for the wealth score, a measure of 

socioeconomic status. Slightly fewer than all the 112 districts had clusters selected in the 

original sample, therefore to fit the CAR models the districts with missing data were assigned 

a median value of the districts located within a specific region.  The models were formulated 

as follows; 

Let Y𝑖 be the number of households that possessed at least one ITN in district 𝑖 = 1, … ,112, 

and  Ni, the total number of households sampled and interviewed in district i. We assume that 

Y𝑖 follows a Binomial distribution, that is, Y𝑖|Ni, π(i)~Bin(Ni, π(i))  ∀i = 1, … ,112, where 

π(i) is the proportion of households with at least one ITN in district i. A Bayesian CAR 

model to estimate district-level ITN coverage was formulated as follows; 

logit(π(i)) = β0 + 𝜔𝑖, where β0 is a constant, and 𝜔𝑖, i=1,…,112, are modeled via a CAR 

process. Each 𝜔𝑖 conditional on the neighbor 𝜔𝑗  follows a normal distribution with mean 

equal to the average of neighboring districts 𝜔𝑗  and variance inversely proportional to the 

number of neighbor districts𝑛𝑖, that is; 𝜔𝑖|𝜔𝑗~𝑁 (γ ∑  𝜔𝑗,𝑙∈𝛿𝑖

𝜎𝜔
2

𝑛𝑖
), where γ quantifies the 

amount of spatial correlation present in the data, 𝜎𝜔
2  

measures the spatial variance. 𝜔𝑖 and 𝜔𝑗 
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are adjacent districts in the set of all adjacent districts 𝛿𝑖 of district 𝑖, and 𝑛𝑖 are the number of 

adjacent districts. Following standard formulation of Bayesian regression models, we 

assumed vague priors; A non-informative Gaussian distributions with mean 0 and variance 

10
2
 for β0, that is, β0~N(0, 10

2
). An inverse gamma prior distribution with mean 10 and 

variance 100 was considered for 𝜎𝜔
2 , i.e.  .  𝜎𝜔

−2~𝐺𝑎(0.1,0.001). 

Similar formulations were applied for ACTs, malaria treatment seeking behavior, and 

household asset index, however the latter was modeled by a first stage Gaussian distribution.  

A4. Bayesian variable selection 

To choose the most important ITN coverage indicator that explains the maximum variation in 

malaria incidence, Bayesian variable selection using stochastic search was implemented 

separately for ITN indicators, and environmental and climatic factors. For ITN indicators, a 

categorical variable   Xp was introduced into the model and assigned values 1 to 7 

representing exclusion of the variable from the model (Ip = 1), and inclusion of the six 

indicators as follows; proportion of existing ITNs used the previous night (Ip = 2), 

proportion of children under five years old who slept under an ITN the previous night 

(Ip = 3), proportion of the population that slept under an ITN the previous night (Ip = 4), 

proportion of households with at least one ITN for every two people (Ip = 5), proportion of 

households with at least one ITN (Ip = 6), and proportion of population with access to an 

ITN in their household (Ip = 7). Also, for lagged climatic predictors, a categorical variable 

  Yp was created with values 1 to 7 introduced into the model to represent exclusion of the 

variable from the model (Ip = 1), and inclusion of different variables as follows; lag1 

(continuous) (Ip = 2), lag1 (categorical) (Ip = 3), lag2 (continuous) (Ip = 4), lag2 

(categorical) (Ip = 5), lag3 (continuous) (Ip = 6) and lag3 (categorical) (Ip = 7) For non-

lagged climatic factors that is, altitude and distance to water bodies, a categorical variable   Zp 
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with three values was defined representing exclusion from model (Ip = 0), inclusion of 

continuous form (Ip = 1), and inclusion of categorical form (Ip = 2). In the latter scenario, 

Ip has a probability mass function ∏ π
j

δj(Ip)2
j=1 , where πj denotes the inclusion probabilities of 

functional form j (j=1,2,3) so that ∑ πj = 13
j=1   and δj(. )  is the Dirac function, δj(Ip) =

{
1, if Ip = j

0, if Ip  ≠ j
 .  A spike and slab prior distribution was assumed for the regression coefficients. 

In particular for the coefficient βp of the corresponding variable Xp, we assumed 

βp~δ1(Ip)N(0, τp
2) + (1 − δ1(Ip)) N(0, ϑ0τp

2), that is a non-informative prior for βp if Xp is 

included in the model (slab) and an informative normal prior shrinking βp to zero (spike) if 

Xp is excluded from the model, setting ϑ0 to be a large number, e.g, 10
5
. Similarly, 

 βp,l~δ2(Ip)N(0, τp,l
2 ) + (1 − δ2)N(0, ϑ0τp,l

2 ) was assumed for the scenario of selecting one 

out of six indicators/variables or exclusion of the variable. The coefficients    {βp,l}l=1,..,7
   

corresponding to inclusion of 𝑋𝑝, p=1,…,7 in the model. For inclusion probabilities, a non-

informative Dirichlet distribution was adopted with hyper parameter α = (1,1,1,1,1,1,1)T, 

that is, 𝛑 = (π1, π2, π3, π4, π5, π6, π7)T~Dirichlet(7, α). We also assumed inverse Gamma 

priors for the precision hyper parameters τp
2 and τp,l

2 , l = 1, … ,7.
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Abstract 

Introduction 

Malaria is the leading cause of morbidity and mortality in Uganda despite the declining 

burden since the year 2000 when disease control was intensified. Although the effects of 

malaria interventions on the disease burden have been a subject of several investigations, 

there is a paucity of evidence for the contribution of health system performance on the 

disease. In this study, we assess the role of health facility readiness in Uganda on severe 

malaria outcomes (i.e. deaths and severe cases) among lower level facilities (HCIIIs and 

HCIIs). 

Methods 

Severe malaria outcome data was extracted from the Health Management Information System 

(HMIS) for the period of January - December 2013. General service and malaria-specific 

readiness indicators were obtained from the 2013 Uganda Service Delivery Indicator (USDI) 

survey. Bayesian geostatistical negative binomial models using stochastic search variable 

selection were fitted to the severe malaria outcomes to select the most important facility 

readiness indicators. Multiple Correspondence Analysis (MCA) applied on the selected 

indicators was used to construct a composite facility readiness scores and a categorical index 

based on multiple factorial axes. Geostatistical negative binomial models were employed to 

assess the effect of facility readiness index on the severe malaria outcomes.  The analysis was 

carried out separately for HCIIIs (sub-county) and HCIIs (parish) facility levels.   

Results 

Malaria-specific readiness was achieved in only one quarter of the facilities. It was eight times 

higher in HCIIIs than in HCIIs and two times higher in private compared to government 

managed facilities. The composite readiness score explained 48% of the variation in the 

original indicators for HCIIIs compared to 23% explained by the first axis alone. Similar 

results were obtained for HCIIs (i.e. 46% versus 27%, respectively). Mortality rate was 64% 
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(IRR=0.36, 95%BCI: 0.14-0.61) and 68% (IRR: 0.32, 0.12-0.54) lower in the medium and 

high readiness groups, respectively compared to the low readiness one. Similarly, the 

incidence rates of severe malaria cases were lower in the medium and high readiness groups 

for both, HCIIIs and HCIIs.   

Conclusion 

A composite readiness index created by multiple factorial axes of MCA is more informative 

and consistent than the one based on the first axis. In Uganda, higher facility readiness is 

associated with a reduced risk of severe malaria outcomes in lower level facilities. However, 

this readiness remains low mainly due to severe absence of basic amenities and stock-out of 

essential medicines.  

 

Key words: Composite facility readiness index, severe malaria outcomes, multiple 

correspondence analysis, Uganda service delivery indicator survey, Health management 

information system, Bayesian geostatistical models 
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6.1 Introduction 

The global malaria burden has declined in the last decade with the incidence of cases and 

malaria-related deaths reducing by 18% and 48%, respectively during 2000-2015 (Bhatt et al., 

2015b). Nevertheless, the disease remains a major public health problem and accounts for 

over 210 million cases and 420,000 deaths annually, affecting mainly the sub-Saharan Africa 

(World Health Organization, 2016).  

In Uganda, malaria is a major leading cause of hospitalization and death, responsible 

for 30-50% of all health facility outpatient visits, 15-20% hospital admissions, and over 20% 

of hospital deaths  (National Malaria Control Program, 2016). Malaria burden has also 

reduced in the last few years with malaria incidence declining by over 75% between 2000 and 

2015 (National Malaria Control Program, 2016). Although the contribution of control 

interventions towards malaria decline in Uganda has been investigated (Ssempiira et al., 

2017c), there is a paucity of evidence for the role health system strengthening has had on this 

success.  This may be attributed mainly to the lack of direct measurements of health systems 

strengthening (WHO, 2001), and partly to the weak routine data collection systems in 

developing countries (Yeka et al., 2012). The rollout of the District Health Information 

System version 2 (DHIS2) in Uganda has facilitated electronic reporting of routinely collected 

health facility data and has led to improvements in data quality (Kiberu et al., 2014).    

Health system strengthening can be measured indirectly using proxies of its six 

building blocks, that is, governance, health workforce, health financing, health technologies, 

health information and service delivery (The malERA Consultative Group on Health Systems 

and Operational, 2011). Service delivery is primarily concerned with immediate outputs of a 

national health system (Backman et al., 2008). The proxy measure for service delivery is 

health facility readiness defined in terms of general service and service-specific readiness 

indicators (WHO, 2001) estimated from health facility surveys.  
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General service readiness refers to the overall capacity of health facilities to provide 

health services and is measured by the availability of tracer items in five domains, namely; 

basic amenities, basic equipment, standard precautions for infection prevention, diagnostic 

capacity and essential medicines (World Health Organization, 2015b). Service-specific 

readiness, on the other hand, refers to the capability of health facilities to provide a service of 

minimum acceptable standards, and  is measured by the availability of the following tracer 

items necessary for the provision of a particular service; trained staff, service delivery 

guidelines, equipment, diagnostic capacity, medicines and commodities (World Health 

Organization, 2015b).   

Although measurements of facility readiness is crucial for health planning and 

decision making, the implementation of nationally representative facility surveys in Uganda 

has suffered from lack of funds. The most recent survey namely, the Uganda Service Delivery 

Indicator (USDI) was conducted in 2013 and it was supported by the World Bank (Wane and 

Martin, 2013). USDI provides a set of metrics for benchmarking service delivery performance 

in health and education and assesses the quality of basic health services and of services 

related to primary education. It adopted health facility assessment tools used in service 

provision assessments designed by the World Health Organization (WHO) (World Health 

Organization, 2010). A high number of health facility readiness indicators, corresponding to 

tracer items can be generated from these surveys, each measuring a different attribute of 

readiness but no single indicator is sufficient to summarize all aspects of facility readiness. 

Therefore, a need arises to develop a single index of readiness that represents the vast array of 

readiness indicators characterizing health system functioning and its effect on health 

outcomes.  

          Facility readiness indices have been developed in assessment surveys conducted in 

several countries including Nigeria (Gage et al., 2016a; Oyekale, 2017), Ghana (Boyer et al., 

2015), Haiti (Wang et al., 2010), Tanzania (Jackson et al., 2015), Brazil (Gouws et al., 2005), 
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Malawi and Nepal (Leslie et al., 2017), Kenya, Namibia and Rwanda (Kruk et al., 2016) to 

assess the effects of health facility readiness on health outcomes.  In most of these studies, the 

index was developed using Principal Component Analysis (PCA) designed for summarizing 

continuous variables (Howe et al., 2012), despite the fact that the data collected from the 

facility assessments surveys are mainly binary in nature. Multiple correspondence analysis 

(MCA) is the most appropriate technique for this type of categorical data (Amek et al., 2015; 

Boyer et al., 2015; Traissac and Martin-Prevel, 2012). A few studies that have employed 

MCA to construct a facility readiness index using the first factorial axis to represent overall 

facility readiness (Ayele et al., 2014; Kollek and Cwinn, 2011). However, the use of this  

single-axis index is unlikely to fulfill the  Global First Axis Ordering Consistency (FAOC-G) 

property (Asselin, 2009) which means that the score monotonically increases/decreases for all 

indicators. The FAOC-G property ensures that the absence of any readiness indicator from a 

facility will contribute to a lower readiness score than its presence. Failure of the FAOC-G 

will result to inconsistent and meaningless readiness score. Asselin (2009) (Asselin, 2009) 

proposed a composite index based on more than one MCA axis to remedy the construction of 

inconsistent poverty scores. To our knowledge, composite MCA scores have not been used in 

constructing indices measuring health systems performance. 

 In this study, we linked USDI survey data of 2013 with severe malaria outcomes data 

reported in the Health Management Information System (HMIS) to assess the effects of 

facility readiness on severe malaria outcomes.  A composite readiness score was created by 

exploiting more than one factorial axis of the MCA of the most relevant general service and 

malaria specific readiness indicators identified through geostatistical variable selection. 

Results from this study will inform the Ministry of Health (MoH) and other stakeholders on 

the overall readiness of lower level health facilities in Uganda to deliver malaria services, and 

the role of this effect on the risk of severe malaria outcomes. 
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6.2 Methods  

6.2.1 Settings 

Uganda is located in the SSA region and ranks among the top 15 countries that contribute to 

90% of the global malaria burden. Malaria transmission is stable and perennial in 95% of the 

country, but the entire population is at risk (Uganda Bureau of Statistics, 2016). The 

remaining 5% of the country comprises of unstable and epidemic-prone transmission areas 

situated in highlands of the south-western, and areas around the mountains Rwenzori in the 

mid-western region and Elgon in mid-eastern. Plasmodium falciparum is the dominant 

parasite species and the most dangerous with the highest case-fatality rate. The primary vector 

is Anopheles gambiae s.l. which breeds in temporary stagnant water, while An. funestus is the 

second most important vector and breeds mainly in permanent water bodies. 

6.2.2 National health system 

The health system in Uganda is decentralized with the Ministry of Health responsible for 

policy formulation, quality assurance, resource mobilization, capacity development, technical 

support, and provision of nationally coordinated services such as epidemic control, 

coordination of health research and monitoring and evaluation of overall sector performance. 

Health care services are delivered through a tiered structure of facilities consisting of hospitals 

and Health Centers (HC) IV, HCIII, HCII and HCI  at district, Health Sub-District (HSD), 

sub-county, parish and village levels, respectively (Uganda Ministry of Health, 2014). 

Hospitals are further classified into district, regional referral, national referral serving district, 

region and country-level populations. HCIVs, HCIIIs, and HCIIs serve populations at the 

county, sub-county and parish level, respectively. The HCI is the lowest level and first point 

of contact. It is headed by village health teams (VHT)/community medicine distributors who 

are largely volunteers, targeting smaller populations of 1000 people.  
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6.2.3 Data sources 

6.2.3.1 Severe malaria outcomes 

Data on severe malaria outcomes was extracted from the Health Management Information 

System (HMIS) for the period January – December 2013. Two severe malaria outcomes were 

defined, namely, the cumulative number i) of malaria deaths and ii) of severe malaria cases 

leading to hospitalization during 2013. Both outcomes were considered for the analyses of 

HCIII data, but only the latter for HCIIs due to the limited scope as diagnosed severe cases 

are referred to HCIIIs and other higher level facilities. 

6.2.3.2 Statistical methods  

Data from the USDI survey were  used to construct readiness indicators following standard 

definitions (World Health Organization, 2015b). In particular, we created i) general service 

readiness indicators for the five domains (i.e. basic amenities, basic equipment; standard 

precautions for infection prevention; diagnostic capacity and essential medicines) and ii) 

malaria-specific indicators. Readiness indicators were defined as binary variables, taking the 

value ‘1’ if the tracer item was available at the facility and ‘0’ otherwise. Availability and 

functionality of items were confirmed through direct observation by the interviewer prior to 

data recording in the questionnaire. Furthermore, domain readiness indicators for each of the 

five domains of the general service readiness and for the domain of malaria services were 

defined as availability of all tracer items that belong to a particular domain. A facility was 

assigned 1 if all tracer items constituting a domain were found at the facility and 0 otherwise.  

Bayesian geostatistical negative binomial models using stochastic search variable 

selection were fitted to the severe malaria outcomes to select the most important facility 

readiness indicators.  For each readiness indicator, a Bernoulli variable was introduced with 

Bernoulli probability corresponding to the inclusion of the indicator in the model (details are 

provided in the Appendix). Spatial correlation was taken into account by assuming a Gaussian 

process on health facility locational random effects. The models were fitted separately on 
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severe malaria and malaria mortality for HCIII facilities and on severe malaria for HCII 

facilities.   

MCA was applied to most important 𝐾 readiness indicators selected with posterior inclusion 

probabilities of at least 50% to construct a facility readiness score.  For each indicator, two 

binary variables were created corresponding to the presence and absence of the 

indicator/tracer from the facility. A readiness score, 𝐹𝑖
𝑎 =

1

𝐾
∑ ∑ 𝑊𝑗𝑘

𝑎,𝑘𝐼𝑗𝑘,𝑖
𝑘1

𝑗𝑘=0
𝐾
𝑘=1 , where 𝐼𝑗𝑘,𝑖

𝑘  

is a binary variable 0/1 taking the value 1 when facility 𝑖  has the category 𝑗𝑘 for the indicator 

𝑘 and the weights 𝑊𝑗𝑘

𝑎,𝑘
 are the corresponding column standard coordinates on the 𝑎𝑡ℎ 

factorial axis. Typically, a score is defined on the first factorial axis, i.e., 𝑎 = 1. Following the 

approach proposed by Asselin (2009) we defined the composite readiness score 𝐹𝑖 by 

𝐹𝑖 =
1

𝐾
∑ ∑ ∑ 𝛿(𝑘 − 𝑎)𝑊𝑗𝑘

𝑎,𝑘𝐼𝑗𝑘,𝑖
𝑘𝐿

𝑎=1𝑗𝑘∈{0,1}
𝐾
𝑘=1 , where 𝐿 is the number of factorial axes used in 

the composite score and 𝛿(𝑘 − 𝑎) is the Dirac delta function which takes the value 1 when 

the 𝑘𝑡ℎ indicator is defined on the 𝑎𝑡ℎ factorial axis and 0 otherwise, that is, 𝛿(𝑘 − 𝑎) = 1 if 

𝑘 = 𝑎 and 𝛿(𝑘 − 𝑎) = 0 if 𝑘 ≠ 𝑎. Identification of the factorial axis that will represent the 𝑘 

indicator depends on a discrimination measure calculated for each indicator and axis, 

measuring the contribution of the indicator to the total variance explained by the axis. To 

improve interpretation of the score we translate the weights so that the absence category 

(𝑗𝑘 = 0) of the 𝑘 indicator to receive a zero weight and the presence one (𝑗𝑘 = 1) to receive a 

strictly positive one representing the gain in the readiness increase measured by the axis 𝑎 

when a facility 𝑖 acquires the 𝑘 tracer. Therefore, the 𝑊𝑗𝑘

𝑎,𝑘
 in 𝐹𝑖 is replaced by 𝑊𝑗𝑘

+𝑎,𝑘
 where 

𝑊0
+𝑎,𝑘

=0 and 𝑊1
+𝑎,𝑘

 = 𝑊1
𝑎,𝑘

- 𝑊0
𝑎,𝑘

 . Details on this procedure are provided in the Appendix.  

A separate composite score was derived for each health facility level due to differences in 

mandate and service scope across levels. A readiness index was created from the readiness 

score as a categorical variable with three levels for both HCIIIs and HCIIs based on the 

distribution of the composite score. 
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Descriptive statistics, that is, frequencies, proportions and chi-square tests were used 

to summarize and compare readiness indicators and scores by facility level and other health 

facility characteristics. Geostatistical Bayesian negative binomial models were fitted 

separately by facility level to assess the effect of health facility readiness on the severe 

malaria outcomes. The models were adjusted for facility location (rural/urban), management 

authority (Government/private) and distance to district headquarters.  

Descriptive analysis and MCA were conducted in STATA (Stata Technical Support, 

2015) and Bayesian models were fitted in OpenBUGS (Lunn et al., 2000) using Markov 

Chain Monte Carlo (MCMC) simulation. Parameters were summarized by their posterior 

medians and 95% Bayesian Credible intervals (BCIs).   Modeling details are provided in the 

Appendix.  

6.3 Results 

6.3.1 Health facility characteristics  

A total of 250 health facilities participated in the health facility assessment survey but only 

207 (82.8%) reported in the HMIS consistent and complete data on severe malaria outcomes 

during January-December 2013. Six out of the 207 were higher level facilities (i.e. hospitals 

and HCIVs) and were excluded due to insufficient sample size.  The characteristics of the 201 

facilities included in the analysis are presented in Table 6.1. Most facilities were HCIIIs, 

government-managed, rural-based, and were located more than 10km from district 

headquarters.  The average travel time from the district headquarters to a facility using public 

means of transport was an hour. HCIIIs offered outpatient consultations on average seven 

days a week, 15 hours a day.  HCIIs operated six days a week, 12 hours per day. A total of 

87,719 severe malaria outcomes were reported from the 201 facilities during the study period, 

86,848 (99%), of which were severe malaria cases and 871 were malaria-related deaths. The 

majority (61,642) of outcomes were reported by HCIIIs. The number of severe malaria cases 

and malaria-related deaths was twice as high in children less than 5 years than in older 
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individuals. The distribution of severe malaria outcomes is shown in Figure 6.1 and suggests a 

higher burden in areas of the north and western parts of the country compared to the central 

areas. 

Table 6.1: Health facility characteristics 

Characteristic  Total 

(N=201) 

n (%) 

HCIIIs 

(N=105) 

n (%) 

HCIIs 

(N=96) 

n (%) 

Managing authority    

    Government 146 (72.6) 76 (72.4) 71 (74.0) 

    Non-government 55 (27.4) 29 (27.6) 25 (26.0) 

Location type    

    Rural  166 (82.6) 83 (79.1) 83 (86.5) 

    Urban 35 (17.4) 22 (21.0) 13 (13.5) 

Distance to district headquarters     

    0-10 km 52 (25.9) 28 (26.7) 24 (25.0) 

    >10 km 149 (74.1) 77 (73.3) 72 (75.0) 

Region     

    Central  47 (23.4) 23 (21.9) 24 (25.0) 

    Eastern  51 (25.4) 29 (27.6) 22 (22.9) 

    Kampala 10 (5.0) 5 (4.8) 5  (5.2) 

    Northern 33 (16.4) 22 (21.0) 11 (11.5) 

    Western 60 (29.9) 26 (24.8) 34 (35.4) 

    

 Mean (sd) Mean (sd) Mean (sd) 

  Days per week facility is open  6.4 (1.0) 6.7 (0.9) 6.0 (1.1) 

  Hours per day facility is open  12.9 (6.4) 14.1 (6.9) 11.6 (5.5) 

  Travel time from facility to district  

headquarters (hours) 

1.1 (1.1) 1.0 (1.1) 1.2 (0.9) 

Proportion of malaria deaths* % % % 

   All ages 0.98 1.14 0.61 

   < 5 years 1.09 1.13 0.96 

   >=5 years 0.85 1.16 0.31 

*of the total severe malaria outcomes 

 

  



Chapter 6: Assessing the effects of health facility readiness on severe malaria 

 

150 
 

 

 

 

  

 

(a) (b) 

 

 

 

 

 

Figure 6.1: Geographical distribution of severe malaria outcomes in Uganda in 2013; (a) 

mortality, (b) severe cases 

 

General service and malaria specific readiness indicators 

General service and malaria specific readiness indicators for HCIIIs and HCIIs are presented 

in Table 6.2 by domain along with their posterior inclusion probabilities.  

Results show that basic amenities readiness was achieved in only three HCIII facilities 

and none in HCII. Access to adequate sanitation and availability of emergency transport were 

the most and least available tracer items in this domain. Urban-based facilities had a 

significantly higher basic amenities readiness compared to rural facilities (p-value=0.023) 

(Table A6.1, Appendix).  

Fifty percent of facilities (irrespective of level, HCIII and HCII) achieved basic 

equipment readiness. This readiness was significantly higher in HCIIIs, urban-located, private 

managed and in Central region facilities but did not differ by the proximity of a facility to 

district headquarters (Table A6.1, Appendix).   

Standard precautions readiness was attained in close to five percent of the facilities, 

despite of high availability of most of the single tracer items. The commonest standard 
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precaution items found at facilities were disposable syringes and needles, sharps container 

box, and disposable gloves, while the least available item was incinerator for final disposal of 

sharps.  Standard precautions readiness was significantly higher among private managed (P-

value=0.007) and urban facilities (p-value=0.002). 

Diagnostic capacity readiness was met in only one-fifth of facilities. This readiness 

was more than five times higher in HCIIIs compared to HCIIs, two times more in urban than 

rural facilities. Diagnostics readiness was higher in private-managed facilities and highest in 

the Northern region but did not differ by the distance to district headquarters (Table A1, 

Appendix). The majority of the facilities had malaria RDTs but very few had urine dipstick 

used in measuring glucose levels. An average of three diagnostic tests were available in 

HCIIIs but only one in HCIIs.  

Facility readiness for essential medicines was achieved in less than five percent in 

HCIII and in none of HCII facilities. On average, only three out of nine medicines assessed 

were available at both types of facilities. Availability of individual essential medicines was 

significantly higher in HCIIIs. Oral rehydration solution and zinc sulphate tablets were among 

the most available medicines, whereas magnesium sulphate and oxytocin injections were the 

least available. Private facilities, situated in urban places and close to the district headquarters 

had a significantly higher readiness for essential medicines.  
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Table 6.2: General service, malaria specific readiness indicators and posterior inclusion 

probabilities 

Readiness indicator HCIIIs 

N=105 

HCIIs 

N=96 

Readiness  

n (%) 

Inclusion probability  Readiness  

n (%) 

Inclusion 

probability  

Severe 

malaria 

cases 

(%) 

Malaria 

deaths 

(%) 

Severe 

malaria cases 

(%) 
General service 

Basic amenities† 3 (2.9)   0 (0.0)  

  Uninterrupted power supply 45 (42.9) 47.0 37.3 32 (33.3) 34.1 

  Improved water source inside or  

  within source of facility 

37 (35.2) 68.0* 67.8* 21 (21.9) 44.0 

  Access to adequate sanitation  

  facilities for clients  

94 (89.5) 42.0 44.3 88 (91.7) 43.6 

  Communication equipment (phone or  

  short wave radio)  

22 (21.0) 41.3 43.4 6 (6.3) 43.0 

  Access to computer with  

  email/internet access  

21 (20.0) 38.7 37.9 8 (8.3) 43.0 

  Emergency transportation  16 (15.2) 34.4 39.8 5 (5.2) 60.8* 

Basic equipment† 63 (60.0)   38 (39.6)  

  Adult scale  87 (82.9) 61.1* 59.2* 70 (72.9) 34.4 

  Child scale  89 (84.8) 38.8 39.2 70 (72.9) 60.6* 

  Thermometer  88 (83.8) 42.4 42.6 75 (78.1) 56.5* 

  Stethoscope  98 (93.3) 39.7 44.1 80 (83.3) 32.4 

  Blood pressure apparatus  91 (86.7) 42.6 39.4 77 (80.2) 33.2 

Standard precautions for infection 

prevention† 

5 (4.8)   4 (4.2)  

  Sterilization equipment 29 (27.6) 36.3 39.3 7 (7.3) 40.4 

  Appropriate storage of sharps waste  101 (96.2) 40.9 42.2 93 (96.9) 75.7* 

  Safe final disposal of sharps  15 (14.3) 39.1 40.9 10 (10.4) 42.6 

  Disposable syringes with disposable    

  Needles 

101 (96.2) 46.9 40.5 93 (96.9) 50.7* 

  Disposable gloves  98 (93.3) 55.6* 64.0* 94 (97.9) 51.6* 

Diagnostic capacity† 34 (32.4)   6 (6.3)  

  Malaria RDTs  83 (79.1) 70.5* 72.8* 72 (75.0) 38.0 

  Blood glucose  52 (49.5) 39.2 27.2 12 (12.5) 57.0* 

  HIV diagnostic capacity  89 (84.8) 47.7 51.0* 37 (38.5) 30.3 

  Urine dipstick 74 (70.5) 25.8 39.5 14 (14.6) 40.0 

Essential medicines† 5 (4.8)   0 (0.0)  

  Amoxicillin syrup/suspension or    

  dispersible tablet  

24 (22.9) 45.0 50.7* 17 (17.7) 61.0* 

  Ampicillin powder for injection  72 (68.6) 50.5* 53.2* 7 (7.3) 45.1 

  Ceftriaxone injection  41 (39.1) 63.5* 56.0* 60 (62.5) 32.5 

  Gentamicin injection 52 (49.5) 52.2* 56.2* 21 (21.9) 38.2 

  Magnesium sulphate injectable  58 (55.2) 55.9* 58.6* 5 (5.2) 46.4 

  Oral rehydration solution  87 (82.9) 31.9 39.2 74 (77.1) 38.0 

  Oxytocin injection  58 (55.2) 57.3* 53.3* 5 (5.2) 41.4 

  Zinc sulphate tablets, dispersible  

  tablets or syrup  

77 (73.3) 62.9* 54.7* 64 (66.7) 41.4 

Malaria service†  45 (42.9)   8 (8.3)  

  Microscopy  81(77.1) 63.8* 65.5* 16 (16.7) 74.2* 

  Artemisinin Combination Therapies  

  (ACTs) 

88 (83.8) 38.4 38.0 86 (89.6) 39.3 

  Fancidar 94 (89.5) 34.6 43.8 77 (80.2 28.6 

  Artesunate 5 (4.8) 45.4 41.7 2 (2.1) 63.9* 
†Domain readiness indicators are defined as availability of all tracer items belonging to the domain 

*Posterior probability of inclusion >50% 
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Malaria-specific readiness was achieved in only one quarter of the facilities. It was 

eight times higher in HCIIIs and two times more in private managed compared to HCIIs and 

government managed facilities, respectively. However, readiness did not differ by location, 

region, and distance from district headquarters (Table A6.1, Appendix).  In spite of the overall 

low malaria readiness, the proportion of facilities with RDTs and ACTs was high but varied 

with regions.  

             Geostatistical variable selection results showed that the same indicators were 

equally important for explaining variation in severe malaria cases and malaria-related deaths 

for HCIII facilities. More so, for HCIIIs, the essential medicines domain and for HCIIs the 

standard precautions for the infection prevention domain had the highest number of indicators 

related to malaria outcomes. Availability of RDTs, and appropriate storage of sharps waste 

were statistically important for HCIIIs and HCIIs, respectively. The disposable gloves were 

the only indicator selected in both HCIIIs and HCIIs types of facilities.  

             Geostatistical variable selection results showed that the same indicators were equally 

important for explaining variation in severe malaria cases and malaria-related deaths for 

HCIII facilities. More so, for HCIIIs, the essential medicines domain and for HCIIs the 

standard precautions for the infection prevention domain had the highest number of indicators 

related to malaria outcomes. Availability of RDTs, and appropriate storage of sharps waste 

were statistically important for HCIIIs and HCIIs, respectively. The disposable gloves were 

the only indicator selected in both HCIIIs and HCIIs types of facilities. 

6.3.3 Facility readiness score and index   

MCA was applied on the readiness indicators selected from the variable selection procedure 

to obtain a readiness score. Since the stochastic variable selection model identified the same 

set of indicators in HCIIIs as being important for both severe malaria outcomes, a single 

readiness score was created at this level.  
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Tables 6.3 and 6.4 display the standard coordinates of readiness indicators obtained 

from the first seven and five factorial axes for HCIIIs and HCIIs, respectively. Results show 

that for HCIIIs on the first factorial axis, a subset of five indicators met the FAOC-G 

requirement in the positive direction, while a second subset of six indicators met this 

requirement in the negative direction. Therefore, there are two subsets of indicators that are 

inconsistent and one subset should have been discarded, leading to a loss of information if we 

had constructed the score using the first factorial axis. For HCIIs, all but one indicator met the 

FAOC-G requirement. However, four of the selected indicators possess higher discrimination 

power on axes other than the first one.  

The composite facility readiness score explained 47.6% of the total variation in the 

indicators from HCIIIs compared to 23% explained by the score based on the first factorial 

axes (Figure A6.1, Appendix). Similarly, for HCIIs, the variation explained by the composite 

score was 45.8% which is almost two times higher than that explained by the first axis, i.e., 

26.6%. Furthermore, our approach of including in the score construction the indicators 

identified by the variable selection gave a more informative score than the score we would 

have constructed from all indicators. In particular, the latter for HCIII explained 27.9% 

(composite) and 12.2% (first factorial axis) of the total variation. For HCII, these figures were 

26.8% and 16.6%, respectively. Therefore, we relied the analysis on the composite score 

based on the subset of selected indicators. 

The indicators with the highest weights in the composite score (Tables A6.2 and A6.3 

in the Appendix) are availability of disposable gloves and malaria Rapid Diagnostic Test 

(RDTs) kits (for HCIIIs), availability of disposable gloves, single use auto-disable syringes, 

and appropriate storage of sharps waste (for HCIIs). The composite scores show a nearly 

normal distribution and a weakly normal distribution with long tails for HCIIIs and HCIIs, 

respectively (Figure A6.2, Appendix).  The regional average facility readiness score was 
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higher in the central and southern located regions and lower in the eastern and northern areas 

of the country for both HCIIIs and HCIIs (Figure 6.2). 

 

Table 6.3:  Standard coordinates of readiness indicators on the first seven factorial axes 

(HCIIIs) 

Indicator Catego

ry 

Frequency 

distribution 

Factorial axesa 

1 2 3 4 5 6 7 

Improved water 

source  

Yes 37 (35.2) 0.77 b 1.32 0.91 1.52 0.16 3.18 1.96 

No 68 (64.8) -0.42 -0.72 -0.50 -0.83 -0.09 -1.73 -1.06 

Adult scale  Yes 87 (82.9) 0.05 -0.80 0.50 -0.34 -0.07 0.19 0.39 

No 18 (17.1) -0.26 3.86 -2.42 1.64 0.37 -0.94 -1.90 

Disposable gloves  Yes 98 (93.3) 0.12 0.05 -0.24 -0.60 0.16 0.40 -0.29 

No 7 (6.7) -1.69 -0.67 3.32 8.33 -2.18 -5.61 4.08 

Malaria diagnostic 

capacity  

Yes 83 (79.1) -0.23 0.11 -0.66 0.06 -1.23 0.15 0.18 

No 22 (20.9) 0.86 -0.40 2.50 -0.23 4.66 -0.56 -0.69 

Ampicillin powder 

for injection  

Yes 72 (68.6) -0.83 -0.25 -0.82 0.06 -0.31 -0.11 0.52 

No 33 (31.4) 1.80 0.55 1.79 -0.13 0.68 0.23 -1.15 

Ceftriaxone 

injection  

Yes 41 (39.1) 0.07 -1.99 -0.93 1.56 1.74 -0.26 0.11 

No 64 (60.9) -0.04 1.28 0.62 -1.00 -1.12 0.16 -0.07 

Gentamicin 

injection 

Yes 52 (49.5) 0.23 -1.94 0.43 -0.53 -1.04 0.70 0.28 

No 53 (50.5) -0.23 1.90 -0.42 0.52 1.02 -0.69 -0.27 

Magnesium 

sulphate injectable  

Yes 58 (55.2) -1.69 0.18 0.99 -0.23 0.100 0.19 -0.21 

No 47 (44.8) 2.09 -0.22 -1.22 0.28 -0.12 -0.23 0.26 

Oxytocin injection  Yes 58 (55.2) -1.69 0.18 0.99 -0.23 0.10 0.19 -0.21 

No 47 (44.8) 2.09 -0.22 -1.22 0.28 -0.12 -0.23 0.26 

Zinc sulphate 

tablets 

Yes 77 (73.3) -0.55 0.08 -0.75 -0.54 0.76 0.07 1.14 

No 28 (26.7) 1.50 -0.22 2.05 1.49 -2.09 -0.19 -3.14 

Microscopy  Yes 81(77.1) -0.50 -0.36 -0.46 0.66 0.13 0.83 -0.85 

No 24 (22.9) 1.69 1.21 1.57 -2.21 -0.43 -2.80 2.88 

Variation explained by selected factorial scores 23.0% 14.0% 11.3% 10.2% 9.9% 7.9% 7.6% 

High-lighted in bold are weights of indicators from the factorial axis selected to contribute to the composite score  

a Results are limited to the first seven axes as there was no additional information gain beyond axis # 7 

 bGroup of indicators meeting the FAOC-G in positive direction (shaded grey) and those meeting FAOC-G in negative direction  (not 

shaded) 
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Table 4: Standard coordinates of readiness indicators on the first five factorial axes 

(HCIIs) 

Indicator Category Frequency 

distributio

n 

Factorial axes
a
 

1 2 3 4 5 

Emergency transportation  Yes 5 (5.2) 6.43
b
 0.07 2.01 0.36 2.33 

No 91 (94.8) -0.35 -0.004 -0.11 -0.02 -0.13 

Child scale  Yes 70 (72.9) 0.25 1.08 0.42 -0.28 1.14 

No 26 (27.1) -0.67 -2.89 -1.09 0.75 -3.06 

Appropriate storage of sharps 

waste  

Yes 93 (96.9) 0.04 0.26 0.187 -0.26 -0.34 

No 3 (3.1) -1.07 -7.90 -5.81 8.18 10.61 

Single use standard disposable 

or auto-disable syringes  

Yes 93 (96.9) 0.06 0.05 -0.38 -0.19 0.15 

No 3 (3.1) -1.77 -1.58 11.78 5.98 -4.77 

Disposable gloves  Yes 94 (97.9) -0.01 -0.22 0.09 -0.34 0.10 

No 2 (2.1) 0.44 10.16 -4.41 15.79 -4.65 

Glucometer Yes 12 (12.5) 4.11 1.09 0.21 1.97 0.01 

No 84 (87.5) -0.59 -0.16 -0.03 -0.28 -0.001 

Amoxicillin syrup, suspension 

or dispersible tablet  

Yes 17 (17.7) 2.40 -2.60 -0.97 0.18 -1.60 

No 79 (82.3) -0.51 0.56 0.21 -0.04 0.34 

Thermometer  Yes 75 (78.1) 0.31 0.439 -0.90 -0.33 -0.48 

No 21 (21.9) -1.10 -1.57 3.23 1.18 1.73 

Microscopy  Yes 16 (16.7) 3.21 -0.88 0.79 -0.93 0.03 

No 80 (83.3) -0.64 0.18 -0.16 0.19 -0.01 

Artesunate Yes 2 (2.1) 8.07 -2.49 2.32 1.44 -0.68 

No 94 (97.9) -0.17 0.05 -0.05 -0.03 0.01 

Variation explained by selected factorial axes 24.9% 4.1% 8.6% 5.3% 3.1% 

 

High-lighted in bold are weights of indicators from the factorial axis selected to contribute to the composite score  

a Results are limited to the first five axes as there was no additional information gain beyond axis # 5 

 bGroup of indicators meeting the FAOC-G in positive direction (shaded grey) and those meeting FAOC-G in negative direction  (not 

shaded) 

 

 

We used the tertiles for the score distributions to create a categorical readiness index with 

three categories for HCIIIs and HCIIs. The levels of the index were treated as order proxies 

for the low, medium and high readiness levels for the first, second and third levels, 

respectively. 
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Figure 6.2: Regional distribution of facility readiness score; (a) HCIIIs, (b) HCIIs 

6.3.4 Effects of facility readiness on severe malaria outcomes 

Estimates of the effect of the composite facility readiness index on the malaria outcomes 

based on the selected indicators are presented in Table 6.5. For HCIIIs, malaria-related 

mortality decreased with increasing readiness index. Mortality rate was 64% (IRR=0.36, 

95%BCI: 0.14-0.61) and 68% (IRR=0.32, 95%BCI: 0.12-0.54) lower in the medium and high 

compared to low readiness groups, respectively. Malaria mortality was statistically lower in 

facilities located in urban areas, but did not differ by ownership, and distance to district 

headquarters. The incidence rate of severe malaria cases was 19% (IRR=0.81, 0.56-0.93) and 

76% (IRR=0.24, 0.16-0.38) lower in the medium and high readiness groups, respectively 

compared to the low group. Severe malaria cases differed by facility location, but there was 

no relationship observed for the distance to district headquarters, and ownership type (i.e.  

private vs government).  

For HCIIs, the incidence rate of severe malaria cases was 44% (IRR=0.56, 0.26-0.91) 

and 30% (IRR=0.70, 0.42-0.94) lower in the medium and high groups, respectively compared 

to the low one. The incidence of severe cases was twice as high among distant HCIIs 
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compared to those near to the district headquarters. However, the distance effect was not 

important for HCIIIs. Geographical variation in severe malaria cases was higher in HCIIs than 

in HCIIIs. 

We repeated the analysis of the relation between facility readiness and severe malaria 

outcomes using a composite readiness score constructed from all indicators to assess the 

impact of our approach on the estimated facility readiness effects. Results showed that the 

composite score constructed from all indicators suggested that the relation between readiness 

with severe malaria (for HCIIs) and with malaria deaths (for HCIIIs) were not statistically 

important (Table A6.4 in the Appendix).  

Table 6.5: Posterior estimates (median and 95% BCI) of the effects of composite facility 

readiness index on severe malaria outcomes estimated from Bayesian geostatistical 

negative binomial models 

Characteristic HCIIIs HCIIs 

Malaria deaths Severe malaria cases Severe malaria cases 

IRR (95%BCI)1 IRR (95%BCI) IRR (95%BCI) 

Readiness index    

  Low  1 1 1 

 Medium  0.36 (0.14, 0.61)* 0.81 (0.56, 0.93)* 0.56 (0.26, 0.91)* 

  High  0.32 (0.12, 0.54)* 0.24 (0.16, 0.38)* 0.70 (0.42, 0.94)* 

Location     

  Rural  1 1 1 

  Urban 0.58 (0.20, 0.86)* 0.74 (0.63, 0.85)* 3.42 (0.92, 5.26) 

Ownership     

  Government 1 1 1 

  Private 0.76 (0.48, 1.90) 4.60 (0.90, 7.46) 1.34 (0.82, 3.04) 

Distance to district headquarters    

  <=10km 1 1 1 

  >10km 0.76 (0.48, 0.92) 0.45 (0.36, 0.75) 2.27 (1.34, 4.04)* 

Spatial parameters    

  Spatial variance  1.45 (1.10, 1.82) 0.61 (0.49, 0.99) 0.58 (0.36, 0.71) 

  Range (km) 5.47 (2.77, 16.64) 4.26 (2.73, 13.21) 35.51 (4.65, 70.31) 

*statistically important effect; 1IRR: Incidence Rate Ratio 
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6.4 Discussion  

We constructed a composite facility readiness index for HCIIIs and HCIIs using the Uganda 

service delivery indicators survey data of 2013 and used it to assess the effects of health 

facility readiness on severe malaria cases and malaria-related deaths in the country during 

January-December 2013. We used multiple correspondence analysis based on the most 

relevant general service and malaria service readiness indicators for severe malaria outcomes 

identified through geostatistical variable selection.  

Our findings suggest that the composite readiness score constructed from more than 

the first axis contains more information as it explains a higher proportion of the variation in 

the original data for both HCIIIs and HCIIs unlike the index constructed from the first axis. 

Our findings are in agreement with results reported in economics literature in which the 

concept of composite score was first developed to evaluate poverty reduction programmes 

(Alkire and Foster, 2011; Kakwani and Silber, 2008; Lemmi and Betti, 2006). However, the 

inclusion of multiple factorial axes in the score construction has not been applied yet in the 

epidemiological studies of health system performance  (Amek et al., 2015; Boyer et al., 2015; 

Traissac and Martin-Prevel, 2012). These studies rather use the first MCA axis without any 

regard to whether the Global Facility Axis Ordering Consistency (FAOC-G) property is met. 

This leads to indices that explain a small proportion of variation in the original data thus 

resulting in a weak and less representative index that is not capable of describing all facets of 

readiness in the population of interest. The composite index has been shown to demonstrate 

that overall readiness is a multidimensional concept that cannot be captured using only one 

axis but by integrating all the different aspects of readiness present in other axes to arrive at a 

robust index (Alkire and Foster, 2011). 

 More so, the index based on the subset of indicators identified through variable 

selection contained more information and had an important effect on the risk of severe 

outcomes compared to the index created from all indicators. The probable explanation to this 
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finding is that variable selection helps to weed out indicators from the index construction that 

have little or negligible relationship with the outcome of interest and hence resulting in a 

meaningful index. This is the first readiness index study where such an objective procedure 

has been applied to select the most important indicators to create an index.  

 Our results also suggested that facility readiness is unevenly distributed across regions 

with the northern regions having the least readiness compared to the central and sourthen 

located regions. These regional differences between the north and south can  be explained by 

the by the blow that the recent war had on the health infrastructure which has severely 

affected the  availability and access to health services in this region (Ssempiira et al., 2017d, 

2017c). 

Indicators that contributed the most weight to the composite index were those with a 

high coverage, indicating that their domination of the original data was carried over to the 

reduced dimension space of the index. These results are in agreement with findings from 

other studies (Boyer et al., 2015; Filmer and Pritchett, 2001; Jackson et al., 2015; McKenzie, 

2005; Vyas and Kumaranayake, 2006).  

Furthermore, the readiness indicators that explained most variation in severe malaria 

outcomes differed between HCIIIs and HCIIs. This could be attributed to the different 

mandates of facilities at different levels owing to variations in service scope, staffing levels, 

infrastructure and equipment (Ministry of Health (MOH) [Uganda] and Macro International 

Inc., 2008).  

The readiness score had a nearly normal distribution for HCIIIs and a long-tailed thin 

normal distribution for HCIIs. This is an indication of higher heterogeneity in readiness of 

HCIIs compared to HCIIIs and can be explained by the HCIIs’ limited capacity  to provide 

quality basic healthcare services as a result of low staffing levels, high drug stock-outs, 

insufficient infrastructure, and poor coordination and limited supervision unlike in HCIIIs and 
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higher level facilities (Ministry of Health (MOH) [Uganda] and Macro International Inc., 

2008).   

 Our study results that readiness of lower facilities to provide malaria services was low 

despite the high availability of the domain-specific tracer items. Absence of microscopy 

diagnostic testing is the main reason for this shortcoming. The inadequate malaria readiness at 

the lower level facilities which serve a big proportion of the rural population may explain why 

the disease remains the leading cause of mortality in the country (Uganda Ministry of Health, 

2014).  

However, generally malaria-specific readiness was higher in HCIIIs, urban-located 

privately-managed facilities, and in facilities located nearer district headquarters.  This is 

because HCIIIs receive more Primary Health Care (PHC) funding, have better infrastructure, 

more qualified personnel and are subject to more supervision from both technical and political 

teams at district and health sub-district level compared to HCIIs (Uganda Ministry of Health, 

2014).   

The higher malaria readiness in privately managed facilities may be attributed to better 

medical equipment, well-maintained infrastructure, higher staffing levels, reduced staff 

absenteeism and higher supervision compared government-managed facilities (Oketcho et al., 

2015).  Urban facilities have also higher malaria readiness most likely due to greater access to 

infrastructure including road network, national power grid and other public services, which 

eases transportation and delivery of commodities such as drugs, supervision, and improves 

staff morale which boosts retention.  

  Facility readiness was very low for all general service domains with the exception of 

that basic equipment. This can be attributed to inadequate government health sector funding 

which stands at 9.6% of the national budget and it is way below the Abuja Declaration target 

of 15% (Agaba, 2009). The low sector funding affects negatively the maintenance of 
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infrastructure, causes stock-outs of essential drugs, slows down recruitment and motivation of 

the health workforce (Uganda Ministry of Health, 2014).  

The high readiness in the basic equipment domain could be explained by the durable 

nature and low cost of the tracer items that constitute this domain compared to other domains 

whose items may cost higher and require substantial massive capital investment or they are 

consumables such as drugs that require constant replenishment.   

Diagnostic capacity readiness was very low, despite the high availability of malaria 

RDTs in the facilities. This can be attributed to the country’s adoption of the WHO ‘Test and 

Treat’ campaign where free RDTs are provided by the ministry of health with support from 

Roll Back Malaria (RBM) partnership to public and private facilities (Uganda Bureau of 

Statistics and ICF International, 2015). The high availability of RDTs in the lower-level 

facilities is an indication that the majority of malaria cases reported in the HMIS are 

confirmed. Availability of glucometers for measuring blood glucose was low especially at 

HCIIs indicating a major setback in lieu of emerging evidence of a growing non-

communicable diseases burden in Uganda (Schwartz et al., 2014).  

More so, essential medicines readiness was low despite some medicines such as oral 

rehydration solution and zinc sulphate drugs were highly available. This finding is consistent 

with  MoH reports that highlight drug stock-outs as one of the major constraints to good 

service delivery in Uganda  (Uganda Ministry of Health, 2015).  

Results further indicated that the readiness of both HCIIIs and HCIIs was associated 

with a decline in malaria-related mortality and severe morbidity. These results underscore the 

significance of health facility performance and health systems strengthening in general on 

health outcomes.  

A higher number of malaria deaths and severe cases was obtained among children less 

than 5 years. This finding is expected in countries with a stable and intense P. falciparum 

transmission (Müller, 2011) where severe malaria manifests mostly in young children with 
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less developed immunity, but becomes less common in older children and adults as acquired 

immunity gives increasing protection (Carneiro et al., 2010).  

A limitation of the study is that health facility records underestimate morbidity and mortality 

in developing countries because most people who fall sick don’t seek health care and a 

number of them die at home. Results from the 2014-15 malaria indicator survey reported only 

80% of children less than 5 years old who had a fever sought care and treatment from a 

formal health facility (Uganda Bureau of Statistics and ICF International, 2015). This 

proportion is likely to be even higher among adults since treatment seeking is higher among 

children compared to adults, therefore a large proportion of severe malaria illnesses and 

deaths occur in people’s homes without coming to the attention of a formal health service 

(World Health Organization, 2016). Our findings are generalizable only for lower level 

facilities in Uganda namely, HCIIIs and HCIIs, and not for HCIVs and hospitals which serve 

as referral centers for lower facilities. Furthermore, our estimates for general service and 

malaria-specific readiness indicators may be overestimated since data on the availability of 

training guidelines and manuals was not collected in the survey.  

6.5 Conclusion 

The composite readiness score created by exploiting more than one axis in the multiple 

correspondence analysis produces a more informative (explains more variation in the original 

data) and consistent health facility readiness measure that is capable of capturing all aspects 

of readiness unlike the index based on only the first axis.  Higher facility readiness is 

associated with a reduced risk of severe malaria outcomes in the lower level facilities in 

Uganda. However, facility readiness to provide malaria treatment services is low. The biggest 

obstacle hindering lower level health facility readiness is the severe absence of basic 

amenities and stock-out of essential medicines. If the health facility readiness remains as it is 

now, the decline of severe malaria burden may be reversed, which will compromise the 
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achievement of the goals of the Health Sector Strategic and Investment Plan development 

plan (HSSP) of 2015/16-2019/2020. The government should address lower level facility 

readiness gaps by increasing health sector funding to the levels recommended by Abuja 

declaration in order to achieve and sustain a substantial reduction in severe malaria burden in 

the country. 
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6.6 Appendix 

A geostatistical negative binomial model (Cressie, 2015) was fitted to assess the effect of the 

facility readiness index on malaria related deaths (HCIII) or severe malaria cases (HCIII and 

HCII), separately adjusted for facility characteristics. Let 𝑌𝑖 be the cumulative count of 

malaria related deaths or severe malaria cases reported by health facility 𝑖 during January – 

December 2013.  𝑌𝑖  is assumed to follow a negative binomial distribution, 𝑌𝑖~𝑁𝐵 (𝑝𝑖, 𝑟) 

where 𝑝𝑖 =  𝑟  
 𝑟 + 𝜇𝑖  ⁄ and 𝑟 is the dispersion parameter of the distribution. We relate the 

predictors to the mean count 𝜇𝑖  of the malaria outcome reported at facility 𝑖 via the log-linear 

regression equation, 𝑙𝑜𝑔(𝜇𝑖) = log(𝑁𝑖) + 𝜷𝑇𝑿 + 𝜔𝑖 + 𝜑𝑖 where  𝑁𝑖 is the offset which was 

considered to be the total number of severe malaria cases for the malaria deaths outcome  and 

the total number of confirmed malaria cases for  the severe malaria cases outcome.  𝑿 are the 

predictors, that is, the facility readiness index and facility characteristics, and 𝜷  is the vector 

of regression coefficients. 𝜔𝑖  are facility location random effects added in the model to 

account for spatial dependence in the rates of severe malaria morbidity/mortality. We 

assumed a Gaussian process on 𝝎 = (𝜔1, 𝜔2, … , 𝜔𝑘)𝑇, that is, 𝝎~𝑁(0, 𝜎2𝑅) where R is a  

correlation matrix, defined by an exponential parametric function of the distance 𝑑𝑖𝑗  between 

the locations of facilities i and 𝑗 i.e. 𝑅𝑖𝑗 = exp (−𝑑𝑖𝑗𝜌). The parameter 𝜎2 measures the 

spatial variation and 𝜌 is a smoothing parameter that controls the rate of correlation decay 

with increasing distance. The range parameter, 
3

𝜌
 estimates the minimum distance beyond 

which spatial correlation is negligible.  Non-spatial variation is estimated by the location 

random effects 𝜑𝑖, which is assumed to be independent and normally distributed with mean 0 

and variance  𝜎𝜑
2 , that is,  𝜑𝑖~𝑁(0, 𝜎𝜑

2). Model fit and parameter estimation was performed 

using Bayesian formulation and Markov Chain Monte Carlo (MCMC) estimation. Model 

specification was completed by assigning prior distributions to model parameters. An inverse-

gamma hyperprior was assigned for the variance 𝜎𝜑
2, a gamma distribution for the spatial 
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smoothing parameter, and non-informative Gaussian distributions for the regression 

coefficients with mean 0 and variance 100. Model parameters were estimated using MCMC 

simulation, running a two-chain algorithm with a burn-in of 10,000 iterations followed by 

200,000 iterations. Convergence was formally assessed by the Gelman and Rubin diagnostic 

(Gelman and Rubin, 1992), implemented in CODA. 

A2. Multiple correspondence analysis 

 Let 𝐾  denote the number binary readiness indicators, N be the number of health facilities 

and  𝑿𝑁𝑥(2∗𝐾) denote the indicator matrix in which the facilities are displayed as rows and 

each indicator/tracer is represented by the inclusion of two columns 𝑰𝑗𝑘

𝑘 , one per category of 

the tracer  𝑘 = 1, … , 𝐾, corresponding to its presence (𝑗𝑘 = 1) or absence (𝑗𝑘 = 0) from the 

facility. Let 𝑷 be the matrix 𝑷 =
1

𝑁∗𝐾
𝑿, 𝑟 and 𝑐 the vectors of the row and column totals of 𝑷, 

respectively, and 𝑺 the matrix 𝑺 =  𝑫𝑟

−
𝟏

𝟐(𝑷 − 𝒓𝒄𝑇)𝑫𝑟

−
𝟏

𝟐 where  𝑫𝑟 = 𝑑𝑖𝑎𝑔{𝒓} and 𝑫𝑐 =

𝑑𝑖𝑎𝑔{𝑐}. A readiness score 𝐹𝑖
𝑎 corresponding to health facility 𝑖 and based on the 𝑎𝑡ℎ 

factorial axis of MCA is defined by 𝐹𝑖
𝑎 =

1

𝐾
∑ ∑ 𝑊𝑗𝑘

𝑎,𝑘𝐼𝑗𝑘,𝑖
𝑘

𝑗𝑘∈{0,1}
𝐾
𝑘=1  where the weights 𝑊𝑗𝑘

𝑎,𝑘
 

are the corresponding column standard coordinates of the 𝑎𝑡ℎ factorial axis, that is, they are 

elements of the 𝑎𝑡ℎ column of the matrix 𝑫𝑐

−
𝟏

𝟐𝑽 where 𝑽 is the right singular vector of 𝑺. The 

factorial score of the first axis is then defined by 𝐹𝑖
1 =

1

𝐾
∑ ∑ 𝑊𝑗𝑘

1,𝑘𝐼𝑗𝑘,𝑖
𝑘

𝑗𝑘∈{0,1}
𝐾
𝑘=1 . The variance 

explained by the 𝑎𝑡ℎ factorial axis is given by the eigenvalues λ𝑎 =  (𝑫𝑠
𝟐)𝒂. 
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A3. Construction of a composite readiness score 

Following the approach proposed by Asselin (2009), for each indicator 𝑘 we define a 

discrimination measure ∆𝑙
𝑎 on each factorial axis 𝑎, ∆𝑘

𝑎 = ∑
𝑛𝑗𝑘

𝑘

𝑁
(𝑊𝑗𝑘

𝑎,𝑘)2
𝑗𝑘∈{0,1}  where 𝑛𝑗𝑘

𝑘  is the 

absolute frequency of the 𝑗𝑘th category of indicator 𝑘. The average of the discrimination 

measures across the 𝐾 indicators on the 𝑎𝑡ℎ axis corresponds to the total variance explained 

by the axis, that is, λ𝑎 =  
1

𝐾
 ∑ ∆𝑘

𝑎 𝐾
𝑘=1 . 

For each factorial axis, we split the indicators in two groups, each satisfying the Axis 

Ordering Consistency condition (AOC) in one of the two axis orientations, i.e. positive (𝐺1) 

or negative (𝐺2).  We then calculate the total variance explained by each group in the axis, 

that is, ∆𝐺𝑗

𝑎 =  ∑ ∆𝑘
𝑎 

𝑘∈𝐺𝑗
 where 𝑗 = 1,2 and retain on the axis the group of indicators 

explaining more variation that a threshold T𝑎  which is taken to be 50% of the variance 

explained by the axis, that is, T𝑎 = 0.5 ∗ 𝐾 ∗ λ𝑎. The groups of indicators retained on the 

axes, are overlapping and an indicator can be retained on several axes. We remove 

intersections by selecting the factorial axis with the highest discrimination measure for than 

indicator among all axes. We define the composite readiness score 

𝐹𝑖 =
1

𝐾
∑ ∑ ∑ 𝛿(𝑘 − 𝑎)𝑊𝑗𝑘

𝑎,𝑘𝐼𝑗𝑘,𝑖
𝑘𝐿

𝑎=1𝑗𝑘∈{0,1}
𝐾
𝑘=1  where 𝐿 is the number of factorial axes used in 

the composite score and 𝛿(𝑘 − 𝑎) is the Dirac delta function which takes the value 1 when 

the 𝑘𝑡ℎ indicator is retained on the 𝑎𝑡ℎ factorial axis and 0 otherwise, that is, 𝛿(𝑘 − 𝑎) = 1 if 

𝑘 = 𝑎 and 𝛿(𝑘 − 𝑎) = 0 if 𝑘 ≠ 𝑎. To improve interpretation of the score we translate the 

weights so that the absence category (𝑗𝑘 = 0) of the 𝑘 indicator to receive a zero weight and 

the presence one (𝑗𝑘 = 1) to receive a strictly positive representing the gain in the readiness 

increase measured by the axis 𝑎 when a facility 𝑖 acquires the 𝑘 tracer. Therefore the 𝑊𝑗𝑘

𝑎,𝑘
 in 

𝐹𝑖 is replaced by 𝑊𝑗𝑘

+𝑎,𝑘
 where 𝑊0

+𝑎,𝑘 = 0 and 𝑊1
+𝑎,𝑘

=𝑊1
+𝑎,𝑘 − 𝑊0

𝑎,𝑘
. 
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A4. Geostatistical variable selection  

To identify the most important readiness indicators related to malaria deaths and severe 

malaria cases, Bayesian geostatistical variable selection was implemented using stochastic 

search and adopting a spike and slab prior distributions for the regression coefficients 

(Chammartin et al., 2013). For every readiness indicator 𝑋𝑘 a Bernoulli variable 𝛾𝑘 was 

introduced with Bernoulli probability 𝜋𝑘 corresponding to the inclusion of 𝑋𝑘  in the model. 

For the coefficient 𝛽𝑘, we assume a prior distribution which is mixture of non-informative 

normal distributions, 𝛽𝑘~𝛿(𝛾𝑘−1)𝑁(0, 𝜏𝑘
2) + (1 − 𝛿(𝛾𝑘−1))𝑁(0, 𝜗0𝜏𝑘

2) where 𝛿(. ) is the 

Dirac delta function. Therefore, in case 𝑋𝑘 is included in the model (slab) and an informative 

normal prior shrinking 𝛽𝑘 to zero (spike) if 𝑋𝑘 is included in the model, 𝛽𝑘~𝑁(0, 𝜏𝑘
2) (slab) 

and in case 𝑋𝑘 is excluded, 𝛽𝑘~𝑁(0, 𝜗0𝜏𝑘
2) where 𝜗0 = 105 is a very large number shrinking 

the variance to zero i.e. spike component of the prior. We have adopted a 

𝐵𝑒𝑡𝑎(1,1) hyperprior for 𝜋𝑘 and an inverse gamma prior for the variance 𝜏𝑘
2 with mean 1 and 

variance 10.
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Table A6.1: Frequency distribution and chi-square test results of general service and malaria-specific readiness indicators compared by 

level and facility characteristics 

Indicator Total 

(N=201) 

n (%)  

Facility level Managing authority Location  Distance to district headquarters 

HCIIIs 

N=105 

HCIIs 

N=96 

P-value Public  

N=146 

Private 

N=55 

P-value Rural   

N=166 

Urban  

N=35 

P-value 0-10 km 

N=52 

>10 km 

N=149 

P-value 

n(%) n(%) n(%) n(%)  n(%) n(%)  n(%) n(%)  

Basic amenities  3 (1.5) 3 (2.9) 0 (0.0) 0.095 1 (0.7) 2 (3.6) 0.124 1 (0.6) 2 (5.7) 0.023 2 (3.9) 1 (0.7) 0.104 

  Uninterrupted power 

supply 

77 (38.3) 45 (42.9) 32 (33.3) 0.165 56 (36.4) 21 (38.2) 0.982 67 (40.4) 10 (28.6) 0.192 21 (40.4) 56 (37.6) 0.721 

  Improved water source 

inside or within source of 

facility 

58 (28.9) 37 (35.2) 21 (21.9) 0.037 37 (25.3) 21 (38.2) 0.073 46 (27.7) 12 (34.3) 0.435 19 (36.5) 39 (26.2) 0.156 

  Access to adequate 

sanitation facilities for 

clients  

182 (90.6) 94 (89.5) 88 (91.7) 0.604 135 (92.5) 47 (85.5) 0.130 152 (91.6) 30 (85.7) 0.282 45 (86.5) 137 (92.0) 0.251 

  Communication 

equipment (phone or short 

wave radio)  

28 (13.9) 22 (21.0) 6 (6.3) 0.003 10 (6.9) 18 (32.7) <0.0001 14 (4.8) 14 (40.0) <0.0001 11 (21.2) 17 (11.4) 0.081 

  Access to computer with 

email/internet access  

29 (14.4) 21 (20.0) 8 (8.3) 0.019 12 (8.2) 17 (30.9) <0.0001 16 (9.6) 13 (37.1) <0.0001 11 (21.2) 18 (12.1) 0.109 

  Emergency transportation  21 (10.5) 16 (15.2) 5 (5.2) 0.020 4 (2.7) 17 (30.9) <0.0001 12 (7.2) 9 (25.7) 0.001 7 (13.5) 14 (9.4) 0.409 

Basic equipment 101 (50.3) 63 (60.0) 38 (39.6) 0.004 63 (43.2) 38 (69.1) 0.001 77 (46.4) 24 (68.6) 0.017 26 (50.0) 75 (50.3) 0.967 

  Adult scale  157 (78.1) 87 (82.9) 70 (72.9) 0.089 106 (72.6) 51 (92.7) 0.002 126 (75.9) 31 (88.6) 0.100 36 (69.2) 121 (81.2) 0.072 

  Child scale  159 (79.1) 89 (84.8) 70 (72.9) 0.039 116 (79.5) 43 (78.2) 0.843 132 (79.5) 27 (77.1) 0.753 38 (73.1) 121 (81.2) 0.214 

  Thermometer  163 (81.1) 88 (83.8) 75 (78.1) 0.304 112 (76.7) 51 (92.7) 0.010 129 (77.7) 34 (97.1) 0.008 43 (82.7) 120 (80.5) 0.733 

  Stethoscope  178 (88.6) 98 (93.3) 80 (83.3) 0.026 124 (84.9) 54 (98.2) 0.009 144 (86.8) 34 (97.1) 0.079 47 (90.4) 131 (87.9) 0.631 

  Blood pressure apparatus  168 (83.6) 91 (86.7) 77 (80.2) 0.217 119 (81.5) 49 (89.1) 0.196 137 (82.5) 31 (88.6) 0.381 43 (82.7) 125 (83.9) 0.841 

Standard precautions for 

infection prevention 

9 (4.9) 5 (4.8) 4 (4.2) 0.838 3 (2.1) 6 (10.9) 0.007 

 

4 (2.4) 5 (14.3) 0.002 3 (5.8) 6 (4.0) 0.601 

  Sterilization equipment 36 (17.9) 29 (27.6) 7 (7.3) <0.0001 18 (12.3) 18 (32.7) 0.001 25 (15.1) 11 (31.4) 0.022 9 (17.3) 27 (18.1) 0.895 

  Appropriate storage of 

sharps waste  

194 (96.5) 101 (96.2) 93 (96.9) 0.791 142 (97.3) 52 (94.6) 0.349 161 (97.0) 33 (94.3) 0.428 49 (94.2) 145 (97.3) 0.296 

  Safe final disposal of 

sharps  

25 (12.4) 15 (14.3) 10 (10.4) 0.406 12 (8.2) 13 (23.6) 0.003 20 (12.1) 5 (14.3) 0.715 8 (15.4) 17 (11.4) 0.455 

  Disposable syringes with 

disposable needles 

194 (96.6) 101 (96.2) 93 (96.9) 0.791 141 (96.6) 53 (96.4) 0.942 159 (95.8) 35 (100.0) 0.216 49 (94.2) 145 (97.3) 0.296 

  Disposable gloves  192 (95.5) 98 (93.3) 94 (97.9) 0.117 138 (94.5) 54 (98.2) 0.263 159 (95.8) 33 (94.3) 0.697 51 (98.1) 141 (94.6) 0.301 

Diagnostic capacity 40 (19.9) 34 (32.4) 6 (6.3) <0.0001 24 (16.4) 16 (29.1) 0.045 28 (16.9) 12 (34.3) 0.019 14 (26.6) 26 (17.5) 0.141 

  Malaria RDTs  155 (77.1) 83 (79.1) 72 (75.0) 0.495 118 (80.8) 37 (67.3) 0.041 134 (80.7) 21 (60.0) 0.008 38 (73.1) 117 (78.5) 0.421 
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Indicator Total 

(N=201) 

n (%)  

Facility level Managing authority Location  Distance to district headquarters 

HCIIIs 

N=105 

HCIIs 

N=96 

P-value Public  

N=146 

Private 

N=55 

P-value Rural   

N=166 

Urban  

N=35 

P-value 0-10 km 

N=52 

>10 km 

N=149 

P-value 

n(%) n(%) n(%) n(%)  n(%) n(%)  n(%) n(%)  

  Blood glucose  64 (31.8) 52 (49.5) 12 (12.5) <0.0001 34 (23.3) 30 (54.6) <0.0001 43 (25.9) 21 (60.0) <0.0001 20 (38.5) 44 (29.5) 0.234 

  HIV diagnostic capacity  126 (62.7) 89 (84.8) 37 (38.5) <0.0001 87 (59.6) 39 (70.9) 0.139 98 (59.0) 28 (80.0) 0.020 38 (73.1) 88 (59.1) 0.072 

  Urine dipstick 88 (43.8) 74 (70.5) 14 (14.6) <0.0001 56 (38.4) 32 (58.2) 0.012 67 (40.4) 21 (60.0) 0.033 27 (51.9) 61 (40.9) 0.169 

Essential medicines 5 (2.5) 5 (4.8) 0 (0.0) 0.030 1 (0.7) 4 (7.3) 0.008 4 (2.41) 1 (2.86) 0.877 0 (0) 5 (3.7) 0.181 

  Amoxicillin 

syrup/suspension or 

dispersible tablet  

41 (20.4) 24 (22.9) 17 (17.7) 0.366 6 (4.1) 35 (63.6) <0.0001 24 (14.5) 17 (48.6) <0.0001 15 (28.9) 26 (17.5) 0.079 

  Ampicillin powder for 

injection  

79 (39.3) 72 (68.6) 7 (7.3) <0.0001 61 (41.8) 18 (32.7) 0.241 61 (36.8) 18 (51.4) 0.106 24 (46.2) 55 (36.9) 0.240 

  Ceftriaxone injection  101 (50.3) 41 (39.1) 60 (62.5) 0.001 64 (43.8) 37 (67.3) 0.003 81 (48.8) 20 (57.1) 0.369 26 (50.0) 75 (50.3) 0.967 

  Gentamicin injection 73 (36.3) 52 (49.5) 21 (21.9) <0.0001 32 (21.9) 41 (74.6) <0.0001 53 (31.9) 20 (57.1) 0.005 16 (30.8) 57 (38.3) 0.334 

  Magnesium sulphate 

injectable  

63 (31.3) 58 (55.2) 5 (5.2) <0.0001 51 (34.9) 12 (21.8) 0.074 54 (32.5) 9 (25.7) 0.430 15 (28.9) 48 (32.2) 0.652 

  Oral rehydration solution  161 (80.1) 87 (82.9) 74 (77.1) 0.306 116 (79.5) 45 (81.8) 0.708 129 (77.7) 32 (91.4) 0.065 42 (80.8) 119 (79.9) 0.888 

  Oxytocin injection  63 (31.3) 58 (55.2) 5 (5.2) <0.0001 51 (34.9) 12 (21.8) 0.074 54 (32.5) 9 (25.7) 0.430 15 (28.9) 48 (32.2) 0.652 

  Zinc sulphate tablets, 

dispersible tablets or syrup  

141 (70.2) 77 (73.3) 64 (66.7) 0.302 111 (76.0) 30 (54.6) 0.003 118 (71.1) 23 (65.7) 0.528 38 (73.1) 103 (69.1) 0.592 

Malaria service 53 (26.4) 45 (42.9) 8 (8.3) <0.0001 32 (21.9) 21 (38.2) 0.020 44 (26.5) 9 (25.7) 0.923 13 (25.0) 40 (26.9) 0.795 

  Thermometer  163 (81.1) 88 (83.8) 75 (78.1) 0.304 112 (76.7) 51 (92.7) 0.010 129 (77.7) 34 (97.1) 0.008 43 (82.7) 120 (80.5) 0.733 

  Malaria diagnosis by RDT  155 (77.1) 83 (79.1) 72 (75.0) 0.495 118 (80.8) 37 (67.3) 0.041 134 (80.7) 21 (60.0) 0.008 38 (73.1) 117 (78.5) 0.421 

  Malaria diagnosis by 

microscopy  

97 (48.3) 81 (77.1) 16 (16.7) <0.0001 59 (40.4) 38 (69.1) <0.0001 72 (43.4) 25 (71.4) 0.003 27 (51.9) 70 (47.0) 0.539 

  Malaria treatment (ACTs) 174 (86.6) 88 (83.8) 86 (89.6) 0.231 127 (87.0) 47 (85.5) 0.776 146 (88.0) 28 (80.0) 0.210 43 (82.7) 131 (87.9) 0.341 

  Intermittent preventive 

treatment (Fancidar) 

171 (85.1) 94 (89.5) 77 (80.2) 0.064 127 (87.0) 44 (80.0) 0.215 144 (86.8) 27 (77.1) 0.147 44 (84.6) 127 (85.2) 0.914 

 Artesunate  7 (3.5) 5 (4.8) 2 (2.1) 0.301 0 (0) 7 (12.7) <0.0001 4 (2.4) 3 (8.6) 0.071 2 (3.9) 5 (3.4) 0.868 

Bold: Domain readiness indicators 

Italics:  Significant values 

 



Chapter 6: Assessing the effects of health facility readiness on severe malaria 

 

171 
 

Table A6.2: Selection of factorial axes included in the composite score for HCIIIs 1 

 2 
 aShaded grey cells (Group 1-positive orientation); Not shaded (Group 2 -negative orientation) 3 
bWeights were multiplied by 10004 

Indicators Discrimination measures Select

ed 

axis 

𝑾𝟏
+𝜶,𝒌

 

Weights
b
 

 
Factorial axes

a
 

1 2 3 4 5 6 7 

Improved water source 

inside or within source  

0.075 0.133 0.051 0.126 0.001 0.435  0.158 6 4912 

Adult scale  0.003 0.431 0.136 0.056 0.003 0.014  0.057 2 4656 

Disposable gloves  0.047 0.004 0.089 0.500 0.034 0.178  0.090 4 8922 

Malaria diagnostic capacity  0.045 0.006 0.187 0.001 0.569 0.007  0.010 5 5888 

Ampicillin powder for 

injection  

0.342 0.020 0.166 0.001 0.021 0.002  0.046 1 2628 

Ceftriaxone injection  0.001 0.356 0.067 0.157 0.192 0.003  0.001 2 3267 

Gentamicin injection 0.012 0.516 0.021 0.028 0.104 0.038  0.006 2 3839 

Magnesium sulphate 

injectable  

0.811 0.006 0.135 0.007 0.001 0.003  0.004 1 3777 

Oxytocin injection  0.811 0.006 0.135 0.007 0.001 0.003  0.004 1 3777 

Zinc sulphate tablets  0.188 0.003 0.173 0.082 0.158 0.001  0.273 7 4287 

Microscopy  0.194 0.061 0.082 0.146 0.005 0.184  0.187 1 2188 

Variance threshold (T𝑎)  1.265 0.769 0.622 0.556 0.545 0.435  0.418   

Variation explained ( ∆𝐺1

𝑎 
)  2.391 1.384 0.478 0.680 0.392 0.005  0.551   

Variation explained  ( ∆𝐺2

𝑎 
)  0.138 0.158 0.764 0.431 0.697 0.863  0.285   

Variation explained after 

eliminating intersection axis 

2.158 1.303 0.000 0.500 0.569 0.435  0.273   
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Table A6.2: Selection of factorial axes included in the composite score for HCIIs 1 

 2 
aShaded grey cells (Group 1-positive orientation); Not shaded (Group 2 -negative orientation) 3 
bWeights were multiplied by 1000 4 

Indicator Discrimination measures Selected 

axis 

Weights
b
 

𝑾𝟏
+𝜶,𝒌

  Factorial axes
a
 

1 2 3 4 5   

Emergency transportation 0.604 0.000 0.026 0.001 0.025 1 6779 

Child scale 0.045 0.404 0.051 0.020 0.295 2 3969 

Appropriate storage of sharps 

waste 

0.010 0.261 0.126 0.214 0.309 5 10954 

Single use standard disposable or 

auto-disable syringes 

0.027 0.011 0.519 0.114 0.062 3 12156 

Disposable gloves 0.001 0.285 0.048 0.525 0.039 4 16125 

Glucometer 0.641 0.022 0.001 0.055 0.000 1 4695 

Amoxicillin syrup/suspension or 

dispersible tablet 

0.327 0.190 0.024 0.001 0.047 1 2904 

Thermometer 0.090 0.090 0.338 0.038 0.071 3 4129 

Microscopy 0.547 0.020 0.015 0.017 0.000 1 3848 

Artesunate 0.368 0.017 0.013 0.004 0.001 1 8239 

Variance threshold (T𝑎)  1.330 0.650 0.580 0.495 0.425   

Variation explained ( ∆𝐺1

𝑎 
)  2.659 0.511 0.280 0.928 0.421   

Variation explained  ( ∆𝐺2

𝑎 
)  0.001 0.788 0.881 0.061 0.428   

Variation explained after 

eliminating intersection axis 

2.487 0.404 0.857 0.525 0.309   
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Figure A6.1: Proportion of variation explained by the composite score and the score 

based on the first factorial axis for HCIIIs (blue) and HCIIs (green) 
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Figure A6.2: Distribution of facility readiness score; HCIIIs (left) and HCIIs (right) 
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Table A6.3: Posterior estimates of the effects of composite facility readiness index on 

severe malaria outcomes based on all indicators 

Characteristic HCIIIs HCIIs 

Malaria deaths Severe malaria cases Severe malaria cases 

IRR (95%BCI)1 IRR (95%BCI) IRR (95%BCI) 

Readiness index    

  Low  1 1 1 

 Medium  1.96 (0.68, 2.54) 0.29 (0.21, 0.44)* 1.33 (0.58, 1.42) 

  High  0.65 (0.31, 1.20) 0.44 (0.35, 0.57)* 1.53 (0.91, 1.72) 

Location     

  Rural  1 1 1 

  Urban 0.62 (0.22, 0.99)* 1.37 (1.13, 2.02)* 2.48 (1.20, 4.85)* 

Ownership     

  Government 1 1 1 

  Private  1.35 (0.83, 1.71) 9.36 (7.00, 11.64)* 3.23 (1.75, 3.93)* 

Distance to district headquarters    

  <=10km 1 1 1 

  >10km 0.44 (0.19, 0.86)* 1.27 (0.56, 1.58) 3.98 (3.01, 6.12)* 

Spatial parameters    

  Spatial variance  0.50 (0.37, 0.60) 0.61 (0.49, 0.99) 0.68 (0.54, 0.87) 

  Range (km) 5.47 (2.77, 16.64) 4.26 (2.73, 13.21) 35.51 (4.65, 70.31) 

*statistically important effect; 1IRR: Incidence Rate Ratio 
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Abstract 

Introduction 

The combination of adverse weather conditions in recent times and a declining malaria burden 

in Uganda due to sustained high intervention coverage has contributed to the occurrence of 

malaria outbreaks. Planning effective response efforts is however complicated by the absence 

of a Malaria Early Warning System (MEWS). In this study, we developed highly predictive 

performance polynomial distributed lag models to forecast malaria outbreaks in different 

malaria endemic settings of the country. 

Methods 

Weekly malaria surveillance data from Integrated Disease Surveillance and Response (IDSR) 

system reported by health facilities during 2013-2016 was modeled using negative binomial 

models with rainfall, Normalized Difference Vegetation Index (NDVI), day and night Land 

Surface Temperature (LST) as explanatory variables in polynomial distributed lag models. 

Stochastic variable selection was used to identify the optimal polynomial function that 

provides the best model fit.  One week out-of-sample approach was used to forecast malaria 

cases and model predictive performance was assessed by comparing actual and forecasted 

estimates with their levels of uncertainty. 

Results 

The third and first order polynomial functions provided the most optimal description of 

malaria-climatic variability in the low and very high endemic settings, respectively. On the 

other hand, the second order polynomial function was the optimal model for the moderate and 

high endemic settings. Models had a high predictive performance in all settings although this 

differed by setting. Rainfall was associated with a much delayed increase in malaria and 

immediate decrease in malaria in low and moderate endemic settings, but an immediate 

increase in malaria in the high and very high endemic settings. Day LST was associated with 
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an immediate decline in malaria followed by a delayed increase in low, moderate and high 

endemic settings, but an immediate increase in malaria in very high endemic settings. 

Conclusion 

The polynomial distributed lag models have a high predictive performance and can serve as a 

foundation for a model-based Malaria Early Warning System (MEWS) to improve decision-

support systems in malaria control and mitigate outcomes from outbreaks. 

 

Key words: Polynomial Distributed Lag Models (PDLMs), malaria forecasting, stochastic 

variable selection, predictive performance, Malaria Early Warning System (MEWS) 
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7.1 Introduction 

Malaria is the most serious parasitic infection worldwide accounting for over 216 million 

clinical cases and nearly a half million deaths annually, majority of which occur in sub-Sahara 

Africa region (World Health Organization, 2016). In Uganda, malaria is caused by 

Plasmodium falciparum and is transmitted primarily by Anopheles gambiae s.s. mosquitoes. 

Transmission is high and stable in the low lands that make 95% of the country (President’s 

Malaria Initiative, 2017). The highlands experience low transmission and are prone to 

epidemics. 

In recent times extreme weather conditions such as floods and long droughts have 

occurred in different parts of the country  leading to the occurrence of malaria outbreaks that 

have resulted in high morbidity and mortality (National Malaria Control Program, 2016). The 

current outbreak detection system used by the National Malaria Control Program (NMCP) is a 

hybrid of one that has been promoted by the World Health Organisation (WHO) for epidemic-

prone settings (Global Partnership to Roll Back, 2001). It involves comparing weekly cases 

reported from the Integrated Disease Surveillance and Response (IDSR) system incorporated 

in the national Health Management Information System (HMIS) (Cox and Abeku, 2007; 

Lukwago et al., 2013) with the thresholds defined from historical morbidity data to  provide a 

signal of outbreaks whenever a threshold is exceeded  (Cox et al., 2007). This implies that 

outbreaks are detected long after their occurrence to enable any meaningful intervention 

efforts in affected areas (Thomson et al., 2006). 

The close malaria-climate relationship can be exploited in the design of a model-based 

Malaria Early Warning System (MEWS) capable of detecting malaria outbreaks before their 

occurrence (Thomson et al., 1996). This would allow enough time for planning response 

efforts and mobilization of resources for affected areas to mitigate morbidity and mortality 

outcomes. Temperature and rainfall are the most important climatic factors for malaria 
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transmission due to their influence on the duration of development of malaria vectors and 

parasites (Thomson et al., 2017). Increasing temperature accelerates the rate of mosquito 

larval development, the frequency of blood feeding by adult females on humans, and reduces 

the time to maturity of malaria parasites in the gut of female the Anopheles mosquitoes 

(Bayoh and Lindsay, 2003). Increased rainfall creates and increases breeding sites for 

mosquitoes, thus increasing their numbers (Thomson et al., 2017).  Normalized difference 

vegetation index (NDVI) – a measure of greenness of the vegetation is a proxy for humidity 

and rainfall and  has been shown to have a high predictive potential for malaria transmission 

in the tropics (Githeko, 2001). 

  The malaria-climatic variability relationship was first exploited in the design of a 

MEWS during the 1990s by linking satellite climatic products with epidemiological and 

entomological data  from the Gambia (Thomson et al., 1996). Since then, several studies have 

attempted model-based malaria forecasting systems in endemic and epidemic-prone settings 

(Zinszer et al., 2012). In majority of these studies, statistical approaches majorly a generalized 

linear model approach to time series analysis was adopted employing the Autoregressive 

Integrated Moving Average (ARIMA) models and/or Seasonal Auto-Regressive Integrated 

Moving Average (SARIMA) modeling framework (Abeku et al., 2002; Adimi et al., 2010; 

Briët et al., 2008; Darkoh et al., 2017; Gomez-Elipe et al., 2007a; Haghdoost et al., 2008; 

Wangdi et al., 2010; Xiao et al., 2010; Zhang et al., 2010). This framework assumes a linear 

and one-time relationship between malaria and climatic factors. However, this assumption has 

been shown not to be correct by laboratory experiments which instead suggest a complex non-

linear relationship distributed over time (Bayoh and Lindsay, 2003; Christiansen-Jucht et al., 

2015b; Githeko and Ndegwa, 2001b).  

Another approach involving the use of polynomial functions has been used in very few 

studies (Chatterjee and Sarkar, 2009; Teklehaimanot et al., 2004a) to model this complex non-
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linear relationship and capture the distributed effect of environmental/climatic factors on 

malaria. , although has been shown to describe well the complex non-linear relationship 

between malaria cases and climatic factors. In one particular study conducted in Ethiopia 

(Teklehaimanot et al., 2004a), polynomial distributed lag models were able to show that the  

distributed lag effects of climatic factors on malaria cases differed between hot and cold 

settings, and the results were similar to laboratory experiments findings. Although this 

methodology is robust for description of malaria-climatic factors relationship given the 

flexibility of different polynomial functions to describe complex relationships, a need arises to 

determine the optimal polynomial function  suitable for each malaria transmission setting in a 

country like  Uganda with distinct malaria transmission rates (Okello et al., 2006b). 

In this study, we developed polynomial distributed lag models to assess the distributed 

effect of environmental/climatic factors on malaria and forecast malaria cases in different 

endemic settings in Uganda using weekly surveillance data reported through the IDSR during 

2013-2016 and climatic data obtained from remote sensing sources.  We employed stochastic 

variable selection to identify the optimal polynomial order that provide the best description to 

malaria-climatic factors relationship in each setting in the country.  

7.2 Methods 

7.2.1 Settings 

Uganda is located along the central African rift valley within the Nile basin. It shares borders 

with Kenya to the east, South Sudan to the north, the Democratic Republic of the Congo  to 

the west, Rwanda to the southwest and Tanzania to the south. The country varies in 

topography ranging from high altitude areas in the mid-western and eastern parts to the low 

lying Sudanese plain in the north. The central region is dominated by the large shallow inland 

Lake Kyoga, L. Victoria and L. Albert. The north eastern region has the driest climate and is 

prone to droughts. The climate in the south is heavily influenced by L. Victoria that prevents 
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temperatures from varying significantly while at the same time increases cloudiness and 

rainfall. The country experiences two rainfall seasons during March–May and September–

November.   

 

7.2.2 Outcome 

Weekly surveillance parasitologically confirmed malaria cases data reported through the 

IDSR during January 2013- August 2016 was extracted from the District Health Information 

System version 2 (DHIS2). The cases were confirmed by Rapid Diagnostic Tests (RDTs) at 

lower level facilities and either RDTs or microcopy at higher facilities in accordance with the 

national malaria diagnosis guidelines (National Malaria Control Program, 2016). 

7.2.3 Predictors 

Day Land Surface Temperature (LSTD), Night Land Surface Temperature (LSTN), and 

Normalized Difference Vegetation Index (NDVI) were extracted from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) at a spatial resolution of 1 x 1 km
2
 and 

temporal resolution of 8 days and16 days, respectively. Dekadal rainfall data was obtained 

from the US early warning and environmental monitoring system at 8 x 8 km
2
 resolution 

(Early Warning and Environmental Monitoring Program, 2016).  

7.2.3 Statistical analysis   

Weekly climatic factor estimates of LSTD, LSTN and NDVI were calculated by averaging 

their respective values for a given week. Weekly rainfall was estimated by summing up 

rainfall amounts of a given week. The climatic data was linked with malaria cases of a 

particular week, and weeklylags created for climatic data. Since a rainfall season in Uganda 

lasts for three months and rainfall is the main driver of transmission, lags from the current 

(week zero) up to 11 weeks were created for the climatic factors. 
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Weekly malaria cases data was then modeled by a negative binomial regression model 

formulated in the Bayesian framework in a polynomial distributed lag model. The climatic 

covariates lags were added in the model as explanatory variables. A negative binomial model 

was preferred over a Poisson because of its robustness to over dispersion in the malaria data 

arising out of seasonality.  

For each of the climatic covariates, a matrix of dimension 135x12 was created 

consisting of lagged observations from week zero to week 11. Each covariate data matrix was 

fitted separately in polynomial models of order 1-4 in each endemic setting and subjected to 

stochastic variable selection to determine the optimal order with the highest inclusion 

probability in modeling the distributed   effect of climate on malaria. The optimal model in 

each setting namely, the model with the highest inclusion probability was further used to 

estimate the distributed lag effect of climatic factors on malaria cases in each setting. 

Temporal correlation across weeks was captured by weekly random effects modeled by an 

autoregressive process of order 1. Models were adjusted for seasonality by including Fourier 

trigonometric terms. 

To determine model predictive performance in each endemic setting, the data was 

segmented into a model building/training and forecast segments. The training segment 

comprised of 85% and a forecast set consisting of 15% of the time series data. Model 

predictive performance at each lead time of the forecast data segment was assessed by 

comparing actual cases and the forecasted estimates summarized from their posterior 

distribution and the forecast error. The forecast error was expressed as the difference between 

the forecasted and actual cases divided by actual cases multiplied by 100.   

Models were implemented in OpenBUGS and parameters were estimated using 

Markov Chain Monte Carlo (MCMC) algorithm. An initial burn-in of 10,000 iterations were 

run on two chains to initialize the models, followed by 500,000 iterations to estimate 
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parameters. Model convergence was assessed by the Gelman and Rubin convergence statistics 

(Raftery and Lewis, 1992). Parameters were summarized by their posterior medians and 95% 

Bayesian Credible intervals (BCIs).   

7.3 Results 

7.3.1 Descriptive results  

Table 7.1 and Figure 7.1 present a summary of average weekly malaria incidence and its 

distribution, and climatic factors for the 10 regions classified in different endemicity groups. 

Results indicate that malaria burden in the country largely fall into four distinct groups 

consisting of low endemicity (<2.0 cases per 1000 persons per week), moderate endemicity 

(2.01-3.50 cases per 1000), high endemicity (3.51-5.00 cases per 1000), and very high 

endemicity (>5.0 cases per 1000). Overall a total of 22,786,228 malaria cases were reported 

during the study period, equivalent to a weekly average of 168,787 cases (95%CI: 149 456-

188 118).  

Table 7.1: Mean weekly summaries of malaria incidence and climatic factors during 

2013-2016 

 

 

 

 

 

 

  

Region Incidence (cases per 

1000 persons per 

week  

Rainfall 

(mm) 

 

NDVI LSTD 

(oC)  

LSTN 

(oC) 

Endemicity 

group 

Kampala  1.56 31.9  0.36  26.1  19.2  Low 

Central 1 2.97 32.4  0.53  26.7  16.9  Moderate  

Central 2 3.19 36.4  0.56  27.0  17.3  Moderate  

East central  3.19 36.7  0.46  27.7  18.6  High 

Mid North 5.89 36.4  0.45  34.2  17.8  Very high 

Mid-Western 4.15 34.5  0.59  28.7  16.7  High  

Mid-Eastern  4.98 37.2  0.53  32.0  17.7  High  

North East 5.86 33.5  0.42  35.9  18.8  Very High  

South Western 3.47 29.3  0.60  27.7  15.9  Moderate  

West Nile 8.08 39.8  0.44  34.1  19.5  Very High  
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Figure 7.1: Geographical distribution of average weekly malaria incidence 

 

Figure 7.2 depicts temporal trends of weekly malaria incidence for each endemicity 

setting. The trends are marked by a bi-annual seasonality pattern in each year. The plot also 

indicates that incidence initially declined up to 2015 in all settings, and after increased except 

in the low endemic settings where the burden remained nearly constant throughout the period. 

At all times, incidence was highest and lowest in the very high endemicity and lowest 

endemicity settings, respectively. 
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Figure 7.2: Temporal variation of weekly malaria incidence 

 

The temporal variation of climatic factors is presented in Figure 7.3 for all and show 

similar patterns except for NDVI in the low endemic setting. The unique NDVI temporal 

trend in this setting is due to the scanty vegetation cover in the capital city (Kampala) which 

single-handedly makes up this setting. The rainfall intensity differed slightly across settings 

but the trends in all settings were marked by two peaks during the year. Although, the 

temporal trends of LSTD and LSTN were similar across all settings, the highest weekly LSTD 

and maximum variation between LSTD and LSTN were observed in high endemicity settings. 

The least LSTN was observed in the moderate endemicity settings. The highest NDVI was 

observed in the moderate and high endemicity settings, while the least was observed in the 

low endemicity settings.  

Pearson correlation coefficient results of the relationship between weekly incidence 

and climatic covariates at weekly lags up to lag of week 11 are shown in Figure 7.3 in all 
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endemic zones of the country. Results show a non-linear relationship in all settings which 

indicates the inadequacy of a linear and a cross-sectional model to describe this relationship.   

 

                          ( a)                                                                                            (b) 

 

 

 

 

 

 

 

 

                      ( c)                                                                                            (d) 

 

 

 

 

 

 

Figure 7.3: Pearson correlation: malaria incidence vs climatic factors; a) Low, b) 

Moderate, c) High, d) Very high 
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Figure 7.4: Temporal variation of weekly average of climatic factors; a) Rainfall, b) 

LSTD, c) LSTN, d) NDVI 
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7.3.2 Stochastic variable selection  

Table 7.2 presents stochastic variable selection results for each polynomial model order of 

climatic factors in each endemic setting. Results indicate higher probabilities of inclusion for 

the second-order polynomial model in moderate and high endemic settings for most 

covariates. On the other hand, the third and first polynomial model orders were selected with 

higher inclusion probabilities for all covariates in the low and very high endemic settings.   

Table 7.2: Posterior inclusion probabilities for climatic factors per endemic setting 

Endemicity setting Covariate Polynomial 

model order 

Probability of inclusion 

(%) 

Low Rainfall 1 0.2 

2 4.1 

3 32.5* 

4 1.1 

NDVI 1 0.7 

2 21.5 

3 32.5* 

4 9.8 

LSTD 1 23.4 

2 25.7 

3 35.9* 

4 0.1 

LSTN 1 0.5 

2 15.0 

3 29.3* 

4 1.7 

Moderate  Rainfall 1 11.2 

2 49.3 

3 32.1* 

4 4.0 

NDVI 1 6.0 

2 40.8* 

3 28.4 

4 5.8 

LSTD 1 14.5 

2 50.1* 

3 23.9 

4 9.0 

LSTN 1 4.7 

2 47.1* 

3 12.2 

4 2.5 

High Rainfall 1 17.2 

2 38.0* 

3 19.4 

4 16.6 

NDVI 1 20.2 

2 48.1* 

3 22.7 
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4 6.1 

LSTD 1 6.0 

2 32.0 

3 33.2* 

4 7.9 

LSTN 1 20.7 

2 29.5* 

3 19.5 

4 10.8 

Very high Rainfall 1 62.5* 

2 12.3 

3 9.1 

4 14.9 

NDVI 1 39.9* 

2 20.2 

3 16.5 

4 13.8 

LSTD 1 41.6* 

2 28.4 

3 19.1 

4 2.0 

LSTN 1 35.7* 

2 21.6 

3 4.1 

4 0.1 

*Highest inclusion probability  

 

7.3.3 Distributed lag effect of climatic factors on malaria cases  

Figures 7.5 and 7.6 present  climatic factor coefficient estimates and their 95% BCIs of the 

distributed lag effect on malaria incidence in all the four endemic settings estimated from the 

polynomial distributed lag models identified from stochastic variable selection above.    

Results of the distributed lag effect of rainfall on malaria incidence are shown in  

Figures 7.5a, 7.5b, 7.6a and 7.6b in the low, moderate, high, and very high endemic settings, 

respectively. Coefficients represent the multiplicative effect of one-millimeter increase in 

rainfall at a given lag on the incidence of malaria in a given week.  

In all settings, results manifest a statistically important effect of rainfall on malaria at 

most week lags, but the magnitude and direction vary at different lags in different endemic 

settings. In the low endemic settings, rainfall had a negative effect on malaria incidence at 

shorter lags (weeks 0-2), no effect at lags three and four, a positive effect at lags five, six, 

seven and eight, but no effect at longer lags. On the other hand, in the moderate endemic 
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settings, rainfall had a negative association with malaria incidence from the lag of week zero 

up to lag of week eight, but the effect is statistically important between lags of week three and 

week six, a positive effect albeit unimportant from lag nine onwards becoming important at 

lag 11. In the high endemic settings (Figure 7.5a), the effect is positive throughout but smaller 

and unimportant from the lag of week zero up to the lag of week five, then from lag of week 

six on wards it becomes statistically important. In the very high endemic settings, rainfall 

effect was important and positive at shorter lags but became negative at longer lags (Figure 

7.6b). 

The effect of NDVI on malaria incidence also varied in different endemic settings. The 

effect had a sinusoidal shape in the low endemic settings (Figure 7.5c). The effect is only 

important but negative at lag zero and from lags of week six to 10. In the moderate settings, 

the effect is negative and important up to lag of week three, but  becomes positive from lag of 

week five onwards (Figure 7.5d). In the high endemic settings (Figure 7.5c), NDVI´s effect is 

statistically important at shorter lags (weeks 0-1) and longer lags (weeks 9-11), but a negative 

albeit important effect at lags of week three to eight. On the other hand, NDVI has a 

decreasing statistically important positive effect in the very high endemic settings (Figure 

7.6d). 

The effect of day land surface temperature on malaria cases is shown in figures 7.5e, 

7.5f, 7.6e and 7.6f. Results are presented as coefficients which indicate an increase in malaria 

incidence associated with an increase in temperature by one Celsius degree. The effect in the 

low endemic settings (Figure 7.5e) is negative and statistically important at shorter lags and 

lag of week 11, but positive between lags of week three to week nine with its maximum effect 

at the lag of week six. In moderate endemic settings, the effect is entirely negative but 

increases from the lag of week zero reaching its maximum at the lag of week six but then 

declines at longer lags (Figure 7.5f). Meanwhile, the effect of LSTD in the high endemic 
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settings is negative and only important from the lag of week zero to week six (Figure 7.6e). 

However, LSTD effect increases with increasing lags in the very high endemic settings 

(Figure 7.6f). 

Similarly, results of the effect of night land surface temperature shown in figures 7.5g, 

7.5h, 7.6g, and 7.6h represent an increase in malaria incidence associated with an increase in 

temperature by one Celsius degree. In low endemic settings, LSTN effect is positive at shorter 

lags and negative at longer lags (Figure 7.5g). In the moderate endemic settings, the effect is 

positive initially increasing up to the maximum at the lag of week six but declines at longer 

lags (Figure 7.5h). LTSN has an almost linear relationship that decreases with increasing lag; 

positive between lag of week zero and week five, and negative from lags of week seven to 11 

(Figure 7.5g). In the very high endemic settings, the effect is negative at all lags but 

statistically unimportant at longer lags (Figure 7.5h). 
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Figure 7.4: Distributed climatic covariates’ lag effect in low endemicity (left) and 

moderate endemicity settings (right); rainfall (a and b), NDVI (c and d) LSTD (e and f) 

and LSTN (g and h) 
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Figure 7.5: Distributed climatic covariates’ lag effect in high endemicity (left) and very 

high endemic settings (right); rainfall (a and b), NDVI (c and d) LSTD (e and f) and 

LSTN (g and h) 
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7.3.4 Model predictive performance  

Results of the model predictive performance assessed using a one-week out-of-sample 

approach are shown in Figure 7.6 comparing the number of actual cases and the forecasted 

estimates and their 95%BCI on the primary axis, and the forecast error on the secondary axis.  

The plots show a high predictive performance in all settings but overall the best 

predictive performance at all lead times was estimated in the moderate endemicity settings 

with a forecast error of less than 5% for all lead times except for the last week (Figure 7.6b). 

On the other hand, the lowest predictive performance was observed in the very high 

endemicity settings with seven out of 20 lead times exceeding 5% forecast error (Figure 7.6d). 

The highest predictive performance was obtained at lead times of 15, six, seven, and 24 

weeks, for low, moderate, high, and very high endemic settings, respectively. 

In Figure 7.7, plots of the actual number of malaria cases, fitted, and forecasted cases 

are shown for each endemic setting at all lead times of the forecast segment.  In addition to 

models having a high predictive performance, plots manifest the suitability of the models in 

fitting the data well as observed from the closeness of the actual cases series to fitted and 

forecasted series. 
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Figure 7.6: Model predictive performance for each lead time of the forecasting data 

segment a) low endemicity, b) moderate endemicity, c) high endemicity, and d) very high 

endemicity settings 
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Figure 7.7:  Overall model fitting and predictive performance in the four endemic 

settings; a) low, b) moderate, c) high d) very high (Red, blue and green lines represent 

actual cases, fitted cased and forecasted cases, respectively)  
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7.4 Discussion 

In this study, we developed highly predictive performance polynomial distributed lag models 

to forecast malaria outbreaks in different malaria endemic settings in Uganda. We also 

assessed the distributed lag effect of climatic factors on the incidence of malaria cases and 

predictive performance at different lead times in each endemic setting. 

The study results show that the malaria burden in the country is heterogeneously 

distributed with the northern-based regions bearing the heaviest burden, while the regions in 

the central and south-western areas shoulder a low burden. These findings agree with the 

regional parasitaemia prevalence estimates measured in the malaria indicator surveys (Uganda 

Bureau of Statistics and ICF International, 2015, 2010) and entomological inoculation rates  

measured from field studies  (Kilama et al., 2014; Okello et al., 2006a). The apparent 

differences in malaria endemicity between the north of the country and other regions have 

been attributed to war/civil disturbances in the north, differences in ecological conditions, 

disparities in socio-economic development, urbanization, and access to health services 

(Ssempiira et al., 2017d, 2017c). Also, socio-economic practices practiced in this region such 

as nomadic pastoralism increase the exposure of these populations to a higher malaria risk. 

The incidence pattern is characterized by a bi-annual seasonality cycle with peaks 

coinciding with the two rainfall seasons. This finding suggests a close relationship between 

rainfall and malaria transmission and supports its inclusion in the forecasting of malaria 

outbreaks  as has been done in other endemic and epidemic-prone settings such as in Kenya 

(Githeko and Ndegwa, 2001b), Ethiopia (Teklehaimanot et al., 2004b), Botswana (Thomson 

et al., 2005b), Burundi (Gomez-Elipe et al., 2007b), and Sri Lanka (Briët et al., 2008). 

The observed malaria decline up until the weeks of the third quarter of 2015 is similar 

to results based on parasitaemia prevalence during 2009-2014 (Ssempiira et al., 2017c). This 

decline has been attributed to the effects of vector control interventions and prompt case 
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management with artemisinin-based combination therapies (Ssempiira et al., 2017c). The 

unexpected upsurge of the burden starting in the weeks towards the end of 2015 may be 

attributed to the reduced immunity resulting from interrupted malaria transmission dynamics 

(National Malaria Control Program, 2016), development of resistance to the insecticides 

(Bukirwa et al., 2009),  and changes in climate/rainfall leading to increases in exposure to 

malaria vectors (Jagannathan et al., 2012). 

Study results adduced to evidence of a non-linear relationship between malaria and 

climatic factors in all endemic settings. Indeed this relationship was best described by 

polynomial functions of varying order in different endemic settings. The suitability of higher 

order polynomial models in less endemic settings suggests a need for complex modeling 

framework in less burden settings such as those in pre-elimination and elimination stages. The 

possible reason for this observation could be the reduced environmental influential on malaria 

as the disease burden declines as other non-environmental factors become influential. This 

finding is consistent with the WHO guidelines which prioritize surveillance as a core function 

and incorporation of mathematical modeling to understand transmission dynamics in 

countries close to elimination (World Health Organization, 2016). These findings mirror those 

reported by Thomson et al., 2005 (Thomson et al., 2005b) from a study conducted in 

Botswana.  

Model predictive performance in our study was generally high in all settings, and this 

could be attributed to the flexibility of the polynomial functions to describe the non-linear 

complex relationship between climatic factors and malaria as has been reported from field 

experiments (Bayoh and Lindsay, 2003; Christiansen-Jucht et al., 2014, 2015b). In addition, 

the Bayesian framework we used in our study is flexible and makes prediction/forecasting 

straight forward in form of posterior distributions complete with levels of uncertainty. The 

estimated probabilistic forecasts provide a more robust measure in spite of the  shorter time 
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series data, which outperform forecasts based on likelihood estimation whose predictive 

power diminishes with fewer time points in the time series (Thomson et al., 2006).  

More so, our study employed stochastic variable selection to identify the optimal 

polynomial function in each endemic setting that best described the malaria-climate 

relationship. To the best of our knowledge, this is the first malaria forecasting study in which 

this model penalizing technique has been applied to decide empirically the best model in each 

setting. 

Our results further showed that model predictive performance was lower in the low 

and very high endemic settings compared to moderate and high endemic settings. This again 

can be linked to climatic factors having a reduced influence on malaria transmission in very 

low endemic settings. In  case of the very high transmission settings where the risk is stable 

and perennial, other factors such as low socio-economic development, limited access to health 

facilities, and low housing standards may explain a sizable variation in the risk compared to 

that explained by climatic variability (Nájera et al., 1998).  

Furthermore, our results manifest a statistically important distributed effect of rainfall 

in all endemic settings, though the magnitude and direction vary at different lags. Rainfall was 

associated with a much-delayed increase in malaria incidence and immediate decrease in the 

low and medium settings, and an immediate increase in malaria in the high and very high 

endemic settings. Rainfall is important for malaria transmission as it creates breeding sites for 

mosquitoes which leads to higher numbers of juvenile and adult mosquitoes, as well as 

increases humidity which favors vector development (Thomson et al., 2006). However, the 

relationship of malaria with rainfall is non-linear with excess rainfall sometimes being 

associated with a reduction in malaria (Lindsay et al., 2000), plus the fact that its effect is 

moderated with its interaction with temperature (Teklehaimanot et al., 2004b). The very high 

endemic settings consist of regions that experience the highest temperatures. These accelerate 
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the aquatic stages of mosquitoes and the sporogony cycle leading to an earlier appearance of 

malaria cases following rainfall unlike the moderate temperatures (<=28
o
C) experienced in 

the very low and moderate endemic settings. Under these temperatures, the aquatic stages of 

mosquito and the sporogony cycle will take longer up to 12 and 8 days, respectively (Bayoh 

and Lindsay, 2003) causing a longer lag prior to the occurrence of malaria.  Our results are in 

agreement with findings reported by Teklemainahot in Ethiopia (Teklehaimanot et al., 2004b) 

and also reflect the non-linear relationship reported from other studies (Lindblade et al., 1999; 

Lindsay et al., 2000; Thomson et al., 2005b).  

The effect of NDVI on malaria also varied with settings. NDVI is highly related with 

rainfall in areas where the natural environment has been preserved, and therefore the effect of 

both on malaria should be similar. In our study, however, the similarity was only observed in 

moderate endemic settings probably owing to scanty natural vegetation in the urban region of 

Kampala that make up the low endemic settings.  The decreasing lag effect of NDVI with 

increasing lag in very high endemic settings was at odds with the rainfall effect in these 

settings. The probable explanation for this anomaly could be the long dry seasons experienced 

in these settings due to their savannah vegetation cover. Heavy rainfall usually follows at the 

end of these extended dry seasons leading to a rapid growth of the vegetation cover while at 

the same time flooding mosquito breeding sites resulting in reduced transmission and 

incidence. Comparable findings have been reported in semi-arid settings in Afghanistan 

(Adimi et al., 2010).   

Day land surface temperature was associated with an immediate decline in malaria 

followed by a delayed increase in the low, moderate and high endemic settings, but an 

immediate increase in malaria in very high endemic settings. Although these findings do not 

appear exactly the same as those observed in experiments under controlled conditions, the 

pattern is similar. The delayed effect of about four weeks before an increase in malaria 
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observed in the low, moderate and high endemic settings is explained by the 12 and 8 days 

required for development of aquatic stages of mosquito and the sporogony cycle at 28
o
C 

(Bayoh and Lindsay, 2003; Christiansen-Jucht et al., 2015b; Teklehaimanot et al., 2004b). On 

the other hand, the expected immediate increase in malaria in very high endemic settings 

supports evidence that high temperatures accelerate the development of the mosquitoes 

vector, reduces the duration of the sporogonic cycle and the time between feeding intervals 

(Thomson et al., 2017). 

The effect of LSTN was associated with an immediate increase in malaria and a 

delayed decline in the low, moderate and high endemic settings. Given the prevailing 

temperatures in these settings, these findings are supported by laboratory experiments (Bayoh 

and Lindsay, 2003; Christiansen-Jucht et al., 2014, 2015b). However, the relationship in very 

high settings is not easy to explain since increases in temperature are associated with a 

decrease in cases which is not supported by any scientific evidence.  

The limitation to this study is that the effect of other important malaria risk 

confounders such as socioeconomic status and interventions were not adjusted for in the 

models. This is because adjusting for confounders in polynomial distributed lag models 

complicate interpretations of coefficients.  

7.5 Conclusions 

We have exploited the close malaria-climatic variability relationship to develop polynomial 

distributed lag models to forecast malaria outbreaks in different endemic settings in Uganda. 

These models have a high predictive ability and thus can serve NMCP as a foundation for a 

model-based malaria early warning system to improve decision-support systems in malaria 

control. This will address the problem of delayed outbreak detection and improve resource 

allocation and timely deployment of interventions in areas where outbreaks are detected to 

mitigate morbidity and mortality outcomes.  
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The varying degrees of malaria burden in the country and different order of polynomial 

models feasible in each setting calls for a decentralized MEWS that takes into consideration 

the local endemicity levels and ecological settings. The success of this system will depend on 

the close coordination of the NMCP with the IDSR unit, the meteorological department to 

support remote sensing capabilities, and the district health teams responsible for actual 

implementation of malaria outbreak response activities. The incorporation of this modeling 

framework in the MEWS will enhance surveillance contribute to the achievement of the goals 

in the national and international malaria control, prevention and elimination frameworks. 
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7.6 Appendix 

Polynomial distributed lag model formulation  

Let 𝑦𝑡 be the number of aggregated malaria cases from all health facilities reported through 

the IDRS in week t=1,…,135.  𝑌𝑡 is assumed to follow a negative binomial distribution, 

𝑦𝑡~𝑁𝐵(𝑝𝑡, 𝑟) where 𝑝𝑡 =
𝑟

𝑟+𝜇𝑡
;  where 𝑟  is the dispersion parameter and 𝜇𝑡 is the average 

number of malaria  cases in the country. Eleven lags were created for each climatic covariate 

equivalent to a duration of three months – the typical rainfall season. 

The model is formulated with a log link as shown below; 

log(𝜇𝑡) = log(𝑁𝑡) + 𝑓(𝑡) + 𝛼 + ∑ 𝛽𝑖
11
𝑖=0 𝑅𝑎𝑖𝑛𝑡−𝑖 + ∑ 𝛾𝑖

11
𝑖=0 𝑁𝐷𝑉𝐼𝑡−𝑖 + ∑ 𝛿𝑖

11
𝑖=0 𝐿𝑆𝑇𝐷𝑡−𝑖 +

∑ 𝜃𝑖
11
𝑖=0 𝐿𝑆𝑇𝑁𝑡−𝑖 + 𝜖(𝑖−1)∗52+𝑡         (1), 

where 𝑁𝑡 is the week population offset in week t obtained from the 2014 national housing and 

population census data and corrected for population growth (UBOS 2014).  α is the intercept, 

𝑅𝑎𝑖𝑛𝑡−𝑖, 𝑁𝐷𝑉𝐼𝑡−𝑖, 𝐿𝑆𝑇𝐷𝑡−𝑖 and 𝐿𝑆𝑇𝑁𝑡−𝑖 denote the weekly averages of Rainfall, NDVI, 

LSTD and LSTN i weeks previously,   𝛽𝑖, 𝛾𝑖, 𝛿𝑖, and 𝜃𝑖  are the lag weights representing the 

effect of Rainfall, NDVI, LSTD and LSTN, respectively  on current malaria cases 𝑦𝑡. 𝑓(𝑡) is 

the parameter modeling seasonality of malaria incidence, 𝜖(𝑖−1)∗52+𝑡  are weekly random 

effects modeled by a first order autoregressive process with temporal variance 𝜎1
2, that is, 

𝜖𝑙~𝐴𝑅(1) where 𝜖1~𝑁 (0,
𝜎2

1−𝜌2
 ), 𝜖𝑙~𝑁(𝜌𝜖𝑙−1, 𝜎2 ), 𝑙 = 2, … ,135 and the autocorrelation 

parameter 𝜌 quantifies the degree of dependence between successive weeks. The seasonal 

pattern 𝑓(𝑡) was captured by a mixture of two harmonic cycles with periods 𝑇1 = 26 and 

𝑇1 = 52 weeks, respectively, that is,  𝑓(𝑡) = ∑ 𝐴𝑗 cos (
2𝜋

𝑇𝑗
𝑡 − 𝜑𝑗)2

𝑗=1 = ∑ {𝑎𝑗 ∗2
𝑗=1

𝑐𝑜𝑠 (
2𝜋

𝑇𝑗
𝑡) + 𝑏𝑗 ∗ sin (

2𝜋

𝑇𝑗
𝑡)}, where 𝑡  is time in weeks.  𝐴𝑗 is the amplitude of the 𝑗𝑡ℎ cycle 
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and estimates the incidence peak by the expression 𝐴𝑗 = √𝑎𝑗
2 + 𝑏𝑗

2. 𝜑𝑗is the phase which is 

the point where the peak occurs estimated as 𝜑𝑗 = arctan (
𝑎𝑗

𝑏𝑗
), 𝑎𝑗 and 𝑏𝑗 are model 

parameters.The cumulative effect of a unit increase in any of the climatic covariates is the 

sum of the coefficients/ lag weights (𝛽𝑖, 𝛾𝑖, 𝛿𝑖, and 𝜃𝑖).  

The model in equation (1) has a 12 lag exposure variables for each climatic covariate 

resulting in a total of 48 coefficients to be estimated. Also, the lags of exposure variables are 

highly correlated, and this would lead to multicollineraity resulting in unreliable coefficient 

with large variances and standard errors.  To address these constraints, we restricted the lag 

coefficients using polynomial distributed lags of order 1-4. The n-th order polynomial 

distributed lags for rainfall, NDVI, LSTD and LSTN were expressed as follows; 

Rainfall; 𝛽𝑖 = ∅0 + ∅1𝑖 + ∅2𝑖2+, … , +∅𝑛𝑖𝑛 = ∑ ∅𝑛𝑖𝑛𝑛
𝑑  

NDVI;  𝛾𝑖 = 𝜌0 + 𝜌1𝑖 + 𝜌2𝑖2+, … , +𝜌𝑛𝑖𝑛 = ∑ 𝜌𝑛𝑖𝑛𝑛
𝑑  

LSTD; 𝛿𝑖 = 𝜋0 + 𝜋1𝑖 + 𝜋2𝑖2+, … , +𝜋𝑛𝑖𝑛 = ∑ 𝜋𝑛𝑖𝑛𝑛
𝑑  

LSTN;  𝜃𝑖 = 𝜏0 + 𝜏1𝑖 + 𝜏2𝑖2+, … , +𝜏𝑛𝑖𝑛 = ∑ 𝜏𝑛𝑖𝑛𝑛
𝑑 , 

where ∅𝑛, 𝜌𝑛, 𝜋𝑛 and 𝜏𝑛 are the parameters of the nth polynomial function describing the lag 

weights. 

The full polynomial distributed lag model of nth order and 11 lags was derived by substituting 

the expressions above in equation 1; 

log(𝜇𝑡) = log(𝑁𝑡) + 𝑓(𝑡) + 𝛼 + ∑ (11
𝑖=0 ∑ ∅𝑛𝑖𝑛𝑛

𝑑 ) 𝑅𝑎𝑖𝑛𝑡−𝑖 + ∑ (11
𝑖=0 ∑ 𝜌𝑛𝑖𝑛𝑛

𝑑 ) 𝑁𝐷𝑉𝐼𝑡−𝑖 +

∑ (11
𝑖=0 ∑ 𝜋𝑛𝑖𝑛𝑛

𝑑 ) 𝐿𝑆𝑇𝐷𝑡−𝑖 + ∑ (11
𝑖=0 ∑ 𝜏𝑛𝑖𝑛𝑛

𝑑 ) 𝐿𝑆𝑇𝑁𝑡−𝑖 + 𝜖(𝑖−1)∗52+𝑡      

Bayesian model specification was completed by specifying prior distributions for all model 

parameters. A non-informative normal prior distribution was assumed for the regression 

coefficients,  a Gamma distribution with mean 1 and variance 100 for the parameter, r, an 
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inverse gamma prior distribution with mean 10 and variance 100, for 𝜎2 and 𝜎2, i.e.  

𝜎2~𝐺𝑎(0.1,0.001), 𝑗 = 1, … 4 and a Uniform prior distribution for 𝜌, i.e. 𝜌~𝑈[−1,1]. 

 

Bayesian stochastic variable selection  

 A spike and slab variable selection algorithm was set up to choose the most optimal 

polynomial model order most suitable for explaining malaria-climatic variability for each 

climatic covariate in each endemic setting. For rainfall or any climatic factor, we let 𝐇135∗12 

denote a matrix where the rows represent weeks 1,…,135 and the columns represent the 

observations of each covariate for lag 0 to lag 11. Let also 𝐊12∗5 denote a matrix whose rows 

represent lags (0-12), and columns represent parameters of up to order 4 of the polynomial 

function describing the lag weights (∅𝑛) where columns 1,2,3,4, and 5 represent parameters 

for polynomial functions of orders zero, one (∅1), two (∅2), three (∅3), and four (∅4), 

respectively. 

We denote 𝑳𝟏𝟑𝟓∗𝟓 the matrix product of 𝑯 and 𝑲. The columns of 𝑳 represent the polynomial 

restricted observations of the rainfall data representing of up to order 4. The matrix was then 

set up in the Bayesian variable selection using a stochastic search with the columns as 

variables representing the respective polynomial orders A categorical variable   Xp was 

introduced into the model and assigned values 1 to 5 representing exclusion of the variable 

from the model (Ip = 1) equivalent to order zero, and inclusion of the six variables as 

follows; order one (Ip = 2), order two (Ip = 3), order three (Ip = 4), order four (Ip = 5). Ip 

has a probability mass function ∏ π
j

δj(Ip)5
j=1 , where πj denotes the inclusion probabilities of 

functional form j (j=1,2,3,4,5) so that ∑ πj = 15
j=1   and δj(. )  is the Dirac function, δj(Ip) =

{
1, if Ip = j

0, if Ip  ≠ j
 .  A spike and slab prior distribution was assumed for the regression coefficients. 

In particular for the coefficient  βp,l~δ2(Ip)N(0, τp,l
2 ) + (1 − δ2)N(0, ϑ0τp,l

2 ) was assumed 
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for the scenario of selecting one out of four polynomial orders or exclusion of the variable. 

The coefficients    {βp,l}l=1,..,5
   corresponding to inclusion of 𝑋𝑝, p=1,…,5 in the model. For 

inclusion probabilities, a non-informative Dirichlet distribution was adopted with hyper 

parameter α = (1,1,1,1,1)T, that is, 𝛑 = (π1, π2, π3, π4, π5)T~Dirichlet(5, α). We also 

assumed inverse Gamma priors for the precision hyper parameters τp
2 and τp,l

2 , l = 1, … ,5. 
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Chapter 8.0:  General discussion  

We developed Bayesian spatio-temporal models for malaria surveillance in Uganda. These 

models were used to determine the spatio-temporal changes of malaria burden during 2009-

2017, and to assess the effects that malaria interventions, climatic changes, and health facility 

readiness on the disease distribution. Furthermore, polynomial distributed lag models with 

high predictive performance were developed to forecast malaria outbreaks in different 

endemic settings of the country. We analyzed various data sources including routinely 

collected health facility data reported in the HMIS/DHIS2, weekly surveillance data, 

nationally representative household surveys, such as Malaria Indicator Surveys (MIS) and 

Demographic Health Surveys (DHS), health facility assessment surveys,  climatic data from 

remote sensing sources, and national population and housing census.  

8.1 Significance of the work 

The thesis comprises of six objectives addressed in chapters 2-7. Each chapter includes a 

discussion of findings. In this section, a general discussion is provided on the contribution and 

significance of key findings to epidemiological methods and malaria epidemiology in general. 

8.1.1 Epidemiological methods  

In Chapters 2 and 3, we developed spatially varying coefficients models to estimate 

interventions’ effects at subnational scale and to account for potential interactions of 

interventions with endemicity level. Intervention effects varied with region indicating that 

interventions do not have the same effect across the country. These models provide crucial 

information for decision making that enables targeted interventions implementation unlike 

national scale model estimates that ignore possible heterogeneities in interventions’ effects at 

subnational scale. 

In Chapter 3, we developed Bayesian geostatistical and temporal models following 

earlier work by Giardina (Giardina et al., 2014) to fit data collected from two surveys that 
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were conducted at different time periods in different locations. To overcome this obstacle, 

geographical misalignment of the locations between the two surveys was carried out by 

predicting parasitaemia risk of the first survey at the locations of the second survey. The 

models were fitted on the MIS 2009 and MIS 2014/15 to determine spatio-temporal trends of 

parasitaemia risk changes during 2009-2014 and the effects of interventions at national and 

subnational scales. This methodology is relevant for endemic countries particularly in SSA 

that periodically conduct national household surveys (MIS and DHS) to monitor malaria 

burden and intervention coverage over time.  

In Chapter 4, we fitted Bayesian spatio-temporal conditional autoregressive negative 

binomial models on malaria incidence data reported during 2013-2016 by extending models 

by Rumisha (Rumisha et al., 2013) and Karagiannis-Voules (Karagiannis-Voules et al., 2013). 

In this thesis, we allowed spatio-temporal patterns of disease incidence to vary from year to 

year by including year-specific, spatially structured and unstructured random effects modeled 

at district level via conditional autoregressive and Gaussian exchangeable prior distributions, 

respectively. This approach is more robust and relevant for malaria situation in Uganda and 

other endemic countries because space-time patterns of malaria burden differ from year to 

year due to changes in environmental/climatic factors, interventions and socio-economic 

transformation. This improves common model formulations for malaria incidence which 

assumes stable geographical patterns across years.  

In Chapters 4 and 5, we applied Bayesian CAR models to obtain district-level 

estimates of intervention coverage, health-seeking behavior indicators, and socioeconomic 

indicators from population-based surveys whose samples are calculated to produce precise 

estimates only for domains of region and country. This approach can be used for studies using 

data from population-based surveys that wish to estimate predictor effects at a scale that is 

smaller than the domains considered in for sample size estimation. 
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Furthermore, in Chapter 5, we developed Bayesian spatio-temporal models to assess 

the effects of climatic changes on malaria incidence rates changes between 2013 and 2017. 

The changes in the incidence rates were modeled on the log scale as a function of the 

difference in climatic conditions between 2013 and 2017, the effects of intervention coverage, 

socioeconomic status, and the proportion of malaria treatment-seeking behavior in 2017.  

In chapter 6, we fitted Bayesian geostatistical models to assess the effects of health 

facility readiness on severe malaria outcomes. A multidimensional facility readiness index 

was created using multiple correspondence analysis based on the most important readiness 

indicators identified using stochastic search geostatistical variable selection. Our methodology 

used more than one dimension of the MCA to create a robust index unlike in previous studies 

that used PCA (Boyer et al., 2015; Gage et al., 2016b; Jackson et al., 2015; Oyekale, 2017; 

Wang et al., 2010), a dimension reduction method for continuous data (Howe et al., 2012), or 

other studies that used MCA but based on only the first dimension (Ayele et al., 2014; Kollek 

and Cwinn, 2011). Our study is the first in the epidemiological research domain to incorporate 

variable selection and use more than one MCA dimension for constructing a multidimensional 

facility readiness index. Our approach has improved the robustness of the index and made 

hypothesis testing meaningful as it consists of the most relevant indicators for the outcome 

and also explains a higher proportion of the variation in the original data compared to the one-

dimensional index based on the first dimension. The methodology is applicable in health 

facility assessment surveys where a need arises to develop a single indicator of readiness that 

is representative of the vast array of readiness indicators defined from health facility 

performance/readiness.  

Malaria forecasting models were developed in Chapter 7 using polynomial distributed 

lag terms (Teklehaimanot et al., 2004a) to relate malaria incidence and climatic predictors. 

We used stochastic variable selection to identify the optimal polynomial order of the climatic 
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factors in each endemic setting. To the best of our knowledge, this is the first malaria 

forecasting study that has selected the optimal polynomial function in different endemic 

settings. Results highlighted varying degrees of malaria burden in the country and different 

order of polynomial models required in each setting. This implies that a decentralized 

forecasting system that takes into consideration the local endemicity levels and ecological 

settings will be required as opposed to one system. These models can serve as a foundation 

for setting up and operationalizing a Malaria Early Warning System (MEWS) to facilitate the 

forecasting of malaria outbreaks and allow for planning and timely deployment of response 

interventions. 

8.1.2 Malaria epidemiology  

In this section, the contribution of this thesis to malaria epidemiology in Uganda and other 

similar endemic settings of SSA is discussed. 

8.1.2.1 Malaria decline and resurgence  

The malaria risk and incidence maps produced from this thesis illustrate the contemporary 

malaria situation in the country and show considerable shrinkage in malaria burden from 2009 

to 2015, and a resurgence in 2016. These maps can serve as important tools for decision 

making support, resource mobilization, planning and targeted implementation of 

interventions, monitoring and evaluation of malaria control activities in Uganda.  

 Malaria burden at least up to until 2015 coincided with an accelerated scale-up of 

vector control interventions and case management with ACTs (Uganda Bureau of Statistics 

and ICF International, 2015), improving socioeconomic conditions and health services 

delivery (Uganda Bureau of Statistics (UBOS), 2017). In spite of this reduction attained in 

most of the regions over time, malaria transmission remains high and uninterrupted in the 

regions of East Central, North East and West Nile. These findings are in agreement with 

results reported from a field study  that reported entomological inoculation rates as high as 
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310 infectious bites per year in these regions (Kamya et al., 2015). The high transmission 

rates in some areas could explain why Uganda still ranks among the top six countries with the 

highest number of Plasmodium falciparum infections in the world (World Health 

Organisation, 2017).  

The disturbing trend of malaria resurgence in the country starting in 2016 is similar to 

trends observed at the global scale - more than 5 million cases were reported in 2016 

compared to 2015. This upsurge in Uganda may be explained by changes in climatic 

conditions (Jagannathan et al., 2012), loss of population-level immunity as a result of 

sustained high intervention coverage (Ghani et al., 2009),  cessation of IRS activities in the 

high burdened mid-north region (President’s Malaria Initiative, 2017), and the influx of one 

million refugees from  South Sudan due to political conflicts (UNHCR, 2017).  

8.1.2.2 Interventions’ effects 

The work in this thesis has demonstrated that malaria interventions, that is, ITNs, IRS, and 

ACTs have played a major role in the reduction of malaria burden in Uganda. These 

interventions have been recommended by WHO in endemic settings for malaria control and 

prevention due to their ability in reducing human-vector contact (Spitzen et al., 2017), direct 

killing of mosquitoes (CDC, 2018), and rapid clearance of malaria parasites in the population 

(Pousibet-Puerto et al., 2016) for ITNs, IRS and ACTs, respectively. The effectiveness of 

interventions in Uganda is in agreement with findings from other studies in other endemic 

settings that reported reduction in malaria case incidence (Lengeler, 2004) and mortality rates 

(Eisele et al., 2010). Similarly, ITNs and IRS have been reputed for having made a major 

contribution to the reduction in malaria burden in SSA during 2000-2015 (Bhatt et al., 2015a).   

Results also showed that despite the fact that ITN ownership is near universal 

coverage levels, the use of ITNs has remained inadequate (Uganda Bureau of Statistics and 
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ICF International, 2015). This could be explained by the weak social mobilization on the part 

of NMCP to promote the use of ITNs (Taremwa et al., 2017). 

Our results demonstrated varying effects of interventions in different regions of the 

country. This could be explained by heterogeneities in malaria transmission levels, 

environmental, and socioeconomic conditions. The interplay of these factors requires area 

specific intervention programming in Uganda as opposed to a one-size-fits-all approach. 

Whereas in some areas, minimizing host-vector contact is sufficient in lowering transmission 

by ITNs, in other areas reduction in vector population through IRS will be a prerequisite for a 

reduction in transmission pressure.  

Although the WHO discourages the supplementation of one intervention by another 

(WHO, 2014), our findings demonstrated that a higher level of malaria decline was achieved 

in regions/districts where IRS and ITNs were implemented together compared to districts with 

only ITNs (Uganda Bureau of Statistics and ICF International, 2015). In line with our 

findings, other studies have also attested to significant transmission interruption and a decline 

in morbidity in the Mid-North region where the ITNs and IRS interventions were combined 

(Tukei et al., 2017). Unfortunately, NMCP discontinued IRS in the high-burden districts in 

the north of the country and has failed to extend this intervention to other high-risk areas in 

the eastern region (National Malaria Control Program, 2016) resulting in malaria resurgence 

in the former (Raouf et al., 2017) and consistently high uninterrupted transmission in the latter 

(Kamya et al., 2015). This slow-paced deployment and scale-up of IRS has been attributed to 

the high costs involved in its implementation and the high technical capacity of personnel 

required for spraying activities and monitoring of insecticide side effects (Talisuna et al., 

2015). 
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8.1.2.3 Socioeconomic influence  

Our results have shown a positive correlation between malaria burden and poverty in Uganda. 

The high malaria burden remains disproportionately concentrated in the northern and eastern 

parts of the country where poverty is high and socioeconomic development the lowest. The 

high poverty levels in the country may be responsible for high malaria transmission and thus 

mitigating the success of malaria reduction strategies. Indeed recent studies indicated that the 

proportion of the population living in poverty in Uganda has increased from 20 percent to 27 

percent in the last 10 years, which is equivalent to 10 million people (Uganda Bureau of 

Statistics (UBOS), 2017).  Currently Uganda is number 163 on the  Global Human 

Development Index (GHI) (United Nations Development Program, 2016). The malaria-

poverty vicious cycle can be explained by the fact that poverty affects the ability to access 

treatment services, nutrition, and access to media for malaria prevention awareness messages 

(Teklehaimanot and Mejia, 2008).  

A lower malaria burden was shown in urban areas compared to rural areas. This can be 

attributed to the urbanization immediate impact on destroying mosquito breeding sites as land 

is reclaimed for accommodation purposes leading to lower malaria transmission. Our findings 

concur with other studies in other settings (Wilson et al., 2015). However, these studies have 

warned that in the long-term, unique mosquito breeding sites develop in urban areas leading 

to the emergence of urban malaria in major towns and cities – a phenomenon that requires 

environmental modification interventions which unfortunately have received little attention to 

date in Uganda (Talisuna et al., 2015).    

8.1.2.4 Environmental influence  

This work has further demonstrated that climatic changes have had a detrimental effect on 

malaria reduction gains achieved through accelerated interventions scale-up in Uganda. This 

finding further augments the evidence that the environment is a key driver of malaria 
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transmission (Reiner et al., 2015). In Chapters 2-5, results indicated higher malaria burden in 

cultivated areas compared to areas with no cultivation. This finding is a threat to malaria 

control activities in Uganda given the country’s rapidly growing population (Uganda Bureau 

of Statistics, 2016) and high-income inequalities (Uganda Bureau of Statistics (UBOS), 2017) 

that are forcing people to move into previously uninhabitable areas to grow food, a change 

that is leading to land changes and environmental degradation which ultimately will increase 

susceptibility to malaria risk (Hall, 2000). Also, the high population pressure in the country 

has exacerbated rural-urban migration resulting in massive deforestation and cultivation of 

wetlands, which increases mosquito breeding sites leading to increased malaria transmission 

(Isunju et al., 2016). 

8.1.2.5 Health facility readiness to provide malaria treatment 

Study results in Chapter 6 showed that although higher facility readiness was associated with 

a reduced risk of severe malaria outcomes, facility readiness to provide malaria treatment is 

still very low in Uganda These results point to a weak health system which may help explain 

high latent reservoir of parasitaemia risk in the population. 

8.1.2.6 Model-based malaria early warning system  

The predictive performance of the forecasting models developed in this thesis is high and this 

could be attributed to the robustness of the polynomial functions that were used in model 

development to capture the complex non-linear relationship between malaria and climatic 

factors similar to what has been reported in field experiments (Bayoh and Lindsay, 2003; 

Christiansen-Jucht et al., 2014, 2015a). These high predictive performance models can be 

used by National Malaria Control Program as a building block for effective model-based 

malaria early warning system to forecast outbreaks and thus allow for enough time for 

planning and allocation of resources in affected areas. 
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8.2 Limitations and challenges 

Though the introduction of the DHIS2 has improved reporting of routine facility data, 

nevertheless, systemic issues that undermine complete data reporting from all facilities still 

remain.  Most importantly is the weakly supervised and regulated private sector which means 

that several private facilities don’t report in the HMIS leading to underreporting and hence 

underestimation of malaria burden in the country. In the public sector where reporting rates 

are high and consistent, a substantial proportion is not parasitologically confirmed especially 

in lower level facilities owing to diagnostic weaknesses (Kyabayinze et al., 2012). This may 

lead to overestimation of the malaria burden in the country. 

The application of CAR models in Chapters 4 and 5 may bias parameter estimates due 

to the ecological fallacy (Jenkins et al., 2015). The remedy to this problem is the application 

of the point process models such as log-Gaussian Cox model (Diggle et al., 2013) which 

produce precise parameter estimates. However, their application requires direct analysis of 

case locations which are not available in the current DHIS2 system. Instead, the data is 

reported in aggregate form at the catchment area of the health facility which can only be 

analyzed using CAR models. 

8.3 Conclusion and recommendations  

The work in this thesis is very important for malaria surveillance in Uganda and the methods 

can be applied to other endemic countries. The results can inform evidence-based 

implementation of malaria prevention, control and treatment activities and future 

programming in the country. The malaria risk maps and other estimates produced are vital for 

evaluation of the effects of interventions, environmental/climatic factors and understanding 

the role that health facility readiness has had on malaria burden reduction in Uganda at 

national and subnational scales. This in turn will inform priority setting, decision making, 

resource mobilization, timing, and targeted deployment of interventions to maximize benefits 
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and optimizing resources for achieving the goals set in country and international malaria 

reduction and elimination frameworks.  

Nonetheless, the malaria per capita funding in Uganda which stands at less than US$ 1 is 

inadequate for interrupting malaria transmission to achieve pre-transmission phase as desired 

in the national and international frameworks.  Therefore to further sustain malaria reduction 

and avert the recent upsurge in Uganda, NMCP should lobby government, international and 

local donors for more funding to implement an integrated vector management package to 

interrupt malaria transmission, as well as add other tools to the repertoire of malaria control in 

Uganda such as mass drug administration and intermittent prevention treatment for infants in 

the high-burden areas. In the same vein, the government should prioritize poverty alleviation 

programs to boost socioeconomic development to break the vicious cycle of poverty that 

undermines the progress of malaria control activities. In line with this, the government should 

fulfill its obligation of allocating at least 17% of its national budget to the health sector as per 

Abuja declaration agreement to help address the fragile health system that hinders malaria 

treatment. 

In order to strengthen monitoring and evaluation of malaria activities in Uganda, NMCP 

needs to build capacity in the state-of-the-art methods such as Bayesian geostatistical and 

spatio-temporal models that have been developed in this thesis through collaboration with 

national and international research and academic institutions. Also, NMCP should create 

synergies with other sectors whose activities overlap with malaria control activities 

particularly the agricultural and National Meteorological Authority (NMA).  The NMA has 

capacity in weather forecasts and environmental monitoring and can assist NMCP to develop 

a MEWS which is a key intervention missing in malaria surveillance in Uganda. 
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