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ABSTRACT Despite their high potential for drug-drug interactions (DDI), clinical DDI
studies of antiretroviral drugs (ARVs) are often lacking, because the full range of po-
tential interactions cannot feasibly or pragmatically be studied, with some high-risk
DDI studies also being ethically difficult to undertake. Thus, a robust method to
screen and to predict the likelihood of DDIs is required. We developed a method to
predict DDIs based on two parameters: the degree of metabolism by specific en-
zymes, such as CYP3A, and the strength of an inhibitor or inducer. These parameters
were derived from existing studies utilizing paradigm substrates, inducers, and inhib-
itors of CYP3A to assess the predictive performance of this method by verifying pre-
dicted magnitudes of changes in drug exposure against clinical DDI studies involv-
ing ARVs. The derived parameters were consistent with the FDA classification of
sensitive CYP3A substrates and the strength of CYP3A inhibitors and inducers. Char-
acterized DDI magnitudes (n � 68) between ARVs and comedications were success-
fully quantified, meaning 53%, 85%, and 98% of the predictions were within 1.25-
fold (0.80 to 1.25), 1.5-fold (0.66 to 1.48), and 2-fold (0.66 to 1.94) of the observed
clinical data. In addition, the method identifies CYP3A substrates likely to be highly
or, conversely, minimally impacted by CYP3A inhibitors or inducers, thus categoriz-
ing the magnitude of DDIs. The developed effective and robust method has the po-
tential to support a more rational identification of dose adjustment to overcome
DDIs, being particularly relevant in an HIV setting, given the treatment’s complexity,
high DDI risk, and limited guidance on the management of DDIs.

KEYWORDS drug-drug interaction, antiretroviral drug, CYP3A, HIV infection,
comedication

Drug-drug interactions (DDIs) are an increasing burden for patients infected with
human immunodeficiency virus (HIV), because DDIs can lead to drug toxicity and

treatment failure. Most antiretroviral drugs (ARV) are substrates and inhibitors or
inducers of cytochrome P450 (CYP) enzymes, especially the CYP3A family (1), comprised
of CYP3A4, CYP3A5, CYP3A7, and CYP3A43 (2). ARVs are considered to be among the
therapeutic agents with the highest DDI potential (3). Large surveys suggest around a
quarter of HIV patients on treatment are at risk of a clinically significant DDI even with
modern antiretroviral therapies (4–6). The risk for DDIs increases significantly with age,
multiple morbidities, and polypharmacy (7–9).

It is not feasible, practical, or affordable for every potential DDI to be clinically
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studied, either during drug development or postlicensing. Some DDIs (e.g., those
resulting in increased exposure of narrow therapeutic index drugs) cannot easily or
ethically be studied. However, the ability to quantitatively predict the likelihood of any
DDI remains important to understand the clinical significance and whether any DDI can
be safely managed through dose modification and to prevent unnecessary denial of
important therapies to patients. Where data are lacking, empirical expert opinion
prevails based on (i) the metabolic pathway of the drugs involved, (ii) in vitro drug
metabolism data, and (iii) prior knowledge from other DDI studies investigating the
effect of paradigm agents on the drug of interest. However, it is challenging to scale
these data in any quantitatively useful manner. Furthermore, in vitro data as well as
clinical DDI trials are often undertaken only for strong, paradigm CYP3A inhibitors (e.g.,
ketoconazole and itraconazole) and inducers (e.g., rifampin). It is difficult to estimate if
and to what extent the dose of the victim drug should be adjusted when administered
with a weaker CYP3A inhibitor than ketoconazole or inducer than rifampin. Therefore,
a quantitative tool for estimating DDIs involving ARVs could support a more rational
dose adjustment to overcome DDIs.

Physiologically based pharmacokinetic models (PBPK) can be used to simulate the
magnitude of change in exposure of any given victim drug in a virtual patient
population (10), using data obtained from in vitro experiments about the susceptibility
of the victim and the strength of perpetrator drugs. However, PBPK models are
intended to be generally used for predicting DDIs (11) and not to manage daily DDI
queries in the clinic.

An alternative method to predict DDIs is to analyze clinical pharmacokinetic data
from similar drug combinations with known DDI magnitudes (12, 13). This method can
provide a valuable evaluation and prediction of a DDI magnitude, delineating a
potential dose adjustment to overcome the DDI effect and ensure a safe and effective
treatment of the patient.

The objective of this work was to investigate if DDIs between ARVs and comedica-
tions can be quantified from existing clinical pharmacokinetic data of similar drug
combinations, providing a rational framework to support necessary dose optimization
for HIV-infected patients.

RESULTS
Calculation of parameters (fraction of the disposition pathway mediated by

CYP3A [DPI3A] and CYP3A inhibitor and inducer ratios [InR3A/IcR3A]) needed for
the prediction of DDI magnitudes. A total of 68 DDIs issued from clinical studies
involving ARVs were identified, including 13 involving competitive inhibition (whereby
the inhibitor binds to the active site of the enzyme and thereby blocks the binding of
the victim drug), 33 involving mechanism-based inhibition (whereby the inhibitor
represses the transcription or translation of the metabolizing enzyme, thereby leading
to the loss of the enzyme), and 22 involving induction.

The fraction of CYP3A-mediated metabolism for victim drugs (Table 1) and the
strength of perpetrators (Table 2) have been calculated for ARVs using published,
clinical area under the curve (AUC) ratios of characterized DDIs. Drugs being highly
metabolized by CYP3A were triazolam (DPI3A, 0.966 [0.898, 1.0]; results are reported as
geometric means [confidence intervals]), midazolam (DPI3A, 0.940 [0.909, 0.971]), que-
tiapine (DPI3A, 0.845 [0.645, 1.0]), tacrolimus (DPI3A, 0.831 [0.531, 1.0]), and maraviroc
(DPI3A, 0.792 [0.559, 0.998]), whereas CYP3A was only responsible for 30.3% of zolpidem
disposition (DPI3A, 0.303 [0.065, 0.661]).

Ritonavir (InR3A, 0.963 [0.873, 1.0]), cobicistat (InR3A, 0.936 [0.810, 1.0]), and keto-
conazole (InR3A, 0.943 [0.823, 1.0]) were estimated to be potent CYP3A inhibitors,
whereas cimetidine was the weakest inhibitor of CYP3A in this study (InR3A, 0.256
[0.049, 0.570]). The moderate inducers efavirenz and etravirine had IcR3A values of 0.539
[0.282, 0.850] and 0.644 [0.433, 0.882], whereas the strong inducer rifampin had an IcR3A

of 0.906 [0.846, 0.967].
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Verification of the method. Characterized DDIs involving ARVs have been calcu-
lated by using the derived DPI and InR/IcR values to verify the method and investigate
its potential to predict uncharacterized DDIs (Fig. 1). More than half of the predictions
(53%) were within 1.25-fold (ratio predicted/observed, 0.80 to 1.25), 85% of the
predicted values were within 1.5-fold (ratio predicted/observed: 0.66 to 1.48), and 98%
of the predictions were within 2-fold (ratio predicted/observed, 0.66 to 1.98) of the
observed clinical data for all investigated DDI mechanisms. Overall, predictions were
equally performant for ARVs acting as perpetrators (ritonavir, cobicistat, darunavir,
saquinavir, etravirine, and efavirenz) or as victim drugs (maraviroc and rilpivirine).

Impact and interplay of DPI3A and InR3A/IcR3A. To analyze the impact of DPI3A,
the interaction magnitude with the potent inhibitor ritonavir (InR3A, 0.963 [0.873, 1,0])
and the moderate inducer etravirine (IcR3A, 0.644 [0.433, 0.882]) have been calculated

TABLE 1 Calculated fraction of the disposition pathway mediated by CYP3A (DPI3A) of victim drugs sorted by their CYP3A sensitivitiesb

Drug

DPI3A

Reference(s)a

Predicted AUC*/AUC with:

Ritonavir (inhibitor) Etravirine (inducer)

Single
calculation

Monte Carlo
simulation

Single
calculation

Monte Carlo
simulation

Single
calculation

Monte Carlo
simulation

Simvastatin 0.978 0.979 [0.916, 1.0] 12 45.97 34.54 [5.33, 100.0] 0.34 0.31 [0.12, 0.44]
Triazolam 0.959 0.966 [0.898, 1.0] 30, 31 24.39 24.97 [4.91, 100.0] 0.35 0.31 [0.12, 0.44]
Midazolam 0.940 0.940 [0.909, 0.971] 32–35 16.67 12.36 [5.40, 20.64] 0.35 0.32 [0.13, 0.45]
Quetiapine 0.896 0.845 [0.645, 1.0] 37 9.66 7.97 [2.42, 62.46] 0.36 0.34 [0.14, 0.47]
Tacrolimus 0.875 0.831 [0.531, 1.0] 36 8.03 10.20 [1.97, 100.0] 0.37 0.34 [0.14, 0.48]
Maraviroc 0.828 0.792 [0.559, 0.998] 38 5.80 5.85 [1.98, 31.26] 0.38 0.35 [0.14, 0.49]
Saquinavir 0.638 0.580 [0.258, 0.849] 39 2.76 2.88 [1.31, 6.04] 0.44 0.42 [0.18, 0.57]
Darunavir 0.602 0.543 [0.215, 0.817] 40 2.51 2.62 [1.26, 5.19] 0.46 0.43 [0.18, 0.59]
Macitentan 0.585 0.524 [0.200, 0.810] 41 2.41 2.55 [1.24, 4.98] 0.47 0.43 [0.19, 0.59]
Amlodipine 0.468 0.464 [0.117, 1.0] 16 1.88 2.75 [1.12, 30.13] 0.52 0.46 [0.19, 0.64]
Etravirine 0.340 0.336 [0.077, 0.701] 42 1.52 1.79 [1.08, 3.18] 0.60 0.52 [0.24, 0.71]
Rilpivirine 0.324 0.334 [0.079, 0.656] 43 1.48 1.73 [1.08, 2.84] 0.61 0.53 [0.24, 0.71]
Zolpidem 0.268 0.303 [0.065, 0.661] 44, 45 1.37 1.66 [1.06, 2.79] 0.66 0.55 [0.25, 0.73]
Ritonavir 0.156 0.231 [0.038, 0.552] 46 1.19 1.46 [1.04, 2.19] 0.77 0.60 [0.29, 0.78]
aReferences reporting observed AUC ratios used to calculate DPI3A according to equation 3. If more than one study reported the AUC ratio for the same drug
combination, the weighted mean was used to derive DPI3A.

bSingle calculations not considering variability and Monte Carlo simulations (n � 10,000) were performed to predict DDI magnitudes with the inhibitor ritonavir and
the inducer etravirine. Results of the Monte Carlo simulations are presented as geometric means [95% confidence intervals].

TABLE 2 Calculated inhibitor (InR3A) and inducer (IcR3A) ratios sorted by their strengthsb

Drug

InR3A/IcR3A

Reference(s)a

Predicted AUC*/AUC with:

Maraviroc Rilpivirine

Single
calculation

Monte Carlo
simulations

Single
calculation

Monte Carlo
simulations

Single
calculation

Monte Carlo
simulations

Ritonavir 1.0 0.963 [0.873, 1.0] 18–22 5.80 5.85 [1.98, 7.63] 1.48 1.73 [1.08, 2.06]
Ketoconazole 0.981 0.943 [0.823, 1.0] 47 5.32 4.61 [1.93, 6.25] 1.47 1.64 [1.08, 2.00]
Cobicistat 0.967 0.936 [0.810, 1.0] 9, 34, 48–51 5.00 5.35 [1.91, 7.04] 1.46 1.71 [1.08, 2.00]
Voriconazole 0.951 0.916 [0.768, 1.0] 52 4.69 4.67 [1.78, 6.26] 1.45 1.67 [1.08, 1.98]
Itraconazole 0.920 0.877 [0.691, 0.986] 53 4.19 4.14 [1.72, 5.46] 1.43 1.62 [1.07, 1.92]
Clarithromycin 0.912 0.870 [0.680, 0.982] 54 4.08 3.98 [1.66, 5.24] 1.42 1.61 [1.07, 1.89]
Saquinavir 0.858 0.803 [0.557, 0.946] 55 3.45 3.32 [1.53, 4.34] 1.39 1.54 [1.07, 1.80]
Posaconazole 0.852 0.797 [0.551, 0.944] 50, 56 3.39 3.28 [1.53, 4.29] 1.38 1.54 [1.06, 1.79]
Diltiazem 0.780 0.715 [0.427, 0.898] 17 2.82 2.70 [1.36, 3.46] 1.34 1.46 [1.05, 1.68]
Fluconazole 0.768 0.700 [0.403, 0.893] 33 2.74 2.62 [1.34, 3.38] 1.33 1.45 [1.05, 1.66]
Cimetidine 0.213 0.256 [0.049, 0.570] 57–59 1.21 1.38 [1.04, 1.57] 1.07 1.15 [1.01, 1.23]
Efavirenz 0.566 0.539 [0.282, 0.850] 60 0.48 0.43 [0.18, 0.61] 0.70 0.60 [0.29, 0.79]
Etravirine 0.662 0.644 [0.433, 0.882] 42 0.38 0.35 [0.14, 0.49] 0.61 0.53 [0.24, 0.71]
Rifampin 0.946 0.906 [0.846, 0.967] 39 0.06 0.10 [0.04, 0.20] 0.15 0.20 [0.07, 0.29]
aReferences reporting observed AUC ratios used to calculate InR3A and IcR3A according to equations 4 and 5. If more than one study reported the AUC ratio for the
same drug combination, the weighted mean was used to derive InR3A/IcR3A.

bSingle calculations not considering variability and Monte Carlo simulations (n � 10,000) were performed to predict DDI magnitudes with the victim drugs maraviroc,
a sensitive CYP3A substrate, and rilpivirine, a moderate CYP3A substrate. Results of the Monte Carlo simulations are presented as geometric means [95% confidence
intervals].
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(Table 1). Drugs being highly metabolized by CYP3A, like triazolam and maraviroc,
showed a �5-fold increase in exposure when given with ritonavir and roughly a 65%
decrease in the AUC when administered with etravirine. Monte Carlo simulations
allowed us to investigate the variability of predictions, which can be remarkably high
for some interactions (e.g., tacrolimus when administered with ritonavir or etravirine).

The impact of InR3A and IcR3A was investigated by calculating the DDI potential with
the victim drugs maraviroc, for which CYP3A is responsible for 79.2% of the disposition
(DPI3A, 0.792 [0.559, 0.998]), and rilpivirine, which is less metabolized by CYP3A (DPI3A,
0.334 [0.079, 0.656]) (Table 2). Strong CYP3A inhibitors like ritonavir and cobicistat led
to a 5-fold increase in the AUC of maraviroc and to a 1.5-fold increase of rilpivirine
exposure, showing also the impact of DPI3A. This holds true for inducers, because
CYP3A substrates like maraviroc and rilpivirine were more impacted by rifampin than
efavirenz and etravirine. The predicted variability was greater for maraviroc, being
highly metabolized by CYP3A, particularly for inhibitors and inducers impacting CYP3A
strongly, than for rilpivirine.

To investigate the interplay between the role CYP3A plays in the metabolism of
drugs (represented by DPI3A) and the inhibitor strength (represented by InR3A), the
DDI magnitude between five victim drugs with increasing DPI3A (zolpidem �

macitentan � maraviroc � triazolam � simvastatin) and inhibitors with increasing
InR3A (cimetidine � fluconazole � itraconazole � ritonavir) have been investigated
and compared to observed clinical data, if available (Fig. 2). The strong inhibitors
ritonavir and itraconazole led to a �5-fold increase of exposure for victim drugs
being highly metabolized by CYP3A, whereas drugs that were not as sensitive to
CYP3A, like zolpidem (DPI3A, 0.303 [0.065, 0.661]), resulted in a weak AUC ratio
increase of less than 2-fold. Moderate CYP3A inhibitors like fluconazole gave rise to
a moderate DDI magnitude (2- to 5-fold), and CYP3A inhibitors with low InR3A

values like cimetidine resulted in low DDI magnitudes (�1.25) when administered
with a drug being highly metabolized by CYP3A (e.g., maraviroc, triazolam, and
simvastatin). Therefore, the magnitude of a DDI depends on the sensitivity of a

FIG 1 Predicted versus observed AUC ratios for competitive inhibition (open squares), mechanism-based
inhibition (open circles), and induction (open triangles). The solid black line is the line of identity, the
dotted lines represent the 80% and 125% margins, the dashed lines represent the 66% and 150%
margins, and the solid gray lines represent the 50% and 200% margins. The interaction between
saquinavir and cimetidine was calculated by using the InR3A of the stronger inhibitor saquinavir rather
than that of cimetidine, as explained in Discussion.
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substrate toward a specific metabolic pathway, represented by DPI, and the
strength of an inhibitor or inducer, represented by InR and IcR.

Autoinhibition and autoinduction of ARVs. It should be highlighted that some
ARVs, for instance, ritonavir and etravirine, can inhibit or induce their own metabolism
(autoinhibition/autoinduction), which is important to consider when quantifying DDIs
involving those drugs. The inhibitor ritonavir (InR3A, 0.963 [0.873, 1.0]; DPI3A, 0.231
[0.038, 0.552]) and the inducer etravirine (IcR3A, 0.644 [0.433, 0.882]; DPI3A, 0.336 [0.077,
0.701]) were used as victim drugs, and the effects of the CYP3A inhibitors cimetidine
(weak inhibitor), fluconazole (moderate inhibitor), and ketoconazole (strong inhibitor)
on ritonavir and etravirine exposures were investigated (Fig. 3). Even with strong
inhibitors like ketoconazole, there was only a minor effect on ritonavir and etravirine
exposure, which is in accordance with observed clinical data.

Prediction of uncharacterized DDIs between tyrosine kinase inhibitors and
ARVs. Tyrosine kinase inhibitors being mainly metabolized by CYP3A (ibrutinib and
dasatinib, with DPI3A values of 0.971 [0.916, 1.0] and 0.779 [0.524, 1.0]), given with the
potent CYP3A inhibitor ritonavir, led to strong DDIs, with AUC ratios of �5-fold.
Considering variability estimated by Monte Carlo simulations, all predicted AUC ratios
of ibrutinib given with ritonavir were above 5-fold. Moderate DDIs were predicted for
tyrosine kinase inhibitors being intermediately metabolized by CYP3A (lapatinib, nilo-
tinib, and gefitinib, with DPI3A values of 0.696 [0.403, 0.936], 0.646 [0.333, 0.895], and
0.534 [0.197, 0.884], respectively), although some AUC ratios were above 5-fold and
therefore categorized as strong DDIs. Tyrosine kinase inhibitors for which CYP3A is a
minor pathway (pazopanib, sunitinib, and imatinib, with DPI3A values of 0.383 [0.106,
0.700], 0.336 [0.079, 0.661], and 0.301 [0.064, 0.627]) showed weak DDIs when admin-
istered with ritonavir, although considering variability, some predicted AUC ratios had
a magnitude greater than 2-fold, classifying them as moderate DDIs. Sorafenib is almost
not metabolized by CYP3A (DPI3A of 0.054 [0.006, 0.391]) and showed no DDI with
ritonavir.

FIG 2 Comparison of predicted (white bars) and observed (gray bars) AUC ratios plus standard deviations
for the five victim drugs zolpidem (DPI3A, 0.303 [0.065, 0.661]), macitentan (DPI3A, 0.524 [0.200, 0.810]),
maraviroc (DPI3A, 0.792 [0.559, 0.998]), triazolam (DPI3A, 0.966 [0.898, 1.0]), and simvastatin (DPI3A, 0.979
[0.916, 1.0]), administered together with the four CYP3A inhibitors cimetidine (InR3A, 0.256 [0.049, 0.570]),
fluconazole (InR3A, 0.700 [0.403, 0.893]), itraconazole (InR3A, 0.877 [0.691, 0.986]), and ritonavir (InR3A,
0.963 [0.873, 1.0]). The red line represents the calculated value without using Monte Carlo predictions.
The solid line, the dotted line, and the dashed line represent the 1.25-fold, 2.0-fold, and 5.0-fold increases
in the AUC ratio according to the FDA classification of DDI magnitudes (29).
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Results for the tyrosine kinase inhibitors were similar when administered with the
moderate inducer etravirine (Fig. 4). Tyrosine kinase inhibitors being highly or inter-
mediately metabolized by CYP3A showed moderate DDIs when given with etravirine,
with some predicted AUC ratios being above 5-fold. Administration of etravirine with
imatinib, sunitinib, and pazopanib led to weak DDIs. The combination of sorafenib and
etravirine showed no DDI potential.

DISCUSSION

The management of DDIs involving ARVs is often problematic in clinical practice, as
guidance on dosing recommendations is only provided for a limited number of

FIG 3 Comparison of the predicted (white bars) and observed (gray bars) AUC ratio plus standard
deviations for the two victim drugs with intrinsic inhibitory (ritonavir) and inducing (etravirine) properties
administered together with the three CYP3A inhibitors cimetidine (InR3A, 0.256 [0.049, 0.570]), flucona-
zole (InR3A, 0.700 [0.403, 0.893]), and ketoconazole (InR3A, 0.943 [0.823, 1.0]). The red line represents the
calculated value without using Monte Carlo predictions.

FIG 4 DDI magnitudes between tyrosine kinase inhibitors with increasing DPI3A and the moderate CYP3A
inducer etravirine predicted by running 10,000 Monte Carlo simulations. The solid red line shows
calculated values without using Monte Carlo predictions. The solid line, the dotted line, and the dashed
line represent the 1.25-fold, 2.0-fold, and 5.0-fold increase in the AUC ratio according to the FDA
classification of DDI magnitudes (29).
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evaluated drug combinations. We present a robust and reproducible method to predict
uncharacterized DDIs between ARVs and comedications. Of interest, the method
discriminates between CYP3A substrates likely to be significantly, or else marginally,
impacted by CYP3A inhibitors and inducers, and therefore categorizes DDIs according
to their magnitude. The method has the potential to support a more rational identifi-
cation of dose adjustment to overcome DDIs with the perspective to help guide DDI
management in the future. In addition, this approach can help to minimize and
rationalize future clinical studies, providing a valuable characterization of the interac-
tion potential. The integration with modeling techniques such as PBPK will additionally
allow us to have a comprehensive prediction of DDI magnitude as well as identify drug
combinations that might require more detailed laboratory and clinical investigations.

The method predicts DDIs based on the degree of metabolism by a specific enzyme,
such as CYP3A (represented by DPI), and the strength of an inhibitor or inducer
(represented by InR and IcR). These parameters can be estimated from existing clinical
pharmacokinetic studies and are used, in turn, to estimate uncharacterized DDIs
involving ARVs. The derived parameters, DPI3A and InR3A/IcR3A, were consistent with
the FDA classification (14). CYP3A-sensitive substrates such as triazolam, midazolam,
and tacrolimus had DPI3A values close to 1. Conversely, drugs being partly metabolized
by CYP3A, like zolpidem, had lower DPI3A values and were shown to be less sensitive
to CYP3A inhibitors or inducers, because metabolism can still occur through unaffected
CYPs. This example highlights how multiple metabolic pathways can modulate the
magnitude of DDIs. Furthermore, ritonavir, cobicistat, and ketoconazole were predicted
to be strong inhibitors, whereas fluconazole was found to be a moderate inhibitor. The
strength of inducers was also correctly predicted, with rifampin characterized as a
strong inducer and etravirine or efavirenz as moderate inducers. Thus, the parameters
necessary for the method can be reliably derived from existing clinical DDI studies.

The derived parameters were used subsequently to predict DDIs and were com-
pared to existing clinical DDI studies to assess the predictive performance of the
method. All predicted AUC ratios were within 2-fold of the observed data, apart from
saquinavir and cimetidine. Additionally, 53% and 85% of all predictions fell within 1.25-
and 1.5-fold (Fig. 1) of the observed data. The reason for the underprediction of the
saquinavir-cimetidine interaction could be that cimetidine is a weaker inhibitor of
CYP3A than saquinavir. It is likely that CYP3A is not fully inhibited by cimetidine, thus
the inhibitory effect of the protease inhibitor saquinavir adds up to the total inhibition
effect, while strong CYP3A inhibitors like ketoconazole inhibit the enzyme completely,
thus an additive effect by protease inhibitors would not be detectable (10). Therefore,
in the situation of two combined drugs both having the potential to inhibit CYP3A, the
use of the inhibitor ratio (InR) of the stronger inhibitor among the two drugs is
recommended to obtain a more accurate prediction. In this case, the InR3A of saquinavir
should be used to calculate the DDI magnitude between saquinavir and cimetidine,
leading to a predicted AUC ratio of 2.23, which is in accordance with the observed one
of 2.48 (ratio predicted/observed, 0.90).

Of importance, this method allows us to categorize the magnitude of DDIs. DDIs of
large magnitude are expected for drugs being highly metabolized by a given enzyme
in the presence of strong or moderate inhibitors and inducers of this enzyme (Fig. 2).
Therefore, in this situation, depending on the dose-exposure relationship of the victim
drug, dose adjustment and/or close clinical monitoring might be needed unless the
drug combination leads to deleterious effects, for instance, the combination of dasat-
inib or ibrutinib and ritonavir, which consequently should be avoided (Fig. 5) (15).
Conversely, drugs metabolized by multiple enzymes are expected to be weakly im-
pacted by strong inhibitors or inducers and not affected by moderate and weak
perpetrators. Therefore, no dose adjustment would be needed a priori unless the drug
has a narrow therapeutic index, like tyrosine kinase inhibitors (15). Furthermore, our
results illustrate that drugs with strong or at least moderate inhibitory or inducing
properties on their own metabolism (e.g., ritonavir or etravirine) are minimally im-
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pacted by other inhibitors or inducers, as their own effect on CYPs counteracts the
effect of other drugs (Fig. 3).

The strengths of this method are that it can potentially be applied to any given CYP
enzyme and for any given DDI, and that results shown for tyrosine kinase inhibitors can
be translated to other drug classes. One clinical example would be an HIV-infected
patient receiving ritonavir who suffers from hypertension, which requires treatment
with amlodipine, a calcium channel inhibitor. Amlodipine is metabolized by CYP3A, and
therefore an interaction would be expected with ritonavir. To get an idea about the DDI
magnitude, the presented approach is used. The package insert usually contains
information about known DDIs and can therefore be used to estimate DPI3A of the
chosen drug. The package insert of amlodipine contains the information that diltiazem,
a strong CYP3A inhibitor (14), increases amlodipine exposure by 60%, and other strong
CYP3A inhibitors, like ketoconazole and ritonavir, may increase amlodipine concentra-
tion to a greater extent without further details on the potential DDI magnitude and
guidance on how to adjust the amlodipine dose to prevent hypotension and edemas
(16). By deriving the inhibitory strength of diltiazem (InR3A, 0.715 [0.427,0.898] [Monte
Carlo simulations] or 0.802 [single calculation]) using an existing midazolam/diltiazem
DDI study (17), the fraction of CYP3A-mediated metabolism of amlodipine can be
calculated to be 0.464 [0.117, 1.0] (Monte Carlo simulations) or 0.468 (single calcula-
tion). The inhibitory strength of ritonavir was 0.963 [0.873, 1.0] (Monte Carlo simula-
tions) or 1 (single calculation) was derived from midazolam/ritonavir DDI studies
(18–22). Both the fraction of amlodipine metabolism mediated by CYP3A and the
inhibitory strength of ritonavir were used to calculate the magnitude of the DDI (AUC
ratio) using equation 1. The parameters derived from Monte Carlo simulations or single
calculation provided similar DDI predictions. A 90% increase in amlodipine exposure is
expected, suggesting a 50% dose reduction would be required when amlodipine is
given with ritonavir, which is in agreement with findings from a published DDI study
(23). It should be noted that the decision to adjust the dose should not be based only
on the pharmacokinetic change but should also take into account the possibility to
monitor the DDI effect, drug-response relationship, and the therapeutic index to safely
manage DDIs.

FIG 5 DDI magnitudes between tyrosine kinase inhibitors with increasing DPI3A and the potent CYP3A
inhibitor ritonavir predicted by running 10,000 Monte Carlo simulations. The solid red line shows the
calculated value without using Monte Carlo predictions. The solid line, the dotted line, and the dashed
line represent the 1.25-fold, 2.0-fold, and 5.0-fold increases in the AUC ratio according to the FDA
classification of DDI magnitudes (29).
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Some limitations should be acknowledged. It is worth mentioning that perpetrators
are never completely selective and therefore affect more than one pathway. Thus, the
method cannot distinguish between effects attributed exclusively to the specific CYP
enzyme of interest or if the DDI results from a combined effect from other CYPs, UGTs,
and/or drug transporters. In addition, the method cannot separate effects from differ-
ent locations (e.g., intestinal versus hepatic). However, the multiple combined effects of
several enzymes and drug transporters and the contribution of different sites to a DDI
are accounted for in the prediction, because clinical data of similar DDIs with similar
pathways are used. DDIs of drug pairs can be quantified, but in clinical reality subjects
may receive concomitantly several drugs, which may interact mutually. Furthermore,
the method does not account for genetic background, age, and comorbidities (e.g.,
liver cirrhosis), which all can impact the magnitude of DDIs. To answer these questions,
more mechanistic PBPK models are necessary, which are highly established in the field
of DDI predictions (24, 25). The method was verified using the common 2-fold limit,
which might be considered too permissive for drugs with a narrow therapeutic index
(26). However, the potential underprediction of a DDI would occur only if the inhibitor/
inducer of interest alters a pathway other than that of the paradigm perpetrator used
to derive the necessary parameters (DPI and InR/IcR). It is therefore recommended that
DPI and InR/IcR be derived using several perpetrators for the prediction of uncharac-
terized DDIs involving drugs with a narrow therapeutic index and that results are
compared to exclude this possibility.

In conclusion, the developed effective and robust method can minimize and ratio-
nalize future clinical studies, providing an effective prediction of DDI magnitude.
Additionally, it has the potential to support a more rational identification of dose
adjustment to overcome DDIs, being particularly relevant in an HIV setting, given the
treatment’s complexity, high DDI risk, and limited guidance on the management of
DDIs. In the future, the method could be extended to other drug classes and prediction
of multiple DDIs.

MATERIALS AND METHODS
This study extends the method to estimate DDIs from clinical data to ARVs (12, 13). The common

metric to quantify a DDI is the ratio of AUC of a victim drug in the presence of a perpetrator (AUC*) to
the AUC of the victim drug in the absence of the perpetrator. The AUC ratio can be expressed in the
following way for inhibitors (equation 1) and inducers (equation 2):

AUC*

AUC
�

1

1 � DPIx � InRx
(1)

AUC*

AUC
�

1

DPIx

1 � IcRx
� (1 � DPIx)

(2)

where DPI is the fraction of the disposition pathway mediated by a specific enzyme, x, such as CYP3A,
and InR and IcR are the inhibitor and inducer ratio, respectively. CYP3A was chosen because it is a major
contributor to the metabolism of drugs in clinical use and is therefore often involved in DDIs. A detailed
description of the method used and the deviation of the equation can be found in the supplemental
material.

DPI represents the importance of a metabolic pathway of interest. A DPI3A of 1 means that 100% of
the drug is metabolized by CYP3A, hence no other enzyme or transporter is involved in the disposition
of the drug, while a DPI3A of 0 means that CYP3A is not involved in the metabolism at all.

InR/IcR reflects the potential of a perpetrator to inhibit or induce the metabolic pathway of interest.
An InR3A/IcR3A of 1 indicates a high inhibition/induction potential, while a low InR3A/IcR3A value translates
to a weak inhibition/induction potential.

Data source for clinical studies to verify the method. A structured literature search was performed
using the MEDLINE database to screen for DDI studies to develop and verify the method. Key words were
“drug-drug-interaction,” “effect,” and the victim and perpetrator drugs of interest. Chosen victim drugs
should be highly, intermediately, and weakly metabolized by CYP3A, and chosen perpetrators should
inhibit or induce CYP3A strongly, moderately, or weakly. Data were included if subjects were healthy
volunteers or HIV-infected patients but did not have any severe disease affecting metabolizing enzymes
(i.e., liver cirrhosis). At least 80% of the subjects of one study were white, because different ethnicities can
have an impact on CYP abundance, and drug administration was oral. If more than one study reported
an AUC ratio for the same victim-perpetrator drug combination, the weighted mean was calculated.

Calculation of parameters (DPI and InR/IcR) used for the prediction of DDI magnitudes. With a
given AUC ratio determined in a clinical study, DPI and InR/IcR of victim and perpetrator drugs can be
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estimated. Therefore, equations 1 and 2 are rearranged to calculate DPI (equation 3), InR (equation 4),
and IcR (equation 5).

DPIx �

1 �
AUC

AUC*

InRx
(3)

InRx �

1 �
AUC

AUC*

DPIx
(4)

IcRx �

1 �
AUC

AUC*

1 �
AUC

AUC* � DPIx

(5)

To start the method, a model drug with a known DPI3A is needed (Fig. 6). We used midazolam as a probe
substrate, which is highly metabolized by CYP3A4/3A5 and, to a lesser extent, UGT1A4 (27). In the first
step, InR3A of strong, moderate, and weak inhibitors and IcR3A of strong, moderate, and weak inducers
were calculated from DDI studies with midazolam. In the second step, DPI3A was calculated for drugs
being highly, intermediately, or weakly metabolized by CYP3A. In the third step, characterized DDI
magnitudes were calculated using the derived DPI3A and InR3A/IcR3A values in equation 1 or 2, and the
predicted results were compared to observed clinical data. Judgement if a prediction was successful was
assessed by the 1.25-, 1.5-, and 2-fold method as used by the FDA (28). In the last step, uncharacterized
DDI magnitudes were predicted for tyrosine kinase inhibitors being weakly, intermediately, or highly
metabolized by CYP3A (sorafenib, imatinib, sunitinib, pazopanib, gefitinib, nilotinib, lapatinib, dasatinib,
and ibrutinib), ritonavir as a potent CYP3A inhibitor, and etravirine as a moderate CYP3A inducer.
Predicted DDI magnitudes were classified into no DDIs (AUC ratio of 0.8 to 1.25), weak DDIs (AUC ratio
of 1.25 to 2.0 for inhibition and 0.5 to 0.8 for induction), moderate DDIs (AUC ratio of 2.0 to 5.0 for
inhibition and 0.2 to 0.5 for induction), and strong DDIs (AUC ratio above 5.0 for inhibitors and below 0.2
for inducers) according to the FDA (29).

To capture the observed variability in clinical DDI studies, Monte Carlo simulations (n � 10,000) were
performed to calculate the equation parameters (DPI3A and InR3A/IcR3A) and AUC ratios of characterized
DDIs to verify the method as well as uncharacterized DDIs between tyrosine kinase inhibitors and ARVs.
Results are reported as the geometric means [95% confidence intervals].

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AAC
.00717-18.

SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.
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ratio; IcR3A, inducer ratio.
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