
Search Progress and Potentially Expanded States in Greedy Best-First Search

Manuel Heusner, Thomas Keller and Malte Helmert
University of Basel, Switzerland

{manuel.heusner,tho.keller,malte.helmert}@unibas.ch

Abstract
A classical result in optimal search shows that A*
with an admissible and consistent heuristic expands
every state whose f -value is below the optimal so-
lution cost and no state whose f -value is above the
optimal solution cost. For satisficing search algo-
rithms, a similarly clear understanding is currently
lacking. We examine the search behavior of greedy
best-first search (GBFS) in order to make progress
towards such an understanding.
We introduce the concept of high-water mark
benches, which separate the search space into ar-
eas that are searched by a GBFS algorithm in se-
quence. High-water mark benches allow us to ex-
actly determine the set of states that are expanded
by at least one GBFS tie-breaking strategy and give
us a clearer understanding of search progress.

1 Introduction
Many classical algorithms for state-space search, such as
greedy best-first search [Doran and Michie, 1966], A∗
[Hart et al., 1968], Weighted A∗ [Pohl, 1970] and IDA∗
[Korf, 1985], are representatives of a general family of
uni-directional, expansion-based heuristic search algorithms.
Such algorithms are largely agnostic to the state space to be
searched, only requiring two pieces of information to be ap-
plicable in a given domain: a generative model of the state
space that provides the initial state, tests if a state is a goal
state and produces all successor states of a given state along
with the action costs; and a heuristic function which estimates
the cost-to-go or distance-to-go from a given state.

Optimal search algorithms in this family have a fairly well-
developed theory [e.g., Dechter and Pearl, 1985]. For exam-
ple, we know that the A∗ algorithm [Hart et al., 1968] is op-
timal with admissible heuristics and never reexpands states
with consistent heuristic. Moreover, for admissible and con-
sistent heuristics h, it is well-known that A∗ will expand a
state s if f(s) < c∗, and A∗ will not expand s if f(s) > c∗,
where c∗ is the optimal solution cost, f(s) = g(s)+h(s) and
g(s) is the shortest-path cost from the initial state to s.

While this criterion is not perfect – it does not predict
whether or not states s with f(s) = c∗ are expanded – it

goes a large way towards explaining the search behavior of
A∗. Theoretical results of this kind are useful to explain cases
where A∗ performs poorly [e.g., Helmert and Röger, 2008].
They can also show how to improve the performance of A∗-
style search algorithms, for example by emphasizing the im-
portance of tie-breaking [Asai and Fukunaga, 2017].

In A∗ searches with admissible heuristics, expanding a
state with a higher f -value than any previously expanded state
is a meaningful event because every time it happens, a new
lower bound for the optimal solution cost has been proven.
Consequently, such an occurrence is often interpreted as a
measure of progress of the search.

For satisficing (non-optimal) algorithms in the family, a
comparably deep understanding of search progress and states
that will or will not be expanded is currently lacking. Many
new algorithms for satisficing search have been proposed in
recent years [e.g., Imai and Kishimoto, 2011; Xie et al.,
2014b; 2014a; Valenzano et al., 2014], yet our understand-
ing of the behavior of such algorithms is still quite limited.
For example, a recent study by Wilt and Ruml [2015] demon-
strates that (and why) improving the accuracy of an admis-
sible heuristic can be highly detrimental for greedy search,
while being extremely beneficial for A∗.

This paper contributes to the understanding of satisficing
search by studying the search behavior of greedy best-first
search (GBFS), the most commonly considered satisficing
search algorithm. We show that GBFS runs are episodic in
the sense that each algorithm run can be understood as a se-
quence of smaller subsearches, where each subsearch occurs
within a single bench of the underlying state space. Each
search episode begins and ends by expanding a so-called
progress state, which can be characterized in terms of high-
water marks. Based on this observation, we exactly charac-
terize the set of states that are potentially expanded by GBFS
with a given heuristic. i.e., the set of states that are expanded
by at least one tie-breaking strategy. This paper is based on a
longer paper published at SoCS 2017 [Heusner et al., 2017],
and we refer to the SoCS paper for proofs.1

1We define some concepts slightly differently here compared to
the SoCS paper. Specifically, we make a state that induces a bench
part of the bench, and the benches defined here correspond to re-
duced benches in the SoCS paper. These changes simplify and
streamline the presentation, but care is needed when considering the
proofs of the SoCS paper with the definitions of this paper.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5269

CORE Metadata, citation and similar papers at core.ac.uk

Provided by edoc

https://core.ac.uk/display/211684752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Background
State Space Topology We consider search algorithms that
operate on a state space S = 〈S, sI , S?, succ〉, where S is a
finite set of states, sI ∈ S is the initial state, S? ⊆ S is the
set of goal states and succ is a successor function that maps
each state s ∈ S to a set of successor states.

A sequence of pairwise distinct states ρ = 〈s0, . . . , sn〉
is a (cycle-free) path from s0 to sn if si ∈ succ(si−1) for
i = 1, . . . , n. A path 〈s0, . . . , sn〉 is an s-plan if s0 = s and
sn ∈ S?. With P (s), we denote the set of s-plans for s. State
s′ is reachable from s if there is a path from s to s′.

A state space topology T = 〈S, h〉 is a state space S com-
bined with a heuristic function h : S → R+

0 . Typically, h(s)
estimates the cost of a cheapest s-plan. In this work, it suf-
fices to regard the heuristic function as an arbitrary black-box
function that assigns some non-negative, finite real number to
each state. To simplify some definitions, we assume that the
initial state has a larger heuristic value than all other states
and that all goal states have lower heuristic values than all
non-goal states. This does not affect the behavior of GBFS:
the initial state is always the first expanded state regardless
of its heuristic value, and the heuristic values of goal states
never need to be considered because GBFS may terminate as
soon as a goal state is generated.

Greedy Best-First Search The input to GBFS is a state
space topology, and the output is an sI -plan if one exists
and “unsolvable” otherwise. GBFS is driven by the assump-
tion that states with lower heuristic values are closer to a
goal state. In each step, it expands a state that has the low-
est heuristic value among all states that have been generated
before but have not been expanded yet, until a goal state is
generated. Because of its greediness, it provides no quality
guarantee of the computed sI -plan. Due to heuristic inac-
curacy, most challenging search problems contain (possibly
prohibitively large) heuristic plateaus or local minima where
the heuristic does not provide guidance. Then, GBFS often
faces situations where it has to decide which state to expand
next among a set of states with identical heuristic value.

For this reason, GBFS is actually not a well-defined algo-
rithm but rather a family of algorithms that differ in a sin-
gle parameter, the tie-breaking strategy. Formally, a GBFS
tie-breaking strategy τ for a state space topology 〈S, h〉 with
states S maps all possible non-empty sets Sk ⊆ {s ∈ S |
h(s) = k} to a state s ∈ Sk. We refer to GBFS coupled with
a specific tie-breaking strategy as an instance of GBFS.

In every iteration of GBFS where generated but unex-
panded states (open states) still exist and no solution has yet
been found, GBFS with tie-breaking strategy τ expands the
state τ(Smin), where Smin is the set of all open states with
minimal h-value. The tie-breaking strategy is the only param-
eter that sets different instances of GBFS apart and uniquely
determines the sequence of state expansions. The search re-
alization of a GBFS search with tie-breaking strategy τ is a
sequence of states rτ = 〈s1, . . . , sn〉, where s1 = sI , si is
the i-th expanded state following τ , and sn is either a goal
state, or {s1, . . . , sn} is the set of all reachable states in case
no solution exists.

h = 5

h = 4

h = 3

h = 2

h = 1

h = 0

A

B C D E F

G H I

J K L

M N O

P Q

Figure 1: State space topology of our running example.

High-Water Mark An earlier attempt to explain the behav-
ior of GBFS is due to Wilt and Ruml [2014], who base their
analysis on the high-water mark of a state.
Definition 1 (High-water mark). Let 〈S, h〉 be a state space
topology with states S. The high-water mark of s ∈ S is

hwm(s) :=

{
minρ∈P (s)(maxs′∈ρ h(s

′)) if P (s) 6= ∅
∞ otherwise.

We define the high-water mark of a set of states S′ ⊆ S as

hwm(S′) := min
s∈S′

hwm(s).

Intuitively, the high-water mark of a state s measures how
high the heuristic values of expanded states must climb be-
fore a solution can be found in a search starting from s. Wilt
and Ruml define high-water marks for individual states. We
extend this definition to sets of states S′ by selecting the min-
imum high-water mark of any of the states in S′. This reflects
the intuition that if search begins with a set of candidate states
S′, then search will eventually follow the “path of least resis-
tance” among the states in S′.
Example 1. As a running example, consider the search space
topology T = 〈〈{A, . . . ,Q},A, {P,Q}, succ〉, h〉 with succ
given by the arcs and h by the shaded regions in Figure 1.

The set of J-plans in T is P (J) = {〈J,C, I,N,O,P〉,
〈J, I,N,O,P〉}, and the set of M-plans is P (M) = ∅. There-
fore, hwm(J) = 3, hwm(M) =∞, and hwm({J,M}) = 3.

The search realization rτ = 〈A,D,K,C,H, J, I,M,N,O,
P〉 for a GBFS tie-breaking strategy τ computes the A-plan
〈A,C, I,N,O,P〉.

Wilt and Ruml use the high-water mark of the initial state
to distinguish two kinds of states: ones that are certainly not
expanded by any GBFS instance regardless of the used tie-
breaking criterion (all s ∈ S with h(s) > hwm(sI)) and one
for which we do not know if they are expanded or not (all
remaining states). In the following we refine this result to
obtain a clear classification for a larger number of states.

3 Search Progress
Expanding a state with higher f -value than any previously
expanded state is often regarded as a measure of progress
of A∗ search with an admissible heuristic. In GBFS-style
searches, somewhat analogously, an event that is often con-
sidered meaningful is when the search expands a state with a

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5270



s A D K C H J I M N O P
h(s) 5 4 2 4 3 2 3 1 1 1 0

hwm(s) 5 4 5 4 3 3 3 ∞ 1 1 0

Table 1: Heuristic values and high-water marks for our example re-
alization rτ . Bold underlined states are progress states. Bold values
for h(s) and hwm(s) indicate all-time lows.

lower heuristic value than all previously expanded states. For
example, the boosted dual-queue search algorithm by Richter
and Helmert [2009] uses such an occurrence to further priori-
tize expansions based on preferred operators, and the GBFS-
LE family of algorithms by Xie et al. [2014a] uses it to deter-
mine when a GBFS search has become stalled.

Although it sounds intuitively appealing, reaching a new
lowest h-value in GBFS does not necessarily translate into
meaningful, quantifiable progress in finding a solution. In the
search realization rτ of our running example, K is the first
state with a heuristic value of 2 that is expanded, but the ex-
pansion of K certainly does not lead to meaningful progress,
as the only successor of K is the initial state A (Table 1). In
contrast, the states C and I, which are expanded after K and
have heuristic values larger than h(K), are part of the com-
puted A-plan and do intuitively look much more like states
where progress is made than K.

Given the role of high-water marks in Wilt and Ruml’s
study of GBFS, another plausible idea is to focus on states
that have a lower high-water mark than any previously ex-
panded states, and indeed these states correspond to a some-
what more meaningful measure of progress: whenever we
expand a state with a new lowest high-water mark k, we
are guaranteed that after this point, no state with a heuristic
value larger than k will be expanded. However, this notion
of progress is still somewhat vague (again, see Table 1). In
the running example, we see that D and H are among the ex-
panded states with a high-water mark lower than that of any
previously expanded state, but they do not participate in the
solution found by the algorithm and do not play a critical role
in the search realization.

A slight tweak of the high-water mark idea gives us the
desired progress criterion: rather than focus on the algorithm
steps where a state with a new lowest high-water mark is ex-
panded, we focus on algorithm steps where a state with a new
lowest high-water mark is generated. Perhaps surprisingly, it
turns out that states with this property can be characterized
by a test that is completely independent of the tie-breaking
strategy or search history: a state expansion generates a state
with a high-water mark lower than that of any previously ex-
panded or generated state. This test applies to all states s from
any search realization of every state space topology and is
exactly expressed with hwm(succ(s)) < hwm(s), i.e., state
s has a successor whose high-water mark is lower than the
high-water mark of s itself. We call states that pass this test
progress states.

Definition 2. Let 〈S, h〉 be a state space topology with set of
states S. A progress state is a state s ∈ S with hwm(s) >
hwm(succ(s)).

In the running example, the progress states are A,C, I, and
O (Table 1).

It turns out that progress states play a very important role in
the behavior of GBFS. Consider a situation during the execu-
tion of GBFS where the set of states in the open list of GBFS
is S′, and the algorithm expands the progress state s ∈ S.
Then it is guaranteed that none of the states s′ ∈ S′ \ {s} will
ever be expanded.

This is due to two observations. Firstly, because GBFS
chooses to expand s, all states s′ ∈ S′ \ {s} satisfy h(s′) ≥
h(s). Secondly, because s is a progress state, we have
hwm(succ(s)) < h(s), which implies that s has a succes-
sor (generated upon expanding s) from which a goal state can
be reached while only expanding states with heuristic values
strictly lower than h(s). Therefore, none of the states in S′
can ever become a candidate for expansion again. We will
use this insight to better understand the set of states that are
potentially expanded by GBFS (i.e., expanded by at least one
tie-breaking strategy).

4 Potentially Expanded States
The properties of progress states imply that every GBFS re-
alization can be understood as a sequence of search episodes,
where each episode begins when a progress state is expanded
and ends when the next progress state is expanded. Our tech-
nical restrictions on heuristic values ensure that the initial
state is always a progress state and that every predecessor
state of a goal state is a goal state, which means that we do
not need special treatment for the first or last episode. (The
last episode is simply the one that ends with the expansion of
a predecessor state of a goal state.)

Therefore, to analyze which states can be potentially ex-
panded by GBFS, it is sufficient to understand (A) how a
search from one progress state to the next proceeds, and (B)
in which order different progress states can be reached. For
(A), we define high-water mark benches (or simply benches),
which represent a single search episode, beginning with the
expansion of a progress state and ending with the expansion
of another progress state.

Definition 3. Let 〈S, h〉 be a state space topology with set of
states S. Let s ∈ S be a progress state.

The bench level of s is level(s) = hwm(succ(s)).
The inner bench states inner(s) for s consist of all states

s′′ 6= s that can be reached from s on paths on which all
states s′ 6= s (including s′′ itself) are non-progress states and
satisfy h(s′) ≤ level(s).

The bench exit states exit(s) for s consist of all progress
states s′ with h(s′) ≤ level(s) that are successors of s or of
some inner bench state of s.

The bench states states(s) for s are {s}∪inner(s)∪exit(s).
The bench induced by s, denoted by B(s), is the state space

with states states(s), initial state s, goal states exit(s), and
whose successor function is the successor function of S re-
stricted to states(s).

Example 2. In our running example, consider the bench
B(A). It has the initial state A, level(A) = 4, inner(A) =
{D,K} and exit(A) = {B,C,E}. State F is not on this bench

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5271



because it is only reachable from A via exit state E, and no
GBFS tie-breaking exists where F can be expanded.

Bench B(E) has initial state E, level(E) = 1, inner(E) =
∅ and exit(E) = {O}. State L is not on this bench because its
heuristic value is larger than the level of the bench.

Benches capture the possible local behaviors of GBFS af-
ter expanding a given progress state and before expanding
the next progress state. In Heusner et al. [2017], we show
that whenever state s is a progress state that is potentially
expanded by GBFS, all states of B(s) are also potentially
expanded by GBFS. Moreover, after expanding state s and
before expanding the next progress state s′ in the GBFS real-
ization, only states in B(s) can be expanded.

In summary, once a GBFS run reaches a bench, i.e., ex-
pands the progress state that forms the initial state of the
bench, it remains on the bench until it expands an exit state of
this bench (which, in turn, is a progress state and hence be-
gins another bench). Every time a GBFS search moves on to
a new bench, it has made progress towards finding a goal, as
subsequent benches have strictly decreasing levels. This also
means that the search never returns to a bench it has exited.2

Therefore, the set of states potentially expanded by GBFS
follows from the inner structure of benches (which states
are included in which bench) and the connectivity between
benches (i.e., which progress states occur as bench exit states
of which other progress states). Our next definition formal-
izes the connectivity between benches.

Definition 4. Let T = 〈S, h〉 be a state space topology with
initial state sI . The bench transition system B(T ) of T is a
directed graph 〈V,E〉 whose vertices are benches. The vertex
set V and directed edges E are inductively defined as the
smallest sets that satisfy the following properties:

1. B(sI) ∈ V
2. If B(s) ∈ V , s′ ∈ exit(s), and s′ is a non-goal state,

then B(s′) ∈ V and 〈B(s),B(s′)〉 ∈ E.

In words, the bench transition system can be constructed by
starting from the bench of the initial state and then iteratively
adding all further benches induced by exit states of previously
generated benches.

Example 3. The bench transition system of our running ex-
ample T is depicted in Figure 2. Starting from the initial
bench B(A), which is as described in Example 2, it can be
constructed by iteratively selecting an exit state s that has
not been considered yet and by creating B(s) along with a
directed edge that links both benches. Note that benches can
share states (like B(B) and B(C) and some states are not part
of any bench (like state F or L).

Bench transition systems are always acyclic because we
must have level(s) > level(s′) whenever the bench transition

2We point out that benches can overlap, i.e., the same state can
occur in multiple benches. Therefore, benches do not form a par-
titioning of the state space. In the presence of craters, it is even
possible for the same state to be part of different benches that are
visited in a single GBFS run. These aspects of benches are not im-
portant for the results we present here, and we refer to Heusner et
al. [2017] for a more detailed discussion.

l = 4

l = 3

l = 2

l = 1

l = 0

B(A)A

B C D E

K

B(B)B

G H I

J

B(C)C

H I

J

B(I)I

M N O

B(E)E

O

B(O)O

Figure 2: Bench transition system of our running example.

system contains a directed edge from B(s) to B(s′) [Heusner
et al., 2017]. We are now ready to state our main result, which
characterizes the set of states potentially expanded by GBFS.

Theorem 1. Let T = 〈S, h〉 be a state space topology with
bench transition system 〈V,E〉. Then the set of states poten-
tially expanded by GBFS is

⋃
B(s)∈V states(s).

In other words, there exists a GBFS tie-breaking strategy
that expands a given state s iff the bench transition system for
the given state space topology includes a bench containing s.

Example 4. In Example 3, we see that state F is not part
of any bench in the bench transition system. Even though
one of the two shortest A-plans is via state F, there is no tie-
breaking strategy under which GBFS expands F.

In particular, this allows us to compute the set of poten-
tially expanded states in polynomial time in the number N of
states of the state space: precompute the high-water mark val-
ues by backchaining from the goal states, construct the bench
transition system (which consists of at most N benches, each
consisting of at most N states), then compute the union of all
states of all benches. More efficient algorithms are possible.

5 Conclusion
We identified the critical role of progress states in GBFS,
which are states whose high-water mark exceeds the high-
water mark of their successors. Whenever GBFS expands a
progress state, all other open states become ineligible for ex-
pansion forever: the search effectively behaves as if the open
list were cleared with the progress state as a new initial state.

It follows that greedy best-first search is episodic in na-
ture, with progress states separating different search episodes.
High-water mark benches capture the behavior of one
episode, and the bench transition system captures episode se-
quencing. Together, they allow us to exactly characterize the
states expanded by GBFS under any tie-breaking strategy.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5272



Acknowledgments
This work was supported by the European Research Council
as part of the project “State Space Exploration: Principles,
Algorithms and Applications”.

References
[Asai and Fukunaga, 2017] Masataro Asai and Alex Fuku-

naga. Tie-breaking strategies for cost-optimal best first
search. Journal of Artificial Intelligence Research, 58:67–
121, 2017.

[Dechter and Pearl, 1985] Rina Dechter and Judea Pearl.
Generalized best-first search strategies and the optimality
of A∗. Journal of the ACM, 32(3):505–536, 1985.

[Doran and Michie, 1966] James E. Doran and Donald
Michie. Experiments with the graph traverser program.
Proceedings of the Royal Society A, 294:235–259, 1966.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[Helmert and Röger, 2008] Malte Helmert and Gabriele
Röger. How good is almost perfect? In Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI 2008), pages 944–949. AAAI Press, 2008.

[Heusner et al., 2017] Manuel Heusner, Thomas Keller, and
Malte Helmert. Understanding the search behaviour of
greedy best-first search. In Alex Fukunaga and Akihiro
Kishimoto, editors, Proceedings of the 10th Annual Sym-
posium on Combinatorial Search (SoCS 2017), pages 47–
55. AAAI Press, 2017.

[Imai and Kishimoto, 2011] Tatsuya Imai and Akihiro
Kishimoto. A novel technique for avoiding plateaus of
greedy best-first search in satisficing planning. In Wol-
fram Burgard and Dan Roth, editors, Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence
(AAAI 2011), pages 985–991. AAAI Press, 2011.

[Korf, 1985] Richard E. Korf. Depth-first iterative-
deepening: An optimal admissible tree search. Artificial
Intelligence, 27(1):97–109, 1985.

[Pohl, 1970] Ira Pohl. Heuristic search viewed as path find-
ing in a graph. Artificial Intelligence, 1:193–204, 1970.

[Richter and Helmert, 2009] Silvia Richter and Malte
Helmert. Preferred operators and deferred evaluation
in satisficing planning. In Alfonso Gerevini, Adele
Howe, Amedeo Cesta, and Ioannis Refanidis, editors,
Proceedings of the Nineteenth International Conference
on Automated Planning and Scheduling (ICAPS 2009),
pages 273–280. AAAI Press, 2009.

[Valenzano et al., 2014] Richard Valenzano, Nathan R.
Sturtevant, Jonathan Schaeffer, and Fan Xie. A com-
parison of knowledge-based GBFS enhancements and
knowledge-free exploration. In Proceedings of the
Twenty-Fourth International Conference on Automated
Planning and Scheduling (ICAPS 2014), pages 375–379.
AAAI Press, 2014.

[Wilt and Ruml, 2014] Christopher Wilt and Wheeler Ruml.
Speedy versus greedy search. In Stefan Edelkamp and Ro-
man Barták, editors, Proceedings of the Seventh Annual
Symposium on Combinatorial Search (SoCS 2014), pages
184–192. AAAI Press, 2014.

[Wilt and Ruml, 2015] Christopher Wilt and Wheeler Ruml.
Building a heuristic for greedy search. In Levi Lelis and
Roni Stern, editors, Proceedings of the Eighth Annual
Symposium on Combinatorial Search (SoCS 2015), pages
131–139. AAAI Press, 2015.

[Xie et al., 2014a] Fan Xie, Martin Müller, and Robert C.
Holte. Adding local exploration to greedy best-first search
in satisficing planning. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence (AAAI
2014), pages 2388–2394. AAAI Press, 2014.

[Xie et al., 2014b] Fan Xie, Martin Müller, Robert C. Holte,
and Tatsuya Imai. Type-based exploration with multiple
search queues for satisficing planning. In Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelli-
gence (AAAI 2014), pages 2395–2401. AAAI Press, 2014.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5273


