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Preface 
 

In line with regulations of the Faculty of Psychology, University of Basel, this thesis is 

submitted as a cumulative (i.e. publication-based) dissertation, consisting of four manuscripts. 

The current framework is intended to (1) present the four manuscripts and highlight their 

individual contributions, and (2) based on the combined insights from the different manuscripts, 

derive broader conclusions for the topic of individual differences in risk taking. 

I wish to highlight that the two published manuscripts appear under my maiden name 

Mamerow, whereas submitted manuscripts and those that are about to be submitted appear 

under my married name Tisdall.  

This dissertation is based on the following four manuscripts: 

 

(1) Mamerow, L., Frey, R., & Mata, R. (2016). Risk taking across the life span: A comparison 

of self-report and behavioral measures of risk taking. Psychology and Aging, 31(7), 711. 

 

(2) Yu, J., Mamerow, L., Lei, X., Fang, L., & Mata, R. (2016). Altered value coding in the 

ventromedial prefrontal cortex in healthy older adults. Frontiers in Aging Neuroscience, 8, 

210. 

 

(3) Tisdall, L., Frey, R., Horn, A., Ostwald, D., Horvath, L., Blankenburg, F., Hertwig, R., & 

Mata, R. (2018). Group versus individual differences in the neural representation of 

described and experienced risk. Manuscript submitted for publication. 

 

(4) Tisdall, L., Frey, R., Horn, A., Ostwald, D., Horvath, L., Pedroni, A., Blankenburg, F., 

Rieskamp, J., Hertwig, R., & Mata, R. (2018). The risky brain: Local morphometry and 

degree centrality as neural markers of psychometrically derived risk preference factors. 

Unpublished manuscript. 
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Abstract 

From the time of conception until the time of death, the path of the human organism is 

created and shaped by decisions. Some decisions we make ourselves, some are made for us; some 

will make us, some will break us. What most decisions have in common, however, is that they are 

made under risk, that is, without complete information regarding the potential decision outcomes. 

One interesting feature about decisions under risk is variability: different individuals make different 

choices, and even the same individual may, given repeated occasions, make different choices. This 

doctoral thesis aims to address the issue of individual differences by looking at several specific 

variables which may impact inter- and intra-individual differences in risk taking, namely age, the 

measures used to assess risk-taking, neural function and neural structure.  

In a set of four studies, the following questions were addressed: (1) To what extent do life 

span trajectories of risk taking change as a function of whether self-report or behavioral measures 

are used to assess risk taking? (2) Do younger and older individuals differ in the neural functional 

representation of risk and reward? (3) Do the neural representations of described and experienced 

risk converge, both at group and individual level? To what extent is neural function predictive of 

risky choice? (4) To what extent do individual differences in neural structure explain variance in 

psychometrically derived risk preference factors? The main findings are: (1) Self-report and 

behavioral measures of risk taking do not converge and lead to different life span trajectories. (2) 

The ventromedial prefrontal cortex is differentially activated in younger and older adults, with 

activation differences possessing differential explanatory power for choice in the two age groups. 

(3) Described and experienced risks show convergence at group level, divergence at the individual 

level, and are differentially predictive of risky choice. (4) Neural structural indices explain variance 

in the general risk preference factor, but not domain-specific risk preference factors.  

Based on the findings from all four studies, this thesis provides corroborating evidence for 

the argument that not all risk-taking measures are created equal and that a taxonomy of risk-taking 

measures and their respective cognitive and affective demands is required to understand individual 

differences in risk taking.  
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Introduction 

In 2017, Europe saw a 4-fold increase in measles cases on the previous year (World 

Health Organization, 2018), with the current outbreaks being traced back to vaccination scares 

following unsubstantiated claims of a connection between MMR immunization and autism 

(Flaherty, 2011). In 2008, an unforeseen global financial crisis burnt industries, economies, and 

ultimately countries, which it has been suggested was triggered by endemic ‘wild risk taking’ 

on Wall Street (Williams, 2010). In both cases, global effects are felt as the direct result of 

individuals making decisions in the face of risk, that is, in the absence of certain outcomes.  

But one does not even have to consider global events to recognize the role of risk in 

human decision making. Whether it is choosing a restaurant, a partner, a political candidate, or 

a medical procedure, having to select between two or more alternatives that come with their 

very own list of pros and cons, and for which we do not know with certainty that the anticipated 

(dis)advantages will indeed materialize, is a situation which accompanies our daily lives. Risk, 

it seems, is everywhere: it contributes to our biggest successes as well as our steepest falls. 

Crucially, while some of our decisions remain comparatively inconsequential —unless a 

restaurant does not adhere to health and safety regulations and serves contaminated food, the 

worst outcome of trying somewhere new to eat is going home dissatisfied— others have far-

reaching consequences. In the case of cancer screening, for example, not getting screened may 

result in the early stage of the disease being missed and left untreated. However, given the non-

negligible rate of false positives and the potential for unnecessary treatment to be undertaken 

(Croswell, Baker, Marcus, Clapp, & Kramer, 2010; Elmore et al., 1998), what does one do with 

a test result that has come back positive?  

One challenging aspect of decisions made under risk is understanding individual 

differences. Given the same choice set, one person opts for cancer screening, while another 

declines. Equally, given the same choice set, the same person may opt for screening on one 

occasion but may opt out at another occasion. The question which has spawned much interest 
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and which lies at the heart of this thesis is as follows: Why do individuals vary, both within 

themselves and between each other, with regards to decisions made under risk? Before I 

endeavor to provide some answers to this question, it is necessary to formally define risk as 

understood in this body of work, for how we define risk impacts on the chosen research 

methodology and consequently the interpretation of our results. 

Definitions of risk  

Formally, risk can be defined in the economic sense of outcome variance, which 

assumes uncertainty about the outcomes but is otherwise silent regarding the presence or 

absence of loss in the set of possible outcomes (Schonberg, Fox, & Poldrack, 2011; Weber, 

2010). Under this definition, deciding between a 60% chance of 100 Francs and 10% chance of 

600 Francs constitutes a risky decision. Alternatively, and perhaps more intuitively, risk has 

been defined as uncertainty about decision outcomes which entail the chance of incurring a 

form of loss, be that financial, physical, psychological, social, societal or otherwise (Schonberg 

et al., 2011; Slovic, 1987, 1998; Weber, 2010). It is interesting to note that some authors have 

gone even further and included the probability of loss as a criterion. For instance, Nigg defined 

risk taking as the “[a]daptive or maladaptive selection of rewarding behavioral option in the 

face of high probability of loss […]” (Nigg, 2017, p.4).  

In the context of the studies presented within this doctoral thesis, whenever we 

manipulated risk, for instance in the context of using behavioral measures, risk was almost 

exclusively understood and operationalized as involving both gains and losses. To be precise, 

for all but one behavioral risk-taking measure in manuscript 1 and two behavioral risk-taking 

measures which informed the psychometric factors utilized in manuscript 4, were individuals 

presented with decision problems involving both rewards (i.e. gains) and losses, albeit of 

different magnitudes and probabilities. It could be argued that only by adopting a definition 

which incorporates both rewards and losses can we study individual differences in risk taking, 
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because what seems to drive individuals’ understanding of risk appears to be loss, not simply 

variance (Slovic, 1987; Zeisberger, 2016).  

I will now turn to the contribution this doctoral thesis makes to our understanding of 

individual differences in risk taking, starting with the role of two factors and their interplay: 

age and risk-taking measure.  
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Part I - Risk Taking Across the Life Span 

 Many factors that vary between (as well as partly within) individuals have become 

associated with risk taking. These include, but are not limited to, gender (Byrnes, Miller, & 

Schafer, 1999; Charness & Gneezy, 2012), economic status (Payne, Brown-Iannuzzi, & 

Hannay, 2017), reproductive cycle (Sylwester & Pawłowski, 2011), family background 

(Banducci, Felton, Dahne, Ninnemann, & Lejuez, 2015; Dohmen et al., 2011; Kennison, Wood, 

Byrd-Craven, & Downing, 2016), stress (Lighthall, Mather, & Gorlick, 2009), peer 

relationships (Telzer, Fuligni, Liebermann, Miernicki, & Galvan, 2014), quality of sleep 

(Telzer, Fuligni, Liebermann, & Galvan, 2013), affective state (Shao & Lee, 2014), as well as 

less intuitive factors such as simulated microgravity (L.-L. Rao et al., 2014).  

 One factor which has garnered substantial support for its impact on risk taking is age. 

Why would age capture the attention of researchers interested in risk taking? In a nutshell, 

factors such as improved living conditions, more efficient and effective medical treatment, as 

well as increased fertility, have contributed to a global population that is simultaneously 

expanding and aging. For example, between 1980 and 2017, the number of individuals globally 

over the age of 60 years has doubled from 382 million to 962 million, and is expected to more 

than double yet again by 2050 (Department of Economic and Social Affairs, 2017). Moreover, 

not only are there a greater number of older individuals, they are also living to increasingly 

advanced ages: In 2017, the number of individuals aged 80 and over was estimated to be 137 

million, a number which is anticipated to triple by 2050 (Department of Economic and Social 

Affairs, 2017). To support an increasingly longer life span, even older individuals will need to 

stay active members of the workforce and society, and will inevitably face decisions regarding 

medical treatment, housing, pensions, and inheritance, to name but a few. Risk, it seems, is a 

constant companion, even to those of old(er) age.  

To understand whether age influences how individuals deal with and take risks, and if 

so, through which pathways, research has started to address the life span trajectory of risk 
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taking. One prominent finding in this field is that age and risk taking are negatively correlated 

(Rolison, Hanoch, Wood, & Liu, 2013). Like many associations in psychological research, 

however, moderator variables play an important role and often qualify the conditions under 

which established bivariate associations hold. In the case of age and risk taking, studies based 

on panel data as well as meta-analytic approaches have consistently shown that life span 

trajectories of risk taking depend on the measures used to assess risk taking  (Best & Charness, 

2015; Byrnes et al., 1999; Josef et al., 2016; Mata, Josef, & Hertwig, 2016; Mata, Josef, 

Samanez-Larkin, & Hertwig, 2011). The pattern which emerges from these analyses is that self-

reported risk-taking, regardless of domain, decreases across the life span, but that the 

association is less clear for behavioral measures of risk taking; for some measures, risk-taking 

declines across the life span, for others it increases, and yet for other measures no differences 

are observable. How can such divergent trajectories arise? 

At this point, it is important to notice that a vast number of risk-taking measures exist 

(Appelt, Milch, Handgraaf, & Weber, 2011), leading to widespread diversity in the risk-taking 

measures adopted for research purposes. Diversity in the measures used to assess individual 

differences in risk taking is, in itself, unproblematic, for we may expect different measures to 

assess slightly different facets of a phenotype, and thereby yield a more complete picture of it. 

What creates a problem for the theory and measurement of risk taking is that the majority of 

measures do not converge, i.e. do not correlate or only weakly (Frey, Pedroni, Mata, Rieskamp, 

& Hertwig, 2017; Pedroni et al., 2017). This leads to a situation where, depending on the risk-

taking measure used, we may come to very different conclusions about risk taking, for instance 

its change across the life span.  

In manuscript one we directly address this issue by assessing risk taking across the life 

span using different risk-taking measures. 

Manuscript One:  

Convergence of risk-taking measures in a cross-sectional life span sample 
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Mamerow, L., Frey, R., & Mata, R. (2016). Risk taking across the life span: A comparison of 

self-report and behavioral measures of risk taking. Psychology and Aging, 31(7), 711. 

In front of the aforementioned backdrop of studies suggesting (a) low or no convergence 

between measures of risk taking, and (b) measure-dependent trajectories of risk taking across 

the life span, we conducted a correlational study investigating the convergence of risk-taking 

measures, and the extent to which convergence may change as a function of age.  

In contrast to previous stand-alone studies, our research design included a large, cross-

sectional, age-heterogeneous sample of participants, employed prominently used self-report 

and behavioral measures of risk taking, adopted a within-participants design, and compared the 

results obtained for the self-report item from the local sample against household panel data for 

the entire country (Switzerland). A further critical aspect of the study reported in manuscript 

one is that in addition to assessing self-reported general risk propensity (Dohmen et al., 2011; 

Josef et al., 2016; Mata et al., 2016), we employed two behavioral risk-taking measures: one 

experience-based risk-taking measure and one description-based risk-taking measure. The 

distinction between these two types of behavioral measures primarily arises from whether 

individuals are presented with choice-relevant information, or whether they have to learn this 

information over the course of the task, based on the experience of decision outcomes; the 

former describes decisions being made from description, whereas the latter describes decisions 

made from experience (Hertwig & Erev, 2009). We adopted the Balloon Analogue Risk Task 

(Lejuez et al., 2002) to assess risk taking in the context of decisions from experience, and used 

repeated choices between a certain and a risky monetary gamble (Rieskamp, 2008) to assess 

risk taking in the context of decisions from description.  

Moreover, we used within-measure manipulations to gain further insights into why 

different measures (or generally, contexts) may foster different choice patterns. In the Balloon 

Analogue Risk Task, we employed a high-capacity and a low-capacity balloon to manipulate 

the level of perceived risk and increase learning demands within the same measure. For 
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decisions between a risky and a safe monetary gamble, we manipulated the expected value of 

the risky option: for half the trials, the risky option had the same expected value as the certain 

option; for the other half of the trials, the risky option had a lower expected value than the 

certain option. One specific aim of this particular within-measure manipulation was to test the 

‘certainty effect’ reported for older adults (Mather et al., 2012), which suggests that age-related 

differences only emerge in the context of choosing between a certain and a risky option, but not 

between two risky options. 

Overall, we observed patterns indicative of a reduction in risk taking with age for self-

reported risk taking, but the evidence obtained from the two behavioral measures was mixed. 

The effect of a reduction in self-reported general risk taking across the life span observed for 

the local sample was replicated in the nationwide sample. As anticipated, absent or weak 

correlations between measures supported previous results suggesting convergence between 

measures at the level of the individual to be low. The within-measure manipulations for the 

description- and the experience-based behavioral measures yielded support for (a) the 

proposition that some conditions do not engender age differences in risk taking, (b) the certainty 

effect for older adults in the gain domain in equal expected variance trials but, interestingly, not 

in unequal expected variance trials, and (c) the possibility that task demands such as learning 

or computational capacity could contribute to diverging life span trajectories. Indeed, previous 

work indicates many neurological, cognitive, affective and motivational changes to manifest 

over the life span (Samanez-Larkin & Knutson, 2015; Shao & Lee, 2014), which may account 

for the differential effect of measures and within-measure manipulations on risk-taking 

trajectories.  

The main conclusion from manuscript one is that to understand age differences in risk 

taking, research is required which systematically disentangles task demands from true age-

related differences and life span changes. This also implies that instead of continually extending 

the pool of risk-taking measures, for example by developing ever more novel measures or 
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adding yet new variants to established tasks, what the field truly needs is a taxonomy of risk-

taking measures, their cognitive, affective and motivational demands as well as corollaries.  

Regrettably the experimental set up did not allow us to assess individual differences in 

cognitive functions, thus we were not able to test the mechanisms we proposed as underlying 

age-related differences in risk taking as a function of the measure used. In manuscript two we 

attempt to tackle this unresolved issue by shedding light on how the neurobiological basis of 

risk taking in the Balloon Analogue Risk Task is affected by age.  

Manuscript 2:  

Age-related differences in the neural representation of risk and reward in the Balloon 

Analogue Risk Task 

Yu, J., Mamerow, L., Lei, X., Fang, L., & Mata, R. (2016). Altered value coding in the 

ventromedial prefrontal cortex in healthy older adults. Frontiers in Aging Neuroscience, 8, 210. 

The Balloon Analogue Risk Task (BART) has been widely adopted as a measure of risk 

taking and impulsivity (e.g., Lejuez et al., 2002, 2007; Lejuez, Aklin, Zvolensky, & Pedulla, 

2003; Sharma, Markon, & Clark, 2014). In the BART, participants pump a virtual balloon ad 

libitum without knowing when the balloon will explode. Every pump increases the amount of 

money won but also the chance of explosion. When completing the BART, participants can stop 

pumping to save the money earned (cash out), or they can decide to continue pumping. 

However, if continued inflation results in an explosion of the balloon, the money accumulated 

up until that point is lost. Risk in the BART thus refers to the probability of a balloon explosion 

which will result in the loss of reward. 

Presumably because the BART is purported to be an ecologically valid measure of risk 

taking, given its sequential decision-making process, experiential component and increasing 

tension as the balloon gets larger (Schonberg et al., 2011), it has also found widespread 

application in neuroimaging research (Congdon et al., 2013; Helfinstein et al., 2014; Kohno, 

Morales, Guttman, & London, 2017; Lighthall et al., 2012; H. Rao, Korczykowski, Pluta, 
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Hoang, & Detre, 2008; Schonberg et al., 2012). The results from these studies implicate a wide 

functional network as the neural correlates of risk taking in the BART, including the striatum, 

insular cortex, dorsolateral prefrontal cortex, (anterior) cingulate cortex, and ventromedial 

prefrontal cortex. Assigning function to neural structures, all of these regions have been 

implicated, albeit with more or less specificity, in the construction, representation and storage 

of subjective value (Bartra, McGuire, & Kable, 2013; Clithero & Rangel, 2014; Levy & 

Glimcher, 2012). Specifically, activation differences in striatum and frontal cortices have been 

associated with deliberative value-based judgments and decision-making, whereas the insular 

cortex activation has been implicated in primarily affective processing (Knutson & Huettel, 

2015; Mohr, Biele, & Heekeren, 2010; Namkung, Kim, & Sawa, 2017; Paulus, Rogalsky, 

Simmons, Feinstein, & Stein, 2003; Platt & Huettel, 2008).  

The research questions underlying manuscript two are as follows: How are activation 

differences in brain regions typically associated with risk taking in the BART affected by age? 

What insights do activation differences in circumscribed brain regions in the BART provide for 

our understanding of the mechanisms underlying age-related differences in risk taking? At the 

level of behavior, age-group comparisons of BART performance have yielded mixed findings 

(Cavanagh et al., 2012; Henninger, Madden, & Huettel, 2010; Mamerow, Frey, & Mata, 2016; 

Rolison, Hanoch, & Wood, 2012), with meta-analytic procedures suggesting risk taking in the 

BART to decline with age (Mata et al., 2011). At the level of the brain, however, we know 

comparatively little about the extent to which differences exist between younger and older 

adults. One potential mechanism for age-related differences to emerge in the BART is through 

activation differences in insular and ventromedial prefrontal cortex. Our ventromedial 

prefrontal cortex (vmPFC) hypothesis was based on previous findings suggesting that (a) the 

vmPFC represents a subjective value signal that is the outcome of a process integrating choice-

relevant signals, including reward, risk and potentially affect (Bartra et al., 2013; Levy & 

Glimcher, 2012), (b) variance in vmPFC-related value signal increases with age (Halfmann, 
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Hedgcock, Kable, & Denburg, 2016), which may be the result of age-related differences in 

feedback-based learning rather than reward representation (Samanez-Larkin, Worthy, Mata, 

McClure, & Knutson, 2014), and (c) risk taking is associated with decreased vmPFC activation 

(Schonberg et al., 2012). Our insular cortex hypothesis was informed by previous findings 

which suggested affective changes over the human life span to impact on decision-making 

(Samanez-Larkin & Knutson, 2015; Shao & Lee, 2014). Within the framework of the mood 

maintenance hypothesis, for example, it has been suggested that older adults may engage in less 

risk taking to avoid negative consequences which may compromise a primarily positive status 

quo (Shao & Lee, 2014). We tested these hypotheses by comparing risk-taking behavior and 

neural activation in the BART for younger and older adults. 

Our findings suggest that younger and older adults show similar risk-taking behavior in the 

BART. We observed no significant difference between younger and older adults in the mean 

number of pumps (adjusted for opportunity to pump), but the proportion of cash out trials was 

higher in older compared with younger adults. Regarding the neuroimaging results, group 

comparison revealed that younger and older adults’ neural responses in the BART were not 

completely aligned. Specifically, when we compared pumps on risky with pumps on control 

balloons, we obtained no marked age differences for striatal and insular activation, or vmPFC 

deactivation. We obtained group differences in posterior parietal deactivation and cingulate 

cortex activation, which may have been indicative of less numerical integration in younger 

adults and more (conflict) monitoring in older adults for risky choices. When we investigated 

the parametrically modulated activation in response to increasing risk on a given balloon, we 

obtained no substantial differences between younger and older participants in the insular cortex 

and striatum. Interestingly, we however observed vmPFC deactivation to track risk in younger 

but not older adults, which point towards age-related differences in vmPFC-related integrative 

value signaling. When we investigated the explanatory power of neural activation differences 

for risky choice in the BART at the level of the whole brain, neural signal in striatum, insula 
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and vmPFC was predictive of the mean number of pumps for younger adults but not for older 

adults.  

The results reported in manuscript two support and extend previous studies concerning both 

behavioral and neural age-related differences in risk taking. Behaviorally, the higher proportion 

of cash out trials for adults supports previous findings suggesting a decline in risk taking in 

older age (Henninger et al., 2010; Mamerow et al., 2016; Mata et al., 2011; Rolison et al., 2013). 

The neuroimaging results shed some light on the potential mechanisms underlying such age-

related differences in risk taking. Overall the regions associated with risk taking in the BART 

in this study are in line with previous results implicating the striatum, insula, and frontal 

cortices, especially vmPFC (e.g., H. Rao et al., 2008; Schonberg et al., 2012). Regarding age 

differences, our results are interpreted as indicating the preserved neural tracking of risk and 

reward in the insula and striatum, respectively, in old age. This interpretation is supported by 

previous results suggesting reward representation in the striatum to remain intact in old age 

(Samanez-Larkin et al., 2014). However, the combination of intact insula and striatal signal in 

the presence of age-related vmPFC differences suggests that differences in risk taking in the 

BART may be rooted in age-related differences in the convergence and integration of 

information into a subjective value signal (Bartra et al., 2013; Clithero & Rangel, 2014; 

Halfmann et al., 2016). This line of reasoning is further supported by functional and anatomic 

changes in the vmPFC across the life span (Samanez-Larkin & Knutson, 2015).  

To conclude, manuscript two suggests that rather than being the result of differences in the 

computation of a reward or risk signal per se, age-related differences in the BART (and perhaps 

in other risk-taking measures) may originate from older adults experiencing more difficulties 

with the integration of different sources of information (e.g. risk, reward) into a coherent, 

choice-preceding value signal. This may also explain why in manuscript one we obtained no 

differences for the low-capacity balloon as part of the within-measure manipulation in the 

BART. Low-capacity balloons may not engender age-differences because the earlier explosion 
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points may keep individuals from exploring and experiencing uncertainty, potentially even 

leading to strategy use. In other words, low-capacity balloons may not rely as much on the 

integration of choice-relevant signals because this type of balloon, regardless of the age of the 

participant, does not evoke the same (complex) decision-making processes compared with 

high-capacity balloons. 

To summarize the contribution of this thesis to understanding risk-taking across the life 

span, the two studies (manuscript one and two) on the one hand provide further support for the 

assertion that age-related differences in risk taking arise from a complex interplay of biological, 

cognitive, motivational and affective changes taking place across the life span. On the other 

hand, and perhaps constituting the more important contribution, the two manuscripts (in 

particular, manuscript one) fuel the debate surrounding the convergence of risk-taking measures 

and by proxy the nature of individual differences in risk taking. How can we make progress 

understanding individual differences in risk taking, when the very existence of such differences 

seems to be dependent on our measures? In Part II of this dissertation, I turn to the idea that the 

biological underpinnings of risk taking, specifically brain function and structure, may yield 

some insights for this debate.  
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Part II - The Risky Brain: Convergence of Neural Indices of Risk 

Consider the following starting point: A genome-wide association study with over one 

million individuals has identified 124 independent genetic loci associated with self-reported 

general risk taking (Karlsson Linnér et al., 2018). These genetic loci are highly expressed in 

brain tissue in the prefrontal cortex, striatum and midbrain. Furthermore, genetic correlations 

between general risk taking and different types of risky behaviors, including smoking, number 

of sexual partners, being self-employed, life time cannabis use, adventurousness, risky driving 

and alcohol consumption, are higher than phenotypic correlations, with many genetic loci being 

shared across risky behaviors and with general risk taking (Karlsson Linnér et al., 2018). In 

other words, a genetically-influenced, domain-general risk-taking factor seems to exist that 

influences individual differences in risk taking, via neural pathways implicated in value-based 

decision-making. Does this mean we can expect to find risk-related brain signals that are 

domain-general? 

Manuscript Three: 

Convergence of the neural functional correlates of described and experienced risk 

Tisdall, L., Frey, R., Horn, A., Ostwald, D., Horvath, L., Blankenburg, F., Hertwig, R., & Mata, 

R. (2018). Group versus individual differences in the neural representation of described and 

experienced risk. Manuscript submitted for publication. 

 As previously discussed, risk is ubiquitous and risk taking as a phenotype has been 

associated with health, wealth, criminality, and general well-being (Moffitt et al., 2011; 

Steinberg, 2013). As a result, individual differences in risk taking and related phenotypes, such 

as self-control, have become promising entry points for intervention and ultimately prevention 

(Conrod et al., 2013). One approach to understanding individual differences in risk taking has 

been to study its neural correlates, including neural activation differences in response to risk. 

In fact, the interest in the neural correlates of risk has been sufficient to facilitate both qualitative 

(Knutson & Huettel, 2015; Platt & Huettel, 2008) and quantitative reviews (Bartra et al., 2013; 
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Mohr et al., 2010; Wu, Sacchet, & Knutson, 2012), converging on the importance of striatum, 

insula, anterior cingulate cortex, dorsolateral, and (ventro)medial prefrontal cortex. 

Interestingly though, the role of risk-taking measures has so far received very little 

attention in the neuroimaging literature. Recall the distinction between experience-based and 

description-based measures of risk taking (Hertwig, Barron, Weber, & Erev, 2004; Hertwig & 

Erev, 2009): Contrary to standard economic theory, the same information encountered in 

different ways —either fully described or experienced— can lead to different choices. As 

prototypical examples of experience- and description-based measures of risk taking, the 

Balloon Analogue Risk Task (BART) and monetary gambles, respectively, have found 

widespread application for studying individual differences in risk taking, also in the field of 

neuroimaging (Barkley-Levenson, Van Leijenhorst, & Galván, 2013; Braams, van 

Duijvenvoorde, Peper, & Crone, 2015; Gilaie-Dotan et al., 2014; Helfinstein et al., 2014; 

Pletzer & Ortner, 2016). Can we assume that the regions identified by meta-analytical 

approaches as functional correlates of risk taking are shared by different types of measures, 

such as the BART and monetary gambles? Moreover, are these conjunction regions promising 

candidates for sources of brain-behavior associations?  

Not necessarily. The crucial argument here is that most of our current knowledge 

regarding the shared neural correlates of risk taking is rooted in average activation patterns 

obtained from different studies (i.e. different individuals). Owing to the well-known but often 

neglected mismatch between group- and individual-level effects (Bornstein, Putnick, & 

Esposito, 2017), we cannot infer consistency (i.e. convergence) of neural function between 

measures from commonality. As suggested by the low convergence between risk-taking 

measures at the level of behavior (Frey et al., 2017), the same individual may respond very 

differently to different risk-taking measures. Thus, it is currently unclear to what extent repeated 

measures designs would support the suggested convergence of activation patterns, or, 
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alternatively, mirror the weak correlations observed between behavioral measures of risk 

taking.  

 In manuscript three, we directly address this question by comparing the neural 

functional correlates of an experience-based (BART) and a description-based (monetary 

gambles) risk-taking measure, which we assessed as part of a neuroimaging study conducted 

within the scope of the Basel-Berlin Risk Study. The Basel-Berlin Risk Study (BBRS) is a 

large-scale, multi-site, multi-method study which investigates individual differences, 

psychometric structure, and biological underpinnings of risk taking. Participants in the BBRS 

completed a one-day laboratory study involving an extensive test battery, including self-report, 

behavioral, frequency measures of risk-taking measures, as well as cognitive, personality, 

affective and personality assessments. An overview of all subsamples, measures, and further 

details on the BBRS is available from the Open Science Framework (https://osf.io/rce7g).  

The analyses reported in manuscript three are based on a subsample of BBRS participants 

(N=116) who in addition to the laboratory session also completed a MRI session. Of relevance 

to the analyses reported in manuscript three are two measures which participants completed 

inside the MRI scanner, namely the BART and a monetary gambles paradigm. Our analyses 

focus on (1) the overlap of the average neural representation of risk in the BART and in 

monetary gambles, (2) whether individual activation differences correlate between the BART 

and monetary gambles, and (3) the explanatory power of neural indices from BART and 

monetary gambles for risky choice, both within and across the two measures.  

The results from the comparison of activation differences in BART and monetary gambles 

suggest (1) joint activation increases for BART and monetary gambles in a part of the ventral 

striatum, the nucleus accumbens, but (2) inconsistent individual differences in nucleus 

accumbens, insula and anterior cingulate cortex activation across the two measures. With 

regards to (3) the explanatory power of neural indices for behavior, we observe significant 

within-measure brain-behavior associations only for monetary gambles, but not for BART. 
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Using whole-brain analyses, there was no link between neural activation in response to risk in 

the BART and risky choice in monetary gambles; ROI analyses suggest a link between anterior 

cingulate cortex activation in BART and the proportion of risky gambles accepted in monetary 

gambles.  

Taken together, the results reported in manuscript three further help to clarify the 

biological basis of risk taking, specifically the commonalities and differences between 

experience-based and description-based measures. Importantly, our findings fall in line with the 

results obtained for behavioral measures of risk taking (Frey et al., 2017), suggesting that these 

two types of measures should not be used interchangeably if the aim is to capture risk 

preference. As such, these results have strong implications for developmental and longitudinal 

research designs which frequently target the links between individual differences in risk 

preference and neural indices (Braams et al., 2015; Büchel et al., 2017; Grubb, Tymula, Gilaie-

Dotan, Glimcher, & Levy, 2016; Moffitt et al., 2011). Moreover, our results suggest that 

researchers should pay more attention to topics such as individual differences and convergence 

between measurements, and less attention to seductive but likely uninformative single indices 

of risk taking. 

Going back to the starting point of a genetically-informed, domain-general factor of risk 

taking that is primarily expressed via neural pathways, we did not find evidence for this in 

neural function. In line with the argumentation provided in the context of manuscript one and 

partly manuscript two, highly contextualized measures such as the BART and monetary 

gambles may not capture much risk-preference signal amongst the noise created by measure-

specific demands and corollaries. Put differently, there may exist a general risk-taking trait, but 

this is perhaps lost in single behavioral indices and state-dependent, on-task functional 

activation differences. In manuscript four we examine whether more trait-like behavioral and 

neural indices of risk taking shed some light on the biological underpinnings of individual 

differences in risk taking.  
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Manuscript Four: 

The neural structural correlates of risk preference 

Tisdall, L., Frey, R., Horn, A., Ostwald, D., Horvath, L., Pedroni, A., Blankenburg, F., 

Rieskamp, J., Hertwig, R., & Mata, R. (2018). The risky brain: Local morphometry and degree 

centrality as neural markers of psychometrically derived risk preference factors. Manuscript. 

While the neural functional correlates of risk-related processes received considerable 

attention in the past, much less attention has been paid to the contribution of neuroanatomy to 

individual differences in risk taking. In contrast to on-task functional indices such as brain 

activation differences in response to pumping up balloons in the BART or making choices 

between two monetary gambles, however, brain structure is much less susceptible to the 

influence of contextual variables, hence may represent the biological dimension of a risk-taking 

trait.  

In previous studies, grey matter volume in amygdala, insula, thalamus, orbitofrontal and 

posterior parietal regions was observed as differentially associated with various indices relevant 

to risk taking, including risk tolerance, mean number of pumps in the BART, loss aversion, 

cannabis use, alcohol intake and gaming pathology (Cai et al., 2015; Canessa et al., 2013; 

Gilaie-Dotan et al., 2014; Jung, Lee, Lerman, & Kable, 2018; Koehler, Hasselmann, 

Wüstenberg, Heinz, & Romanczuk-Seiferth, 2013; Nasiriavanaki et al., 2015). Considering that 

the brain is characterized better by a system of networks rather than a collection of independent 

regions, perhaps local volume per se is not a useful index of brain structure. After all, the size 

of a particular region may matter much less compared with how well this region is connected 

within the network. Indeed, in addition to volumetric measures, the degree of local structural 

connectivity and integrity of white matter tracts has become associated with various risk-taking 

indices (Jacobus et al., 2013; Jung et al., 2018; Kohno et al., 2017; Kwon, Vorobyev, Moe, 

Parkkola, & Ha, 2014; Squeglia et al., 2015).  
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One shortcoming of these previous studies is the use of a vast number of risk-taking 

measures with little to no systematic understanding of the mechanisms underlying the suggested 

brain-behavior associations. For example, the association between volume in the right posterior 

parietal cortex and risk tolerance has been replicated in independent samples and using model-

free as well as model-based indices of risk tolerance (Gilaie-Dotan et al., 2014; Grubb et al., 

2016). The right posterior parietal cortex however is mainly associated with numerical 

processing. Given that the task used to elicit the aforementioned association between grey 

matter volume and risk tolerance relies heavily on the integration of various numerically 

presented pieces of information, it is possible that the association is indeed one between 

numerical ability and grey matter volume, rather than risk tolerance. The same problem may 

arise using other measures, especially behavioral measures, which have a ‘risk-taking’ tag but 

first and foremost distinguish individuals based on risk-independent processes such as affect or 

numerical ability (Figner, Mackinlay, Wilkening, & Weber, 2009). 

To overcome the specific problem of using a single neural measure, in manuscript four 

we report the results of a multi-modal imaging analysis that was based on grey matter volume 

and local degree centrality. The latter represents a quantitative indication of how connected a 

neural structure is to its first neighbors, and is computed as the number of direct connections to 

other regions inside the network under investigation (Rubinov & Sporns, 2010). For the 

structural analyses, we utilized a set of regions which we identified via meta-analytic 

approaches implemented in Neurosynth (neurosynth.org) as core correlates of the term ‘risk’. 

This approach has the distinct advantage of being rather inclusive and based on previously 

established links between neural function and risk. As a result of this approach, we ran analyses 

initially for 18 regions, but reduced these to 10 regions after correlation analyses highlighted 

multicollinearity between predictors that was most strongly evident between hemispheres of 

the same structure. Thus, we generated a mean index for both volume and degree centrality 

across the two hemispheres of all bilaterally represented structures. 
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To address the issue of low convergence between risk-taking measures and overcome 

related shortcomings of previous studies, we combined the multi-modal imaging component of 

manuscript four with psychometrically derived risk preference factors from the Basel-Berlin 

Risk Study (BBRS) imaging subsample. One of the main contributions of the BBRS to date has 

been the extraction of psychometric factors of risk preference by Frey and colleagues (2017). 

Specifically, the authors implemented a bifactor model that gave rise to a general risk preference 

factor R, and seven orthogonal domain-specific risk preference factors. In contrast to single 

behavioral indices of risk taking, R was observed to account for 62% of the explained variance 

and showed high retest validity (.85). The general risk preference factor R, it is argued, captures 

the trait-dimension of risk taking (Frey et al., 2017). As a result, we worked with neural 

measures and risk preference indices which have been argued to represent the comparatively 

more stable, trait-like dimensions of risk taking.  

The main research questions driving analyses reported in manuscript four are as follows: 

To what extent can neural structural indices account for variance in psychometrically derived 

risk preference factors? Here we are particularly interested in the individual contribution of the 

set of volumetric and connectivity indices, as well as how much additional variance would be 

explained if volumetric and connectivity indices were combined to account for risk preference. 

Moreover, given that the 10-region risk network we built using Neurosynth covered all regions 

which previous studies had indicated to be linked to risk taking via grey matter volume and 

degree centrality, we attempt to provide a conceptual replication of these established brain-

behavior associations using the BBRS risk preference factors. To quantify the robustness of the 

contribution of individual neural indices, we supplement traditional multiple regression 

analyses with Bayesian model comparison and selection. 

The results from our multiple regression analyses suggest that structural indices can 

account for variance in the general risk preference factor R, but that they are not predictive of 

domain-specific risk preferences. The latter finding is particularly interesting given that one of 
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the psychometric factors (F7) comprises behavioral measures of risk taking (e.g. monetary 

lotteries). Thus, if not for R, it was reasonable to expect associations of previously identified 

structural indices with F7. Volumetric indices explained close to 9% of variance in R, 

connectivity indices only around 5%, and the combination of volumetric and connectivity 

indices explained over 15% of variance. At the level of individual predictors, grey matter 

volume in the ventral striatum was identified by Bayesian model comparison as the most 

influential predictor of general risk preference, followed by grey matter volume in frontal 

regions and degree centrality of the amygdala. The finding for ventral striatal volume had 

previously only been observed for pathology (Cai et al., 2015; Koehler et al., 2013). The 

striatum was already firmly on the map based on its functional role for reward-related processes 

of risky choice. The finding of increased volume in the striatum to be linked to increased general 

risk preference is therefore very informative for understanding the mapping of structure to 

function and their respective contributions to risk taking. Equally, frontal cortices and amygdala 

contributions are in line with functional and structural links to risk-related indices. As such, our 

results support and extend the importance of certain neural region for risk taking to the 

structural domain.  

Interestingly —and contrary to expectations— some of the regions which had 

previously been linked via grey matter volume to individual differences in risk taking were not 

observed to be linked to the general risk preference factor, including insula and posterior 

parietal cortex. We suggest that these results, which we take to constitute a failed conceptual 

replication of earlier findings, are indicative of the fragility of brain-behavior associations and 

arise because individual differences in some risk-taking measures are primarily driven by 

specific task demands, such as numerical ability. 

The results reported in manuscript four imply that neural structure may indeed provide 

independent contributions to general risk preference, and as such map onto the suggested 

genetically-influenced domain-general factor of risk taking called into existence by a genome-
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wide association study (Karlsson Linnér et al., 2018). Of course, much variance is left to be 

explained, but given that we utilized decontextualized risk preference factors, the fact that 15% 

of variance in general risk preference is explained by very simple indices of neural architecture 

provides new hope for a general risk-taking trait. As a major upshot of this study, we 

recommend that other researchers follow suit and build their research studies around robust, 

psychometrically informed phenotypes. 
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General Discussion 

This thesis set out to address the fascinating question of why individuals, sometimes 

between each other, sometimes within themselves, differ. Differ with regards to the choices they 

make when faced with uncertainty, specifically, when faced with risk. Many factors have been 

found to be associated with and potentially even drive individual differences in risk taking, 

ranging from factors that arise from within the person, to external factors, such as how risk 

taking is assessed. In this body of work, my co-authors and I looked specifically at the 

contribution of age, risk-taking measures, and their interplay, as well as the extent to which 

biological substrates, in this case neural function and structure, vary with risk taking.  

The results from the four manuscripts cultivate the following four conclusions. (1) Life 

span trajectories of risk taking may arise not simply from age-related differences in risk 

perception, but from the (compromised) integration of complex information. Thus, we can 

relatively easily help the aging decision-maker deal with risk by communicating information in 

ways that it can be easily integrated. (2) Individuals matter! If we want to understand individual 

differences in risk taking, group-level (i.e. aggregate patterns) can at best suggest hypotheses 

for individual differences, but these most certainly need to be tested. (3) Biology, particularly 

the brain, still holds many promises for discovering the pathways underlying individual 

differences in risk taking. If the neural correlates can be mapped onto cognitive, affective, and 

motivational processes, we may find an entry point to causative inference. (4) Across the 

manuscripts contained in this dissertation, a unifying conclusion speaks to the importance of 

knowing our measures better. The field of risk-taking research, particularly when geared 

towards understanding developmental patterns or pathology, suffers from many piecemeal 

approaches, due to the diversity of risk-taking measures available and utilized. For now, the 

field does not need more measures, or even better measures, but first a taxonomy of the 

measures that are in use. This taxonomy needs to spell out, perhaps even classify, the cognitive, 

affective and motivational demands, corollaries, and other contextual factors that need to be 
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distinguished from the risk signal captured by a particular measure. Otherwise, when we try to 

see the wood for the trees by synthesizing the evidence for/against certain pathways, we come 

to an early fork in the road. The story of this thesis is a story of choice, not just risky choice, 

but also choice between measures. 

 

Two roads diverged in a yellow wood, 

And sorry I could not travel both 

And be one traveler, long I stood 

And looked down one as far as I could 

To where it bent in the undergrowth; 

 

Then took the other, as just as fair, 

And having perhaps the better claim, 

Because it was grassy and wanted wear; 

Though as for that the passing there 

Had worn them really about the same, 

 

And both that morning equally lay 

In leaves no step had trodden black. 

Oh, I kept the first for another day! 

Yet knowing how way leads on to way, 

I doubted if I should ever come back. 

 

I shall be telling this with a sigh 

Somewhere ages and ages hence: 

Two roads diverged in a wood, and I— 

I took the one less traveled by, 

And that has made all the difference. 

 

Robert Frost (1916) 
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Abstract 

Aging has long been thought to be associated with changes in risk-taking propensity. 

But do different measures converge in showing similar age-related patterns? We conducted a 

study to investigate the convergent validity of different self-report and behavioral assessments 

of risk taking across adulthood (N = 902). Individuals between 18 and 90 years of age 

answered a self-report item and completed two incentivized behavioral tasks, a gambles task 

and the Balloon Analogue Risk Task. Our results indicate that although all measures show 

some patterns indicative of an age reduction in risk taking, the correlations between measures 

are small. Moreover, age differences in behavioral paradigms seem to emerge as a function of 

specific task characteristics, such as learning and computational demands. We discuss the 

importance of understanding how specific task characteristics engender age differences in risk 

taking and the need for future work that disentangles task demands from true age-related 

changes in risk-taking propensity. 
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Risk taking across the life span:  

A comparison of self-report and behavioral measures of risk taking 

Aging is associated with changes in cognitive abilities, motivation, and affect that may 

have important implications for decision-making preferences and outcomes (Figner & Weber, 

2011; Samanez-Larkin & Knutson, 2015). For example, some researchers have concluded that 

just “as elders show profound declines in cognitive function, they also show profound 

declines in choice rationality compared with their younger peers” (Tymula, Rosenberg 

Belmaker, Ruderman, Glimcher, & Levy, 2013; p. 17143). One prominent feature of many 

decision situations encountered across the life span is risk. Whether to party or study for an 

exam, start a family or pursue a career, spend or invest the money earned, which way to vote, 

take up treatment or not: all of these decisions involve some level of uncertainty regarding the 

nature and probability of future outcomes. Individual differences in the tolerance of and 

appetite for risk can lead to substantially different choices given the same set of options, yet 

comparatively little is known about the trajectory of risk-taking propensity across the life 

span. Previous research has been inconclusive, showing different and sometimes even 

opposite age-risk trajectories. Although many studies suggested a decline in risk taking with 

age, some have suggested an increase in risk taking with age, and still others found no 

differences between risk-taking propensity of younger and older individuals (cf. Best & 

Charness, 2015; Henninger, Madden, & Huettel, 2010; Mata, Josef, Samanez-Larkin, & 

Hertwig, 2011; Shao & Lee, 2014).  

One potential reason for the observed divergence of trajectories is the adoption of 

different approaches to measuring risk-taking propensity, such as self-report measures or 

diverse behavioral measures. Beyond choosing between risky options, some of the latter also 

tap into additional cognitive demands, for example, learning. How these different approaches 

relate conceptually and psychometrically still remains poorly understood (Appelt, Milch, 
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Handgraaf, & Weber, 2011). Moreover, our current understanding regarding the convergent 

validity of different risk taking measures is based primarily on adoption of multiple measures 

within a particular age group. Consequently, little is known about the convergent validity of 

risk-taking measures across the adult human life span.  

Using a large-scale cross-sectional study that allows for the treatment of age as a 

continuous variable, we report independent age-risk trajectories for three measures, each of 

which is representative of the main approaches to capturing risk-taking propensity: self-

reports, description-based, and experience-based behavioral measures. Further, we examine 

the convergent validity of these three measures as a function of age in order to contribute to 

the conceptual debate regarding the measurement of risk-taking propensity. 

Risk Taking Across the Life Span 

The assessment of whether and how core factors, such as cognitive and motivational 

variables, affect age-related changes in decision-making requires a good understanding of 

decision measures and their interrelations. Yet the empirical and conceptual diversity 

associated with risk taking make such an enterprise difficult (Aven, 2012; Schonberg, Fox, & 

Poldrack, 2011). Different measurement approaches have been adopted to approximate 

individuals’ risk taking in real life, namely self-report and behavioral measures (Josef et al., 

2016); the latter category of behavioral measures can be further divided into description and 

experience-based tasks (Mata et al., 2011).  

Age-risk trajectories for self-report measures. Mirroring the complexity of the risk-

taking construct, self-report measures of risk taking are inherently heterogeneous: while some 

items and instruments assess general propensity (e.g. Benjamin et al., 2012; Dohmen et al., 

2011; Drobetz, Maercker, Spiess, Wagner, & Forstmeier, 2012; Josef et al., 2016; Mata, 

Josef, & Hertwig, 2016; Vieider et al., 2013) others tap into more domain specific aspects 

(e.g. Bonsang & Dohmen, 2015; Dohmen et al., 2011; Lönnqvist, Verkasalo, Walkowitz, & 
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Wichardt, 2014; Rolison, Hanoch, Wood, & Liu, 2013; Vieider et al., 2013). Regardless of 

specificity, both general and domain-specific items used in cross-sectional and longitudinal 

studies coincide in the suggestion that aging is associated with reductions in risk-taking 

propensity across the life span (Dohmen et al., 2011; Josef et al., 2016; Mata et al., 2016; 

Rolison, et al., 2013; Vieider et al., 2013). This trend also holds for many countries around the 

world, albeit with systematic variation between countries as a function of the utility and 

necessity of risk-taking behavior in the (local) ecological context (Mata, et al., 2016). For 

general and domain-specific self-report items, there is an overall age-related decline in risk 

taking for financial, recreational, ethical, social and health-related activities, yet form and 

magnitude of this change may be domain-specific (Josef et al., 2016; Rolison et al., 2013). 

Critically, research by Dohmen and colleagues (2011; also see Vieider et al., 2013 and Josef 

et al., 2016 for comparable findings) indicated that self-reported general and domain-specific 

risk taking were strongly correlated. Thus, although self-reported general and domain-specific 

risk taking follow slightly different developmental trajectories, using a general risk-taking 

index is an efficient way to capture individual differences in risk-taking propensity (Dohmen 

et al., 2011). Speaking to the test-theoretic utility of a general risk-taking item, self-reported 

general risk taking has been found to relate with real-world behavior (Dohmen et al., 2011), to 

evidence high test-retest reliability and moderately correlate with genetic factors (Benjamin et 

al., 2012), and to describe a phenotype with moderate stability across the adult human life 

span (Josef et al., 2016).  

Age-risk trajectories for description-based behavioral measures. In contrast to the 

overall homogenous pattern of a negative association between self-reported risk taking and 

age, trajectories derived from behavioral measurements are less consistent, even making 

opposite predictions for the association between age and risk taking (Best & Charness, 2015; 

Defoe, Dubas, FIgner, & van Aken, 2015; Mata, et al., 2011; Shao & Lee, 2014). A 
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commonly used way of eliciting propensity for risk taking via tasks is to present individuals 

with two or more lotteries (gambles) within a forced-choice framework (Holt & Laury, 2002; 

Rieskamp, 2008; Weller, Levin, & Denburg, 2011). Tasks of this kind provide the decision 

maker with all decision-relevant information, such as outcome magnitude and probability, and 

do not require any learning; they are therefore sometimes referred to as ‘decisions from 

description’ (Hertwig, Barron, Weber, & Erev, 2004). For example, the realistic scenario of 

selecting between a pension fund with a stable return and investment schemes with 

probabilistic returns can, in principle, be represented by a lottery with a fixed outcome A and 

a risky outcome B (assuming that the variance of the investment scheme is known from 

historical data and presented accordingly). 

Age-risk trajectories derived from description-based gambles suggest common as well 

as unique trajectories, depending on various aspects of the task. Across studies, trajectories 

for description-based decisions between options associated with gains indicate increased risk 

aversion in older age (Mather et al., 2012; Tymula et al., 2013; Weller et al., 2011), a pattern 

matching that observed for self-report measures. When it comes to decisions involving losses, 

however, findings become more differentiated, for older adults were found to make similar 

(Weller at al., 2011) or more risk-seeking choices compared with younger adults (Mather et 

al., 2012, Tymula et al., 2013). A recent meta-analysis confirmed the influence of outcome 

domain on decision-making in younger and older adults (Best & Charness, 2015), concluding 

positively (negatively) framed items to be associated with more (no differences in) risk-averse 

choices in older relative to younger adults. Apart from the domain, whether the choice set 

includes a sure outcome seems to impact on age-risk trajectories. Decisions between a risky 

and a sure option for instance have been found to yield similar (Mata et al., 2011) or divergent 

(Mather et al., 2012) choice patterns for older and younger adults. Interestingly, whilst Mather 

and colleagues (2012) found no age differences for gambles involving two risky options, age-
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differences were observed in another study (Weller et al., 2011). These patterns are further 

qualified by the observation of a non-linear development of risk-taking propensity across the 

life span, accompanied by increased choice inconsistency and decreased choice rationality by 

older individuals (Tymula et al., 2013; Weller et al., 2011). 

These results exemplify the notion that description-based decisions are not impacted 

equivocally by age, but instead that task-specific attributes contribute to diverging age-risk 

trajectories. Some of the observed age differences may result from the complexity of the task, 

for it has been shown that the integration of several described cues (e.g., outcome magnitudes, 

probabilities) poses more of a challenge to aging decision makers (Bruine de Bruin, Parker, & 

Fischhoff, 2012; Tymula et al., 2013). Additional task demands that tap into wide-ranging 

cognitive, motivational, affective and perceptual differences - many of which have been 

linked to developmental changes in neural correlates (Samanez-Larkin & Knutson, 2015) - 

may further contribute to age-related certainty and framing effects, such as developmental 

affective changes leading to a shift in the weighting of gains and losses (Shao & Lee, 2014).  

Age-risk trajectories for experience-based behavioral measures. In stark contrast to 

description-based measures are paradigms that entail (some level of) exploration and 

feedback-based learning. In real life, decisions often have to be made based on information 

that cannot be condensed into neat outcome magnitudes and probabilities. Instead, individuals 

often have to repeatedly extract and update their beliefs about the environmental 

contingencies – that is, to learn about the underlying option attributes - through exploration, 

choice, and feedback. Whether to study for an exam or enjoy one’s free time, only repeated 

experience will furnish the individual with option-associated values. If the individual does not 

learn from previous experience or does not calibrate his/her behavior accordingly, sub-

optimal choices may result.   
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Several behavioral measures that simulate decision-making under experienced risk 

exist, including the Balloon Analogue Risk Task (BART, Lejuez et al., 2002). The BART has 

become one of the go-to risk-taking measures because it holds predictive qualities for 

individual differences in actual risk taking (Lauriola, Panno, Levin, & Lejuez, 2014), 

including substance use, delinquency, rebellious and risky sexual behaviors (Aklin, Lejuez, 

Zvolensky, Kahler & Gwadz, 2005; Lejuez, Aklin, Zvolensky, & Pedulla, 2003; Lejuez, 

Simmons, Aklin, Daughters & Dvir, 2004; Skeel, Neudecker, Pilarski, & Pytlak, 2007), as 

well as a composite score of risky behaviors in adolescents (Lejuez et al., 2007) and 

psychopathy (Hunt, Hopko, Bare, Lejuez, & Robinson, 2005). Importantly, the BART has 

been shown to yield moderate to high test-retest reliability across different temporal intervals 

(Lejuez et al., 2007; White, Lejuez, & de Wit, 2008; Weafer, Baggott, & de Wit, 2013). Age-

risk trajectories for the BART, like self-report and some description-based behavioral 

measures, delineate a negative association between risk taking and age (Mata et al., 2011), 

however different versions of the BART have also led to trajectories suggestive of increased 

risk taking in older adults (Cavanagh et al., 2012). The heterogeneity of trajectories is not 

restricted to versions of the BART, however, but applies to other experience-based behavioral 

measures, including the Iowa Gambling Task (cf. Mata et al., 2011), Columbia Card Task 

(Figner, Mackinlay, Wilkening, & Weber, 2009), as well as classical sampling paradigms 

(Frey, Mata, & Hertwig, 2015; Spaniol & Wegier, 2012). Interestingly, age-risk trajectories 

differed not only between tasks, but also between different versions of the same task (Frey et 

al., 2015; Figner et al., 2009; Mata et al., 2011). 

One potential reason for the observed disagreement between experience-based measures 

is the extent to which different measurements tap into different cognitive processes that are 

subject to age-related changes. For example, we have argued that learning and memory 

demands may contribute substantially to age differences found in experience-based risky-
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choice paradigms, with differences reflecting effects of age differences in cognitive abilities 

rather than risk propensity per se (Mata et al., 2011; Frey et al., 2015). Specifically, tasks that 

require the extraction of information from samples of experienced choice outcomes – such as 

BART, Iowa Gambling Task, Columbia Card Task - yield more or less risk-seeking behavior 

for older adults, depending on whether the underlying contingencies favor more or less risk 

taking to achieve a higher payoff (Mata et al., 2011; Shao & Lee, 2014). If the contingencies 

are not sufficiently extracted from choice and feedback, behavior on subsequent trials may not 

be appropriately calibrated. Importantly, even within risky-choice paradigms with learning 

demands, the extent to which age-differences emerge has been found to depend substantially 

on task demands, with age differences only arising as a function of increasing task complexity 

(e.g., number of choice options to learn about, Frey et al., 2015).  

Returning to the convergence of trajectories derived from self-report, description and 

experience-based behavioral measures, under some circumstances, all three measurement 

approaches suggest risk taking to decline with age. However, especially for behavioral 

measures, age-risk trajectories vary, possibly as a function of different measures tapping into 

different cognitive processes that are impacted by age-related changes (Mata et al., 2011). 

Simply put, just as the (cognitive) demand placed on the decision maker increases from self-

report to description-based to experience-based behavioral measures, so does the potential for 

trajectory divergence, especially when task demands are differently or insufficiently met by a 

cognitive system subject to age-related change. Task characteristics may therefore not only 

play an important role in engendering differences between measures within a specific age 

group (e.g., decisions from description vs. from experience in younger adults, Hertwig et al., 

2004), but particularly across age groups (Mata et al., 2011). 
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The Current Study 

Our main goal was to examine the cross-sectional age-risk trajectories obtained from 

three different measures, each representative for the reviewed measurement approaches, and 

to assess their convergent validity as a function of age. Our battery comprised the self-report 

item of the German Socio-Economic Panel (SOEP) assessing general risk-taking (Dohmen et 

al., 2011; Josef et al., 2016), a gambles task involving described monetary lotteries (e.g., 

Rieskamp, 2008; Tymula et al., 2013) as an example measure without a learning component, 

and the Balloon Analogue Risk Task (BART; Lejuez et al., 2002) as an example of a 

behavioral measure with a learning component. The three specific measures a) are arguably 

the most prominently used ones in each of the categories and b) are therefore among the best-

studied measures regarding their test-theoretic properties, including test-retest reliability and 

external validity (cf. Benjamin et al., 2012; Dohmen et al., 2011; Josef et al., 2016; Lejuez et 

al., 2007; Lauriola et al., 2014). Evidence pertaining to the test-retest reliability of common 

indices derived from description-based behavioral measures is mixed, but was suggested to be 

better for less complex measurements (Chuang & Schechter, 2015). 

To examine the role of task characteristics and their interplay with age, we used the 

following specific within-task manipulations. In the gambles task, we included both trials in 

which the risky option featured the same or a lower expected value relative to the safe 

(certain) option (cf. risk-disadvantageous options in Weller et al., 2011). The two task 

conditions were introduced to vary the utility of taking a risk: in equal expected value trials, 

selecting either option confers no benefit over the alternative other than deciding for or 

against certainty. In trials for which expected value was lower for the risky option, however, a 

safe choice is the better strategy. One focus of our analysis was thus to examine the certainty 

effect in the domain of gains reported for older adults (Mather et al., 2012), specifically 

whether this is influenced by the utility of a safe or risky choice (Weller et al., 2011). In 
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general, we expected such within-task manipulations to help us examine whether individuals 

adjust their risk taking as a function of task characteristics and assess their role in engendering 

age differences. In the BART, we varied balloon capacity across two types of trials, thus 

increasing learning demands and allowing us to examine whether age differences in learning 

can account for potential age differences in risk-taking propensity. 

Finally, many previous studies on age-differences in risk taking relied on extreme age 

comparisons (e.g., young vs. older adults) and/or collected data from comparatively small and 

non-representative samples (cf. Best & Charness, 2015; Mata et al., 2011; Tymula et al., 

2013). An additional aim of this study was therefore to collect and analyze data from a fairly 

large sample, characteristic of the local adult population, to better estimate cross-sectional 

trajectories of risk-taking across the entire adult life span using both self-report and 

behavioral measures.  

Method 

Participants  

973 individuals between 18 and 90 years of age participated in a survey of the 

population of Basel, Switzerland. Participants were recruited from the street in the city center 

and in a large shopping mall and asked to complete a computer-assisted personal interview 

(CAPI). Data from 71 individuals were excluded from all analyses due to incomplete data or 

repeated runs of the survey, which arose from technical problems in data collection due to 

temporarily poor quality of Internet access at the study locations. The final sample included 

902 individuals (Mage = 47.4, SD = 17.4, range = 18–90; 492 females, 55%). Individuals could 

earn money depending on their performance on the two behavioral tasks and earned on 

average 10.1 CHF (Swiss francs, 1 CHF ~ 0.98 USD) (SD = 6.18). Informed consent was 

obtained from all individuals prior to participation. The Institutional Review Board of the 

Faculty of Psychology, University of Basel, reviewed and gave ethical approval for the study. 
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In addition, we used cross-sectional data from 13,699 participants of the Swiss 

Household Panel (swisspanel.ch; Zimmermann et al., 2003) to perform a qualitative 

comparison of the developmental trajectories for self-reported risk taking between our local 

sample and the Swiss population at large (see Supplementary Materials for additional sample 

details).  

Materials 

Self-reported risk taking. Participants were presented with the following item (cf. 

Dohmen et al., 2011): “How do you rate yourself: Are you in general a risk-taking person or 

do you usually try to avoid taking risks? Please provide your answer with reference to a scale 

of 0 to 10. The value 0 indicates absolutely not risk taking, and the value 10 indicates very 

risk taking. You can adjust your response by selecting any value in between.” Participants 

were presented with an integer scale ranging from 0 to 10, and indicated their response 

accordingly. 

Description-based gambles task. All participants completed two sets of eight 

description-based gambles (Supplements, Table S1; cf. Mather et al., 2012; Rieskamp, 2008). 

On each trial, individuals were required to choose between a certain and a risky option 

presented as two boxes on the screen (Figure 1). The certain option either offered 4 or 8 CHF 

(Swiss francs, 1 CHF ~ 0.98 USD) with a probability of 1, whereas the risky option offered 

between 6 and 40 CHF with a specific probability and 0 otherwise. Half of all trials had a 

50/50 chance associated with the risky option, and the other half of trials were associated with 

a 20/80 chance of winning money or not, respectively. The 50/50 and 20/80 trials were further 

divided into trials that yielded the same expected value (calculated as option outcome value 

multiplied by its probability, hereafter referred to as “equal EV trials”) for the risky and the 

safe option, whereas the other half of trials yielded a higher expected value for the safe option 

(hereafter referred to as “unequal EV trials”). The two task conditions were introduced to 
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assess whether differential utility of risk taking as a function of EV (in)equality engenders 

age-related differences in risk-taking behavior. The order in which the eight gambles were 

presented was randomized across participants. Participants selected their preferred option by 

clicking on the respective box; option selection was self-paced. Each choice was then played 

out and the outcome saved on a temporary account (but not presented to participants, in order 

to avoid any sequence/learning effects). Participants obtained written instructions for the task 

and were provided with an independent (i.e., not included in the test set) example trial in 

order to become familiar with the task objective and response modus. Inspection of the data 

revealed that two participants did not complete two sets of eight unique gambles but instead 

one gamble was presented more than twice across the two sets. These two participants were 

excluded from analysis of the gambles task to ensure all participants had seen the same full 

set of gambles and had made decisions on the same eight unique lotteries. 

Balloon Analogue Risk Task (BART). We employed a variant of the Balloon 

Analogue Risk Task (BART; Lejuez et al., 2002) in which participants could pump up 

balloons to gain monetary rewards. In each trial, participants could administer sequential 

pumps up to the point where the person decides to stop inflation or the balloon bursts (Figure 

2). Each successful pump resulted in an increase of .02 CHF on a temporary account, and the 

total score of the current trial was saved and added to the final payoff if a person decided to 

stop pumping before an explosion. Otherwise, the temporary account was reset to 0. 

Participants completed 20 trials of two types of balloons differing in their color (red, blue) 

and pumping capacity (low vs. high; 32 vs. 16 maximum pumps), with assignment of balloon 

type and color being counterbalanced across participants. The two balloon conditions were 

introduced to vary learning demands. On inspection of the trial-by-trial data we discovered 

that a small number of participants completed more than 20 trials per balloon type (likely due 

to a lag in the Internet connection resulting in a few repeated trials; n = 40). The findings 
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below are based on analyses for which the maximum number of trials was restricted to the 

first 20 trials per balloon type; however, control analyses yielded the same results including 

the extra trials.  

Demographics. Beyond the self-report item and behavioral tasks related to risk 

taking, we collected information on individuals’ age, gender, number of children, marital 

status, work status, highest level of completed education, area of residence (postal code), as 

well as financial information regarding personal income, assets and debts. For the main 

analysis, we used age as a continuous independent variable (IV), participants’ gender (male = 

0, female = 1), whether they have children (0 = no, 1 = yes), their work status (0 = not 

employed, 1 = employed) as binary categorical IVs, and education (nine levels, reference = 

primary school) and marital status (eight levels, reference = married and living together) as 

categorical IVs on a nominal scale. Area of residence and financial information were not 

included in the current set of analyses because the former only served to warrant a sample of 

participants that characterizes the local population, and only a minority of participants 

provided responses to the latter. 

Procedure  

We employed an independent market research company to recruit and collect data 

from a quota-driven sample of participants in Basel, Switzerland. Six interviewers were 

trained on the study materials and provided with detailed instructions and study protocols. 

Recruitment of participants took place on the street in the city center and in a shopping mall, 

and included a brief introduction of the research as well as an initial screening consisting of 

individuals’ postal code of their main residence, gender, and age, to confirm eligibility for 

participation with respect to the quota required for a fairly representative sample concerning 

residence, gender, and age. Successful recruitment on the street resulted in immediate data 

collection in a nearby hotel or coffee shop. Individuals recruited in the shopping center 
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completed the study in the shopping center. The setup was kept as similar as possible across 

the three test locations, with each location providing separate, closed off workstations with 

laptop computers and a mouse for participants to complete the study. Participation involved 

the same set of questions and tasks for all participants, with interviewers guiding individuals 

through the study on a one-to-one basis. The latter was thought to facilitate participation by 

older adults and improve data quality (i.e., reduce the number of missing items or incorrect 

data entry). On entering the test setting, participants’ responses to the three screening 

questions were confirmed and recorded, followed by the provision of detailed information 

about the study’s aims and content, and consent procedures. Subsequently, participants were 

presented with the self-report item assessing general risk taking, the two behavioral risk-

taking tasks, and several questions concerning their demographics. The order of 

measurements was fixed (self-report, BART, gambles). All oral instructions and written 

materials were given in German. Data were recorded electronically using CAPI and entered 

either by the interviewer or the participants themselves (e.g., sensitive questions, responses 

during the two behavioral tasks). All earnings were paid to participants immediately after 

study completion. 

Results 

Overview of Statistical Analysis 

Our goal was to examine the effect of age on risk taking across a variety of measures 

whilst controlling for demographic variables shown to be associated with risk taking, 

including gender, educational attainment, work status, marital status and parenthood (e.g., 

Baker & Maner, 2009; Byrnes, Miller, & Schafer, 1999; Dohmen et al., 2011; Rolison et al., 

2013; Schurer, 2015; Wang, Kruger, & Wilke, 2009). Given the correlational nature of this 

research, multiple regression analyses were used to discern the relation between the 

continuous variable age and the three risk-taking measures (i.e., self-reported risk taking, 
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choices in gambles task, performance in BART). Sample-based descriptive statistics for all 

risk-taking measures used are given in Table 1.  

Age-risk trajectories for self-reports were analyzed using a fixed effects regression 

model. We applied mixed-effects modeling to individuals’ trial-by-trial performance in the 

BART (number of pumps) and the gambles task (choice of risky or safe option) in order to 

account for variance in the outcome measure that is not systematic across the group but 

instead originates from random (i.e., individual level) effects, such as effects of trial or 

condition, which may vary significantly across participants. For the gambles task, the binary 

choice outcome (risky or safe option) was regressed on age, gender, trial type (i.e., whether 

the trial was an equal or unequal EV trial), and two interaction terms (age and sex, age and 

trial type). The model also allowed for random effects of trial type, clustered within 

participants. For the BART, mixed-effects modeling included the following fixed effects: age, 

gender, balloon capacity (high or low), whether the previous trial resulted in an explosion (yes 

or no), the trial number (scaled separately for high and low-capacity balloons), and interaction 

terms for age and sex, age and balloon capacity, age and previous explosion trial, age and trial 

number, balloon capacity and trial number as well as a three-way interaction term between 

age, balloon capacity and trial number. We allowed for random effects for trial number, 

balloon capacity, previous explosions, and a trial number by capacity interaction, clustered 

within participants.  

Analyses were carried out in the software R (R Core Team, 2014) using the packages 

lme4 (Bates, Maechler, Bolker, & Walker, 2015) and lmerTest (Kuznetsova, Brockhoff, & 

Christensen, 2015) for mixed-effects modeling of continuous (lmer) and binary (glmer) 

outcome variables. Calculation of the denominator degrees of freedom required to derive p-

values for the fixed effects test statistics in lmerTest (Kuznetsova et al., 2015) uses 

Satterthwaite’s approximation (based on SAS proc mixed theory). For all analyses reported, 
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continuous outcome variables were normalized prior to analysis; self-report scores were 

normalized across the entire sample, while individuals’ number of pumps per trial in the 

BART were normalized separately for each balloon type. Continuous predictor variables (e.g. 

age) were normalized, and categorical variables dummy-coded. Reflecting previous findings 

that indicated the effect of age to take non-linear forms and follow different trajectories as a 

function of domain and/or gender (Josef et al., 2016; Rolison et al., 2013; Tymula et al., 

2013), all initial analyses included linear, quadratic and cubic effects of age and gender as 

well as their respective interactions. Initial analyses yielded no support for the inclusion of 

quadratic or cubic terms in the mixed-effects models of individuals’ trial-by-trial performance 

on the BART and the gambles, hence were dropped and only a linear term for age was 

included. Parameter estimates for the set of demographic variables (besides gender) entered 

into the modeling process in order to control for potentially confounding effects were not the 

focus of the current research, and are not discussed here. 

All analyses were conducted using the entire age range (18 to 90) and compared with 

analyses including only individuals between 18 and 78 years of age to control for a marked 

reduction in data points from individuals between 79 and 90 years of age (i.e., fewer than five 

individuals for every year). The general pattern of results was robust against in/exclusion of 

individuals between 79 and 90 years of age (n=15); only the results obtained from analyses 

covering the entire age range are reported below. 

Self-reported risk taking 

Self-reported risk taking was negatively associated with age (�=-0.27, SE=0.1, 

p=.01) and gender (b=-0.34, SE=0.1, p<.001), where increasing age and being female were 

attributes associated with lower self-reported risk taking (Table 2; Figure 3, Panel A). In 

addition, a significant interaction between age (linear term) and gender emerged (b=0.29, 

SE=0.14, p=.04). Quadratic and cubic age terms as well as their respective interactions with 
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gender were not significant. Main effects for age and sex remained after removal of non-

linear terms, and both main effects and the interaction effect remained significant after 

controlling for educational attainment, work status, marital status, and children; marital status 

emerged as significantly predictive of self-reported risk taking (Supplements Table S2). The 

results from the local survey are in line with previous research, which has indicated self-

reported risk taking to decrease with age and to be lower for females than for males. 

Moreover, a very similar pattern—negative association between age and self-reported risk 

taking and a main effect of gender—was observed for fixed effects modeling using Swiss 

Household Panel data (see Supplements for further details), albeit suggesting a non-linear 

association between age and risk taking. Overall, the analysis suggests that our local sample 

captures the common findings regarding the patterns of age and sex on self-reported risk-

taking propensity that generalize across the Swiss population.  

Gambles 

Sex and age were not significantly predictive of choosing the riskier option, but a main 

effect of trial type emerged (b=-0.52, SE=0.05, p<.001; Table 3). For an individual of mean 

age this effect translates into a 12% decrease in the probability of selecting the risky option, 

from 46% on equal EV trials to 34% on trials in which the higher expected value was 

associated with the safe option. Moreover, relative to younger participants, older participants 

selected the risky over the safe option more often in trials in which the safe option had a 

higher expected value than the risky option, as indicated by a significant age by trial type 

interaction (b=0.24, SE=0.04, p<.001; Table 3; Figure 3, Panels B and C). To put these 

estimates into context, whereas the probability of selecting the risky option in unequal EV 

trials (31%) was lower than the probability of selecting the risky option in equal EV (49%) 

trials for a younger individual (mean age minus 1 SD), this reduction was comparatively 

smaller for an older person (mean age plus 1 SD), from 43% in equal EV trials to 36% in 
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unequal EV trials. Note that Panels B and C in Figure 3 depict trial type-specific densities and 

coefficients, which were standardized separately for equal and unequal EV trials; 

consequently, the zero point representing the mean proportion of risky choice in equal and 

unequal EV trials is not the same in the two conditions (0.48 and 0.39, respectively). The 

results were robust against removal of interaction terms and inclusion of control variables. For 

the model containing demographic control variables, marital status emerged as an additional 

significant predictor of choices on the gambles task (Supplements Table S6). Compared with 

married respondents’ choices in equal EV trials, individuals living in a civil partnership were 

more likely to choose the riskier option (b=1.50, SE=0.75, p<.05), whereas individuals in a 

civil partnership but living apart were less likely to select the risky option (b=-2.53, SE=1.28, 

p=.05).  

In summary, patterns obtained from the gambles task highlight the importance of task 

characteristics for risk taking in the absence of main effects of age and gender. The interaction 

between trial type and age suggests that task demands differentially affect younger and older 

respondents and thereby influence their respective choices. In unequal EV trials the safe 

option offers a higher EV compared with the risky option. If individuals base their decision 

making on EV, it stands to reason that the safe option is the more attractive one, and therefore 

risk taking should decrease on unequal EV trials. The likelihood of selecting the risky option 

on unequal EV trials increased with age, however, suggesting that older adults may be more 

risk taking because they cannot (or prefer not to) adhere to EV calculation.  

Balloon Analogue Risk Task 

We used the average number of pumps in the BART (the same results hold for the 

“adjusted number of pumps”, cf. Lejuez et al., 2002) as a measure of risk taking. The 

regression analysis revealed significant main effects for balloon capacity (b=-0.22, SE=0.03, 

p<.001), whether the previous trial was an explosion trial (b=-0.19, SE=0.01, p<.001), and 
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trial number (b=-0.11, SE=0.02,  p<.001) on risk taking (Table 4). Moreover, several 

interaction effects were observed (Table 4), including interactions between age and balloon 

capacity (b=-0.1, SE=0.03, p<.01), age and previous explosion (b=0.03, SE=0.01, p<.01), as 

well as between balloon capacity and trial number (b=0.25, SE=0.03, p<.001). Specifically, 

high-capacity balloons were associated with more pumping compared with low-capacity 

balloons, whereas having experienced an explosion on the previous trial was associated with 

less pumping. Higher age was associated with significantly less pumping on high-capacity 

balloons (Figure 3, Panels D and E), but significantly more pumping on trials following 

explosion trials. 

Across individuals, a learning effect was inferred from the main effect of trial number 

and an interaction between trial number and balloon capacity: contrary to low-capacity 

balloons for which pumping decreased over time, on high-capacity balloons the number of 

pumps administered increased with increasing number of trials (Supplements Figure S1). The 

results obtained from the mixed modeling of pumps on the BART were robust against 

controlling for demographic confounds (Supplements Table S7). Moreover, removal of the 

interaction terms preserved the main effect of balloon capacity, explosion trial and trial 

number, whilst age and sex remained not significantly predictive of pumping. 

Overall, results from the BART support the idea that aging is associated with a 

reduction in risk taking. Notably, age differences were only visible in low risk (high capacity) 

trials, presumably because these trials facilitated elicitation of individual differences with 

respect to risk taking and cognitive capacity, and consequently increased variance in 

behavioral outcomes. Whilst learning was not directly assessed, differences in learning may 

account for the differences in risk taking between young and older adults in the low risk 

BART trials. 



RISK TAKING ACROSS THE LIFE SPAN 

 

21 

Convergent validity of risk measures across the life span 

To address the question of whether different measurements paint the same picture 

regarding an individual’s risk-taking profile, we computed zero-order correlations between 

self-report and task-derived risk-taking indices. Correlations were also obtained for scores 

derived from different conditions within a task (e.g., between number of pumps on high and 

low-capacity balloons in the BART) in order to ascertain whether different task components 

are equally sensitive and informative with respect to risk taking or whether, in fact, different 

task conditions yield different response patterns (for instance, due to adaptation to task 

demands). In order to examine whether the relation between measurements changes as a 

function of age, zero-order correlations between measures were also computed after splitting 

the data set into three age groups, comprising individuals aged between 18 and 39 (n=308), 40 

and 59 (n=353), and 60 and 90 years (n=241).  

The association between risk-taking scores stemming from different measurements 

across the whole sample were low (i.e., irrespective of age), and self-report was only weakly 

associated with behavioral measures, albeit more strongly with risk taking in the gambles 

task, r ≈ .2, than in the BART, r ≈ .1 (Figure 4a). 

Turning to risk-taking propensity as measured with the two different behavioral 

measures, performance on the BART showed weak or no correlation with the proportion of 

risky choices on the gambles task. This pattern suggests that even within the same modality 

(i.e., behavioral paradigm with financial incentive structure), tasks are likely to tap into 

different aspects of risk taking and therefore cannot be taken as exchangeable indicators of 

risk-taking propensity (cf. Henninger et al., 2010). Correlations between pumping on high and 

low-capacity balloons on the BART were markedly lower than those observed for risky 

choices in the two gambles conditions (r=0.37, r=0.71, respectively), perhaps reflecting 

commonly observed floor effects on pumping behavior in the BART and specifically the low-
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capacity balloon (e.g., Cavanagh et al., 2012; Henninger et al., 2010; Rolison et al., 2012; 

Schonberg et al., 2012).  

Do the associations between measurements change as a function of age? We did not 

observe substantially different directions and magnitudes of associations between 

measurements for different age groups (Figures 4b-d) compared with those obtained for the 

whole sample. However, one interesting pattern emerged for the association between 

measures obtained from the same task. For the BART, correlations between pumping on the 

low and high-risk balloons increased from the youngest (r=0.18) to the middle-aged (r=0.43) 

to the oldest group (r=0.5), with the difference between younger and older adults’ correlation 

coefficients being significant (z=3.95, p<.0001), suggesting that older individuals’ pumping 

behavior was not as context-dependent as that of younger participants. A similar pattern was 

observed for proportion of risky choices in the two gambles conditions, where correlations 

increased from the youngest (r=0.49), to the middle-aged (r=0.69), and again to the oldest 

group (r=0.8); as for the BART, the difference between younger and older adults’ correlation 

coefficients was significant (z=6.6, p<.0001). These results suggest that older adults were 

overall less adaptive in their risk-taking behavior as a function of task manipulations, perhaps 

signaling reduced cognitive plasticity. 

Discussion 

We investigated age-risk trajectories of three different measures of risk taking, namely 

a self-report and two different behavioral risk-taking measures using a large cross-sectional 

adult sample, and their convergent validity. The present findings paint a differentiated picture 

concerning the effect of age on risk taking. All three measures yielded some evidence for 

reduced risk taking with increased age: Relative to younger adults, older participants reported 

lower propensity for risk, pumped less in the BART in the low risk condition, and selected the 

risky gamble less often when the risky and safe option had the same expected value.  
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The pattern of declining self-reported risk taking across the adult human life span 

identified in our local and national sample falls in line with previous results (Dohmen et al., 

2011; Josef et al., 2016; Mata et al., 2016; Rolison et al., 2013; Shao & Lee, 2014). In line 

with our hypothesis, manipulations within behavioral measures led to divergent age-risk 

trajectories, which suggest specific mechanisms are at play in engendering specific age 

differences in risky choice, such as the learning and information integration demands required 

to complete each task (Frey et al., 2015; Mata et al., 2011). In the BART, age differences 

presumably emerged as a function of learning demands, because older adults only seem to 

have pumped less relative to younger adults in trials for which a higher maximum balloon 

capacity may have facilitated the elicitation of individual differences. Previous work by 

Henninger and colleagues (2010) supports this notion, suggesting processing speed to mediate 

age-related deficiencies in decision quality in the BART (Henniger et al., 2010; Mata et al., 

2011).  

In the gambles task, we expected individuals overall to select the safe option more 

often than the risky option in equal EV trials. Although in the long run selection of one option 

confers no benefit over selection of the other in equal EV trials, for a limited number of trials 

selecting the safe option arguably leads to more advantageous outcomes and risky choices 

may be motivated by the utility of gambling itself. Our estimates confirm this expectation. 

Both younger and older adults selected the risky option less often in equal EV trials, yet older 

adults tipped the balance in favor of the safe option. These patterns are in line with previous 

results of increased risk aversion for risky versus sure gain gambles in older adults (cf. 

certainty effect, Mather et al., 2012). Interestingly, we observed the opposite pattern in 

unequal EV trials (i.e., when the safe option had a higher expected value compared to the 

riskier option). Here, increasing age was associated with increased risk taking, despite the 

relative disadvantage of choosing the risky over the safe option. We do not propose that 
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unequal EV trials triggered more risk-seeking in older adults, but instead we suggest that – 

comparable to age-risk trajectories for different conditions in the BART – older adults were 

less able to adapt to within-task demands and consequently experienced challenges to EV 

calculation and maximization.  

Our results of an interaction between age and trial type in the gambles task are 

comparable to the results for risk-disadvantageous gain trials in the study by Weller and 

colleagues (2011), where a slight increase in disadvantageous risk taking by older adults was 

observed (cf. study by Tymula and colleagues (2013) for similar patterns of lower choice 

rationality in older adults). Moreover, the proportion of risky choices in unequal EV trials 

(current study) and risk-disadvantageous trials (Weller et al., 2011) made by younger and 

older adults was comparable (in both studies around 35% and 40%, respectively), despite the 

markedly lower number of trials completed by individuals in the current study. This suggests 

that age-related differences in individuals’ adaptation to the dynamic utility of risk taking 

describe a replicable, if not robust pattern. Crucially, in the study by Weller and colleagues 

(2011) as well as the current study, younger and older adults appeared to adapt their choice of 

the risky option to the task condition, namely by evidencing a decreased proportion of risky 

choices for unequal EV / risk-disadvantageous gain trials compared with equal EV / risk-

advantageous gain trials. Thus, whilst both younger and older adults in this study appear to 

reconcile changes in EV with lower risk taking, the slope was less negative for older 

compared with younger adults.  

In sum, the patterns of age differences in behavioral tasks seem to suggest a decline in 

propensity for risk across the life span, albeit with strong dependence on specific task 

characteristics. To note, although in the BART aging was associated with overly risk-averse 

behavior that was not optimal in the task, in the gambles task, aging was associated with 

increased risk taking when this was disadvantageous (i.e., the risky option had a lower 
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expected value). The blatant difference in the ecological rationality of risk taking in these two 

task conditions illustrates the need to understand when age differences in decision-making 

preferences and strategies lead to good or poor choices.  

Of further interest to the current study was the convergence between different 

measures adopted both within and across measurement traditions, specifically the extent to 

which they capture similar or dissimilar trajectories in risk taking. The current findings mirror 

significant yet weak correlations between self-report and behavioral measures obtained with 

cross-sectional life span (Josef et al., 2016), young adult (Mishra & Lalumière, 2011), case-

control (Szrek, Chao, Ramlagan, & Peltzer, 2012) and cross-cultural (Vieider et al., 2013) 

samples, and are suggestive of risk-related attitudes and propensities as measured via self-

report and behavioral paradigms to assess distinct facets of a complex construct. Questions 

pertaining to the mechanisms underlying convergence or divergence of risk-taking measures 

however remain open to investigation.  

Previous findings speaking to the self-report item’s heritability and test-retest 

reliability (Benjamin et al., 2012), stability (Josef et al., 2016) and correlation with real life 

behaviors (Dohmen et al., 2012) as well as more domain-specific risk taking measures 

(Dohmen et al., 2011; Vieider et al., 2015; Josef et al., 2016) suggest that this item does 

capture the phenotype of interest and renders the explanation of low correlations being driven 

by an excessively noisy self-report measure unlikely. Alternatively, we agree with the 

suggestion by Chuang and Schechter (2015) that self-report measures may simply be easier to 

understand than behavioral measures, which could account for the observed instability of risk-

taking propensity elicited via experimental paradigms as opposed to the relative stability of 

attitudes assessed via surveys (Chuang & Schechter, 2015). One limitation of the current 

study is the absence of cognitive control variables (e.g., processing speed, working memory, 

comprehension, numeracy) required for pinpointing potential drivers of age-related 
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differences in risk taking for the measures utilized. Given the scope and logistics of our 

approach it was not feasible to include further measures, yet we strongly recommend 

prospective studies to incorporate cognitive capacity measures to exclude alternative 

interpretations of age-related differences for different risk taking measures.  

Unfortunately, we were unable to extend our described gambles structure by losses and 

gamble pairs for which the risky option had the higher EV. Whilst losses seem to loom 

equally large for older adults, Weller and colleagues (2011) observed the proportion of 

disadvantageous risky choices in the loss domain to follow a similar trend to the gain domain, 

suggesting overall more disadvantageous risk taking by older than younger adults. Especially 

with respect to the convergent validity of risk propensity when losses are present (e.g. the 

BART or the possible loss-based interpretation of the self-reported risk taking item), 

correlations between measures may have been higher had we included mixed or loss only 

gambles.  

On a related note, we cannot completely rule out the possibility of priming effects of 

responding to a self-report item on behavior due to the fixed order of measures presented to 

our participants. However, we would argue that the existence of a priming effect would 

artificially inflate the correlations observed, perhaps due to an anchoring bias; if this was the 

case, the actual correlations between self-report and behavioral measures would be even 

lower than observed here, yielding further support for our main results, namely low 

convergent validity between risk-taking measures. Moreover, if individuals established a 

‘risk’ anchor from their self-report, the correlations between the two subsequent behavioral 

measures could expectedly be higher because the self-report primer should affect both tasks. 

Whilst we believe that a potential priming effect does not invalidate our conclusions, only a 

counterbalanced design can convincingly discount this possibility and further studies are 

required that directly examine the impact of measurement order on risk-taking indices. In 
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general, our results are in line with previous estimates of comparatively low convergence 

between self-report and behavioral measures (e.g., Josef et al., 2016), thus we submit that any 

biases due to priming do not substantially alter the main findings.  

There are three novel aspects of our results that deserve consideration in future work. 

One aspect concerns younger and older individuals’ adaptation to task characteristics on a 

trial-by-trial basis. Several motivational and affective frameworks have been formulated, 

according to which older individuals’ differential use of emotion regulation strategies dampen 

the impact of negative affect (Mata & Hertwig, 2011; Mata et al., 2011; Samanez-Larkin et 

al., 2007). In our sample, increasing age was associated with the administration of fewer 

pumps on the high-capacity (i.e., low risk) balloon as well as lower sensitivity to explosion 

trials. It would be interesting to also further examine whether older adults are less sensitive to 

losses than younger individuals, or, alternatively, do not extract the same meaning from loss 

cues in the BART. Second, in the described gambles task, increasing age was associated with 

selecting the risky option more often in trials where the certain option had the higher expected 

value compared with equal expected value trials. Future work should try to capture the 

specific strategies that can account for such changes (Mata, Schooler, & Rieskamp, 2007). 

Finally, we explored the age differences in within-task correlations and found that older 

adults’ risk-taking behavior was less sensitive to within-task manipulations. Future work 

could try to assess whether this lack of adaptivity is a marker for aging decision makers’ 

overall reduced cognitive plasticity (Lövdén, Bäckman, Lindenberger, Schaefer, & 

Schmiedek, 2010).   

In conclusion, different measures do not entirely succeed in capturing the same 

trajectories of risk-taking propensity across the life span, with the patterns of age reductions 

in risk taking being suggested to emerge as a function of learning and integration demands of 

specific measures. Our results show that in order to truly understand the life span 
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development of risk-taking propensity, research must take into account the convergent and 

predictive validity of self-report and behavioral measures of risk taking.   
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Tables 
 

Table 1. Descriptive statistics for self-reported and performance-based risk-taking measures (N=902).  

 

Risk-taking measure Range Mean (SD) Median Mode 

Self-reported risk taking 0 -10 6.08 (1.81) 6.00 5.00 

Gambles: Proportion of risky choices (mean) 0.00 – 1.00 0.43 (0.28) 0.44 0.00 

Gambles: Proportion of risky choices (equal EV trials) 0.00 – 1.00 0.48 (0.30) 0.50 0.50 

Gambles: Proportion of risky choices (unequal EV trials) 0.00 – 1.00 0.39 (0.30) 0.38 0.00 

BART: Number of pumps (mean) 3.12 – 12.70 8.70 (1.57) 8.95 9.70 

BART: Number of pumps (low-capacity balloons) 3.10 – 8.05 6.50 (0.71) 6.55 6.40 

BART: Number of pumps (high-capacity balloons) 3.15 – 17.50 10.90 (2.81) 11.20 13.45 
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Table 2. Model parameters for fixed effects modeling of self-reported risk taking 

(N=902). Self-report scores were normalized prior to analysis. Age (normalized) was entered 

as a continuous variable, while sex was entered as categorical (dummy coded) variable. 

Brackets refer to the level of the categorical variable for which the parameters were 

estimated, relative to the reference level. Reference levels are given below the table. 

 

 b SE t  p  

Intercept 0.16 0.07 2.24 0.03 

Age -0.27* 0.10 -2.64 0.01 

Age^2 -0.03* 0.05 -0.56 0.57 

Age^3 0.06* 0.04 1.47 0.14 

Sex (female)1 -0.34 0.10 -3.58 <0.001 

Age x Sex  0.29 0.14 2.07 0.04 

Age^2 x Sex 0.09 0.07 1.32 0.19 

Age^3 x Sex -0.09 0.06 -1.47 0.14 

 

Note: b=regression coefficient; SE=standard error; t=test statistic; p=significance level; *=standardized 

regression coefficient; 1reference=male 
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Table 3. Model parameters for mixed-effects modeling of risky choices on a trial-by-trial 

basis on the gambles task (N=900). Shown are parameters for fixed effects only. Risky 

choice was modeled as a binary variable. Age (normalized) was entered as a continuous 

variable, while all other predictor variables were entered as categorical (dummy coded) 

variables. Brackets refer to the level of the categorical variable for which the parameters 

were estimated, relative to the reference level. Reference levels are given below the table.  

 

 b SE z  p  

Intercept -0.22 0.09 -2.53 0.01 

Age -0.12 0.08 -1.50 0.13 

Sex (female) 1 0.11 0.11 1.02 0.31 

Trial type (unequal EV) 2 -0.52 0.05 -11.45 <0.001 

Age x Sex 0.02 0.11 0.19 0.85 

Age x Trial type 0.24 0.04 5.33 <0.001 

 

Note: b=regression coefficient; SE=standard error; z=test statistic; p=significance 
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Table 4. Model parameters for mixed-effects modeling of the number of pumps 

administered on a trial-by-trial basis on the BART (N=902). Shown are parameters for fixed 

effects only. Prior to analysis, number of pumps was normalized (separately for the two 

balloon types). Age (normalized) and trial number (centered by balloon type) were entered as 

continuous variables; all other predictor variables were entered as categorical (dummy 

coded) variables. Brackets refer to the level of the categorical variable for which the 

parameters were estimated, relative to the reference level. Reference levels are given below 

the table. 

 

 b SE t  p  

Intercept 0.16 0.03 5.68 <0.001 

Age -0.002* 0.03 -0.07 0.95 

Sex (female)1 -0.02 0.03 -0.84 0.4 

Balloon capacity (high)2 -0.22 0.03 -6.72 <0.001 

Explosion trial (yes)3 -0.19 0.01 -17.81 <0.001 

Trial number -0.11 0.02 -4.98 <0.001 

Age x Sex -0.001 0.03 -0.03 0.98 

Age x Balloon capacity -0.1 0.03 -3.08 0.002 

Age x Explosion trial 0.03 0.01 2.82 0.005 

Age x Trial number -0.02 0.02 -1.06 0.29 

Balloon capacity x Trial number 0.25 0.03 9.12 <0.001 

Age x Balloon capacity x Trial number -0.002 0.03 -0.08 0.93 

 

Note: b=regression coefficient; SE=standard error; t=test statistic; p=significance level; *=standardized 

regression coefficient; 1reference=male; 2reference=low-capacity balloon; 3reference=previous trial did 

not end in explosion.  
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Figures 

Figure 1. Example layout of the gambles task. The side of the screen on which the 

certain outcome was presented was counterbalanced between trials. Participants selected 

their preferred option by clicking on the associated box. Between trials individuals were 

informed that their choice was logged and that the preferred option would be entered into the 

set from which their payoff was to be drawn. A button click took participants to the trial. 
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Figure 2. Example trials in the BART for an explosion trial, and a trial in which the 

participant cashed out. Underneath the balloon, the temporary account shows money earned 

on the current trial, the permanent account indicates how much had already been earned 

prior to the current trial. The last line indicates how much money was earned on the previous 

trial. For purposes of illustration, intermediate balloon inflations are not shown but would 

otherwise reflect a gradual increase of 0.02 CHF (Swiss Francs, 1 CHF ~ 0.98 USD) per 

additional pump. Color-capacity assignment was counterbalanced.
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Figure 3. Cross-sectional age trajectories (18–90 years) for three risk-taking measures. Trajectories are plotted against kernel density maps 

of the distribution of risk-taking indices as a function of age. Darker (lighter) areas represent higher (lower) density of observed scores. For the 

purpose of illustration, outcome variables were standardized and plotted against raw age. Indices and distributions for the behavioral measures 

were normalized by condition; zero points represent condition rather than task-specific means (thus are not the same). Panel A) Trajectory for the 

self-report measure based on coefficients obtained from a model that includes linear terms for age, gender and their interaction (model R
2
=0.03, 

p<.0001; N=902). B and C) Trajectories for description-based risky choices in (B) equal expected value (EV safe = EV risky), and (C) unequal 

expected value (EV safe > EV risky) trials; trajectories are based on model coefficients obtained from the full model (N=900; Table 3). D and E) 

Trajectories for experience-based pumping behavior in the BART for (D) low and (E) high capacity trials; trajectories are based on model 

coefficients obtained from the full model (N=902; Table 4). Accounting for the learning effect, pump trajectories refer to the last trial. 
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Figure 4. Zero-order correlation plots for risk-taking measures used in this study. Line 

thickness represents the strength of the correlation coefficients. Straight (dotted) lines 

represent positive (negative) correlations. Plots present correlations for risk-taking measures 

for (a) all participants in the study (18–90 years, N=902), (b) individuals between 18 and 39 

years of age (N=308), (c) individuals between 40 and 59 years of age (N=353), and (d) 

individuals between 60 and 90 years of age (N=241). The position and equal spacing 

between factors is for visual purposes only and not indicative of correlation strength. 

Associations are plotted for self-reported risk taking propensity (SR), pumping on low (B16) 

and high-capacity (B32) balloons in the BART, and proportion of risky choices in the gambles 

task for equal (Ge) and unequal expected value trials (Gu). 
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Previous work suggests that aging is associated with changes in risk taking but less is
known about their underlying neural basis, such as the potential age differences in the
neural processing of value and risk. The goal of the present study was to investigate
adult age differences in functional neural responses in a naturalistic risk-taking task.
Twenty-six young adults and 27 healthy older adults completed the Balloon Analogue
Risk Task while undergoing functional magnetic resonance imaging. Young and older
adults showed similar overt risk-taking behavior. Group comparison of neural activity
in response to risky vs. control stimuli revealed similar patterns of activation in the
bilateral striatum, anterior insula (AI) and ventromedial prefrontal cortex (vmPFC). Group
comparison of parametrically modulated activity in response to continued pumping
similarly revealed comparable results for both age groups in the AI and, potentially, the
striatum, yet differences emerged for regional activity in the vmPFC. At whole brain level,
insular, striatal and vmPFC activation was predictive of behavioral risk taking for young
but not older adults. The current results are interpreted and discussed as preserved
neural tracking of risk and reward in the AI and striatum, respectively, but altered value
coding in the vmPFC in the two age groups. The latter finding points toward older adults
exhibiting differential vmPFC-related integration and value coding. Furthermore, neural
activation holds differential predictive validity for behavioral risk taking in young and older
adults.

Keywords: aging, decision making, ventromedial prefrontal cortex, anterior insula, Balloon Analogue Risk Task

INTRODUCTION

Aging is associated with changes in cognition, emotion, and motivation that have important
consequences for decision making (Tymula et al., 2013; Samanez-Larkin and Knutson, 2015;
Schiebener and Brand, 2015). For example, recent meta-analyses suggest that aging is associated
with changes in a variety of risky choice tasks (Mata et al., 2011; Best and Charness, 2015). But what
are the potential mechanisms underlying age-related changes in dealing with risk and uncertainty?
In our work, we aim to contribute to the understanding of possible mechanisms underlying age
di�erences in risk taking by investigating young and older adults’ neural activations associated with
a well-known risk-taking task, the Balloon Analogue Risk Task (BART; Lejuez et al., 2002). The

Frontiers in Aging Neuroscience | www.frontiersin.org 1 August 2016 | Volume 8 | Article 210

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnagi.2016.00210
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fnagi.2016.00210
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2016.00210&domain=pdf&date_stamp=2016-08-31
http://journal.frontiersin.org/article/10.3389/fnagi.2016.00210/abstract
http://loop.frontiersin.org/people/324957/overview
http://loop.frontiersin.org/people/336651/overview
http://loop.frontiersin.org/people/230821/overview
http://loop.frontiersin.org/people/105190/overview
http://loop.frontiersin.org/people/35089/overview
http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


fnagi-08-00210 August 30, 2016 Time: 15:32 # 2

Yu et al. Age-Related Altered Value Coding in vmPFC

BART is a popular and useful tool for measuring cognitive and
a�ective mechanisms underlying risk-taking behavior (Lejuez
et al., 2002; Schonberg et al., 2012), thus also representing a
promising tool to uncover sources of age di�erences in cognitive
and motivational components on decision making.

Participants in the BART are asked to pump up a
balloon as much as they like, which, although leading to
increased accumulation of (monetary) gains with each pump,
simultaneously increases the probability of the balloon exploding
(Lejuez et al., 2002). Thus, risk on the BART refers to the
probability of an explosion resulting in the loss of all accumulated
gains in a trial. The structure of the task captures not only
participants’ valuation of possible gains and losses simultaneously
but also a�ective processes that could arise as a consequence
of the increasing tension and uncertainty associated with
additional pumps on a given balloon. As such, the BART
mimics the risk–reward trade-o� as well as the sequential process
that characterizes decisions in many natural environments
(Schonberg et al., 2011; Pleskac and Hertwig, 2014). Importantly,
the task may have some predictive validity for real-life impulsive
or risk-taking behavior, such as drug use, delinquency, gambling,
and risky sexual behaviors (Lejuez et al., 2003, 2004; Aklin et al.,
2005; Hunt et al., 2005).

The BART has foundwide application in the field of behavioral
as well as neural research, yielding a backdrop of findings for
the current work. Specifically, previous neuroimaging studies
have identified a set of key brain regions as being di�erentially
involved in this task, including the ventromedial prefrontal
cortex (vmPFC), dorsal lateral prefrontal cortex (dlPFC), anterior
cingulate cortex (ACC), anterior insula (AI), striatum, and the
midbrain (Rao et al., 2008, 2014; Chiu et al., 2012; Lighthall
et al., 2012; Schonberg et al., 2012; Kohno et al., 2013;
Telzer et al., 2013; Helfinstein et al., 2014). All of these areas
have been implicated—in some form or another and with
more or less specificity—in the construction, representation
and storage of subjective value (for reviews, see Glimcher,
2010; Levy and Glimcher, 2012; Bartra et al., 2013; Clithero
and Rangel, 2014). Specifically, although striatal and frontal
activation patterns are widely recognized as key regions for
value-based judgment and decision making, insular activation
appears to be more prevalent for paradigms in which decision
making extends beyond purely deliberative and into a�ective
processing, including loss anticipation and harm avoidance
(Paulus et al., 2003; Knutson and Bossaerts, 2007; Preuscho�
et al., 2008; Mohr et al., 2010a; Bartra et al., 2013). Further
work relevant to risk taking on the BART pertains to the
neural correlates of uncertainty, with previous work implicating
the right AI in the tracking of uncertainty (e.g., Volz et al.,
2003). However, considering that uncertainty often implies the
possibility of loss or harm, it is somewhat unclear whether the
covariation between insular activity and uncertainty reflects the
tracking of the abstract (mathematical) or a�ective component of
uncertainty.

Of particular interest to this study are previous results
obtained with the BART that identified decreasing vmPFC
activation as a neural correlate of risk taking (Schonberg et al.,
2012; Rao et al., 2014). For several decision-making tasks,

vmPFC activity has been implicated in the representation of
subjective value; that is, representing a signal that reflects the
outcome of an integration of reward, risk (uncertainty), and
potentially also a�ective evaluation (Kim et al., 2010; Rangel
and Hare, 2010; Rushworth et al., 2011; Levy and Glimcher,
2012; Bartra et al., 2013). Some have proposed that the vmPFC
is a critical substrate for information integration which triggers
secondary emotional responses that help guide advantageous
decision-making (Bechara and Damasio, 2005; Levin et al., 2012).
Considering these previous studies and theoretical models of
decision making, vmPFC-related activation in the BART could
be representative of an integrative function of the vmPFC,
coding the decreasing subjective value of additional pumping
over time by integrating the potential gains with the increasing
probability of loss (i.e., explosion). Taken together, the properties
of the BART that make it a comparatively valid behavioral
measure of risk taking—where risk is understood not only as
outcome variability but also as exposure to potential loss—are
mirrored in neural activity patterns. Previous work that adopted
the BART in conjunction with findings from other paradigms
provide some insight into the possible functional roles of di�erent
neural regions on the BART, including the coding of loss,
reward, uncertainty, and integrated (subjective) value, each of
which could be a�ected by cognitive and neural changes due to
aging.

With regards to the computational drivers of age-related
behavioral and neural di�erences in risk taking, it has been
proposed that agingmay be associated with di�culties in learning
or representing the subjective (integrated) value of options,
which can conceptually be thought of as arising from noisy
representations due to low signal-to-noise ratio of information
processing (Li and Rieckmann, 2014). For example, older adults
typically show di�culties in learning the utility of options from
probabilistic feedback, possibly due to age-related declines in
neuromodulator systems that help form value representations
(Li et al., 2007; Mohr et al., 2010b; Eppinger et al., 2011;
Chowdhury et al., 2013). In one study, Samanez-Larkin et al.
(2014) showed age-related reduction in the frontal representation
of reward prediction error for paradigms involving feedback-
based learning, but no such di�erences for the representation
of reward magnitude. Moreover, several studies have shown
di�erences in vmPFC-related reward and value signals as a
function of age (Baena et al., 2010; Mohr et al., 2010b; Eppinger
et al., 2013; Halfmann et al., 2016), leading to the suggestion that
increasing variability in vmPFC signaling accounts for di�erences
in performance (Rogalsky et al., 2012; Halfmann et al., 2016). The
notion of increasingly varied neural responses, both with regards
to inter-individual and intra-individual variability, is not limited
to the vmPFC and related functions, but has already been found
in other neural areas implicated in decision-making processes
aversively a�ected by age (Li et al., 2007; Samanez-Larkin et al.,
2010). Moreover, a�ective changes over the human lifespan may
impact on decisions under risk, both behaviorally (Huang et al.,
2013; Shao and Lee, 2014) and neurally (Shao and Lee, 2014).
Taken together, multiple pathways are implicated in accounting
for age-related changes in decision making (under risk), and
several—such as altered information integration, feedback-based
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learning, or changes in a�ective responses to stimuli, choices and
their outcomes—could play a role in leading to age di�erences
in the BART. A few behavioral studies have used the BART
to investigate adult age di�erences in risk taking. However, the
results of extant comparisons of young and older adults using the
BART are inconsistent; although two found that older adults were
somewhat less risk-seeking relative to young adults (Henninger
et al., 2010; Rolison et al., 2012), another found the opposite
(Cavanagh et al., 2012). Gaining a better understanding of the
di�erent neural components underlying age di�erences in the
BART could be helpful in predicting when young and older adults
di�er in risk taking.

The goal of the present study was to investigate adult age
di�erences in neural signals of risky decision making on the
BART, a paradigm that captures the perceptible escalating tension
between risk and reward not evident in other paradigms (e.g.,
described lotteries). Thus, we were interested in using the BART
to compare young and older adults’ neural signatures of risky
decision making and establish whether di�erences arise in areas
previously implicated in processes subsumed in the concept
of risk taking, specifically the notion of harm avoidance and
tracking of potential losses in the insula and the representation of
utility (i.e., value) in the vmPFC. Moreover, we were particularly
interested in assessing whether signals originating in the insular
cortex or the vmPFC are similarly predictive of individual
di�erences in behavioral outcomes (i.e., risky choices). We thus
hoped to contribute to the challenge of uncovering possible
age di�erences in decision making under risk, and eventually
the dissociation of drivers of age-related di�erences such as the
processing of reward, risk and subjective value.

MATERIALS AND METHODS

Participants
Twenty-six young and 27 older adults were recruited for
the present study. Young adults were students of Southwest
University, China, and older adults were recruited from
communities in or near Southwest University. One young
and three older adults were excluded due to excessive head
movement during scanning (see below for exclusion procedure).
In addition, one older adult was excluded for cashing out
all reward balloons after just one pump. Forty-eight healthy
right-handed participants were included in the final analyses,
25 young adults (11 male, mean age: 21.0 ± 1.6 years, age
range: 18–24 years) and 23 older adults (eight male, mean age:
65.3 ± 5.3 years, age range: 60–79 years). Participants had
no prior history of stroke, neurological or psychiatric disorder,
and all older participants were independent community-dwelling
adults whose Mini-Mental State Examination (MMSE; Folstein
et al., 1975) scores were above 26 (mean score: 29.2 ± 1.2).
Participants received 60 CNY (ca. 10 USD) for participation in
the study, with the opportunity to earn up to an additional 15
CNY (ca. 2.5 USD) based on performance in the decision task.
All participants provided written informed consent and the study
was approved by the Institutional Review Board of the Brain
Imaging Center, Southwest University, China.

Materials and Procedures
Participants completed a variant of the BART inside the MRI
scanner (for further information on previous uses of the BART,
see Lejuez et al., 2002; Schonberg et al., 2012). Prior to entering
the scanner, participants were given instructions and completed
a short practice trial. They were told that their goal was to
maximize their scores in the task to increase their final payment.
Participants could inflate a balloon on each of a number of
trials by pressing a “pump” button. Each pump could earn
participants 0.1 CNY (ca.0.02 USD); however, if the balloon
exploded, they would lose the money accumulated in that trial.
In order to avoid the explosion, participants could “cashout”
the money at any point and secure their money by adding
it to the “bank.” There were three balloon types in the task,
two reward balloons and one control balloon. Control balloons
were gray balloons, which did not explode but also had no
monetary value. Participants were simply asked to pump up the
gray balloons until they disappeared from the screen. The two
reward balloons could lead to monetary gains but di�ered in
the maximum number of pumps that they could receive, thus
creating a distinction between high- and low-capacity balloons.
We used the two balloons as proxies for low- and high-risk
conditions in contrast to no risk for the control balloon in
order to examine whether behavioral and/or neural di�erences
would emerge as a function of risk level and also whether this
e�ect would be subject to age di�erences. Participants were not
provided with any information about the di�erences between
high- and low-capacity balloons but could in principle keep track
of the two di�erent types because they were assigned a di�erent
color, red or blue, with color assigned to each balloon type
being counterbalanced between participants. The probability of
the balloons exploding (or disappearing from the screen, in the
case of the control balloons) was p(explosion) = 1/(maximum-
pumps), with a maximum of 12, 20, 16 for the low-capacity,
high-capacity, and control balloons, respectively. The order of
presentation of the balloons was randomized. The task was
self-paced, therefore the number of balloons varied between
participants in the fixed-duration 10-min scanning run. The
interval between pumps varied randomly between 1 and 2 s, and
the interval between trials (balloons) varied between 1 and 12 s,
with a mean of 4.5 s.

Behavioral Analysis
We calculated the average number of pumps for cashout balloons
(i.e., adjusted pumps), as is typically done in the BART literature
in order to limit analyses to balloons for which the final number
of pumps was not capped by an explosion (Lejuez et al., 2002).We
also calculated the average number of reward trials, proportion
of cashout trials, and average reaction time for each pump. We
performed a 2 (age: young vs. older) ⇥ 2 (balloon: high- vs.
low-capacity) repeated measures ANOVA on adjusted pumps,
and conducted one-way ANOVAs on the number of reward
balloons, proportion of cashout trials, and mean reaction time
to estimate age di�erences. Statistical analyses of behavioral data
were performed using SPSS 20.0 (IBM Corporation, Somers, NY,
USA).
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Image Acquisition
Participants were scanned at the Brain Imaging Center in
Southwest University using a 3.0 T Siemens TimTrioMRI system
(Erlangen, Germany). For each participant, functional echo
planar image data were collected using the following parameters:
time repetition (TR) = 2000 ms, time echo (TE) = 30 ms, flip
angle = 90�, field of view (FOV) = 200 mm ⇥ 200 mm, 33
axial slices, slice thickness = 3.0 mm, gap = 0.6 mm, acquisition
matrix = 64 ⇥ 64, in-plane resolution = 3.125 ⇥ 3.125, and
200 volumes. High-resolution, three-dimensional T1-weighted
structural images were acquired for each participant, with the
following parameters: 176 slices, acquisition matrix = 256 ⇥ 256,
voxel size= 1 mm⇥ 1 mm⇥ 1 mm, TR= 1900 ms, TE= 2.2 ms,
and flip angle = 9�.

Image Preprocessing
Data preprocessing was performed using the Statistical
Parametric Mapping program1 (SPM8). First, the di�erence
in acquisition time between slices was corrected, followed by a
rigid-body correction for head motion. Participants included in
the present study had less than 3.0 mm maximum translation
and 3.0� rotation head motion throughout the scan. For
normalization, we used a study-specific template created using
unified segmentation and di�eomorphic image registration
(DARTEL, Di�eomorphic Anatomical Registration using
Exponential Lie Algebra; Ashburner, 2007). First, each subject’s
image was segmented into gray matter, white matter, and cerebral
spinal fluid probabilistic images. The segmented gray-matter
images were then normalized to Montreal Neurological Institute
(MNI) space as defined by SPM8. DARTEL represents better
localization of functional magnetic resonance imaging (fMRI)
activity than does the optimized normalization procedure, by
treating the brain template as a deformable probability density
map, comparing the signal intensities of each voxel for every
brain (Leshikar and Duarte, 2014). The resulting normalized
images were then spatially smoothed using a 6 mm full-width
half-maximum (FWHM) kernel to decrease spatial noise.

fMRI Analysis
Analysis of the functional MRI data was carried out in three
steps. First, neural activity was modeled using the general linear
model in a similar fashion to previous studies (Schonberg et al.,
2012) with a high-pass filter of 1/128 Hz. In the general linear
model analysis, two regressors for pumps were included: (1)
PumpsAverage, capturing average activity across all pumps, and
(2) PumpsParametric, capturing parametrically modulated activity
by sequentially increasing the number of pumps within each
trial. These two regressors were also implemented for the control
balloons (ControlAverage and ControlParametric). Because we found
no significant di�erences between the activities elicited by the
low- and high-capacity balloons, the two experimental balloon
types were collapsed and a single regressor was used to model
both types of trials. In order to remove visual and motor e�ects
unrelated to risk and reward processing, we contrasted the
reward pumps to those in the control condition (PumpsAverage

1http://www.fil.ion.ucl.ac.uk/spm

vs. ControlAverage and PumpsParametric vs. ControlParametric). To
control for the potential confounding e�ects of head movement,
six motion parameters (three translation and three rotation
parameters) were entered into the GLM as regressors of no
interest. The resulting activation patterns were labeled positive
e�ects for a BOLD signal that was higher for reward than for
control balloons when contrasted, whereas higher BOLD for
control vs. reward balloons was taken to indicate a negative
e�ect. Two-sample t-tests were computed to determine age group
di�erences, specifically to examine BOLD signal di�erences
between groups in each contrast to observe the influence of age
on neural activity related to risk taking. Moreover, in order to
illustrate the age di�erences on “PumpsAverage vs. ControlAverage”
contrast more clearly, we conducted the two-sample t-tests
masked by a positive e�ect map and a negative e�ect map,
respectively, to observe the age di�erences on the positive e�ect
regions and negative e�ect regions separately. The positive
e�ect mask is a binary mask, which was generated from the
combination of young and older age groups’ positive e�ect map
on “PumpsAverage vs. ControlAverage” contrast after correction,
and the negative e�ect mask was generated likewise.

Whole-brain regression analyses were performed in order
to identify brain regions that correlated with participants’
risk-taking behavior. We examined the correlation between
each individual’s neural activity during PumpsParametric vs.
ControlParametric and his/her mean number of adjusted pumps.
The individual di�erence analysis in the form of whole brain
regression was conducted both across groups and by age group.

In addition to the whole-brain regression analysis, region of
interest (ROI) analyses were adopted; these allowed us to test
for the neural–behavioral association in specific brain regions
that might not have been captured after correcting for multiple
comparisons at whole-brain level. ROIs were created as 4 mm
radius spherical regions covering the bilateral AI and striatum,
respectively, and an 8 mm radius spherical region in the vmPFC.
The center coordinates for the ROI masks (vmPFC [2 46 �8];
left AI [�36 20 �6]; right AI [40 22 �6]; left striatum [�12 4 2];
right striatum [12 10 �2]) were defined based on a recent meta-
analysis examining neural correlates of subjective value (Bartra
et al., 2013). In addition to using published coordinates to build
ROI masks, center coordinates derived from the current sample
(peak coordinate from PumpsParametric vs. ControlParametric across
age groups, vmPFC [�15 39 �12]; left AI [�33 24 3]; right AI
[39 21 6]; left caudate [�12 6 9]; right caudate [9 3 9]) were
used in secondary analyses aimed at testing the reliability of
the results. These supplementary analyses also included spheres
of di�erent sizes, with sphere radii ranging from 3 to 10 mm,
covering 1-mm increments between the lower and upper bound.
Pearson’s correlation analysis was performed to evaluate the
relation between activation in the bilateral AI and the vmPFC
(activation from parametric contrast on increasing number of
pumps) and an individual’s behavioral performance (i.e., mean
adjusted pumps).

Functional magnetic resonance imaging analyses were
examined at a threshold corrected for multiple comparisons
(corrected by the false discovery rate, FDR, p < 0.05). All
coordinates are reported in MNI format. Anatomical labels
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of neural regions were obtained by importing the resulting
statistical parametric maps into xjview2.

RESULTS

Behavioral Results
Table 1 presents the average adjusted pumps, proportion of
cashout trials, and other BART variables separately for young and
older adults. We also plotted the performance as a function of
adjusted number of pumps for each participant in the two reward
balloons (Figure 1). For individuals’ distribution of pumps for
low- and high-risk balloons, see the (Supplementary Figure S1).
As expected, participants behaved adaptively by pumping more
in the high-capacity relative to the low-capacity balloon but most
participants showed risk-averse behavior in the sense of pumping
less than the expected value maximizing amount. Concerning
age di�erences, as can be seen in Table 1 and Figure 1, older
adults were more likely to cash their earnings relative to young
adults, yet this tendency did not translate into a significantly
lower number of pumps or earnings for either balloon type.
A 2 (age: young vs. older) ⇥ 2 (balloon: high-capacity vs. low-
capacity) mixed-model ANOVA on adjusted pumps did not find
age di�erences [F(1,46) = 0.82, p = 0.371] but a significant
e�ect of balloon [F(1,46) = 8.17, p < 0.01] with more pumps
being observed for the high-capacity relative to the low-capacity
balloon. The interaction between age and balloon type was also
not significant [F(1,46) = 0.01, p = 0.944]. These results suggest
that both young and older participants learned to di�erentiate
between the two balloons despite not having been explicitly
informed about the di�erences. Moreover, average reaction times
were larger for older adults (Table 1).

In sum, although young and older adults did not di�er in
average adjusted pumps, older adults had more cashout trials
than young adults, possibly indicating more risk-averse behavior
in older relative to young participants. We now turn to the issue
of potential age di�erences in neural activations in the BART.

fMRI Results
In what follows, we present three sets of fMRI analyses. First,
we report comparisons between average neural activity associated
with pumping on experimental (i.e., balloons that were associated
with monetary gains/losses) relative to control balloons (i.e.,
balloons that were not associated with anymonetary gains/losses)
for young and older adults, as well as any di�erences between the
two groups. This comparison allowed us to capture reward/loss

2http://www.alivelearn.net/xjview8

FIGURE 1 | Payoff as a function of average pumps for the (A)
low-capacity and (B) high-capacity reward balloons. The lines represent
the expected value of the specific average pumps across 10 trials of each
balloon type (the average number of trials experienced by participants). Each
dot represents a participant, with its diameter being a function of the
proportion of cashout trials.

processes and age di�erences therein while subtracting activation
due to attentional or motor processes that were of no interest to
the current research. Second, we report parametric analyses of
the neural activity of experimental relative to control balloons
as a function of the number of pumps administered on a given
trial. The rationale for this second set of analyses is similar to the
one above but the pump-by-pump analysis provides a window
into the processing of risk and reward as it unfolds over the
course of a single trial. Finally, we report individual di�erence
analyses that link neural activation of specific regions of interest
to behavioral levels of risk taking. These latter analyses clarify
the functional role of specific neural activations and whether
these are di�erentially informative regarding individual and age
di�erences in risk-taking behavior.

Neural Activity: Average Effects

A whole-brain contrast revealed widespread neural activity
for the reward vs. control pumps contrast. Specifically,
both young and older adults displayed positive e�ects (i.e.,
PumpsAverage > ControlAverage) in the bilateral AI, striatum
(caudate and putamen), dorsal ACC, superior frontal cortex
and the visual cortex (Figure 2A, Red; Tables 2 and 3, Average:
PumpsAverage > ControlAverage). These areas have been identified
in previous studies of the BART (Rao et al., 2008; Schonberg
et al., 2012) and similar decision tasks (Mohr et al., 2010a; Wu

TABLE 1 | Behavioral results in young and older adults Groups (M ± SD).

Outcome Young adults Older adults F p

Mean adjusted pumps 4.82 ± 1.55 4.43 ± 1.56 0.76 0.388

Number of reward balloons experienced 20.92 ± 2.41 19.65 ± 3.24 2.39 0.129

Proportion of cashout trials 0.61 ± 0.12 0.70 ± 0.13 7.38 <0.010

Mean pump RT (ms) 521.10 ± 88.70 815.13 ± 341.18 17.33 <0.001
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FIGURE 2 | (A) Average activity during pumps in the young and older age group. The red scale represents PumpsAverage > ControlAverage and the blue scale
represents ControlAverage > PumpsAverage. (B) Age group differences for average neural activity during pumps. Blue patterns represent neural regions in which
negative effects were larger for the young compared with the older age group. Red patterns represent neural regions in which the positive effect was larger for older
than for young adults, p < 0.05, corrected (scale represents the range of t-values). No brain regions were discovered for which (1) young adults had larger positive
effects relative to older adults or (2) older adults had larger negative effects than young adults.

et al., 2012; Bartra et al., 2013) as being related to reward and risk
processing. Moreover, both age groups displayed negative e�ects
(i.e., ControlAverage > PumpsAverage) in the inferior frontal gyrus,
middle temporal gyrus, precuneus, and the vmPFC (Figure 2A,
Blue; Tables 2 and 3, Average: ControlAverage > PumpsAverage). In
particular, activity in the vmPFC has been shown to correlate with
valuation in various decision-making tasks (Levy and Glimcher,
2012; Bartra et al., 2013), including the BART (Schonberg et al.,
2012; Rao et al., 2014).

Age group di�erence analyses showed that young adults
had more activation than older adults in the postcentral gyrus,
superior temporal gyrus, middle frontal gyrus, and medial frontal
gyrus, whereas no regions were obtained for which older adults
had more activation. To further distinguish these age di�erences,
we performed group di�erence analyses masked separately
by positive and negative e�ect maps. Young adults showed
more negative e�ects (i.e., ControlAverage > PumpsAverage) than
older adults in the fusiform, bilateral middle occipital lobe,

precentral/postcentral gyrus, and a minor positive di�erence
in vmPFC (Figure 2B, Blue); no regions were obtained for
which older adults had more negative e�ects than young adults.
For positive e�ects (i.e., PumpsAverage > ControlAverage), we
found that older adults showed higher activation in the middle
frontal gyrus, inferior parietal lobule, middle temporal gyrus,
putamen, middle occipital gyrus, and supplementary motor
area (SMA) (Figure 2B, Red); no regions were observed which
evidenced higher activation in young compared with older
adults.

Neural Activity: Parametric Effects

We aimed to capture the dynamic nature of risk processing in
the BART by estimating the parametric modulation of BOLD
responses as a function of the sequentially increasing pumps
on reward vs. control balloons (see Schonberg et al., 2012,
for a similar analysis). The parametric analysis yielded less
widespread neural activity compared to the average pumps
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TABLE 2 | Significant clusters of activation in young adults.

Region L/R/B X Y Z t-value Cluster size

Average

PumpsAverage > ControlAverage

Insula R 39 18 3 10.28 109

Insula L �33 21 3 8.66 142

Superior frontal gyrus R 30 57 15 7.12 143

Middle frontal gyrus L �33 54 9 5.05 92

Cingulate B 9 27 30 9.94 181

Calcarine R 18 �96 �3 6.82 55

Middle occipital gyrus L �18 �96 �3 7.06 67

ControlAverage > PumpsAverage

Temporal lobe, Parietal
lobe, Precuneus

B 21 �78 39 11.40 15251

vmPFC B 36 42 �18 7.27 478

Parametric

PumpsParametric > ControlParametric

Insula R 39 21 6 6.08 73

Insula L �39 15 0 5.29 59

Thalamus R 6 �24 9 5.53 10

Cingulate R 9 30 30 6.28 36

ControlParametric > PumpsParametric

Postcentral L �66 �18 27 7.30 495

Fusiform R 39 �6 �33 4.89 15

Middle frontal gyrus L �21 18 48 4.45 107

vmPFC L �12 33 �15 5.51 58

Correlationa

Negative correlation

Insula R 33 21 0 �4.86 64

Insula L �27 21 �3 �5.57 132

Caudate R 9 6 9 �5.22 65

Caudate L �12 6 12 �5.54 63

Anterior cingulate R 6 39 9 �3.88 45

Positive correlation

Middle temporal gyrus L �45 �60 3 7.59 293

Middle temporal gyrus R 54 0 �24 5.07 64

Medial frontal gyrus L �18 39 �12 5.15 111

Culmen R 15 �36 �24 5.14 58

R, Right; L, Left; B, Bilateral. aCorrelation with mean number of adjusted pumps.

contrast described above. Young adults displayed positive
e�ects (i.e., PumpsParametric > ControlParametric) in the bilateral
AI, thalamus, and dorsal ACC, and negative e�ects (i.e.,
ControlParametric > PumpsParametric) in the fusiform, postcentral
gyrus, and vmPFC. Older adults showed positive e�ects in
the bilateral AI, caudate, and SMA, and displayed negative
e�ects in some occipital-parietal regions, but, crucially, no
vmPFC areas survived correction (Figure 3A; Tables 2 and 3,
Parametric).

Further, although results from the between-group t-tests
did not survive whole brain correction, there were voxels in
the vmPFC that showed age group di�erences at p < 0.005
uncorrected (Figure 3B). The decreasing activity of the vmPFC
obtained from the parametric contrast has been suggested to
capture value integration in the BART (Schonberg et al., 2012)

and the di�erential pattern of vmPFC parametric activation for
young but not older adults suggests that the value integration
processes during sequentially increasing pumps is less distinct in
older adults compared with young adults. We explored young
and older adults’ activation maps at p < 0.005 uncorrected
to check for di�erences which may have arisen due to factors
such as signal heterogeneity or the small number of subjects
in each group. At p < 0.005 uncorrected, we observed minor
striatal activation in both young and older adults (Supplementary
Figure S2), which might be suggestive of some form of reward
tracking in the striatum as a function of increasing number
of pumps. Interestingly, even at uncorrected level, older adults
did not show any vmPFC-related activity, pointing toward
genuine age-related di�erences in vmPFC-related integrative
signaling.
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TABLE 3 | Significant clusters of activation in older adults.

Region L/R/B X Y Z t-value Cluster size

Average

PumpsAverage > ControlAverage

Supplementary motor
area, superior frontal
gyrus, insula, caudate,
putamen

B �6 0 51 11.20 10387

Lingual gyrus B 18 �90 �3 11.25 142

Middle temporal gyrus R 57 �27 �12 3.99 24

Inferior parietal lobule,
Precuneus, Middle
occipital gyrus

B 48 �45 51 7.42 976

ControlAverage > PumpsAverage

Precuneus B �3 �54 33 9.22 3330

Middle temporal gyrus L �36 24 �27 5.38 409

Middle temporal gyrus R 60 6 �15 8.32 201

Superior temporal
gyrus

R 63 �54 21 5.95 490

Inferior frontal gyrus L �45 30 �6 5.27 170

vmPFC B �9 57 36 7.89 326

Parametric

PumpsParametric > ControlParametric

Insula R 33 21 �3 6.51 44

Insula L �33 21 �9 7.35 56

Caudate R 15 6 3 5.08 13

Supplementary motor
area, cingulate

B 6 18 51 6.28 30

Lingual gyrus B �9 �84 �3 5.09 10

ControlParametric > PumpsParametric

Inferior occipital gyrus L �42 �69 �6 6.14 93

Lingual R 24 �90 �3 5.75 4

Superior parietal lobule L �21 �81 45 5.29 25

Precentral gyrus R 51 �12 54 4.61 7

R, Right; L, Left; B, Bilateral.

Regions Correlated with Behavioral Performance

We conducted a whole-brain regression analysis linking a
measure of risk taking, mean adjusted pumps in the BART,
and neural activity obtained from the “PumpsParametric vs.
ControlParametric” contrast. We thus hoped to assess how
individual di�erences in behavioral risk taking were associated
with average neural activation patterns. Across age groups,
the regression analysis revealed significant negative correlations
between participants’ risk taking and activity in the bilateral
AI and caudate (Figure 4A; Table 4). In turn, positive
correlations were found between adjusted pumps and activity
in the bilateral middle occipital cortex, inferior parietal lobule,
and vmPFC. The positive association between behavior and
vmPFC activation is reflective of individual di�erences in
the steepness of the predominantly negative slopes observed
in the vmPFC: individuals with flatter (i.e., smaller negative
e�ect) slopes on average administered more pumps on cashout
balloons compared with individuals with steeper (i.e., greater
negative e�ect) slopes. It is therefore postulated that individuals
take more risks on average (i.e., administer more pumps) if

the decrease in vmPFC activity is more gradual. Regarding
age-related di�erences, young adults’ regression results were
similar to the findings obtained across all individuals, albeit
stronger in several regions (Figure 4B; Table 2, Correlation).
However, regression of whole brain activation on mean adjusted
pumps for older adults yielded no significant voxels at the
correction threshold of p < 0.05 and only very sparse
association patterns at p < 0.005 uncorrected (Supplementary
Figure S3).

To check that the whole brain regression results were not
influenced by outliers and visualize the results with respect to
individual di�erences, additional ROI analyses were conducted
on the bilateral AI, bilateral striatum and vmPFC. In particular,
mean beta weights were extracted from spheres based on the
relevant center coordinates provided by Bartra et al. (2013)
to achieve an independent definition of the structures of
interest. To note, these analyses are merely for visualizing the
relationship between neural activity and performance in the
two age groups; the authors acknowledge a degree of circularity
when extracting activation from regions identified by whole brain
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FIGURE 3 | (A) Parametric modulation of increasing number of pumps in the young and older age group. The red scale represents PumpsParametric >

ControlParametric and the blue scale represents ControlParametric > PumpsParametric. p < 0.05, corrected. (B) Age group differences on parametric contrast. The blue
scale represents neural regions in which young adults had more negative effect than older adults. p < 0.005, uncorrected (scale represents the range of t-values). No
brain regions were discovered for (1) which older adults had larger negative effects relative to young adults or (2) age group differences on parametric positive effect
at this threshold.

analyses as being associated with performance. However, given
that no significant association was obtained from the whole
brain analyses for older adults, we were interested in visualizing
the distribution of performance against activity in both age
groups.

Activity in the seed region of the left AI during PumpsParametric
vs. ControlParametric was negatively correlated with adjusted
pumps in young (r = �0.60, p < 0.01), and older adults
(r = �0.51, p < 0.05; Z = 0.42, p > 0.05; Figure 5A).
A comparable pattern was found in the right AI, with older
adults showing a correlation between adjusted pumps and
brain activity that was similar to that found for young adults
(r = �0.44, p < 0.05, r = �0.58, p < 0.01, respectively;
Z = 0.62, p > 0.05; Figure 5B). These findings merely visualize

the whole brain regression results, suggestive of comparable
insular tracking of potential loss (uncertainty) in older and young
adults. In addition, extracted beta weights from the left (but
not right) striatum correlated negatively with mean number
of adjusted pumps in young (r = �0.68, p < 0.001) but not
older adults (r = 0.15, p = 0.50; Figure 5C); the di�erence
between these two correlations was significant (Z = 3.17,
p < 0.01). As expected from the whole brain analyses, activation
in the vmPFC was positively correlated with adjusted pumps
in young adults (r = 0.48, p < 0.05), but not in older adults
(r = �0.22, p = 0.31; Figure 5D); the di�erence between these
two correlations was significant (Z= 2.42, p< 0.05).We obtained
comparable results when using masks derived from peak contrast
coordinates and varying radii. To note, although occupying a

Frontiers in Aging Neuroscience | www.frontiersin.org 9 August 2016 | Volume 8 | Article 210

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


fnagi-08-00210 August 30, 2016 Time: 15:32 # 10

Yu et al. Age-Related Altered Value Coding in vmPFC

FIGURE 4 | (A) Regions correlated with mean adjusted pumps (whole sample). (B) Regions correlated with mean adjusted pumps in young adults. Activity obtained
from parametric modulation of increasing number of pumps (PumpsParametric vs. ControlParametric) in the bilateral anterior insula (AI) is negatively related to and
ventromedial prefrontal cortex (vmPFC) is positively related to participants’ mean adjusted pumps in the young adults. The red scale represents a positive correlation,
whereas the blue scale represents a negative correlation, p < 0.05, corrected (scale represents the range of t-values).

similar range, the distribution of mean beta weights extracted
from the parametric modulation of vmPFC activity in older
adults appears positively skewed compared with a relatively more
normal distribution for young adults (Figure 5D). In contrast,
the distribution of extracted mean activation slopes for the
insula and striatum is relatively more similar in older and young
adults.

Taken together, these results suggest that although neural
representations of reward and risk as well as the tracking thereof
remain relatively stable across age groups, their predictive validity
for behavior may be di�erent for young and older adults.
Moreover, older adults’ tracking of value in the vmPFC was
di�erent from that of young adults, also manifested by the
di�erential vmPFC activation profiles and predictive validity of
vmPFC activation for mean pumping (i.e., risk taking) behavior
in the BART.

DISCUSSION

The present study investigated adult age di�erences in behavior
and neural activations associated with the BART, a widely used
naturalistic risk-taking task (Lejuez et al., 2002). Specifically, we
asked young and older adults to undergo fMRI while completing
a version of the BART consisting of di�erent types of balloons,
which either did (experimental) or did not (control) involve
monetary risks and rewards. The di�erent balloon types were
leveraged to build contrasts that captured the neural signatures
associated with young and older adults’ risky decision-making
processes (Rao et al., 2008; Schonberg et al., 2012; Helfinstein
et al., 2014).

Our results indicate considerable similarity between young
and older adults in the behavioral outcomes of the BART,
including similar average number of pumps per balloon for
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TABLE 4 | Clusters correlated with mean number of adjusted pumps in across age groups.

Region L/R/B X Y Z t-value Cluster size

Negative correlation

Insula L �36 21 �6 �4.81 83

Insula R 33 21 �3 �4.52 33

Caudate B �12 6 18 �4.62 36

Culmen B 3 �57 0 �5.89 13

Positive correlation

Inferior temporal gyrus L �48 �57 �9 4.58 38

Middle occipital gyrus R 42 �69 �12 4.75 23

Middle occipital gyrus L �21 �84 �3 4.73 62

Inferior parietal lobule L �45 �45 45 4.59 36

Medial frontal gyrus L �18 45 3 4.19 12

Medial frontal gyrus L �12 �27 57 4.60 12

R, Right; L, Left; B, Bilateral.

the two age groups. Older adults were, however, more likely to
cashout their temporary wins relative to young adults, potentially
indicating higher levels of risk-aversion with increased age (Mata
et al., 2011; Best and Charness, 2015). Overall, these behavioral
outcomes contribute to the heterogeneity of findings concerning
age di�erences in the BART (Henninger et al., 2010; Cavanagh
et al., 2012; Rolison et al., 2012).

Concerning our neuroimaging results, we replicated past
findings with young adult samples suggesting a link between
neural activation and the processing of risk and reward.
Specifically, using contrasts between neural activation while
pumping in experimental relative to control balloons in the
BART, we found significant neural activations in the caudate,
bilateral insula, and parietal regions, as well as in the vmPFC,
which are comparable with previous findings (Rao et al., 2008,
2014; Schonberg et al., 2012). Also consistent with a previous
study that analyzed parametric neural activation as a function
of increased exposure to risk and rewards, we found that
vmPFC activity decreased whereas bilateral AI activity increased
as participants pumped up each balloon (Schonberg et al.,
2012). Concerning age di�erences, group average comparisons
identified similar patterns of activations in the striatum and
AI as well as deactivation in the vmPFC in both age groups.
Our findings are in line with previous studies showing intact
representation of reward (Samanez-Larkin et al., 2007, 2014) and
loss anticipation (Samanez-Larkin et al., 2008; but see Samanez-
Larkin et al. (2007) for altered insular sensitivity during loss
anticipation). The lack of di�erences between young and older
adults in ventral striatal activation during gain anticipation may
imply that the ventral striatal regions may not be as compromised
by age as are the neural substrates recruited in reward reversal
learning tasks, such as the PFC regions (Marschner et al.,
2005; Samanez-Larkin et al., 2007). Some di�erences between
young and older individuals were observed for the average
contrasts: the comparatively lower deactivation/higher activation
for risky vs. control balloons in older adults may suggest
systematic di�erences in the neural representation of value-
related processes, for instance slightly higher sensitivity to gains
(higher striatal activation) or weaker integration (less vmPFC

deactivation). It is noteworthy that some of the regions for which
age di�erences were observed in the average contrast analysis
overlap with regions engaged in the default mode network
(Raichle et al., 2001) and brain networks identified for working
memory tasks (Tomasi et al., 2006). Consequently, it is also
possible that the few di�erences observed for average contrasts
stem from older adults dealing di�erently with the process of
being engaged in and completing a task with some memory
demands.

In contrast, parametric analyses at group level found that
young and older adults evidenced similar tracking of pumps in
the AI, but only young adults showed parametrically decreasing
activity in the vmPFC. Interestingly, strong striatal activation
might be expected as a function of parametric pumps, given that
the striatal coding of gains (cf. Tom et al., 2007) ought to be
reflected in the parametric tracking of pumps, the latter being a
potential proxy for increasing gain on a given trial in the BART.
The absence of a strong striatal signal in this study as well as
in the study by Schonberg et al. (2012) is likely to be reflective
of increasing pumps being processed not as increasing gain, but
as increased risk of loss. Against a backdrop of work that has
assigned the processing of risk to the insula (Volz et al., 2003;
Kuhnen and Knutson, 2005; Preuscho� et al., 2008; Samanez-
Larkin et al., 2008), our parametric results further support
findings from the average contrasts, speaking to unaltered insula-
based tracking of increasing risk in old age.

The combination of relatively preserved insula signaling
and age-related di�erences in vmPFC signaling in response to
increasing risk observed from the parametric analyses support
the notion of the vmPFC as a platform for integration and
convergence of information (Schonberg et al., 2012; Bartra et al.,
2013; Clithero and Rangel, 2014; Halfmann et al., 2014, 2016).
Specifically, we propose that with age, individuals may attach
di�erent weights to di�erent aspects of a decision context,
or alternatively, are less consistent across time in the weights
attached to particular options. Put di�erently, although older
and young individuals in the current study responded with
comparable risk and reward signals, the two groups di�ered
with respect to the integration of risk and reward into a
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FIGURE 5 | Region of interest (ROI) analyses for links between individual neural and behavioral differences. (A) Participants’ mean adjusted pumps
negatively correlated with their BOLD signals in the left AI and (B) the right AI for both young and older adults. (C) Activity in the left striatum was significantly
correlated with mean adjusted pumps in young adults, but not in older adults. (D) Activity in the vmPFC was positively correlated with mean adjusted pumps in
young adults, but not in older adults. The boxplots on top of the plot show the distribution of mean adjusted pumps in the young and older age group, respectively,
whereas boxplots to the left of the plot show the distribution of the signal changes in the left/right AI, vmPFC and left striatum, respectively. ROIs were created as
4 mm radius spherical regions covering bilateral anterior insula and left striatum, and an 8 mm radius spherical region in the vmPFC (center coordinates based on
meta-analysis by Bartra et al., 2013).

subjective value signal. In support of this line of argument, past
theoretical and empirical work converges on the idea that value
representations are a�ected by age-related anatomical and/or
functional di�erences. Anatomically, there is a global declining of
gray matter volume in the prefrontal cortex (PFC) with age (Raz
et al., 1997), a thinner cortical thickness of left vmPFC (Cassidy
and Gutchess, 2012), and a decreasing white matter integrity in
thalamocorticostriatal paths, which run from the thalamus to the
medial PFC and from the medial PFC to the ventral striatum
(Samanez-Larkin et al., 2012). Functionally, impaired integration
processes from the vmPFC may arise from less e�ective coding
by single systems or degrading glutamatergic projections from
the medial PFC to the striatum (Samanez-Larkin and Knutson,

2015). Recent work by Halfmann et al. (2014, 2016) linked
reduced vmPFC signaling to disadvantageous decision patterns
in the Iowa Gambling Task, which the authors interpreted as
support for the notion of noisier value representation in older
adults (Li et al., 2007; Samanez-Larkin et al., 2010). This view
is also consistent with previous studies showing age-related
reductions in activity during learning from rewards in the vmPFC
but not during learning from monetary losses in the insula
and striatum (Eppinger et al., 2013). Bridging the gap between
the neural and the behavioral level, it is conceivable that a
decreased signal-to-noise ratio in older adults may in part be
underlying the mixed behavioral patterns obtained in past work
using the BART (Henninger et al., 2010; Cavanagh et al., 2012;
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Rolison et al., 2012): di�erent experimental implementations
of the BART may rely on more (or less) e�cient integration
of information, hence decision outcomes are perhaps a�ected
di�erently by an integration process that is subject to age-related
changes. Although the current study cannot o�er direct evidence
supporting this suggestion, the notion of heterogeneity in study
results being linked to brain signal heterogeneity o�ers a potential
avenue for research aimed at connecting age-related neural and
behavioral di�erences in decision-making tasks.

Current theories emphasize the contribution of both cognitive
and a�ective processes to age di�erences in decision making
(Samanez-Larkin and Knutson, 2015; Schiebener and Brand,
2015). Our results, however, indicate that what could be
potentially considered a�ective components, such as neural
coding of risk in the AI and reward in the striatum, are relatively
preserved with aging. In turn, value coding and integration
in the vmPFC seems less robust. Whether such changes can
be deemed the result of cognitive or a�ective components is
unclear. The absence of both a consistent group level value
signal and a correlation with behavior in the vmPFC in our
sample of older adults for instance may result from older adults
exhibiting potentially noisier intra-individual (e.g., Samanez-
Larkin et al., 2010) or more heterogeneous inter-individual
coding of value in this region, suggesting a more cognitive
explanation. Alternatively, given that we find older adults’ risk-
taking behavior to be linked with insula more so than with
vmPFC signaling in response to increasing risk, there may also be
motivational components associated with the relative importance
or attention devoted to gains and losses (Mata and Hertwig,
2011).

The exact mechanisms underlying age di�erences in value
coding and integration in the vmPFC are still to be identified.
Future work using the BART could contribute to clarifying
these issues by manipulating task characteristics, such as
reward structure and loss probability, to better tease apart the
contribution of neural risk and reward signals in young and older
adults to an overall utility signal coded in the vmPFC. Future
work may also want to directly test the role of anatomical and
functional deficits in and between medial prefrontal and other
brain regions by using behavioral performance indices in voxel-
based morphometry (e.g., Strenziok et al., 2011; Peper et al., 2013;
Gilaie-Dotan et al., 2014), di�usion tensor imaging (e.g., Kwon
et al., 2014; Van den Bos et al., 2014; Leong et al., 2016), or
e�ective connectivity analysis (e.g., Hare et al., 2014).

With respect to limitations, risk and reward were directly
correlated in the current BART version hence it was not possible
to dissociate risk from reward through parametrically altering
each decision component. However, given the comparatively rich
pool of studies that have investigated risky decision making as
well as the impact of aging thereon, the advantage of using a task

that o�ers external validity outweighs many of its shortcomings.
As alluded to above, future work is required which tries to
dissociate reward from risk as well as reward and risk from
subjective value. We are currently in the process of answering
this call to uncover di�erential sensitivity to risk or rewards as
a function of age. Further, future studies should strive to collect
data from lifespan samples to account for intra- as well as inter-
individual change to derive neural and behavioral trajectories of
risk taking across the full range of the adult lifespan.

CONCLUSION

To conclude, our comparison of young and older adults’ neural
activation during decision making in the BART suggests that
the two age groups show similar patterns of activation in the
AI, possibly coding for the probability of loss, yet di�er in
the recruitment of the vmPFC, which is thought to subserve
value integration and representation. Our results suggest that
the integration of risk and reward resulting in overall utility
representations may be a�ected by aging. Our results show the
need for distinguishing di�erent neural components underlying
risk taking, including the processing of risk, rewards, and the
integration of the two, to uncover possible di�erences in risk
taking across the lifespan.
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Abstract  

Risk taking is linked to important life outcomes, including health, wealth and criminality, 

hence individual differences therein have become attractive targets for developmental and 

longitudinal research. It is currently unclear, however, to what extent biomarkers such as 

brain function are informative in those contexts, mainly because there has been a lack of 

studies examining the role of measurement on the neural representation of risk and its 

explanatory power for behavior. This however is crucial: Contrary to standard economic 

theory, the same information encountered in different ways can lead to different choices. In 

this study we report results from the MRI sample (N=116 young adults) of the Basel-Berlin 

Risk Study, for which we collected functional neuroimaging data in response to the Balloon 

Analog Risk Task as an example of experienced risk, and monetary gambles as an example of 

described risk. In our analyses, we address (1) the overlap of the average neural representation 

of risk in BART and monetary gambles, (2) whether individual activation differences are 

preserved across these two measures, and (3) the explanatory power of neural indices from 

BART and monetary gambles for risky choice, within and across measures. Our results 

suggest joint activation increases in nucleus accumbens for BART and monetary gambles, but 

inconsistent individual differences in nucleus accumbens, insula and anterior cingulate cortex 

activation across the two measures. Within measure, we obtained brain-behavior associations 

only for monetary gambles, but not for BART. Across measures, we observed a link between 

anterior cingulate cortex activation in response to risk in the BART and risky choice in 

monetary gambles. Our findings further help to clarify the commonalities and differences 

between the neural correlates of experienced and described risk, suggesting that these two 

types of measures should not be used interchangeably to capture risk preference. As such, our 

results have strong implications for longitudinal and developmental designs targeting 

individual differences in risk taking. 

  



 3 

Introduction  

Risk preference—whether in the economic sense of preferring monetary high-variance 

options over more certain ones, or, more commonly, preferring options involving uncertain 

but potentially sizeable negative consequences1—pervades decisions across various life 

domains, including health, wealth and criminality2,3. Consequently, risk preference, its core 

components (e.g., valuation, risk sensitivity, loss aversion), related constructs (e.g., self-

control, impulsivity), and the environmental influences upon them (e.g. peer environment, 

culture) have become promising targets for longitudinal, developmental and clinical research 

designs4–7.  

Description- and experience-based measures of risk taking 

 Unfortunately, the risk-preference literature offers numerous measures, but lacks a clear 

taxonomy of measures and the core capacities that they elicit8,9. Zooming in on behavioral 

measures of risk taking, recent studies observed divergent patterns of individual and age 

differences as a function of the measures used10–12, as well as weak or no correlations between 

various measures, suggesting they cannot be used interchangeably13–15. One factor 

contributing to the divergence of behavioral measures resides in the way individuals come to 

know about risk-relevant information: Information about potential outcomes and their 

probabilities can either be fully described and thus known in advance, or over time have to be 

ascertained from experiencing choice outcomes16. Description- and experience-based 

measures (henceforth referred to as described risk and experienced risk, respectively) share 

central characteristics of decision-making under risk, including the processing of outcome 

magnitudes and probabilities, and their integration into a subjective value (i.e. utility) signal 

informing choice. They differ, however, with regard to the (coincidental or necessary) 

involvement of additional cognitive processes, including affect, memory, strategy usage, and 

learning11,16–19. As a likely consequence of these differences, described and experienced risk 

have been found to elicit different choices and thus lead to different average (e.g., younger 
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versus older) and individual risk profiles11,14.  

Given this description-experience gap16, a prerequisite for understanding individual 

differences in risk taking and for finding suitable targets for intervention will be to address 

questions such as “Under what conditions does the description-experience gap arise?”, “What 

are the underlying mechanisms?”, “Are described and experienced risk equally predictive of 

risk-taking behavior and life outcomes?”, and if not, “What drives the differential predictive 

validity of described and experienced risk?”. Our aim in this study is to offer a neural 

perspective on these issues using brain activation differences for described and experienced 

risk. 

Contribution of neural correlates of described and experienced risk to individual 

differences in risk taking 

In a bid to understand the biological underpinnings of risk taking, neuroimaging methods 

have been used to understand the neural correlates and mechanisms of (individual differences 

in) risk taking. Both qualitative reviews20,21 and quantitative meta-analyses of single 

neuroimaging studies22–24 converge on several neural regions as key correlates of risk taking 

and its constituent processes, including striatum, insular cortex, anterior cingulate cortex, 

(ventro)medial prefrontal cortex, and dorsolateral prefrontal cortex. A subset of these regions 

has been advocated as being so crucial for risk taking that they form a neural “risk matrix”, 

differentially promoting (nucleus accumbens in ventral striatum), inhibiting (insular cortex), 

and controlling (anterior cingulate cortex) risky choice20.  

Unfortunately, the role of the measurements adopted to study risk taking and its neural 

correlates has so far received very little attention. Both described and experienced risk have 

been used to understand the neural basis of risk preference and associated processes (e.g., 

valuation, risk sensitivity, loss aversion)20,22–26, yet very few studies have directly compared 

the two. In a recent exception27, the overlap of neural function during reflective and impulsive 

risk taking was examined using the Game of Dice Task and Balloon Analogue Risk Task, 
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respectively, revealing joint activation increases in two of the three “risk matrix” regions, 

namely bilateral caudate and insula. It is plausible that such neural functional commonalities 

are attributable to the central processes shared by described and experienced risk (e.g., 

valuation). In that case, these seemingly measure-invariant neural endophenotypes may 

present useful targets for prevention and intervention. Two fundamental issues need to be 

addressed before such a path should be taken.  

First, the hitherto observed commonality of neural function in response to described and 

experienced risk does not necessarily indicate convergence (i.e. consistency) owing to the 

well-known but often neglected lack of a match between group-level (i.e., aggregate) and 

individual-level effects reported for instance in the developmental28 and social preferences 

literature29. In the neuroimaging literature on decision making, the proposition that average 

activation differences do not necessarily reflect individual-level patterns has already found 

some support: In a study30 which implemented three different reward paradigms and repeated 

MRI sessions, a reliable group-level reward-related BOLD signal was observed in striatum 

and orbitofrontal cortex, regardless of paradigm, session or contrast analysis (e.g., prediction 

or receipt of reward). However, at the level of the individual, intra-class correlation 

coefficients indicative of test-retest reliability for the different paradigms in ventral striatum 

and orbitofrontal cortex for most contrast analyses were low (0.1 – 0.2) and not significant30. 

In the current context of core substrates of decision making under risk, our current 

knowledge of common neural activation differences across measures is predominantly based 

on average activation patterns originating from different studies (i.e., different individuals). 

However, the same individual may respond very differently, neurally and behaviorally, to 

different measures of risk preference, for instance as a function of whether risk is described or 

experienced. It is therefore unclear whether repeated measures designs of neural activation for 

different measures would result in consistent neural activation, or if such designs would 

mirror the weak to no associations observed between behavioral indices of risk preference 
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obtained from repeated-measures designs (i.e., the same person completes multiple measures, 

and within-subject consistency is consequently evaluated)13. Thus, although the mechanisms 

underlying group-level convergence but individual-level divergence (e.g., low between-

subjects variability31) can be debated, it is clear that it would be misguided to expect group-

level results to reflect the individual level, and thus to be informative for individual 

differences analyses. Instead, studies are needed that investigate average (group-level) 

activation differences across different measures, but also target individual differences6,32.  

A second issue to address before using neural indices for intervention concerns the 

explanatory power of neural indices for risk-taking behavior and related life outcomes. At 

present, we do not know the extent to which neural indices of described and experienced risk 

are predictive of choice, both within and across measures. However, given that regional 

activation differences do not necessarily reflect useful, reliable predictors of observed 

behavior33, this is an important prerequisite for understanding individual differences. 

There is a regrettable absence of neuroimaging studies that have assessed described and 

experienced risk, addressed group- and individual-level effects, and investigated the 

explanatory power of neural indices for risky choice, both within and across measures. In the 

recent study which compared risk taking using the Game of Dice Task and the Balloon 

Analogue Risk Task27, significant within-measure brain–behavior associations were observed 

for described but not experienced risk27. Whether individual differences in neural activity for 

one task were preserved in the other was unfortunately not reported, neither whether brain-

behavior associations were observed across these two meaures27. This however is crucial for 

our understanding of individual differences in risk taking, especially where these inform 

studies investigating associated developmental trajectories2,7 or clinical outcomes4: If joint 

neural activation differences were observed for experienced and described risk, which applied 

at group- and individual level, and which evidenced explanatory power for observed behavior, 

the case for measure-invariant neural indices of risk taking would be further supported.   
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The current study: Neuroimaging component of the Basel-Berlin Risk Study  

To tackle the issues raised, the current study assesses the match between group- and 

individual-level effects for the neural representation of experienced and described risk, in two 

paradigms frequently adopted to examine individual differences in risk taking: the Balloon 

Analogue Risk Task (BART) and monetary gambles, respectively. Specifically, we report 

results from a neuroimaging component of the Basel-Berlin Risk Study (BBRS), a large-scale 

study assessing individual differences, psychometric structure and biological underpinnings of 

risk preference13,15,34. Participants in the BBRS completed a one-day laboratory session 

involving an extensive battery of measures assessing individual differences in risk taking 

(including self-report, frequency, and behavioral measures), cognitive capacity, personality, 

affect, and genetics (an overview of all subsamples, measures, and further details on the 

BBRS is reported on https://osf.io/rce7g). A subsample also completed an MRI session, 

which included structural and task-(in)dependent functional imaging sequences. 

The current study is based on task-dependent functional imaging data from 116 

individuals for experienced (BART) and described (monetary gambles) risk. These two 

measures were chosen because both are commonly used, relatively simple paradigms, for 

which average neural activation profiles25,26,35,36 as well as individual differences have been 

extensively investigated7,35,37–39. Importantly, both measures feature similar concepts such as 

loss, reward, and risk. Yet, whereas these parameters are explicitly described for monetary 

gambles, some of them (in particular “risk”) must be explored and learned from experience in 

the BART19,40. Based on these two measures, we examine (1) common and distinct neural 

correlates of experienced and described risk, (2) the consistency of individual differences in 

the neural representation of experienced and described risk, and (3) the explanatory power of 

neural indices of experienced and described risk for behavior. Thus, our unique design of a) 

investigating group- and individual-level neural representations of risk, and b) implementing 

two prototypical measures capturing both experienced and described risk allows us to 
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systematically understand which components of the neural response to risk are measure-

(in)variant. This approach therefore promises to bring us one step closer to understanding the 

role of task characteristics to individual differences in risk taking14,41. Zooming in on 

experienced risk, performance-based indices of the BART have been shown to predict 

outcomes as critical as drug use, teenage pregnancy and criminal activity42,43 and neural 

indicators thereof have been used to understand developmental aspects of risk taking7,38. By 

examining the explanatory power of activation differences in response to risk in the BART, 

we aim to learn more about the mechanisms underlying the predictive success of this 

experience-based measure for real life risk-taking behaviors. 

In what follows, we first report results concerning group-level analyses of similarities 

between average neural activation patterns in response to experienced and described risk. 

Specifically, we were interested in whether any or potentially all joint activation differences 

would be located in “risk matrix” regions, that is, whether overlapping activation differences 

in response to experienced and described risk would be found in nucleus accumbens, insula 

and/or anterior cingulate cortex20. Secondly, we report results from individual-level analyses 

examining whether group-level activation patterns are representative of individual-level 

patterns. Thirdly, we report results pertaining to the explanatory power of neural indices 

common to experienced and described risk, both within and across tasks.  

Given task-specific demands, it is possible that the “risk matrix” regions (nucleus 

accumbens, insula and anterior cingulate cortex) are recruited more strongly by one task than 

the other. Thus, for those “risk matrix” brain regions that were not conjunction regions, we 

additionally probed their individual-level consistency and explanatory power. 

Materials and Method 

Participants 

For this neuroimaging study, we recruited an imaging subsample of 133 young adults 

from an existing pool of individuals who had participated in a large study on individual 
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differences in risk preference, the Basel-Berlin Risk Study (BBRS)13. The sample size is 

reflective of oversampling to achieve an effective sample size of N~10044 in case of 

participant exclusions (e.g. due to excessive head motion in the scanner, image artefacts). The 

BBRS was run in Basel and in Berlin, but for the current study we recruited only individuals 

from the Berlin site due to the location of the neuroimaging facilities available. Exclusion 

criteria for participation in the MRI session were safety-limiting permanent implants, a 

history of neurological or psychiatric conditions, usage of psychoactive medication or 

substances, and receiving psychiatric treatment. Two participants aborted the session before 

any functional sequences were collected, thus were removed from all subsequent analyses. 

We excluded a further five participants due to excessive head motion inside the scanner (see 

image preprocessing section for movement parameter thresholds), one participant due to 

incidental anatomical findings, four participants due to incomplete data (e.g., only one 

paradigm was completed inside the scanner), and five participants due to non-compliance 

with the scanner protocol (e.g., falling asleep, reports of having mixed up button box 

responses). The final sample included in all analyses comprised 116 participants (62 females, 

mean age at scan = 25.4 years, SD = 2.6 years, range = 20.4–30.1 years). 

All participants provided written informed consent. Ethical approval for this study was 

obtained from the German Society for Psychology (Deutsche Gesellschaft für Psychologie), 

and the ethics committee of the Center for Adaptive Rationality, Max Planck Institute for 

Human Development. 

Experimental paradigms 

Inside the scanner, participants completed the BART26 and a monetary gambles 

paradigm35; we describe the two paradigms in more detail below. The MRI session further 

involved the collection of data outside the scanner, such as various self-reported demographic 

data, including date of birth, gender, marital status, educational attainment, native language 

and current occupation. Of note, only gender and age at the MRI session (calculated from date 
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of birth) were included as covariates in the current analyses; all other demographic measures 

were merely collected to describe the sample and ascertain the external validity of our 

findings with respect to sample characteristics. We further assessed individual’s height and 

weight, and collected data from a verbal fluency task, various self-report measures of 

impulsivity45, eating-related behaviors and attitudes46–48; these measures were not part of the 

current analyses and are therefore not reported further. All measures and instructions were 

presented in German. 

Balloon Analogue Risk Task (BART). The BART is a commonly used measure of 

risk preference49 that has also found wide application in neuroimaging research25–27,37,50–52. 

Individuals sequentially inflate a series of virtual balloons in the absence of a priori 

knowledge about the underlying contingencies (i.e., the maximum capacity of the balloons, 

which determines the distribution of trial-specific explosion points); these, however, can be 

learned from experience as individuals move from trial to trial and receive feedback (i.e., 

whether or not a balloon exploded on the previous trial). Given this structure, successful 

performance in the BART is predicated on decisions that are informed by the construction and 

updating of a mental representation of explosion distributions for a given balloon type over 

time.  

The BART version implemented in the current study featured two risky balloon types 

and a control balloon (Figure 1A). The maximum capacity for the two risky balloons was set 

to be 12, and 20; that is, on average balloons with a capacity of 12 burst earlier than balloons 

with a capacity of 20. Risky balloons were represented in blue and red to discriminate 

between balloon types based on capacity, with capacity-color assignment being randomized 

between participants but stable across the two runs. The two different risky balloon types 

have been shown to systematically influence the number of decisions to inflate14,26. Hence, we 

were interested in examining whether this pattern extends to choice-specific neural activation. 

Control balloons were presented in gray, had a maximum capacity of 16, and were added to 
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control for neural processes of no interest (e.g., motor or visual processes) hence required no 

decision-making (participants merely inflated the balloon until it disappeared from the 

screen).  

On any given trial, balloon capacity was determined via a random draw from a 

uniform distribution of values between one and the maximum capacity for the presented 

balloon type. Participants completed two runs of the BART, with a short break in-between. 

Each run was programmed to continue for 10 min, after which the final balloon was 

presented. Given that decisions are made sequentially and may become more difficult as the 

number of successful pumps in a trial increases, we did not impose a time limit on the 

decision phase of a given trial, resulting in the number of balloons played to vary between 

individuals (Table 1). Intervals between trials and between successive stimuli within trials 

were randomized (mean inter-trial interval = 4.39 s, range = 1–11 s; mean inter-stimulus 

interval = 1.5 s, range = 1–2 s).  

The outcome variable typically used in the BART to reflect individuals’ risk 

preference is the average number of pumps administered on cash out trials40,49,52,53. In line 

with previous research13,14, in the current study the adjusted average number of pumps was 

highly correlated with the average number of pumps across all balloons (r = 0.97, p < 0.001). 

Given these results, we used the average number of pumps across all balloons as outcome 

variable in the BART because it allowed us to retain a maximum number of trials for analysis 

while working with congruent trial numbers in both neural and behavioral analyses. To 

understand if individuals’ behavior in the BART is reflective of a differentiation between 

balloon types, and also to check if some commonly observed BART effects (e.g. effect of 

explosion on pumping/stopping behavior14,40) were present in the MRI sample, we applied a 

mixed-effects model to individuals’ trial-by-trial behavioral data. 

It has been suggested that computational models of the BART can help to disentangle 

different cognitive processes underlying the observed behavior in this task, including gain and 
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loss sensitivity, response consistency, risk preference, or learning18,40. However, attempts to 

model the BART have frequently resulted in highly correlated model parameters and failed 

parameter recovery18, suggesting that the purported benefit of using parameters obtained from 

currently available models may be limited. We set out to model the behavior in the BART 

with two standard models: a target model that assumes a fixed strategy is being used19,54, and 

a Bayesian sequential risk-taking model that allows for dynamic updating processes19. Yet, in 

line with past research the estimation of the model parameters turned out to be unreliable, and 

we thus do not report the modeling attempt here (a possible reason for the unreliable model 

parameters may consist of the lack of strong learning effects). Consequently, we relied on the 

average number of pumps as a simpler and generic index of risk preference in all subsequent 

analyses.  

Gambles paradigm. We adopted a monetary gambles paradigm with mixed outcomes  

as an example of a description-based risk-taking measure (i.e., both gains and losses were 

possible; Figure 1B, left panel)35,36,39,55. In brief, individuals made repeated choices between 

two options: a gamble offering a 50% chance of a gain and a 50% chance of a loss, or a sure 

outcome of zero. In contrast to experienced risk, monetary gambles simulate a different 

decision context, namely one where decisions are informed by known, described outcomes 

and associated probabilities (decisions from description)16. Participants made a total of 144 

decisions between a sure zero-outcome and a 50/50 gamble. Individual gambles were 

constructed to populate an asymmetric 12x12 payoff matrix (Figure 1B, right panel) with 

gains between 10 and 32 (increments of 2) and losses between 5 and 16 (increments of 1). 

Each gamble was presented once, with the order of gamble presentation randomized between 

participants. On a given trial, once the gamble was presented, participants had 3 s to accept or 

reject the gamble via respective button presses. Although in previous studies participants gave 

responses indicating the strength of their decision35,39, we collected binary responses 

(accept/reject) only. The rationale for this decision was that responses under time pressure 
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may bias individuals towards using more extreme responses56 and that previously reported 

analyses were commonly conducted for collapsed (binary) responses35,39, thus we expected no 

substantial benefit from adopting more fine-grained response options. Participants completed 

two runs with a short pause in-between, each run featuring 72 gambles. Jitters were 

introduced between trials (mean inter-trial interval = 4.32 s, range = 1–11 s). 

For every individual we computed the proportion of accepted gambles out of all 

gambles for which a response was provided as a risk-preference index. A simple model that 

captures the sensitivity to gains versus losses has been used to capture decision-making for 

monetary gambles35,36,39. However, the critical parameter of this model, loss aversion, was 

highly correlated with the proportion of accepted gambles (r = -0.9, p < 0.001). 

Consequently, we relied on the proportion of accepted gambles as a simpler and generic index 

of risk preference in all subsequent analyses. 

Experimental procedure 

Participants who had previously completed the laboratory session of the BBRS were 

contacted via phone and informed about the MRI follow-up study. Interested individuals were 

screened for any contraindications regarding MRI safety. For the current analyses, we did not 

link participants’ data from the laboratory and MRI session, and only used data collected 

during the MRI session. At the time of the MRI session, individuals completed a 2-min 

training run for the BART and monetary gambles before entering the scanner. The scanner 

protocol took 75 minutes and included a high-resolution structural scan, two functional 

sequences for the BART, two functional sequences for monetary gambles, a resting state 

sequence and a diffusion-weighted imaging sequence. For the current study, only the high-

resolution structural scan and the functional sequences were utilized, with the structural scan 

only serving normalization purposes during preprocessing of functional imaging data. The 

resting-state and diffusion-weighted sequences were not part of the current analysis and are 

therefore not discussed further. The order of scanner sequences was fixed, the BART 
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preceding the gambles task. The risk-taking paradigms were presented using E-Prime 2.0 

software (Psychology Software Tools, Pittsburgh, PA), and responses inside the scanner were 

collected via a COVILEX response box system (series 1.X, Magdeburg, Germany) using the 

right-hand index and middle finger.  

After the MRI session, individuals reported demographic data and completed 

additional measures reported above. Individuals received a fixed fee of 25 Euro for their 

participation. In addition, individuals could increase their earnings based on performance in 

the two scanner paradigms. For the BART, participants received 0.05 Euro for each 

successful pump on a balloon that was cashed out, i.e. did not explode. For monetary 

gambles, one trial was drawn at random and, if the participant had accepted the trial, was 

played out. The resulting loss or gain was combined with money made in the BART. Trials 

which were drawn but which the participant had rejected resulted in a 0 Euro outcome. 

Participants were told about the incentive structure at the start of the MRI session and 

received cash earnings at the end of the session (average actual payment = 41.50 Euro, SD = 

14.50 Euro). 

Statistical analysis of behavioral data 

First, we aimed to assess whether the behavioral patterns obtained for the two 

measures matched those found in past work, and to identify whether specific aspects of the 

paradigm (e.g., balloon types in BART, explosions14,40) need to be considered in 

neuroimaging analyses. Individuals’ trial-by-trial risk preference in the two fMRI paradigms 

was examined using mixed-effects regression analyses. For the BART, number of pumps in a 

given trial was regressed onto average effects of balloon capacity (12/20), whether the 

previous trial ended in an explosion, age and sex, allowing for random effects for balloon 

capacity and previous explosion (nested within individual). Control balloons were not 

included in the mixed-effects modeling, as these merely constitute baseline balloons for the 

neural analyses and do not offer any insight with regards to decision-making in the BART. 
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For monetary gambles a logistic mixed-effects model was specified, in which the binary 

choice outcome (reject/accept) of a given trial was regressed onto average effects of 

magnitude of the gain, magnitude of the loss, age and sex, as well as individual effects for 

gain and loss magnitude.  

Before running the models, all continuous variables were normalized and categorical 

variables dummy-coded. In the BART, number of pumps was normalized separately for each 

of the two experimental balloon types. 

All behavioral analyses were run in R (R Project for Statistical Computing; 

RRID:SCR_001905 http://r-project.org), using the packages lme4 (lme4: Linear mixed-

effects models using Eigen and S4; R package v 1.1–8; http://CRAN.R-

project.org/package=lme4) and lmerTest (lmerTest: Tests in linear mixed effects models; R 

package v 2.0–25; http://CRAN.R-project.org/package=lmerTest). We used the functions 

lmer and glmer for the mixed-effects models of continuous and binary outcome variables, 

respectively. To obtain p-values for the fixed-effects test statistics in lmerTest, the calculation 

of the denominator degrees of freedom adopts Satterthwaite’s approximation (cf. SAS proc 

mixed theory). 

Behavioral and survey data collected during the MRI session, as well as R analyses 

scripts are accessible via the Open Science Framework (LINK FOR REVIEWERS).  

MRI data acquisition and image preprocessing 

Neuroimaging data were collected at the Magnetic Resonance Imaging Laboratory at 

the Max Planck Institute for Human Development (Berlin, Germany) on a 3T Siemens MRI 

system with 12-channel head coil. Participants received a magnetization-prepared rapid 

gradient echo (MP-RAGE) sequence (repetition time = 2500 ms, echo time = 4.77 ms, 

inversion time = 1100 ms, flip angle = 7 degrees, field of view = 256 × 256 mm2, 192 slices, 

voxel size = 1 × 1 × 1 mm3). In each of the four functional runs, up to 320 functional T2*-

weighted BOLD echo-planar images were acquired for every person (repetition time = 2010 
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ms, echo time = 30 ms, flip angle = 78 degrees, field of view = 192 × 192 mm2, voxel size = 3 

× 3 × 3 mm3, 33 transversal slices/volume with 15% distance factor). Resting-state and 

diffusion-weighted imaging sequences were not part of the current analyses, hence are not 

specified here. 

Image preprocessing and analyses were carried out using standard procedures 

implemented in SPM 8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/; cf. Penny et al., 

2011). Preprocessing involved realignment and co-registration of functional to structural 

volumes. Volumes were nonlinearly warped into standard stereotactic (MNI) space based on 

structural scans using the New Segment method (Ashburner, 2008). To control for spatial 

noise and average effects that may arise as a function of residual anatomical differences 

between subjects, images were spatially smoothed using an 8-mm full-width half-maximum 

Gaussian kernel. 

fMRI model specification 

At the level of the individual, we concatenated the two runs collected for each of the 

two risk-taking paradigms, and specified one general linear model (GLM) for BART and one 

for monetary gambles (see details below). Activation parameter estimates were obtained by 

convolving event onsets with a canonical hemodynamic response function, filtering out of 

low-frequency components of the time-series data above 128 s (considered to be noise), and 

correcting for further temporal error autocorrelation by pre-whitening the data using an AR(1) 

model (cf. Henson, 2003). Movement parameters were entered as covariates. Given the 

current focus on neural correlates of decision making under risk rather than correlates of 

anticipation or feedback-related processes, all analyses involved modeling the time from trial 

onset (i.e., display of stimulus) to choice. 

BART. To model the neural activation in response to experienced risk in the BART, 

we specified a first level design matrix for each individual which included the following 

regressors per run (see Figure S1 for an exemplary design matrix): Onset vector of pumps for 
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control balloons, two onset vectors for pumps on reward balloons, onset vector for cash outs, 

onset vector for explosions, and six motion parameters estimated during the realignment 

process. The design matrix was set up to estimate activation differences across the two BART 

runs. The two onset vectors for pumps on reward balloons differentiated between pumps on 

balloons that matched the trial history of cash-out decisions, and the second vector captured 

all remaining pumps on reward balloons. Including an onset vector with only those pumps 

that matched the number of preceding pumps observed for cash out decisions was deemed 

necessary to account for the fact that cash out decisions may happen earlier on in the trial, 

thus a contrast should attempt to match the time point at which a pump/cash out happened. 

We did not differentiate between onsets for high- and low-capacity balloons because 

preliminary analyses in which we contrasted pumps on high-capacity with pumps on low-

capacity balloons yielded no significantly different neural activations as a function of balloon 

type; consequently, we collapsed pumps across high- and low-capacity balloons for all 

analyses. It was not possible to incorporate onset vectors for the two balloon types in the main 

analyses because for some individuals this resulted in empty onset vectors for cash out or 

explosion events. The onset vector for explosions was included in order to account for 

additional variance, better isolate the main effects of interest, and also remove neural 

responses to explosions from baseline activity. 

For our main contrast of interest—risky versus safe decisions—we contrasted cash-out 

decisions with matched pumps, using the contrast weights [0 1 0 -1 0 0 0 0 0 0 0] to assess 

Pumps (matched) > Cash out, and [0 -1 0 1 0 0 0 0 0 0 0] for Pumps (matched) < Cash out. 

Neuroimaging analyses of BART data usually involve contrasting activation differences in 

response to pumps on risky balloons with pumps on control balloons25,26,52. This procedure, 

however, does not address the question of risk preference directly because it merely contrasts 

activation for conditions with and without a decision component, and thus provides a general 

picture of the neural correlates of decision-making, but not risk preference. The ubiquity of 
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contrasting risky and control pumps in the BART in the literature, however, allows for a 

direct comparison of group-based results originating from different studies. Thus, we 

supplemented our focal analysis with a contrast of all pumps on risky versus control balloons, 

using the contrast weights [-2 1 1 0 0 0 0 0 0 0 0] to compute Control pumps < Reward 

pumps, and [2 -1 -1 0 0 0 0 0 0 0 0] to compute Control pumps > Reward pumps. 

Monetary gambles. For the individual-level modeling of monetary gambles 

decisions, we specified one GLM, which targeted the neural representation of risky versus 

safe decisions36 and included the following regressors (see Figure S2 for an exemplary design 

matrix): Onset vector for all accept decisions, onset vector for all reject decisions, six motion 

parameters estimated during the realignment procedure. The design matrix was set up to 

estimate activation differences across the two runs of monetary gambles. The simplicity of the 

paradigm allowed for this comparatively straightforward design matrix with only two 

regressors of interest, nevertheless yielding clean (event-unrelated) baseline activity. 

Emulating previous analyses36 and striving for a contrast analysis that is comparable for risk 

in both BART and monetary gambles, individuals’ Accept decisions were contrasted with 

Reject decisions, using the contrast weights [1 -1 0 0 0 0 0 0] for Accept > Reject, and [-1 1 0 

0 0 0 0 0] for Accept < Reject.  

At the level of the group, we specified a flexible factorial design with subject and 

paradigm as separate factors in order to obtain statistical parametric maps for mean activation 

patterns in the two measures and compute a conjunction (see Figure S3 for design matrix). 

Within-subject contrast images from risky versus safe decisions in monetary gambles and the 

BART were entered as two blocks, one block per measure. We assumed independence for the 

subject and paradigm factors, but assumed equal variance only for the subject factor. Gender 

and age were entered as covariates of no interest.  

All initial contrast analyses were conducted at the level of the whole brain. 

Accounting for multiple comparisons, a cluster-forming threshold (p<.001, uncorrected) was 
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applied, followed by family-wise error correction at peak level (p<.05) to account for multiple 

testing. To avoid putting too much emphasis on potentially uninformative single activated 

voxels, we applied an extent threshold of a minimum of 100 contiguous voxels for all whole-

brain group-level analyses. As we were agnostic regarding the potential overlap of voxels 

activated by both fMRI paradigms, we removed the extent threshold from our conjunction 

analysis. We report voxel coordinates in MNI space (mm) and also report the extent of the 

cluster within which the voxel is located. For sake of brevity, we report only peak voxel 

coordinates with the highest t-value in the associated cluster. Anatomical labels were obtained 

from the Neuromorphometrics Atlas in SPM8. Results are displayed on a customized study-

specific group template, which we created by averaging all normalized structural volumes of 

all participants.  

Statistical analyses of fMRI data 

Three main goals drove the specification of our fMRI analyses. First, we wanted to 

test whether we could find group-level neural activation common to both paradigms as a 

function of risk (i.e., pumping relative to cashing out in the BART; accepting relative to 

rejecting an offer for monetary gambles), and to see if these map onto “risk matrix” regions. 

For this purpose, we conducted a conjunction analysis of risky versus safe decisions in the 

BART and monetary gambles following standard implementation routines in SPM. 

Specifically, we performed a conjunction analysis over 2 orthogonal contrasts which tested 

the conjunction null hypothesis rather than the global null hypothesis, allowing us to infer a 

conjunction of two effects (risky versus safe in experienced and described risk) at significant 

voxels57. We used visualizations of group maps for BART and monetary gambles to establish 

whether average brain activity for contrasts of interests were comparable to published 

functional brain maps and whether our paradigms could capture typical neural reactions to 

risk25,26,35,39.  

Second, we wanted to assess whether individual differences in risk processing were 



 20 

consistent across measures. Recall that common activation in response to risk at group-level is 

not necessarily synonymous with consistent individual differences: even if the majority of 

individuals shows comparable patterns in each measure, this majority does not need to be 

made up of the same individuals. For this purpose, we extracted mean beta values from risky 

versus safe contrast images obtained for individual-level analyses of the BART (pumps versus 

cash out) and monetary gambles (accept versus reject) using regions of interest (ROI), and 

then conducted correlational analyses between the neural indices of the two measures (brain–

brain associations). The ROIs were informed by brain regions previously implicated in risk 

processing20, namely bilateral nucleus accumbens (NAcc), bilateral insular cortex, and 

anterior cingulate cortex (ACC), and potentially any other regions revealed by conjunction 

analyses to be implicated in risk taking in BART and monetary gambles. The ROIs were 

structurally defined based on the Hammersmith atlas nr30r83 (http://brain-

development.org/brain-atlases/adult-brain-maximum-probability-map-hammers-mith-atlas-

n30r83-in-mni-space/).  

Third, we aimed to examine the explanatory power of experience- and description-

based risk-related neural activation for risk-taking behavior, both within and across measures. 

To this end, we conducted two whole brain multiple regression analyses, modeling whether 

individual differences in the neural response to risky versus safe decision-making (1) in the 

BART was associated with mean number of pumps, and (2) in monetary gambles was 

associated with proportion of accepted gambles. To establish whether the explanatory power 

of neural activation differences is measure-invariant, we conducted a third whole-brain 

multiple regression analysis, examining whether neural signal in response to risk in the BART 

was predictive of proportion of accepted gambles. Given the temporal order of the two 

measures, we did not test whether neural signal in monetary gambles accounted for BART 

behavior. 

All analyses controlled for age and gender. Following-on from whole brain analyses, 
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we conducted brain–behavior associations focusing the ROIs described above. These 

additional ROI analyses were conducted (1) to further probe the results obtained from whole 

brain analyses given the ROIs’ a priori importance for risk-related processing20, and (2) 

because the expected effect sizes are likely to be modest and may not survive stringent whole 

brain correction thresholds. For this purpose, we estimated brain–behavior associations by 

means of linear regression analyses with standardized variables, yielding partial correlation 

coefficients for links between paradigm-specific mean beta values extracted from the ROIs 

and behavioral indices of risk preference in the BART (mean number of pumps) and in 

monetary gambles (proportion of accepted gambles). 

Initial plotting of mean beta values extracted from ROIs indicated relatively normally 

distributed mean signals for both measures, except for a small number of possible outliers for 

signals extracted from ACC (n = 2) and insula (n = 1) in the BART, and ACC (n = 1) in 

monetary gambles. To account for any biasing effects, we computed robust regression 

analyses (“rlm” function in R package MASS using method “MM”; Venables and Ripley, 

2002) and obtained a correlation coefficient of r = 0.97 (p < 0.001) between the coefficients 

from standard and robust analyses. Consequently, we only report estimates obtained from 

standard regression analyses. Results from ROI analyses were not confounded by laterality 

because similar findings were obtained from analyses extracting mean beta values from the 

two hemispheres separately. Concatenating the two runs from each paradigm to compute one 

neural index did not bias the results; comparable findings were observed for supplemental 

ROI analyses based on two separate runs per measure. 

To control for the number of analyses conducted, we report which of the associations 

reach significance thresholds after family-wise error correction. For this purpose, we define 

four families of tests: (1) brain–brain associations (three tests); (2) brain–behavior 

associations for BART (four tests; one whole brain multiple regression analysis and three 

regression analyses based on extracted mean beta values from ROIs); (3) brain–behavior 
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associations for monetary gambles (four tests; one whole brain multiple regression analysis 

and three regression analyses based on extracted mean beta values from ROIs); and (4) brain–

behavior associations across the two measures (four tests; one whole brain multiple regression 

analysis plus three regression analyses based on extracted mean beta values from ROIs). 

ROI data and corresponding R analyses scripts are available from the Open Science 

Framework (LINK FOR REVIEWERS). Uncorrected group-level maps are available via 

NeuroVault (LINK FOR REVIEWERS). We can provide access to individual-level 

neuroimaging data and SPM/Matlab scripts upon request. 

Results 

Behavioral results 

Group-based descriptive statistics for behavior in the two fMRI paradigms are given in 

Table 1. Collapsed across both types of risky balloons, number of pumps in the BART was 

approximately normally distributed (mean = 4.98, SD = 1.05; Figure 1C, left panel). As 

reported previously, participants generally showed risk-averse behavior in the BART, 

indicated by the mean number of pumps for the low-capacity (mean = 4.45, SD = 1.06) and 

high-capacity (mean = 5.50, SD = 1.52) balloons falling below the optimal mean number of 

pumps (6 and 10, respectively). Results from the mixed-effects modeling of the BART (Table 

2) suggested main effects of gender (b = -0.16, SE = 0.08, p = 0.04) and previous explosion (b 

= -0.14, SE = 0.03, p < 0.001). As expected, the mean number of pumps was lower for low-

capacity (mean pumps = 4.45, SD = 1.06) than high-capacity (mean pumps = 5.50, SD = 

1.52) balloons (cf. Schonberg et al., 2012), yet this difference did not translate into a 

significant main effect of balloon capacity (b = 0.03, SE = 0.06, p = 0.70). The main effect of 

previous explosion was not informative for the planned fMRI analyses, but falls in line with 

previous studies showing downward adjustment of pumping immediately following an 

explosion trial14,58.  
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Risk preference in monetary gambles—indexed by the proportion of gambles 

accepted—was approximately normally distributed (Figure 1C, middle panel). The results 

from the mixed-effects logistic regression model for monetary gambles yielded a main effect 

of age (b = -0.60, SE = 0.09, p < 0.001), gender (b = -0.37, SE = 0.19, p = 0.04), magnitude 

of gain (b = 0.39, SE = 0.02, p < 0.001) and loss (b = -0.84, SE = 0.03, p < 0.001) on 

individuals’ decisions to reject or accept a risky gamble (Table 3).  

Examination of risk preference across the two measures revealed a lack of consistency 

at the level of the individual because proportion accepted in monetary gambles was not 

significantly associated with mean number of pumps in the BART (r = -0.11, p = 0.24; Figure 

1C, right panel). The lack of behavioral consistency was not a result of combining the two 

runs to compute one behavioral index for each task, as risky choice was consistent over the 

two runs in monetary gambles (r = 0.86, p < 0.001) and the BART (r = 0.63, p < 0.001). 

Neuroimaging results 

Group-level analyses.  

In the BART, taking a risk (decisions to pump) versus going safe (decisions to cash 

out) was associated with increased activity in striatum (specifically bilateral NAcc), left 

anterior insula, and right precentral gyrus, extending into supplementary motor cortex (Table 

4, Figure 2A); results for this contrast are comparable with previous results27. Due to the 

various cognitive and visual aspects surrounding cash-out decisions, examination of the 

reverse main effect revealed widespread bilateral decreased activity, particularly in thalamus 

extending into hippocampal and parahippocampal regions and lateral occipital cortex. 

Because of the very short temporal delay between cash-out decisions and the subsequent 

visual feedback (~ 1 s), inclusion of the onset and duration of the visual feedback for cash-out 

decisions in the GLM did not achieve a more localized cash-out signal. Replication analyses 

of average activation differences for pumps on risky versus control balloons yielded results 

comparable with those of previous studies25,26, including increased activation for peak 
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coordinates located in bilateral ventral and dorsal striatum, bilateral anterior insular cortex, 

inter-hemispheric anterior cingulate and prefrontal cortex, as well as decreased activation in 

inter-hemispheric ventromedial prefrontal cortex, posterior cingulate and posterior parietal 

cortex, and bilateral parahippocampal gyrus and posterior insula (Table 4). 

For monetary gambles, decisions to accept a risky gamble, when compared with 

decisions to reject, were associated with increased activation in several neural regions, 

including peak coordinates located in bilateral caudate extending into NAcc, right ACC, left 

angular gyrus, left inferior temporal and frontal gyrus (Table 4, Figure 2B). Examination of 

the reverse main effect yielded no significant deactivation. The pattern of activations found is 

compatible with those found in similar measures involving decisions from description23,36,59. 

One of our main goals was to examine the overlap of neural activation differences in 

response to experienced and described risk. A conjunction analysis of activation differences 

in response to risky versus safe options in the BART and monetary gambles revealed a 

common risk signal in the ventral striatum (Table 4). As can be seen in Figure 2C, joint 

activation differences are locally restricted to a small portion of the ventral striatum, the 

nucleus accumbens. Thus, on average, taking a risk seems to elicit a localized, measure-

invariant neural signal in nucleus accumbens.  

To summarize, at the level of the whole brain, group-level differences obtained for 

experienced risk in the BART and described risk in monetary gambles were in line with 

previous studies. Crucially, consistency of group-level activation differences across the two 

paradigms was observed for jointly increased activation in NAcc in response to risky versus 

safe decisions. Next, we turn to individual-level analyses to investigate if individual 

differences in the neural response to risk are preserved across the two measures, and to 

examine their explanatory power for risky choice. 

Individual-level analyses.  

Consistency of neural activation across paradigms. In a first step, we examined 
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whether the NAcc being a conjunction region for experience- and description-based risk 

activation means this region is informative for individual differences by examining the 

consistency of neural signal across measures. Contrary to what might be expected, mean 

activation in NAcc in the BART was not significantly predictive of NAcc activation in 

monetary gambles (Table 5, Figure 3A). Thus, although at the level of the group the two 

measures converged on NAcc activity, individual differences were not preserved across 

measures. In other words, we found group-level but not individual-level consistency for 

experience- and description-based risk-taking28.  

In a second step, we also examined the consistency of the neural signal in the 

remaining “risk matrix” regions. Mean activation in both insula and ACC in the BART were 

significantly predictive of activation differences in ACC and insula in monetary gambles, 

respectively; these associations, however, were small and negative rather than the positive 

correlations required to suggest consistency (Table 5, Figure 3A). The ROI-based results 

remained significant after application of correction thresholds (FWE) for the number of tests. 

Thus, although we observed associations between individual differences in regional neural 

activations in the two paradigms, we did not find consistency. 

Explanatory power of risk-related neural signal for risk preference within and 

across paradigms. To present a useful target for intervention, neural indices should hold some 

explanatory power for behavior or critical outcomes, at least for the measure from which they 

were derived and ideally even across measures. In a first step, we used whole-brain analyses 

supplemented by ROI analyses for “risk matrix” regions to examine whether activation 

differences in the BART were predictive of mean number of pumps, and whether activation 

differences in monetary gambles were predictive of proportion of accepted gambles. For the 

BART, whole brain as well as ROI analyses revealed no significant associations between risk-

related activation differences and performance as measured by mean number of pumps (see 

Table 5, Figure 3C for results from ROI analyses). In contrast, for monetary gambles, whole-
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brain analyses revealed a set of neural regions for which the risk-related signal was associated 

with the proportion of gambles an individual accepted, including positive associations in 

voxel clusters in bilateral occipital pole, central operculum, and superior temporal gyrus, as 

well as negative associations in bilateral anterior insula, supramarginal gyrus, middle 

cingulate gyrus and inferior temporal gyrus (Table S1). ROI-analyses further supported the 

involvement of “risk matrix” regions in predicting choice in monetary gambles. Specifically, 

mean activation in NAcc, insula and ACC extracted from Accept versus Reject decisions in 

monetary gambles was significantly negatively associated with the proportion of risky 

gambles accepted (all p < 0.001; Table 5, Figure 3B). The links between neural signal and 

behavior in monetary gambles remained significant after controlling (FWE) for the number of 

tests conducted.  

In a second step, we were interested in brain-behavior associations across measures, 

that is, whether activation differences in BART were predictive of risky choice in monetary 

gambles. Whole-brain analyses did not reveal a significant brain-behavior association across 

measures. Only when we probed ROI-specific neural signal did we observe mean activation 

in the ACC to be significantly positively associated with the proportion of gambles accepted 

(p = 0.01; Table 5; Figure 3D), which is suggestive of control and monitoring processes in the 

BART to account for some variance in choice in monetary gambles.  

Discussion  

In this study, we investigated the neural basis of risk taking under experienced and 

described risk. Specifically, our aim was to examine (1) commonalities and distinctions 

between the neural correlates of experienced and described risk, (2) the consistency of 

individual differences in the neural response to experienced and described risk, and (3) the 

explanatory power of neural indices of experienced and described risk for behavior. We 

investigated these propositions by focusing our analyses on group as well as individual 

activation differences in response to two risk-taking measures, namely the BART and 
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monetary gambles, which, respectively, are prototypical measures of experienced and 

described risk.  

Average activation differences for experienced and described risk  

At the level of the group, we replicated previously published activation differences for 

risky versus safe choices under experienced and described risk25–27,35,36,39,52. One of our main 

aims was to address the functional overlap of decisions made under experienced and 

described risk. Comparative examination of average activation differences in the two 

paradigms revealed bilateral NAcc as a source of jointly increased activation for risky versus 

safe decisions. Our conjunction results in NAcc support previous work27 which identified 

striatal and insula activation to jointly increase for reflective and impulsive risk taking. The 

striatum in general has been implicated in reward processing60,61, and if we consult 

neurosynth (neurosynth.org) to establish a reverse inference of process given location using   

meta-analytical procedures, the highest posterior probability for a cognitive process given our 

peak conjunction coordinates was indeed observed to be for reward processing (posterior 

probability= 0.81). In principle, the observed joint NAcc activation differences for risky 

versus safe decisions in BART and monetary gambles are not surprising. The motivation for 

risk-taking behavior lies in the potential for reward, and in the two measures used in this 

study, risk and reward always coincided; we return to this issue in the study limitations. Thus, 

we cannot completely isolate risk signal from reward, especially since both risk and reward 

have been found to be encoded, albeit temporarily differentiated, in striatum60.  

An alternative explanation for a common NAcc signal for experienced and described 

risk is the role of the ventral striatum in the coding of prediction error. The brain computes 

several mutually-informative choice-relevant signals (including goal value, decision value, 

and prediction error), and dissociation of these signals by means of a bespoke MRI task 

suggested ventral striatal activation to code prediction error instead of goal or decision 

value62. Prediction error is of course based on the comparison of expected and achieved 
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outcomes, and the structural as well as functional interconnectedness of different brain 

regions implicated in the computation of different choice-relevant signals suggests that 

ventral striatal activation is not devoid of a value signal. However, if we want to understand 

commonalities between different risk-taking measures, especially in the search for 

endophenotypes suitable for intervention, it is important to distinguish between these different 

decision components. Our measures do not allow us to disentangle different choice-relevant 

signals, leaving open the possibility that, instead of signaling reward processing, the main 

commonality between experience- and description-based risk taking may be comparison of 

the current option with the status quo.  

In contrast to previous results27, we obtained no further conjunction regions for the 

two tasks, including insular cortex. The insula is heavily implicated in signaling subjective 

feelings, interoception, and explicit motivation63, and as such is thought to inhibit risky 

choice20. In this study, group-level activation differences in insula were observed for BART 

but not monetary gambles, supporting the argument that experienced risk involves potentially 

more affective and motivational processes compared with described risk1,16. To note, in the 

study comparing activation differences in the BART and Game of Dice Task27, described risk 

on average activated the insular cortex. This insula-based discrepancy between the current 

and previous work emphasizes that even two seemingly similar measures of described risk do 

not necessarily result in overlapping neural signals, given comparable contrast analyses.  

Individual-level consistency of activation differences for experienced and described risk 

Given that averages are not necessarily reflective of individual-level behavioral28,29 or even 

neural30 patterns, we examined whether individual differences in neural activation are 

preserved across our two measures. Interestingly, we observed a lack of consistency of 

individual differences in neural activation for risky versus safe decisions under experienced 

and described risk. On aggregate, joint activation increases were localized in NAcc, but 

individual differences in NAcc activation were not preserved from BART to monetary 
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gambles. Examination of further regions previously identified as core functional correlates of 

risk and risk preference20, i.e. insula and ACC, also failed to yield consistent (that is, 

positively correlated) individual differences across measures. From these results we take 

home that it is important to recognize that individuals respond very differently to different 

risk-taking measures, both behaviorally13 and neurally, hence it is unrealistic to expect 

individual differences in neural function observed in one measure or context to be informative 

for neural function in another measure or context.  

Explanatory Power of Neural Indices for Behavior 

Our third major aim was to examine the explanatory power of neural activation 

differences in response to experienced and described risk for risky choice. In particular, we 

were interested in the extent to which activation differences previously suggested as 

differentially promoting (NAcc), inhibiting (insula) and controlling (ACC) risky choice20 

might play a different role for brain-behavior associations using indices related to experienced 

or described risk.  

In a first step, we examined the explanatory power of neural indices for behavior 

within measure, and our results first and foremost suggest explanatory power to vary as a 

function of risk measure. In the BART, whole-brain and ROI analyses converged on 

activation differences in response to risky versus safe decisions not being predictive of mean 

number of pumps. In contrast, for monetary gambles, whole-brain and ROI analyses indicated 

activation differences in bilateral nucleus accumbens, insula, and ACC in response to risk to 

be predictive of proportion of accepted gambles. Based on the strength of the associations 

obtained, the strongest predictor of description-based risky choice was NAcc activation, 

followed by ACC and insula activation. Considering the proposed roles of NAcc, insula and 

ACC in the promotion, inhibition, and control of risky choice20, the observed associations for 

ACC and insula were in the expected negative direction; the more affect-based inhibition and 

control-related processes are experienced, the lower the number of risky gambles that are 
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accepted. The negative association between NAcc activation and risky choice in monetary 

gambles is informative, if we recall that for monetary gambles we used a quantitative index of 

risky choice (proportion accepted gambles), and that our neural index is an average signal 

over all Accept decisions, meaning individuals with an on average lower NAcc signal 

accepted more risky gambles. It is possible that this association is a corollary of our payoff 

matrix not being calibrated to individuals, which may result in choice being less discerning 

for those who place a similar subjective value on all gambles. Future research could easily 

remedy this issue by calibrating payoff matrices, for instance via an adaptive willingness-to-

pay measure. 

In a second step, we were interested in whether brain-behavior associations could be 

established across measures, that is, whether neural activation differences in the BART are 

predictive of choice in monetary gambles. Whole brain analyses revealed no brain-behavior 

association across experienced and described risk; our results are in line with previous 

findings27 indicating no association between neural and behavioral indices originating from 

different risk-taking measures. Additional ROI analyses identified a link between ACC 

activation in the BART and proportion of accepted gambles. However, we refrain from 

placing too much emphasis on interpreting this link, firstly because whole-brain analyses did 

not support this association, and secondly because an association across measures involving 

BART neural indices seems surprising, given the lack of within-measure brain-behavior 

associations for BART. Instead, we err on the side of caution and treat this association 

between BART activation and monetary gambles choice as an informative starting point for 

further investigation, which, if replicated, could pave the way for neural endophenotypes 

serving as targets for intervention efforts.  

Taken together, individual-level analyses of brain-behavior associations within and 

across measures first and foremost hint at the explanatory power of single neural indices for 

behavior being measure-dependent. We suggest that this measure-dependent explanatory 
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power arises as a potential consequence of the specific processes afforded by experienced and 

described risk16,41. In an experience-based, sequential decision-making measure such as the 

BART, which involves dynamic balloons and initially unknown risk distributions, activation 

differences in a single region are less likely to be highly correlated with choice, because 

choice depends on many interconnected processes1,18,19. In contrast, the simple, perhaps 

monotonous nature of description-based monetary gambles lends itself very well to the use of 

a choice rule, which, at brain level, is evident in choice-relevant neural signal (e.g., a reward 

signal coding for the attractiveness of a particular gamble). As a consequence, any 

explanatory links between neural function and risk preference have to be interpreted with 

caution, for they may be measurement-specific rather than capturing general associations 

between brain function and risk preference. 

Limitations 

 In this study we adopted two paradigmatic risk-taking measures as examples of 

experienced and described risk inside the scanner, which limits generalization. However, with 

regards to the main findings, past research has shown that other tasks do not fare much better 

regarding behavioral consistency13,15,27,64, hence it is questionable whether selecting different 

measures would have resulted in more extensive convergence at group- and individual level, 

or higher explanatory power for behavior. To allow for a more comprehensive assessment of 

measure-invariant neural activation at group- and individual level for these two types of tasks, 

one might be tempted to implement additional paradigms, including further risk-taking 

measures based on experienced (e.g., Iowa Gambling Task65 or Columbia Card Task66) and 

described risk (e.g., multiple price lists67). Adoption of multiple measures of each type would 

also facilitate further interesting analyses, including whether the neural differences between 

described and experienced risk are greater than the differences among different measures of 

experienced and among different measures of described risk.  
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Despite our best efforts to create contrasts targeting the neural risk component in 

BART and monetary gambles, risk and reward may not be easily distinguishable as the two 

components coincided in both measures. This is a special limitation for contrast analyses 

which average activation differences over particular events (e.g. Pumps or Accept decisions). 

One way to disentangle risk from reward is to use parametric analyses that map activation to 

specific functional forms, such as increases in risk or reward. Parametric analyses were not 

applied here because we aimed to compare and contrast BART and monetary gambles, and 

parametric analyses were in principle only possible for the former but not the latter. 

Moreover, standard implementations of the BART, like the one used here and 

elsewhere7,26,37,38,49, do not allow for the isolation of risk from reward signal even by using 

parametric analyses, because risk and reward increase linearly over a given trial. Thus, task 

manipulations are required which can disentangle risk from reward in the BART. One way to 

do this would be to include non-linear payoff functions but keep a linear risk function, and 

then (non)linear parametric analyses could be applied to examine (non)linear activation 

differences.  

In designing the study, we faced decisions regarding task order, that is, whether to run 

a fixed task order or counterbalance task order between participants. We opted for a fixed task 

order because randomization for some analyses would have required splitting the sample into 

two groups based on order, thus reducing power. Based on our sample’s behavior, it is 

unlikely that BART preceding gambles prompted strong order effects on risky choice. The 

overall level of observed risk-taking in BART and monetary gambles was comparable to 

previous independent investigations26,35, and risky choice within a task was relatively 

consistent across the two runs. The correlations between risky choice in BART and monetary 

gambles also did not change substantially as a function of run number.  

Implications 
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 Risk preference, including its related constructs (e.g., self-control) and associated 

cognitive processes (e.g., reward sensitivity), has been found to be predictive of crucial life 

outcomes, including psychopathology, health, wealth, and criminality2–4,7. As such, individual 

differences in risk taking and related constructs are also the focus of many developmental and 

longitudinal research efforts7,68,69. Interestingly, much progress has been made identifying the 

biological basis of risk preference, including its genetic basis70, hormonal71,72 and neural 

pathways20,22. In contrast, the extent to which biomarkers such as neural function differ 

depending on the risk-taking measure and whether they are reliable predictors of behavior is 

much less understood. To make progress, we make the following three recommendations. 

Firstly, our direct comparison of experienced and described risk clearly implies that 

different risk-taking measures should not be used interchangeably and without a clear 

rationale for why a particular measure was chosen. There exists a tempting richness of risk-

taking measures, and whenever a particular measure is used we recommend that researchers 

make their selection criteria transparent. On the one hand, increased transparency will help 

the individual researcher to make more informed choices between different risk-taking 

measures for their studies. On the other hand, increased transparency should help the research 

community to establish a taxonomy of risk-taking measures, their core capacities, biological 

underpinnings, and usefulness for research designs targeting individual differences, including 

longitudinal and intervention studies. 

Secondly, whenever it is feasible to include multiple measures in their design, we 

encourage researchers to do so. The adoption of multiple risk-taking measures in the same 

study has two benefits. One, it enables direct comparison of measures for a given sample, 

which makes prediction analyses across measures possible. Two, and perhaps more 

importantly, adoption of multiple measures means psychometric models can be applied13,33,71 

which provide insights for our understanding of risk taking as a phenotype, and its 

dimensionality.  
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 Thirdly, if state-based, task-dependent neural activation indices do not present useful, 

reliable targets for intervention purposes, perhaps more trait-like endophenotypes such as 

brain morphometry, structural connectivity, or task-independent functional connectivity 

measures offer more promising targets39,73–77. Multi-modal, multi-measure projects such as 

BrainTime7, Adolescent Brain Cognitive Development Study68, and a research framework 

aimed at establishing an ontology of self-regulation69 could provide suitable research designs 

to address these open questions in the future.  

Conclusion 

Many longitudinal, clinically relevant and developmental research designs focus on 

risk preference as a critical predictor or outcome, and often aim to establish links between 

individual differences in risk preference and neural structure or function2,4,7,77. Until recently, 

neuroimaging studies investigated primarily group-level neural representations of risk and 

paid less attention to individual differences or measurement convergence. To successfully 

target individual differences in risk taking and understand the biological underpinnings, a 

switch is required –especially within neuroscience– from group-level to individual-level 

research6,32, and from single to multi-measure research33. If the ultimate aim is to help 

individuals navigate an uncertain, risk-laden world and make better choices, we first need to 

be prepared to navigate and map the mainly unchartered territory of our risk-taking measures. 
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FIGURES 

 

Figure 1. fMRI paradigms and performance. A, BART. a, Example cash-out trial. b, Example 

explosion trial. B, Monetary gambles. a, Example “Reject” trial. b, Example “Accept” trial. c, Payoff 

matrix overlaid with heatmap showing the observed probability of gamble acceptance. C, Risky choice 

in the two fMRI paradigms. a, Distribution of mean number of pumps in the BART, collapsed across 
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all risky balloons. b, Distribution of proportion accepted trials in monetary gambles. c, Association 

between risky choice in the BART and monetary gambles. 
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Figure 2. Statistical parametric maps of activation differences obtained for risky versus safe 

decisions under experienced and described risk. A, BART, Pumps > Cash out (FWE =.05, k>100). B, 

Monetary gambles, Accept > Reject (FWE =.05, k>100). C, Conjunction of joint increased activation 

differences in response to risky versus safe decisions in the BART (Pumps > Cash out) and monetary 

gambles (Accept > Reject) (FWE =.05). Activation differences are displayed on a customized study-

group structural template. Note: The right (left) side of the image corresponds to the right (left) side of 

the brain. 
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Figure 3. Partial correlations (controlling for age and gender) between mean neural signal 

extracted from ROIs for BART contrast (Pumps vs. Cash out), mean neural signal extracted from 

ROIs for monetary gambles contrast (Accept vs. Reject), mean number of pumps in BART, and 

proportion accepted trials in monetary gambles. A, Association between regional neural signals across 

measures (brain–brain). B, Brain–behavior association BART. C, Brain–behavior association 

monetary gambles. D, Brain–behavior association across measures. Note: NAcc = nucleus accumbens; 
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ACC = anterior cingulate cortex. All variables were z-standardized prior to plotting and analysis. 

Intercepts and slopes were estimated using robust regression analyses. 
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TABLES 

 

Table 1. Descriptive statistics for outcome measures for the BART and monetary 

gambles. 

Outcome Mean (SD) Range 

BART   

Number of completed trials (including controls) 60.72 (6.23) 37–73 
Number of low-capacity balloons (max. 12) 20.12 (2.12) 12–25 

Number of high-capacity balloons (max. 20) 20.25 (2.20) 12–25 
Average pumps on low-capacity balloons (max. 12) 4.45 (1.06) 2.40–6.95 

Average pumps on high-capacity balloons (max. 20) 5.50 (1.52) 2.25–9.93 
Number of explosions experienced 15.81 (3.81) 6–24 

Reaction time pumps control (seconds) 0.62 (0.47) 0.002–15.25 
Reaction time pumps risky (seconds) 0.71 (0.53) 0.002–15.09 

Reaction time cash out (seconds) 0.90 (0.70) 0.27–11.59 
MONETARY GAMBLES   

Number of valid responses 142.67 (1.96) 133–144 
Proportion accepted gambles 0.47 (0.16) 0.13–0.92 

Reaction time accept decisions (seconds) 1.31 (0.47) 0.46–2.98 
Reaction time reject decisions (seconds) 1.30 (0.44) 0.07–2.99 

 

  



 49 

Table 2. Mixed effects linear regression model for trial-by-trial number of pumps in 

the BART. 

 
 Estimate SE df t  p 

Intercept 0.16 0.07 136.63 2.44 0.02 
Age 0.02 0.04 111.26 0.38 0.70 
Sex -0.16 0.08 111.22 -2.07 0.04 
Capacity 0.03 0.06 113.21 0.49 0.63 
Explosion on previous trial -0.14 0.03 111.04 -4.19 < 0.001 
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Table 3. Mixed-effects logistic regression model for trial-by-trial decision making (0 

= Reject, 1 = Accept) in monetary gambles. 

 

 Estimate SE z  p 
Intercept 0.52 0.15 3.55 < 0.001 
Age -0.59 0.09 -6.35 < 0.001 
Sex -0.37 0.19 -2.02 0.04 
Gain 0.39 0.02 25.73 < 0.001 
Loss (absolute) -0.84 0.03 -25.47 < 0.001 
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Table 4. Significant peak coordinates obtained from group-level contrast analyses for 

main contrasts of interest in BART and monetary gambles. 

  MNI (mm)    

Region R/L x y z T  k 

BART: Pumps > Cash out 

Supplementary motor cortex L -6 -2 60 11.07 2534 

Posterior cingulate gyrus R 24 -42 14 8.26 206 

Nucleus accumbens L -6 8 -4 7.84 106 

Nucleus accumbens R 8 8 -4 7.83 137 

Anterior insula L -30 26 4 7.45 177 

Anterior insula R 40 22 6 7.10 170 

Posterior cingulate gyrus L -14 -34 20 6.56 131 

BART: Cash out > Pumps 

Inferior occipital gyrus L -38 -76 -12 20.00 100274 

BART: Pumps_Risky > Pumps_Control 

Supplementary motor cortex R 4 22 40 25.61 49140 

Supramarginal gyrus R 46 -42 44 17.26 5649 

Occipital pole L -12 -102 -2 15.10 2845 

BART: Pumps_Control > Pumps_Risky 

Angular gyrus L -48 -66 22 21.21 50828 

Medial frontal cortex L -2 58 -12 18.65 5684 

MONETARY GAMBLES: Accept > Reject 

Caudate / Nucleus accumbens R 10 16 -2 7.31 278 

Inferior frontal gyrus (triangular part) L -44 34 14 7.00 427 

Caudate / Nucleus accumbens L -8 16 -2 6.94 209 

Angular gyrus L -32 -72 36 6.89 1182 

Inferior temporal gyrus L -50 -66 -12 6.21 449 

Supramarginal gyrus L -46 -40 40 5.93 358 

Precentral gyrus L -36 4 26 5.83 165 

Middle frontal gyrus L -24 14 50 5.58 176 

CONJUNCTION Pumps > Cash out & Accept > Reject 

Nucleus accumbens R 8 12 0 6.03 49 

Nucleus accumbens L -8 10 -4 5.72 36 

All analyses whole-brain, with cluster-forming threshold (p<.001, uncorrected) and peak-level FWER-

correction (extent threshold k >100; controlled for effects of age and gender); k = number of voxels in 

cluster within which peak coordinate is located. Extent threshold not applied to conjunction analysis. 
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Table 5. Partial correlations (controlling for age and gender) between regional (ROI) neural and behavioral indices of risk preference, 

computed within and across paradigms. 

 
Analysis Index NAcc  Insula ACC  

  b (SE) t (p) b (SE) t (p) b (SE) t (p)  

Brain–brain:  Monetary gambles activation ~ BART activation -0.06 

(0.09) 

-0.67 

(.50) 

-0.46 

(0.09) 

-5.37 

(<.001) 

-0.47 

(0.08) 

-5.54 

(<.001) 

 

Brain–behavior: Within paradigms BART: Mean number of pumps 0.02 

(0.09) 

0.24 

(.81) 

0.04 

(0.09) 

0.38 

(.70) 

-0.17 

(0.09) 

-1.79 

(.08) 

 

 Monetary gambles: Proportion Accept -0.50 

(0.08) 

-5.97 

(<.001) 

-0.31 

(0.09) 

-3.56 

(<.001) 

-0.39 

(0.08) 

-4.63 

(<.001) 

 

Brain–behavior: Across paradigms Proportion Accept ~ BART activation 0.07 

(0.09) 

0.75 

(.46) 

0.15 

(0.09) 

1.61 

(.11) 

0.24 

(0.09) 

2.61 

(.01) 

 

 

Note: Estimates obtained from linear regression analyses with standardized outcome and predictor variables. For models within paradigms, 

behavioral outcome paradigms and neural predictors originated from the same paradigm. For models across paradigms, the behavioral outcome 

originated from monetary gambles, and the neural predictors from BART. ACC = anterior cingulate cortex, NAcc = nucleus accumbens.
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SUPPLEMENTARY MATERIALS 

 

 

 

Figure S1. Exemplary SPM design matrix for first (i.e. individual) level modeling of 

neural activation in BART. 
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Figure S2. Exemplary SPM design matrix for first (i.e. individual) level modeling of 

neural activation in monetary gambles. 
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Figure S3. SPM design matrix for second (i.e. group) level modeling of main effects 

for BART, monetary gambles, and their conjunction. 
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Table S1. Significant peak coordinates obtained from multiple regression analysis to 

identify brain–behavior associations for monetary gambles. 

  MNI (mm)    

Region R/L x y z T  Voxels 

Accept>Reject ~ Proportion accepted gambles: Positive association 

Occipital pole R 24 -96 16 8.39 376 

Central operculum R 40 -12 20 8.06 406 

Precentral gyrus R 26 -22 52 7.85 1017 

Occipital pole L -26 -96 14 7.23 262 

Medial frontal cortex R 10 48 -14 7.12 358 

Middle temporal gyrus L -56 -10 -20 6.75 437 

Superior temporal gyrus R 62 -30 12 6.57 205 

Parietal operculum L -38 -40 18 6.14 101 

Superior temporal gyrus R 60 -8 -6 6.06 153 

Accept>Reject ~ Proportion accepted gambles: Negative association 

Anterior insula R 36 24 -4 12.89 10048 

Anterior insula L -34 18 -6 11.82 1155 

Supramarginal gyrus R 42 -40 42 11.61 4519 

Supramarginal gyrus L -50 -38 46 10.60 2888 

Middle cingulate gyrus L -2 -26 30 8.22 313 

Precentral gyrus L -52 8 28 7.76 700 

Inferior temporal gyrus R 56 -56 -14 7.36 240 

Precentral gyrus L -28 -12 52 7.29 321 

All analyses whole-brain, cluster-forming threshold (p<.001, uncorrected) with peak-level FWER-

correction and extent threshold k >100, controlled for effects of age and gender; k = number of voxels 

in cluster within which peak coordinate is located. 
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Abstract 

The neural functional correlates of risk-related processes have been mapped 

extensively, but much less is known about the extent to which neural structure contributes to 

individual differences in risk preference. Given the life time impact of some decisions made 

under risk, gaining a better understanding of the biological underpinnings is a worthwhile 

endeavor which may hold some insights for prevention and intervention purposes. To 

overcome some of the shortcomings of previous studies, including the use of single indices 

for both risk preference and neural structure, we combine multi-modal imaging with 

psychometrically derived risk preference factors in the imaging sub-sample (N=131 young 

adults) of the Basel-Berlin Risk Study. We focus our analyses on volumetric and connectivity 

indices for a set of regions identified by Neurosynth-facilitated meta-analytical procedures as 

core correlates of the term ‘risk’. To quantify the robustness of the contribution of individual 

neural indices, we compliment traditional multiple regression analyses with Bayesian model 

comparison and selection. Our results suggest that structural indices can account for variance 

in a general risk preference factor but are not predictive of domain-specific risk preferences. 

At the level of individual predictors, we observed grey matter volume in ventral striatum to be 

the most influential predictor of general risk preference, followed by grey matter volume in 

frontal regions and degree centrality of the amygdala. We did however not observe a role for 

previously identified indices, including insula and posterior parietal cortex. We discuss our 

findings in light of the suggestion of the general risk preference factor capturing the trait 

dimension of risk taking, and address reasons for the observed absence of previously 

established brain-behavior associations. We also provide a roadmap of methodological 

improvements for the study of risk taking in particular, and cognitive neuroscience in general. 

 

Keywords: risk preference, brain structure, volume, degree centrality, psychometric factors 
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Introduction  

Risk is ubiquitous, whether it is defined in the economic sense as outcome variance, or 

the more common notion of the prospect of a reward coupled with the chance of a sizeable 

loss (Nigg, 2017; Schonberg, Fox, & Poldrack, 2011). Which career should be pursued, stock 

invested in, or medical treatment selected? Who should one marry, lend money to, or vote 

for? The answer to any of these and related questions depends, in part, on the decision-

maker’s willingness to accept risk. Making decisions in a world of uncertain outcomes can be 

a highly challenging and consequential enterprise. The lifetime impact of individual 

differences in risk taking and related constructs such as self-control has been demonstrated for 

(mental) health, wealth, substance use, criminality and general well-being (Aklin, Lejuez, 

Zvolensky, Kahler, & Gwadz, 2005; Moffitt et al., 2011; Sharma, Markon, & Clark, 2014; 

Steinberg, 2013), and thus the following question arises: If variability in risk taking influences 

many critical aspects of a person’s life, what influences variability in risk taking? 

Individual Differences in Risk Taking 

Many factors appear to contribute to intra- and inter-individual differences in risk 

taking, including gender (Byrnes, Miller, & Schafer, 1999; Wilson & Daly, 1985), age 

(Cavanagh et al., 2012; Defoe, Dubas, Figner, & van Aken, 2015; Josef et al., 2016; 

Mamerow, Frey, & Mata, 2016; Mata, Josef, Samanez-Larkin, & Hertwig, 2011), economic 

status (Payne, Brown-Iannuzzi, & Hannay, 2017), family background (Banducci, Felton, 

Dahne, Ninnemann, & Lejuez, 2015; Kennison, Wood, Byrd-Craven, & Downing, 2016), 

peer relationships (Telzer, Fuligni, Liebermann, Miernicki, & Galvan, 2014), reproductive 

cycle (Sylwester & Pawłowski, 2011), stress (Lighthall, Mather, & Gorlick, 2009), and 

affective state (Shao & Lee, 2014), to name but a few. More recently, the characteristics of 

risk-taking measures, specifically behavioral measures, have become a topic of interest. 

Studies have shown that differences between measures, regarding the format of information, 

the use of decision strategies, as well as the involvement of various cognitive and affective 
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processes, can lead to very different choices and consequently different risk profiles (Figner, 

Mackinlay, Wilkening, & Weber, 2008; Frey, Mata, & Hertwig, 2015; Hertwig & Erev, 2009; 

Mamerow et al., 2016; Mata et al., 2011; Schonberg et al., 2011; Shao & Lee, 2014).  

For many of these factors, the distal mechanisms underlying their association with 

variability in risk taking are still unclear; nonetheless, biological pathways are frequently 

invoked as mediating said relationships. The final biological frontier may be to lay bare the 

genetic architecture of individual differences in risk taking and its mediating role for the 

association between various individual or measure-specific characteristics. Indeed, twin 

studies have estimated the genetic contribution to individual differences in risk taking to 

range between 25% and 50% (Benjamin et al., 2012; Wang, Zheng, Xuan, Chen, & Li, 2016), 

with as many (or as few) as 611 independent genetic loci associated with risk tolerance and 

risky behaviors (Karlsson Linnér et al., 2018). However, the complexity of this enterprise, at 

least for now, means higher-level pathways stand out as promising candidates for studying the 

biological underpinnings of risk preference and risk taking, including neural pathways. 

Neural Structural Correlates of Risk Taking  

Activation differences in the brain in response to risk have been extensively mapped, 

leading to various qualitative and quantitative reviews of the available literature implicating a 

core set of regions in the functional representation of risk and risk taking, including the 

striatum, insular cortex, anterior cingulate cortex, dorsolateral and medial prefrontal cortex 

(Bartra, McGuire, & Kable, 2013; Knutson & Huettel, 2015; Mohr, Biele, & Heekeren, 2010; 

Platt & Huettel, 2008; Wu, Sacchet, & Knutson, 2012). Much less is known about structural 

differences that may contribute to the biological basis of individual differences in risk taking. 

Why might structure play a role for risk taking? For one, because the identification of specific 

genetic loci that are common to different risk-taking domains (Karlsson Linnér et al., 2018) 

potentially hints at the existence of genetic predisposition for a general risk tolerance trait. In 

turn, this genetic predisposition may be expressed not only in how the brain responds and 
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processes risk ‘on the fly’, but is perhaps also expressed in more stable characteristics of the 

neural network, such as structural indices.  

Grey matter volume. One variable which has received some attention in the past is 

grey matter volume (GMV). Studies have suggested a positive correlation between varying 

indices of risk taking and GMV in a range of brain structures, including right insula, 

amygdala, thalamus, orbitofrontal cortex for boys (Peper, Koolschijn, & Crone, 2013), and 

right posterior parietal cortex (Canessa et al., 2013; Gilaie-Dotan et al., 2014; Grubb, Tymula, 

Gilaie-Dotan, Glimcher, & Levy, 2016; Jung, Lee, Lerman, & Kable, 2018; Lin, Lin, & Wu, 

2016; Nasiriavanaki et al., 2015). In contrast, there were no differences in local or global 

GMV between male adolescents classified as high- or low-risk takers, based on either their 

responses to a self-report inventory or their risky choices on a simulated driving test (Kwon, 

Vorobyev, Moe, Parkkola, & Ha, 2014). 

Research on concrete risky behaviors or relevant psychopathologies has also yielded 

informative insights into the structural correlates of risk taking. For example, Cheetham and 

colleagues (2012) observed (lower) orbitofrontal cortex volume at age 12 to predict initiation 

of cannabis use at age 16. Moreover, in a sample of non-alcohol-dependent Japanese men, 

GMV in bilateral frontal gyri was negatively associated with lifetime intake of alcohol (Taki 

et al., 2006). In addition to substance use, research into the structural correlates of behavioral 

addictions has also provided enlightening findings. For example, GMV is higher in 

frontostriatal areas of pathological gamblers compared with controls (Koehler, Hasselmann, 

Wüstenberg, Heinz, & Romanczuk-Seiferth, 2013). For internet gaming disorder, symptom 

severity and deficits in cognitive control are also correlated with increased striatal GMV (Cai 

et al., 2015), but lower GMV in insula, anterior cingulate cortex, precuneus, superior parietal 

cortex, and dorsolateral prefrontal cortex (Lin, Dong, Wang, & Du, 2015).  

In summary, GMV seems to be linked with different behavioral indices of risk taking. 

However, it is currently not known to what extent macro level GMV differences result from 
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micro level differences in tissue composition. Grey matter is composed of cell bodies, axon 

terminals, and dendrites, yet it is currently unclear how these neuronal components are linked 

with endophenotypes such as risk-taking behavior. Moreover, the influence of volumetric 

differences could also be limited by regional connectivity. Consider a very straightforward 

example: it has been observed that amygdala GMV is positively correlated with risk tolerance 

and negatively with anxiety (Jung et al., 2018; Milham et al., 2005). However, if an 

amygdala-based anxiety-signal cannot proliferate in the neural network due to compromised 

connections, this anxiety signal will likely be inconsequential. Thus, an understanding of 

structural connectivity differences may provide a fuller picture of the possible mechanisms 

underlying individual difference in risk taking. 

Structural connectivity. In addition to a significant contribution of amygdala GMV, 

Jung and colleagues (2018) also found degree centrality (or node strength) of the bilateral 

amygdala to be predictive of risk tolerance. In the study by Kwon and colleagues (2014), 

which used a simulated driving task to classify adolescent males as high- or low risk-takers, 

high risk-takers were observed to have higher integrity of frontal subgyral white matter (WM) 

than low risk-takers, even though there were no volumetric differences between the two 

groups(Kwon et al., 2014). WM integrity in a prefrontal cortex-insula-midbrain-striatum 

network was also observed as being positively correlated with the number of risky choices in 

the Balloon Analogue Risk Task (Kohno, Morales, Guttman, & London, 2017), whereas 

lower fronto-limbic WM integrity at baseline was predictive of adolescent substance use and 

delinquent/aggressive risk-taking behaviors at 18-months follow up (Jacobus et al., 2013).  

As with GMV, additional insights can be derived from studies involving specific 

(psychopathological) study populations. For example, teenagers with a family history of 

alcohol use disorders are more likely to initiate alcohol consumption during adolescence 

compared with teenagers without such a family history, and the former have been found to 

have higher WM integrity for connections between reward (nucleus accumbens) and salience 
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regions (orbitofrontal cortex) compared with the latter (Squeglia et al., 2015). Moreover, 

comparison of healthy controls with internet gaming addicts also suggest various differences 

in WM integrity that correlate with duration of pathology (Jeong, Han, Kim, Lee, & Renshaw, 

2016).  

In summary, research has started to emerge that studies the connection between the 

structural architecture of the brain and risk taking, yielding some insights into the 

involvement of different regions in individual differences in risk taking. Unfortunately, many 

study designs do not allow for conclusions about structural causes, effects or corollaries of 

pathology, and caution is warranted when interpreting observed links between neural 

structural indices and behavior. Furthermore, the aforementioned studies have applied a 

plethora of risk-taking measures. Recent research has argued that (especially behavioral) risk-

taking measures do not correlate (Frey, Pedroni, Mata, Rieskamp, & Hertwig, 2017), which 

raises the question to what extent brain-behavior associations observed in the literature 

depend on the risk-taking measure itself. In the current study, we attempt to tackle some of 

the shortcomings of previous neuroimaging studies by combining psychometrically derived 

risk preference factors with multi-modal neuroimaging, in order to shed light on the 

association between indices of neural architecture and the psychometric structure of risk 

preference. 

The Current Study 

 The current study is a follow-up to the Basel-Berlin Risk Study (BBRS), a large multi-

site study of individual difference in risk taking that aims to address questions about the 

psychometric structure of risk taking and its biological underpinnings (an overview of all 

subsamples, measures, and further details on the BBRS is reported on https://osf.io/rce7g). 

One key contribution of the BBRS to date has been the extraction of psychometrically derived 

risk preference factors from a comprehensive battery of laboratory-based self-report, 

behavioral and frequency measures of risk taking completed by a large sample of young 
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adults (Frey et al., 2017). Here, we utilize these psychometric factors in order to circumvent 

issues of generalization stemming from the availability and (in some cases it could be argued 

arbitrary, criterion-free) usage of different risk-taking measures. 

Risk preference factors versus single measures. Whilst previous analyses of 

structural brain-behavior associations have relied predominantly on single measures of risk 

preference (Canessa et al., 2013; Grubb et al., 2016; Jung et al., 2018; Kohno et al., 2017; Lin 

et al., 2016; Nasiriavanaki et al., 2015; Peper et al., 2013), several reasons stoked our interest 

in using psychometrically derived factors instead of specific measures.  

One reason for using latent variables is that they present a more principled approach to 

understanding whether neuroanatomy is predictive of individual differences in risk 

preference, compared with brain-behavior associations based on single indices. A vast 

number of risk-taking measures exist (Appelt, Milch, Handgraaf, & Weber, 2011; Aven, 

2012) and many different measures have found application in neuroimaging studies (Knutson 

& Huettel, 2015; Mohr et al., 2010; Wu et al., 2012). However, given the low convergence 

between different risk-taking measures, especially between behavioral measures (Frey et al., 

2017; Pedroni et al., 2017) —implying that different measures cannot be used interchangeably 

and may even yield different life span trajectories (Mamerow et al., 2016; Mata et al., 2011; 

van den Bos & Hertwig, 2017)— previously established links between neural structure and 

risk taking or risk preference may be measure-specific. In other words, neural markers 

predictive of risk-related outcomes in one context may not be predictive of the same outcomes 

in another context. In the first instance, this would limit the utility of neural markers for 

understanding general mechanisms underlying individual differences in risk taking, and in a 

second instance limits their utility as targets for longitudinal (Braams, van Duijvenvoorde, 

Peper, & Crone, 2015; Casey et al., 2018) or pre-/intervention designs (Büchel et al., 2017; 

Cheetham et al., 2012; Conrod et al., 2013). Related to the issue of convergence, but zooming 

in on the measure itself, psychometric factors promise to reflect more error-free and thus 
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more reliable measures of risk preference. For instance, the general risk preference factor R 

extracted by Frey and colleagues (2017) was observed to have a 6-months retest reliability of 

.85, whereas many of the behavioral measures tested yielded retest reliabilities below .5. 

Much like convergence between measures, measurement reliability plays a critical role for 

brain-behavior associations: if the risk-taking measure used is unreliable, any associations 

between neural and behavioral indices are purely contextual and state-dependent, and would 

be unlikely to emerge at retest. Unreliable brain-behavior associations are not only 

uninformative for theoretical purposes but also of limited utility in practice. 

A second reason stems from the finding that the general risk preference factor R 

accounts for 61% of the variance explained by all risk-taking measures (Frey et al., 2017). In 

conjunction with the high stability of R over time, this suggests that R potentially captures the 

trait-dimension of risk taking. If R can be thought of as a trait, it is reasonable to suggest that 

state-independent indices such as neuroanatomical variables fare well in accounting for 

individual differences therein. One of the goals of cognitive neuroscience has become to 

predict behavior, attitudes or outcomes from neuroimaging indices at ever greater remove 

(Braams et al., 2015; Büchel et al., 2017; Cheetham et al., 2012; Poldrack et al., 2018; 

Rosenberg, Casey, & Holmes, 2018), hence ‘trait’-like neural variables such as grey matter 

volume or neural connectivity present attractive target variables to establish such brain-

behavior associations. This is not to say that anatomy is fixed; clearly we expect changes over 

time in the structure of the brain (Koolschijn & Crone, 2013; Sowell, Thompson, & Toga, 

2004). However, anatomical variables are not (as) susceptible to the influence of contextual 

factors which may play a role for brain-behavior associations based on neural functional 

indices, including on-task activation differences (Tisdall et al., submitted) and off-task resting 

state connectivity (Grigg & Grady, 2010). 

A third reason for using factors concerns the domain-specificity of some of the factors. 

In addition to the general risk preference factor R, Frey and colleagues (2017) extracted seven 
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domain-specific risk preference factors which (due to being orthogonal) explained additional 

unique variance across the battery of risk-taking measures used. One of these domain-specific 

factors was composed of only behavioral measures of risk preference, including various types 

of risky gambles presented in the form of (monetary) lotteries. Importantly, many insights 

into brain-behavior associations using structural indices come not only from single risk-taking 

indices, but they also come predominantly from studies that have used variants of (monetary) 

lotteries or similar risk-laden decision scenarios (Canessa et al., 2013; Gilaie-Dotan et al., 

2014; Jung et al., 2018; C. S. Lin et al., 2016). Using the BBRS risk preference factors, any 

associations between previously identified regions included in this study and the risk 

preference factor composed of lottery measures (F7) would provide a conceptual replication. 

Multi-modal imaging. It has been argued that function follows form, and that different 

functional networks in the brain map more or less directly onto the structural connectome 

(Horn, Ostwald, Reisert, & Blankenburg, 2014). The idea to combine imaging modalities to 

better understand individual differences in risk taking, especially the extent to which different 

functional and structural characteristics of the brain individually and in concert shape risky 

choice, has been appreciated for some time (Canessa et al., 2013; Jung et al., 2018; Kohno et 

al., 2017; Leong, Pestilli, Wu, Samanez-Larkin, & Knutson, 2016; C. S. Lin et al., 2016). For 

example, Kohno, Morales, Guttman and London (2017) studied risk taking in the widely-used 

Balloon Analogue Risk Task (Lejuez et al., 2002) using both functional and diffusion-

weighted imaging. The results suggested that a core set of regions with established functional 

correlates in the task (including striatum, insula, prefrontal cortex and midbrain) are also 

structurally implicated: the higher the integrity of white-matter tracts in a risk network 

comprising striatum, insula, prefrontal cortex and midbrain, the more risky choices 

individuals made on the task. In another recent example, Jung, Lee, Lerman and Kable (2018) 

combined anatomical with resting state imaging to understand individual differences in risk 

tolerance on a monetary lottery task. A combination of amygdala grey matter volume and the 
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functional connectivity (at rest) between amygdala and the medial prefrontal cortex was 

observed to explain 27% of common variance in risk tolerance, whereas individually both 

indices explained only 10% and 19% of variance, respectively.  

On the one hand, these findings highlight the need to expand the neural risk network 

to include the amygdala, a region which so far —perhaps due to signal drop out in subcortical 

regions as a function of scanning parameters selected to maximize signal associated with 

higher-order cognitive processes in cortical regions— has not received as much attention as 

for instance the striatum, frontal cortex and insula (Knutson & Huettel, 2015; Mohr et al., 

2010; Platt & Huettel, 2008). On the other hand, these findings clearly demonstrate the 

benefit of multi-modal imaging for explaining additional variance and formulating 

predictions. Whether or not to include additional modalities in a neuroimaging study will 

largely depend on a cost-benefit analysis of additional scanning time against additional 

variance explained. Jung and colleagues’ (2018) results suggest that adding some modalities 

to the model of risk tolerance can indeed lead to a better understanding not only of individual 

neural predictors, but ultimately also their respective roles, interaction and mutual influence 

within a neural network that contributes to individual differences in risk taking.  

In the current study, we combine volumetry and structural connectomics to examine 

the extent to which different anatomical (i.e. off-task, context-independent) aspects of the 

neural risk network account for individual differences in risk preference factors. As discussed 

above, previous studies have observed both grey matter volume and structural connectivity 

indices to account for risky choice. Our unique contribution is threefold. (1) Using both 

volumetric and connectivity indices, we try to predict psychometrically derived risk 

preference factors given their discussed advantages over single measures. (2) We examine the 

contribution of individual regions within a comprehensive neural risk network which we built 

using meta-analytical procedures implemented via Neurosynth. (3) We supplement the 

traditional approach using multiple regression analyses with Bayesian model comparison to 
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quantify the evidence for a specific model (i.e. neural index) having generated the risk 

preference factor over a baseline model. Taken together, we view our contribution as a well-

powered conceptual replication attempt of previous findings as well as the discovery of 

potentially new links between neural structure and risk preference. 

Materials and Method 

Participants 

Participants of this study were members of the “imaging subsample” of the Basel-

Berlin Risk Study (BBRS; https://osf.io/rce7g), a multi-site study investigating individual 

differences in risk preference in a large sample of young adults via collection of multiple 

measures of risk preference (N=1507; about 50% of the sample tested at each site). For the 

“imaging subsample”, 133 healthy young adults were recruited at the Berlin site for 

participation in a neuroimaging study investigating the neural correlates of individual 

differences in risk preference (i.e., as a follow-up to the main lab session of the BBRS; see 

https://osf.io/rce7g for an overview of all subsamples). The final sample size reflects 

oversampling to achieve an effective sample size of N=100 (Yarkoni, 2009). To be eligible 

for participation, individuals were required to have completed the BBRS laboratory session, 

be right-handed, and be free of any contraindications concerning health and safety inside the 

MR scanner (e.g. permanent (electrical) implants, usage of psychoactive substances or 

medications, neurological or psychiatric conditions). Two individuals ended their 

participation before any neuroimaging data was acquired, hence these two individuals were 

removed from all analyses. A further seven participants aborted the MRI session early, which 

meant diffusion-weighted imaging sequences could not be acquired for these individuals. The 

final sample for all volumetric analyses thus comprises 131 individuals (69 females, mean age 

at scan = 25.3 years, SD = 2.6 years, range = 20.4 to 30.2 years), and for all structural 

connectivity analyses the final sample comprises 124 individuals (66 females, mean age at 

scan = 25.3 years, SD = 2.6 years, range = 20.4 to 30.1 years).  
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All participants provided written informed consent. Ethical approval for this study was 

granted by the German Society for Psychology (Deutsche Gesellschaft für Psychologie), and 

the ethics committee of the Max Planck Institute for Human Development. 

Risk preference factors 

As indices of risk preference in the current study, we utilized psychometric factors that 

were extracted across 39 widely used risk-taking measures collected from the full BBRS 

sample (for a comprehensive list of measures and details on latent variable modeling analyses, 

see (Frey et al., 2017). The implemented bifactor model gave rise to a general risk preference 

factor, R (akin to the general factor of intelligence) that captured 61% of the explained 

variance across risk-taking measures, and seven specific orthogonal factors that captured 

additional domain- or situation-specific variance. These seven factors were suggested to 

represent attitudes and behaviors associated with health risk taking (F1), financial risk taking 

(F2), recreational risk taking (F3), impulsivity (F4), traffic risk taking (F5), occupational risk 

taking (F6), and choices among (monetary) lotteries (F7).  

Experimental procedure 

Details concerning the laboratory component of the BBRS, including individual 

measures and study protocol, are reported by Frey and colleagues (2017). For the MRI study, 

individuals who had completed the BBRS (Berlin-site) were contacted via phone and 

informed about the follow-up MRI session. Individuals who expressed an interest in 

participating in the MRI session were screened for any conditions or circumstances 

preventing them from entering the scanner, and were preliminarily included in the MRI study. 

Due to a temporal overlap between the end of behavioral data collection in the laboratory and 

the start of the MRI component, individuals were contacted with varying delays after having 

completed the BBRS laboratory component. As a result, the MRI sample was heterogeneous 

with regards to the delay between the laboratory and MRI session (mean delay = 196 days, 

SD = 121 days, range = 1 to 453 days). 



 14 

On the day of the MRI session, participants were once again checked for MRI 

contraindications, fully informed about the study protocol and prepared for the scanner. 

Participants also completed brief training runs for the tasks completed inside the scanner, as 

part of functional analyses not included in the current analyses (Tisdall et al., submitted). The 

full MRI protocol took around 75 minutes, and included a high-resolution structural scan, four 

functional runs, a resting state scan and a diffusion-weighted imaging sequence. Given our 

aim to investigate the structural correlates of the psychometric structure of risk preference in 

this study, we only used data coming from the high-resolution structural scan for volumetric 

analyses and diffusion-weighted imaging data for structural connectivity analyses. The 

functional and resting state sequences were not included in the current project, hence are not 

discussed further. The order of the MRI sequences was fixed for all participants. Following 

the scan, individuals responded to demographic questions (date of birth, gender, marital 

status, educational attainment, native language and current occupation). Following the MRI 

session, we collected demographic data from the participants, including their age, gender, 

marital status, and educational background. Furthermore, individuals completed several 

questionnaires and a verbal fluency task; these measures were part of a separate project (i.e. 

these additional measures were not used for the current analyses) and are thus not discussed 

further. 

 At the end of the MRI session, individuals received their participation fee of 25 Euro 

(1 Euro ~ 1.1 USD), and any additional earnings achieved based on performance in the two 

MRI paradigms used to address the functional neural correlates of risk preference (Tisdall et 

al., submitted). On average, participants in the MRI session were paid 41.50 Euro (SD=14.50 

Euro) for their participation.  

Regions of interest 

We focused our investigation on neural regions of interest (ROIs) which we identified 

via Neurosynth meta-analysis (http://neurosynth.org/analyses/terms/risk/, accessed December 
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7, 2016) as core neural correlates of the search term ‘risk’. At the time of the Neurosynth 

search, close to 500 individual studies contributed to the statistical parametric map of clusters 

associated with the search term ‘risk’. We selected voxels identified via forward inference as 

consistently activated in studies given the term ‘risk’, rather than voxels which reverse 

inference indicates as preferentially associated with the term ‘risk’ (Yarkoni, Poldrack, 

Nichols, Van Essen, & Wager, 2011). Reverse inference maps are commonly preferred over 

forward inference maps, as the former are more diagnostic of the search term and thus more 

specific to a particular cognitive process, whereas the latter are usually more inclusive and 

thus may include incidental activations (Yarkoni et al., 2011). For this study however, we 

were interested in the forward inference maps, considering the plethora of definitions, 

measures and processes connected with risk preferences (Appelt et al., 2011; Dohmen et al., 

2011; Schonberg et al., 2011). For example, depending on the adopted definition and 

measurement of risk, affective components might be incidental or central components of risk 

preference (Figner, Mackinlay, Wilkening, & Weber, 2009; Samanez-Larkin & Knutson, 

2015). Thus, to capture the diversity of processes connected with the search term, we based 

all our analyses on activation in voxels yielded by forward inference, from ‘risk’ to brain 

regions.  

The resulting z-score map (corrected for multiple comparisons with a false discovery 

rate of 0.01 and containing only positive activations) was smoothed (3x3x3 full-width at half 

maximum kernel) to increase the signal to noise ratio, followed by application of thresholding 

and clustering procedures to identify suitable clusters of activated voxels. The final binary 

‘risk’ parcellation contained 18 regions (Figure 1), including eight bilateral (amygdala, 

ventral striatum, thalamus, anterior insular cortex, precentral gyrus, superior lateral occipital 

cortex, superior parietal lobule/angular gyrus, and middle frontal gyrus), and two medial 

(paracingulate gyrus, precuneus) regions. These 18 regions served both as ROIs for 

morphometry analyses and nodes for structural connectivity analyses. In line with the idea of 
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presenting a conceptual replication of past findings, many regions which previous studies 

have identified as being linked to risk-taking indices are included in the risk network derived 

from Neurosynth, including amygdala, thalamus, parietal regions and insula (Canessa et al., 

2013; Gilaie-Dotan et al., 2014; Jung et al., 2018; C. S. Lin et al., 2016). 

MRI data acquisition and image preprocessing 

All neuroimaging data was collected on a 3T Siemens MRI system with 12-channel 

head coil at the Magnetic Resonance Imaging Laboratory at the Max Planck Institute for 

Human Development (Berlin, Germany). We acquired high-resolution T1-weighted images 

via a standard magnetization-prepared rapid gradient echo (MP-RAGE) sequence (repetition 

time = 2500ms; echo time = 4.77ms; inversion time = 1100ms; flip angle = 7º; FoV = 256 x 

256 mm2; 192 slices; voxel size = 1 x 1 x 1 mm3). Structural connectivity data was acquired 

via one diffusion-weighted imaging (DWI) sequence (transverse orientation; 69 slices; voxel 

size = 2.0 x 2.0 x 2.0 mm3; 61 diffusion directions; TR=10s; TE=94ms; TA=684s).  

Preprocessing of MRI data for morphometry analyses. Preprocessing of the T1-

weighted images prior to statistical analysis was performed using the Computational Anatomy 

Toolbox (CAT12; http://www.neuro.uni-jena.de/cat/) implemented in SPM12 (Functional 

Imaging Laboratory, Wellcome Department of Imaging Neuroscience, London; 

www.fil.ion.ucl.ac.uk/spm), and comprised the following six steps: (1) Segmentation of 

individuals’ images into grey matter, white matter, and cerebrospinal fluid components, (2) 

spatial normalization to Montreal Neurological Institute space using diffeometric anatomical 

registration through exponentiated lie algebra (DARTEL) normalization, (3) removal of noise 

using the default procedures implemented in CAT12, (4) performance of quality checks 

including inspection of the segmentation and normalization results via display of the same 

slice for all images, and screening for outliers by visualizing the covariance between volumes, 

(5) smoothing of the grey matter images with a 8mm (full-width half-maximum) Gaussian 

kernel, and (6) computation of total intracranial volume for every individual.  
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The workflow created normalized modulated grey matter images, which allow for the 

comparison of absolute amount of grey matter tissue. For ROI analyses, mean grey matter 

volume (GMV) was extracted for the 18 ROIs included in the risk parcellation. All 

subsequent statistical analyses included total intracranial volume to control for individual 

differences in absolute brain size. 

Preprocessing of MRI data for structural connectivity analyses. For analyses of 

diffusion-weighted imaging data, we used the structural connectivity analysis pipeline 

implemented in LEAD Connectome v2.1.0 (http://www.lead-connectome.org; (Horn & 

Blankenburg, 2016; Horn et al., 2014)). The Gibbs ringing removal tool was applied to dMRI 

data (Kellner, Dhital, & Reisert, 2016). To estimate a whole-brain fiber-set, a white-matter 

mask was estimated based on the T1-image using the Unified Segmentation approach 

(Ashburner & Friston, 2005) as implemented in SPM12, followed by the sampling of 

individual fibers within the white matter mask (co-registered to the b0-images). After initial 

co-registration and spatial normalization of T1 and b0 anatomical volumes into MNI space 

(using the MNI 152 NLIN Asym 2009b template), a whole-brain fiber set of 500’000 tracks 

was estimated by seeding randomly from each voxel in the white matter mask, using the 

Generalized q-Sampling Imaging approach (GQI; Yeh, Wedeen, & Tseng, 2010) as 

implemented in DSI-Studio (http://dsi-studio.labsolver.org). This model-free approach 

computes the orientational distribution of the density of diffusing water. Notably, the 

described procedure represents an established and automated default pathway implemented in 

Lead-Connectome (Darby, Laganiere, Pascual-Leone, Prasad, & Fox, 2017; Fox et al., 2014; 

Horn, Kühn, et al., 2017; Horn, Reich, et al., 2017; Horn, Neumann, Degen, Schneider, & 

Kühn, 2017). 

Also implemented in LEAD Connectome, we computed degree centrality as our local 

connectivity measure of interest for the 18 nodes contained in the risk parcellation map. 

Nodal degree centrality is a graph-theoretic metric indicative of how central a particular node 
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is in a network (Rubinov & Sporns, 2010), the neurobiological interpretation being that nodes 

with a high degree of centrality are linked to (and thus are potentially interacting with) many 

other nodes in the network. Mathematically, degree centrality is calculated as the sum of all 

direct connections between a given node and the remaining nodes in the network: the more 

direct connections (i.e. the more first neighbors), the more central a node is in a network. As 

such, nodal degree centrality represents a simple yet highly informative local connectomic 

indicator, which we used in all subsequent analyses pertaining to structural connectivity.  

Statistical analyses 

All statistical analyses were performed in the software R (R Core Team, 2014) and aimed 

to identify the explanatory power of neuroanatomical substrates for individual differences in 

risk preference, measured as latent variables (i.e. general and specific factors of risk 

preference). To ensure that the values for the general and the seven specific factors observed 

for the MRI sample were representative of the relationships between factors observed in the 

full BBRS sample, we computed zero-order correlations and compared these with the 

correlations reported by Frey and colleagues (2017). Distributions of factor values and neural 

structural indices were plotted to determine the validity of parametric statistical approaches 

for factors as outcome measures, and to identify any potential outliers which might unduly 

influence the results. Given that we used two sets of neural predictors derived from the same 

unit (i.e., the brain), we computed zero-order correlation coefficients between all volumetric 

(GMV) and between all connectivity (degree centrality) indices to test for multicollinearity. 

For those individuals contained in both the volumetric and the connectivity analyses, we also 

computed correlation coefficients for the association between volume and connectivity of a 

given ROI (node) to test for multicollinearity between local GMV and degree centrality, 

respectively.  

In a first step, we used a traditional approach to estimate the proportion of variance in 

inter-individual differences in risk preference that can be accounted for by individual 



 19 

differences in neuroanatomy, assessed as local mean GMV and nodal degree centrality. To 

this end, for each of the eight psychometric factors we estimated a) a full model regressing the 

factor of risk preference factor on all indices of GMV and nodal degree centrality; and b) two 

separate models only including either the indices of GMV or the indices of nodal degree 

centrality, in order to investigate how much (more) variance in risk preference can be 

captured by information about volumetric and connectivity. For this first set of analyses, we 

report adjusted R-squared and alpha for every model. To account for the increase in the rate 

of false positives as a result of running a large number of regression models, we report which 

of the nominally significant results remain significant after adoption of a family-wise error 

rate. Specifically, we maintained an alpha level of .05 within each set of analyses involving 

combined, volumetric, and connectivity indices for a total of eight factors, yielding an alpha 

level for these first analyses of .05/8 = .00625. For significant associations between the risk 

preference factors and GMV, we employed multiple regression analyses (controlling for total 

intracranial volume, age and gender) to test whether ROI regions would also show significant 

effects at the level of the whole brain. 

In a second step, we assessed the robustness of these linear regression results, and in 

particular focused on the contribution of each neural index to the overall amount of variance 

explained in risk preference. For this, we pursued a Bayesian approach to model comparison 

and model selection using the BayesFactor package in R (Morey & Rouder, 2015). Model 

comparisons based on Bayes factors provide a likelihood for a specific model over a baseline 

model given the data. In our context, we implemented all models consisting of only one 

neural index as predictor and tested these models’ likelihoods over an intercept-only model. 

Thereby, the resulting Bayes factors are indicative of the importance of each single predictor.   

Prior to analysis, all predictor (GMV, degree centrality) variables were z-standardized and 

regressed onto age and gender. Accounting for overall brain size in our volumetric analyses, 

we also regressed mean grey matter volume in the 18 risk network ROIs on total intracranial 
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volume. The risk preference factors were extracted from z-standardized measures, thus were 

already on a comparable scale, and were introduced into the current analyses as residuals after 

regressing out age, gender and test site of the BBRS laboratory session.  

Results 

Distribution of neural structural indices and BBRS risk preference factors 

 Initial inspection of the distribution of GMV and degree centrality revealed an 

approximately normal distribution for GMV but also identified one outlier in amygdala 

connectivity (6.5 SDs and 4.6 SDs above the mean for degree centrality in right and left 

amygdala, respectively). Transformation approaches were unsuccessful in removing the 

influence of this observation, hence we excluded this individual from connectivity analyses 

and from analyses of volume and connectivity combined. As shown in Figure 2, correlations 

between the two hemispheres of bilaterally represented structures were high for both GMV 

(mean correlation between hemispheres of 8 ROIs r =.74, SD=0.24) and for degree centrality 

(mean correlation between hemispheres of 8 nodes r=.72, SD=0.14). To account for the 

observed multicollinearity between predictors, we computed a mean GMV score and a mean 

degree centrality score across the two hemispheres for every individual and proceeded with 

analyses including 10 regions (Figure 3).  

All risk preference factors were approximately normally distributed in both samples 

(Figure 4), justifying parametric statistical analyses. Pearson correlations between factors 

(Figure 5) were comparable to the correlation coefficients observed by Frey and colleagues 

(2017) and indicated orthogonality between the risk preference factors. Moreover, we 

obtained no significant associations between GMV and degree centrality in a given region 

(range of correlation coefficients r=-.08 to .17, all p>.05), suggesting these to be 

(neurobiologically) independent indices that warrant separate as well as combined 

examination.  

Brain – behavior associations 
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We now turn to the results from analyses assessing the link between neural structure 

and psychometric (risk preference) factors. First, we report the results from multiple linear 

regression analyses aimed at estimating the amount of common variance in risk preference 

factors accounted for by volumetric indices, connectivity indices, and volumetric and 

connectivity indices combined. Regression coefficients are reported as standardized 

coefficients and the percentage of variance explained is based on adjusted R-squared (R^2). 

In a second step, we report the results from a model comparison approach to better understand 

the (robustness of the) contribution of individual structural markers for risk preference. For 

this second set of analyses, we report Bayes factors quantifying the likelihood of one model 

over an intercept model given the data. 

Multiple regression analyses. Reported in Table 1 are the results from a first set of 

analyses aimed at estimating common variance in risk preference factors captured by 

individual differences in neural structure. Specifically, we found that volumetric indices alone 

accounted for almost 9 percent of variance in R (R^2=.087, p=.02), connectivity indices alone 

accounted for 5% of variance (R^2=.051, p=.10) and both volumetric and connectivity indices 

combined explained over 15 percent of variance in R (R^2=.152, p=.009). At the level of 

individual predictors, for the model containing only volumetric indices, only mean GMV in 

ventral striatum was significantly predictive of R (b=0.39, SE=0.13, t=2.93, p=.004). Despite 

the overall non-significance of the model containing only connectivity indices, at the level of 

individual predictors, degree centrality of amygdala emerged as significantly associated with 

R (b=0.32, SE=0.11, t=2.85, p=.005), as well as degree centrality of thalamus (b=-0.39, 

SE=0.16, t=-2.40, p=.018) and precuneus (b=0.37, SE=0.18, t=2.00, p=.049). For the model 

containing both volumetric and connectivity indices, GMV in ventral striatum (b=0.32, 

SE=0.15, t=2.21, p=.029), degree centrality of the amygdala (b=0.25, SE=0.11, t=2.19, 

p=.031), and degree centrality of the precuneus(b=-0.33, SE=0.16, t=-2.01, p=.047) remained 
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significant predictors of R. In addition, we observed GMV in the ROI covering lateral frontal 

cortex (b=-0.34, SE=0.17, t=-2.01, p=.047) to also be significantly predictive of R.  

In contrast to the findings for the general risk preference factors, structural indices 

appear to bear no relation to differences in situation or domain-specific risk factors (F1 to F7). 

As a likely reflection of the small effect sizes revealed by ROI analyses, whole brain 

regression analyses did not reveal significant associations at voxel-level between grey matter 

volume and the general risk preference factor. Moreover, although the effects of neural 

volume as well as neural volume and connectivity combined on R survived the false positive 

threshold of p<.05, they did not survive family-wise error correction thresholds. However, by 

employing model comparisons based on Bayes factors in the next step, we achieved a test of 

the contribution of neural structural markers to general risk preference independently of an 

alpha increase due to multiple comparisons.  

  Model comparison with individual predictors. To assess the independent 

contribution of neural structural markers to individual differences in risk preference, we ran a 

model comparison of individual predictors using Bayes factor analysis. Specifically, a Bayes 

factor of 1 indicates that the tested model is as likely as the intercept model to have generated 

the data, whereas a value above 1 would indicate the tested model is more likely to have 

generated the data than the intercept model. Several models turned out to obtain positive 

(strong?) evidence that the respective neural markers are predictive for inter-individual 

differences in R, namely (Figures 6 and 7): ventral striatal GMV (BF=5.93, R^2=5.2%), 

frontal GMV (BF=2.70, R^2=3.9%), superior frontal gyrus GMV (BF=2.39, R^2=3.7%), 

amygdala degree centrality (BF=1.97 R^2=3.3%), and precuneus degree centrality (BF=1.06 

R^2=2.2%). In other words, compared with an intercept model, a model containing ventral 

striatal GMV is close to 6 times as likely to have generated the observed general risk factor 

values, and a model containing amygdala degree centrality almost twice as likely. 

Interestingly, our analyses for R revealed Bayes factors below 1 –suggestive of the tested 
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model being less likely than the intercept model to have generated the observed outcome 

variable data– for regions which have previously been reported to be associated with a variety 

of risk-taking measures, including GMV in amygdala, insula and parietal cortex (Gilaie-

Dotan et al., 2014; Jung et al., 2018; C. S. Lin et al., 2016; Nasiriavanaki et al., 2015).  

Discussion 

The aim of the current study was to estimate the contribution of neural structure to 

individual differences in risk preference. To overcome some of the limitations of previous 

studies, including the use of single measures of neural structure and risk taking, we used 

multi-modal imaging and psychometrically derived risk preference factors, focusing 

specifically on regions of interest which meta-analytical procedures suggested as core neural 

correlates of ‘risk’. Our results suggest that neural structure can explain variance in risk 

preference, but also that this depends on the structural index used, as well as whether we try 

to account for general or domain-specific risk preference. Volumetric indices alone explained 

almost 9% of variance in the general risk preference factor R. Though degree centrality as an 

indicator of local connectivity alone only accounted for a small (5%) amount of variance, in 

combination with volumetric indices over 15% in common variance in general risk preference 

was explained.  

Contribution of variability in neural structures to individual differences in risk 

preference 

At the level of individual predictors, Bayesian model comparison yielded evidence in 

support of GMV in ventral striatum as an influential predictor of general risk preference, 

individually accounting for over 5% of common variance in R. In particular, we observed a 

positive association between GMV in ventral striatum and R, which falls in line with 

observations of increased frontostriatal volume in pathological gamblers and internet gaming 

addicts (Cai et al., 2015; Koehler et al., 2013). Functionally, the ventral striatum has a 

dominant role in reward-related processes (Hare, O’Doherty, Camerer, Schultz, & Rangel, 



 24 

2008; Knutson & Huettel, 2015; Mohr et al., 2010; Wu et al., 2012), thus our findings of a 

positive association between ventral striatal GMV and general risk preference support and 

extend the proposition of reward-sensitivity as a key component of risk taking to the structural 

domain. Interestingly, our findings for ventral striatal GMV are mirrored by research on 

pathologies, but not by studies investigating the neural structural correlates of risk taking in 

healthy adults using behavioral risk-taking measures, such as monetary lotteries or the 

Balloon Analogue Risk Task (Canessa et al., 2017; Gilaie-Dotan et al., 2014; Jung et al., 

2018; Nasiriavanaki et al., 2015). One explanation for this pattern of results resides in the 

interpretation of R. The general risk preference factor captures common variance across all 

risk-taking measures adopted in the Basel-Berlin Risk Study (BBRS), it accounts for over 

60% of the explained variance, and has high retest reliability (Frey et al., 2017). 

Consequently, R may represent the trait dimension of risk preference. With this in mind, the 

trait dimension may predispose an individual to (psycho)pathology, and the domain-specific 

components may drive the concrete expression of aberrant behaviors (e.g. pathological 

gambling). Thus, R and pathology may share biological substrates. It is unfortunately not 

possible to test this hypothesis within the scope of the BBRS, because the sample comprises 

only healthy young adults who are free of neurological or psychiatric disorders. However, in 

principle, gaining an understanding of the extent to which R is implicated in and shares 

biological substrates with pathology would substantially boost our understanding of this risk 

taking.  

In addition to ventral striatal GMV, we also obtained evidence for a contribution to 

general risk preference by GMV in lateral frontal cortices, and superior frontal gyrus, each 

explaining around 3% of common variance. The negative associations observed for lateral 

frontal cortices and superior frontal gyrus with risk preference support previous results 

implicating smaller frontal volume in the commencement of cannabis usage in adolescence 

(Cheetham et al., 2012), lifetime intake of alcohol (Taki et al., 2006) and internet gaming 
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disorder (X. Lin et al., 2015). As with ventral striatal GMV, our results fall in line with 

findings from studies of pathological samples. One possible route from smaller frontal 

volume to higher risk preference is to consider the predominant involvement of fronto-parietal 

networks in control processes, including the inhibition of (motor) responses (Hampshire & 

Sharp, 2015); we return to the role of the frontal cortex below. 

For the connectivity indices, we obtained some evidence for degree centrality of 

amygdala and precuneus; the latter’s contribution barely extended beyond the intercept 

model, thus we will not speculate on the role of precuneus for general risk preference and 

instead await studies which provide further evidence for the importance of this neural 

structure. In contrast, the observed positive association between amygdala degree centrality 

and general risk preference mirrors recent findings for risk tolerance reported by Jung and 

colleagues (2018). In their study, amygdala centrality in isolation was predictive of risk 

tolerance, but this effect did not remain significant in a model containing volumetric and 

functional connectivity indices (Jung et al., 2018). In our study, amygdala centrality was 

observed to account for less variance in general risk preference as reported for risk tolerance 

(3.3% versus 7%, respectively). However, the fact that we obtained evidence for amygdala 

centrality for a risk preference factor psychometrically derived from a large battery of risk-

taking measures, could be taken to suggest that amygdala connectivity does indeed play a role 

for risk taking, regardless of the index used. As such, this strengthens our earlier 

recommendation to reserve a place for the amygdala on the neural correlates of risk’s most 

wanted list. The amygdala has been implicated in fear processing as well as various anxiety-

related pathologies (Davis, 1992; Ledoux, 2003; Milham et al., 2005), and as such may 

indeed play a central role for risk taking in the course of stimuli being evaluated as potentially 

threatening or inciting fear. A well-connected amygdala not only facilitates fear-related 

signals to travel through the neural risk network, but it also receives control signals from the 

(pre)frontal cortex (Aron, Robbins, & Poldrack, 2014; Hampshire, 2015; Hampshire & Sharp, 
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2015). This fronto-limbic feedback loop may ameliorate the initial evaluation of a threatening 

stimulus, for example by inhibiting / dampening somatic markers. Corroborating the role of a 

well-connected amygdala in risk preference, Jung and colleagues (2018) found off-task 

functional connectivity between amygdala and the medial prefrontal cortex to be positively 

associated with risk tolerance. 

Failed conceptual replication: Implications for research on risk taking 

Interestingly, and somewhat against our expectations, structural indices were not 

predictive of domain-specific factors, including F7. Considering that this factor comprises 

behavioral measures most often used in (neuroimaging) research on risk, such as monetary 

lotteries (Frey et al., 2017), we expected to find some overlap between our results and 

previously identified structural correlates of risk for F7, including volume in posterior parietal 

cortex, amygdala, thalamus, and insula (Canessa et al., 2013; Gilaie-Dotan et al., 2014; Grubb 

et al., 2016; Jung et al., 2018; Nasiriavanaki et al., 2015). What does our failed attempt at a 

conceptual replication imply for the robustness of previously identified neural structural 

correlates of risk taking?  

We suggest that the lack of an overlap between the current study and previous work 

highlights the gap between behavioral measures of risk taking (Frey et al., 2017; Mamerow et 

al., 2016; Mata et al., 2011; Pedroni et al., 2017; Sharma et al., 2014) and the contextual 

specificity of established biomarkers for risk taking. For example, some (behavioral) risk-

taking measures rely heavily on the representation and processing of numbers, especially 

outcome magnitudes and probabilities. One seemingly robust finding in the literature is the 

positive association between GMV in right posterior parietal cortex and risk tolerance as 

assessed using monetary lotteries (Gilaie-Dotan et al., 2014; Grubb et al., 2016). Feeding the 

reported peak coordinates for right posterior parietal cortex (MNI-space, x=27, y=-78, z=48) 

into meta-analytic procedures on Neurosynth (neurosynth.org), the term describing cognitive 

processes for these coordinates with the highest posterior probability was indeed ‘numerical’ 



 27 

(P(term|coordinates)=0.86, z=4.6), followed by ‘navigation’ (P(term|coordinates)=0.87, 

z=4.42). We acknowledge that these terms are associated with voxel activations rather than 

structural indices, but they provide a first principled approach to identifying associated 

candidate cognitive processes. Different measures place different demands on the individual, 

and whilst they may all have a ‘risk-taking tag’, some measures may differentiate individuals 

first and foremost based on cognitive capacity or affective components rather than risk 

preference (Figner et al., 2009; Frey et al., 2015; Hertwig & Erev, 2009; Mata et al., 2011). 

Thus, it is possible that the reported association between risk tolerance and the right posterior 

parietal cortex really is an association between numerical ability and right posterior parietal 

cortex (Gilaie-Dotan et al., 2014; Grubb et al., 2016). 

Importantly, our results do not suggest that previously established brain-behavior 

associations are false positives. Instead, our results imply that trying to generalize findings 

obtained using one measure is, at best, difficult given the low convergence between measures 

(Frey et al., 2017; Mamerow et al., 2016; Pedroni et al., 2017). In the worst case, attempts at 

generalization are misleading and hindering progress because we may believe that an 

established link addresses a phenotype as a whole, when in actual fact the link is contextual 

and measure-specific. Akin to research on the role of hormones for sensation seeking and 

reward sensitivity in adolescence (Harden et al., 2017), our approach to risk preference as a 

latent construct ambitiously tries to break away from single indices, instead addressing the 

phenotype as a whole. 

Limitations 

Even by combining volumetric and connectivity indices we explained a maximum of 

15% of variance in the general risk preference factor. Perhaps we are missing vital portions of 

variance by using additive linear models which do not include interaction terms. In a complex 

neural network, regional characteristics are likely to interact. While the current study is 

underpowered for an exhaustive search of the best possible model in the (theoretically) 
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complete model space, it is also questionable whether any such model, including interaction 

terms, is interpretable or informative. At present, it may be more critical to understand the 

building blocks of our models, which includes how best to measure the outcome variable (i.e. 

risk taking) and understand the extent to which different neural indices (e.g. functional, 

structural) contribute to our understanding of individual differences.  

On a related note, we are seeking to explain variance in a risk preference factor that 

represents -to a large degree- variance across self-report inventories. If there was a mismatch 

between what individuals report (and thus makes up R) and what they actually do in real life, 

neural indices would be hard-pressed to account for variance in such a factor. However, self-

report inventories and frequency items in the Basel-Berlin Risk Study were moderately 

correlated, suggesting that what people do and what they say does not substantially diverge. 

Given that we were only able to look at GMV at the macro level, we refrain from 

speculating about the microstructural mechanisms driving the aforementioned relationships. 

Grey matter comprises cell bodies, axon terminals and dendrites, which in turn play different 

roles for neuronal signaling. How different neuronal components and their functions relate to 

risk-taking behavior and attitudes is however at present not understood. Thus, by looking at 

macro level characteristics such as GMV we only discover associations, but not the 

underlying mechanisms. This however is crucial for bridging the gap between different 

variables and risk taking using biological pathways and ultimately understanding the 

biological basis of risk preference. 

Conclusion 

By combining multi-modal imaging with psychometrically informed risk preference 

factors, we hope to contribute to the growing field of research on inter-and intra-individual 

differences in risk taking. For a phenotype with potentially grave consequences, we still know 

comparatively little about how best to measure it, which / how different factors influence risk 

taking, what its biological underpinnings are, and whether / how an understanding of 
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individual differences can help with prevention and intervention efforts. We present a first 

step in this direction by looking past the narrow scope of single measures, whilst encouraging 

others to follow suit. Beyond the current phenotype of interest and intended as a general 

recommendation for cognitive neuroscience, mapping the convergence of different (neural) 

indices will provide a basic scientific understanding of the organization of the human mind 

and brain that exceeds the sum of its parts.  
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FIGURES 

 

 

 

Figure 1. Risk mask used for extraction of mean grey matter volume for volumetric 

analyses and as nodes for connectivity analyses. 
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Figure 2. Correlation matrix of neuroanatomical indices in risk network. Upper 

triangle reflects Pearson correlation coefficients for associations between GMV in 18 risk 

network ROIs. Lower triangle reflects Pearson correlation coefficients for associations 

between degree centrality in 18 risk network nodes. 
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Figure 3. Frequency distribution of neuroanatomical indices in the risk network. 

Distribution of mean grey matter volume (N=131, upper two rows), and distribution of nodal 

degree centrality (N=123, lower two rows). 

 

  

amygdala

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60
thalamus

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60

ventral striatum

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60

insula

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60

dmpfc

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
10

20
30

40
50

60

frontal lobule

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60

sfg

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60

precuneus

0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

ipl

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60

parietal

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60

amygdala

500 1000 1500 2000 2500

0
10

20
30

40
50

thalamus

1000 2000 3000 4000 5000

0
10

20
30

40
50

ventral striatum

2000 4000 6000

0
10

20
30

40
50

insula

1000 2000 3000 4000

0
10

20
30

40
50

dmpfc

1000 3000 5000 7000

0
10

20
30

40
50

frontal lobule

1000 2000 3000 4000 5000

0
10

20
30

40
50

sfg

1000 2000 3000 4000 5000

0
10

20
30

40
50

precuneus

1000 3000 5000

0
10

20
30

40
50

ipl

1000 2000 3000 4000 5000

0
10

20
30

40
50

parietal

1000 3000 5000 7000

0
10

20
30

40
50



 44 

 

 

Figure 4. Frequency distribution of risk preference factors (N=131).  
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Figure 5. Pearson correlation coefficients for associations between risk preference 

factors (N=131). Note: As expected, correlations between risk preference factors for the 

connectivity subsample (N=123) were almost identical to those obtained from the full sample 

(mean correlation between factor correlation matrices obtained from volumetric sample and 

from connectivity sample r=.99, p<.001). 

  

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

R

H
ea
lth

Fi
na
nc
e

R
ec
re
at
io
n

Im
pu
ls
iv
ity

Tr
af
fic

O
cc
up
at
io
n

Health

Finance

Recreation

Impulsivity

Traffic

Occupation

Lotteries

−0.05

0.02

0.06

0.13

−0.04

−0.07

0.27

−0.1

−0.02

−0.01

−0.01

−0.02

−0.25

−0.04

−0.16

0.15

0.07

0.04

−0.16

−0.17

0.03

0.06

−0.06

−0.05

0.01

0.08

−0.11 0.05

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

R

H
ea
lth

Fi
na
nc
e

R
ec
re
at
io
n

Im
pu
ls
iv
ity

Tr
af
fic

O
cc
up
at
io
n

Health

Finance

Recreation

Impulsivity

Traffic

Occupation

Lotteries

−0.05

0

0.04

0.13

−0.06

−0.07

0.26

−0.11

0

0

0

−0.03

−0.26

−0.01

−0.18

0.16

0.11

0.03

−0.18

−0.18

0.04

0.07

−0.06

−0.05

0.02

0.08

−0.12 0.04



 46 

 

Figure 6. Bayes factor model comparison for all volumetric and connectivity indices 

as predictors of the general risk preference factor (N=123). All models were compared against 

an intercept model. A value of 1 indicates the tested model to be as likely as the intercept 

model to have generated the observed values of the outcome variable. Note: dc=degree 

centrality, gm=grey matter volume, vstria=ventral striatum, amyg=amygdala, ipl=inferior 

parietal lobule, dmpfc=dorsomedial prefrontal cortex, sfg=superior frontal gyrus, 

thal=thlalamus 
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Figure 7. Scatterplots showing the association between general risk preference factor 

R and the five structural markers favored by model comparison as more likely generators of 

individual differences in risk preference than an intercept model. GMV = mean grey matter 

volume. 
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TABLES 

 

Table 1. Results from multiple regression models assessing the link between 

neuroanatomy and risk preference factors. Reported are model-specific alpha and variance 

explained by (1) all volumetric indices (GMV, N=131), (2) all connectivity indices (DC, 

N=123), and (3) volumetric and connectivity indices together (GMV & DC, N=123).  

 

BBRS 

Factor 

GMV 

adjR^2 

GMV         

p 

DC          

adjR^2 

DC          

p 

GMV & DC 

adjR^2 

GMV & DC 

p 

R 0.087 0.02* 0.051 0.101 0.152 0.009* 

Health -0.037 0.864 0.03 0.197 0.002 0.456 

Finance -0.023 0.71 -0.035 0.82 -0.088 0.958 

Recreation -0.013 0.595 0 0.452 -0.065 0.884 

Impulsivity 0.033 0.17 -0.005 0.498 0.034 0.261 

Traffic 0.005 0.399 0.004 0.403 0.006 0.429 

Occupation -0.056 0.978 -0.066 0.991 -0.114 0.992 

Lotteries 0.008 0.359 0.028 0.21 0.022 0.326 

GMV = grey matter volume, DC=degree centrality, adjR^2 = adjusted R-squared, p = alpha level, * p<.05. 

 

 

 

 
 


