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Abstract

Psychiatric disorders are common, heritable, often chronic and devastating
illnesses who heavily decline quality of life of the patients and their environment. The
high genetic correlations across the disorders and their diagnostic criteria reinforce the
growing discomfort with the current classification and boost the search for more refined
measurements. Genome-wide association studies (GWAS) are a highly successful
method for identifying common genetic risk variants underlying common disorders. In
psychiatric disorders, the emerging picture suggests contribution from a large number
of single-nucleotide polymorphisms (SNPs) of individually small effect sizes as well as
rare copy number variants (CNVs) and rare variants discovered by next-generation
sequencing. Most of these findings have emerged during the last years through large
collaborative efforts which enabled powerful meta-analyses. Nevertheless, individual
SNPs and CNVs seem to explain only a minor fraction of the heritable variance for
psychiatric disorders. Therefore, the development and correct application of novel
bioinformatics methods is necessary to cope with the limitations inherent to GWAS.
Biology-informed methods already led to important advances with many discoveries of
common, rare and de novo variants that are converging on specific pathways and
biological mechanisms.

The studies described in this thesis aim to deepen our understanding of
psychiatric disorders through the application of novel bioinformatics tools to existing
GWAS data sets. We found evidence that schizophrenia-associated loci contribute to
the development of bipolar disorder and that the overlapping SNPs converge in
pathways previously reported in other psychiatric disorders. We revealed two genes
and a pathway significantly associated with borderline personality disorder previously
implicated in mental disorders and demonstrated the statistically significant genetic
overlap with other psychiatric disorders. We identified two pathways suggesting an
involvement of neurodevelopmental processes in the etiology of bipolar disorder. We
found that common variants at nine previously reported BD-associated miRNAs do not
strongly contribute to the differential responses to lithium treatment in BD. Taken
together, these studies show that the application of biology-informed bioinformatic
methods enhance the insights gained from GWAS and demonstrate the plethora of
methods available nowadays. It is the hope that the progress in understanding the
genetic architecture of psychiatric disorders will also help to improve the clinical

classification and ultimately yield in better treatment options.
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1 Introduction

Mental disorders are among the disorders with the highest non-fatal burden
(GBD 2016 Disease and Injury Incidence and Prevalence Collaborators, 2017) and
have devastating effects on the quality of life of patients and their environment. This is
aggravated by the fact that there is still no satisfactory drug treatment available (Breen
et al., 2016). Psychiatric disorders are categorized as common disorders with lifetime
prevalence estimates for anxiety disorders of 28.8% and 20.8% for mood disorders
(Kessler et al., 2005). A major challenge in the evaluation of biological underpinnings
of psychiatric disorders is their pronounced heterogeneity. Diagnoses are based on
structured questionnaires, a combination of various symptoms and a minimal number
and duration of these symptoms required to fulfill the criteria of a diagnosis (Breen et
al., 2016; Papassotiropoulos & de Quervain, 2015). Different disease etiologies may
result in the same clinical diagnosis. Despite these obstacles, substantial heritability
(h?) estimates have been reported ranging from 0.37 for major depressive disorder
(MDD) to 0.75 for bipolar disorder (BD) up to 0.81 for schizophrenia (SCZ) (Sullivan,
Daly, & O'Donovan, 2012). Genome-wide association studies (GWAS) have become
the major tool in the unbiased investigation of common variants in common disorders
since their underlying rationale is the “common disease, common variant” hypothesis,
stating that common disorders are caused at least in part by variants shared by more
than 1-5% of the population (Pritchard, 2001; Reich & Lander, 2001). Soon after the
first successful studies of GWAS emerged, consortia were formed to rapidly increase
sample sizes (Psychiatric GWAS Consortium Steering Committee, 2009). The public
availability of the GWAS results from consortia accelerated research even further.
However, the biological interpretation of GWAS results remains a key challenge since
the function of many single-nucleotide polymorphisms (SNPs) is not well understood
thereby the interpretation of the respective SNP is mostly based on the gene function
of the corresponding gene. This may be a reasonable approach, but the mapping of
SNPs to genes is not without a challenge as they may lie outside gene boundaries.
Furthermore, even well-powered GWAS have only been able to explain a small portion
of the phenotypic variance leaving plenty of missing heritability (Manolio et al., 2009;
Visscher, 2008; Visscher et al., 2017). Despite the success of GWAS it has become
abundantly clear that this method is just the beginning since testing for association of

single loci is insufficient in dissecting the complex genetic architecture underlying
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psychiatric disorders. Gene and gene-set based methods can be seen as
complementary follow-up approaches since they focus on the joint effect of SNPs.
Typical gene-set analysis (GSA) approaches aggregate SNPs to genes and then
aggregate them to sets of genes based on shared properties. These properties can be
based on biological or functional characteristics and can be retrieved from databases
or created by the researcher. The application of GSA to GWAS data has proven to be
a valuable approach since it addresses several limitations characteristic to GWAS.
GSA enables the interpretation of the joint effect of SNPs with moderate effects on the
basis of prior biological or functional knowledge which is not possible when only GWAS
are computed. Due to the polygenic nature of psychiatric disorders the accumulation
of these variants will empower the detection of genetic risk factors (The Network
Pathway Analysis Subgroup of the Psychiatric Genomics Consortium, 2015). A bulk of
GSA methods have been proposed over the years but no gold-standard has been
defined yet resulting in various challenges like absence of comparability, reproducibility
and reliability (de Leeuw, Neale, Heskes, & Posthuma, 2016; Mooney & Wilmot, 2015;
Ramanan, Shen, Moore, & Saykin, 2012; L. Wang, Jia, Wolfinger, Chen, & Zhao,
2011). Thanks to GSA, not only the biology-based interpretation of GWAS results but
also the detection of novel variants and genes associated with the disorder is possible.
Moreover, the easy accessibility of GWAS led to the development of many more
methods e.g. methods aiming to improve GWAS algorithms by optimizing limitations
inherent to GWAS (de Leeuw, Mooij, Heskes, & Posthuma, 2015; Loh et al., 2015;
Svishcheva, Axenovich, Belonogova, van Duijn, & Aulchenko, 2012), methods
focusing on fine-mapping and deducing causalities (Benner et al., 2016; Bowden,
Davey Smith, & Burgess, 2015), or methods estimating and partitioning genetic
variance (Bulik-Sullivan, Finucane, et al., 2015; Bulik-Sullivan, Loh, et al., 2015;
Finucane et al., 2015; J. J. Lee, McGue, lacono, & Chow, 2018). Other methods also
enable the investigation of genetic correlation between disorders or the predictions of
disease risks (Purcell et al., 2009). The application of these bioinformatics methods
enabled insights into disease-related biological processes by identifying hundreds of
low-frequency and common variants that contribute to psychiatric disorders and
revealed the genetic overlap between disorders (Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2013; Visscher et al., 2017). But despite all the new

insights and technical advances in the field, the underlying pathological mechanisms



of psychiatric disorders still remain elusive and drug discovery is halting (Fibiger,

2012).

This thesis aims to contribute to the field of psychiatric genomics by leveraging

(publicly) available data-sets and bioinformatics tools primarily focusing on the

biologically driven computational analysis of bipolar disorder from different angles. To

achieve this, various gene and gene-set based methods were applied to different

cohorts enabling the discovery of new susceptibility genes and gene-sets.

This thesis is based on the following four publications. The letters indicate my

contributions to each publication and are listed after each reference: A - Designed the

experiment or contributed to the design; B - Performed the experiment; C - Analyzed

the data or contributed to the analysis; D - Wrote the paper or contributed to paper

writing; * - these authors contributed equally.
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2 Theoretical Background

2.1 Psychiatric disorders

Mental disorders may be very broadly summarized by problems that people
experience with their mind and their mood. Their devastating impact on the quality of
life of patients, their relatives and the society as a whole has been reported widely
(GBD 2016 Disease and Injury Incidence and Prevalence Collaborators, 2017). One
of the most frequently used standardized manuals to diagnose psychiatric disorders is
the Diagnostic and Statistical Manual of Mental Disorders (DSM) of the American
Psychiatric Association now with its fifth edition released (American Psychiatric
Association, 2013b). Therein, the diagnosis of a disorders is based on checklists with
disorders defined by the presence of a minimal number of symptoms, a required
duration and the associated distress or disability, resulting in clinical heterogeneity
within disorders (Breen et al., 2016; Papassotiropoulos & de Quervain, 2015). As
defined by the American Psychiatric Association (2013a), bipolar disorder is a chronic
mental disease characterized by recurrent episodes of depression and mania or
hypomania with a mean age at onset of the first episode with approximately 18 years.
Additionally, patients frequently suffer from co-occurring mental disorders.
Approximately three-fourths of BD patients suffer from any anxiety disorder and more
than half from a substance use disorder (Merikangas et al., 2011). This is aggravated
by the fact that the lifetime risk of committing suicide in people suffering from bipolar
disorder has been estimated to be at least 15 times that of the general population
(Marangell et al., 2006). Epidemiological studies revealed unsettling lifetime
prevalence estimates of 46.6% of participants suffering from at least one of the DSM-
IV disorders assessed (Kessler et al., 2005) with still no satisfactory drug treatment
available for any disorder (Breen et al., 2016).

The familial aggregation for most of the major psychiatric conditions has been
reported since the very beginning of the systematic investigation of psychiatric
disorders (Kendler & Eaves, 2005). Moreover, early family studies already suggested
that multiple psychiatric disorders cluster within affected families leading to the
assumption that heritable factors within and across disorders must exist (Kendler et
al., 2011).
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However successful the recent investigation of genetic contributions to
psychiatric disorders has been, it has also raised concerns such as the categorical
definition of disorders since genetic analysis clearly suggest a more continuous relation
between disorders and health (Larsson, Anckarsater, Rastam, Chang, & Lichtenstein,
2011; Robinson et al., 2016).

Even though the application of the analysis methods within this thesis was
mainly to gain insights into the biological underpinnings of BD, it is important to note
that the methods and strategies can easily be applied to any other psychiatric disorders

or genetically complex traits in general.
2.2  Genetic architecture of psychiatric disorders

Genetic architecture refers to the broad-sense phenotypic heritability since it
can be summarized as all the characteristics of genetic variation contributing to the
heritable phenotypic variability (Mackay, 2001). More specifically, this refers to the
nature and number of genetic variants contributing to a disease, their population
frequencies and effect sizes and their interactions with each other and the environment
(Gratten, Wray, Keller, & Visscher, 2014). The exposure of the genetic architecture of
a complex disorder is elementary when aiming to fully understand its cause of disease.
An addition to the traditional concept of heritability is the so-called SNP-chip heritability
(h?snp) referring to the proportion of variance explained by all variants assayed by
GWAS arrays (Wray et al., 2014). Estimates suggest that one-third to two-thirds of
heritability of complex disorders can be explained by common and imputed SNPs
(Manolio et al., 2009; Visscher et al., 2017; Yang et al., 2013). It is important to keep
in mind that the human genome not just varies between people on the level of single
nucleotides but also on a structural level, including copy number variations (CNVSs),
insertions or deletions (INDELs) and translocations (Alkan, Coe, & Eichler, 2011;
Sudmant et al., 2015). Another distinction is based on the minor allele frequency (MAF)
of a variant where common, low-frequency and rare genetic variants are defined herein
as those with a MAF of 25%, 21% but <5% and <1%, respectively (Welter et al., 2014).
The architecture of a trait does not only influence the choice of analysis method but
also the whole design of a study. Since complex traits are assumed to be polygenic,
the contribution of many, common and ancient variants with small effect sizes are
implicated resulting in large population-based cohorts and genome-wide analysis

strategies. Even though this work focuses on common variants the contribution of rare,
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de novo or structural variants e.g. the recurrent 22q11.2 deletion in SCZ has been
widely established (Bassett, Marshall, Lionel, Chow, & Scherer, 2008; Kirov, 2015).
Whole-exome sequencing (WES) and whole-genome sequencing (WGS) studies
which have only recently become feasible, contribute greatly to the understanding of
disease mechanisms since they allow the accurate detection of rare and structural
variants more accurately (Sanders et al., 2017; Zarrei, MacDonald, Merico, & Scherer,
2015). Interestingly, early micro-array-based studies already allowed to reliably detect
rare variants (large microdeletions and —duplications covering at least several hundred
kilobases) associated with psychiatric disorders and suggest that the rare variants
converge on the same biological pathways as the common variants (Fromer et al.,
2014; Purcell et al., 2014; Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014).

Pleiotropy describes the phenomenon that a specific variant has an effect on
multiple traits. This phenomenon has often been described in psychiatric disorders
(Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013; Pickrell et al.,
2016). Despite the high pleiotropy and phenomenological overlap, studies also
revealed that the genetic architecture varies between psychiatric disorders with for
example smaller rates of rare, de novo variants and CNVs in schizophrenia and bipolar
disorder than in autism (Visscher et al., 2017).

In the case of BD, GWAS have identified the first susceptibility genes (Cichon
etal., 2011; Mihleisen et al., 2014; Sklar et al., 2011; Stahl et al., 2018). So far, GWAS
as well as gene-set analyses have suggested major roles for calcium signal
transmission, neurodevelopmental genes, and microRNAs/non-coding RNAs
(Forstner et al., 2015; Muhleisen et al., 2017; Sklar et al., 2011). However, the majority
of underlying pathways and regulatory networks remain unknown (Nurnberger et al.,
2014). For bipolar disorder, common alleles are estimated to explain 25-38% of the
phenotypic variance resulting in a substantial part of the heritability unexplained
(Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013; Sang H. Lee,
Wray, Goddard, & Visscher, 2011). It is hypothesized that rare variants with higher
penetrance may contribute to BD susceptibility and account at least for a part of the
hidden heritability (Cross-Disorder Group of the Psychiatric Genomics Consortium,
2013; Goes, 2016). This hypothesis may be particularly promising in severely affected
individuals with a strong family history of the disease. Even though some studies

suggest an influence of large CNVs in the etiology of BD, it seems that they do not play
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a major role in BD (Green et al., 2016; Priebe et al., 2012). Preliminary results from
sequencing studies suggest an enrichment of rare variants in specific gene-sets, such
as axon guidance, calcium signaling, G protein-coupled receptors and potassium
channels (Ament et al., 2015; Cruceanu et al., 2017; Fiorentino et al., 2014; Georgi et
al., 2014; Goes et al., 2016; Strauss et al., 2014).

As briefly outlined above, impressive progress has been made over the last 10
years with regard to understanding the genetic architecture of psychiatric disorders.
Part of this success is attributable to technological (such as SNP microarray and next-
generation sequencing technology) and methodological (GWAS, WES, WGS;
bioinformatics analyses) developments, part to better insights into the number and
nature of the involved variants and the enormous sample sizes needed to successfully
identify them. These findings will enable more accurate and biology-informed
diagnosis, screenings, prognosis and therapies (Timpson, Greenwood, Soranzo,
Lawson, & Richards, 2017).

2.3 Data analytics for common variants

GWAS were developed to systematically analyze common variants and CNVSs.
One of the first milestone papers in the field of psychiatric genomics was published for
schizophrenia by O'Donovan et al. (2008). The success of GWAS was accelerated by
the decreasing costs of genotyping resulting in an excess of GWAS-based
publications. However, since common variants associated with complex disorders
individually have small effect sizes it soon became clear that only through consortia
and large-scale collaborations the sample sizes become large enough to reliably detect
these effects (Psychiatric GWAS Consortium Steering Committee, 2009). Individual
variants meeting stringent statistical criteria (genome-wide significance plus
replication) that were found within these collaborative efforts still only account for a
fraction of the estimated heritability of the disorders under study. Therefore, improved
methods allowing a combined view at different genetic factors and better addressing
the polygenic nature of psychiatric disorders were developed. A method suggested to
aggregate these individual effects is the polygenic risk score (PRS) analysis that
captures the effects of all variants below a certain threshold (Purcell et al., 2009). PRS
have also been used to investigate the variants shared across disorders and
successfully found genetic overlap not just between psychiatric disorders (Duncan et
al., 2017; Tesli et al., 2014) but also with psychological phenotypes (Hatzimanolis et
14



al., 2015; Kauppi et al.,, 2015). LD score regression represents an efficient and
powerful method not just to estimate the genetic correlation between traits but also to
estimate the SNP-chip heritability without the need of individual-level data (Bulik-
Sullivan, Finucane, et al., 2015; Bulik-Sullivan, Loh, et al., 2015). A different way to
combine single variants is the gene-set analysis approach. Methods based on this
approach rely on the assumption that the aggregation of SNPs within biologically
meaningful sets of genes has greater statistical power to detect the polygenic
architecture underlying psychiatric disorders than a single-SNP approach (Ramanan
etal., 2012).
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3 Methods

3.1 Genome-wide Association Analysis

GWAS were based on the hypothesis that common genetic variants (with low
to moderate penetrance) explain some of the observed phenotypic variance for
complex traits (Hirschhorn & Daly, 2005). GWAS do not require a biological hypothesis
(such as candidate gene studies) and can be applied to discrete or quantitative
phenotypes. A typical GWAS workflow comprises 5 steps: 1) SNP and sample quality
control of raw data 2) Principal Component Analysis (PCA) 3) Imputation 4) GWAS
and 5) Replication or meta-analysis. The following section briefly describes these
steps.

First, since millions of SNPs undergo association testing in GWAS, rigorous
quality control procedures need to be in place. It is crucial for further analysis to filter
out SNPs and samples that do not meet standard quality control thresholds (Balding,
2006; Carvalho, Bengtsson, Speed, & Irizarry, 2007; Teo et al., 2007).

Second, the presence of systematic differences in allele frequencies in
subgroups possibly due to different ancestry is called population stratification and
represents one of the major confounding factors in GWAS (Lander & Schork, 1994).
Owing to this, the genomic inflation factor A is usually computed to assess whether the
test statistics are inflated and need to be adjusted. Most often, population stratification
is corrected for by excluding individuals based on their eigenvalues from PCA or by
including principal components as covariates in the analysis model later on (L. Liu,
Zhang, Liu, & Arendt, 2013; Price et al., 2006).

Third, statistical imputation of unobserved variants is an efficient way to improve
comparability between different genotyping arrays and studies. It is facilitated by the
fact that the genotypes of not directly genotyped variants can be estimated by the
haplotypes inferred from directly genotyped SNPs and the haplotypes observed from
a fully sequenced reference panel (Biernacka et al., 2009; Delaneau, Marchini, &
Zagury, 2011; Howie, Donnelly, & Marchini, 2009; Howie, Fuchsberger, Stephens,
Marchini, & Abecasis, 2012). Genetic Imputation also enables the fine-mapping of
causal variants and has become a routine step in most GWAS pipelines.

Forth, linear regression is generally used to perform an analysis on quantitative

traits and logistic regression on dichotomous traits. Even though other methods are
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proposed for GWAS, these two are the most frequently used methods since they also
allow to adjust for confounders. Pe'er, Yelensky, Altshuler, and Daly (2008) postulated
that a p-value smaller than 5x10® should be considered genome-wide significant
corresponding to the Bonferroni correction for 1°000°000 independent tests,
representing the estimated number of common variants across the European genome.

Fifth, to control for false positive findings, the replication of GWAS findings in an
independent sample or meta-analysis is strongly recommended. Replication studies
need to consist of a sample size large enough to be able to detect the effect of the
susceptibility allele. The replication sample needs to be independent but of the same
population and the identical phenotype must be investigated (Chanock et al., 2007). It
is vital to validate that the direction of effect of the associated allele is the same in both
GWAS. However, Skol, Scott, Abecasis, and Boehnke (2006) reported that a joint
analysis of the replication and the discovery sample together almost always has more
power than the two-stage approach. Currently, also mega-analysis (a method to jointly
analyze individual-level data from different studies) are performed, however, statistics
have shown that meta-analysis are as efficient as a mega-analysis, with the benefits
of having less privacy restrictions and logistical challenges since only summary

statistics are shared between groups (Lin & Zeng, 2010).
3.2 Gene-Based Analysis

Testing only the associations of single SNPs has been demonstrated to be
insufficient to dissect the complex genetic architecture of psychiatric disorders. The
focus on genes rather than single SNPs as the unit of analysis has long been proposed
and gene-based association scores are now reported more frequently (Hammerschlag
et al., 2017; Kang, Jiang, & Cui, 2013; Neale & Sham, 2004). GWAS results often are
difficult to replicate due to factors such as population differences, lack of power, allelic
heterogeneity or diverse genotyping coverage (Hagg et al., 2015; Yang et al., 2012).
In contrast, gene-based association analyses are suited to detect genes that may
increase susceptibility to complex diseases since they are able to aggregate the
cumulative effect of alleles within one gene and its regulatory region. Since gene
association scores often are the basis for downstream analysis, it is prudent to carefully
decide which method to choose. Several methods of how to compute a gene-based p-
value have been proposed, mainly differing in their assumption of the underlying

genetic architecture. A common and simple way is to choose the most significant SNP
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to represent the association of the whole gene (Segré et al., 2010). Albeit this is a fast
method, it is most sensitive when only one SNP in a gene shows association and
neglecting the additive effect of SNPs can lead to a loss of power (Ramanan et al.,
2012). Alternatively, the calculation of a mean-based association p-value has been
proposed, considering all SNPs within the gene boundaries. Still, this measurement
can be biased by different aspects such as LD, coverage or gene size (de Leeuw et
al., 2016). Other approaches allow the definition of a user-defined percentage of top
associated SNPs to be used as a proxy for a gene association score consequently
excluding SNPs diluting the summary statistics for a gene (Mishra & Macgregor, 2015).
Novel methods also provide the opportunity to calculate multiple gene-based p-values
and then aggregate them into a joint p-value which has the advantage of being more
sensitive to different genetic architectures (de Leeuw et al., 2015).

The definition of gene boundaries and therefore the assignment of SNPs to
genes represents an important decision since it may influence not only the power of
the gene-based analysis but also follow-up analysis such as GSA. The regulatory
effects of SNPs located outside a gene have been widely demonstrated however the
inclusion of SNPs within regulatory regions also enables the inclusion of SNPs not
relevant to the gene (Holmans, 2010; Maston, Evans, & Green, 2006). Definition of
gene windows ranging from Okb up to 500kb have been reported in various studies
(The Network Pathway Analysis Subgroup of the Psychiatric Genomics Consortium,
2015; Veyrieras et al., 2008; K. Wang, Li, & Bucan, 2007). More recent approaches
also allow the inclusion of distant SNPs in high LD with genic SNPs (Mishra &
Macgregor, 2015). The inclusion of SNPs outside the gene boundaries increases the
possibility of overlapping gene definitions and the number of SNPs that may be
assigned to more than one gene, therefore potentially leading to an overinflated test
statistic if not corrected for. This multiple-counting issue becomes even more
momentous in the context of GSA, where one SNP can account for the strong
association signals of several genes located within the same target gene-set (Dixson
et al., 2014; Sedefio-Cortés & Pavlidis, 2014). A prominent region often excluded from
analysis is the major histocompatibility complex (MHC) on chromosome 6 since it is

known for its strong LD.
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3.3 Gene-Set Analysis

The advantages of analyzing the cumulative effect of genes rather than single
SNPs has long been discussed and GSA have become a requirement when publishing
genome-wide association studies. Especially in polygenic traits, the assumption that
SNPs underlying a disorder are enriched in genes constituting to a set of biologically
meaningful genes has been widely accepted. Since the development of gene-set
enrichment methods mainly for gene expression studies, the field has come a long way
improving the methods not only in their purely computational burden but also the
awareness and correction of confounding factors yielded in more reliable and
statistically reproducible results (de Leeuw et al., 2016; Mooney & Wilmot, 2015).
Nowadays, a broad range of GSA tools are freely available, however, despite some
differences, the fundamental structures are highly comparable. The typical analysis of
GSA consists of the following steps: 1) defining target gene-sets 2) formulating null
hypothesis 3) mapping SNPs to genes 4) calculating gene association scores 5)

calculating gene-set association scores 6) assessing gene-set significance.
3.3.1 Gene-Set Definition

In GSA, gene-sets are defined as a group of related genes that share a
particular attribute, and the aim is to determine whether this attribute is associated with
the phenotype of interest. Information on biological pathways and processes is
available through a vast number of databases differing in e.g. curation-level, organisms
included or functional areas covered. Reactome is an open access, peer-reviewed and
well-curated database of biological pathways and processes which is extensively
cross-referenced to other resources (Croft et al., 2014; Fabregat et al., 2018). Other
frequently used open-source resources are the Gene Ontology (GO; (Ashburner et al.,
2000; The Gene Ontology Consortium, 2017)) or the Kyoto Encyclopedia of Genes
and Genomes databases (KEGG; (Kanehisa, Furumichi, Tanabe, Sato, & Morishima,
2017; Kanehisa & Goto, 2000; Kanehisa, Sato, Kawashima, Furumichi, & Tanabe,
2016)). Since GO is structured in a hierarchical way, it is necessary to account for the
vastly overlapping gene-sets when systematically used for GSA. An easy way to
download annotated gene-sets deriving from various sources is by accessing the
Molecular Signatures Database (MSigDB,

http://software.broadinstitute.org/gsea/msigdb/index.jsp). Ingenuity Knowledge Base
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(Ingenuity Systems, Redwood City, CA, USA), a highly comprehensive and well-
structured database, represents a well-curated but commercial alternative. However,
researchers are not restricted to limit themselves to previously described gene-sets
from public resources since the definition of customized target gene-sets such as
genes known to contribute to a disorder or genes based on a cellular function are a
promising tool to unravel biological mechanisms underlying diseases (Jansen et al.,
2017; Nurnberger et al., 2014; Thapar et al., 2015).

3.3.2 Statistical structures of GSA

Even though a plethora of various gene-set analysis tools exist, only two
different null hypothesis definitions are applied. The self-contained methods only
consider genes in the target gene-set and test the association signal within this set
against no signal. Whereas competitive methods consider all genes and test
association of genes in the target gene-set against other genes not in this set. The
competitive method may have less power to detect significant gene-sets when the
genes associated with the trait are located in multiple gene-sets (Goeman & Buhlmann,
2007). Nevertheless, the competitive methods are better suited for the analysis of
polygenic traits since they are able to robustly account for systematic inflation arising
from various sources whereas self-contained methods are not (Devlin & Roeder, 1999;
Moskvina, Craddock, Holmans, Owen, & O’Donovan, 2006; Price et al., 2006). Caution
has to be exercised when interpreting the results gained from a self-contained GSA
since this method is only able to show how strong the association for some of the
genes in the gene-set are but not its relevance compared to other gene-sets (Mooney
& Wilmot, 2015).

The second main difference between methods is the test statistic used for the
computation of the gene-set association score where three main approaches can be
distinguished. The simplest way is to apply a significance threshold to the gene-based
p-values and count the number of genes designated as significant. A different but
related approach is to rank the genes based on their p-values and then to check
whether the target gene-set is enriched for highly ranked genes. Lastly a mean or sum-
based approach can be used to summarize the gene-based p-values within the target
gene-set (Mooney & Wilmot, 2015; Ramanan et al., 2012). Systematic comparisons

between methods have shown that mean-based methods yield the greatest power
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since the ranking and partitioning of genes results in a loss of information (de Leeuw
et al., 2016).

Care should be taken when interpreting GSA results since several confounders
have been reported to introduce significance even though no true relation exists.
Statistically important factors to consider when applying GSA are the gene-set sizes,
the size of genes itself and LD between them in the sense that large gene-sets
consisting of large genes in high LD have the highest risk of becoming significant. The
inflation of false-positives is especially strong if the most significant SNP was chosen
to represent the association of the whole gene. Also, high LD between a truly disease-
associated gene with genes not related to the disease can lead to a significant
enrichment of a non-causative gene-set when these genes cluster within the same
gene-set (de Leeuw et al., 2016; L. Wang et al., 2011).

3.3.3 GSA tools

The main characteristics and differences of the competitive tools used within the
context of this thesis will be described briefly (see also Table 1). The improved gene
set enrichment analysis for genome-wide association study version 2 (i-
GSEA4AGWASV2) is an easy-accessible, web-based resource based on the
competitive GSEA algorithm developed by Subramanian et al. (2005) with the
adaptation of permuting SNP labels instead of phenotype labels enabling the analysis
of GWAS data. However, the method is not able to correct for the LD patterns between
SNPs and therefore input data should only consist of a LD-independent set of SNPs
(Zhang, Chang, Guo, & Wang, 2015). An additional representative of top-SNP
methods is GSA-SNP with the advantage of using the kth best p-value within each
gene instead of the traditionally used best SNP expected to result in fewer spurious
association (Nam, Kim, Kim, & Kim, 2010). Meta-Analysis Gene-set Enrichment of
variaNT Associations (MAGENTA), an additional top-SNP method based on
Subramanian et al. (2005), has specifically been designed to analyze summary
statistics derived from meta-analysis with the benefit of applying an elaborate
correction algorithm to well-known confounders (Segré et al., 2010). In contrast,
INterval enRICHment analysis (INRICH) needs genotype data to create LD
independent genomic intervals and is characterized by a sophisticated permutation
scheme enabling the method to account for methodological biases, e.g. multiple
counting of genes in high LD, effectively (P. H. Lee, O'Dushlaine, Thomas, & Purcell,
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2012). Since this algorithm relies on independent intervals spread over the genome,
the method can also be applied when only a subset of SNPs is tested provided these
loci are independent and could have been distributed all over the genome.
Multi-marker Analysis of GenoMic Annotation (MAGMA) represents a powerful and
highly flexible tool enabling the analysis of genes and gene-sets. It is based on a
regression approach for both gene and gene-set analysis but also consists of more
traditional approaches making the comparison with other tools fast and easy (de
Leeuw et al., 2015). Even though MAGMA is a fairly new tool it has become the tool of
choice for many researchers resulting in publications in various high-impact journals
(Gandal et al., 2018; Howard et al., 2018; Pardifias et al., 2018).

Table 1. Overview of GSA methods used

Method Input Data |Hypothesis |Test- Description
tested statistic
I-GSEA4GWASV2 | SNP p- Competitive |Rank- |GSEA-based method
values or based |with SNP label
gene p- permutation
values
GSA-SNP SNP p- Competitive |Rank- | Uses kth best p-value as
values based | gene association score,
offers multiple test
statistics
MAGENTA SNP p- Competitive |Count- | GSEA-based method for
values based | meta-analytic data
INRICH SNP p- Competitive | Count- | Permutation-based
values (self- based |method that uses LD
contained) independent genomic
interval regions
MAGMA Raw Competitive |Mean- |Regression-based,
genotypes, |or self- based | highly flexible and fast
SNP p- contained tool
values or
gene p-
values

The application of multiple methods to the same data has been recommended
since the genetic architecture of complex disorders is not yet entirely clear and
therefore the most appropriate method may not be determined a priori. Furthermore,
the so-called technical replication has often been proposed for validation since most

studies are not able to replicate their GSA findings in an independent sample (Gui, Li,
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Sham, & Cherny, 2011; The Network Pathway Analysis Subgroup of the Psychiatric
Genomics Consortium, 2015).
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Abstract

Bipolar disorder (BD) is a highly heritable neuropsychiatric disease characterized by recur-
rent episodes of mania and depression. BD shows substantial clinical and genetic overlap
with other psychiatric disorders, in particular schizophrenia (SCZ). The genes underlying
this etiological overlap remain largely unknown. A recent SCZ genome wide association
study (GWAS) by the Psychiatric Genomics Consortium identified 128 independent
genome-wide significant single nucleotide polymorphisms (SNPs). The present study inves-
tigated whether these SCZ-associated SNPs also contribute to BD development through
the performance of association testing in a large BD GWAS dataset (9747 patients, 14278
controls). After re-imputation and correction for sample overlap, 22 of 107 investigated SCZ
SNPs showed nominal association with BD. The number of shared SCZ-BD SNPs was sig-
nificantly higher than expected (p = 1.46x10°®). This provides further evidence that SCZ-
associated loci contribute to the development of BD. Two SNPs remained significant after
Bonferroni correction. The most strongly associated SNP was located near TRANK1, which
is a reported genome-wide significant risk gene for BD. Pathway analyses for all shared
SCZ-BD SNPs revealed 25 nominally enriched gene-sets, which showed partial overlap in
terms of the underlying genes. The enriched gene-sets included calcium- and glutamate sig-
naling, neuropathic pain signaling in dorsal horn neurons, and calmodulin binding. The pres-
ent data provide further insights into shared risk loci and disease-associated pathways for
BD and SCZ. This may suggest new research directions for the treatment and prevention of
these two major psychiatric disorders.

Introduction

Bipolar disorder (BD) is a severe neuropsychiatric disease characterized by recurrent episodes
of mania and depression. BD has an estimated lifetime prevalence of around 1% [1], and a her-
itability of around 70% [2]. BD shows substantial clinical and genetic overlap with other
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psychiatric disorders [3, 4]. An analysis of the genome-wide genotype data of the Psychiatric
Genomics Consortium (PGC) revealed a 68% genetic correlation between BD and schizophre-
nia (SCZ), which was the highest correlation with BD of all psychiatric diseases investigated
[3]. However, the genes involved in this etiological overlap remain largely unknown.

Although research into BD and SCZ has identified a number of susceptibility genes, the
respective biological pathways still await identification. For BD, recent genome wide associa-
tion studies (GWAS) have identified a number of risk loci [5-13].

For SCZ, a PGC meta-analysis of data from >36,000 patients and 113,000 controls identi-
fied 128 independent genome-wide significant single nucleotide polymorphisms (SNPs) in
108 genetic loci [14].

The aim of the present study was to investigate whether these 128 SCZ-associated SNPs also
contribute to the development of BD. For this purpose, we performed association testing of
these SNPs in our large BD GWAS dataset [12]. In addition, we analyzed whether the genome-
wide significant BD-associated SNPs identified in our BD GWAS [12] show association with
SCZ.

Materials and methods
Sample description

The analyses were performed using data from our previous GWAS of BD (9,747 patients and
14,278 controls) [12]. This GWAS dataset combined: (i) the MooDS data (collected from Can-
ada, Australia, and four European countries); and (ii) the GWAS results for BD of the large
multinational PGC [5]. The patients were assigned the following diagnoses (DSM-IV,
DSM-IIR, Research Diagnostic Criteria): BD type 1 (n = 8,001; 82.1%); BD type 2 (n = 1,212;
12.4%); schizoaffective disorder (bipolar type; n = 269; 2.8%); and BD not otherwise specified
(n =265, 2.7%) [12]. The study was approved by the local ethics committees of the participat-
ing centers (University Hospital Wiirzburg, Germany; Central Institute of Mental Health,
Mannheim, Germany; University of Essen, Germany; Ludwig Maximilians University,
Munich, Germany; Prince of Wales Hospital, Sydney, Australia; Queensland Institute of Medi-
cal Research, Brisbane, Australia; Poznan University of Medical Sciences, Poland; University
of Szczecin, Poland; speciality mood disorders clinics in Halifax and Ottawa, Canada; Russian
State Medical University, Moscow, Russian Federation; Kursk State Medical University, Rus-
sian Federation; Regional University Hospital of Malaga, Spain; and Instituto Municipal de
Asistencia Sanitaria, IMAS-IMIM, Barcelona, Spain) [12]. Written informed consent was
obtained from all participants prior to inclusion [12].

Genome-wide significant loci for SCZ and BD

For the 128 linkage disequilibrium (LD)-independent genome-wide significant SNPs for SCZ,
genetic information was obtained from the supplementary information of the SCZ GWAS of
the PGC [14]. This is the largest GWAS of SCZ to date.

Genome-wide significant SNPs for BD were obtained from our BD GWAS [12].

Imputation and meta-analysis

Different reference panels were used for the imputation of the MooDS and PGC BD genotype
data (1,000 Genomes Project, February 2012 release; and HapMap phase 2 CEU, respectively).
Therefore, the summary statistics of the PGC BD GWAS [5] were imputed using the 1,000
Genomes Project reference panel and ImpG-Summary. The latter is a recently proposed
method for the rapid and accurate imputation of summary statistics [15]. This resulted in
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z-scores for >20 million SNPs. A total of 111 SCZ-associated SNPs could be mapped to the re-
imputed PGC BD GWAS data. The remaining variants were either located on the X-chromo-
some (n = 3), or represented insertions or deletions (n = 14) which could not be imputed by
the applied method. In total, 107 of the 111 SCZ-associated SNPs could be identified in the
MooDS BD GWAS.

A meta-analysis for these 107 SNPs was then performed by combining the PGC BD GWAS
and the MooDS BD GWAS, and using the sample size based strategy implemented in METAL
[16].

Analysis of shared BD-SCZ SNPs

The risk alleles for all nominally significant SNPs in our BD GWAS [12] were compared to
those reported in the PGC SCZ GWAS.

The SCZ discovery meta-analysis comprised data from 35,476 patients and 46,839 controls.
Our BD GWAS comprised data from 9,747 patients and 14,278 controls [12]. To correct for an
overlap between the two studies of around 500 patients and 9,200 controls [17, 18], we applied
the framework of a bivariate normal distribution for the z-scores from both studies, corre-
sponding to a specific SNP. Since the significant hits from a study were selected from different
chromosomal regions, we assumed that the z-scores within a study are independent. Accord-
ing to the LD Score regression method [19], the mean inflation of the test statistics provides an
approximation of the variance of the z-scores. By considering the set of SNPs in the HapMap3
reference panel [20], the calculated variance was approximately 1.82 for SCZ and 1.24 for BD.
From equation (16) in Bulik-Sullivan et al. [19] (Supplementary Material), the covariance
between z-scores was calculated to be 0.1644, under the assumption of no genetic correlation.
This yielded a correlation of approximately 0.109. To confirm the validity of these theoretical
calculations, we estimated the covariance of z-scores due to sample overlap by applying the LD
Score regression software directly to the results of the PGC SCZ GWAS and our BD GWAS.
After restriction to the well-imputed SNPs of HapMap3, the software estimated a covariance
0f 0.1707. This result provides further evidence that the degree of sample overlap was correctly
estimated in the present study.

The z-scores for the 107 SCZ-associated SNPs were extracted from the PGC SCZ discovery
study. The corresponding z-scores were extracted from our BD GWAS [12]. Using the values
above, the mean and the variance of the normal distribution for the BD z-scores were deter-
mined, given the z-scores from the PGC SCZ discovery study. After the transformation of the
initial z-scores from our BD GWAS, a total of 22 of 107 z-scores for BD had corresponding
two-sided association p-values of <5% (Table 1).

Analogously, the z-scores for the genome-wide significant BD SNPs were extracted from
our BD GWAS [12], and the corresponding z-scores were extracted from the PGC SCZ discov-
ery study. Of the five BD-associated lead SNPs in our BD GWAS, one SNP (rs6550435) was in
high LD (r* = 0.897, SNAP [21]) with a genome-wide SCZ-associated SNP (rs75968099), and
was thus excluded from this additional analysis. For the remaining four SNPs, the transforma-
tion was computed in the other direction. After correction for sample overlap, no BD SNP
showed association with SCZ.

Bonferroni correction for multiple testing was performed by multiplying the nominal p-val-
ues with the number of investigated SNPs (n = 107+4 = 111).

Pathway analysis

Pathway analysis for all 22 shared SCZ-BD SNPs was performed using Ingenuity Pathway
Analysis (IPA; http://www.ingenuity.com/) [22, 23] and INRICH [24].

PLOS ONE | DOI:10.1371/journal.pone.0171595 February 6, 2017 4/14

28



o @
@ : PLos | ONE Shared bipolar disorder and schizophrenia risk loci

Table 1. Schizophrenia-associated SNPs with a p-value of <0.05 in our bipolar disorder GWAS data after correction for sample overlap.

SNP Chr Position Alleles P BD Meta Pcorr BD Meta PPGC SCz Nearby Gene/s
rs75968099 3 36858583 T/C 2.03x107° 0.0022 1.05x107"3 TRANK1
rs2535627 3 52845105 T/C 468x107° 0.0052 4.26x107" ITIH3-ITIHA4
rs6704641 2 200164252 AG 0.0030 0.3331 8.33x107° SATB2
rs140505938 1 150031490 T/C 0.0032 0.3597 4.49x107"° VPS45
rs7893279 10 18745105 T/G 0.0043 0.4770 1.97x107'2 CACNB2
rs6704768 2 233592501 AG 0.0063 0.6991 2.32x107"2 GIGYF2
rs12704290 7 86427626 AG 0.0075 0.8315 3.33x107"° GRM3
rs211829 7 110048893 T/C 0.0088 0.9778 3.71x107® -
rs3735025 7 137074844 T/C 0.0098 >0.9999 3.28x107° DGKI
rs324017 12 57487814 A/C 0.0098 >0.9999 2.13x 1078 NAB2
rs2909457 2 162845855 AG 0.0109 >0.9999 462x1078 SLC4A10-DPP4
rs9922678 16 9946319 AG 0.0120 >0.9999 1.28x1078 GRIN2A
rs950169 15 84706461 T/C 0.0181 >0.9999 1.62x 107" ADAMTSL3
rs55661361 11 124613957 AG 0.0301 >0.9999 2.8x107'2 NRGN
rs10043984 5 137712121 T/C 0.0307 >0.9999 1.09x 1078 KDM3B
rs1498232 1 30433951 T/C 0.0323 >0.9999 2.86x107° LOC101929406
rs6434928 2 198304577 A/G 0.0351 >0.9999 2.06x107" SF3B1-COQ10B
rs2007044 12 2344960 AG 0.0367 >0.9999 3.22x107"® CACNA1C
rs8044995 16 68189340 AG 0.0380 >0.9999 1.51x1078 NFATC3
rs56205728 15 40567237 AG 0.0387 >0.9999 4.18x107° PAK6
rs2693698 14 99719219 AG 0.0429 >0.9999 48x107° BCL11B
rs832187 3 63833050 T/C 0.0465 >0.9999 1.43x1078 THOC7

Single nucleotide polymorphisms (SNPs) are shown according to their p-values in our bipolar disorder (BD) GWAS [12] following correction for sample
overlap. Chromosomal positions refer to genome build GRCh37 (hg19). Abbreviations: Chr, chromosome; P BD Meta, p-value in our BD GWAS [12] after
correction for sample overlap; P BD Meta, p-value in our BD GWAS [12] after correction for sample overlap and Bonferroni correction for multiple testing;
P PGC SCZ, p-value in the PGC schizophrenia GWAS [14].

doi:10.1371/journal.pone.0171595.t001

In IPA, each gene is represented in a global molecular network, which is designed using
information from the Ingenuity Pathway Knowledge Base. ‘Networks” were generated algorith-
mically, and on the basis of their connectivity in terms of activation, expression, and transcrip-
tion. Molecular relationships between genes are represented by connecting lines between
nodes, as supported by published data stored in the Ingenuity Pathway Knowledge Base and/
or PubMed. For the purposes of the present study, the canonical pathway analysis available in
IPA was applied. Here, an SNP is mapped to a gene if it falls within the gene-coding region or
within the 2 kilobase (kb) upstream/ 0.5 kb downstream range of the gene-coding region. This
resulted in the inclusion of 13 genes in the pathway analysis. Significant pathways were filtered
in order to achieve a minimum of two genes per set. The significance of the association
between the SNP-associated genes mapped by IPA and the canonical pathway was measured
using Fisher’s exact test.

INRICH [24] was used as a secondary pathway analysis tool, as it enables examination of
enriched association signals of LD-independent genomic intervals. Gene Ontology (GO) gene
sets were extracted from the Molecular Signatures Database (MSigDB), version 5.0 (Broad
Institute, http://software broadinstitute.org/gsea/msigdb/index.jsp, downloaded in September
2015). The size of the extracted gene sets ranged from 10 to 200 genes, resulting in 1,268 target
sets for testing. The intervals around the 22 SNPs of interest were based on empirical estimates
of LD from PLINK (http://pngu.mgh harvard.edu/purcell/plink/). SNPs were assigned to
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genes using 50 kb up- and downstream windows. In total, 21 intervals were tested for the 1,268
target sets.

In IPA, correction for multiple testing was performed using the Benjamini Hochberg
method. In INRICH, the empirical gene set p-value was corrected for multiple testing using
bootstrapping-based re-sampling.

Results

A total of 107 of the 128 SCZ-associated SNPs could be mapped to both the re-imputed PGC
BD GWAS and the MooDS BD GWAS data. A meta-analysis of these 107 SNPs was then per-
formed using METAL [16].

After correction for sample overlap, 22 of the 107 SCZ-associated SNPs showed nominally
significant p-values in our BD GWAS (Table 1, S1 Table). For all 22 SNPs, the direction of the
effect was identical to that observed in the PGC SCZ GWAS [14]. Of the five genome-wide sig-
nificant BD-associated SNPs identified in our BD GWAS, one SNP (rs6550435) was in high
LD (r* = 0.897) with a genome-wide SCZ-associated SNP (rs75968099). None of the remaining
four genome-wide significant BD-associated SNPs showed a nominally significant association
with SCZ after correction for sample overlap (data not shown).

The number of SCZ SNPs with a p-value of <0.05 in our BD GWAS (n = 22) was signifi-
cantly higher than expected (p = 1.46x10°®, binomial test). This provides further evidence that
SCZ-associated loci contribute to the development of BD.

The most strongly associated SNP was located near the gene TRANKI (Table 1, p = 2.03x10°
%), which is a reported genome-wide significant risk gene for BD [7, 12]. The other nominally
associated SCZ-BD SNPs implicated loci which contain interesting candidate genes for BD
and SCZ. These include the chromatin remodeling gene SATB2, the glutamate receptor genes
GRM3 and GRIN2A, and the calcium channel subunit gene CACNB2. The latter is a reported
genome-wide significant risk gene for a number of psychiatric disorders, including BD and
SCZ [17].

After Bonferroni correction for multiple testing, two SNPs (rs75968099, rs2535627) showed
significant association with BD (p.or, = 2.25x107 and pe,,, = 5.19x107, respectively).

Pathway analysis using IPA revealed nine pathways with nominally significant enrichment
(Fig 1). Of these, eight remained significantly enriched after Benjamini Hochberg correction
for multiple testing. The pathway with the strongest enrichment was synaptic long term poten-
tiation (P, = 0.003, Fig 2, S2 Table). In addition, significant enrichment was found for gluta-
mate receptor- and calcium signaling; neuropathic pain signaling in dorsal horn neurons; and
CREB signaling in neurons.

These findings are consistent with previous pathway analyses of BD and SCZ [5, 25-27].
The present analysis also confirmed the glutamatergic signaling pathway, which was consid-
ered provisional in a recent review [28].

Pathway analysis using INRICH identified a total of 16 nominally significant gene-sets,
which showed partial overlap in terms of the underlying genes. The enriched gene-sets include
voltage-gated calcium channel complex/activity; calmodulin binding; glutamate receptor activ-
ity; and M phase of the mitotic cell cycle (Fig 3). None of these gene-sets remained significantly
enriched for associations after correction for multiple testing (Fig 3, S3 Table).

Discussion

The present analyses revealed a significant enrichment of BD-associated SNPs within known
SCZ-associated loci (p = 1.46x10°®). This is consistent with previous reports of overlapping
genetic susceptibility for BD and SCZ [4, 29, 30].
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Fig 1. Results of the Ingenuity Pathway Analysis. Results of the Ingenuity Pathway Analysis (IPA) are shown in bar plot format. The x-axis shows
negative logarithmic enrichment p-values for all associated pathways containing two and more genes prior to- (gray) and after- (blue) Benjamini
Hochberg correction for multiple testing. The red horizontal line indicates a p-value of 0.05.

doi:10.1371/journal.pone.0171595.9001

The most strongly associated SNP was located near TRANK1, which is a reported genome-
wide significant risk gene for BD [7]. The second SNP with significant BD association after
correction for multiple testing (rs2535627, Table 1) was located in a genomic region on chro-
mosome 3. This region contains multiple genes, including inter-alpha-trypsin inhibitor heavy
chain 3 (ITIH3) and -4 (ITIH4). Common variation at the ITIH3-ITIH4 region has been iden-
tified as a genome-wide significant risk factor for five different psychiatric disorders, including
SCZ and BD [17].

Interestingly, the GWAS index SNP rs2535627 represents a Bonferroni-significant fetal
brain methylation quantitative trait locus (mQTL), as it has been associated with DNA methyl-
ation at cg11645453. The latter is located in the 5" untranslated region of ITIH4 [31]. This sug-
gests that the SCZ-BD associated SNP rs2535627 might contribute to disease susceptibility by
altering the expression of ITIH4 in the brain [32]. This hypothesis is supported by a recent
study, which found that the G-allele of the SNP rs4687657—which is in moderate LD with
rs2535627 (r* = 0.426, D’ = 1.000, SNAP [21])—was significantly associated with reduced
ITIH4 expression in the postmortem dorsolateral prefrontal cortex of controls [33].

SNPs with nominal association implicated several other plausible susceptibility genes for
BD and SCZ (Table 1). These include SATB2, which is a highly conserved chromatin remodel-
ing gene [34]. A previous animal study demonstrated that SATB2 was an essential regulator of
axonal connectivity in the developing neocortex [35]. In addition, mutations spanning SATB2
have been reported in patients with neurodevelopmental disorders, including autism [36, 37].

The present SCZ-BD associated SNPs implicated three promising candidate genes for
shared BD-SCZ etiology, i.e., CACNB2, GRM3, and GRIN2A. The gene CACNB2 encodes an
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Fig 2. IPA pathway synaptic long term potentiation. Results of the Ingenuity pathway analysis (IPA) for the pathway
“Synaptic Long Term Potentiation” are shown. Shared schizophrenia-bipolar disorder associated genes (GRIN2A, GRM3,
CACNA1C) are highlighted in purple.

doi:10.1371/journal.pone.0171595.g002
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Fig 3. Results of the INRICH pathway analysis. Results of the INRICH pathway analysis are shown in bar plot format. The x-axis shows negative
logarithmic enrichment p-values for all nominally associated pathways containing two and more genes prior to- (gray) and after- (blue) correction for

multiple testing. The red horizontal line indicates a p-value of 0.05.

doi:10.1371/journal.pone.0171595.9g003

L-type voltage-gated calcium channel subunit, and is a reported genome-wide significant risk
gene for several psychiatric disorders, including SCZ and BD [17].

The gene GRM3 encodes a metabotropic glutamate receptor. GRM3 is expressed predomi-

nantly in astrocytes, and has been investigated by previous authors as a potential therapeutic
target in SCZ [14]. A further SCZ-BD SNP was located near GRIN2A, which encodes an
NMDA receptor subunit involved in glutamatergic neurotransmission and synaptic plasticity
[14]. Interestingly, rare mutations in GRIN2A have been reported in patients with SCZ [38].

The present pathway analysis implicated calcium- and glutamate signaling, and neuro-

pathic pain signaling in dorsal horn neurons. These findings are consistent with previous path-
way analyses of BD and SCZ [5, 25-27]. These results thus provide further evidence that
neurotransmitter signaling and synaptic processes are involved in the development of BD and

SC

N
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Our enrichment analysis identified a total of 25 enriched gene-sets, which showed partial
overlap in terms of the underlying genes. One of the major characteristics of the GO database
is its hierarchical structure. This structure involves the use of broad ‘parent’ terms, which can
be divided into more distinctive ‘child’ terms [39]. After taking these relations into account,
we categorized our findings from the GO database into five different parent gene-set families:
channel activity, lipase activity, mitotic cell cycle, calmodulin binding, and glutamate receptor
signaling (S3 Table).

The results generated by IPA and INRICH were broadly consistent, despite the fact that the
underlying databases were different. In some cases, pathways were implicated by the same
genes, e.g., glutamate signaling was implicated by GRIN2A and GRM3 in both IPA and
INRICH. In other cases, pathways were implicated by differing genes, e.g., calcium channel
activity/calcium signaling was implicated by NFATC3 and GRIN2A in IPA, and by CACNB2
and CACNAIC in INRICH (S2 and S3 Tables). This provides further support for the involve-
ment of these pathways in the development of BD and SCZ.

The most strongly enriched pathway according to IPA was synaptic long term potentiation
(Fig 2). This pathway has been implicated in learning and memory mechanisms [40]. Interest-
ingly, several previous studies have provided evidence for the involvement of impaired long
term potentiation in the pathophysiology of SCZ [41, 42]. In the present study, this pathway
result was driven by the genes GRIN2A, GRM3, and CACNAIC. The products of all three
genes are located in the postsynaptic membrane (Fig 2), which may suggest that dysfunction at
the postsynaptic level is an early step in the development of BD and SCZ [43].

The identified pathways support specific hypotheses regarding the shared neurobiology of
BD and SCZ. Notably, our results provide further evidence that glutamate signaling might be
involved in the development of both SCZ and BD [44]. This would be consistent with the
observation from routine clinical practice that SCZ drugs which target glutamate signaling are
also effective in BD patients with psychosis or mania [44].

A limitation of the present study was the substantial sample overlap between our BD
GWAS [12] and the SCZ GWAS of the PGC [14], since this creates an inflation of effect. To
address this, the correlation of z-scores between the two studies was calculated. Based on this
information, the initial z-scores were then transformed to correct for sample overlap. To esti-
mate the correlation of test statistics, the publically available summary statistics of the PGC
SCZ GWAS were used, which comprise the results of the discovery phase (35,476 patients,
46,839 controls). As the effect of shared samples might be stronger in the discovery sample
than in the complete meta-analysis, we may have overestimated the correlation of test statistics
between the two GWAS. Therefore our correction for sample overlap may have been too con-
servative. However, since the inflation effect introduced by shared samples might be different
for independent SNPs compared to the average correlation of test statistics, we assume that
our conservative approach was appropriate in terms of reducing false positive results. In future
cross-disorder studies, shared samples should be identified and removed from one study on
the basis of individual genotype data. This was not possible in the present study, as the analyses
were based on summary statistics.

The present data provide further insights into shared risk loci and disease-associated path-
ways for BD and SCZ.

However, further research is required to determine precisely how the genetic risk variants
correlate with particular diagnoses or clinical symptoms. For example, in a previous study, we
showed that common variation at the NCAN locus was associated with both BD [8] and SCZ
[45]. Genetic variation at the NCAN locus thus represents a cross-diagnosis contributory fac-
tor, which may relate to a specific mania symptom-complex [46]. Therefore, future studies are
warranted to determine the specific BD and SCZ phenotypic dimensions to which the present
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variants contribute. Such findings may suggest new research directions for the treatment and
prevention of BD and SCZ.

Supporting information

S$1 Table. Overview of the 107 investigated schizophrenia-associated SNPs and respective
test statistics. Single nucleotide polymorphisms (SNPs) are shown according to their p-values
in our bipolar disorder (BD) GWAS [12] following correction for sample overlap. Chromo-
somal positions refer to genome build GRCh37 (hgl19). An imputation accuracy metric of 1
indicates that the respective SNP was not imputed using ImpG-Summary. Abbreviations: Chr,
chromosome; A1, the allele to which the z-score is predicted; A2, other allele; Z/P BD Meta, z-
score/p-value in our BD GWAS [12] after correction for sample overlap; Pcorr BD Meta, p-
value in our BD GWAS [12] after correction for sample overlap and Bonferroni correction for
multiple testing; Z/P PGC SCZ (discovery), derived z-score/p-value in the PGC schizophrenia
GWAS (discovery phase) [14].

(XLSX)

S2 Table. Results of the Ingenuity Pathway Analysis. Enrichment p-values for all nine nomi-
nally associated pathways containing two and more genes are shown both prior to and after
Benjamini Hochberg (B-H) correction for multiple testing. Abbreviation: No. Genes in Path-
way, total number of genes in each pathway.

(DOCX)

S3 Table. Results of the INRICH pathway analysis. Empirical gene set p-values for all 16
nominally associated pathways containing two and more genes are shown. The p-values were
corrected for multiple testing using bootstrapping-based re-sampling (corrected p-value).
Abbreviations: GO, Gene Ontology; No. Genes in Pathway, total number of genes in each
pathway.

(DOCX)
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Genome-wide association study of borderline personality
disorder reveals genetic overlap with bipolar disorder, major
depression and schizophrenia

SH Witt"'23, F Streit”"?3, M Jungkunz?3, J Frank', S Awasthi*, CS Reinbold®, J Treutlein', F Degenhardt®’, AJ Forstner®®7%,

S Heilmann-Heimbach®, L Dietl®, CE Schwarze'®, D Schendel’, J Strohmaier’, A Abdellaoui'!, R Adolfsson'?, TM Air'3, H Akil'*, M Alda'®,
N Alliey-Rodriguez'®, OA Andreassen'”'®, G Babadjanova'®, NJ Bass®°, M Bauer®', BT Baune'?, F Bellivier??, S Bergen??, A Bethell®,
JM Biernacka®®, DHR Blackwood?®, MP Boks?’, DI Boomsma'', AD Barglum?®2?3°, M Borrmann-Hassenbach?', P Brennan®?,
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EK Green>®, TA Greenwood®®, M Grigoroiu—Serbanescum, J Guzman-Parra®?, LS Hall?*%3, M Hamshere®®, J Hauser*?, M Hautzinger64,
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Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability
and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show
comorbidity with BOR. This report describes the first case—control genome-wide association study (GWAS) of BOR, performed in one
of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and
(i) to investigate the genetic overlap with BIP. As there is considerable genetic overlap between BIP, major depression (MDD) and
schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD.
GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium
score regression was used to detect the genetic overlap between BOR and these disorders. Single marker analysis revealed

no significant association after correction for multiple testing. Gene-based analysis yielded two significant genes: DPYD
(P=4.42x10"7) and PKP4 (P=8.67x 10~ 7); and gene-set analysis yielded a significant finding for exocytosis (GO:0006887,
Prpr=0.019; FDR, false discovery rate). Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The most notable
finding of the present study was the genetic overlap of BOR with BIP (ry=0.28 [P=2.99 x 1073)), SCZ (rg=0.34[P=437 x 107°]) and
MDD (rg=0.57 [P=1.04 X 107 3]). We believe our study is the first to demonstrate that BOR overlaps with BIP, MDD and SCZ on the
genetic level. Whether this is confined to transdiagnostic clinical symptoms should be examined in future studies.

Translational Psychiatry (2017) 7, e1155; doi:10.1038/tp.2017.115; published online 20 June 2017

INTRODUCTION lifetime prevalence of around 3%.' Untreated cases often have a
Borderline personality disorder (BOR; for the sake of readability, chronic and severely debilitating clinical course.' BOR affects up to
we have decided to use the rather unconventional abbreviation 20% of all psychiatric inpatients, and is associated with high
‘BOR'’ for Borderline Personality Disorder and the abbreviation ‘BIP’ health-care utilization. BOR therefore represents a substantial

for Bipolar Disorder) is a complex neuropsychiatric disorder with a socio-economic burden.?
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BOR is characterized by affective instability, emotional dysre-
gulation and poor interpersonal functioning.? Suicide rates in BOR
range between 6 and 8%, and up to 90% of patients engage in
non-suicidal self-injurious behavior.* Other prototypical features
include high-risk behaviors and impulsive aggression. Current
theories view dysfunctions in emotion processing, social interac-
tion and impulsivity as core psychological mechanisms of BOR.>

To date, genetic research into BOR has been limited. Available
genetic studies have involved small samples and focused on
candidate genes, while no genome-wide association study (GWAS)
of BOR patients has yet been performed.® However, Lubke et al.’
conducted a GWAS of borderline personality features using data
from three cohorts comprising n=5802, n=1332 and n=1301
participants, respectively. Using the borderline subscale of the
Personality Assessment Inventory (PAI-BOR), four borderline
personality features (affect instability, identity problems, negative
relations and self-harm) were assessed. The most promising signal
in the combined analysis of two samples was for seven SNPs in the
gene SERINC5, which encodes a protein involved in myelination.
Two of the SNPs could be replicated in the third sample.
Interestingly, here, the effect was highest for the affect instability
items, that is, features that are key characteristics of manic phases
of bipolar disorder (BIP).

Understanding of the pathogenesis of BOR remains limited.
Both environmental and genetic factors are known to have a role
in BOR etiology. Familial aggregation has been demonstrated,®®
and heritability estimates from twin studies range from 35 to 65%,
with higher heritability estimates being obtained with self-
ratings.'>'?

The potential comorbidity between BOR and BIP is part of an
ongoing debate. For example, Fornaro et al.'® report substantial
comorbidity of ~20% with BIP, whereas Tsanas et al.'* find clear
symptomatic differences between these two diagnostic groups.
BOR displays an overlap of some symptoms with BIP, such as
affective instability. In contrast, features such as dissociative
symptoms, a feeling of chronic emptiness and identity distur-
bances are specific to BOR.'® To date, no twin or family study has
generated conclusive results concerning a genetic overlap
between the two disorders.'®'” However, a twin study'® and a
large-population-based study using polygenic risk score
analyses'? indicate a genetic overlap between borderline person-
ality features and neuroticism, an established risk factor for BIP
and other psychiatric disorders.?®

To the best of our knowledge, the present study represents the
first case—control GWAS in BOR, and was performed in one of the
largest BOR patient samples worldwide. Given the limited
heritability and the expected complex genetic architecture of
BOR, the sample is too small to generate significant results for
single markers. Instead, the main aim of the investigation was to
detect (i) genes and gene sets with a potential involvement in BOR;
and (ii) potential genetic overlap with BIP. As a substantial overlap
of common risk variants exists between BIP and schizophrenia
(SCZ), and to a lesser extent between BIP and major depressive
disorder (MDD), and as there is also a high comorbidity of BOR and
MDD, a further aim of the study was to determine whether any
observed genetic overlap between BOR and BIP, MDD and SCZ was
driven by disorder-specific genetic factors using linkage disequili-
brium (LD)-score regression and polygenic risk scores (PRS).

MATERIALS AND METHODS
Participants

The present sample comprised 1075 BOR patients and 1675 controls.®’ All
the participants provided written informed consent before inclusion. The
study was approved by the respective local ethics committees.

The patients were recruited at the following German academic
institutions: Department of Psychosomatic Medicine, Central Institute of
Mental Health, Mannheim (n=350); Department of Psychiatry and
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Psychotherapy, University Medical Center Mainz (n=231); and the
Department of Psychiatry, Charité, Campus Benjamin Franklin, Berlin
(n=494). Inclusion criteria for patients were: age 16 to 65 years; Central
European ancestry; and a lifetime DSM-IV diagnosis of BOR. The control
sample comprised 1583 unscreened blood donors from Mannheim, and 92
subjects recruited by the University Medical Center Mainz.

Clinical assessment

The diagnoses of BOR were assigned according to DSM-IV criteria and on
the basis of structured clinical interviews. The diagnostic criteria for BOR
were assessed using the German version of the IPDE?? or the SKID-I1.2 All
the diagnostic interviews were conducted by trained and experienced
raters. BOR patients with a comorbid diagnosis of BIP or SCZ assessed with
SKID-I1?® were excluded.

Genotyping

Automated genomic DNA extraction was performed using the chemagic
Magnetic Separation Module | (Chemagen Biopolymer-Technologie,
Baesweiler, Germany). Genotyping was performed using the Infinium
PsychArray-24 Bead Chip (lllumina, San Diego, CA, USA).

Quality control and imputation
A detailed description of the quality control and imputation procedures is
provided elsewhere.®*

Briefly, quality control parameters for the exclusion of subjects and
single-nucleotide polymorphisms (SNPs) were: subject missingness > 0.02;
autosomal heterozygosity deviation (|Fhet|>0.2); SNP missingness >0.02;
difference in SNP missingness between cases and controls > 0.02; and SNP
Hardy-Weinberg equilibrium (P < 10~ in controls; P< 10™'% in cases).

Genotype imputation was performed using the pre-phasing/imputation
stepwise approach in IMPUTE2/SHAPEIT (default parameters and a chunk
size of 3 Mb),>>?° using the 1000 Genomes Project reference panel (release
‘v3.macGT1).?’

Relatedness testing and population structure analysis were performed
using a SNP subset that fulfilled strict quality criteria (INFO >0.8,
missingness < 1%, minor allele frequency > 0.05), and which had been
subjected to LD pruning (*>0.02). This subset comprised 63 854 SNPs. In
cryptically related subjects, one member of each pair (8hat>0.2) was
removed at random following the preferential retention of cases over
controls. Principal components (PCs) were estimated from genotype data
(see Supplementary Figures 1-6), and phenotype association was tested
using logistic regression. The impact of the PCs on genome-wide test
statistics was assessed using A.

Association analysis

Including the first four PCs as covariates, an additive logistic regression
model was used to test single marker associations, as implemented in
PLINK.ZB8 The P-value threshold for genome-wide significance was set at
5x107°

Gene-based analysis

To determine whether genes harbored an excess of variants with small P-
values, a gene-based test was performed with MAGMA Version 1.04 (http://
ctg.cner.nl/software/magma)?® using genotyped markers only, filtered with
a minor allele frequency > 1% (n =284 220). This test uses summary data
and takes LD between variants into account. SNPs within +10 kb of the
gene boundary were assigned to each gene. Obtained P-values were
Bonferroni-corrected for the number of tested genes (n=17 755,
P=28x1079).

Gene-set analysis

Gene-set-based analysis was implemented using genotyped markers only,
filtered as above. As in the gene-based analysis, SNPs within + 10 kb of the
gene boundary were assigned to each gene. Gene-set analyses were
carried out using Gene Ontology (GO, http://software.broadinstitute.org/
gsea/msigdb/) terms.

The discovery gene-set-based analysis was carried out using i-GSEA4G-
WASV2 (http://gseadgwas-v2.psych.ac.cn/).?° The size of the gene sets was
restricted to 20-200 genes, and the major histocompatibility complex
region was excluded. In total, 674 gene sets were tested. The results were
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adjusted for multiple testing using false discovery rate (FDR). To validate
the significant finding, the respective gene set was investigated with (i)
GSA-SNP, using the P-value of the second-best SNP in each gene (https://
gsa.muldas.org)®' and (ii) MAGMA using summary data and a nominal P-
value threshold of P < 0.05.

LD-score regression

To investigate a possible genetic overlap between BOR and SCZ, BIP and
MDD, LD-score regression was performed.3> Genetic correlations between
BOR and (i) BIP, (ii) SCZ and (iii) MDD were calculated*® using the result files
of the Psychiatric Genomics Consortium (PGC) meta-analyses for SCZ
(33640 cases and 43456 controls)®* BIP (20352 cases and 31358
controls)®* and MDD (16 823 cases and 25 632 controls).3® There was no
overlap in cases or controls of the present BOR GWAS sample with the PGC
samples.

Polygenic risk score

To determine the impact of polygenic risk on BOR and subgroups (that is,
BOR with and without MDD), PRS were calculated for each subject based
on the above-mentioned PGC data sets.

To obtain a highly informative SNP set with minimal statistical noise, the
following were excluded: low frequency SNPs (minor allele
frequency < 0.1); low-quality variants (imputation INFO < 0.9) and indels.
Subsequently, these SNPs were clumped discarding markers within 500 kb
of, and in high LD (r* >0.1) with, another more significant marker. From the
major histocompatibility complex region, only one variant with the
strongest significance was retained. PRS were calculated as described
elsewhere.® This involved P-value thresholds 5x 1078, 1x107° 1x10™ %
0.001, 0.01, 0.05, 0.1, 0.2, 0.5 and 1.0, and multiplication of the natural
logarithm of the odds ratio of each variant by the imputation probability
for the risk allele. The resulting values were then totaled. For each subject,
this resulted in one PRS for SCZ, MDD and BIP for each P-value threshold.

In a first step, the association of the PRS for BIP, SCZ and MDD with BOR
case—control status was analyzed using standard logistic regression and by
including the four PCs as covariates. For each P-value threshold, the
proportion of variance explained (Nagelkerke’s R?) in BOR case—control
status was computed by comparison of a full model (covariates+PRS) score
to a reduced model (covariates only).

For further exploratory analysis, the P < 0.05 PRS for each disorder was
selected (that is, including all markers that reached nominal significance in
the training samples). To determine whether the different scores
contribute independently to the case—control status, a regression including
the PRS for MDD, SCZ and BIP and the four PCs was computed. In a
secondary analysis, two further models were computed. These included
the PRS for BIP and the PRS of either MDD or SCZ, while controlling for the
four PCs.

Furthermore, PRS were analyzed by differentiating between controls,
and patients with or without comorbid MDD. For each PRS, a linear model
was computed using the PRS as a dependent variable, disease state as an
independent variable and the four PCs as covariates. Differences between
groups were assessed using post hoc tests (Bonferroni-corrected).

RESULTS
Sample characteristics

Genetic quality control led to the exclusion of 207 subjects.
Reasons for exclusion were: (i) insufficient data quality (low call
rate), n=6; (ii) relatedness, n=63; and (iii) population outlier
status, n=138. After quality control, the sample comprised 998
BOR cases (914 female/84 male) and 1545 controls (868 female/
677 male). Mean age for cases was 29.58 years (range: 18-65 years,
standard deviation (s.d.=8.64)). Mean age for controls was 44.19
years (range: 18-72 years, s.d.=13.24; details see Supplementary
Table 1). Of the 998 cases, 666 had comorbid lifetime MDD, and
262 did not (data missing for 40 cases).

Single marker analysis

A total of 10 736 316 single markers were included in the analysis.
As expected for GWAS on a complex psychiatric disorder with the
current sample size, the single marker analysis revealed no
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Figure 1. Quantile-Quantile plot. Quantile-Quantile plot of the

case-control analysis (998 cases; 1545 controls) showing expected
and observed -log10 P-values. The shaded region indicates the 95%
confidence interval of expected P-values under the null hypothesis.

significant hit after correction for multiple testing (see Figures 1
and 2). The most significant marker was rs113507694 in DPPA3 on
chromosome 12 (P=2.01x10"%; odds ratio =0.35, minor allele
frequency =0.03, INFO =0.59). Single markers with P<1x 107>
are listed in Supplementary Table 2.

Gene-based analysis

In the gene-based analysis, a total of 17 755 genes were tested.
Two genes showed significant association with BOR after
correction for multiple testing: the gene coding for Plakophilin-4
on chromosome 2 (PKP4; P=8.24x 10~ 7); and the gene coding for
dihydropyrimidine dehydrogenase on chromosome 1 (DPYD,
P=1.20%x107°). The most significant genes (P<5x10"%) are
listed in Table 1. The top hit of the previous GWAS of borderline
personality features, SERINC5, achieved nominal significance in the
present study (Pyncorrected =0.016).

Gene-set analysis

Gene-set analysis with i-GSEA4GWASV2 revealed one significant
gene set: exocytosis (GO: 0006887; Prpr=0.019). Of 25 genes in
this gene set, 22 were mapped with variants and 15 showed
nominally significant associations. Details on significant and
nonsignificant genes in this gene set are provided in
Supplementary Table 3. All gene sets with Pyncorrecteq < 0.01 are
shown in Table 2. A technical replication analysis with GSA-SNP
and MAGMA confirmed the gene-set exocytosis (GSA-SNP:
Puncorrected = 2.32 X 10_4; MAGMA: Pyncorrected = 0.056).

LD-score regression

Significant genetic correlations with BOR were found for BIP
(rg=0.28; 5.2.=0.094; P=2.99%1073), MDD (ry=0.57; s.e.=0.18;
P=1.04x10"3) and SCZ (ry=0.34; s.e.=0.082; P=4.37x107°). A
meta-analytic comparison revealed no significant differences
between the correlations (all P> 0.13).

Polygenic risk score

PRS analysis revealed significant associations with BOR for the PRS
of BIP, MDD and SCZ. SCZ PRS were significant for all investigated
thresholds. BIP and MDD scores were significant for all PRS that
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Manhattan plot showing association results. Manhattan plot of the case-control analysis (998 cases; 1545 controls). For each single-

nucleotide polymorphism (SNP), the chromosomal position is shown on the x axis, and the —log10 P-value on the y axis. The red line indicates
genome-wide significance (P < 5x 10~ %) and the blue line indicates suggestive evidence for association (P < 1x107%).

Table 1. Results of the gene-based analysis using MAGMA
GENE CHR START STOP Nsnps Nparam Zstar P
PKP4 2 159303476 159547941 21 13 4.7924 8.24x1077
DPYD 1 97533299 98396615 105 68 47162 1.20x107°
GRAMD1B 1 123315191 123508478 34 28 3.8856 5.10x107°
STX8 17 9143788 9489275 38 33 3.7984 7.28x107°
BMP2 20 6738745 6770910 7 6 3.588 167x107%
TRAF3IP1 2 239219185 239319541 1 8 3.5389 201x107*
ZP3 7 76016841 76081388 9 7 3.5037 229%x107*
PINX1 8 10612473 10707394 19 1 3.5034 230%x107%
GTF3C4 9 135535728 135575471 4 4 3.4851 246x107*
DNAH1 3 52340335 52444513 1 8 3.4543 276x107*
YKT6 7 44230577 44263893 6 3 3.3841 357x107*
CCSER1 4 91038684 92533370 111 78 3.3804 3.62x107*
LRRC59 17 48448594 48484914 8 6 3.3716 374x107*
TMEM71 8 133712191 133782914 9 8 3.3668 3.80x107*
BAP1 3 52425020 52454121 3 3 3.345 411x107*
AQR 15 35138552 35271995 8 6 3.3299 434x10°*
FGFR1 8 38258656 38336352 12 10 3.3162 456x107*
Abbreviations: CHR, chromosome; Nparam, Number of parameters used in the model; Nsyps, number of single-nucleotide polymorphisms; P, P-value of gene;
Zstar, z-value of the gene. Most significant genes (P < 5x 10~ %) in the gene-based analysis and their chromosomal position. Genes in bold font were significant
after correction for multiple testing.

included SNPs with P-values higher than 0.0001 and 0.001,
respectively (see Supplementary Table 4). The share of
variance explained in BOR case—control status (Nagelkerke’s R?)
by the respective PRS was up to 0.86% for BIP; up to 3.1%
for SCZ; and up to 2.1% for MDD (see Figure 3 and Supplementary
Table 4).

Simultaneous addition of the PRS for SCZ, BIP and MDD
(threshold P < 0.05) to the regression model explained 4.4% of the

Translational Psychiatry (2017), 1-9

variance (Nagelkerke’s R?) in BOR case—control status. The PRS for
SCZ and the PRS for MDD were significant predictors
(P=9.78x1077 and P=1.9x 1077, respectively). The PRS for BIP
was not a significant predictor in this model (P=0.28).

A secondary analysis was then performed including (i) BIP PRS
with MDD PRS and (ii) BIP PRS with SCZ PRS. Here, BIP PRS
explained variance independently of MDD PRS (P=0.0067), but
not of SCZ PRS (P=0.11).
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Differentiation between cases with and without comorbid MDD
and controls revealed significant effects of BOR diagnosis on PRS
for BIP, SCZ and MDD (all P<0.001, see Figure 4). Post hoc
analyses revealed no differences in PRS for the BIP, SCZ or MDD
PRS of the BOR subgroup with comorbid MDD compared with the
BOR subgroup without MDD (all P>0.5).

Compared with controls, PRS for SCZ and MDD were
significantly increased in the BOR subgroups with and without
comorbid MDD (all P <0.001). The PRS for BIP only showed a
significant difference to controls in the BOR subgroup with
comorbid MDD (P < 0.001, see Figure 4).

DISCUSSION

The present study is the first case—control GWAS of BOR. As
expected, no genome-wide significant association was found for
any single marker. In the gene-based test, however, two genes
achieved genome-wide significance: dihydropyrimidine dehydro-
genase (DPYD) and Plakophilin-4 (PKP4). DPYD encodes a pyrimi-
dine catabolic enzyme, which is the initial and rate-limiting factor
in the pathway of uracil and thymidine catabolism. Genetic

Table 2. Results of the gene-set analysis
Gene-set name Number of  P-value FDR
genes P-value

GO: EXOCYTOSIS 25 0.001 0.019
GO: RESPONSE TO ORGANIC 30 0.002 0.173
SUBSTANCE

GO: BRAIN DEVELOPMENT 51 0.003 0.888
GO: HORMONE METABOLIC 30 0.003 0.511
PROCESS

GO: PROTEIN C TERMINUS 73 0.003 0.536
BINDING

GO: LYSOSOME 53 0.007 0.785
GO: LYTIC VACUOLE 53 0.007 0.785
GO: MULTI-ORGANISM PROCESS 143 0.007 0.920
Abbreviations: FDR, false discovery rate; GO, Gene Ontology; P-value,
gene-set P-value. Most significant gene sets (uncorrected P < 0.01) in the
gene-set analysis with i-GSEA4GWASV2 are listed. Gene sets in bold font
were significant after correction for multiple testing.
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deficiency of this enzyme results in an error in pyrimidine
metabolism.?” This is associated with thymine—uraciluria and an
increased risk of toxicity in cancer patients receiving 5-fluorouracil
chemotherapy (http://www.ncbi.nlm.nih.gov/gene/1806). Recent
PGC meta-analyses revealed an association between DPYD and
SCZ and BIP.2**%3° DPYD contains a binding site for the micro-RNA
miR-137, which has previously been associated with schizo-
phrenia,”® and a previous exome-sequencing study reported two
putative functional de novo variants in DPYD in cases with SCZ.*'
PKP4 is involved in the regulation of cell adhesion and cytoskeletal
organization.*? In pathway analyses of PGC GWAS data, cell
adhesion was associated with BIP,** and SCZ** whereas cell
junction was implicated in MDD, as well as in an integrative
pathway analysis of all three disorders.*?

SERINC5, which was the top hit of the previous GWAS of
Borderline personality features,” achieved nominal significance in
the present study. The protein SERINC5 incorporates serine into
newly forming membrane lipids, and is enriched in myelin in the
brain.*® Previous research suggests that decreased myelination is
associated with a reduced capacity for social interaction.”*’

The gene-set analyses yielded significant results for exocytosis.
In neuronal synapses, exocytosis is triggered by an influx of
calcium and critically underlies synaptic signaling. Dysregulated
neuronal signaling and exocytosis are core features of neurode-
velopmental psychiatric disorders such as the autism spectrum
disorders and intellectual disability.*®*° Moreover, recent findings
from large meta-analyses have implicated dysregulated neuronal
signaling and exocytosis in the molecular mechanisms of BIP, SCZ
and MDD.*3°%°! These processes may now represent promising
starting points for further research into BOR.

The most interesting finding of this study is that BOR showed a
genetic overlap with BIP, SCZ and MDD. Notably, BIP did not show
a higher correlation with BOR (ry=0.28) than SCZ (r;=0.34) or
MDD (rgy=0.57). In view of the present sample size, these values
must be viewed with caution. A more accurate estimation of these
correlations will require calculations in larger cohorts.

Although comorbid BIP was excluded in the present BOR
patients, the possibility that the observed genetic overlap
between BOR and BIP was at least partly attributable to
misdiagnosis cannot be excluded. However, an alternative
explanation appears more likely, that is, that disorders currently
categorized as BOR and BIP share a common genetic background,

= PRS BIP
m PRS SCZ
PRS MDD

0.05 0.1 0.2 0.5 1

Figure 3. Polygenic risk score analysis. The proportion of variance explained in case-control status (y axis; Nagelkerke’s R?) by the PRS for BIP,
SCZ and MDD is depicted for the different P-value cutoffs used in the calculation of the PRS. Principal components were included in the
models to control for population stratification. 1%, P < 0.05; 2%, P < 0.001; 3*, P< 1x10™% 4% P<1x107% 5% P<1x1075% 6% P<1x107'%
7%, P < 1x 107 "2 BIP, bipolar disorder; MDD, major depressive disorder; NS, nonsignificant; PRS, polygenic risk score; SCZ, schizophrenia.
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Mean standardized PRS

02 -

Controls (n = 1545) all BOR cases (n = 998)

m BIP
m SCz
MDD

ns.;alP>0.5

BOR with MDD (n = 666) BOR without MDD (n = 292)

Figure 4. Polygenic risk score analysis in subgroups. Mean z-standardized PRS and standard error (s.e.) for BIP, SCZ and MDD are shown in the
control group, all cases, and in cases with and without comorbid MDD. PRS with a P-value threshold of P=0.05 were selected for this
comparison and principal components were included in the models to control for population stratification. The numbers at the top of each
bar indicate the significance of the difference in the respective PRS in comparison with the control group. 1%, P < 0.05; 2%, P < 0.001; 3%,
P<1x107% 4% P<1x107% 5% P<1x107% 6% P<1x107'% 7% P<1x 10~ "2 BIP, bipolar disorder; BOR, borderline personality disorder;
MDD, major depressive disorder; NS, nonsignificant; PRS, polygenic risk score; SCZ, schizophrenia.

and they also do so with SCZ and MDD. This hypothesis is
supported by the present observation of a genetic overlap
between BOR and SCZ, two disorders that are rarely misdiagnosed
by psychiatrists, despite the presence of common psychotic
symptoms.

An explanation could also be that the genetic commonality
between BOR and BIP, SCZ, and MDD might be due to a common
effect of MDD. Prior to the introduction of DSM-IV, a history of
MDD was required for a diagnosis of BIP, and MDD has a high
prevalence in patients with SCZ (25-85%).°>° Therefore, the MDD
genetic risk variants that are common to BOR, BIP, and SCZ may
be responsible for the observed overlap. For this reason, we
conducted two further analyses. First, we compared PRS of BIP,
SCZ and MDD in subsamples of BOR patients with (~60%) and
without comorbid MDD. Here, no differences in any of the PRS
were found. Second, we performed a joint analysis of PRS of BIP,
SCZ and MDD in a logistic regression analysis in BOR patients vs
controls. Here, no differences were found in any of the PRS.
Second, we performed a joint analysis of the PRS of BIP, SCZ and
MDD in a logistic regression analysis in BOR patients vs controls.
Here, both the SCZ and the MDD risk score explained variance in
BOR case—control status independently. Secondary analysis
revealed that the BIP risk score explained variance independently
of the MDD risk score but not of the SCZ risk score. These results
indicate that comorbidity with MDD does not explain the genetic
overlap between BOR and BIP, SCZ and MDD. However, the
training sets differ in terms of their power to detect underlying risk
variants, and therefore the derived PRS differ in terms of the
variance they can explain.

It must be noted, that in the PGC-BIP, -SCZ and -MDD samples,
controls are partly overlapping. However, it is unlikely that this
drives the genetic correlation of BOR with those disorders as the
overlap of controls in these samples is rather small (under 10%).>*
Also, the joint logistic regression analysis demonstrated that
polygenic risk for SCZ and MDD contributed independently to the
BOR risk (see above).

The present study had several limitations. First, despite being
one of the largest BOR samples available worldwide, the sample
size was small in terms of the estimation of heritability. Replication
of the present results is warranted in larger, independent cohorts.
This should include the investigation of non-European samples.
Second, no information was available on the presence of common
clinical features such as psychotic symptoms and affect instability.

Translational Psychiatry (2017), 1-9

This precluded detailed analysis of the identified genetic overlap.
Future studies in larger cohorts should also investigate more
detailed phenotypes, including comorbid axis | and axis |l
disorders, such as addiction and personality disorders, respec-
tively. Third, the observation that psychiatric patients often
establish non-random relationships with persons affected by the
same or another psychiatric disorder,”®> and therefore have
offspring with a higher genetic risk for psychiatric disorders,
might contribute to the observed genetic correlation of BOR with
BIP, SCZ and MDD. However, the LD-score method does not
investigate the impact of assortative mating.>? Therefore, assess-
ment of the degree to which this phenomenon may have
influenced the genetic correlation estimates was beyond the
scope of the present study.

Despite these limitations, the results indicate that neither
comorbidity with MDD nor risk variants that are exclusive to MDD
explain the genetic overlap between BOR and BIP, SCZ and MDD.
Future investigations of larger data sets for BOR and other
psychiatric disorders are warranted to refine the analysis of shared
and specific genetic risk.

Future studies are warranted to delineate the communalities
and specificities of the respective disorders.

CONCLUSION

In summary, the present study is the first GWAS of patients
diagnosed with BOR. The results suggest promising novel genes
and a novel pathway for BOR, and demonstrate that, rather than
being a discrete entity, BOR has an etiological overlap with the
major psychoses. The genetic overlap with BIP is consistent with
the observation that some diagnostic criteria for BOR overlap with
those for BIP. The overlap between BOR and SCZ and MDD is
consistent with previous observations of genetic overlap of other
psychiatric disorders.>® Given that BOR patients display specific
clinical symptoms not observed in patients with other psychiatric
disorders, knowledge of shared and non-shared genetic and
clinical features will be important for the development of
personalized treatment approaches.
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ABSTRACT

Background: Bipolar disorder (BD) is a common and highly heritable disorder of mood. Genome-wide association
studies (GWAS) have identified several independent susceptibility loci. In order to extract more biological in-
formation from GWAS data, multi-locus approaches represent powerful tools since they utilize knowledge about
biological processes to integrate functional sets of genes at strongly to moderately associated loci.

Methods: We conducted gene set enrichment analyses (GSEA) using 2.3 million single-nucleotide polymorph-
isms, 397 Reactome pathways and 24,025 patients with BD and controls. RNA expression of implicated in-
dividual genes and gene sets were examined in post-mortem brains across lifespan.

Results: Two pathways showed a significant enrichment after correction for multiple comparisons in the GSEA:
GRB2 events in ERBB2 signaling, for which 6 of 21 genes were BD associated (Pgpr = 0.0377), and NCAM signaling
for neurite out-growth, for which 11 out of 62 genes were BD associated (Prpr = 0.0451). Most pathway genes
showed peaks of RNA co-expression during fetal development and infancy and mapped to neocortical areas and
parts of the limbic system.

Limitations: Pathway associations were technically reproduced by two methods, although they were not formally
replicated in independent samples. Gene expression was explored in controls but not in patients.

Conclusions: Pathway analysis in large GWAS data of BD and follow-up of gene expression patterns in healthy
brains provide support for an involvement of neurodevelopmental processes in the etiology of this neu-
ropsychiatric disease. Future studies are required to further evaluate the relevance of the implicated genes on

pathway functioning and clinical aspects of BD.

1. Introduction

Bipolar disorder (BD) is a genetically complex mental illness. During
the past ten years, several genome-wide association studies (GWAS) of
BD were conducted and have identified 19 loci harboring common
genetic susceptibility variants (Sullivan et al., 2017). It is assumed that
with growing sample sizes the number of loci will increase, as has been
successfully demonstrated for schizophrenia, where GWAS in 61,000
patients found 155 independent loci (Sullivan et al., 2017).

Gene set enrichment analysis (GSEA) is a powerful tool to retrieve
more biological information from existing GWAS. Such multi-locus
approaches utilize functional frameworks of ontologies or pathways to
integrate genes at strongly to moderately associated loci. Using the
same sample size, GSEA therefore has greater statistical power to detect
a polygenic contribution of individually small effects to overall risk
than single-locus analyses (Lee et al., 2012).

Here, we applied GSEA algorithms to a large published GWAS on
BD, including approximately 9700 patients and 14,200 controls
(Miihleisen et al., 2014). We found associations between BD and two
signaling pathways involved in brain development.

21

2. Methods and materials
2.1. Phenotype and SNP data

For GSEA, we used combined data from the Systematic Investigation
of the Molecular Causes of Major Mood Disorders and Schizophrenia
(MooDS) and Psychiatric Genomics Consortium (PGC) consortia com-
prising 2,267,487 autosomal single-nucleotide polymorphisms (SNPs)
from 9747 patients with life-time diagnoses of BD and 14,278 controls,
as described by Miihleisen et al. (2014). Written informed consent was
obtained from all patients and controls before participation in the
study.

2.2. Gene set enrichment analyses

For discovery, we used Meta-Analysis Gene-set Enrichment of
variaNT Associations (MAGENTA; (Segre et al., 2010)) with its default
settings. At genome-wide level, each gene was mapped to the GWAS
SNP showing the lowest p-value within gene boundaries (RefSeq defi-
nitions), to minimize the effect of a potential confounding factor in-
troduced by overlapping gene boundaries (Sedeno-Cortés and Pavlidis,
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2014). P-values of these index SNPs were corrected for confounders
such as gene size, SNP density and linkage disequilibrium-related
properties in the stepwise multiple linear regression model of MA-
GENTA. Resulting gene scores were assigned to target gene sets. For
each target gene set, the observed number of gene scores above the
user-defined threshold (here 95%) is evaluated against the expected
number of gene scores above this threshold for gene sets of identical
size, randomly sampled from the genome multiple times. A non-para-
metric test produces the nominal p-value for each tested target gene set.
False-discovery rate (FDR) was used to correct for multiple testing
(PgpR)-

For secondary analysis of the significantly enriched pathways, we
applied Gene Set Analysis SNP (GSA-SNP; (Nam et al., 2010)) on the
same input data. GSA-SNP uses p-values of SNPs to calculate enrich-
ment scores by using the Z-statistic method. But instead of using the
maximum effect per gene as a proxy for the respective gene, we chose
the second-best p-value to represent the effect of each gene to avoid
spurious associations (Kwon et al., 2012).

For pathways, we used curated target gene sets (pathways) from
Reactome as available through the Molecular Signature Database (v6.0;
(Subramanian et al., 2005)). Their sizes were restricted from 20 to 200
to avoid overly narrow or broad gene sets. This resulted in 397 sets for
GSEA.

2.3. Gene expression data

BrainScope enables interactive visual exploration of spatial and
temporal human brain transcriptomes from the Allen Institute for Brain
Science (Huisman et al., 2017). Here we focused on the dataset Devel-
opmental Transcriptome from the BrainSpan atlas that had been pre-
processed and re-analyzed by BrainScope's developers resulting in the
dataset Developing human (comparative explorer) with RNA expression
levels of 18,233 genes (Entrez Gene definitions) that were z-score
normalized, to have a zero mean and a standard deviation of 1.

To explore changes of co-expressed genes in brain regions and time
windows, we used heat maps of the comparative explorer from
BrainScope under default settings. Each square of a heat map displayed
the average regional expression of the selected gene(s) across pooled
tissue samples (replicates, developmental stages) from donor brains
(controls). For BD-associated pathways from GSEA results, heat maps
were assembled and annotated using standard graphical software. The
brain regions covered neocortical areas including primary cortices
(auditory, motor, somatosensory, visual), pre- and orbitofrontal cor-
tices, the temporal cortex (inferolateral, posterior superior), the parietal
cortex (posteroventral); principal structures of the diencephalon in-
cluding parts of the basal ganglia (amygdala, striatum) and limbic
system (anterior cingulate, amygdala, hippocampus) coiled around and
connected to thalamus and hypothalamus; the hindbrain (cerebellar
cortex). The time windows comprised fetal development (from early

Table 1
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2nd trimester to birth), infancy (from birth to one year), childhood
(from two to eleven years), adolescence (from 13 to 19 years), and
adulthood (from 21 to 40 years). BrainScope, BrainSpan, and Entrez
Gene are publicly accessible at www.brainscope.nl, www.brainspan.
org, and www.ncbi.nlm.nih.gov/gene.

3. Results
3.1. Discovery and validation of BD-associated pathways

GSEA by MAGENTA on MooDS-PGC data revealed two study-wide
significant Reactome pathways when applying the significance criterion
of FDR < 0.05 (Table 1). The best finding was GRB2 events in ERBB2
signaling (Prpr = 0.0377), for which 6 genes were associated (NRAS,
KRAS, EGFR, ERBB2, MAPK1, HBEGF) out of 21 in the pathway. The
second finding was NCAM signaling for neurite out-growth (Pgpr =
0.0451) for which 11 of 62 genes were associated (NCAN, SPTBN2,
FYN, NRAS, CREBI, KRAS, CACNB3, COL2A1, CACNB2, MAPKI,
SPTBN1). Three significant genes were common to both pathways
(NRAS, KRAS, MAPK1). The associated genes showed a balanced con-
tribution to the total significance of the two target gene sets
(Supplementary Table 1). The subsequent GSEA by GSA-SNP on the
same input data validated the enrichments in the two target gene sets (P
= 4.80E-06 and P = 3.28E-08, respectively; Table 1).

3.2. Exploration of gene expression in BD-associated pathways

To assess patterns of co-expressed genes from both pathways in the
developing and adult brain, we used data from BrainSpan accessed
through BrainScope and screened (i) expression of each single asso-
ciated gene, (ii) expression of the combined set of associated genes
(Combined), and (iii) expression of associated genes in context of target
gene sets (Whole pathway). We found that five of the six genes enriched
in GRB2 events in ERBB2 signaling demonstrated expression peaks during
fetal development and infancy, while MAPK1 expression was lower
during prenatal stages and higher during postnatal stages. The com-
bined pattern of the six genes emphasized neural development and was
similar to the whole pathway pattern. In NCAM signaling for neurite out-
growth, four of the ten enriched genes (NCAN, FYN, NRAS, CREBI)
revealed high expression during fetal and early postnatal development.
CACNB2, MAPK1, SPTBN1, and SPTBNZ2 showed low expression during
fetal stages but increased later on, especially in infancy. Overall, most
genes showed peaks of co-expression during fetal development (early
second to third trimester) and infancy (birth to 18 months) in many
neocortical areas and parts of the limbic system. Spatio-temporal ex-
pression patterns of genes stratified by pathway are displayed in Fig. 1.

Association results of the GSEA. MAGENTA and GSA-SNP were used for discovery and validation steps.

MAGENTA, 95th percentile enrichment cutoff

GSA-SNP, 2nd best

SNP

Gene set name Gene set N genes Pppgr Sign. genes (gene p-value) Empirical p-value
identifier
GRB2 events in ERBB2 R-HSA-1963640 21 0.0377 NRAS (1.94E-03), KRAS (2.20E-03), EGFR (6.18E-03), ERBB2 (0.0196), MAPK1 4.80E-06
signaling (0.0222), HBEGF (0.0306)
NCAM signaling for neurite  R-HSA-375165 62 0.0451 NCAN (1.40E-05), SPTBN2 (6.64E-05), FYN (2.75E-04), NRAS (1.94E-03), CREB1 3.28E-08
out-growth (2.11E-03), KRAS (2.20E-03), CACNB3 (4.86E-03), COL2A1 (0.0127), CACNB2

(0.0138), MAPK1 (0.0222), SPTBN1 (0.0251)

Abbreviations: CACNB2, calcium voltage-gated channel auxiliary subunit beta 2; CACNB3, calcium voltage-gated channel auxiliary subunit beta 3; COL2A1, collagen type II alpha 1
chain; CREB1, cAMP responsive element binding protein 1; EGF, epidermal growth factor; EGFR, EGF receptor; ERBB2, Erb-B2 receptor tyrosine kinase 2; FYN, FYN proto-oncogene;
GRB2, Growth factor receptor-bound protein 2; HBEGF, heparin-binding EGF-like growth factor; KRAS, KRAS proto-oncogene, GTPase; MAPK1, mitogen-activated protein kinase 1; N,
number; NCAM1, neural cell adhesion molecule 1; NCAN, neurocan; NRAS, neuroblastoma RAS Viral oncogene homolog; Prpr, FDR-adjusted p-value; SPTBN1, spectrin beta, non-

erythrocytic 1; SPTBN2, spectrin beta, non-erythrocytic 2.
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Fig. 1. Expression patterns of genes in BD-associated pathways during normal brain development. Each square of a heat map displays the spatio-temporal expression of the
selected gene(s) in the indicated regions and stages in control brains. Levels of RNA expression are z-score normalized ranging from blue (low) over white (zero mean) to red (high).
Patterns are shown for single enriched genes (gene symbols), the combined set of enriched genes (combined), and the target gene set (whole pathway). ERBB2 is a member of the EGF
receptor family. Since ERBB2 has no ligand-binding domain, it needs a co-receptor to become activated. Upon binding of an EGF ligand, the ERBB2-EGFR heterodimer recruits adaptor
protein GRB2 leading to SOS1-mediated guanine-nucleotide exchange on RAS (KRAS, NRAS) and activation of RAF and the MAP kinase cascade (MAPK1). NCAM1 works on modulation
of intracellular signaling, either by activation of FGF receptors or cytoplasmic tyrosine kinases (FYN) that initiate MAP kinase cascades (MAPK1) and a transcription factor (CREB1) which
regulates expression of genes for growth and survival of neurites. Spectrins (SPTBN1, SPTBN2) are cytoskeletal molecules and manage to link RPTP-alpha to the cytoplasmic domain of
NCAM1. L-type channels (CACNB2, CACNB3) associate with NCAM1 in growth cones at the sites of NCAM1 clusters leading to processes that promote neurite out-growth. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

4, Discussion

Current disease models of BD suggest a multifactorial etiology re-
sulting from the additive effects of many gene variants at different loci
together with the effect of environmental factors. GWAS have demon-
strated that the genotype relative risks of the involved common sus-
ceptibility variants are small and that large sample sizes are necessary
to achieve sufficient statistical power to identify them (Sullivan et al.,
2017). In the present analysis, we chose to apply GSEA to our GWAS
data because this approach should have greater statistical power to
detect a polygenic contribution of individually small effects to overall
risk than single-locus analyses (Lee et al., 2012). To further strengthen
our findings, we investigated genes within the implicated pathways for
expression at milestones of normal brain development to obtain in-
formation on their relevance during ontogenetic stages. Biological
pathway studies of BD so far have found evidence for genes involved in
calcium channels, hormonal regulation, glutamate signaling, neural
development, and histone methylation (Nurnberger et al., 2014;
O'Dushlaine et al., 2015).

Our strongest finding was GRB2 events in ERBB2 signaling which
functions to promote cell proliferation, survival, and differentiation, not
only in the brain. Biologically, an association with ERBB2, EGFR, and
HBEGF is plausible because they form a ligand-activated receptor
complex for signaling and thus seem to be key players of that pathway.
The importance of ERBB2 in BD is further supported by a genome-wide
significant association finding (Hou et al., 2016) and by the observation
of dysregulated ERBB2 expression in the dorsolateral prefrontal cortex
in both BD and schizophrenia (Shao and Vawter, 2008). This expression
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alteration is significantly related to lifetime antipsychotic exposure,
supporting ERBB2 as target for clinical research. ErbB2/B4-deficient
mice exhibit elevated aggression and reduced prepulse inhibition that
both can be rescued by clozapine treatment, a frequently used anti-
psychotic medication (Barros et al., 2009). EGFR (alias ERBBI) is re-
ported to play an essential role in axon myelination during the first
postnatal weeks and can therefore be considered as an important reg-
ulator of neurodevelopment (Aguirre et al., 2007). The gene was also
supported by single SNP and haplotype analysis in a GWAS of BD (Sklar
et al., 2008). HBEGF is a EGF-like binding partner of EGFR and mice
lacking Hb-egf in the ventral forebrain showed abnormalities in psy-
chomotor behavior and neurotransmission which can be ameliorated by
typical or atypical antipsychotics (Oyagi et al., 2009).

Our second finding was NCAM signaling for neurite out-growth which
modulates neural differentiation and synaptic plasticity. Homophilic
binding of NCAM1 molecules at the cell-surface induces signaling that
leads to cell-cell adhesion and axon elongation. Association with NCAN
in this pathway is of major importance since experiments in rats have
demonstrated that interference of Ncaml-Ncaml bindings by con-
current Ncan inhibits these cellular processes (Retzler et al., 1996).
NCAN encodes an extracellular matrix proteoglycan and has been de-
scribed as important susceptibility gene for BD (Cichon et al., 2011).
Furthermore, NCAN was reported to be associated with brain devel-
opment in health and disease, specifically to gray matter loss in central
limbic regions and higher folding in the lateral occipital and prefrontal
cortex suggesting impairments of emotion perception and regulation
and top-down cognitive functioning (Dannlowski et al., 2015). Beha-
vioral abnormalities in Ncan-deficient mice show striking similarities
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with mania symptoms in humans that can be rescued by lithium
treatment, an established mood stabilizer (Miré et al., 2012). Associa-
tion with CACNB2 and CACNB3 represents another highlight of this
pathway, since abnormal calcium channel activity is considered to be
important for BD (Nurnberger et al., 2014). Unexpectedly, CACNAIC
was not found among enriched pathway genes, despite strong support
of this gene from SNP data. Further evaluation revealed that CACNAIC
was absent from the pathway definition. A possible link to our other
finding exists through a gene overlap of KRAS, NRAS and MAPK]1 as
well as binding between NCAM1 and EGFR.

In both pathways, most genes showed high co-expression during
fetal development and infancy in many neocortical and subcortical
areas indicating co-expression and possibly co-working of encoded
protein functions. These observations provide links to brain regions
where known pathophysiological changes in BD patients occur, for in-
stance, in the limbic system which is concerned with many aspects of
emotion and behavior.

4.1. Limitations

Although both pathway findings were technically reproduced by
two different approaches and are based on one of the largest GWAS data
of BD so far, association replication in independent samples was not
attempted. Gene expression was explored in control brains only, which
may show co-expression differences compared with BD brains. Follow-
up studies are required to further evaluate the relevance of our findings
for etiological and clinical aspects of BD.

5. Conclusion

The present study found evidence for associations between BD and
two signaling pathways. Integration of evidence from genetic studies,
brain developmental expression patterns and molecular functions of
these pathways support the hypothesis that neurodevelopmental pro-
cesses play an important role in the etiology of BD.
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Bipolar disorder (BD) is a common, highly heritable neuropsychiatric disease
characterized by recurrent episodes of mania and depression. Lithium is the
best-established long-term treatment for BD, even though individual response is highly
variable. Evidence suggests that some of this variability has a genetic basis. This is
supported by the largest genome-wide association study (GWAS) of lithium response
to date conducted by the International Consortium on Lithium Genetics (ConLiGen).
Recently, we performed the first genome-wide analysis of the involvement of miRNAs
in BD and identified nine BD-associated miRNAs. However, it is unknown whether these
MIiRNAs are also associated with lithium response in BD. In the present study, we
therefore tested whether common variants at these nine candidate miRNAs contribute to
the variance in lithium response in BD. Furthermore, we systematically analyzed whether
any other miRNA in the genome is implicated in the response to lithium. For this purpose,
we performed gene-based tests for all known miRNA coding genes in the ConLiGen
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GWAS dataset (n = 2,563 patients) using a set-based testing approach adapted from
the versatile gene-based test for GWAS (VEGAS2). In the candidate approach, miR-
499a showed a nominally significant association with lithium response, providing some
evidence for involvement in both development and treatment of BD. In the genome-
wide miRNA analysis, 71 miBRNAs showed nominally significant associations with the
dichotomous phenotype and 106 with the continuous trait for treatment response. A total
of 15 miRNAs revealed nominal significance in both phenotypes with miR-633 showing
the strongest association with the continuous trait (o = 9.80E-04) and miR-607 with the
dichotomous phenotype (p = 5.79E-04). No association between miRNAs and treatment
response to lithium in BD in either of the tested conditions withstood multiple testing
correction. Given the limited power of our study, the investigation of miRNAs in larger
GWAS samples of BD and lithium response is warranted.

Keywords: bipolar disorder, lithium response, microRNA, common variants, genome-wide association study

INTRODUCTION

Bipolar disorder (BD) is a severe neuropsychiatric condition
categorized by recurrent episodes of depression and mania. BD
is common, with a lifetime prevalence of around 1% in the
general population (1). The elevated morbidity and mortality, the
typically early age at onset in young adulthood and the chronic
course of BD make it a major public health problem, and BD
is classified as one of the top 25 leading causes of the global
burden of disease (2). Epidemiological and molecular genetic
data strongly suggest that BD is a complex disorder (3) which
means that both genetic and environmental factors influence
illness risk. Based on twin studies the overall heritability of BD
has been estimated to be over 70% (4, 5), suggesting a substantial
involvement of genetic factors in the development of the disease.

Mood stabilizers are used as the first-line mode of medication
in the treatment of BD (6). Amongst these drugs, lithium is
used as a preventive agent for manic and depressive episodes (7),
suicide attempts, and death by suicide, and shows the greatest
support for long-term relapse prevention (8, 9). Consequently,
lithium is endorsed as a first-line and best-established long-term
treatment for BD, even though individual response is highly
variable (6, 8, 10). Evidence suggests that some of the variability
in lithium response has a genetic basis (11, 12). This hypothesis is
supported by the largest genome-wide association study (GWAS)
of lithium response to date, which was conducted by the
International Consortium on Lithium Genetics (ConLiGen) (13,
14). The study investigated genomic data of 2,563 BD patients,
identifying a genome-wide significant locus on chromosome 21,
which contains two long, non-coding RNA genes (IncRNAs) (14).

Non-coding RNAs (ncRNAs) are transcribed from DNA but
do not encode protein, and are involved in complex mechanisms
of gene regulation, particularly in fine regulation of the timing
and level of expression of their target genes. Another class
of ncRNAs whose role in the pathophysiology of psychiatric
disorders is emerging, is that of microRNAs (miRNAs). miRNAs
are short RNA molecules, which in the mature processed
form are 21 to 25-nucleotides in length, that work as post-
transcriptional regulators of gene expression (15). To create

a mature miRNA, a primary miRNA (pri-miRNA, typically
>1,000 nucleotides in length) is first transcribed, and forms
a secondary structure through self-base pairing (16, 17). This
is cleaved by the Drosha-DiGeorge syndrome critical region
gene 8 (Drosha-DGCRS8) complex to create a pre-miRNA of
around 70 nucleotides (16). This double stranded RNA is
exported from the nucleus, cleaved by Dicer-transactivation-
responsive RNA-binding protein (Dicer-TRBP) to form the
mature miRNA (16), which can then target complementary
messenger RNA (mRNA) transcripts through the RNA-induced
silencing complex (RISC) to regulate expression (e.g., via mRNA
degradation or translational repression) (18). Several studies
have reported that miRNAs are potential predictors of treatment
response in complex genetic disorders (19-21) including lithium
response in BD (22). Furthermore, miRNAs are implicated
in biological pathways that regulate brain development and
synaptic plasticity (23, 24). Indeed, miR-137 has emerged as a
key risk gene in schizophrenia, and is known to regulate the
expression of several genes that are independently associated with
schizophrenia (25, 26). This implies the potential involvement of
miRNAs in the pathogenesis of psychiatric disorders including
BD. This hypothesis is further supported by the results of a
large GWAS of BD (27) where a single-nucleotide polymorphism
(SNP) flanking miR-2113 was amongst the strongest findings.

Our group performed the first genome-wide analysis of
the involvement of miRNAs in the development of BD, in a
sample of 9,747 patients and 14,278 controls (28) in which we
identified nine BD-associated miRNAs that withstood stringent
Bonferroni-correction for multiple testing. However, it is largely
unknown whether these miRNAs are also associated with lithium
response in BD.

Therefore, the aim of the present study was to determine
whether common variants at any of the nine BD-associated
miRNAs contribute to the variance in lithium response in BD.
Furthermore, we systematically analyzed whether any other
miRNA is implicated in the response to lithium. For this purpose,
we performed window-based association testing for all known
miRNA coding genes in the largest GWAS dataset of lithium
response so far.
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MATERIALS AND METHODS

Sample Description

Analyses were performed using summary statistics from the
previously published GWAS of lithium response in BD patients
(n = 2,563 patients) (14). These GWAS datasets were collected
by ConLiGen and combine imputed genotype data from 22
contributing sites from four continents (Europe, America, Asia,
and Australia). The study was approved by the respective local
ethics committees. Written informed consent was obtained from
all participants prior to inclusion. The Alda scale was used to
create a dichotomous (good vs. poor response to lithium) and a
continuous measure (range 0-10) for the evaluation of long-term
treatment response to lithium. Briefly, the Alda scale measures
symptom improvement in the course of lithium treatment (A
score, range 0-10), which is then weighted against five criteria
(B score) that assess confounding factors, each scored 0, 1, or
2. The total score is calculated by subtracting the total B score
from the A score. Negative scores are set to 0 by default leading
to a total score range from 0 to 10. For the purpose of the
present analysis, subjects with a total score of 7 or higher were
defined as showing “good response” to lithium treatment in the
dichotomous phenotype. As continuous measurement, we used
the A score, but excluded all individuals with a total B score
greater than 4, as continuous measure (14, 29).

Definition of Candidate and Genome-Wide
miRNAs

Information on the nine BD-associated miRNAs was obtained
from our previously published genome-wide analysis of miRNAs
in BD (28). The chromosomal positions of the miRNAs were
obtained from the miRBase database (release 21) (30).

For the genome-wide miRNA analysis
chromosomal positions for all 1,871 remaining miRNAs
were obtained from miRBase (release 21). miRNAs which were
not located on autosomal chromosomes (1 = 120) were removed
from further analysis. Only miRNA genes which were covered
in the summary statistics of lithium response were included,
resulting in 1,692 miRNAs which were tested in the genome-wide
analysis. For each gene, the entire preprocessed transcript +
20 kilobase (kb) flanking sequence were analyzed, which would
include the majority of the regulatory regions (17).

association

miRNA-Based Association Tests

For the gene-based tests, we applied a set-based testing approach
adapted from the versatile gene-based test for GWAS (VEGAS2)
(31, 32) with a minor correction for the top-0.1-test option (33).
This algorithm is obtainable upon request. The top-0.1-test was
used since it showed the highest sensitivity with less than 1% false
positives across a variety of investigated gene-level methods (34).
The applied statistical algorithm is described in more detail in
the article by Mishra and Macgregor (32). Briefly, we grouped
SNPs within the miRNA loci £ 20 kb flanking sequence together
and calculated a set-based test statistic as the sum of the x2 one
degree of freedom association P-values within the miRNA. The
observed test statistic was compared with simulated test statistics
from the multivariate normal distribution with correlation equal

to the corresponding LD structure as derived from the 1,000
Genomes phase 3 European population genotypes (35, 36). We
calculated an empirical miRNA-based P-value as the proportion
of simulated test statistics above the observed test statistic. For
the purposes of the present study, we used the top-0.1-test
option which summarizes the 10% most significant SNPs for each
miRNA.

Using the two summary statistics, miRNA-based P-values
were calculated for all miRNAs. The calculated miRNA-based
P-values were corrected for multiple testing according to
Benjamini-Hochberg.

Enrichment Tests

To test whether nominally significant SNPs were enriched within
miRNAs and their flanking regions, we conducted the Fisher’s
Exact Test for each summary statistic separately. Additionally, we
tested whether the number of cis-miR-eQTL SNPs identified by
Huan et al. (37) with a p-value of < 0.05 was higher than expected
using the Fisher’s Exact Test.

RESULTS

Of the nine tested BD-associated miRNAs, miR-499a showed
nominally significant P-values in both datasets (dichotomous
and continuous treatment response, Table 1). Of the remaining
1,692 miRNAs tested for the genome-wide miRNA analysis,
71 miRNAs showed nominally significant associations with
the dichotomous and 106 with the continuous treatment
response. Fifteen miRNAs revealed nominal significance with
both phenotypes. miR-633 showed the strongest association
with the continuous phenotype (p = 9.80E-04). Regarding
the dichotomous phenotype, miR-607 showed the strongest
association (p = 5.79E-04). No association between miRNAs
and treatment response to lithium in BD in either of the tested
conditions withstood multiple testing correction (Tables 1, 2).

The number of nominally significant SNPs in both of
our GWAS of lithium response located at miRNA loci
(n = 6,321 and n = 5,742 for continuous and dichotomous
measurement, respectively) was not significantly higher than
expected (p = 9.96E-01 and p = 1 for continuous and
dichotomous measurement, respectively, Fisher’s Exact Test).

The number of cis-miR-eQTL SNPs [identified by Huan et
al. (37)] in our summary statistics (n = 341 and n = 318 for
continuous and dichotomous measurement, respectively) were
significantly higher than expected (p = 3.31E-05 and p = 6.23E-
03 for continuous and dichotomous measurement, respectively,
Fisher’s Exact Test).

DISCUSSION

The current study investigated whether common variants at BD-
associated miRNA, or any other miRNA loci, contribute to the
differences in lithium response in BD patients.

miR-499a showed a nominally significant association with
lithium response in the candidate approach. Although the
association did not withstand correction for multiple testing, this
result provides some evidence that miR-499a might be involved
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TABLE 1 | Results of the window-based tests for the nine BD-associated miRNAs.

miRNA [position] n SNPs p miRNA Pcorr MiIRNA Top SNP p Top SNP
[position]

A) Dichotomous Treatment Response Measure

miR-499a [chr20:34990376-34990497] 87 1.71E-02 9.31E-01 rs117616040 2.27E-08
[chr20:34977725]

miR-135a-1 [chr3:52294219-52294308] 41 9.29E-02 9.31E-01 rs699465 1.98E-02
[chr3:52276426]

let-7g [chr3:52268278-52268361] 44 1.04E-01 9.31E-01 rs699465 1.98E-02
[chr3:52276426)

miR-644a [chr20:34466325-34466418] 35 2.03E-01 9.37E-01 rs7266300 9.76E-03
[chr20:34449603]

miR-708 [chr11:79402022-79402109] 130 3.51E-01 9.50E-01 rs12275848 7.89E-02
[chr11:79416285]

miR-1908 [chr11:61815161-61815240] 39 4.33E-01 9.50E-01 rs61897792 3.46E-02
[chr11:61819414]

miR-640 [chr19:19435063-19435158] 44 6.08E-01 9.55E-01 rs79954596 1.74E-01
[chr19:19437834]

B) Continuous Treatment Response Measure

miR-499a [chr20:34990376-34990497] 87 3.18E-02 7.52E-01 rs117616040 3.73E-03
[chr20:34977725]

miR-708 [chr11:79402022-79402109] 130 7.37E-02 8.02E-01 rs1355423 2.05E-02
[chr11:79420556]

miR-611 [chr11:61792495-61792561] 33 9.79E-02 8.22E-01 rs174532 3.30E-03
[chr11:61781402]

miR-644a [chr20:34466325-34466418] 35 1.95E-01 8.50E-01 rs7266300 6.47E-02
[chr20:34449603]

miR-1908 [chr11:61815161-61815240] 39 2.45E-01 8.64E-01 rs968567 3.20E-02
[chr11:61828092]

miR-640 [chr19:19435063-19435158] 45 2.69E-01 9.52E-01 rs79954596 1.15E-02
[chr19:19437834]

let-7g [chr3:562268278-52268361] 44 6.40E-01 9.81E-01 rs58315325 2.80E-02
[chr3:52261812]

miR-135a-1 [chr3:52294219-52294308] 41 7.81E-01 9.86E-01 rs34135146 6.28E-02
[chr3:52279416]

miR-581 [chr5:53951504-53951599] 55 9.22E-01 7.52E-01 rs697112 1.61E-01

[chr5:53964849]

microRNAs (miRNAs) are sorted according to their miRNA-based P-value. Genome build used is GRCh38 (hg38). Abbreviations: miRNA, microRNA; position, genomic position; nSNPs,
number of investigated SNPs; p miRNA, miRNA-based P-value; pcorr MiRNA, Benjamini-Hochberg corrected miRNA-based P-value; Top SNR, top single-nucleotide polymorphism

within gene; p Top SNR, P-value of the Top SNP within gene.

in both development and treatment of BD. A previous study has
shown an upregulation of this miRNA in the prefrontal cortex
of patients with depression (38). In another study, miR-499a was
differentially expressed in the postmortem brains of BD patients
compared with controls (39). Furthermore, a recent study by
Banach et al. (40) reported lower expression levels of miR-499 in
the peripheral blood of BD patients during depressive episodes in
comparison to remission, suggesting miR-499 as a potential new
biomarker of illness state in BD.

Overall, the results of our candidate approach do not suggest
that individual BD-associated miRNAs might have a strong
influence on differential responses to lithium treatment in BD as

no association withstood multiple testing correction. On the one
hand, this might at least in part reflect that the power to detect
associations between common variants and lithium response
was limited in the present study, even though the ConLiGen
GWAS comprised several thousand individuals (41). On the
other hand, it might also indicate that the genetic factors that
contribute to BD etiology are different from those contributing to
treatment response or illness course. That there are such effects
in multifactorial diseases is supported by a study in ulcerative
colitis in which no SNPs from 163 inflammatory bowel disease
susceptibility loci (42) were found to be associated with the
disease course (43).
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TABLE 2 | Results of the window-based tests for the top five genome-wide miRNAs.

miRNA [position] n SNPs p miRNA Pcorr MiRNA Top SNP p Top SNP
[position]

A) Dichotomous Treatment Response Measure

miR-607 [chr10:96828669-96828764] 48 5.79E-04 9.31E-01 rs111682442 2.73E-04
[chr10:96823685]

miR-8085 [chr19:44758657-44758721] 44 2.54E-03 9.31E-01 rs7249244 1.11E-04
[chr19:44742441]

miR-1296 [chr10:63372957-63373048] 62 4.13E-03 9.31E-01 rs10995527 5.47E-03
[chr10:63387659]

B) Continuous Treatment Response Measure

miR-633 [chr17:62944215-62944312] 29 9.80E-04 7.562E-01 rs1588368 1.21E-04
[chr17:62938848]

miR-6516 [chr17:77089417-77089497] 183 1.97E-03 8.02E-01 rs2411054 2.68E-05
[chr17:77074245]

miR-218-1 [chr4:20528275-20528384] 105 2.13E-03 8.22E-01 rs540146 6.08E-04
[chr4:20544433]

miR-7704 [chr2:176188843-176188901] 68 2.20E-03 8.50E-01 rs7589870 1.26E-03
[chr2:176208720]

miR-548e [chr10:110988926-110989013] 54 2.48E-03 8.64E-01 rs1327551 1.09E-03

[chr10:111008438]

microRNAs (miRNAs) are sorted according to their miRNA-based P-value. Genome build used is GRCh38 (hg38). Abbreviations: miRNA, microRNA; position, genomic position; nSNPs,
number of investigated SNPs; p miRNA, miRNA-based P-value; pcorr MIRNA, Benjamini-Hochberg corrected miRNA-based P-value; Top SNF, top single-nucleotide polymorphism

within gene; p Top SNF, P-value of the Top SNP within gene.

In our systematic, genome-wide analysis of miRNAs, 106
miRNAs revealed nominally significant associations with the
continuous and 71 with the dichotomous lithium treatment
response.

The intergenic miR-633 located on chromosome 17 showed
the strongest association with the continuous phenotype
(p = 9.80E-04). To date, few published studies have investigated
the function of miR-633. Interestingly, one study reported that
miR-633 was differentially regulated in the cerebrospinal fluid
of patients with multiple sclerosis compared to patients with
other neurologic diseases. In addition, miR-633 differentiated
relapsing-remitting from secondary progressive multiple
sclerosis courses suggesting this miRNA as a potential biomarker
for disease course in multiple sclerosis (44).

miR-607, an intergenic miRNA located upstream of the
ligand dependent nuclear receptor corepressor (LCOR) gene on
chromosome 10, displayed the strongest association with the
dichotomous treatment response measure (p = 5.79E-04). The
function of this miRNA has been poorly characterized so far,
so that we cannot currently speculate about possible disease-
and treatment-relevant biological processes. Further research is
needed to elucidate the potential role of miR-607 in health or
disease.

No association between miRNAs and BD treatment response
to lithium in either of the tested conditions withstood multiple
testing correction. In addition, we did not observe a significant
enrichment for SNPs at all microRNA loci in the present study.

Given the limited power of our study, future investigation of
miRNAs in larger GWAS samples of BD and lithium response is
warranted as better understanding of genetic factors contributing
to disease etiology and treatment response might enable the
individualization of treatment as well as the identification of
novel therapeutic targets (45).

In the present study, we investigated all currently known
miRNAs regardless of their tissue or developmental expression
patterns. Approximately 70% of ncRNAs are thought to be
brain expressed (23) and are dynamically regulated during
development and over the lifespan. While the exact mechanisms
by which lithium exerts its therapeutic effects remain unclear,
pharmacokinetics and pharmacodynamics highlight the
importance of specific tissues (e.g., brain and kidney) in
treatment responsiveness (46, 47). Therefore, an analysis
including miRNAs expressed specifically in these tissues would
seem to be a rational follow-up step to reduce the multiple testing
burden and to narrow-down the miRNAs to those that a priori
may have a greater chance to be involved in lithium response.
Unfortunately, a systematic enrichment analyses for miRNAs in
particular tissues would be premature, since there are currently
no comprehensive expression databases derived from normal
tissue covering all known miRNAs investigated in the present
study. Data on miRNA expression at various developmental
stages is also still limited, as non-polyadenylated transcripts are
typically not captured with standard library preparation for RNA
sequencing. Furthermore, some miRNAs may only be expressed
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during early developmental stages but can still have an influence
on lithium response later on in life, particularly if expression
is induced by pharmaceutical treatment. Nevertheless, these
aspects remain important and should be considered in future
analyses as soon as more comprehensive data on miRNA
expression become available.

Using the present approach, we were not able to investigate
SNPs with trans-expression quantitative trait loci (eQTL)
effects on miRNAs. Previous studies suggest that a substantial
proportion of the identified miR-eQTLs are trans-eQTLs (48).
Therefore, future investigations into the molecular interactions
underlying the association between miRNA trans-eQTLs and
treatment response to lithium in BD are also warranted. Huan et
al. (37) conducted a genome-wide miR-eQTL mapping study and
found consistent evidence for 5,269 cis-miR-eQTLs for 76 mature
microRNAs. The significant enrichment for cis-miR-eQTL SNPs
found in our summary statistics provides some evidence for the
importance of cis-miR-eQTLs in lithium response, although we
were not able to identify cis-miR-eQTL SNPs in our top findings
since those miRNAs were not among the 76 mature microRNAs
reported by Huan et al. (37).

Moreover, miRNAs only represent one class of non-coding
RNAs. In the ConLiGen GWAS a genome-wide significant locus
containing two IncRNAs was identified (14). Further analyses on
the contribution of IncRNAs to lithium response are therefore
warranted. This was beyond the scope of the present analysis as
the current understanding of the predicted structure of IncRNA
molecules and their biological functions remains limited (49).

In conclusion, our analyses do not provide strong evidence
that miRNAs are involved in individual response to lithium
treatment in BD, as no association between miRNAs and
lithium response withstood multiple testing correction. Our data
should still be interesting for follow-up of independent studies,
particularly when sufficient data is available to accurately define
the tissue and temporal expression profile of all human miRNAs,
which would allow a more targeted analysis of brain-expressed
miRNAs, thereby reducing the search space to miRNAs with
relevant expression profiles. We did not find any strong effect
that could be useful in terms of a personalized treatment for
individual patients. This does not exclude a possible (small) effect
of miRNAs on lithium response, and further independent and
even larger studies should be envisaged to clarify this question.
In parallel, the investigation of other biological mechanisms
possibly contributing to lithium treatment response may provide
insights for individualizing future pharmacotherapy in BD.
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5 General Discussion

Important advances in psychiatric genetics have been made in the recent years,
with many replicated discoveries of common, rare and de novo variants that are
converging on specific pathways and biological mechanisms. These successes
predominantly result from the foundation of international consortia and their combined
efforts in leveraging resources. Besides getting a better understanding of the genetic
architecture these efforts also resulted in the development of novel bioinformatics
tools. These improved tools were developed to cope with the limitations inherent to
GWAS and ultimately unravel the complete molecular genetic basis of complex
disorders. The studies described in this thesis aim to deepen our understanding of
psychiatric disorders by the application of different bioinformatics tools and biological
information to already existing GWAS data.

A complete portrait of the genetic architecture for any psychiatric disorder (or
even any complex disease) does not yet exist. Gaining a more complete knowledge of
the genetic contributors will therefore be of exceptional importance. To achieve this,
respect must be paid to both the phenotypic and the genotypic heterogeneity. This is
of particular relevance for psychiatric disorders, since symptoms are self-reported,
differing assessment instruments are used, and comorbidities are complicating the
clear definition of the phenotype (Breen et al., 2016). Furthermore, the misclassification
of a phenotype, especially in case-control studies, has been shown to dramatically
reduce the power to detect effects (Edwards, Haynes, Levenstien, Finch, & Gordon,
2005; Manchia, Cullis, et al., 2013). This is particularly true for BD, where the range of
symptoms is diverse and overlapping with other disorders such as schizophrenia or
major depressive disorder (American Psychiatric Association, 2013a). Despite the fact
that most researchers disagree with the dichotomous concept of the established
diagnostic and statistical manuals, still no consensus has been found on how to
improve it (Angst, 2007). Promising approaches to circumvent the phenotypic
heterogeneity in psychiatric disorder studies and to define more homogeneous
etiological subgroups are to consider biology-derived phenotypic aspects, such as
response to drug treatment or endophenotypes, deeply phenotyped samples or
extreme group comparisons which all already yielded successes (Gershon et al., 2018;
Gottesman & Gould, 2003; Ibrahim-Verbaas et al., 2016; Manchia, Adli, et al., 2013;
Peloso et al., 2016; Riglin et al., 2016; Zabaneh et al., 2017).
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The observed heterogeneity of any psychiatric disorder does not only manifest
on a phenomenological level but also in the genome. Already early studies revealed
that a familial overlap among different disorders was present (Kendler et al., 2011).
Nowadays, with the aid of systematic and well-powered genetic studies, such as
GWAS, the extensive cross-disorder heritability and high genetic correlations among
some disorders has been established (Anttila et al., 2017; Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2013; Witt et al., 2017; Wray et al., 2018).
Furthermore, GWAS resulted in a plethora of SNPs associated with common
disorders. However, the effect size of these SNPs is small, and the individual variant
is neither necessary nor sufficient to cause the disorder. At this point it should be kept
in mind that GWAS are by design best-powered to detect associations with variants
that are common in the population (Hirschhorn & Daly, 2005). Due to the relatively
small effects sizes of the associated variants, it soon became clear that large sample
sizes are needed to reliably detect susceptibility genes. The combined efforts, the data-
sharing mentality and the ever-increasing sample sizes are just some of the
advantages of consortia (Psychiatric GWAS Consortium Steering Committee, 2009).
Future studies investigating common and rare variants will be based on even larger
sample sizes and as empirical evidence and simulations for GWAS have shown, after
a certain samples size has been reached, the number of genome-wide significant loci
will increase linearly (Levinson et al.,, 2014). Even if the approach of ever-growing
sample sizes without deep phenotypic information has been widely criticized, it will
definitely help unraveling the genetic architecture of disorder-specific and cross-
disorder effects (Sullivan et al., 2017). The increase in sample sizes will be continued
until all most important biological pathways involved in the respective trait/disorder will
have been identified. However, some limitations are inherent to GWAS and cannot be
conquered by increasing sample size alone. SNPs identified by GWAS usually don’t
identify the causal allele or gene itself, more likely the locus implicated several genes
within the region. In fact, the functional effect of the GWAS hits is rarely understood,
and the variant often have a regulatory effect on a gene outside the risk locus. The
common SNPs found by GWAS have been estimated to explain only part, albeit a
sometimes large part, of the phenotypic heritability for psychiatric disorders.
Consequently, it could be argued that the so often discussed “missing heritability” is
actually more likely to be hidden (Eichler et al., 2010; Manolio et al., 2009; Yang et al.,
2010).
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The discovered polygenicity of psychiatric disorders resulted in the assumption
that the complex genetic architecture underlying mental disorders is based on sets of
functionally related genes rather than single independent variants. It is hypothesized,
that the investigation of these gene-sets will not only yield in a better understanding of
the disorder but also in improved treatment options (Breen et al., 2016; Smoller et al.,
2018; Sullivan et al., 2012). Based on these assumptions, a wealth of methods that
leverage GWAS by implementation of biological information was published over the
last years. Gene-set analysis methods are among the most frequently used novel
methods since they not only allow the investigation of the joint effects of SNPs but also
their biological interpretation. The last years have shown that the development and
accurate application of reliable analysis methods can lead to an enormous increment
of significant results and enable the in-silico investigation of functional mechanisms
underlying complex disorders. Even though bioinformatics tools have become more
user-friendly and consequently open to more researchers, it is indispensable to
understand the limitations and prerequisites of the methods applied since the over-
interpretation of their results may lead to deceptive results and waste of time, money
and effort in (functional) follow-up attempts. However, it is not always easy to decide
which method is best-suited as many, especially older tools are poorly explained.

The reported studies within this thesis aim to contribute to the field of psychiatric
genetics by leveraging results from (publicly available) GWAS through applying biology
informed methods. In the study by Forstner et al. (2017), we systematically
investigated whether genome-wide significant loci associated with schizophrenia also
contribute to the development of bipolar disorder. This study is an excellent example
of the differences arising from comparing publicly available summary statistics. Firstly,
even though imputation of summary statistics was done to circumvent the fact that
different panels for the studies were used in the first place, still not all schizophrenia-
associated loci could be investigated in the bipolar data set. Secondly, a complicated
correction algorithm for the possible sample overlap (in particular for the control
samples) was applied because neglecting this issue can result in inflated false positive
rates (Zhu, Anttila, Smoller, & Lee, 2018). Since this study only investigated candidate
SNPs, merely self-contained methods were appropriate to investigate the combined
effect of the resulting SNPs associated with both disorders. Interestingly, results of
both methods identified gene-sets described in earlier studies important in fundamental

neuronal processes and human diseases such as calcium channel activity or
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glutamate receptor signaling (Nurnberger et al., 2014; Ripke et al., 2013; Sklar et al.,
2011). These findings are consistent with the previous reported genetic overlap
between schizophrenia and bipolar disorder not just on the single SNP-level but also
on the gene-set-level. Even though the combination of different GSA algorithms and
databases is recommended, it is important to be aware of the specifics each method
entails and interpret the results accordingly.

In the study by Witt et al. (2017), we took full advantage of a well-established
genome-wide analysis pipeline (https://github.com/Nealelab/ricopili) not only to
systematically investigate borderline personality disorder but also its genetic overlaps
with other psychiatric disorders. This is of particular interest since borderline
personality disorder and BD share some of the symptoms and the potential comorbidity
between these two disorders is an ongoing debate (Fornaro et al., 2016). Since the
estimated heritability of borderline personality disorder is limited and the genetic
architecture complex, single marker analysis was unlikely to generate significant
results with our sample size. Therefore, gene-level and gene-set analysis were
conducted. To enhance the interpretability of the GSA results, we based our analysis
on GO-terms solely but replicated the top finding with two independent methods. This
resulted in a robust association with the gene-set called exocytosis. In neuronal
synapses, exocytosis is triggered by an influx of calcium and critically underlies
synaptic signaling. Dysregulated neuronal signaling and exocytosis are core features
of psychiatric disorders (e.g. autism spectrum disorders, intellectual disability, BIP,
SCZ and MDD) (Cupertino et al., 2016; Pescosolido, Gamsiz, Nagpal, & Morrow, 2013;
Sullivan et al., 2008; Zhao et al., 2015). Furthermore, significant genetic correlation
was found between borderline personality disorder and BD as well as a significant
correlation between a genetic risk score for BD with borderline personality disorder.
Since the investigation of single markers did not yield significant associations, this
study further supports the idea that only the interpretation of the joint effect of SNPs
will result in meaningful results. However, the results must be interpreted with caution
since the sample size was small in relation to the estimated heritability.

The study by Mihleisen, Reinbold et al. (2017) was based on the largest sample
of BD patients at that time and aimed to extract more biological information by applying
GSA tools and explored the implicated genes for expression. The implicated gene-sets
themselves revealed novel insights into the etiology of BD, for example, we found a

pathway involved in the promotion of cell proliferation, survival, and differentiation, not
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only in the brain. But it is interesting to mention that plenty of the underlying genes
have been previously reported to be associated with psychiatric disorders (Cichon et
al., 2011; Hou et al., 2016; Sklar et al., 2008). However, this study again is a good
example why it is important to understand not only the algorithms applied but also the
databases used since one of the most replicated findings in BD (CACNA1C) was not
even present in the chosen database and therefore had no chance of being found.
However, these results further support the hypothesis that the genetic underpinnings
of psychiatric disorders are more likely to function as a set than on a single variant
basis.

The last study reported within the framework of this thesis systematically
investigated the influence of microRNAs in lithium response in BD. Lithium is the best-
established long-term treatment for BD, even though individual response is highly
variable (Baldessarini, Tondo, & Hennen, 2003; Garnham et al., 2007; Geddes &
Miklowitz, 2013). The main aim of the study was to investigate whether common
variants associated with BD also influence the treatment response to lithium. Despite
the hypothesis-driven approach, no BD-associated microRNA revealed a statistically
significant association with lithium response. Furthermore, no association between any
microRNA and treatment response to lithium withstood multiple testing correction. This
was surprising since evidence from literature pointed not only to a potential link of
microRNAs and treatment response in various complex disorders but also to an
involvement in brain development and psychiatric disorders (Campos-Parra et al.,
2017; Fineberg, Kosik, & Davidson, 2009; Hunsberger et al., 2015; Q. Liu et al., 2017;
Muhleisen et al., 2014; Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). These results suggest that the genetic factors that contribute to BD
are different from those contributing to treatment response or illness course.
Furthermore, the self-contained analysis confirmed that no significant enrichment for
SNPs at all microRNA loci was observed. However, an important limiting factor in the
accomplishment and interpretation of this study represents the scarcity of microRNA-
specific information such as expression profiles.

All the studies reported within this framework aimed to shed additional light on
the complex genetic architecture underlying psychiatric disorders, and bipolar disorder
specifically. When comparing the outcomes of the four studies described herein, it
becomes apparent that each bioinformatics tool has its merits but the shear amount of

methods available and the often scarcely described parameters applied make it difficult
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to reliably compare results between studies. Further, it becomes clear that only the
integrative investigation of all genetic variants together will help to discover the disease
pathomechanisms. Therefore, not only robust methods and computational resources

but also large and deeply phenotyped samples will be required for future studies.
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