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Abstract  

Psychiatric disorders are common, heritable, often chronic and devastating 

illnesses who heavily decline quality of life of the patients and their environment. The 

high genetic correlations across the disorders and their diagnostic criteria reinforce the 

growing discomfort with the current classification and boost the search for more refined 

measurements. Genome-wide association studies (GWAS) are a highly successful 

method for identifying common genetic risk variants underlying common disorders. In 

psychiatric disorders, the emerging picture suggests contribution from a large number 

of single-nucleotide polymorphisms (SNPs) of individually small effect sizes as well as 

rare copy number variants (CNVs) and rare variants discovered by next-generation 

sequencing. Most of these findings have emerged during the last years through large 

collaborative efforts which enabled powerful meta-analyses. Nevertheless, individual 

SNPs and CNVs seem to explain only a minor fraction of the heritable variance for 

psychiatric disorders. Therefore, the development and correct application of novel 

bioinformatics methods is necessary to cope with the limitations inherent to GWAS. 

Biology-informed methods already led to important advances with many discoveries of 

common, rare and de novo variants that are converging on specific pathways and 

biological mechanisms. 

The studies described in this thesis aim to deepen our understanding of 

psychiatric disorders through the application of novel bioinformatics tools to existing 

GWAS data sets. We found evidence that schizophrenia-associated loci contribute to 

the development of bipolar disorder and that the overlapping SNPs converge in 

pathways previously reported in other psychiatric disorders. We revealed two genes 

and a pathway significantly associated with borderline personality disorder previously 

implicated in mental disorders and demonstrated the statistically significant genetic 

overlap with other psychiatric disorders. We identified two pathways suggesting an 

involvement of neurodevelopmental processes in the etiology of bipolar disorder. We 

found that common variants at nine previously reported BD-associated miRNAs do not 

strongly contribute to the differential responses to lithium treatment in BD. Taken 

together, these studies show that the application of biology-informed bioinformatic 

methods enhance the insights gained from GWAS and demonstrate the plethora of 

methods available nowadays. It is the hope that the progress in understanding the 

genetic architecture of psychiatric disorders will also help to improve the clinical 

classification and ultimately yield in better treatment options.  
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1 Introduction 

Mental disorders are among the disorders with the highest non-fatal burden 

(GBD 2016 Disease and Injury Incidence and Prevalence Collaborators, 2017) and 

have devastating effects on the quality of life of patients and their environment. This is 

aggravated by the fact that there is still no satisfactory drug treatment available (Breen 

et al., 2016). Psychiatric disorders are categorized as common disorders with lifetime 

prevalence estimates for anxiety disorders of 28.8% and 20.8% for mood disorders 

(Kessler et al., 2005). A major challenge in the evaluation of biological underpinnings 

of psychiatric disorders is their pronounced heterogeneity. Diagnoses are based on 

structured questionnaires, a combination of various symptoms and a minimal number 

and duration of these symptoms required to fulfill the criteria of a diagnosis (Breen et 

al., 2016; Papassotiropoulos & de Quervain, 2015). Different disease etiologies may 

result in the same clinical diagnosis. Despite these obstacles, substantial heritability 

(h2) estimates have been reported ranging from 0.37 for major depressive disorder 

(MDD) to 0.75 for bipolar disorder (BD) up to 0.81 for schizophrenia (SCZ) (Sullivan, 

Daly, & O'Donovan, 2012). Genome-wide association studies (GWAS) have become 

the major tool in the unbiased investigation of common variants in common disorders 

since their underlying rationale is the “common disease, common variant” hypothesis, 

stating that common disorders are caused at least in part by variants shared by more 

than 1-5% of the population (Pritchard, 2001; Reich & Lander, 2001). Soon after the 

first successful studies of GWAS emerged, consortia were formed to rapidly increase 

sample sizes (Psychiatric GWAS Consortium Steering Committee, 2009). The public 

availability of the GWAS results from consortia accelerated research even further. 

However, the biological interpretation of GWAS results remains a key challenge since 

the function of many single-nucleotide polymorphisms (SNPs) is not well understood 

thereby the interpretation of the respective SNP is mostly based on the gene function 

of the corresponding gene. This may be a reasonable approach, but the mapping of 

SNPs to genes is not without a challenge as they may lie outside gene boundaries. 

Furthermore, even well-powered GWAS have only been able to explain a small portion 

of the phenotypic variance leaving plenty of missing heritability (Manolio et al., 2009; 

Visscher, 2008; Visscher et al., 2017). Despite the success of GWAS it has become 

abundantly clear that this method is just the beginning since testing for association of 

single loci is insufficient in dissecting the complex genetic architecture underlying 
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psychiatric disorders. Gene and gene-set based methods can be seen as 

complementary follow-up approaches since they focus on the joint effect of SNPs. 

Typical gene-set analysis (GSA) approaches aggregate SNPs to genes and then 

aggregate them to sets of genes based on shared properties. These properties can be 

based on biological or functional characteristics and can be retrieved from databases 

or created by the researcher. The application of GSA to GWAS data has proven to be 

a valuable approach since it addresses several limitations characteristic to GWAS. 

GSA enables the interpretation of the joint effect of SNPs with moderate effects on the 

basis of prior biological or functional knowledge which is not possible when only GWAS 

are computed. Due to the polygenic nature of psychiatric disorders the accumulation 

of these variants will empower the detection of genetic risk factors (The Network 

Pathway Analysis Subgroup of the Psychiatric Genomics Consortium, 2015). A bulk of 

GSA methods have been proposed over the years but no gold-standard has been 

defined yet resulting in various challenges like absence of comparability, reproducibility 

and reliability (de Leeuw, Neale, Heskes, & Posthuma, 2016; Mooney & Wilmot, 2015; 

Ramanan, Shen, Moore, & Saykin, 2012; L. Wang, Jia, Wolfinger, Chen, & Zhao, 

2011). Thanks to GSA, not only the biology-based interpretation of GWAS results but 

also the detection of novel variants and genes associated with the disorder is possible. 

Moreover, the easy accessibility of GWAS led to the development of many more 

methods e.g. methods aiming to improve GWAS algorithms by optimizing limitations 

inherent to GWAS (de Leeuw, Mooij, Heskes, & Posthuma, 2015; Loh et al., 2015; 

Svishcheva, Axenovich, Belonogova, van Duijn, & Aulchenko, 2012), methods 

focusing on fine-mapping and deducing causalities (Benner et al., 2016; Bowden, 

Davey Smith, & Burgess, 2015), or methods estimating and partitioning genetic 

variance (Bulik-Sullivan, Finucane, et al., 2015; Bulik-Sullivan, Loh, et al., 2015; 

Finucane et al., 2015; J. J. Lee, McGue, Iacono, & Chow, 2018). Other methods also 

enable the investigation of genetic correlation between disorders or the predictions of 

disease risks (Purcell et al., 2009). The application of these bioinformatics methods 

enabled insights into disease-related biological processes by identifying hundreds of 

low-frequency and common variants that contribute to psychiatric disorders and 

revealed the genetic overlap between disorders (Cross-Disorder Group of the 

Psychiatric Genomics Consortium, 2013; Visscher et al., 2017). But despite all the new 

insights and technical advances in the field, the underlying pathological mechanisms 
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of psychiatric disorders still remain elusive and drug discovery is halting (Fibiger, 

2012). 

This thesis aims to contribute to the field of psychiatric genomics by leveraging 

(publicly) available data-sets and bioinformatics tools primarily focusing on the 

biologically driven computational analysis of bipolar disorder from different angles. To 

achieve this, various gene and gene-set based methods were applied to different 

cohorts enabling the discovery of new susceptibility genes and gene-sets.  

 

This thesis is based on the following four publications. The letters indicate my 

contributions to each publication and are listed after each reference: A - Designed the 
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disorder reveals genetic overlap with bipolar disorder, major depression and 
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processes in bipolar disorder. Journal of Affective Disorders. 

doi:10.1016/j.jad.2017.11.068 (A-D) 
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Response in Bipolar Disorder. Accepted for publication in Frontiers in 

Psychiatry. doi:10.3389/fpsyt.2018.00207 (A-D) 
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2 Theoretical Background  

2.1 Psychiatric disorders  

Mental disorders may be very broadly summarized by problems that people 

experience with their mind and their mood. Their devastating impact on the quality of 

life of patients, their relatives and the society as a whole has been reported widely 

(GBD 2016 Disease and Injury Incidence and Prevalence Collaborators, 2017). One 

of the most frequently used standardized manuals to diagnose psychiatric disorders is 

the Diagnostic and Statistical Manual of Mental Disorders (DSM) of the American 

Psychiatric Association now with its fifth edition released (American Psychiatric 

Association, 2013b). Therein, the diagnosis of a disorders is based on checklists with 

disorders defined by the presence of a minimal number of symptoms, a required 

duration and the associated distress or disability, resulting in clinical heterogeneity 

within disorders (Breen et al., 2016; Papassotiropoulos & de Quervain, 2015). As 

defined by the American Psychiatric Association (2013a), bipolar disorder is a chronic 

mental disease characterized by recurrent episodes of depression and mania or 

hypomania with a mean age at onset of the first episode with approximately 18 years. 

Additionally, patients frequently suffer from co-occurring mental disorders. 

Approximately three-fourths of BD patients suffer from any anxiety disorder and more 

than half from a substance use disorder (Merikangas et al., 2011). This is aggravated 

by the fact that the lifetime risk of committing suicide in people suffering from bipolar 

disorder has been estimated to be at least 15 times that of the general population 

(Marangell et al., 2006). Epidemiological studies revealed unsettling lifetime 

prevalence estimates of 46.6% of participants suffering from at least one of the DSM-

IV disorders assessed (Kessler et al., 2005) with still no satisfactory drug treatment 

available for any disorder (Breen et al., 2016). 

The familial aggregation for most of the major psychiatric conditions has been 

reported since the very beginning of the systematic investigation of psychiatric 

disorders (Kendler & Eaves, 2005). Moreover, early family studies already suggested 

that multiple psychiatric disorders cluster within affected families leading to the 

assumption that heritable factors within and across disorders must exist (Kendler et 

al., 2011).  



12 
 

However successful the recent investigation of genetic contributions to 

psychiatric disorders has been, it has also raised concerns such as the categorical 

definition of disorders since genetic analysis clearly suggest a more continuous relation 

between disorders and health (Larsson, Anckarsater, Råstam, Chang, & Lichtenstein, 

2011; Robinson et al., 2016).  

Even though the application of the analysis methods within this thesis was 

mainly to gain insights into the biological underpinnings of BD, it is important to note 

that the methods and strategies can easily be applied to any other psychiatric disorders 

or genetically complex traits in general. 

2.2 Genetic architecture of psychiatric disorders 

Genetic architecture refers to the broad-sense phenotypic heritability since it 

can be summarized as all the characteristics of genetic variation contributing to the 

heritable phenotypic variability (Mackay, 2001). More specifically, this refers to the 

nature and number of genetic variants contributing to a disease, their population 

frequencies and effect sizes and their interactions with each other and the environment 

(Gratten, Wray, Keller, & Visscher, 2014). The exposure of the genetic architecture of 

a complex disorder is elementary when aiming to fully understand its cause of disease. 

An addition to the traditional concept of heritability is the so-called SNP-chip heritability 

(h2
SNP) referring to the proportion of variance explained by all variants assayed by 

GWAS arrays (Wray et al., 2014). Estimates suggest that one-third to two-thirds of 

heritability of complex disorders can be explained by common and imputed SNPs 

(Manolio et al., 2009; Visscher et al., 2017; Yang et al., 2013). It is important to keep 

in mind that the human genome not just varies between people on the level of single 

nucleotides but also on a structural level, including copy number variations (CNVs), 

insertions or deletions (INDELs) and translocations (Alkan, Coe, & Eichler, 2011; 

Sudmant et al., 2015). Another distinction is based on the minor allele frequency (MAF) 

of a variant where common, low-frequency and rare genetic variants are defined herein 

as those with a MAF of ≥5%, ≥1% but <5% and <1%, respectively (Welter et al., 2014). 

The architecture of a trait does not only influence the choice of analysis method but 

also the whole design of a study. Since complex traits are assumed to be polygenic, 

the contribution of many, common and ancient variants with small effect sizes are 

implicated resulting in large population-based cohorts and genome-wide analysis 

strategies. Even though this work focuses on common variants the contribution of rare, 
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de novo or structural variants e.g. the recurrent 22q11.2 deletion in SCZ has been 

widely established (Bassett, Marshall, Lionel, Chow, & Scherer, 2008; Kirov, 2015). 

Whole-exome sequencing (WES) and whole-genome sequencing (WGS) studies 

which have only recently become feasible, contribute greatly to the understanding of 

disease mechanisms since they allow the accurate detection of rare and structural 

variants more accurately (Sanders et al., 2017; Zarrei, MacDonald, Merico, & Scherer, 

2015). Interestingly, early micro-array-based studies already allowed to reliably detect 

rare variants (large microdeletions and –duplications covering at least several hundred 

kilobases) associated with psychiatric disorders and suggest that the rare variants 

converge on the same biological pathways as the common variants (Fromer et al., 

2014; Purcell et al., 2014; Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014).  

Pleiotropy describes the phenomenon that a specific variant has an effect on 

multiple traits. This phenomenon has often been described in psychiatric disorders 

(Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013; Pickrell et al., 

2016). Despite the high pleiotropy and phenomenological overlap, studies also 

revealed that the genetic architecture varies between psychiatric disorders with for 

example smaller rates of rare, de novo variants and CNVs in schizophrenia and bipolar 

disorder than in autism (Visscher et al., 2017).  

In the case of BD, GWAS have identified the first susceptibility genes (Cichon 

et al., 2011; Mühleisen et al., 2014; Sklar et al., 2011; Stahl et al., 2018). So far, GWAS 

as well as gene-set analyses have suggested major roles for calcium signal 

transmission, neurodevelopmental genes, and microRNAs/non-coding RNAs 

(Forstner et al., 2015; Mühleisen et al., 2017; Sklar et al., 2011). However, the majority 

of underlying pathways and regulatory networks remain unknown (Nurnberger et al., 

2014). For bipolar disorder, common alleles are estimated to explain 25-38% of the 

phenotypic variance resulting in a substantial part of the heritability unexplained 

(Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013; Sang H. Lee, 

Wray, Goddard, & Visscher, 2011). It is hypothesized that rare variants with higher 

penetrance may contribute to BD susceptibility and account at least for a part of the 

hidden heritability (Cross-Disorder Group of the Psychiatric Genomics Consortium, 

2013; Goes, 2016). This hypothesis may be particularly promising in severely affected 

individuals with a strong family history of the disease. Even though some studies 

suggest an influence of large CNVs in the etiology of BD, it seems that they do not play 
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a major role in BD (Green et al., 2016; Priebe et al., 2012). Preliminary results from 

sequencing studies suggest an enrichment of rare variants in specific gene-sets, such 

as axon guidance, calcium signaling, G protein-coupled receptors and potassium 

channels (Ament et al., 2015; Cruceanu et al., 2017; Fiorentino et al., 2014; Georgi et 

al., 2014; Goes et al., 2016; Strauss et al., 2014). 

As briefly outlined above, impressive progress has been made over the last 10 

years with regard to understanding the genetic architecture of psychiatric disorders. 

Part of this success is attributable to technological (such as SNP microarray and next-

generation sequencing technology) and methodological (GWAS, WES, WGS; 

bioinformatics analyses) developments, part to better insights into the number and 

nature of the involved variants and the enormous sample sizes needed to successfully 

identify them. These findings will enable more accurate and biology-informed 

diagnosis, screenings, prognosis and therapies (Timpson, Greenwood, Soranzo, 

Lawson, & Richards, 2017). 

2.3 Data analytics for common variants 

GWAS were developed to systematically analyze common variants and CNVs. 

One of the first milestone papers in the field of psychiatric genomics was published for 

schizophrenia by O'Donovan et al. (2008). The success of GWAS was accelerated by 

the decreasing costs of genotyping resulting in an excess of GWAS-based 

publications. However, since common variants associated with complex disorders 

individually have small effect sizes it soon became clear that only through consortia 

and large-scale collaborations the sample sizes become large enough to reliably detect 

these effects (Psychiatric GWAS Consortium Steering Committee, 2009). Individual 

variants meeting stringent statistical criteria (genome-wide significance plus 

replication) that were found within these collaborative efforts still only account for a 

fraction of the estimated heritability of the disorders under study. Therefore, improved 

methods allowing a combined view at different genetic factors and better addressing 

the polygenic nature of psychiatric disorders were developed. A method suggested to 

aggregate these individual effects is the polygenic risk score (PRS) analysis that 

captures the effects of all variants below a certain threshold (Purcell et al., 2009). PRS 

have also been used to investigate the variants shared across disorders and 

successfully found genetic overlap not just between psychiatric disorders (Duncan et 

al., 2017; Tesli et al., 2014) but also with psychological phenotypes (Hatzimanolis et 
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al., 2015; Kauppi et al., 2015). LD score regression represents an efficient and 

powerful method not just to estimate the genetic correlation between traits but also to 

estimate the SNP-chip heritability without the need of individual-level data (Bulik-

Sullivan, Finucane, et al., 2015; Bulik-Sullivan, Loh, et al., 2015). A different way to 

combine single variants is the gene-set analysis approach. Methods based on this 

approach rely on the assumption that the aggregation of SNPs within biologically 

meaningful sets of genes has greater statistical power to detect the polygenic 

architecture underlying psychiatric disorders than a single-SNP approach (Ramanan 

et al., 2012). 
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3 Methods  

3.1 Genome-wide Association Analysis 

GWAS were based on the hypothesis that common genetic variants (with low 

to moderate penetrance) explain some of the observed phenotypic variance for 

complex traits (Hirschhorn & Daly, 2005). GWAS do not require a biological hypothesis 

(such as candidate gene studies) and can be applied to discrete or quantitative 

phenotypes. A typical GWAS workflow comprises 5 steps: 1) SNP and sample quality 

control of raw data 2) Principal Component Analysis (PCA) 3) Imputation 4) GWAS 

and 5) Replication or meta-analysis. The following section briefly describes these 

steps.  

First, since millions of SNPs undergo association testing in GWAS, rigorous 

quality control procedures need to be in place. It is crucial for further analysis to filter 

out SNPs and samples that do not meet standard quality control thresholds (Balding, 

2006; Carvalho, Bengtsson, Speed, & Irizarry, 2007; Teo et al., 2007).  

Second, the presence of systematic differences in allele frequencies in 

subgroups possibly due to different ancestry is called population stratification and 

represents one of the major confounding factors in GWAS (Lander & Schork, 1994). 

Owing to this, the genomic inflation factor λ is usually computed to assess whether the 

test statistics are inflated and need to be adjusted. Most often, population stratification 

is corrected for by excluding individuals based on their eigenvalues from PCA or by 

including principal components as covariates in the analysis model later on (L. Liu, 

Zhang, Liu, & Arendt, 2013; Price et al., 2006).  

Third, statistical imputation of unobserved variants is an efficient way to improve 

comparability between different genotyping arrays and studies. It is facilitated by the 

fact that the genotypes of not directly genotyped variants can be estimated by the 

haplotypes inferred from directly genotyped SNPs and the haplotypes observed from 

a fully sequenced reference panel (Biernacka et al., 2009; Delaneau, Marchini, & 

Zagury, 2011; Howie, Donnelly, & Marchini, 2009; Howie, Fuchsberger, Stephens, 

Marchini, & Abecasis, 2012). Genetic Imputation also enables the fine-mapping of 

causal variants and has become a routine step in most GWAS pipelines.  

Forth, linear regression is generally used to perform an analysis on quantitative 

traits and logistic regression on dichotomous traits. Even though other methods are 
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proposed for GWAS, these two are the most frequently used methods since they also 

allow to adjust for confounders. Pe'er, Yelensky, Altshuler, and Daly (2008) postulated 

that a p-value smaller than 5x10-8 should be considered genome-wide significant 

corresponding to the Bonferroni correction for 1’000’000 independent tests, 

representing the estimated number of common variants across the European genome. 

Fifth, to control for false positive findings, the replication of GWAS findings in an 

independent sample or meta-analysis is strongly recommended. Replication studies 

need to consist of a sample size large enough to be able to detect the effect of the 

susceptibility allele. The replication sample needs to be independent but of the same 

population and the identical phenotype must be investigated (Chanock et al., 2007). It 

is vital to validate that the direction of effect of the associated allele is the same in both 

GWAS. However, Skol, Scott, Abecasis, and Boehnke (2006) reported that a joint 

analysis of the replication and the discovery sample together almost always has more 

power than the two-stage approach. Currently, also mega-analysis (a method to jointly 

analyze individual-level data from different studies) are performed, however, statistics 

have shown that meta-analysis are as efficient as a mega-analysis, with the benefits 

of having less privacy restrictions and logistical challenges since only summary 

statistics are shared between groups (Lin & Zeng, 2010). 

3.2 Gene-Based Analysis  

Testing only the associations of single SNPs has been demonstrated to be 

insufficient to dissect the complex genetic architecture of psychiatric disorders. The 

focus on genes rather than single SNPs as the unit of analysis has long been proposed 

and gene-based association scores are now reported more frequently (Hammerschlag 

et al., 2017; Kang, Jiang, & Cui, 2013; Neale & Sham, 2004). GWAS results often are 

difficult to replicate due to factors such as population differences, lack of power, allelic 

heterogeneity or diverse genotyping coverage (Hägg et al., 2015; Yang et al., 2012). 

In contrast, gene-based association analyses are suited to detect genes that may 

increase susceptibility to complex diseases since they are able to aggregate the 

cumulative effect of alleles within one gene and its regulatory region. Since gene 

association scores often are the basis for downstream analysis, it is prudent to carefully 

decide which method to choose. Several methods of how to compute a gene-based p-

value have been proposed, mainly differing in their assumption of the underlying 

genetic architecture. A common and simple way is to choose the most significant SNP 
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to represent the association of the whole gene (Segrè et al., 2010). Albeit this is a fast 

method, it is most sensitive when only one SNP in a gene shows association and 

neglecting the additive effect of SNPs can lead to a loss of power (Ramanan et al., 

2012). Alternatively, the calculation of a mean-based association p-value has been 

proposed, considering all SNPs within the gene boundaries. Still, this measurement 

can be biased by different aspects such as LD, coverage or gene size (de Leeuw et 

al., 2016). Other approaches allow the definition of a user-defined percentage of top 

associated SNPs to be used as a proxy for a gene association score consequently 

excluding SNPs diluting the summary statistics for a gene (Mishra & Macgregor, 2015). 

Novel methods also provide the opportunity to calculate multiple gene-based p-values 

and then aggregate them into a joint p-value which has the advantage of being more 

sensitive to different genetic architectures (de Leeuw et al., 2015).  

The definition of gene boundaries and therefore the assignment of SNPs to 

genes represents an important decision since it may influence not only the power of 

the gene-based analysis but also follow-up analysis such as GSA. The regulatory 

effects of SNPs located outside a gene have been widely demonstrated however the 

inclusion of SNPs within regulatory regions also enables the inclusion of SNPs not 

relevant to the gene (Holmans, 2010; Maston, Evans, & Green, 2006). Definition of 

gene windows ranging from 0kb up to 500kb have been reported in various studies 

(The Network Pathway Analysis Subgroup of the Psychiatric Genomics Consortium, 

2015; Veyrieras et al., 2008; K. Wang, Li, & Bucan, 2007). More recent approaches 

also allow the inclusion of distant SNPs in high LD with genic SNPs (Mishra & 

Macgregor, 2015). The inclusion of SNPs outside the gene boundaries increases the 

possibility of overlapping gene definitions and the number of SNPs that may be 

assigned to more than one gene, therefore potentially leading to an overinflated test 

statistic if not corrected for. This multiple-counting issue becomes even more 

momentous in the context of GSA, where one SNP can account for the strong 

association signals of several genes located within the same target gene-set (Dixson 

et al., 2014; Sedeño-Cortés & Pavlidis, 2014). A prominent region often excluded from 

analysis is the major histocompatibility complex (MHC) on chromosome 6 since it is 

known for its strong LD.  
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3.3 Gene-Set Analysis  

The advantages of analyzing the cumulative effect of genes rather than single 

SNPs has long been discussed and GSA have become a requirement when publishing 

genome-wide association studies. Especially in polygenic traits, the assumption that 

SNPs underlying a disorder are enriched in genes constituting to a set of biologically 

meaningful genes has been widely accepted. Since the development of gene-set 

enrichment methods mainly for gene expression studies, the field has come a long way 

improving the methods not only in their purely computational burden but also the 

awareness and correction of confounding factors yielded in more reliable and 

statistically reproducible results (de Leeuw et al., 2016; Mooney & Wilmot, 2015). 

Nowadays, a broad range of GSA tools are freely available, however, despite some 

differences, the fundamental structures are highly comparable. The typical analysis of 

GSA consists of the following steps: 1) defining target gene-sets 2) formulating null 

hypothesis 3) mapping SNPs to genes 4) calculating gene association scores 5) 

calculating gene-set association scores 6) assessing gene-set significance. 

3.3.1 Gene-Set Definition 

In GSA, gene-sets are defined as a group of related genes that share a 

particular attribute, and the aim is to determine whether this attribute is associated with 

the phenotype of interest. Information on biological pathways and processes is 

available through a vast number of databases differing in e.g. curation-level, organisms 

included or functional areas covered. Reactome is an open access, peer-reviewed and 

well-curated database of biological pathways and processes which is extensively 

cross-referenced to other resources (Croft et al., 2014; Fabregat et al., 2018). Other 

frequently used open-source resources are the Gene Ontology (GO; (Ashburner et al., 

2000; The Gene Ontology Consortium, 2017)) or the Kyoto Encyclopedia of Genes 

and Genomes databases (KEGG; (Kanehisa, Furumichi, Tanabe, Sato, & Morishima, 

2017; Kanehisa & Goto, 2000; Kanehisa, Sato, Kawashima, Furumichi, & Tanabe, 

2016)). Since GO is structured in a hierarchical way, it is necessary to account for the 

vastly overlapping gene-sets when systematically used for GSA. An easy way to 

download annotated gene-sets deriving from various sources is by accessing the 

Molecular Signatures Database (MSigDB, 

http://software.broadinstitute.org/gsea/msigdb/index.jsp). Ingenuity Knowledge Base 
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(Ingenuity Systems, Redwood City, CA, USA), a highly comprehensive and well-

structured database, represents a well-curated but commercial alternative. However, 

researchers are not restricted to limit themselves to previously described gene-sets 

from public resources since the definition of customized target gene-sets such as 

genes known to contribute to a disorder or genes based on a cellular function are a 

promising tool to unravel biological mechanisms underlying diseases (Jansen et al., 

2017; Nurnberger et al., 2014; Thapar et al., 2015).  

3.3.2 Statistical structures of GSA 

Even though a plethora of various gene-set analysis tools exist, only two 

different null hypothesis definitions are applied. The self-contained methods only 

consider genes in the target gene-set and test the association signal within this set 

against no signal. Whereas competitive methods consider all genes and test 

association of genes in the target gene-set against other genes not in this set. The 

competitive method may have less power to detect significant gene-sets when the 

genes associated with the trait are located in multiple gene-sets (Goeman & Bühlmann, 

2007). Nevertheless, the competitive methods are better suited for the analysis of 

polygenic traits since they are able to robustly account for systematic inflation arising 

from various sources whereas self-contained methods are not (Devlin & Roeder, 1999; 

Moskvina, Craddock, Holmans, Owen, & O’Donovan, 2006; Price et al., 2006). Caution 

has to be exercised when interpreting the results gained from a self-contained GSA 

since this method is only able to show how strong the association for some of the 

genes in the gene-set are but not its relevance compared to other gene-sets (Mooney 

& Wilmot, 2015). 

The second main difference between methods is the test statistic used for the 

computation of the gene-set association score where three main approaches can be 

distinguished. The simplest way is to apply a significance threshold to the gene-based 

p-values and count the number of genes designated as significant. A different but 

related approach is to rank the genes based on their p-values and then to check 

whether the target gene-set is enriched for highly ranked genes. Lastly a mean or sum-

based approach can be used to summarize the gene-based p-values within the target 

gene-set (Mooney & Wilmot, 2015; Ramanan et al., 2012). Systematic comparisons 

between methods have shown that mean-based methods yield the greatest power 
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since the ranking and partitioning of genes results in a loss of information (de Leeuw 

et al., 2016). 

Care should be taken when interpreting GSA results since several confounders 

have been reported to introduce significance even though no true relation exists. 

Statistically important factors to consider when applying GSA are the gene-set sizes, 

the size of genes itself and LD between them in the sense that large gene-sets 

consisting of large genes in high LD have the highest risk of becoming significant. The 

inflation of false-positives is especially strong if the most significant SNP was chosen 

to represent the association of the whole gene. Also, high LD between a truly disease-

associated gene with genes not related to the disease can lead to a significant 

enrichment of a non-causative gene-set when these genes cluster within the same 

gene-set (de Leeuw et al., 2016; L. Wang et al., 2011).  

3.3.3 GSA tools 

The main characteristics and differences of the competitive tools used within the 

context of this thesis will be described briefly (see also Table 1). The improved gene 

set enrichment analysis for genome-wide association study version 2 (i-

GSEA4GWASv2) is an easy-accessible, web-based resource based on the 

competitive GSEA algorithm developed by Subramanian et al. (2005) with the 

adaptation of permuting SNP labels instead of phenotype labels enabling the analysis 

of GWAS data. However, the method is not able to correct for the LD patterns between 

SNPs and therefore input data should only consist of a LD-independent set of SNPs 

(Zhang, Chang, Guo, & Wang, 2015). An additional representative of top-SNP 

methods is GSA-SNP with the advantage of using the kth best p-value within each 

gene instead of the traditionally used best SNP expected to result in fewer spurious 

association (Nam, Kim, Kim, & Kim, 2010). Meta-Analysis Gene-set Enrichment of 

variaNT Associations (MAGENTA), an additional top-SNP method based on 

Subramanian et al. (2005), has specifically been designed to analyze summary 

statistics derived from meta-analysis with the benefit of applying an elaborate 

correction algorithm to well-known confounders (Segrè et al., 2010). In contrast, 

INterval enRICHment analysis (INRICH) needs genotype data to create LD 

independent genomic intervals and is characterized by a sophisticated permutation 

scheme enabling the method to account for methodological biases, e.g. multiple 

counting of genes in high LD, effectively (P. H. Lee, O'Dushlaine, Thomas, & Purcell, 
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2012). Since this algorithm relies on independent intervals spread over the genome, 

the method can also be applied when only a subset of SNPs is tested provided these 

loci are independent and could have been distributed all over the genome.  

Multi-marker Analysis of GenoMic Annotation (MAGMA) represents a powerful and 

highly flexible tool enabling the analysis of genes and gene-sets. It is based on a 

regression approach for both gene and gene-set analysis but also consists of more 

traditional approaches making the comparison with other tools fast and easy (de 

Leeuw et al., 2015). Even though MAGMA is a fairly new tool it has become the tool of 

choice for many researchers resulting in publications in various high-impact journals 

(Gandal et al., 2018; Howard et al., 2018; Pardiñas et al., 2018). 

 

Table 1. Overview of GSA methods used 

Method Input Data Hypothesis 
tested 

Test-
statistic 

Description 

i-GSEA4GWASv2 SNP p-
values or 
gene p-
values 

Competitive Rank-
based 

GSEA-based method 
with SNP label 
permutation 

GSA-SNP SNP p-
values 

Competitive Rank-
based 

Uses kth best p-value as 
gene association score, 
offers multiple test 
statistics 

MAGENTA SNP p-
values 

Competitive Count-
based 

GSEA-based method for 
meta-analytic data  

INRICH SNP p-
values 

Competitive 
(self-
contained) 

Count-
based 

Permutation-based 
method that uses LD 
independent genomic 
interval regions  

MAGMA Raw 
genotypes, 
SNP p-
values or 
gene p-
values 

Competitive 
or self-
contained 

Mean-
based 

Regression-based, 
highly flexible and fast 
tool  

 

The application of multiple methods to the same data has been recommended 

since the genetic architecture of complex disorders is not yet entirely clear and 

therefore the most appropriate method may not be determined a priori. Furthermore, 

the so-called technical replication has often been proposed for validation since most 

studies are not able to replicate their GSA findings in an independent sample (Gui, Li, 
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Sham, & Cherny, 2011; The Network Pathway Analysis Subgroup of the Psychiatric 

Genomics Consortium, 2015). 
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4 Original Research Papers  

4.1 Identification of shared risk loci and pathways for bipolar disorder and 

schizophrenia 
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4.2 Genome-wide association study of borderline personality disorder 

reveals genetic overlap with bipolar disorder, major depression and 

schizophrenia  
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4.3 Gene set enrichment analysis and expression pattern exploration 

implicate an involvement of neurodevelopmental processes in bipolar disorder 
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4.4 Analysis of the Influence of microRNAs in Lithium Response in Bipolar 

Disorder 
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5 General Discussion  

Important advances in psychiatric genetics have been made in the recent years, 

with many replicated discoveries of common, rare and de novo variants that are 

converging on specific pathways and biological mechanisms. These successes 

predominantly result from the foundation of international consortia and their combined 

efforts in leveraging resources. Besides getting a better understanding of the genetic 

architecture these efforts also resulted in the development of novel bioinformatics 

tools. These improved tools were developed to cope with the limitations inherent to 

GWAS and ultimately unravel the complete molecular genetic basis of complex 

disorders. The studies described in this thesis aim to deepen our understanding of 

psychiatric disorders by the application of different bioinformatics tools and biological 

information to already existing GWAS data. 

A complete portrait of the genetic architecture for any psychiatric disorder (or 

even any complex disease) does not yet exist. Gaining a more complete knowledge of 

the genetic contributors will therefore be of exceptional importance. To achieve this, 

respect must be paid to both the phenotypic and the genotypic heterogeneity. This is 

of particular relevance for psychiatric disorders, since symptoms are self-reported, 

differing assessment instruments are used, and comorbidities are complicating the 

clear definition of the phenotype (Breen et al., 2016). Furthermore, the misclassification 

of a phenotype, especially in case-control studies, has been shown to dramatically 

reduce the power to detect effects (Edwards, Haynes, Levenstien, Finch, & Gordon, 

2005; Manchia, Cullis, et al., 2013). This is particularly true for BD, where the range of 

symptoms is diverse and overlapping with other disorders such as schizophrenia or 

major depressive disorder (American Psychiatric Association, 2013a). Despite the fact 

that most researchers disagree with the dichotomous concept of the established 

diagnostic and statistical manuals, still no consensus has been found on how to 

improve it (Angst, 2007). Promising approaches to circumvent the phenotypic 

heterogeneity in psychiatric disorder studies and to define more homogeneous 

etiological subgroups are to consider biology-derived phenotypic aspects, such as 

response to drug treatment or endophenotypes, deeply phenotyped samples or 

extreme group comparisons which all already yielded successes (Gershon et al., 2018; 

Gottesman & Gould, 2003; Ibrahim-Verbaas et al., 2016; Manchia, Adli, et al., 2013; 

Peloso et al., 2016; Riglin et al., 2016; Zabaneh et al., 2017). 
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The observed heterogeneity of any psychiatric disorder does not only manifest 

on a phenomenological level but also in the genome. Already early studies revealed 

that a familial overlap among different disorders was present (Kendler et al., 2011). 

Nowadays, with the aid of systematic and well-powered genetic studies, such as 

GWAS, the extensive cross-disorder heritability and high genetic correlations among 

some disorders has been established (Anttila et al., 2017; Cross-Disorder Group of the 

Psychiatric Genomics Consortium, 2013; Witt et al., 2017; Wray et al., 2018). 

Furthermore, GWAS resulted in a plethora of SNPs associated with common 

disorders. However, the effect size of these SNPs is small, and the individual variant 

is neither necessary nor sufficient to cause the disorder. At this point it should be kept 

in mind that GWAS are by design best-powered to detect associations with variants 

that are common in the population (Hirschhorn & Daly, 2005). Due to the relatively 

small effects sizes of the associated variants, it soon became clear that large sample 

sizes are needed to reliably detect susceptibility genes. The combined efforts, the data-

sharing mentality and the ever-increasing sample sizes are just some of the 

advantages of consortia (Psychiatric GWAS Consortium Steering Committee, 2009). 

Future studies investigating common and rare variants will be based on even larger 

sample sizes and as empirical evidence and simulations for GWAS have shown, after 

a certain samples size has been reached, the number of genome-wide significant loci 

will increase linearly (Levinson et al., 2014). Even if the approach of ever-growing 

sample sizes without deep phenotypic information has been widely criticized, it will 

definitely help unraveling the genetic architecture of disorder-specific and cross-

disorder effects (Sullivan et al., 2017). The increase in sample sizes will be continued 

until all most important biological pathways involved in the respective trait/disorder will 

have been identified. However, some limitations are inherent to GWAS and cannot be 

conquered by increasing sample size alone. SNPs identified by GWAS usually don’t 

identify the causal allele or gene itself, more likely the locus implicated several genes 

within the region. In fact, the functional effect of the GWAS hits is rarely understood, 

and the variant often have a regulatory effect on a gene outside the risk locus. The 

common SNPs found by GWAS have been estimated to explain only part, albeit a 

sometimes large part, of the phenotypic heritability for psychiatric disorders. 

Consequently, it could be argued that the so often discussed “missing heritability” is 

actually more likely to be hidden (Eichler et al., 2010; Manolio et al., 2009; Yang et al., 

2010).  
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The discovered polygenicity of psychiatric disorders resulted in the assumption 

that the complex genetic architecture underlying mental disorders is based on sets of 

functionally related genes rather than single independent variants. It is hypothesized, 

that the investigation of these gene-sets will not only yield in a better understanding of 

the disorder but also in improved treatment options (Breen et al., 2016; Smoller et al., 

2018; Sullivan et al., 2012). Based on these assumptions, a wealth of methods that 

leverage GWAS by implementation of biological information was published over the 

last years. Gene-set analysis methods are among the most frequently used novel 

methods since they not only allow the investigation of the joint effects of SNPs but also 

their biological interpretation. The last years have shown that the development and 

accurate application of reliable analysis methods can lead to an enormous increment 

of significant results and enable the in-silico investigation of functional mechanisms 

underlying complex disorders. Even though bioinformatics tools have become more 

user-friendly and consequently open to more researchers, it is indispensable to 

understand the limitations and prerequisites of the methods applied since the over-

interpretation of their results may lead to deceptive results and waste of time, money 

and effort in (functional) follow-up attempts. However, it is not always easy to decide 

which method is best-suited as many, especially older tools are poorly explained. 

The reported studies within this thesis aim to contribute to the field of psychiatric 

genetics by leveraging results from (publicly available) GWAS through applying biology 

informed methods. In the study by Forstner et al. (2017), we systematically 

investigated whether genome-wide significant loci associated with schizophrenia also 

contribute to the development of bipolar disorder. This study is an excellent example 

of the differences arising from comparing publicly available summary statistics. Firstly, 

even though imputation of summary statistics was done to circumvent the fact that 

different panels for the studies were used in the first place, still not all schizophrenia-

associated loci could be investigated in the bipolar data set. Secondly, a complicated 

correction algorithm for the possible sample overlap (in particular for the control 

samples) was applied because neglecting this issue can result in inflated false positive 

rates (Zhu, Anttila, Smoller, & Lee, 2018). Since this study only investigated candidate 

SNPs, merely self-contained methods were appropriate to investigate the combined 

effect of the resulting SNPs associated with both disorders. Interestingly, results of 

both methods identified gene-sets described in earlier studies important in fundamental 

neuronal processes and human diseases such as calcium channel activity or 
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glutamate receptor signaling (Nurnberger et al., 2014; Ripke et al., 2013; Sklar et al., 

2011). These findings are consistent with the previous reported genetic overlap 

between schizophrenia and bipolar disorder not just on the single SNP-level but also 

on the gene-set-level. Even though the combination of different GSA algorithms and 

databases is recommended, it is important to be aware of the specifics each method 

entails and interpret the results accordingly.  

In the study by Witt et al. (2017), we took full advantage of a well-established 

genome-wide analysis pipeline (https://github.com/Nealelab/ricopili) not only to 

systematically investigate borderline personality disorder but also its genetic overlaps 

with other psychiatric disorders. This is of particular interest since borderline 

personality disorder and BD share some of the symptoms and the potential comorbidity 

between these two disorders is an ongoing debate (Fornaro et al., 2016). Since the 

estimated heritability of borderline personality disorder is limited and the genetic 

architecture complex, single marker analysis was unlikely to generate significant 

results with our sample size. Therefore, gene-level and gene-set analysis were 

conducted. To enhance the interpretability of the GSA results, we based our analysis 

on GO-terms solely but replicated the top finding with two independent methods. This 

resulted in a robust association with the gene-set called exocytosis. In neuronal 

synapses, exocytosis is triggered by an influx of calcium and critically underlies 

synaptic signaling. Dysregulated neuronal signaling and exocytosis are core features 

of psychiatric disorders (e.g. autism spectrum disorders, intellectual disability, BIP, 

SCZ and MDD) (Cupertino et al., 2016; Pescosolido, Gamsiz, Nagpal, & Morrow, 2013; 

Sullivan et al., 2008; Zhao et al., 2015). Furthermore, significant genetic correlation 

was found between borderline personality disorder and BD as well as a significant 

correlation between a genetic risk score for BD with borderline personality disorder. 

Since the investigation of single markers did not yield significant associations, this 

study further supports the idea that only the interpretation of the joint effect of SNPs 

will result in meaningful results. However, the results must be interpreted with caution 

since the sample size was small in relation to the estimated heritability.  

The study by Mühleisen, Reinbold et al. (2017) was based on the largest sample 

of BD patients at that time and aimed to extract more biological information by applying 

GSA tools and explored the implicated genes for expression. The implicated gene-sets 

themselves revealed novel insights into the etiology of BD, for example, we found a 

pathway involved in the promotion of cell proliferation, survival, and differentiation, not 
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only in the brain. But it is interesting to mention that plenty of the underlying genes 

have been previously reported to be associated with psychiatric disorders (Cichon et 

al., 2011; Hou et al., 2016; Sklar et al., 2008). However, this study again is a good 

example why it is important to understand not only the algorithms applied but also the 

databases used since one of the most replicated findings in BD (CACNA1C) was not 

even present in the chosen database and therefore had no chance of being found. 

However, these results further support the hypothesis that the genetic underpinnings 

of psychiatric disorders are more likely to function as a set than on a single variant 

basis.  

The last study reported within the framework of this thesis systematically 

investigated the influence of microRNAs in lithium response in BD. Lithium is the best-

established long-term treatment for BD, even though individual response is highly 

variable (Baldessarini, Tondo, & Hennen, 2003; Garnham et al., 2007; Geddes & 

Miklowitz, 2013). The main aim of the study was to investigate whether common 

variants associated with BD also influence the treatment response to lithium. Despite 

the hypothesis-driven approach, no BD-associated microRNA revealed a statistically 

significant association with lithium response. Furthermore, no association between any 

microRNA and treatment response to lithium withstood multiple testing correction. This 

was surprising since evidence from literature pointed not only to a potential link of 

microRNAs and treatment response in various complex disorders but also to an 

involvement in brain development and psychiatric disorders (Campos-Parra et al., 

2017; Fineberg, Kosik, & Davidson, 2009; Hunsberger et al., 2015; Q. Liu et al., 2017; 

Mühleisen et al., 2014; Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014). These results suggest that the genetic factors that contribute to BD 

are different from those contributing to treatment response or illness course. 

Furthermore, the self-contained analysis confirmed that no significant enrichment for 

SNPs at all microRNA loci was observed. However, an important limiting factor in the 

accomplishment and interpretation of this study represents the scarcity of microRNA-

specific information such as expression profiles.  

All the studies reported within this framework aimed to shed additional light on 

the complex genetic architecture underlying psychiatric disorders, and bipolar disorder 

specifically. When comparing the outcomes of the four studies described herein, it 

becomes apparent that each bioinformatics tool has its merits but the shear amount of 

methods available and the often scarcely described parameters applied make it difficult 
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to reliably compare results between studies. Further, it becomes clear that only the 

integrative investigation of all genetic variants together will help to discover the disease 

pathomechanisms. Therefore, not only robust methods and computational resources 

but also large and deeply phenotyped samples will be required for future studies.  
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