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Abstract
Department of Physics

Ph.D.

Phase and Amplitude Dynamics of Quantum Self-Oscillators

by Ehud Amitai

Self-oscillators form a special class of oscillators, generating and maintaining a periodic

motion while having some (or complete) independence of the frequency spectrum of

oscillations from the spectrum of their power source. Pendulum clocks, brain neurons,

fireflies, and cardiac pacemaker cells, are all examples of self-oscillators. Self-oscillations

are not limited to the regime of classical physics, but are seen in the quantum regime

as well. In both regimes, self-oscillators may demonstrate two intriguing phenomena:

(1) Synchronization, a phenomenon in which self-oscillators adjust their rhythm due to

weak coupling to a drive or to another self-oscillating systems; (2) Amplitude death, a

phenomenon in which two or more coupled self-oscillators approach a stable rest-state.

In the work presented in this thesis, we have mostly investigated these phenomena in

quantum self-oscillators.

Chapter 2 tries to answer the question “Are there quantum effects in the synchronization

phenomenon, which cannot be modeled classically?” Using a quantum model of a self-

oscillator with nonlinearity in its energy spectrum, we have answered this question in the

affirmative. We have demonstrated that the anharmonic, discrete energy spectrum of the

oscillator leads to multiple resonances in both phase locking and frequency entrainment.

Coupling two quantum anharmonic self-oscillators, we show in Ch. 3 that genuine quan-

tum effects are also expected in the amplitude death phenomenon. This is apparent in

the multiple resonances of the mean phonon number of the oscillators, reflecting their

quantized nature.

Chapter 4 is concerned with the investigation of the synchronization phenomenon in

an experimental system, an optomechanical cell coupled to a drive. In the classical

parameter regime, we derive analytical Adler equations describing the synchronization of

the optomechanical cell to two different drives: (1) an optical drive and (2) a mechanical

drive. We demonstrate numerically that synchronization should also be observed in the

quantum parameter regime.

In Ch. 5 we describe our work in the field of Cooper pair splitters, a device consisting

of two quantum dots side-coupled to a conventional superconductor. In this work, we

go beyond the standard approximation of assuming the quantum dots to have a large

charging energy. We derive a low-energy Hamiltonian describing the system, and sug-

gest a scheme for the generation of a spin triplet state shared between the quantum

dots, therefore extending the capabilities of the Cooper pair splitter to create entangled

nonlocal electron pairs.

https://www.physik.unibas.ch/news.html
https://scholar.google.ch/citations?user=USR1dZ4AAAAJ&hl=en
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CHAPTER 1

THEORETICAL BACKGROUND

“Just the facts, ma’am”

Dan Aykroyd, Sgt. Joe Friday in the pseudo-parody

Dragnet (was actually not said by Sgt. Joe Friday

in the Dragnet radio or television series)

In this thesis, we describe our scientific research and discoveries that shed light on quan-

tum effects in the phase and amplitude dynamics of quantum self-oscillators, and our

contribution to quantum state engineering using Cooper pair splitters (CPSs). This

work did not, however, come out of the blue. It is best viewed in the context of re-

cent research [1, 12, 18, 55, 57, 59, 71, 72, 82, 83, 134, 135, 138, 139, 142, 143, 151],

placing additional building blocks on already grounded foundations. In order to better

understand the work described in this thesis, it is therefore required to understand many

relevant concepts and recent advances. While it is beyond the scope of this thesis to

indeed review all the required knowledge, we try in this chapter to explain and put into

context the most relevant part of it.

In Sec. 1.1 we discuss what defines and what are the characteristic features of a self-

oscillator [10, 99]. In part 1.1.1 of this section we discuss a generic model of a self-

oscillator, the van der Pol (vdP) model [130, 131]. We will show that this model contains

the essential characteristics of a self-oscillator, discuss its classical description, and move

further to discuss rather recent advances: The description of a vdP oscillator in the

quantum regime [72, 134]. This quantum vdP oscillator is used in the works presented

in Ch. 2 and in Ch. 3. We then describe the phase dynamics of self-oscillators that

lead to the phenomenon of synchronization in part 1.1.2 of this section. We explain the

classical phenomenon [10, 99], its quantum generalization [1, 12, 71, 72, 134, 135, 139],

and briefly discuss how to quantify synchronization in the quantum regime. In part 1.1.3

we explain the amplitude-death phenomenon: Dissipatively coupling two self-oscillators

may result in the decay and even complete stop of their oscillations. We discuss classical

and quantum [57] descriptions of this phenomenon. In part 1.1.4 we describe a specific

experimental platform in which self-oscillations may be observed, the optomechanical

1



Chapter 1. Theoretical background

system. We turn to introduce the different topic of CPSs in Sec. 1.2. Throughout the

body of work presented in this thesis, we have relied in our description on time-evolution

equations for quantum systems. Specifically, the master equation for the time-evolution

of a density matrix and the time-evolution equation for the Wigner function. We briefly

discuss the essentials of these in Sec. 1.3.

1.1 Self-oscillators

Self-oscillators form a special class of all oscillators [10, 99], containing diverse oscil-

lating objects such as pendulum clocks, blinking fireflies, contracting human hearts,

chemical Belousov-Zhabotinsky reactions, and brain neurons. As their name suggests,

self-oscillators generate and maintain a periodic motion while having “the complete or

partial independence of the frequency spectrum of oscillations from the spectrum of

the energy (power) source” [10, 70]. This description of self-oscillators implies that the

following essential features must be present in a self-oscillating system:

• Incoherent power source – in order to generate a periodic motion, or maintain

one in the presence of dissipation, the self-oscillator must contain a source of

power. This power source needs to be incoherent to allow for the independence of

the frequency spectrum of the self-oscillator from its own frequency spectrum (a

forced harmonic oscillator is therefore not a self-oscillator).

• Dissipation – to maintain a periodic motion in the presence of a power source,

some dissipative mechanism is needed to balance the energy gain.

Figure 1.1: The dependence of the power entering the system Pin and the power
leaving the system Pout as a function of f(A). (a) When the dependence of both Pin

and Pout is linear, the system would always gain or, alternatively, lose energy. No
stable-amplitude oscillations can occur. (b) When the dependence of at least one of
Pin and Pout is nonlinear (in this example – Pin), oscillations with stable amplitude A0

may develop.

2



Chapter 1. Theoretical background

• Nonlinearity – The power entering the system via the power source Pin and the

amount of power leaving the system via dissipation Pout are proportional to some

function of the amplitude of oscillations f(A). As shown in Fig. 1.1 (a), if both Pin

and Pout are linear functions of f(A), no stable periodic motion can be produced.

If at least one of Pin and Pout are nonlinear, a stable periodic motion can be

maintained, as shown in Fig. 1.1 (b).

This description of a self-oscillator, and these essential features, are also reflected in

the phase space picture of a self-oscillator. Since the motion of a self-oscillator is peri-

odic, its trajectory in phase space is a closed loop. Considering self-oscillators that can

be described using the position and momentum coordinates only, we show examples of

closed loops in Fig. 1.2 (a). As shown, these closed loops need not be circles. How-

ever, for closed loops which are sufficiently close to a circle, the notion of phase φ and

amplitude A0 can be easily defined, as depicted in Fig. 1.2 (a). Other trajectories in

the vicinity of the closed loop, will tend towards it. This is because trajectories with

smaller (larger) amplitudes would gain more (less) energy than they dissipate, therefore

growing (shrinking) in amplitude. Once a trajectory coincides with the closed loop, it is

in energetic equilibrium, and the amplitude is stable. For that reason, perturbations in

the amplitude will decay, returning to the stable amplitude A0, as seen in Fig. 1.2 (b).

Since the other trajectories in its vicinity spirals into it as time approaches infinity, the

closed loop is also named limit-cycle, and self-oscillators are named limit-cycle oscilla-

tors. While the amplitude of the self-oscillator is stable, the phase of the self-oscillator is

free. This is a direct result of the incoherence of the power spectrum. All values of φ are

equivalent, and therefore if an initial phase φ0 is changed via some perturbation to φ1,

the perturbation neither grows nor decays. An example for it is shown in Fig. 1.2 (b).

1.1.1 The van der Pol model

As mentioned before, self-oscillations are widespread in natural and engineered sys-

tems, and self-oscillators contain diverse oscillating objects. When studying phenomena

related to self-oscillations, one can focus on specific systems which demonstrate self-

oscillations and study them in detail (as we have done in Ref. [3] and show in Ch. 4).

However, when one is interested in studying more fundamental phenomena, common to

many different kinds of self-oscillators, a platform-independent model is required. Ex-

actly such a prototypical model of a self-oscillator was provided by Balthazar van der

Pol in 1926 [130]. In the following, we briefly describe the vdP model for classical self-

oscillators. Then we turn to discuss the quantum vdP model [72, 134]. The quantum

model is a generalization of the vdP model to the quantum regime.

3



Chapter 1. Theoretical background

The classical model

The equation of motion (EOM) describing a damped harmonic oscillator is

ẍ+ γẋ+ ω2
mx = 0, (1.1)

where x is the position coordinate, γ describes dissipation, and ωm is the natural fre-

quency of oscillation. The equation of the vdP oscillator is

ẍ+
(
−G+ 8κx2

)
ẋ+ ω2

mx = 0. (1.2)

By comparing the vdP oscillator to the damped harmonic oscillator, we easily see that

G > 0 describes a negative linear dissipation rate (or energy gain rate), while κ > 0

describes a nonlinear dissipation rate. We can also understand the emergence of limit-

cycles in this model in an intuitive fashion: For very small x, the system gains energy

more than it dissipates, therefore the oscillations are increasing in amplitude. For very

large x, the system dissipates energy more than it gains, therefore the oscillations are

decreasing in amplitude. Some attracting trajectory in phase space should therefore

be formed. Furthermore, we see that there is nonlinearity present. These are exactly

the requirements described previously for a self-oscillator. The periodicity of the vdP

oscillator range from harmonic to a triangle wave (van der Pol has indeed used the model

to describe relaxation oscillators, simulating the biological heart [131]). Limit-cycles of

Figure 1.2: (a) Two forms of limit-cycles in phase space. Phase space points in
the vicinity of a limit-cycle are attracted to it due to the processes of energy gain and
energy dissipation, which are marked by red and blue arrows respectively. For a circular
limit-cycle the definition of the stable amplitude A0 and the phase of oscillation φ are
standard and intuitive. (b) In a frame rotating with the frequency of oscillation, the
periodic oscillation correspond to a stationary point (blue full circle) on the limit-cycle.
Perturbing the oscillator (marked by a green arrow) will lead to a decay of the amplitude

perturbation (dashed arrow), while the perturbation of the phase remains.
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Chapter 1. Theoretical background

the vdP oscillator are shown in Fig. 1.2 (a). In a weak nonlinear regime, for which

the limit-cycles are almost circular, the above vdP equation is reduced to a generic

amplitude equation [10],

α̇ =
(
−iωm +G/2− κ|α|2

)
α, (1.3)

where α(t) is a complex amplitude. The vdP oscillator described by Eq. (1.3) exhibits

a circular limit-cycle of amplitude A0 =
√
G/(2κ).

To obtain A0, one should use radial coordinates and insert α = Aeiφ into Eq. (1.3)

and then split the resulting equation into real and imaginary parts. This leads to

Ȧ =
G

2
A− κA3,

φ̇ = −ωm.

By requiring a stable amplitude, Ȧ = 0, one obtains A0 =
√
G/(2κ). We can also

see that the phase φ of the oscillator is changing linearly with time, as expected

for a self-oscillator with a harmonic frequency.

The quantum model

To describe a quantum vdP oscillator, the following master equation (for a quick reca-

pitulation of the master equation see Sec. 1.3.1) for the density matrix was proposed

[72, 134]

ρ̇ = −i
[
ωma

†a, ρ
]

+GD[a†]ρ+ κD[a2]ρ, (1.4)

where a† and a are the creation and annihilation operators of the quantum harmonic

oscillator, and the Lindblad operator is defined as D[x]ρ ≡ xρx† − (x†xρ + ρx†x)/2.

This master equation describes an oscillator with natural frequency ωm, which gains

energy linearly with rate G and dissipates energy nonlinearly with rate κ. These are

the previously-described features of a self-oscillator. Indeed, the EOM for the classical

amplitude of oscillation, α ≡ 〈a〉, which is obtained using the Heisenberg EOM and after

employing a mean-field approximation, is just Eq. (1.3).

We would like to obtain the EOM for α = 〈a〉,

dα

dt
=

d

dt
Tr {aρ} = Tr

{
a

dρ

dt

}
= Tr

{
a
(
−i[ωma†a, ρ] +GD[a†]ρ+ κD[a2]ρ

)}
,

(1.5)

where we have used Eq. (1.4) to replace dρ/dt. Using the fact that the trace is

invariant under cyclic permutations, and using the commutation relation
[
a, a†

]
=

1, one can then obtain the EOM for α. As an example, we explicitly demonstrate

5



Chapter 1. Theoretical background

the calculation for the energy gain term,

GTr
{
D[a†]ρ

}
= GTr

{
a

(
a†ρa− 1

2
aa†ρ− 1

2
ρaa†

)}
= G

(
〈a2a†〉 − 1

2
〈a2a†〉 − 1

2
〈aa†a〉

)
=
G

2
〈a〉 =

G

2
α.

(1.6)

Continuing in a similar fashion with the other terms, one obtains Eq. (1.3).

To better illustrate inherently quantum features which are not present in the classical

vdP model, we would like to visualize the density matrix ρ of the quantum vdP oscilla-

tor in phase space. For that purpose, we will use the Wigner density function W (x, p)

(for a quick recapitulation of the Wigner density function see Sec. 1.3.2). A prototyp-

ical example of the dynamics arising from the master equation Eq. (1.4) is shown in

Fig. 1.3. Initialized in some state (a coherent state in this specific example), the phase

space distribution adjusts (smearing-out along the phase direction in this example) until

reaching a ring-like steady state. This steady state is the limit-cycle of the quantum

vdP oscillator, obtained independently of the chosen initial state. Two main features

distinguish this limit-cycle from the classical limit-cycle (Fig. 1.2):

• The quantum limit-cycle has a certain width along the radial direction. This

reflects fluctuations in the amplitude of oscillation, and therefore it reflects the

amount of noise present in the system. In stark contrast to the classical vdP os-

cillator, even in the absence of any noise source, some width remains. This is a

Figure 1.3: Time evolution of the Wigner density function W (x, p) representing the
state of the quantum vdP oscillator. From left to right: initialized in a coherent state,
the state rotates in phase space (white arrows) and smears out along the phase direction,
until reaching a ring-like steady state for which the phase is completely undetermined.
This steady state is the limit-cycle for the quantum vdP oscillator. This figure is

adapted from a similar figure appearing in Ref. [137].

6



Chapter 1. Theoretical background

direct result of the Heisenberg’s uncertainty principle, σxσp ≥ ~/2, where σx and

σp are the standard deviations of the position x and momentum p, correspond-

ingly. As the uncertainty principle disallows the localization of the quantum vdP

oscillator in a certain point in phase space, it cannot occupy a determined radius.

The quantum vdP oscillator therefore contains noise inherently, in contrast with

a classical vdP oscillator.

• Though the limit-cycles of both the classical and quantum vdP oscillators are

drawn as circles in phase space, only the quantum limit-cycle is in a steady state.

The state of the classical oscillator is actually changing with time, moving in

phase space along the limit-cycle trajectory. The ring-like quantum steady state

represents a completely undetermined phase, and is the quantum analogue of the

fact that the phase of the classical self-oscillator is free.

We would now like to discuss the feasibility of experimentally implementing a quantum

vdP oscillator system. In the literature, mainly two platforms have been proposed as

candidates [57, 72, 135]. The first promising platform is an ion trap with natural fre-

quency ωm, where a trapped ion has a ground state |g〉 and excited states |e〉 , |e′〉 . . .,
see Fig. 1.4. A linear energy gain rate can be obtained by exciting the ion via laser to an

excited state |e〉 detuned by ωm. Subsequently, the ion will decay to |g〉. The net result

is the addition of one energy quanta. This process is done routinely in experiments [73].

In a similar fashion, by exciting the laser to an excited state |e′〉 detuned by −2ωm,

one can remove two energy quanta, thus constructing a quantum vdP oscillator. The

second suggested platform is a cavity optomechanical system [8], in which a quadratic

optomechanical coupling needs to be established in addition to the standard linear cou-

pling [92]. This is therefore relevant to the “membrane-in-the-middle” geometry [126]

and to cold atoms localized within the electromagnetic cavity [100]. To understand the

Figure 1.4: Quantum vdP oscillator can be implemented using an ion trap with
natural frequency ωm. Driving the ion via a laser detuned by ωm to an excited state |e〉
(red arrow) will lead to a subsequent decay back to |g〉 (dashed arrow), and therefore
causing a one-phonon gain process. Driving the ion via a laser detuned by −2ωm to an
excited state |e′〉 (blue arrow) will lead to a two-phonon loss process. Figure is adapted

from a similar figure appearing in Ref. [72].

7



Chapter 1. Theoretical background

basic idea, let us discuss the “membrane-in-the-middle” setup. Utilizing the standard

linear optomechanical coupling (see Sec. 1.1.4), we can drive a first cavity mode on the

blue one-phonon sideband, therefore implementing the linear energy gain process. In

addition, if the membrane is placed at a node or anti-node of the cavity field, the fre-

quency of a second cavity mode is parametrically modulated by the position squared

of the mechanical oscillator [92]. Then, one can drive the cavity with an additional

laser on a red two-phonon sideband. This will lead to a two-phonon energy loss process.

Implementing this will thus realize a quantum vdP oscillator.

In Ch. 2 and Ch. 3, we will use a Kerr quantum vdP oscillator model, i.e. a quantum

vdP oscillator with an additional nonlinearity in its energy spectrum, obtained by an

additional term in the Hamiltonian K(a†a)2. In this context, we would like to further

add that trapping potentials with very large anharmonicities in position can be realized

[54, 136, 149]. Specifically, in Ch. 2 we discuss the limit K � G + κ. This can also

be realized with almost lossless resonators, e.g. K = 20 kHz in Ref. [136] and typical

heating rates on the order of 100 Hz [38]. For optimized systems [24, 45] heating rates

on the order of Hz have been reported. In optomechanical systems, proposals for future

engineering of strong Kerr anharmonicities have been made [58, 80, 105, 146].

1.1.2 Phase dynamics: Synchronization

Synchronization is the phenomenon in which a self-oscillator adjusts its rhythm due to

weak coupling to a drive or to another self-oscillating system [10, 99]. “Frequency lock-

ing” describes a scenario in which the observed frequency of the self-oscillator matches

the frequency of the drive or the frequency of other self-oscillators after synchronization

has occurred. “Frequency entrainment” usually refers to the case in which the observed

frequency is drawn closer (but do not match) to the synchronizing frequency. When

the self-oscillator is frequency locked to a drive or to another self-oscillator, it implies a

constant relative phase between the two. This is termed “phase locking”. In many cases

in which noise is present, strict frequency locking or phase locking cannot occur. In such

cases, the self-oscillator develops some preference for the relative phase, in contrast to

its originally completely free phase.

First observed and described by Dutch scientist Christian Huygens already in 1673 [56],

the scientific understanding of synchronization has had a long history [124]. Synchro-

nization may occur in every self-oscillatory system, and is therefore prevalent in all the

natural sciences, manifesting itself in, for example, change of oscillation frequency in pen-

dulum clocks, fireflies blinking in unison, adjustment of the circadian rhythm in many

living systems, and in the memorizing process taking place in the brain [10, 99, 124].

In the following, we will focus only on the synchronization of a self-oscillator to an

external harmonic reference signal. Understanding this simplest case of synchronization

will be sufficient for the purposes of this thesis. To develop an intuitive understanding of

the process, let us work in a frame rotating with the frequency of the drive, and assume

8



Chapter 1. Theoretical background

the self-oscillator and the drive are not coupled. If the frequency of the self-oscillator

ωm is identical to the frequency of the drive ωd, i.e. ∆ = ωd − ωm = 0, then its phase

space description is just a stable point (see Fig. 1.5 (a)). If however the detuning ∆ has

some finite value, this point will rotate (counter-clockwise for ∆ < 0 or clockwise for

∆ > 0), moving along a limit-cycle in phase space. When a weak coupling between the

driving force and the self-oscillator is turned on, the drive can be represented by some

constant vector in phase space (in the reference frame of the drive). When the state of

the oscillator is represented by points 1 or 2 in Fig. 1.5 (a), the force acts only in a radial

direction, trying to change the amplitude. Since the amplitude of the self-oscillator is

stable, and the coupling between the drive and the self-oscillator is assumed weak, the

force has no impact on these phase space points. When acting on other points along

the limit-cycle, the force will have a radial contribution and a tangential contribution.

The tangential contribution will change the phase of the oscillator. Examining the force

diagram of points 3 to 6, we understand that the force will push the state of the self-

oscillator towards state 1. If the detuning ∆ is small enough, the drive will thus force

the oscillator to remain in state 1, meaning that the frequency of the oscillator is now

locked to the frequency of the drive.

Figure 1.5: Synchronization of a self-oscillator to an external drive. (a) A generic
phase-space diagram for a self-oscillator in the frame of reference of a driving field.
When ∆ = 0, the state of the oscillator is described by stable phase space point (red
dot). When ∆ 6= 0, a limit-cycle appears. In the presence of a forcing drive, a stable
and unstable equlibrium points are created at points 1 and 2, correspondingly. If ∆
is small enough, the oscillator will remain at point 1, therefore phase-locked to the
drive. (b)-(e) Classical phase space trajectory of the vdP oscillator (black solid line),
and the Wigner function representation of the quantum vdP oscillator, for E/G = 1
and κ/G = 0.1. (b) ∆/G = 16, (c) ∆/G = 0.6, (d) ∆/G = 0.1, (e) ∆/G = 0. Figures

(b)-(e) are taken from Ref. [134].
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Chapter 1. Theoretical background

We would now like to analyze the synchronization of our choice of prototypical self-

oscillator, the vdP oscillator, to a drive. Classically, adding a drive term to Eq. (1.3)

results in

α̇ =
(
−iωm +G/2− κ|α|2

)
α− E cos(ωdt). (1.7)

Working in the rotating frame of the drive is obtained via the transformation α→ αeiωdt.

Evoking the rotating frame approximation, done by neglecting fast rotating terms with

frequency 2ωd, we obtain

α̇ =
(
i∆ +G/2− κ|α|2

)
α− E. (1.8)

Quantum mechanically, adding a drive term to Eq. (1.4) and working in a frame rotating

with the frequency of the external drive, results in the master equation

ρ̇ = −i
[
−∆a†a+ iE(a− a†), ρ

]
+GD[a†]ρ+ κD[a2]ρ. (1.9)

Synchronization of the quantum vdP oscillator to an external drive, and the comparison

to the classical scenario, was studied in Refs. [72] and [134]. Figure 1.5 (b)-(e), taken

from Ref. [134], shows the Wigner density function for the quantum vdP oscillator,

and the phase space trajectory of the classical vdP oscillator in solid black line, for

different detuning values. As previously discussed, when ∆ is large, the influence of

the external drive is not sufficient to allow for phase-locking. The vdP oscillator is

then moving along its limit-cycle (Fig. 1.5 (a)). As ∆ is decreased, the classical vdP

oscillator starts moving along a smaller trajectory, until finally becoming phase-locked to

the drive. In the quantum mechanical case, this synchronization process manifests itself

as a concentration of the Wigner density into a probability blob. The noise contained

in the quantum description limits the ability to phase-lock. A complementary view

Figure 1.6: Observed frequency ωobs as a function of detuning ∆, for κ/G = 0.1 and
E/G = 1. Blue: undriven case. Black: classical model. Red: quantum model. Inset:

zoom-in for the quantum case at small ∆. This figure is taken from Ref. [134].
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of the process is obtained by examining the observed frequency of the vdP oscillator,

ωobs, as a function of the detuning. This is shown in Fig. 1.6, taken from Ref. [134] as

well. For small enough ∆, the observed frequency of the classical vdP oscillator (black

line) locks to the frequency of the external drive. In the quantum case, there is only

frequency entrainment, as the noise does not allow for frequency locking (red line and

inset). As ∆ is increased, the observed frequency is increasingly independent of the drive

frequency. Refs. [72] and [134] have demonstrated that for a quantum self-oscillator, in

stark contrast to a classical self-oscillator, noise is inherent in the description. The effect

of noise though, can also occur in a classical self-oscillator [10, 99]. In our work [77],

described in Ch. 2, we have tried to find genuine quantum signatures in synchronization

of self-oscillators, which cannot be found in classical descriptions.

While most works describing the synchronization of a quantum vdP oscillator to a drive

focused solely on the case of an external harmonic drive [72, 77, 134], recent work [120]

had shown that synchronization may also occur when applying a squeezing Hamiltonian

to the quantum vdP oscillator. In fact, they had shown that applying a drive of the form

iη(a2− a†2) leads to enhancement of the synchronization, as compared with a harmonic

drive iE(a − a†). This enhancement manifest itself as stronger frequency entrainment,

and as a narrower frequency distribution. This may help to experimentally observe

quantum synchronization, as it strengthens the synchronization signal as compared with

the noise found in the system.

In Sec. 1.1.1 we have discussed the feasibility of experimentally implementing a quantum

vdP oscillator. Adding a forcing drive, in both the ion trap setup and the optomechanical

setup, can be done by shining an additional laser. By changing the frequency of this

harmonic drive, synchronization can be probed.

Quantifying synchronization

In contrast to the synchronization process of a classical noiseless self-oscillator to an

external drive, when a quantum (noisy) self-oscillator synchronizes, strict frequency

locking or strict phase locking does not occur. How can one then quantify the emergence

of synchronization, manifesting itself in the phase preference developed by the self-

oscillator? An intuitive way is looking at the phase distribution of a self-oscillator,

and quantify synchronization as the emergence of peaks above a flat distribution (free

phase). These peaks are reflected in the Wigner density function, in which a transition

from a rotationally symmetric Wigner function to a more-concentrated Wigner function

occurs. Such an approach is taken in our Refs. [77] and [3]. The synchronization measure

is defined as the absolute value of the measure defined in Ref. [138], i.e.

S = |S|eiθ =
〈a〉√
〈a†a〉

=
Tr [aρ]√
Tr [a†aρ]

=

∑∞
m=0 〈m| aρ |m〉√∑∞
m=0 〈m| a†aρ |m〉

=

∑∞
m=0

√
m+ 1ρm+1,m√∑∞
m=0mρm,m

.

(1.10)
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The numerator holds information regarding the spread of the phase space distribution,

while the denominator is introduced for the purpose of normalization. In cases where no

phase-preference develops, the Wigner function (see Sec. 1.3.2) corresponding to ρ will

be rotationally symmetric and S ∝ 〈a〉 ∝ 〈x+ iP 〉 = 0. In cases where there is only a

small variation of the phase, such as in a coherent state, |S| → 1. This measure will not

work well in the presence of multiple-peaked phase space distributions. Still, as we are

interested in the synchronization of a self-oscillator to a harmonic drive of one frequency

only, S is adequate for our purposes.

1.1.3 Amplitude dynamics: Amplitude death

When coupling two or more self-oscillators, the oscillations of the entire system may be

strongly suppressed and even approach a stable rest-state. Such behavior is relevant in

diverse areas such as biological gene-regulating networks [128], chemical oscillators [11],

and even in the flickering of nearby candles [93]. Different sorts of mechanisms may be

responsible for this stabilization of the otherwise unstable rest state [69]: (a) a large

frequency detuning between the oscillators, (b) existence of time-delay in the coupling,

(c) coupling the oscillators via conjugate variables. This phenomenon is known in the

literature as “amplitude death” or “oscillation death” [68, 69, 99, 112]. While both

terms are often used, Ref. [68] distinguishes the case in which both oscillators approach

an identical steady state, and the case in which each oscillator approaches a different

steady state. “Amplitude death” refers to the former, while “oscillation death” refers to

the latter. In our work [2] presented in Ch. 3, two dissipatively coupled self-oscillators

stabilize their zero-amplitude rest-state via a Hopf bifurcation [6, 39, 88], therefore

approaching an identical steady state. We keep this nomenclature, and use the term

“amplitude death” for the work [2] described in Ch. 3.

Figure 1.7: (a) The dissipative coupling attempts to pull the oscillators towards
their average position. (b) When two identical oscillators have the same amplitude,
the dissipative term has no effect. (c) When two identical oscillators have different
amplitudes, the dissipative term acts to suppress the oscillations. When the oscillators
reach an almost identical amplitude, the dissipative term has no effect, and oscillations
grow back to the limit-cycle. (d) For different oscillators, being in a state of identical
amplitude is only temporary. The dissipative term therefore stabilizes the rest-state.

κ/G = 0.2 and V/G = 2 in all plots.
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To gain an intuitive understanding, let us consider the most basic scenario of two dissi-

patively coupled classical vdP oscillators. Using Eq. (1.3), the coupled equations read

α̇1 =
(
−iωm +G/2− κ|α1|2

)
α1 +

V

2
(α2 − α1),

α̇2 =
(
−iωm +G/2− κ|α2|2

)
α2 +

V

2
(α1 − α2),

(1.11)

where V denotes the strength of the dissipative coupling. The basic idea is that such a

diffusive coupling attempts to pull the oscillators towards their average position in phase

space (see Fig. 1.7 (a)). Because of that, the dissipative coupling will eventually lead

the oscillators to an almost identical amplitude. At that point, the coupling which is

proportional to the amplitude difference ∝ (α1−α2) will have no effect. If the oscillators

are identical, they will then follow identical trajectories, until oscillating along their limit-

cycle. An example is shown in Fig. 1.7 (b)-(c). If the oscillators are far-enough detuned

however, they will follow different-enough trajectories in phase space. The dissipative

coupling will then completely suppress their oscillations, leading to amplitude death.

This can be seen in Fig. 1.7 (d). Studying the stability of the rest-state, Ref. [6] predicted

the rest-state to be stable in the regime G < V < (∆2 +G2)/(2G). This can be seen in

Fig. 1.8 (a), in which the amplitude-of-oscillation squared, |α1|2, is shown as a function

of ∆ and V . The upper bound is the analytical equivalent of the intuitive explanation

suggested in this paragraph. The lower bound is basically the requirement that the

coupling strength is larger than the attraction of the limit-cycle.

What should we expect when dissipatively-coupling two quantum vdP oscillators? Will

the amplitude death phenomenon still occur? How is this different than the classical

case? Questions such as these were first studied in Ref. [57]. Building on Eq. (1.4), the

master equation describing the dissipatively-coupled quantum vdP oscillators is given

Figure 1.8: (a) The amplitude of oscillation squared |α1|2 and (b) the mean phonon

number 〈a†1a〉, as a function of ∆ and V . In (a), oscillations are completely suppressed
in the regime G < V < (∆2 +G2)/(2G). In (b), a more moderate suppression occurs,
as the complete suppression is hindered by quantum noise. κ/G = 0.2 in both plots.
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by

ρ̇ =
2∑

m=1

(
−i[ωma†mam, ρ] +GD[a†m]ρ+ κD[a2

m]ρ
)

+ VD[a1 − a2]ρ. (1.12)

This master equation reproduces Eq. (1.11) in the classical limit. Numerically simu-

lating it, the mean phonon number of the first oscillator as a function of ∆ and V

is shown in Fig. 1.8 (b). Similar to the classical case, a strong suppression is seen in

the regime G < V < (∆2 + G2)/(2G). This means that amplitude death occurs when

dissipatively-coupling quantum self-oscillators as well. In contrast to the classical noise-

less case however, the complete suppression of oscillations is hindered by quantum noise,

and is replaced by a more moderate suppression. That noise is inherent in the quantum

description of the amplitude death phenomenon, in contrast with the classical descrip-

tion, was established in Ref. [57]. Still, classical self-oscillators may contain noise in

their description, which will have a similar effect on the amplitude death phenomenon

[95]. In our work [2], described in Ch. 3, we try to find quantum effects in the amplitude

death phenomenon which cannot be obtained in any classical description.

In Sec. 1.1.1, we have commented on the possible experimental implementations of a

quantum vdP oscillator, using trapped ions or cavity optomechanics. Obtaining a dissi-

pative coupling in an optomechanical setup can be done by adding a cavity mode which

is coupled linearly to two vdP oscillators and is driven by a laser. When the cavity mode

dissipation rate is large, one can adjust the detuning between the driving laser and the

natural frequency of this mode, allows to engineer the desired dissipative coupling [134].

In trapped ion systems, a Lindblad term VD[(a1 +a2)(a1−a2)]ρ can be engineered using

various techniques [30, 71, 114].

1.1.4 An experimental platform: Optomechanical systems

In previous subsections, we have discussed properties of self-oscillators. We have used

a minimal model of a self-oscillator, which is able to capture these properties, the vdP

model. In this section however, we would describe an experimental platform, the op-

tomechanical system, which may exhibit self-oscillations as well. This is relevant to

our work [3] which is presented in Ch. 4, in which we discuss how the optomechanical

self-oscillatory state can be synchronized by an external drive.

An optomechanical system, in its most basic form, is a system in which one electro-

magnetic radiation field mode is coupled to one mechanical vibrational mode [8]. The

simplest form of an optomechanical system is consisting of a Fabry-Pérot cavity, in which

one of the two mirrors is mounted on a spring, and is free to oscillate. A schematic of

the system is seen in Fig. 4.1. The photons in the cavity are impinging on the free-to-

oscillate mirror, therefore transferring momentum. Due to this radiation pressure, the

mirror will move. As it is doing so, the resonance frequency of the cavity is changed,

leading to a different radiation field in the cavity. This backaction effect is the funda-

mental mechanism coupling the electromagnetic mode and the vibrational mode.
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A Hamiltonian description is obtained by representing the electromagnetic (ωc) and

mechanical (ωm) modes as harmonic oscillators,

H0 = ωmb
†b+ ωca

†a, (1.13)

where a and b are the optical and mechanical annihilation operators. In the simple

scenario we have described so far, the cavity resonance frequency is modulated by the

mechanical amplitude of oscillation,

ωc(x) ≈ ωc + x∂ωc/∂x+ . . . . (1.14)

In most cases, the second order term which is proportional to ∝ ∂2ωc/∂x
2 can be ne-

glected [8]. We then define the optical frequency shift per displacement, G ≡ −∂ωc/∂x.

The Hamiltonian can then be written as

H0 = ωmb
†b+ ωca

†a− g0a
†a(b+ b†), (1.15)

where we have used x = xzpf(b+b
†) with xZPF being the zero-point fluctuation amplitude

of the mechanical oscillator, and we have defined the vacuum optomechanical coupling

strength, g0 ≡ GxZPF. We can add a Hamiltonian term describing a driving of the

electromagnetic cavity by an external laser with frequency ωL and strength EL, HL =

−iEL(aeiωLt − a†e−iωLt). It is then convenient to work in a frame rotating with the

drive frequency. This can be easily accomplished by applying the unitary transformation

U = exp(iωLa
†at), leading to

H = ωmb
†b−∆a†a− g0a

†a(b+ b†)− iEL(a− a†), (1.16)

where ∆ = ωL − ωc is the detuning of the electromagnetic cavity frequency from the

frequency of the laser drive.

Applying the unitary transformation U = exp(iωLa
†at) will lead to a new Hamil-

tonian,

H = UHoldU
† − iU ∂U

†

∂t
. (1.17)

By using Ua†U † = a†eiωLt, U∂U †/∂t = −iωLa†a, UbU † = b and their complex

conjugates, one obtains the transformed Hamiltonian.

In addition to the Hamiltonian description, which describes only the unitary dynamics

of the optomechanical system, one should also take into account the dissipation of the

electromagnetic cavity and of the mechanical oscillator. This dissipation occurs, e.g.,

because of light leaking out of the cavity with rate γc, or because of viscous damping

caused by interactions of the mechanical oscillator with the surrounding gas atoms,

leading to a mechanical dissipation rate γm. There are a few alternatives to account

for this dissipation. One can use the input-output theory, which is formulated on the

level of Heisenberg EOMs, and add terms such as −γc
2 a −

√
γcain and −γm

2 b −
√
γmbin
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into the EOMs for the operators a and b, respectively [8, 26, 41]. The operators ain

and bin represent quantum noise, and have zero mean 〈ain〉. By taking the expectation

value of these Heisenberg EOMs, one obtains classical equations for the amplitudes of

the optical cavity and mechanical oscillator. We have simulated such equations later

on in this thesis, see Eqs. (4.62) and (4.65). Another alternative mean to account for

dissipation, is by using the Lindblad master equation [15, 19, 41, 132]. A discussion and

derivation of the dissipative terms of the Lindblad master equation is presented below

in Sec. 1.3.1. Using it, and the optomechanical Hamiltonian, Eq. (1.16), the master

equation describing the time evolution of the density matrix of the optomechanical

system is given by
dρ

dt
= −i [H, ρ] + Lmρ+ Lcρ, (1.18)

with the Lindblad operators

Lmρ = γm(n
(m)
th + 1)D[b]ρ+ γmn

(m)
th D[b†]ρ, (1.19)

and

Lcρ = γc(n
(c)
th + 1)D[a]ρ+ γcn

(c)
th D[a†]ρ, (1.20)

where n
(m)
th and n

(c)
th are the mean boson number in thermal equilibrium of the mechanical

and electromagnetic cavity, respectively. For the electromagnetic cavity, n
(c)
th = kBT/~ωc

is close to zero for optical fields (other than microwave fields) at room temperature. We

therefore approximate n
(c)
th ≈ 0. As the mechanical frequency is much smaller, ωm � ωc,

we cannot use the same approximation for the mechanical dissipation. The last master

equation, with n
(c)
th = 0, constitutes our optomechanical quantum model presented in

Ch. 4.

Generation of self-oscillations

As discussed previously in this section, in order for self-oscillations to be maintained,

nonlinearity in the energy dissipation must be present. This nonlinearity is inherent

to the optomechanical Hamiltonian, Eq. (1.16), as it contains terms of three operators.

These terms lead to nonlinear Heisenberg EOMs, ȧ = i [H0, a] and ḃ = i [H0, b]. Still,

to better understand the regime in which self-oscillations begin, it is fruitful to examine

a linearized version of H0. The linearized approximation is obtained by splitting the

electromagnetic cavity field into an average strong (classical) coherent amplitude 〈a〉 = α

and a fluctuating term, a = α + δa. By placing the last expression into Eq. (1.16), the

optomechanical interaction part of the Hamiltonian can be written as

Hint = −g0|α|2(b+ b†)− g0

(
α∗δa+ αδa†

)
(b+ b†) +O(δa†δa), (1.21)

where we have omitted the term proportional to δa†δa as it is smaller by a factor |α|. This

linearized interaction Hamiltonian leads to multiple important results, many of which

are described in Ref. [8]. We shall only describe the most important effects. One static
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effect stems from the first term in Eq. (1.21), which indicates the presence of a constant

radiation-pressure force, F̄ = G|α|2. This can be omitted by appropriately shifting the

displacement’s origin, and then use an effective detuning ∆eff = ∆ + 2g2
0|α|2/ωm. A

second effect, dynamical in nature, is termed the optical spring effect. According to

it, the mechanical frequency is shifted as a result of the induced laser field. A third

effect, is the optical induced damping of the mechanical oscillator. According to it, for

sufficiently weak laser drive, |α|g0 � γm, the effective mechanical damping rate is given

by

γeff = γm + γo, (1.22)

where the optically induced damping rate is

γo = |α|2g2
0

(
γm

γ2
m/4 + (∆ + ωm)2 −

γm

γ2
m/4 + (∆− ωm)2

)
. (1.23)

This optical damping may be positive, if ∆ < 0. This will lead to additional damping, in

a process called optomechanical cooling. The mechanical oscillator can even be cooled

into the quantum ground state [84, 141]. This optical damping may also be negative,

if ∆ > 0. In such a case, it can lead to amplification of thermal fluctuations, and

finally to an instability if γeff < 0. An intuitive understanding of these processes may

be developed in the scattering picture [8], see Fig. 1.9. In this picture, incoming laser

photons of frequency ωL may scatter into motional sidebands of frequency ωL ± ωm.

These motional sidebands become asymmetric for ∆ 6= 0 due to the cavity density of

Figure 1.9: Scattering picture of amplification and cooling of the mechanical oscil-
lator. (a) For ∆ > 0, photons scatter to a lower energy sideband, therefore adding
energy to the mechanical oscillator. (b) For ∆ < 0, photons scatter to a higher energy

sideband, therefore cooling the mechanical oscillator. Figure is taken from Ref. [8].
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states. For a blue-detuned laser, ∆ > 0, photons will scatter to the lower-in-energy

sideband in greater numbers than to the higher-in-energy sideband, as schematically

shown in Fig. 1.9 (a). From energy conservation considerations, we understand that this

process will add energy to the mechanical oscillator. For a red-detuned laser, ∆ < 0,

the opposite will occur, and energy will be extracted from the mechanical oscillator, as

seen in Fig. 1.9 (b).

To understand the rise of self-oscillations, we shall discuss now the result of γeff < 0.

In such a case, the mechanical oscillator is continuously gaining energy. The linearized

Hamiltonian we have used in describing the optical induced damping effect cannot pre-

dict a saturation of the growth of the mechanical oscillation amplitude. It is therefore

the nonlinear nature of the optomechanical interaction Hamiltonian, Eq. (1.16), that

will limit this growth. This, in essence, concludes our list of features that must be

present in a self-oscillating system. There is an incoherent power source, and a nonlin-

ear dissipative mechanism. We therefore expect the mechanical oscillator to demonstrate

self-oscillations for some parameters.

The effects caused by the nonlinear optomechanical interaction, g0a
†a(b + b†), may be

strengthened by increasing the number of photons in the electromagnetic cavity, a†a.

This can be done by using a strong laser drive EL. In such a case, the resulting non-

linear effects are considered classical, as it is basically a classical electromagnetic field

interacting in a nonlinear manner with the mechanical oscillator. In the blue-detuned

regime, researchers have indeed observed the optically-induced classical self-oscillations

of the mechanical oscillator [20, 65, 145], and have furthermore mapped the attractor

diagram of the resulting limit-cycles as a function of amplitude and detuning, both the-

oretically [85] and experimentally [17, 87]. The effect of the optomechanical interaction

Figure 1.10: Wigner function representation of an optomechanical limit-cycle in the
quantum regime, g0 = 5.5/γc. In this interesting example, taken from Ref. [79], negative

regions of the Wigner function are found, indicating a non-classical state.
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may also be strengthened, alternatively, by using optomechanical systems having a large

single-photon optomechanical coupling, g0 > γc. This allows for nonlinear effects to be

observed even in a quantum regime, in which the mechanical oscillator is influenced by

a smaller number of cavity photons. In this quantum parameter regime, the limit-cycles

exhibited by the mechanical oscillator were studied theoretically [79, 81]. A quite generic

example of such a limit-cycle is shown in Fig. 4.2. A rather special example was provided

in Ref. [79], and is shown here, Fig. 1.10. In this example, Wigner function negativity

is found, indicating a quantum state (see also Sec. 1.3.2 below). In our work [3] pre-

sented in this thesis in Ch. 4, we have studied the synchronization of the mechanical

self-oscillator to an additional external drive. This was done both in the classical and

quantum parameter regimes.

1.2 Cooper pair splitters

Local realism is the combination of the principle of locality, by which cause-and-effect are

limited to the speed of light, and the assumption of realism, which according to it a par-

ticle must have a pre-existing value for any possible measurement. Though regarded as

intuitively true in classical physics, it is possible to demonstrate that quantum-entangled

objects may contradict this notion, therefore having non-local correlations. A natural

way to demonstrate this non-locality is by creating Einstein-Podolsky-Rosen (EPR) pairs

of particles [36], which are then put to the test of the Bell inequalities [13]. Such EPR

pairs had been successfully generated using photons [7], and it had become standard

practice in the field of quantum optics, applied in quantum teleportation and quantum

communication [14, 129]. The first device able to generate EPR electronic pairs, is the

Cooper pair splitter (CPS) [52].

In a conventional s-wave superconductor, at sufficiently low temperatures, electrons near

the Fermi surface become unstable against the formation of Cooper pairs. Each Cooper

pair is composed of two electrons in an entangled spin-singlet state. One may then

obtain a device able to generate entangled electronic pairs, by using the Cooper pairs

occuring naturally in a s-wave superconductor. By coupling the superconductor to an

electronic fork or Y-junction device, the two constituting electrons may emerge each in

one of the two different arms of the electronic fork. This is shown in Fig. 1.11 (a), taken

from Ref. [52]. The Cooper pairs, however, may also emerge in the same arm, therefore

not being splitted. To avoid the latter process, one can construct the electronic fork out

of two quantum dots (QDs). This is shown in Fig. 1.11 (b). If the charging energy of the

QDs is very large, double occupancy cannot occur. The constituting electrons are then

forced to split, or to tunnel sequentially, see Fig. 1.11 (c). By using high tunnel barriers,

it is possible to strongly suppress the sequential tunneling process. Such devices are

now termed CPSs, and were first theoretically proposed in Refs. [25, 75, 104], and then

experimentally realized in architecutres based on InAs nanowires in Refs. [27, 51, 52],

and on carbon nanotubes in Refs. [50, 113].
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Figure 1.11: (a) A Cooper pair from a superconductor (blue rectangle) may split in an
electronic fork, therefore providing an EPR electronic pair. (b) To suppress processes
in which the Cooper pairs emerge in the same arm, the arms are made up of tunable
quantum dots (QDs), with a large charging energy. (c) The Cooper pairs may still
tunnel sequentially through the same arm. To strongly suppress this processes, high

tunnel barriers should be used. Figure is taken from Ref. [52]

As the typical goal of using a CPS is to spatially separate the Cooper pairs, and a re-

quired intermediate step is to suppress the tunneling of a whole Cooper pair onto one

QD, theoretical treatments of the CPS assume an infinite charging energy for each QD.

This is known as the Coulomb blockade approximation. In our work [4], in contrast,

we study the case where the charging energy is small compared with the superconduct-

ing gap. We then theoretically demonstrate the ability of the CPS to operate in that

parameter regime as well, and suggest a scheme for the generation of triplet-correlated

pairs of electrons.

1.3 Required basics of quantum optics

Each chapter of this thesis involved studying the dynamical time-evolution of a specific

quantum system. The dynamics of the CPS system presented in Ch. 5 is unitary, and

therefore the time-evolution of the system is then described by the Schrödinger equation.

The vdP oscillators and the optomechanical system, which are described in Chs. 2-4, are

dissipative by nature. For that reason, their dynamics is non-unitary. When describing

their time-evolution, we have used the optical master equation. Detailed derivations and

elaborate discussions of this master equation can be found in many textbooks, among

which are Refs. [15, 19, 41, 132]. Nevertheless, we would like to present in this section
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the approximations involved in obtaining the optical master equation. To do so, we shall

quickly derive the master equation in Sec. 1.3.1, while highlighting the approximations

taken.

Chapters 2-4 involve also the topic of phase space representations of quantum mechanics.

Specifically, we have used the Wigner density function to visualize quantum states in

some cases, and as a more-intuitive substitute for the density matrix in other cases.

While excellent textbooks cover this topic [19, 132], we shall, for completeness’ sake,

introduce the Wigner density function in Sec. 1.3.2.

1.3.1 Master equation

To describe a dissipative quantum system, we start by treating the system, the environ-

ment (or bath) the system interacts with, and the interaction, using the Hamiltonian

H = HS +HB + V, (1.24)

where HS , HB and V are the system Hamiltonian, bath Hamiltonian, and interaction

Hamiltonian correspondingly. The time-evolution of H is unitary, and is described by

the propagator U(t) = exp(−iH/t). In the interaction picture, the time-evolution of the

density matrix of the whole system, ρT , is described via the Heisenberg equation,

iρ̇
(I)
T =

[
V (I), ρ

(I)
T

]
, (1.25)

where ρ
(I)
T = U †0ρTU0, V (I) = U †0V U0, and U0 = exp[−i(HS+HB)t]. A recursive solution

can be obtained via integration,

ρ
(I)
T (t) = ρ

(I)
T (0)− i

∫ t

0
dt1

[
V (I)(t1), ρ

(I)
T (t1)

]
. (1.26)

Iterating once more, we have

ρ
(I)
T (t) = ρ

(I)
T (0)−i

∫ t

0
dt1

[
V (I)(t1), ρ

(I)
T (0)

]
−
∫ t

0
dt1

∫ t1

0
dt2

[
V (I)(t1),

[
V (I)(t2), ρ

(I)
T (t2)

]]
.

(1.27)

We can continue and repeat the process of iteration, obtaining a series expansion in

powers of the interaction potential V . Such a series expansion is known as the Born

series. Assuming that V is small, we shall keep terms only up to second order in V .

This is the Born approximation. Obtaining an equation for the dynamics of the density

matrix of the system only can be done via tracing out the bath degrees of freedom.
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Using ρ(I) = TrB

{
ρ

(I)
T

}
, we obtain from the last equation

ρ(I)(t) = ρ(I)(0)− i
∫ t

0
dt1TrB

{[
V (I)(t1), ρ

(I)
T (0)

]}
−
∫ t

0
dt1

∫ t1

0
dt2TrB

{[
V (I)(t1),

[
V (I)(t2), ρ

(I)
T (0)

]]}
.

(1.28)

We now assume that initially the system and the bath are uncorrelated, so that ρT (0) =

ρ(0)⊗ ρB(0), where ρ describes the system only, and ρB describes the bath only. If we

now further assume that the interaction is such that TrB {V (t)ρB} = 0, then the first

order in V term in Eq. (1.28) is vanishing. Continuing by taking the time derivative of

Eq. (1.28), we have the master equation

ρ̇(I)(t) = −
∫ t

0
dt1TrB

{[
V (I)(t),

[
V (I)(t1), ρ(I)(t)⊗ ρB

]]}
. (1.29)

In the last equation we evaluate terms which involve taking the average with respect to

the bath. In principle, this bath may retain a memory of past times for a while, and

can transfer it back to the system. We shall now exclude this possibility, by assuming

that the correlation time of fluctuations in the bath is much smaller than the time scale

of the evolution that we want to follow. Basically, we assume the bath to have no

memory of past events. This is the first Markov approximation. Since the two-point

correlation function is significant only when t1 = t, we can extend the upper integration

limit appearing in the last equation to infinity. After doing so, we have finally obtained

the optical master equation. To analyze the case of a harmonic dissipative oscillator, we

need to consider a specific form of V . For linear damping of the harmonic oscillator, it

can be assumed to be

V = a†Γ(t)eiΩt + aΓ†(t)e−iΩt, (1.30)

where Γ(t) =
∑

k gkbke
−iωkt, a and b are the annihilation operators of the system and

bath respectively, Ω is the harmonic oscillator frequency, ωk is the frequency of the

different bath modes, and gk characterizes the coupling between the bath mode k and

the harmonic oscillator. When plugging this form of interaction Hamiltonian back into

Eq. (1.29), one shall encounter terms as

TrB {V (t)V (t1)ρB} = a†aeiΩ(t−t1)TrB

{
Γ(t)Γ†(t1)ρB

}
+ aa†e−iΩ(t−t1)TrB

{
Γ†(t)Γ(t1)ρB

}
=
∑
k

g2
k

[
a†aei(Ω−ωk)(t−t1)(nk − 1) + aa†e−i(Ω−ωk)(t−t1)nk

]
,

(1.31)

where we have used 〈b†ibk〉B = δi,knk, where nk is the thermal occupation number of the

bath. We therefore see that we shall also encounter integrals of the form∫ ∞
0

dt1e
±i(Ω−ωk)t1 = πδ(Ω− ωk)± iPV

(
1

Ω− ωk

)
, (1.32)
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where PV denotes the Cauchy principal value. The Cauchy term will contribute to a

small shift in the frequency of the oscillator [132], and it is therefore neglected. Using

expressions as shown in Eq. (1.31), and the approximated integral result of Eq. (1.32),

one can obtain from Eq. (1.29) the optical master equation for the damped harmonic

oscillator,

ρ̇(I) = γ(nth + 1)
(
aρa† − a†aρ/2− ρa†a/2

)
+ γnth

(
a†ρa− aa†ρ/2− ρaa†/2

)
, (1.33)

where nth is the mean number of bath quanta at frequency Ω, and we have defined

γ/2 ≡
∑

k g
2
kδ(ωk−Ω). We have used exactly this form of master equation, with nth = 0,

to describe the linear damping of the vdP oscillator in Chs. 2-3, and the linear dissipation

of the electromagnetic cavity part of the optomechanical system in Ch. 4. In Ch. 4 we

have also described the linear damping of the mechanical part of the optomechanical

system using this form of Lindblad equation as well, with nth being constant.

1.3.2 Wigner function

The Wigner density function is a quasiprobability distribution function, mapping the

density matrix between real phase space functions and Hermitian operators [140]. Using

the definition of the symmetrically ordered characteristic function [132],

χ(β) = Tr [D(β)ρ] = Tr
{
ρeβa

†−β∗a
}
, (1.34)

where a and a† are the annihilation and creation operators of photons, and D[β] is the

displacement operator of amplitude β, one can define the Wigner density function as

the Fourier transform of this χ(β)

W (α) =
1

π2

∫
eαβ

∗−α∗βχ(β)d2β. (1.35)

The Wigner function always exists for any density matrix, but it is not always positive

[41]. In order to interpret the Wigner density function as a classical probability dis-

tribution function, W (α) needs to be non-negative for all α. Having negativity in the

Wigner density function over small regions of the phase space is therefore a signature for

a quantum state. This negativity is suggested as an indicator of nonclassicality [62]. An

example of an optomechanical limit-cycle with negative regions of the Wigner function

is shown in Fig. 1.10.

In Chs. 2-3 we have transformed the master equation to an equivalent equation for the

Wigner function. A detailed discussion of this transformation can be seen in Ref. [41]

or in Ref. [132]. We would only comment, that by using an EOM for the characteristic

function

χ̇(β) = Tr {D(β)ρ̇} , (1.36)
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and the Baker-Hausdorff identity, one can obtain a master equation for the characteristic

function, which leads to a master equation for the Wigner density function.
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CHAPTER 2

GENUINE QUANTUM SIGNATURES

IN SYNCHRONIZATION OF

ANHARMONIC SELF-OSCILLATORS

“Elementary, my dear Watson”

Sherlock Holmes, fictional character (was actually

not said in the Conan Doyle books)

This chapter is based on our results that were published in

• Niels Lörch, Ehud Amitai, Andreas Nunnenkamp, and Christoph Bruder

Genuine quantum signatures in synchronization of anharmonic self-oscillators

Phys. Rev. Lett. 117, 073601 (2016)

Copyright (2016) by the American Physical Society

We study the synchronization of a van der Pol (vdP) self-oscillator with Kerr anhar-

monicity to an external drive. We demonstrate that the anharmonic, discrete energy

spectrum of the quantum oscillator leads to multiple resonances in both phase locking

and frequency entrainment not present in the corresponding classical system. Strong

driving close to these resonances leads to nonclassical steady-state Wigner distributions.

Experimental realizations of these genuine quantum signatures can be implemented with

current technology.
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2.1 Introduction

In recent years, there has been great experimental progress in studying the synchroniza-

tion phenomenon with micro- and nanomechanical oscillating systems [9, 86, 119, 147,

148]. Recent advances in nanotechnology will even enable experiments with large arrays

of self-oscillators in the near future [35, 109]. This progress and these advances set the

scene for studying synchronization in the quantum regime [150]. Indeed, the topic of

quantum synchronization has become very active [1, 3, 18, 55, 59, 71, 72, 82, 83, 134,

135, 138, 139, 142, 143, 151]. This includes theoretical proposals for studying quantum

synchronization with mesoscopic ensembles of atoms [142, 143, 151], lasers [18], cavity

optomechanics [3, 82, 134, 135, 138], trapped ions [55, 71, 72], micromasers [28], and

arrays of coupled nonlinear cavities [59]. In addition, the dynamics of quantum synchro-

nization are investigated [139], it was shown that using a squeezing Hamiltonian instead

of a harmonic drive can produce stronger synchronization [120], and open conceptual

questions regarding the relation of synchronization to entanglement [83] and to mutual

information [1] are being discussed.

As discussed in Sec. 1.1.1, in the quantum regime the canonical commutation relation

[x̂, p̂] = i between the position and momentum operators, which correspond to the

position and momentum observables of the self-oscillator, must be taken into account

(~ = 1). For that reason, the quantum self-oscillator will always have inherent noise.

The quantum vdP oscillator, being a prominent example of a quantum self-oscillator,

will therefore also always have quantum noise in its description. Recent theoretical

work characterized how synchronization quantitatively differs between the quantum and

classical realizations of the quantum vdP oscillator in phase locking [71, 72] as well as in

frequency entrainment [134, 135]. It was shown that while synchronization is hindered

by quantum noise compared to the noiseless classical model [134, 135], noise is less

detrimental [71, 72] than one would expect from a semiclassical description.

The aim of the work [77] described in this chapter was to find and elucidate quantum

effects in the synchronization behavior of quantum vdP oscillators which are qualita-

tively different than what is expected from a corresponding semiclassical model. In this

work, we studied the synchronization of a quantum vdP oscillator with Kerr anhar-

monicity to an external drive. This constitutes a model for self-oscillators for which

both the damping and the frequency is amplitude-dependent. We showed that their syn-

chronization behavior is qualitatively different in the quantum and the classical regimes.

We have found two genuine quantum signatures. First, while synchronization of one

such oscillator to an external drive is maximal at one particular frequency classically,

the corresponding quantum system shows a tendency to synchronize at multiple fre-

quencies. Using perturbation theory in the drive strength, we demonstrated that these

multiple resonances reflect the quantized anharmonic energy spectrum of the oscillator.

We showed that these features are observable in the phase probability distribution if the

Kerr anharmonicity is large compared to the relaxation rates and the system is in the

quantum regime, i.e. the limit cycle amplitudes are small. In the semiclassical limit the
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energy spectrum becomes continuous, so that the resonances (and therefore the quan-

tized energy spectrum) cannot be resolved. Using numerically exact simulations of the

full quantum master equation, we found a second genuine quantum signature: for strong

driving close to these resonances the steady-state Wigner distribution exhibits areas of

negative density, i.e., the steady state is nonclassical.

This chapter is organized as follows. We describe the models used in this work in

Sec. 2.2. This includes the quantum model, the semiclassical model (classical with

Gaussian noise), and the classical noiseless model. In Sec. 2.3 the synchronization of the

quantum anharmonic self-oscillator to the external drive is investigated. Phase locking

and frequency entrainment are described analytically and numerically in subsections

2.3.1 and 2.3.2. A non-classical state with negative Wigner density, appearing for syn-

chronization to a strong drive, is described in subsection 2.3.3. We conclude in Sec. 2.4.

2.2 Models

As mentioned in the previous section, we consider a self-oscillator with anharmonicity

in its energy spectrum which is subject to an external drive. For concreteness, we will

focus on a vdP self-oscillator with Kerr anharmonicity. Nevertheless, the results we

present are generic and can be generalized to other anharmonic self-oscillators. The

quantum model for a vdP oscillator which is subject to an external drive was presented

in Sec. 1.1.1 and in Sec. 1.1.2. Using it, we find that in the rotating frame of the drive

our model system is described by the quantum master equation

ρ̇ = −i[H0 +H1, ρ] + Lρ, (2.1)

with Hamiltonian H0 = −∆a†a + K(a†a)2, drive Hamiltonian H1 = iE(a − a†), and

non-unitary term Lρ = GD[a†]ρ+ κD[a2]ρ, where a and a† denote the annihilation and

creation operators for the oscillator and the Lindblad operator D[x]ρ = xρx† − (x†xρ+

ρx†x)/2. The Hamiltonian H0 describes a Kerr oscillator with an anharmonic energy

spectrum characterized by the Kerr parameter K > 0, see Fig. 2.1. The coherent drive

has amplitude E and frequency ωd that is detuned from the natural harmonic frequency

of the oscillator ωm by ∆ = ωd − ωm. The oscillator is also subject to two incoherent

processes described by the Lindblad operator D, i.e. linear (one-phonon) anti-damping

with rate G and nonlinear (two-phonon) damping with rate κ.

The Hamiltonian of a Kerr anharmonic quantum oscillator is diagonal in the

number basis,

H |n〉 =
[
ωma

†a+K(a†a)2
]
|n〉 = ωmn+Kn2.

The level spacing between the (n+1)-th and n-th energy levels is therefore ωm(n+

1−n) +K
[
(n+ 1)2 − n2

]
= ωm+ (2n+ 1)K. Hence the level spacing in Fig. 2.1.
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Semiclassical model.– The quantum master equation (2.1) can be transformed into a

fully equivalent partial differential equation for the Wigner distribution function W (α, t)

[19, 41] (see Sec. 1.3.2), where α = (α, α∗).

To understand how the transformation can be done in practice, we remind the

reader of the operator correspondence identities which are proven in Ref. [41]

Ch. 4,

aρ↔
(
α+

1

2
∂α∗

)
W (α),

a†ρ↔
(
α∗ − 1

2
∂α

)
W (α),

ρa↔
(
α− 1

2
∂α∗

)
W (α),

ρa† ↔
(
α∗ +

1

2
∂α

)
W (α).

(2.2)

Using these, we show how to transform the drive term explicitly,

−i [H1, ρ] = E
[(
a− a†

)
ρ− ρ

(
a− a†

)]
→ E

(
α+

1

2
∂α∗ − α∗ +

1

2
∂α − α+

1

2
∂α∗ + α∗ +

1

2
∂α

)
W (α)

= E (∂α + ∂α∗)W (α).

Figure 2.1: The first four lowest-lying energy levels of the quantum vdP self-oscillator
with Kerr anharmonicity. The Kerr anharmonicity K leads to a level spacing ωm +
(2n + 1)K which is increasing with excitation number n. In this figure the coherent
drive (green arrows) is resonant with the transition between the states |1〉 and |2〉. The
two incoherent processes (wiggly lines) are linear (one-phonon) anti-damping with rate

G (red arrows) and nonlinear (two-phonon) damping with rate κ (blue arrows).
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As another example, we transform the oscillator term,

i∆
[
a†a, ρ

]
→ i∆

[(
α∗ − 1

2
∂α

)(
α+

1

2
∂α∗

)
−
(
α− 1

2
∂α∗

)(
α∗ +

1

2
∂α

)]
W (α)

= −i∆ (∂αα− ∂α∗α∗)W (α),

where in the last equation we have used ∂αα = α∂α+1. Also, please note that the

order of operators in the last term reverses, since acting on ρ they operate from

the right, whereas on W (α), they operate from the left. If needed, one additional

example is provided in Sec. 3.2. Continuing in this manner, one obtains the

equation of motion for the Wigner function from the master equation, Eq. (2.1).

This fully equivalent differential equation takes the form

Ẇ (α, t) = ΛW (α, t) ≡{
−i∆∂αα+ E∂α + iK

[
∂αα(2|α|2 − 1)− 1

4
∂2
α∂α∗α

]
+
G

2
(−∂αα+

1

2
∂α∗∂α)

+
κ

2

[
2∂αα(|α|2 − 1) + ∂α∗∂α(2|α|2 − 1) +

1

2
∂2
α∂α∗α

]
+ h.c.

}
W (α, t).

(2.3)

In the last equation, it is visible that both the Kerr anharmonicity K and the vdP

nonlinear dissipation rate κ lead to third-order derivatives in α. These are necessary

for nonclassical steady-state Wigner densities [106], and increasing the effect of these

third-order derivatives may increase the ‘quantumness’ of the system. However, a larger

rate κ is also accompanied with stronger diffusion, as is implied by the presence of the

second-order derivatives which are proportional to κ. A larger Kerr term K on the other

hand, gives us the opportunity to increase ‘quantumness’ without adding diffusion.

In the limit of large limit-cycle amplitudes |α|, i.e. G� κ, we can neglect the third-order

derivatives [72, 97, 132] and get

Λc = ∂α

[(
Γ(|α|)

2
+ iΩ(|α|)

)
α+ E

]
+ ∂α∂α∗D(|α|) + h.c., (2.4)

which contains only first- and second-order derivatives corresponding to drift and dif-

fusion, respectively. As illustrated in Fig. 2.2, the drift term consists of an amplitude-

dependent damping rate Γ = −G + 2κ(|α|2 − 1), an amplitude-dependent oscillation

frequency Ω = −∆ + 2K(|α|2 − 1) in the frame of the drive, and the drive of strength

E. The diffusion is given by D = G
4 + κ

2 (2|α|2 − 1).

In the absence of driving, E = 0, and using radial coordinates α = Aeiφ, the dynamics

of the amplitude A decouples from the dynamics of the phase φ in Eq. (2.4). One can

then obtain a Wigner distribution function for the amplitude only, W (A). Well within

a limit-cycle, we can approximate the distribution W (A) as a Gaussian distribution,

similar to Refs. [5, 79, 107]. The mean amplitude A0 of this limit-cycle is determined
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by imposing the condition Γ(A0) = 0. It is then found to be A0 =
√

1 +G/2κ. For a

strongly peaked Gaussian distribution about A0, i.e. for G/κ� 1, Ref. [5] describes the

analytical derivation of the variance,

σ2
A =

D(A0)
dΓ
dA

∣∣
A=A0

. (2.5)

We therefore obtain σ2
A = 3

8 , so that the relative deviation σA/A0 is negligible and

we can approximate the amplitude-dependent diffusion constant with its value at A0,

i.e. D ≈ (3G + 2κ)/4 > 0. The oscillation frequency Ω is also sensitive to fluctuations

in the amplitude A. Using an equivalent of Eq. (2.5), one finds σΩ ∝ KA0 ≈ K
√
G/2κ.

Therefore, classically, the range of detuning ∆ for which phase locking and frequency

entrainment occur becomes larger with increasing K and A0, as we shall see in Figs. 2.4

(b) and (f).

2.3 Synchronization

To quantify the synchronization in our quantum model, we use the synchronization

measure described in Sec. 1.1.2, Eq. (1.10),

S = |S|eiθ =
〈a〉√
〈a†a〉

=

∑∞
m=0

√
m+ 1ρm+1,m√
〈a†a〉

. (2.6)

We note that the Hamiltonian in Eq. (2.1) is time independent, as it is written in the

rotating frame of the external drive. As a consequence, S is also independent of time in

steady state. The mean relative phase between the external drive and the self-oscillator

Figure 2.2: The amplitude-dependent damping rate Γ (blue solid line) and amplitude-
dependent diffusion constant D (green dashed line) in the semiclassical equation (2.4)
as a function of the amplitude A. In the limit of large amplitude A, the radial Wigner
density W (A) is a Gaussian with variance σ2

A = 3/8 around the zero of Γ, i.e. Γ(A) = 0.
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is measured by θ. The exact value of this θ is not relevant for our purposes. We can

therefore use |S| to characterize synchronization in the system (see below and Sec. 1.1.2).

2.3.1 Analytical understanding

In order to find an analytical expression for S, we understand from Eq. (2.6) that we

should calculate density matrix elements along the subdiagonal, ρm+1,m. These matrix

elements ρm+1,m in the steady state are a direct result of the external drive term in

Eq. (2.1). To see it, we first note that the solution to Eq. (2.1) with E = 0 is derived

in Ref. [32]. Representing the master equation in the number basis, and then using

a generating function to replace an infinite system of difference equations by a single

differential equation, Dodonov et al. are able to find the solution

ρ(E=0)
mm =

(G/κ)mΦ(1 + n,G/κ+m,G/κ)

(G/κ)mΦ(1, G/κ, 2G/κ)
, (2.7)

where (·)m denotes the Pochhammer symbol, and Φ is Kummer’s confluent hypergeo-

metric function. We see that ρ(E=0) is diagonal in the number basis and therefore it

is describing limit-cycles without any preferred phase, i.e. their Wigner density is rota-

tionally symmetric, and it depends only on the ratio of relaxation rates G/κ and not

the Kerr parameter K. This is indeed expected, as in the absence of an external drive

E = 0, we should find no synchronization, i.e. S ∝
∑

m ρm+1,m = 0. In the limit

of large G/κ [32], corresponding to large mean amplitude, ρ
(E=0)
mm follows a Gaussian

distribution with mean 〈m〉 = G/(2κ) and variance σ2
m = 3G/(4κ). This is consistent

with the large-amplitude semiclassical treatment above, as both mean 〈m〉 ≈ A2
0 and

Fano factor σ2
m/〈m〉 ≈ 4σ2

A agree. In the opposite limit G/κ → 0, the steady state is

approximately ρ
(E=0)
mm → 2

3 |0〉 〈0|+
1
3 |1〉 〈1|+O(G/κ).

The effect of the external drive E on the matrix elements ρm+1,m can be analytically

obtained in the limit of weak drive strength and large Kerr anharmonicity E � G+κ�
K. In this limit, the perturbative approach to Markovian open quantum systems can be

used [76]. In analogy to standard perturbation theory for Hamiltonians, we decompose

the quantum master equation ρ̇ = (L0 + L1) ρ in Eq. (2.1) into an unperturbed operator

L0 and a perturbation L1, with

L0ρ = −i[H0, ρ] + Lρ,
L1ρ = −i[H1, ρ].

(2.8)

In Ref. [76], the first order correction to the unperturbed steady state ρ(E=0) is found

to be

ρ(1) = −L−1
0 L1ρ

(E=0), (2.9)

where L−1
0 is the Moore-Penrose pseudoinverse of L0 (see supplementary material of

Ref. [76] for an explanation of the Moore-Penrose pseudoinverse). We have already found

that ρ(E=0) is diagonal. Next, we notice that L1 couples only neighboring Fock states.
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In order to find the first order correction to the matrix elements along the subdiagonal

ρ
(1)
m+1,m, we are therefore only left with finding the effect of L−1

0 on the minor diagonals.

Here, we exploit the fact that the superoperator L0 can be decomposed into terms which

couple matrix elements along a specific diagonal.

To see why the superoperator L0 can be decomposed into terms which couple

matrix elements along a specific diagonal, we represent ρ̇ = L0ρ in the number

basis,

ρ̇n,m =

[
i∆(n−m)− iK(n2 −m2)− G(n+m+ 2)

2
− κ(n2 − n+m2 −m)

2

]
ρn,m

+G
√
nmρn−1,m−1 + κ

√
(n+ 1)(n+ 2)(m+ 1)(m+ 2)ρn+2,m+2.

(2.10)

Choosing n = m, we obtain an equation which couples only diagonal matrix

elements. Choosing n = m+ 1, we obtain an equation coupling only subdiagonal

matrix elements. Choosing n = m − k, we obtain an equation coupling matrix

elements along the k-th diagonal.

We can therefore work solely in the subspace of the subdiagonal. In that subspace,

and after neglecting terms of the order of G/K and κ/K, we obtain the inverse L−1
0 by

inverting its diagonal so that

L−1
0 |m+ 1〉 〈m| ≈ λ−1

m+1,m |m+ 1〉 〈m| , (2.11)

with

λm+1,m = i [∆−K(2m+ 1)]− Γm
2
, (2.12)

where

Γm = G(2m+ 3) + 2κm2 . (2.13)

Choosing n = m+ 1, we can write Eq. (2.10) in the subspace of the subdiagonal

ρ̇m+1,m = λm+1,mρm+1,m +G
√

(m2 +m)ρm,m−1

+ κ(m+ 2)
√

(m+ 3)(m+ 1)ρm+3,m+2.

Writing the left-hand side of this equation as a column vector, we notice that the

right-hand side of this equation is just the multiplication of a square matrix with

a column vector. Neglecting terms of the order of G/K and κ/G, the inverse of

the square matrix is easily found by inverting its main diagonal. The result is

simply Eq. (2.11).
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Using the last obtained results, we finally have obtained the first order correction for

the density matrix elements along the subdiagonal, Eq.(2.9),

ρ
(1)
m+1,m =

(
ρ(E=0)
mm − ρ(E=0)

m+1,m+1

)√
m+ 1

E

λm+1,m
. (2.14)

Plugging this first-order correction into our expression for the synchronization measure,

Eq. (2.6), we find

S(ρ(1)) =

∞∑
m=0

(
ρ(E=0)
m,m − ρ(E=0)

m+1,m+1

) m+ 1√
〈a†a〉

E

λm+1,m
. (2.15)

Equation (2.15) implies that S(ρ(1)) is a coherent sum of resonances at ∆ = K(2m+ 1)

and of width Γm. Indeed, it is the the anharmonic discrete energy spectrum of the Kerr

oscillator that leads to multiple resonances in the first-order response to an external

drive. They can be resolved for large Kerr anharmonicity K � Γm. The number of

visible resonances depends on the number of non-negligible probabilities ρ
(E=0)
mm in the

unperturbed steady state ρ(E=0). In the quantum limit G/κ→ 0, the resonances become

more pronounced since fewer levels are occupied. In the limit G/κ → ∞, the energy

spectrum becomes continuous, so that the resonances can no longer be resolved.

b

c

d

Figure 2.3: Synchronization measure |S| and the corresponding Wigner distributions.
(a) The phase locking behavior for the quantum system (black solid line) described by
the master equation Eq. (2.1) or by Λ (2.3) can be understood with our perturbative
expression (2.15) (red bold dotted line). For the parameters of this plot (κ/G = 7,
E/G = 2.25, K/G = 50) approximately three energy levels have significant occupation,
so that two resonances are possible. The blue dashed line shows the results of the
corresponding semiclassical model Λc (2.4), for which there is only one resonance as
expected. The Wigner distributions for the parameters at the two peaks (b), (d) and

the minimum (c) illustrate the quantum phase locking behavior of Λ.
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2.3.2 Numerical results

Now that we have obtained an analytical insight into the synchronization process of

the anharmonic quantum vdP oscillator to an external drive, we are ready to present

exact numerical results. The steady-state of Eq. (2.1) is obtained using the steady-state

solver of QuTiP [60, 61]. We will compare it with the steady-state in the semiclassical

approximation, i.e. the steady state of Eq. (2.4). The latter is found by discretizing

the Fokker-Planck equation [106].

Figure 2.3 (a) presents the resulting phase-locking measure |S| as a function of the

detuning ∆, for system parameters κ = 7G, E = 2.25G and K = 50G. The black

solid line describes the quantum prediction, Eq. (2.1). We find that the position of

the resonances is very well described by Eq. (2.15) (red bold dotted line). In contrast,

the semiclassical model defined by Eq. (2.4) leads to a single, broad resonance (blue

dashed line). Figures 2.3 (b)-(d) show how phase locking at the two maxima and the

one minimum manifests in the steady-state Wigner distribution W (α).

Figure 2.4 presents Contour plots of the synchronization measure |S| as a function of

∆ and one more system parameter (κ, E,or K). Figure 2.4 (a) illustrates how more

resonances at ∆ = K(2m+ 1) appear with decreasing κ/G, as more Fock levels become

populated, while each individual resonance becomes weaker. The semiclassical approx-

imation depicted in Fig. 2.4 (b) shows only one broad smeared-out resonance, as the

energy distribution is continuous classically. Figure 2.4 (c) shows the synchronization

tongue, i.e. the synchronization measure as a function of detuning ∆ for increasing drive

Figure 2.4: Behavior of the phase-locking measure |S| for the steady state in the
quantum description Λ (a, c, e) and in the semiclassical approximation Λc (b, d, f). In
(a) and (b) |S| is plotted as a function of ∆ and κ for E = 2.25G and K = 50G. In (c)
and (d) it is plotted as a function of ∆ and E for κ = 5G and K = 50G. In (e) and (f)

it is plotted as a function of ∆ and K for κ = 5G, E = 2.25G, and Kmax = 50G.
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E. The ratio κ/G is chosen such that three Fock levels have a non-negligible population

in steady state resulting in the two resonances for the full quantum description. As

expected classically, the tongue is not split in Fig. 2.4 (d), which is showing the solution

for Λc. Finally, Figures 2.4 (e) and (f) illustrate that in the absence of a Kerr anhar-

monicity, K = 0, there is only one resonance as all energy gaps are identical for harmonic

oscillators. For increasing K the resonance splits in the quantum system Fig. 2.4 (e),

while the classical resonance Fig. 2.4 (f) broadens.

As discussed in Sec. 1.1.2, synchronization also results in the frequency entrainment of

the natural frequency of oscillation to the frequency of the external drive. To discuss

this frequency entrainment [134], we use the power spectrum,

P (ω) =

∫ ∞
−∞

eiωt〈a†(t)a(0)〉dt. (2.16)

Numerically simulating P (ω) using Eq. (2.1), we demonstrate in Fig. 2.5 that for a

nonzero Kerr anharmonicity K 6= 0 the frequency entrainment shows resonances at de-

tunings ∆ = (2n+ 1)K. These are similar to the resonances in phase locking. The max-

imum of the power spectrum is shown in red solid line. Indeed, the quantum signature

of synchronization can be seen in both phase locking and in the frequency entrainment.

Figure 2.5: Power spectrum P (ω) of the quantum vdP oscillator with Kerr nonlinear-
ity as a function of detuning ∆ for κ = 0.8G, E = 4.5G, and K = 25G. The red solid
line indicates the maximum of the power spectrum, the black dashed line the detuning
∆ of the external drive. Around ∆ ≈ K and ∆ ≈ 3K the two lines match indicating a
resonance in frequency entrainment. At ∆ = 5K the spectrum shows a third, smaller

response.
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2.3.3 Negative Wigner density

A negative Wigner density can only be seen in nonclassical states (see Sec. 1.3.2). For

the parameters of Fig. 2.5 the drive is so strong that the dynamics goes beyond first-

order perturbation theory and also diagonal matrix elements of the density matrix in

steady state are changed. As shown in the inset of Fig. 2.6, for the detuning at the

∆ = 5K resonance the redistribution is from even to odd Fock states, which have

negative Wigner density around the origin α = 0. Accordingly, the steady-state Wigner

distribution shows strong negative density as shown in Fig. 2.6. This is another quantum

signature of synchronization. It clearly demonstrates that (quantum-induced) diffusion

is insufficient to describe the synchronization dynamics of anharmonic oscillators, since

derivatives of higher than second order are required to bring about a negative Wigner

density [106] in the phase space formulation of quantum optics. Here, the higher-order

derivatives stem from both the Kerr and the vdP nonlinearity, see Eq. (2.3). Interestingly

though, in the case of linear instead of nonlinear damping, the steady-state Wigner

distribution can be calculated analytically [34, 63] and it is always positive, even for K 6=
0. Similarly, for vdP oscillators without Kerr term, only positive-valued Wigner densities

have been found [72, 134]. These observations suggest that for harmonic driving only

the combination of a Kerr anharmonicity and a vdP nonlinearity results in a nonclassical

steady state.

n

P
(n
)

0.4

0 0 1 2 3
4

Figure 2.6: Steady state for the parameters of Fig. 2.5 and ∆ = 5K. This steady
state is characterized by a Wigner distribution with negative density. The inset shows
the Fock state probabilities P (n) in the presence (right blue bars) and absence of the

coherent external drive (left black bars).
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2.4 Conclusions

In the work presented in this chapter [77], we have drawn attention to the fact that

the different possible oscillation frequencies of a quantum anharmonic self-oscillator,

as shown in Fig. 2.1, leads to synchronization behavior which is qualitatively different

than the synchronization behavior which is expected from a corresponding semiclassical

model. This is seen as phase locking that is resonantly enhanced and suppressed due

to the quantization, as shown in Fig. 2.3 and in Fig. 2.4. This behavior can be under-

stood with a simple analytical model leading to Eq. (2.15). We have illustrated how the

number of expected synchronization resonances increase as more Fock levels become pop-

ulated, while each individual resonance becomes weaker, in Fig. 2.4 (a). This quantized

synchronization behavior is also seen in the power spectrum, as frequency entrainment

can switch from unlocked to nearly locked behavior at the same resonances as shown in

Fig. 2.5. One more clear signature of nonclassical dynamics is the negative density in

the steady-state Wigner distribution displayed in Fig. 2.6, which is in contrast to similar

systems [63]. Possible experimental realizations of the model described in this chapter

are discussed in Sec. 1.1.1. We expect that the genuine quantum signatures discussed

here will be relevant in studies of synchronization in anharmonic oscillator networks

(one example for this is provided in Ref. [78]) or anharmonic oscillators coupled to other

quantum systems such as qubits.
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CHAPTER 3

QUANTUM EFFECTS IN

AMPLITUDE DEATH OF COUPLED

ANHARMONIC SELF-OSCILLATORS

“Insanity is doing the same thing over and over

again, but expecting different results”

Jane Fulton, fictional character (not Albert

Einstein)

This chapter is based on our results that were published in

• Ehud Amitai, Martin Koppenhöfer, Niels Lörch, Christoph Bruder

Quantum effects in amplitude death of coupled anharmonic self-oscillators

Phys. Rev. E 97, 052203 (2018)

Copyright (2018) by the American Physical Society

Coupling two or more self-oscillating systems may stabilize their zero-amplitude rest-

state, therefore quenching their oscillation. This phenomenon is termed “amplitude

death”. Well-known and studied in classical self-oscillators, amplitude death was only

recently investigated in quantum self-oscillators [57]. Quantitative differences between

the classical and quantum descriptions were found. Here, we demonstrate that for quan-

tum self-oscillators with anharmonicity in their energy spectrum, multiple resonances

in the mean phonon number can be observed. This is a result of the discrete energy

spectrum of these oscillators, and is not present in the corresponding classical model.

Experiments can be realized with current technology and would demonstrate these gen-

uine quantum effects in the amplitude death phenomenon.
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Chapter 3. Quantum effects in amplitude death of coupled anharmonic self-oscillators

3.1 Introduction

As discussed in the previous chapter, the synchronization of quantum oscillators has

become a very active research topic in recent years [1, 3, 12, 28, 71, 72, 77, 78, 120,

134, 135, 138, 139, 143]. The quantum van der Pol (vdP) oscillator was proposed as a

generic model for a quantum self-oscillator [72, 134], allowing for the investigation of

synchronization in the quantum regime. Synchronization of a quantum vdP oscillator

to a drive [72, 77, 134, 139], the synchronization of two mutually coupled vdP oscillators

[1, 71, 72, 78, 135], and the synchronization of networks of such oscillators [12, 78], were

theoretically investigated.

The quantum vdP oscillator model, being a generic model for a quantum self-oscillator,

can be used to study other phenomena, different than quantum synchronization [57, 90].

Still, much less effort has been invested in that direction. Recently, the driven quantum

vdP oscillator was used to study quantum fluctuations around arbitrary limit-cycles

[90], and the quantum amplitude dynamics of two dissipatively coupled quantum vdP

oscillators has also been investigated [57]. More specifically, in Ref. [57] the researchers

have shown the quantum-analog of the amplitude death phenomenon (see Sec. 1.1.3).

They have found quantitative differences when comparing the quantum model with a

corresponding semiclassical model.

In the previous chapter, we have found genuine quantum signatures in the synchroniza-

tion of an anharmonic self-oscillator to an external drive. Two main ingredients were

necessary in doing so: (1) The synchronization phenomenon depends on the frequency

detuning between the self-oscillator and the synchronizing drive; (2) The Kerr nonlinear-

ity introduces different, discrete frequencies in the energy spectrum of the self-oscillator;

These discrete oscillation frequencies were therefore reflected as multiple discrete reso-

nances in the tendency of the anharmonic self-oscillator to synchronize to the external

drive. The amplitude death phenomenon, as explained in Sec. 1.1.3, depends on the

frequency detuning between two dissipatively-coupled self-oscillators as well. Will an-

harmonicity in the energy spectrum of the self-oscillators lead to quantized amplitude

death? This is the subject of the work [2] presented in this chapter.

To answer our research question, we investigate the amplitude dynamics of two dissi-

patively coupled quantum vdP oscillators with anharmonicity in their energy spectrum.

We report qualitative differences in the amplitude death phenomenon between the quan-

tum model and a corresponding semiclassical model. For increasing detuning between

the two self-oscillators, we observe a decay in the oscillation amplitude, as expected in

amplitude death. Then however, for an even larger detuning, we observe an increase

of the oscillation amplitude. We demonstrate that such an increase is the result of

the quantized, anharmonic energy spectrum. It is, to the best of our knowledge, the

first time that genuine quantum features that go beyond a semi-classical drift-diffusion

picture are predicted to exist in the amplitude death phenomenon.

40



Chapter 3. Quantum effects in amplitude death of coupled anharmonic self-oscillators

This chapter is organized as follows. We describe the models used in Sec. 3.2. This

includes the quantum model, the classical (noiseless) model, and the semiclassical (con-

tains Gaussian noise) model. Section 3.3 contains a description of the effect of the

anharmonicity in the energy spectrum on the vdP oscillation amplitude. We show that

this anharmonicity leads to strong oscillation-amplitude suppression, however only in

the presence of noise. Genuine quantum effects in the amplitude death phenomenon,

which are not the result of noise, but stemming from the quantized energy levels of

the anharmonic oscillators, are described in Sec. 3.4. Our conclusions are presented in

Sec. 3.5.

3.2 Models

As mentioned, the amplitude death phenomenon may occur when two self-oscillators are

dissipatively-coupled. We focus on a model consisting of two anharmonic dissipatively-

coupled vdP oscillators [57, 72, 135]. The results, nevertheless, are general and apply to

other anharmonic self-oscillators as well. Schematics of the energy spectrum of the two

quantum vdP oscillators and the non-unitary processes involved in the coupling to the

environment are shown in Fig. 3.1. The quantum master equation (~ = 1) governing the

Figure 3.1: The four lowest-lying discrete energy levels of the quantum vdP oscillator
with Kerr nonlinearity. The Kerr nonlinearity leads to an energy level spacing ωm +
(2n+1)Km between the n-th and (n+1)-th energy levels (see Sec. 2.2 for explanation).
The wiggly lines describe non-unitary processes stemming from coupling the system
to Markovian reservoirs (marked by rectangles with rounded corners): The incoherent
energy gain with rate G and the incoherent nonlinear energy loss with rate κ of the vdP
oscillator are obtained by coupling the individual vdP oscillators to their own Markovian
reservoirs. The dissipative coupling with strength V is obtained by coupling the vdP

oscillators to a common Markovian reservoir.
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time evolution of the density matrix ρ of the two oscillators was derived in Sec. 1.1.3,

ρ̇ =
2∑

m=1

(
−i[Hm, ρ] +GD[a†m]ρ+ κD[a2

m]ρ
)

+ VD[a1 − a2]ρ, (3.1)

where am and a†m are the annihilation and creation operators of the m-th oscillator,

and Hm = ωma
†
mam +Km(a†mam)2 is the Hamiltonian of the m-th Kerr vdP oscillator,

with ωm and Km being the natural frequency and the Kerr nonlinearity parameter

of the m-th oscillator, correspondingly. The non-unitary dynamics are described using

Lindblad operators, D[x]ρ ≡ xρx†−(x†xρ+ρx†x)/2. G and κ describe the rate of energy

gain and the rate of nonlinear energy dissipation of the self-oscillators, respectively. V

defines the strength of the dissipative coupling. Such a dissipative coupling is obtained

by assuming that the two vdP oscillators are coupled to a common Markovian reservoir

[89], as schematically shown in Fig. 3.1 and explained in Sec. 1.1.3. In the following, we

use QuTiP [60, 61] to numerically simulate this master equation, which constitutes our

quantum model. The explicit code is shown and explained in Appendix A.1.

In the model described by Eq. (3.1), we have chosen κ and G to be identical for both vdP

oscillators. This allows us to simplify our analysis, discarding any difference between the

states of the two self-oscillators which may arise as a result of their individual character.

This is by no means a crucial choice for observing the noise-induced amplitude death

and quantum effects described below. We have maintained the freedom of choosing

a non-identical natural frequency, ωm, as the amplitude death phenomenon depends

critically on the frequency detuning between the two self-oscillator. Furthermore, we

also allow for non-identical Kerr nonlinearity, Km, as it helps to elucidate the quantum

effects described in Sec. 3.4.

It is known that in the absence of a Kerr nonlinearity, the uncoupled (V = 0) vdP

oscillators exhibit limit-cycles. We would like to emphasize that this is also true in

the presence of a Kerr nonlinearity. This is apparent when examining the steady state

density matrix for such a Kerr nonlinear vdP oscillator, which is given by the diagonal

ρ
(V=0)
nn = (G/κ)nΦ(1 + n,G/κ + n,G/κ)/ [(G/κ)nΦ(1, G/κ, 2G/κ)], where (·)n denotes

the Pochhammer symbol and Φ is Kummer’s confluent hypergeometric function [32, 77].

ρ(V=0) depends only on G/κ and not on the Kerr parameter Km. It therefore describes

limit-cycles with no preferred phase, just as for the harmonic Km = 0 case.

Classical model.– The equations describing the motion of the classical amplitudes of

oscillation, αm ≡ 〈am〉, can be obtained from Eq. (3.1). Using the Heisenberg equation

of motion (EOM) and after employing a mean-field approximation, one obtains for

m ∈ {1, 2}

α̇m = −i
(
ωm + 2Km|αm|2

)
αm +

G

2
αm − κ|αm|2αm +

V

2
(αm̄ − αm), (3.2)
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where m̄ 6= m. These last two equations constitute our classical noiseless model. The nu-

merical implementation of a solver for these classical coupled complex-valued differential

equations is presented in appendix A.1.

To understand how the classical EOM is obtained in practice, let us take the

time-derivative of αm = 〈am〉,

d

dt
αm =

d

dt
〈am〉 =

d

dt
Tr {amρ} = Tr

{
am

d

dt
ρ

}
= Tr

{
am

[
2∑

n=1

(
−i[Hn, ρ] +GD[a†n]ρ+ κD[a2

n]ρ
)

+ VD[a1 − a2]ρ

]}
,

(3.3)

where we have used Eq. (3.1) in the last equality. The trace over the different

terms of the last equation can be straightforwardly taken. As an example, we

take the trace over the energy gain term,

G
2∑

n=1

Tr
{
amD[a†n]ρ

}
= G

2∑
n=1

Tr

{
am

(
a†nρan −

1

2
ana

†
nρ−

1

2
ρana

†
n

)}

= G
2∑

n=1

(
〈anama†n〉 −

1

2
〈amana†n〉 −

1

2
〈ana†nam〉

)

=
G

2

2∑
n=1

〈am〉 δm,n =
G

2
αm.

(3.4)

Continuing by taking the trace over the remaining terms of Eq. (3.1), one obtains

the classical EOM, Eq. (3.2).

Semiclassical model.– To obtain from Eq. (3.1) a semiclassical model which includes

Gaussian noise, we describe the system using a partial differential equation for the

Wigner distribution function W (α1, α
∗
1, α2, α

∗
2, t) [19, 41, 57],

Ẇ (α) =
2∑

m=1

[
−
(

∂

∂αm
µαm + c.c.

)
+

1

2

(
∂2

∂αm∂α∗m
Dαmα∗m +

∂2

∂αm∂α∗m̄
Dαmα∗m̄

)
+
κ− iKm

4

(
∂3

∂α∗m∂α
2
m

αm + c.c.

)]
W (α).

(3.5)

This phase space representation is completely equivalent to the master equation descrip-

tion, Eq. (3.1). The drift coefficients are given by

µαm =

[
−i
(
ωm + 2Km|αm|2

)
+
G

2
− κ

(
|αm|2 − 1

)
− V

2

]
αm +

V

2
αm̄, (3.6)
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and the diffusion coefficients are given by

Dαm,α∗m = G+ 2κ(2|αm|2 − 1) + V,

Dαm,α∗m̄ = −V.
(3.7)

The transformation from a master equation to a differential equation for the

Wigner function is explained in Sec. 2.2. Here, we show one more example, and

transform the non-unitary terms proportional to G. Using the identities given in

Eq. (2.2),

G

2∑
m=1

(
a†mρam −

1

2
ama

†
mρ−

1

2
ρama

†
m

)
→

G

2∑
m=1

[(
α∗m −

1

2
∂αm

)(
αm −

1

2
∂α∗m

)
− 1

2

(
αm +

1

2
∂α∗m

)(
α∗m −

1

2
∂αm

)
−1

2

(
α∗m +

1

2
∂αm

)(
αm −

1

2
∂α∗m

)]
W (α)

=
G

2

2∑
m=1

(
∂αm∂α∗m − ∂αmαm − ∂α∗mα

∗
m

)
W (α).

Continuing in this manner, one obtains the EOM for the Wigner function from

the master equation Eq. (3.1).

In the classical limit (|αm| � 1), we can neglect the third-order derivatives of Eq. (3.5)

[19, 72, 97, 132]. By doing so, we obtain the Fokker-Planck equation (FPE) [106],

Ẇ (α) =

2∑
m=1

[
−
(

∂

∂αm
µαm + c.c.

)
+

1

2

(
∂2

∂αm∂α∗m
Dαmα∗m +

∂2

∂αm∂α∗m̄
Dαmα∗m̄

)]
W (α).

(3.8)

This FPE constitutes our semiclassical model. It can be further transformed into an

equivalent Langevin form [57] which can be straightforwardly numerically simulated.

The exact numerical code used for the simulation is presented and discussed in appendix

A.1.

For the interested reader, we now show how to obtain an equivalent Langevin

equation. As is well explained in Ref. [57], we first rewrite the FPE, Eq. (3.8), in
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Cartesian coordinates. Using αm = xm + iym, we find

Ẇ (X) =
2∑

m=1

[
−
(

∂

∂xm
µxm +

∂

∂ym
µym

)
+

1

2

(
∂2

∂x2
m

Dxmxm

+
∂2

∂y2
m

Dymym +
∂2

∂xm∂xm̄
Dxmxm̄ +

∂2

∂ym∂ym̄
Dymym̄

)]
W (X),

(3.9)

where X = (x1, y1, x2, y2), the drift vector µ = (µx1 , µy1 , µx2 , µy2) is given by

µxm =
[
ωm + 2Km(x2

m + y2
m)
]
ym

+

[
G

2
− κ(x2

m + y2
m − 1)− V

2

]
xm +

V

2
xm̄,

µym =−
[
ωm + 2Km(x2

m + y2
m)
]
xm

+

[
G

2
− κ(x2

m + y2
m − 1)− V

2

]
ym +

V

2
ym̄,

and the diffusion matrix is given by

D =
1

2


ν1 0 −V/2 0

0 ν1 0 −V/2
−V/2 0 ν2 0

0 −V/2 0 ν2

 ,
where νm = G/2 + κ

[
2(x2

m + y2
m)− 1

]
+ V/2.

The Langevin equation corresponding to Eq. (3.9) is

dX = µdt+ σdW t, (3.10)

where dW t is the Wiener increment, and the noise strength is obtained via σ =

U
√
D′U−1, where D′ = U−1DU is the diagonalized form of D. Writing the

different matrices explicitly, we note that the diagonalization of D is done using

U =


0 u− 0 u+

u− 0 u+ 0

0 1 0 1

1 0 1 0

 ,
where

u± = −
ν1 − ν2 ±

√
(ν1 − ν2)2 + V 2

V
.
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The diagonalized matrix is then

D′ = U−1DU =


λ− 0 0 0

0 λ− 0 0

0 0 λ+ 0

0 0 0 λ+

 ,
where λ± = (ν1 + ν2±

√
(ν1 − ν2)2 + V 2)/4. Finally, the noise matrix is given by

σ = U
√
DU−1

=

√
λ+

u+ − u−


u+ − u−

√
λ−
λ+

0 1−
√

λ−
λ+

0

0 u+ − u−
√

λ−
λ+

0 1−
√

λ−
λ+

1−
√

λ−
λ+

0 u+

√
λ−
λ+
− u− 0

0 1−
√

λ−
λ+

0 u+

√
λ−
λ+
− u−

 .

3.3 Noise-induced amplitude death

The rest-state of two harmonic self-oscillators is always unstable without a coupling

between the two oscillators. When the two self-oscillators are dissipatively coupled, the

rest-state may become stable, leading to strong amplitude suppression. As explained

in Sec. 1.1.3, this depends on the strength of the coupling V , and on the frequency

detuning between the two self-oscillators, ∆ ≡ ω2 − ω1. In the classical noiseless case,

it is predicted that the rest-state is stable in the regime G < V < (∆2 + G2)/(2G) [6].

This behavior is seen in Fig. 3.2 (a), which shows the squared amplitude |α1|2 = |α2|2.

For two vdP oscillators with an anharmonic energy spectrum, the effective oscillation

frequency of the individual oscillators, ω̃m ≡ ωm+2Km|αm|2 (see Eq. (3.2)), depends on

the amplitude of oscillation. This is a direct result of the anharmonicity in their energy

spectrum, Km. In the case that this anharmonicity is identical for both oscillators,

K1 = K2 = K, the effective frequency detuning is identical to the natural frequency

detuning,

∆̃ = ω̃2 − ω̃1 = ω2 − ω1 + 2K(|α2|2 − |α1|2) = ∆, (3.11)

since the relation α1 = α2 holds in this case. We therefore expect that in the classical

model, the amplitude of oscillation of the anharmonic Kerr-vdP oscillators is identical

to the amplitude of oscillation of the harmonic vdP oscillators, for any specific values

of V and ∆. This is indeed the case, as can be seen by comparing Fig. 3.2 (a) with

Fig. 3.2 (d), in which the squared amplitude of oscillation |α1|2 for K/G = 1 is shown.

For vdP oscillators in the presence of noise, on the other hand, the anharmonicity

drastically changes the oscillation amplitude as compared with the harmonic case. This

can be seen both in our semiclassical model, and in the fully quantum description. In
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Fig. 3.2 (b), we numerically simulate the semiclassical model, Eq. (3.8), for K = 0,

and show the long-time limit amplitude squared, |α1|2, which is ensemble-averaged over

many independent trajectories. This |α1|2 is shown as a function of both the detuning

∆ and the coupling strength V . Oscillations are sustained for small enough ∆, with

slightly higher amplitudes than in the noiseless case. This oscillation amplitude is highly

suppressed in the regime where amplitude death is expected. Nevertheless, the amplitude

of oscillation does not vanish completely, as noise hinders the complete collapse. This

agrees with Ref. [57]. In Fig. 3.2 (e), in which |α1|2 is shown for K/G = 1, and in

contrast to the classical noiseless case, the amplitudes of oscillation are significantly

changed. This can be seen by comparing Fig. 3.2 (e) to Fig. 3.2 (b). It is seen that the

values of |α1|2 for V > G are significantly lower for the anharmonic case, as compared

with the harmonic case.

As mentioned, a similar decrease is seen also in the quantum description. In Fig. 3.2 (c)

we show the mean phonon number of the first oscillator 〈a†1a1〉 for the harmonic case, as

a function of ∆ and V . As discussed in Ref. [57], the mean phonon number significantly

decreases in the regime where amplitude death is expected classically, but does not vanish

Figure 3.2: Amplitude suppression of two coupled self-oscillators for the harmonic
and anharmonic cases in the classical, semiclassical, and quantum descriptions. (a) and
(d) show the squared amplitude |α1|2 of the noiseless classical oscillator obtained from
Eq. (3.2). (b) and (e) present the long-time limit amplitude squared, |α1|2, obtained
from numerically simulating the semiclassical model, Eq. (3.8), and then ensemble-
averaging over many independent trajectories. (c) and (f) show the mean phonon

number 〈a†1a1〉 of the quantum oscillator, Eq. (3.1). The upper plots (a), (b), and
(c) correspond to the harmonic case, K/G = 0. The lower plots (c), (d) and (e)

correspond to the anharmonic case, with K/G = 1. A decrease in |α1|2 and 〈a†1a1〉 is
seen in the anharmonic case, as compared with the harmonic case. The energy loss
rate is κ/G = 0.2 for all plots. Cyan crosses mark the parameters for which the Wigner

density functions appearing in Fig. 3.3 were calculated.
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completely. Noise prevents the complete collapse. This can also be seen in Fig. 3.3 (a)

and Fig. 3.3 (b), in which we plot the Wigner function representation of the steady state

of the oscillator before and after amplitude death occurred. The parameters chosen for

these Wigner representations are marked by cyan crosses in Fig. 3.2 (c). After amplitude

death takes place, the probability distribution is sharply concentrated about the origin

of the axis, leading to low phonon expectation values 〈a†1a1〉. When nonlinearity is

introduced, just as in the semiclassical description, the mean phonon number of the

oscillators is significantly changed. This is seen in Fig. 3.2 (f), in which the mean phonon

number 〈a†1a1〉 is shown for K/G = 1. As in the semiclassical description, it is seen that

the values of 〈a†1a1〉 for V > G are significantly lower for the K/G = 1 case, as compared

with the K/G = 0 case. This is also seen in the Wigner function representation, shown

for the nonlinear case in Fig. 3.3 (c) and in Fig. 3.3 (d), for the parameters marked by

cyan crosses in Fig. 3.2 (f). Even before amplitude death occurred, the limit-cycle of

the oscillator shrank as compared with the harmonic case, Fig. 3.3 (a). The nonlinearity

leads therefore to a decrease of 〈a†1a1〉 in the quantum case. Note that while Fig. 3.2

and Fig. 3.3 show the average phonon number and Wigner function representation of

the first oscillator, almost identical figures are obtained for the second oscillator (see

Fig. 3.7 (d) and discussion in the end of Sec. 3.4).

Figure 3.3: Wigner density function for the steady state of the oscillator before and
after amplitude death occurred, for both the harmonic case and the nonlinear case.
(a) and (b) correspond to the cyan crosses marked in Fig. 3.2 (c), while (c) and (d)
match the cyan crosses shown in Fig. 3.2 (f). The suppression of oscillation amplitude
in the presence of a Kerr nonlinearity is clearly visible by comparing (a) and (c). The

limit-cycle shrinks, resulting in a decrease of 〈a†1a1〉. The Wigner distributions are
all rotationally symmetric, having no preferred phase. In all plots, κ/G = 0.2 and

V/G = 6.
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The underlying cause for this decrease, seen in the semiclassical model and in the quan-

tum description, is noise. When noise is present, the amplitude of the self-oscillator

fluctuates, as is implied by the existence of a diffusion constant, Eq. (3.7). The effec-

tive frequency of the oscillators with Kerr nonlinearity, ω̃m, depends on this fluctuating

amplitude of oscillation. For that reason, the frequency is now a fluctuating quantity as

well. The bigger the anharmonicity K is, the larger the frequency fluctuations become.

This implies that when noise is present in the system, the spread of values for ∆̃ is

wider than the spread of values of the effective detuning for harmonic self-oscillators, ∆.

Therefore, increasing K has a similar effect as increasing the effective detuning between

the two self-oscillators. As the dissipative coupling is sensitive to the detuning, we see

the effect of increasing K as a decrease in 〈a†1a1〉 (〈a†2a2〉) , for V > G. For V � G, on

the other hand, the dissipative term plays only a minor role. Therefore, increasing K

does not significantly change the occupation number 〈a†1a1〉 (〈a†2a2〉).

In Fig. 3.4 (a), we numerically simulate the quantum master equation, Eq.(3.1), and show

the decrease of 〈a†1a1〉 for increasing K, for different coupling V values. In Fig. 3.4 (b),

we numerically simulate the semiclassical model, Eq. (3.8), and show the long-time limit

amplitude squared, |α1|, which is ensemble averaged over many independent trajectories.

Indeed, both noisy models show this decrease, and only quantitative differences can

be seen when comparing the two. The noiseless classical model cannot account for

this amplitude suppression. We therefore conclude that this amplitude suppression, or

average occupation number reduction, is noise-induced.

For very large values of K/G, this noise-induced amplitude suppression can balance the

amplitude growth induced by the linear energy gain G. This allows us to set κ = 0 for

these cases, while still keeping the self-oscillators in a quantum parameter regime (see

Sec. 3.4). For smaller values of K/G, a finite κ is required to keep the oscillators in a

quantum parameter regime.

Figure 3.4: (a) Average occupation number, 〈a†1a1〉, as a function of K. (b) Average

oscillation amplitude squared, |α1|2, as a function of K. In both noisy models, a notice-
able decrease in the oscillation amplitude is seen for increasing K. Other parameters

used in both plots are (κ,∆) = (0.2, 0.0)×G.
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3.4 Quantum effects – amplitude revival

In a quantum parameter regime, the anharmonicity leads to genuine quantum effects

in the amplitude death phenomenon, which cannot be modeled using a classical or

semiclassical model. They are the result of the quantized, discrete energy spectrum of

the oscillators (see Fig. 3.1). The Kerr anharmonicityKm leads to an energy level spacing

ωm + (2n + 1)Km between the n-th and the (n + 1)-th Fock levels of the anharmonic

quantum vdP oscillators. There are therefore several discrete frequencies relevant for

each oscillator. As the amplitude death phenomenon depends on the detuning between

the frequencies of the oscillators, we can expect this discreteness to be reflected in the

mean phonon number 〈a†mam〉 of each oscillator.

To see an example of this, consider one quantum anharmonic vdP oscillator to have a

Kerr nonlinearity K1, while the second vdP oscillator is harmonic, i.e. K2 = 0. In a

very quantum parameter regime, in which only the lowest three energy levels of each

oscillator are populated, just three frequencies are relevant: The transition frequencies

between the populated energy levels of the first oscillator, ω1 +K1 and ω1 +3K1, and the

transition frequency of the second oscillator, ω2. The effective detuning between the two

oscillators could therefore be minimized at two discrete values, ∆̃ = ω2−ω1−K1 = 0 and

∆̃ = ω2−ω1−3K1 = 0. At these values for which the effective detuning is minimized, we

Figure 3.5: Average occupation number 〈a†1a1〉 = 〈a†2a2〉 and average oscillation

amplitude squared |α1|2 = |α2|2 are shown as a function of the detuning in (a) and (b)
for an anharmonic vdP oscillator with K1/G = 50 coupled to a harmonic (K2/G = 0)
vdP oscillator. Blue curves correspond to V/G = 8, while the red curves correspond to
V/G = 2. The Fock basis probability distributions for both these coupling strengths

are shown in the insets. The individual dissipation rate is κ/G = 0.
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expect to see a revival of the oscillation amplitude. In Fig. 3.5 (a), the blue curve depicts

〈a†1a1〉 = 〈a†2a2〉 obtained by numerically simulating the master equation, Eq. (3.1), for

the example just described (the Fock level probability distribution is shown in the left

inset). The peaks in the mean phonon number are clearly visible. The red curve in

Fig. 3.5 (a) depicts the peaks in 〈a†1a1〉 = 〈a†2a2〉 for a smaller V , i.e. for a parameter

regime in which more Fock levels are populated (see right inset). Indeed, the peaks are

seen for ∆ = (2n + 1)K, with n being a nonnegative integer. The average oscillation

amplitude squared, |α1|2 = |α2|2, predicted by the semiclassical model, is shown in

Fig. 3.5 (b). Indeed, only one peak is seen in both cases, as the energy distribution

is continuous in the semiclassical case. One can furthermore observe a mismatch in

the peak location between the two cases. This is a classical effect, caused by the fact

that the frequency of the nonlinear oscillator depends on the amplitude of oscillation,

ω̃1 = ω1 + 2K1|α1|2. The peak appears for ω2 = ω̃1, i.e. for ∆ = 2K1|α1|2. Smaller

values of V correspond to a larger amplitude of oscillation, and therefore the peak for

V/G = 2 appears to the right of the peak for V/G = 8.

One can also consider the case for which both the vdP oscillators are anharmonic. An

example is shown in Fig. 3.6 (a), in which the occupation number 〈a†1a1〉 = 〈a†2a2〉 of

both oscillators is plotted as a function of the detuning ∆, for equal Kerr nonlinearities

K1 = K2 ≡ K. The blue curve corresponds to strong dissipative coupling V for which

Figure 3.6: Average occupation number 〈a†1a1〉 = 〈a†2a2〉 and average oscillation

amplitude squared |α1|2 = |α2|2 are shown as a function of the detuning in (a) and
(b) for two coupled anharmonic (K1/G = K2/G = 50) vdP oscillators. Blue curves
correspond to V/G = 8, while the red curves correspond to V/G = 2. The Fock basis
probability distributions for both these coupling strengths are shown in the insets. The

individual dissipation rate is κ/G = 0.
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only the first three low-lying Fock levels are populated (left inset), while the red curve

corresponds to smaller V , for which more Fock levels have non-negligible population

(right inset). We now expect phonon number peaks for ∆ = 2nK, with n being an

integer. These correspond to resonances between the transition frequencies of the two

anharmonic oscillators, for the non-negligibly populated Fock states. The blue and

red curves shown in Fig. 3.6 (b), present the single peak which is predicted by the

semiclassical model. Contrary to Fig. 3.6 (b), and because both oscillators are nonlinear

with K1 = K2, both peaks appear at the same detuning ∆ = 0.

In the previously described examples, we set κ/G = 0. The energy gain G was balanced

by the dissipative coupling V . This was indeed possible because we have used large Kerr

parameters K1 or K2, which therefore, as explained in Sec. 3.3, made the dissipative

coupling more effective. For small values of K1 and K2, a finite value of κ needs to be

introduced in order to keep the system in the quantum parameter regime.

Fig. 3.7 (a) illustrates that in the absence of Kerr anharmonicity, i.e. K1 = K2 ≡ K = 0,

the two oscillators have a high phonon number only for ∆ = 0. As |∆| is increased,

the oscillation-amplitude is strongly suppressed. For larger values of K, the oscillation

Figure 3.7: (a) The average occupation number 〈a†1a1〉 as a function of ∆ and K.
Peaks in the occupation number at K = ±2∆ are clearly present. (b) The difference in

occupation number between the two oscillators, 〈a†1a1 − a†2a2〉. The oscillation revival
is more apparent in the m-th oscillator, if it involves its lowest frequency ωm + K.
Other parameters are (κ, V )/G = (0.25, 2) in both plots. (c) The average occupation

number difference, 〈a†1a1 − a†2a2〉, as a function of ∆ and κ. Other parameter are
(K,V )/G = (50, 2). The difference becomes more pronounced as κ is increased. (d)

〈a†1a1 − a†2a2〉 for parameters corresponding to Fig. 3.2 (f), (K,κ)/G = (1, 0.2).
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amplitudes becomes much smaller, as the dissipative coupling is more effective. Still, for

∆ = 0, we have a peak in the phonon number. As we increase |∆|, the phonon number

decreases. Once |∆| gets closer to the resonance condition |∆| = 2K, the phonon number

increases again.

In Fig. 3.7 (a), a dissipation rate of κ/G = 0.25 was chosen. It is needed to balance the

energy gain G for the lower values of K. This value of κ introduces a small asymmetry

between negative and positive detuning ∆. In Fig. 3.7 (b) the difference of the phonon

number between the two oscillators, 〈a†1a1 − a†2a2〉, is shown. We can see that for negative

detunings, the phonon number peaks are more pronounced for oscillator 1. For positive

detunings, the opposite is true. To understand this effect, we need to consider the

frequency resonances relevant to a corresponding phonon number peak. For ∆ > 0

(∆ < 0) and K > 0, the resonances involve the lowest possible transition frequency

of the second (first) oscillator, with higher transition frequencies of the first (second)

oscillator. As κ is influencing energy levels higher than the ground state, its effect is

less detrimental on the oscillator for which the lowest possible frequency is relevant. We

therefore expect that if the relations K > 0 and κ > 0 holds, such an asymmetry occurs.

In Fig. 3.7 (c), the difference 〈a†1a1 − a†2a2〉 is plotted as a function of the detuning ∆ and

of κ (other parameters are (V, K)/G=(2, 50)). It is indeed seen that 〈a†1a1 − a†2a2〉 = 0

for κ = 0. As κ is increasing, so is the difference 〈a†1a1 − a†2a2〉. In Fig. 3.7 (d) we show

the difference 〈a†1a1 − a†2a2〉 for the parameters corresponding to Fig. 3.2 (f).

3.5 Conclusions

In the work presented in this chapter, we studied theoretically the amplitude death

phenomenon for two coupled quantum vdP oscillators with Kerr anharmonicity in their

energy spectrum. We have shown that the anharmonicity leads to smaller oscillation

amplitudes in the quantum model, an effect which we have shown to be the result of

noise. Furthermore, we have found in the quantum description qualitative differences

as compared with the semiclassical model. Peaks in the mean phonon number of the

oscillators are seen when the frequency detunings match resonances between the relevant

energy transition frequencies. They describe quantized amplitude death, and then oscil-

lation revival. As the source for these peaks is the quantized nature of the energy levels,

they cannot be accounted for in a semiclassical model. To the best of our knowledge, this

is the first time true quantum effects are discussed in the context of the amplitude death

phenomenon. As explained in Sec. 1.1.3, a system of dissipatively-coupled quantum vdP

oscillators with Kerr nonlinearities can be implemented using current technology. Real-

izing this experiment is therefore possible, and will demonstrate a new quantum effect

in the amplitude dynamics of nonlinear coupled oscillators.
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CHAPTER 4

SYNCHRONIZATION OF AN

OPTOMECHANICAL SYSTEM TO AN

EXTERNAL DRIVE

“Hell is other people”

Mr. Garcin, fictional character in “No Exit” (often

misinterpreted)

This chapter is based on our results that were published in

• Ehud Amitai, Niels Lörch, Andreas Nunnenkamp, Stefan Walter, and Christoph

Bruder

Synchronization of an optomechanical system to an external drive

Phys. Rev. A 95, 053858 (2017)

Copyright (2017) by the American Physical Society

Optomechanical systems driven by an effective blue detuned laser can exhibit self-

sustained oscillations of the mechanical oscillator. These self-oscillations are a prereq-

uisite for the observation of synchronization. Here, we study the synchronization of the

mechanical oscillations to an external reference drive. We study two cases of reference

drives: (1) An additional laser applied to the optical cavity; (2) A mechanical drive

applied directly to the mechanical oscillator. Starting from a master equation descrip-

tion, we derive a microscopic Adler equation for both cases, valid in the classical regime

in which the quantum shot noise of the mechanical self-oscillator does not play a role.

Furthermore, we numerically show that, in both cases, synchronization arises also in

the quantum regime. The optomechanical system is therefore a good candidate for the

study of quantum synchronization.
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4.1 Introduction

In this thesis so far, we have tried to illuminate genuine quantum effects in the quantum

synchronization and amplitude death phenomena, which should be common to all self-

oscillators with nonlinearity in their energy spectrum. We have therefore used the van

der Pol (vdP) model, capturing the basic, generic characteristics of self-oscillators [10,

99]. The aim of the research presented in this chapter, however, is to deepen our under-

standing of synchronization in an already established, specific experimental platform,

which is able to operate in a quantum parameter regime.

The topic of synchronization of self-oscillators operating in the quantum regime has

attracted a considerable amount of interest in recent years [1, 12, 28, 42, 55, 71, 72,

77, 78, 82, 108, 134, 135, 138, 139, 143, 144, 151]. As mentioned previously, there has

been extensive research done on the paradigmatic example of a vdP oscillator [1, 12,

71, 72, 77, 78, 134, 135, 139]. Studies of quantum synchronization in specific platforms

have been conducted as well. Among these platforms are micromasers [28], atomic

ensembles [108, 143], interacting quantum dipoles [151], trapped ions [55, 72], and op-

tomechanical systems [82, 139, 144].

In an optomechanical system electromagnetic cavity modes are coupled to mechani-

cal motion. In its most basic setup, an optomechanical system is made of a single

laser-driven cavity mode which couples to a single mechanical mode via, e.g., radiation

pressure [8]. The dynamics of the system crucially depends on the frequency of the

laser driving the cavity. A laser field tuned to the red side of the cavity frequency is

used for back-action cooling as well as for state transfer [22, 96, 125], while resonant

driving is used, e.g., for position sensing [101]. When blue detuned, the laser drive can

induce a parametric instability, leading in turn to self-sustained oscillations of the me-

chanical oscillator. For a more detailed explanation, the reader is referred to Sec. 1.1.4.

These self-sustained oscillations have been studied in both the classical and the quantum

regimes [5, 79, 85, 87, 102, 107]. In its self-oscillatory state, the mechanical oscillator

may exhibit synchronization when coupled to an external drive (an additional external

drive, in contrast to the laser driving the self-oscillations), to another optomechanical

system, or as part of an array of optomechanical systems, as was theoretically shown in

the classical regime [48, 53]. Synchronization of an optomechanical system to an external

drive [119], of two optomechanical systems [148] and even of small arrays of up to seven

such systems [147], had been demonstrated experimentally. In the quantum regime the

synchronization of two optomechanical systems has been studied theoretically [139], as

well as the synchronization of an array of such systems [82] within a mean-field approach.

In our work [3], presented in this chapter, we theoretically study the synchronization

of the mechanical self-oscillator to an external reference drive. We examine two differ-

ent reference drives: (1) An additional laser applied to the optical cavity. Under an

appropriate rotating-wave approximation, this may also be implemented by modulating

the power of the laser inducing the mechanical self-oscillations, as was experimentally

56



Chapter 4. Synchronization of an optomechanical system to an external drive

done in Ref. [119]; (2) A mechanical drive applied directly onto the mechanical oscil-

lator, which could for instance be realized with a piezoelectric element attached to the

mechanical oscillator.

For both cases, our starting point of the analysis is the microscopic master equation.

We then use the laser theory for optomechanical limit-cycles [79] to derive an equation

of motion (EOM) for the phase space distribution of the mechanical self-oscillator. We

show that in both cases, in a relevant parameter regime, the Adler equation emerges

from the EOM. The Adler equation is a differential equation for the phase difference

between the self-oscillator and the reference drive, known to describe synchronization.

For the optical reference drive, this is the first time a microscopically derived Adler

equation is discussed. For the mechanical reference drive, it reproduces a result which

was first shown in Ref. [48]. We then continue to show numerically, for both cases, that

in the quantum parameter regime an “Arnold tongue” exists, a standard signature of

synchronization [10, 99]. This suggests the optomechanical system is a good candidate

for the study of synchronization in the quantum regime.

This chapter is organized as follows: We describe the system under investigation, com-

posed of an optomechanical system and an additional reference drive in Sec. 4.2. Sec-

tion 4.3 contains the analytical derivation of the microscopic Adler equations. A major

part of this derivation is done by applying the laser theory for optomechanical limit-

cycles [79] to this problem. In Sec. 4.4 we demonstrate numerically that synchronization

is expected also in a quantum parameter regime. We conclude in Sec. 4.5.

4.2 The system

The standard Hamiltonian of an optomechanical system in which the position of the me-

chanical oscillator parametrically modulates the frequency of an electromagnetic cavity

is given in a frame rotating with the frequency of the laser drive (see Sec. 1.1.4 for a

derivation), ωL, by [8]

H = ωmb
†b−∆a†a− g0a

†a
(
b+ b†

)
− iEL

(
a− a†

)
, (4.1)

where a† and a are the creation and annihilation operators of photons in the cavity, b†

and b are the creation and annihilation operators of phonons in the mechanical resonator,

ωm is the mechanical frequency of oscillation, ∆ = ωL − ωc is the detuning from cavity

resonance at ωc of the driving field with strength EL, g0 is the single photon coupling

constant, and we have set ~ = 1. A schematic figure of the system is shown in Fig. 4.1.

The frame rotating with laser drive ωL is obtained by applying the unitary transforma-

tion Û = exp
(
iωLta

†a
)
, which generates the Hamiltonian ÛHoldÛ

† − iÛ∂Û †/∂t.
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The dissipation of the two oscillators (the mechanical resonator and the optical cavity)

can be described via the master equation (see Sec. 1.3.1 for a quick derivation),

dρ

dt
= −i [H, ρ] + Lmρ+ Lcρ, (4.2)

with the Lindblad operators

Lmρ = γm(nth + 1)D[b]ρ+ γmnthD[b†]ρ, (4.3)

and

Lcρ = γcD[a]ρ, (4.4)

where γm and γc are the amplitude damping rates of the mechanical oscillator and the

electromagnetic cavity correspondingly, nth is the mean phonon number in thermal equi-

librium, and D[x]ρ = xρx† −
(
ρx†x+ x†xρ

)
/2 is the standard Lindblad superoperator.

In this work we would like to study the synchronization of the mechanical element of

the optomechanical system to an external drive. We consider two cases:

Case (1): Optical laser drive. – We introduce an additional optical laser reference field,

with frequency ωope given in a frame rotating with frequency ωL, and strength Eope , by

adding the term

Hop = −iEope
(
eiω

op
e ta− e−iω

op
e ta†

)
(4.5)

Figure 4.1: Schematics of a generic optomechanical system. In a rotating frame with
frequency ωL, obtained by applying the unitary transformation Û = exp

(
iωLta

†a
)
, the

cavity with frequency −∆ is driven by a time-independent laser, depicted by the black
arrow to the left of the cavity. In the self-oscillatory regime of the mechanical oscillator
with natural frequency ωm, the mechanical oscillator may synchronize to an additional
optical drive with frequency ωop

e as depicted in dashed box (a), or to a mechanical drive
with frequency ωm

e as depicted in dashed box (b). Note that ωop
e is given in the rotating

frame, while the application of Û leaves both ωm
e and ωm identical in both frames.
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to the Hamiltonian appearing in Eq. (4.2). This is depicted in dashed box (a) in Fig. 4.1.

This Hamiltonian can be realized by an additional optical laser, or, if the mechanical

frequency ωm is large enough such that a rotating-wave approximation can be used,

by periodically modulating the power of the optical laser causing the mechanical self-

oscillations, as seen in Ref. [119].

Case (2): Mechanical drive. – A mechanical reference drive with frequency ωme and

strength Eme can be applied directly onto the mechanical oscillator, e.g., by introducing

a piezoelectric component as depicted in dashed box (b) in Fig. 4.1. In analogy to case

(1), we add the term

Hm = −iEme
(
eiω

m
e tb− e−iωme tb†

)
(4.6)

to the Hamiltonian appearing in Eq. (4.2).

Self-oscillations in the optomechanical system.- An optomechanical system driven by an

effective blue-detuned laser may give rise to self-sustained oscillations in the mechanical

oscillator (an explanation is provided in Sec. 1.1.4) [5, 79, 85, 87, 102, 107]. These self-

oscillations are a prerequisite for studying synchronization, as is discussed in Sec. 1.1.

They can be illustrated in phase space via the Wigner function phase space distribu-

tion. A Wigner function representation for a specific self-sustained oscillation in the

mechanical oscillator is shown in Fig. 4.2 (a).

Under the influence of a reference drive, the mechanical self-oscillator may develop a

phase-preference as it tends towards locking onto the phase of the drive. For an ad-

ditional optical laser drive, as in case (1), the Wigner representation for a mechanical

Figure 4.2: Wigner function representation of (a) self-sustained oscillations in the
mechanical oscillator and of (b) tendency towards phase-locking of the mechanical os-
cillator to the phase of a synchronizing reference drive. The parameters used for both
plots are (g0, γc, γm, EL,∆, nth) = (0.3, 0.3, 0.015, 0.4, 0, 0)×ωm, where the parameters

of the external optical drive in (b) are (Eop
e , ωop

e ) = (0.08, 0.98)× ωm.
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self-oscillator showing such phase-preference is shown in Fig. 4.2 (b)1.

4.3 Classical Synchronization: Analytical approach

In the following section, it is our goal to derive an analytical description for the synchro-

nization of the mechanical self-oscillator to a reference drive, in a classical parameter

regime. To do so, we apply the laser theory for optomechanical limit-cycles [79] to the

current problem, Eq. (4.2), in which an additional reference drive, Eq. (4.5) or Eq. (4.6),

is influencing the optomechanical limit-cycle. This approach is based on the assumption

that the dynamics of the cavity adiabatically follows the dynamics of the mechanical

oscillator. It allows us to obtain an EOM for the phase space distribution of the self-

oscillator, F (r, φ), where r and φ are the mechanical phase space variables representing

the radius and the phase of the self-oscillator. This derivation of the EOM is rather

lengthy2, and it is brought in the following two subsections. In Sec. 4.3.1 we derive

the EOM for the mechanical self-oscillator where an additional optical reference drive is

present. Section 4.3.2 relays on the previous section, and describes the case in which an

additional mechanical drive is present. The fact that these equations actually describe

synchronization is shown in Sec. 4.3.3.

4.3.1 Derivation of EOM – optical laser drive

The master equation describing the standard driven optomechanical system with an

additional optical drive is given in Eq. (4.2), together with Eq. (4.5). It can also be

written as

ρ̇ = (Lm + Lc + Lint) ρ, (4.7)

where

Lmρ = −i[ωmb†b, ρ] + γm (nth + 1)D[b]ρ+ γmnthD[b†]ρ, (4.8)

Lcρ = −i
[
−∆a†a− i

(
E(t)a− E∗(t)a†

)
, ρ
]

+ γcD[a]ρ, (4.9)

Lintρ = −i
[
−g0a

†a(b+ b†), ρ
]
, (4.10)

where we have defined E(t) = EL + Eope eiω
op
e t. Now we shall use the Haake-Lewenstein

laser theory ansatz [47]. This will allow us to use a different adiabatic reference state of

the cavity field for each point in the phase space of the mechanical oscillator. It is done

1The influence of the reference drive, ideally, should not change the amplitude of the self-oscillator.
In practice however, there is some influence. In this work we make sure that the reference drive does
not change the amplitude of the unsynchronized limit-cycle by more than 10%

2A shorter version of the derivation, not able to account for diffusion of the self-oscillator, but sufficient
to understand synchronization, is shown in our work [3]. We choose to show here the full derivation,
in order to be of help for future researchers interested in the noise properties of the mechanical self-
oscillator.
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by switching to a phase space representation for the mechanical degree of freedom, and

then transferring the parametric dependence on the mechanical state from the cavity

detuning to the drive field.

Haake-Lewenstein laser theory ansatz

The density matrix appearing in the master equation, Eq. (4.7), is describing both the

electromagnetic cavity and the mechanical self-oscillator. We would like to transform it

into a fully equivalent equation for χ(β, β∗), which is a density operator for the cavity

field and a quasi-probability distribution for the mechanical oscillator. Formally it is

done by using the correspondence rules [41]

bρ→ (β + q∂β∗)χ(β, β∗), (4.11)

b†ρ→ (β∗ − p∂β)χ(β, β∗), (4.12)

where p ∈ [0, 1] and q = 1 − p. These rules corresponds to the Glauber-Sudarshan P

distribution for p = 1, to the Wigner representation for p = 1/2, and to the Husimi Q

representation for p = 0. The translated EOM is then

χ̇(β, β∗, t) = (Lm + Lc + Lint)χ(β, β∗, t), (4.13)

with

Lmχ =
(γm

2
+ iωm

)
(∂ββ + ∂β∗β

∗)χ+ γm
(
nth + q2 + pq

)
∂2
β∗βχ, (4.14)

Lcχ =
[
i (∆ + 2g0 Re(β)) a†a−

(
E(t)a− E∗(t)a†

)
, χ
]

+ γcD[a]χ, (4.15)

Lintχ = −ig0

[
(q∂β − p∂β∗)χa†a− (q∂β∗ − p∂β) a†aχ

]
. (4.16)

We notice that the cavity detuning depends parametrically on the state of the mechanical

oscillator. We would like to transform that dependence from the cavity detuning, to the

driving field E(t). This can be done using the semipolaron transformation,

χ̃(β, β∗, t) = eiθ(β,β
∗)a†aχ(β, β∗, t)e−iθ(β,β

∗)a†a, (4.17)

with

θ(β, β∗) = η Im(β), η =
2g0

ωm
. (4.18)

After switching to a frame rotating with the mechanical frequency ωm, the Liouvillians

appearing in Eq. (4.13) take the form

Lmχ =
γm
2

(∂ββ + ∂β∗β
∗)χ+ γm

(
nth + q2 + pq

)
∂2
β∗βχ, (4.19)

Lcχ = i
[
∆a†a+K(a†a)2 + i

(
Ẽ(t)a− Ẽ∗(t)a†

)
, χ
]

+ γcD[a]χ, (4.20)

Lintχ = −ig0

[(
eiωmtq∂β − e−iωmtp∂β∗

)
χa†a−

(
e−iωmtq∂β∗ − eiωmtp∂β

)
a†aχ

]
, (4.21)
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where the Kerr nonlinearity is K = g2
0/ωm, and the driving field now contains a para-

metric dependence with respect to the mechanical phase space,

Ẽ(t) =
(
EL + Eope e

iωope t
)
eiθ(β,β

∗,t) =
(
EL + Eope e

iωope t
) ∞∑
n=−∞

Jn(−ηr)ein(ωmt−φ),

(4.22)

where we have written β = reiφ using the radius r and the phase φ, and Jn are the

Bessel functions of the first kind of the n’th order. We will use the shorthand notation

Jn := Jn(−ηr).

Cavity reference state

Eventually, our goal is to adiabatically eliminate the cavity dynamics. This will then

allow us to obtain an effective Fokker-Planck equation (FPE), describing only the mo-

tion of the mechanical mirror. We therefore assume that the cavity dynamics, with a

dominant time scale γc, is fast compared with all other time scales in Lm and Lint. Then,

the cavity dynamics is dominated by Lc, while the effect of Lint is neglected,

ρ̇c = Lcρc. (4.23)

The equation describes a cavity with Kerr nonlinearity, which is driven by two amplitude

and phase modulated fields, Ẽ(t). The last equation can be solved for a cavity reference

state that we could later use in the adiabatic elimination. As explained in more detail

in Ref. [79], an approximate solution to Eq. (4.23) can be found in 2 cases: (1) For a

cavity which is driven by a strong drive to a state of large mean amplitude, |α(t)| � 1,

or (2) for a cavity which is driven by a weak drive and stays close to its ground state,

|α(t)| � 1. In both these cases, we switch to a displaced frame using the operator

D(α) = exp(αa† − αa). The displacement cavity field α(t) is chosen such that terms

in the dominant order in α are canceled from the transformed master equation. That

means that in the first case, for |α(t)| � 1, we choose α such that terms up to third

order in α are canceled, and we neglect terms up to first order in α. In the second case,

for |α(t)| � 1, we choose α such that terms up to first order in α cancel, and we neglect

terms of third order in α. In the displaced frame, Eq. (4.23) is transformed to

ρ̇c =γcD[a]ρc + i
{
i
[(
α̇+

(
γc/2− i∆− 2iK|α|2

)
α− Ẽ

)
a† − h.c.

]
+
(
∆ + 4K|α|2

)
a†a+K

[
(a†a)2

2
+ α2(a†)2 + (α∗a+ αa†)a†a+ h.c.

]
, ρc

}
.

(4.24)

Displaced frame for |α(t)| � 1.- In order to eliminate terms of third order in α in

Eq. (4.24), we require that α(t) is the long-time solution of

α̇(t) = −
{γc

2
− i
[
∆ + 2K|α(t)|2

]}
α(t) + Ẽ(β, β∗, t). (4.25)
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As a result of the driving field Ẽ, Eq. (4.22), we expect the solution to be of the form

α(β, β∗, t) =

∞∑
n=−∞

[
αln(β, β∗)einωmt + αen(β, β∗)ei(nωm+ωope )t

]
. (4.26)

Placing this form of solution into Eq. (4.25), one sees that the effective detuning experi-

enced by the cavity will be dominantly given by the DC component of |α(t)|2, such that

it is useful to define an effective detuning,

∆eff(β, β∗) = ∆ + 2K
∑
n

[
|αln|2 + |αen|2 + αln(αen−1)∗ + (αln+1)∗αen

]
, (4.27)

where we have assumed ωope = ωm + ε, where ε � ωope , ωm. This assumption is sat-

isfied when studying synchronization about the ωope = ωeff
m peak (see Fig. 4.5). If one

is interested in describing the synchronization peak about another external frequency,

ωope = ωeff
m /2 for example, this assumption should be adjusted (in this example the new

assumption should be ωope = ωm/2 + ε). We seek an approximate solution to Eq. (4.25)

by assuming a fixed effective detuning ∆eff. We then find,

αln =
EL
hn

Jn (−ηr) e−inφ, (4.28)

αen =
Eope
hn+1

Jn (−ηr) e−inφ, (4.29)

hn =
γc
2

+ i(nωm −∆eff), (4.30)

where we have again used ωope = ωm + ε. The Liouvillians describing the dynamics of

the mechanical oscillator, cavity, and the interaction, are given in this rotating (with

frequency ωm), displaced (with amplitude α(t)) frame as

Lmχ =
γm
2

[
∂ββ + (n̄+ q2 + pq)∂2

ββ∗ + h.c.
]
χ− ig0

(
∂βe

iωmt − h.c.
)
|α|2χ, (4.31)

Lcχ = −i
{
−(∆ + 4K|α|2)a†a−K[α2(a†)2 + h.c.], χ

}
+ γcD[a]χ, (4.32)

Lintχ = −ig0

(
qeiωmt∂β − pe−iωmt∂β∗

)
χ(α∗a+ αa†) (4.33)

+ ig0

(
qe−iωmt∂β∗ − peiωmt∂β

)
(α∗a+ αa†)χ.

As seen by comparing Eq. (4.25) to Eq. (4.32), the Kerr nonlinearity induces a different

effective detuning for the mean field α than for the fluctuations. We therefore further

define the effective detuning for the fluctuations,

∆̃eff(β, β∗) = ∆ + 4K
∑
n

[
|αln|2 + |αen|2 + αln(αen−1)∗ + (αln+1)∗αen

]
. (4.34)

Displaced frame for |α(t)| � 1.- In this limit, we restrict our analysis to the lowest

two Fock states. Then, operators consisting of three creation or annihilation operators in

Eq. (4.24) can be replaced with just one operator, e.g. a†a†a→ a†. Also, (a†a)2 → a†a.
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We then continue by canceling terms of first order in α. It is done by requiring that

α(t) solves

α̇(t) =
[
i(∆ +K)− γc

2

]
α(t) + Ẽ(t). (4.35)

In this limit, we can then see that the effective detuning is simply ∆K = ∆ + K. The

Liouvillians describing the dynamics of the cavity and the interaction in this limit, and

in the rotating, displaced frame are

Lcχ = −i
{
−(∆ +K)a†a−K[α2(a†)2 + h.c.], χ

}
+ γcD[a]χ (4.36)

Lintχ = −ig0

(
qeiωmt∂β − pe−iωmt∂β∗

)
χ(α∗a+ αa† + a†a) (4.37)

+ ig0

(
qe−iωmt∂β∗ − peiωmt∂β

)
(α∗a+ αa† + a†a)χ,

with the equation for the mechanical part LmF being identical to Eq. (4.31). We see

that in this limit of |α(t)| � 1, and in contrast to the limit of |α(t)| � 1, there is no need

to distinguish between the effective detuning seen by the mean field and the effective

detuning seen by the fluctuations.

By comparing the Liouvillians of the two limits, one notices the following differences: (1)

The solution α(t) differs only by the effective detuning; (2) The cavity Liouvillians, Lcχ,

differ only by the effective detuning for the fluctuations; (3) There are two additional

terms in Lintχ as given in Eq. (4.37) as compared with the expression given in Eq. (4.33).

However, these two terms are further on neglected in the adiabatic elimination. For

that reason, switching between the two limits is easily obtained via the transformation

∆eff, ∆̃eff ↔ ∆K . We can therefore continue and discuss only the results for |α(t)| � 1,

since the results in the opposite limit |α(t)| � 1 follow in complete analogy.

Adiabatic elimination of the cavity

After obtaining the reference state for α(t), we can finally eliminate the cavity in second

order perturbation theory. As in [79], we ignore Lm for now, and reinclude it later. In

the optical Fock basis, we define χij ≡ 〈i|χ |j〉. We would now aim for the differential

equations of χij . As the creation and annihilation operators in Eqs. (4.31)-(4.33) refer

to the fluctuations, we will not allow for indices i, j > 1. We then find

χ̇00 = γcχ11 + ig0

[
(qe−iωmt∂β∗ − peiωmt∂β)α∗χ10 − eiωmt∂β|α|2χ00 − h.c.

]
, (4.38)

χ̇10 =
(
i∆̃eff −

γc
2

)
χ10 + ig0

{[
e−iωmt∂β∗ + (e−iωmt∂β∗ − eiωmt∂β)|α|2

]
χ10 (4.39)

+(qe−iωmt∂β∗ − peiωmt∂β)αχ00 − (qeiωmt∂β − pe−iωmt∂β∗)αχ11

}
,

χ̇11 = −γcχ11 + ig0

[
(qe−iωmt∂β∗ − peiωmt∂β)αχ01 − eiωmt∂β

(
1 + |α|2

)
χ11 − h.c.

]
.

(4.40)

We now adiabatically eliminate χ10 to first order in g0. We note that χ11 is already of

order g2
0 and its contribution is therefore neglected, and we anticipate χ10 to be of order
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g0, and therefore its contribution can be neglected as well.

χ10(t) = ig0

∫ ∞
0

dτe(i∆̃eff−γc/2)τ
(
qe−iωm(t−τ)∂β∗ − peiωm(t−τ)∂β

)
α(t− τ)χ00(t)

= ig0

∑
n

[
q∂β∗e

i(n−1)ωmt α
l
n

h̃n−1

− p∂βei(n+1)ωmt α
l
n

h̃n+1

+q∂β∗e
i[(n−1)ωm+ωope ]t α

e
n

h̃en−1

− p∂βei[(n+1)ωm+ωope ]t α
e
n

h̃en+1

]
χ00(t),

(4.41)

where we have used the form of α(t) given in Eq. (4.26), and defined h̃n ≡ γc/2+i(nωm−
∆̃eff) and h̃en ≡ γc/2 + i(nωm + ωope − ∆̃eff).

Obtaining the FPE

Finally, we will use the differential equations for the optical Fock basis elements of

χ(β, β∗, t), Eqs. (4.38)-(4.41), and obtain an EOM for the phase space distribution

F (β, β∗, t), i.e. a FPE. This is done by noticing that the derivative of the phase space

distribution is given by Ḟ = Tr(χ̇) ≈ χ̇00 + χ̇11, where the trace is of course taken over

the optical Fock basis. Keeping only the leading order terms in g0,

Ḟ = ig0∂β∗e
−iωmt|α(t)|2χ00 + ig0

[
∂β∗e

−iωmt − ∂βeiωmt
]
α∗(t)χ10 + h.c.. (4.42)

Using the form of α(t) given in Eq. (4.26), and our expressions for χ00 and χ10 given in

Eqs. (4.38) and (4.41), we find

Ḟ =
∑
n

ig0∂β∗
[
αln(αln−1)∗ + αln(αen−2)∗e−iεt + αen(αln)∗eiεt

]
F

− g2
0

∑
n

{
q∂2
β∗
αln(αln−2)∗

h̃n−1

− p∂2
ββ∗

αln(αln)∗

h̃n+1

+ q∂2
β∗e

iεtα
e
n(αln−1)∗

h̃n

−p∂2
ββ∗e

iεtα
e
n(αln+1)∗

h̃n+2

+ q∂2
β∗e
−iεtα

l
n(αen−3)∗

h̃n−1

− p∂2
ββ∗e

−iεtα
l
n(αen−1)∗

h̃n+1

−q∂2
ββ∗

αln(αln)∗

h̃n−1

+ p∂2
β

αln(αln+2)∗

h̃n+1

− q∂2
ββ∗e

iεtα
e
n(αln+1)∗

h̃n

+p∂2
βe
iεtα

e
n(αln+3)∗

h̃n+2

− q∂2
ββ∗e

−iεtα
l
n(αen−1)∗

h̃n−1

+ p∂2
βe
−iεtα

l
n(αen+1)∗

h̃n+1

}
F

+ h.c.,

(4.43)

where we have neglected terms proportional to ∝ (Eope )2, kept only DC terms, and have

used ωope = ωm + ε, where ωope , ωm � ε. This allowed us to neglect fast oscillating terms

while keeping only these terms oscillating with εt, and to send hen → hn+1. The last EOM

for F can be used to obtain FPEs for the different known phase space density functions,

such as the Glauber-Sudarshan P distribution, the Wigner representation, and to the
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Husimi Q representation. We now choose a specific phase space representation. To

better relate to previous works [5, 79, 107], we will use the Wigner density function. We

therefore place q = p = 1/2 in the last equation. This leads to

Ẇ (β, β∗) = ig0

∑
n

∂β∗
[
αln(αln−1)∗ + αln(αen−2)∗e−iεt + αen(αln)∗eiεt

]
W (β, β∗)

+
∑
n

g2
0γc

2|h̃n+1|2
{
∂2
β∗

[
−(αln)∗αln+2 − e−iεtαln+2(αen−1)∗ − eiεt(αln)∗αen+1

]
+ ∂2

ββ∗

[
|αln|2

2
+
|αln+2|2

2
+ eiεt(αln+2)∗αen+1 + eiεt(αln)∗αen−1

]}
W (β, β∗)

+ h.c..
(4.44)

In describing limit-cycles and synchronization, it is more natural to work using polar

coordinates. We therefore transform Eq. (4.44) to a polar coordinate system. A more

detailed account of the transformation is given in Ref. [79]. The FPE for the Wigner

density function W (r, φ) in the polar coordinate system is then given by

Ẇ (r, φ) =
[
−∂rµr − ∂φµφ + ∂2

rrDrr + ∂2
rφDrφ + ∂2

φφDφφ

]
W (r, φ), (4.45)

where the drift coefficients are given by

µφ =
g0EL
r

∑
n

{
EL Re

[
JnJn−1

hnh∗n−1

]
(4.46)

+Eope Re

[
e−i(φ+εt)JnJn−2

hnh∗n−1

]
+ Eope Re

[
ei(φ+εt)Jn−1Jn−1

hnh∗n−1

]}
,

µr = −γm
2
r +

∑
n

g0EL

{
EL Im

[
JnJn−1

hnh∗n−1

]
(4.47)

+Eope Im

[
e−i(φ+εt)JnJn−2

hnh∗n−1

]
+ Eope Im

[
ei(φ+εt)Jn−1Jn−1

hnh∗n−1

]}
.

In obtaining the last expressions, we have neglected terms ∝ 1/r in the equation for µr
and terms ∝ 1/r2 in the equation for µφ, and have reincluded the effect due to Eq. (4.19).
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The diffusion coefficients are given by

Dφφ =
γm(2nth + 1)

8r2
+
∑
n

γcg
2
0E

2
L

4r2|h̃n+1|

{
J2
n

2|hn|2
+

J2
n+2

2|hn+2|2
+ Re

[
Jn+2Jn
hnh∗n+2

]

+
Eope Jn(Jn+1 + Jn−1)

EL|hn|2
cos(φ+ εt) +

Eope
EL

Re

[
ei(φ+εt)Jn+2Jn−1 + e−i(3φ+εt)JnJn+1

hnh∗n+2

]}
,

(4.48)

Drφ = −
∑
n

γcg
2
0E

2
L

2r|h̃n+1|

{
Im

[
Jn+2Jn
hnh∗n+2

]
+
Eope
EL

Im

[
ei(φ+εt)Jn+2Jn−1 + e−i(3φ+εt)JnJn+1

hnh∗n+2

]}
,

(4.49)

Drr =
γm(2nth + 1)

8
+
∑
n

γcg
2
0E

2
L

4|h̃n+1|

{
J2
n

2|hn|2
+

J2
n+2

2|hn+2|2
− Re

[
Jn+2Jn
hnh∗n+2

]

+
Eope Jn(Jn+1 + Jn−1)

EL|hn|2
cos(φ+ εt)− Eope

EL
Re

[
ei(φ+εt)Jn+2Jn−1 + e−i(3φ+εt)JnJn+1

hnh∗n+2

]}
.

(4.50)

In the limit of Eope → 0, one retrieves the known expression from [79].

4.3.2 Derivation of EOM – mechanical drive

In this section we would like to present the derivation of the EOM for the Wigner density

function describing the mechanical self-oscillator when an external mechanical drive is

applied. The master equation describing our system is given in Eq. (4.2), together with

Eq. (4.6). It can be written as (to be compared with Eq. (4.7))

ρ̇ = (Lm + Lc + Lint) ρ, (4.51)

where

Lmρ = −i[ωmb†b− iEope
(
eiω

m
e tb− e−iωme tb†

)
, ρ] + γm (nth + 1)D[b]ρ+ γmnthD[b†]ρ,

(4.52)

Lcρ = −i
[
−∆a†a− i

(
a− a†

)
, ρ
]

+ γcD[a]ρ, (4.53)

Lintρ = −i
[
−g0a

†a(b+ b†), ρ
]
. (4.54)

In applying the laser theory for optomechanical limit-cycles for this case, we take steps

completely analogous to those taken in the section. As the mechanical reference drive

acts directly on the mechanical self-oscillator, it does not appear in the solution for α(t)

nor in the elimination of the electromagnetic cavity. This fact makes calculations more

straightforward in the present case, and we do not explicitly present them here. The

EOM obtained has the same form as Eq. (4.45), with drift coefficients which are given
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by

µφ =
∑
n

g0E
2
L

r
Re

[
JnJn−1

hnh∗n−1

]
− Eme

r
sin [(ωme − ωm)t+ φ] , (4.55)

µr = −γm
2
r +

∑
n

g0E
2
L Im

[
JnJn−1

hnh∗n−1

]
+ Eme cos [(ωme − ωm)t+ φ] . (4.56)

As in the previous case, we have neglected terms ∝ 1/r in the equation for µr and terms

∝ 1/r2 in the equation for µφ. The reference field Eme does not enter the expressions for

the diffusion. The diffusion coefficients are therefore given in Eqs. (4.48)-(4.50), with

Eope = 0. In the limit of Eme → 0, one retrieves the known expressions from [79].

4.3.3 The Adler equation

Case (1): Optical laser drive. – The FPE, Eq. (4.45), describes the dynamics of the

mechanical oscillator and, in an appropriate parameter regime, will therefore describe

the synchronization of the mechanical oscillator onto the optical reference drive. In

a classical parameter regime in which the noise described by the diffusion terms is

negligible, we can omit the diffusion terms appearing in Eq. (4.45). Now, the onset of

synchronization is characterized by the locking of the phase of the mechanical oscillator

to the phase of the optical drive, while the radius of oscillation stays approximately

constant. For that reason, we can neglect the term describing the drift of the radius,

µr, while focusing on the drift of the phase, Eq. (4.46). We are therefore left with

Ẇ (φ) = −∂φµφW (φ), (4.57)

from which we recognize that µφ = φ̇. Let us therefore focus on µφ, Eq. (4.46), which

completely determines the time evolution of φ. The first term is the known amplitude-

dependent optomechanical frequency shift δω (see Ref. [5]). Using it, we obtain

µφ = φ̇ = −δω +
g0ELE

op
e

r

∑
n

Re

[
e−i(φ+εt)JnJn−2 + ei(φ+εt)Jn−1Jn−1

hnh∗n−1

]
. (4.58)

In the sideband-resolved regime and with detuning close to the mechanical frequency,

i.e., γc/2 � ∆eff ≈ ωm, terms with h1 in the denominator are close to resonance. For

that reason, we will keep only the terms with n = 1, 2. We then find

φ̇ = −δω + Eop,eff
e sin(φ+ εt), (4.59)

where we have shifted φ by a constant and defined the effective drive strength as

Eop,eff
e =

g0ELE
op
e

rω2
m

(
1 + γ2

c
4ω2
m

)√(J2 + J0)2J2
0 +

4ω2
m

γ2
c

(J2J0 − 2J2
1 − J2

0 )2. (4.60)
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Adding the frequency difference ε to both sides of Eq. (4.59), we obtain the Adler

equation
˙δφ = (ωope − ωeff

m ) + Eop,eff
e sin(δφ), (4.61)

where the effective mechanical frequency is ωeff
m ≡ ωm + δω, and we have defined δφ ≡

φ+ εt. Note that δφ = (φ−ωmt) +ωope t is just the difference of phase of the mechanical

oscillator (in a frame rotating with ωm) to the phase of the external drive.

The Adler equation describes the synchronization of the mechanical self-oscillator to the

reference drive, as shown in Fig. 4.3, in which we plot sin δφ as a function of (ωope −ωeff
m )

for different drive strengths, where the overline refers to time-averaging. For |ωope −ωeff
m | <

Eop,eff
e , the solution to Eq. (4.61) is ˙δφ = 0. Therefore phase-locking takes place. For

|ωope − ωeff
m | � Eop,eff

e , sin(δφ) time-averages to zero. The optomechanical parameters

chosen in Fig. 4.3 can be readily obtained in a wide range of experiments [8, 21, 66]. In

Ref. [66] a mechanical resonator of frequency ωm/(2π) = 9.7(kHz) was studied, while in

Ref. [21] a mechanical resonator of frequency ωm/(2π) = 3.9(GHz) was studied. In both,

the parameters of the optomechanical system were similar to those given in Fig. 4.3.

We can further test this derived Adler equation by comparing it with the numerical

prediction, which can be obtained by integrating the optomechanical EOMs for the

Figure 4.3: The main plot shows synchronization of the mechanical self-oscillator to
an optical reference drive. The analytically calculated time-average sin(δφ) as a function
of (ωop

e − ωeff
m ) for different values of Eop

e , from 0.13 to 0.17. The inset compares the
analytical solution (blue) with the numerical simulation (red dashed) for Eop

e = 0.15.
It shows excellent agreement. Colored region indicates the synchronization region,
dδφ/dt = 0. The parameters of the optomechanical system are taken in the classical

regime, (g0, γc, γm, EL,∆, nth) = (0.015, 0.5, 0.0001, 1.0, 1.0, 0)× ωm.
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cavity field α and the mechanical field β [5]

α̇ = i∆α+ ig0(β + β∗)α− γc
2
α+ EL + Eope e

−iωope t,

β̇ = ig0|α|2 − iωmβ −
γm
2
β.

(4.62)

The result is shown in the inset of Fig. 4.3. The synchronization region is indicated

by the colored region. There is a very good agreement between the prediction of the

derived microscopic equation and the numerical simulation.

Case (2): Mechanical drive. - Analogously to case (1), in a classical parameter regime

in which noise plays a negligible role, we omit the diffusion terms of the FPE. Then,

focusing only on the drift of the phase since the amplitude is assumed constant, and

taking identical steps to those shown in case (1), one reaches an Adler equation,

˙δφ = (ωme − ωeff
m ) + Em,eff

e sin(δφ), (4.63)

where the effective drive strength is

Em,eff
e =

Eme
r
. (4.64)

Figure 4.4: The main plot shows synchronization of the mechanical self-oscillator
to a mechanical reference drive. The analytically calculated time-average sin(δφ) as
a function of (ωm

e − ωeff
m ) for different values of Em

e , from 0.003 to 0.007. The inset
compares the analytical solution (blue) with the numerical simulation (red dashed) for
Em

e = 0.005. It shows excellent agreement. Colored region indicates the synchroniza-
tion region, dδφ/dt = 0. The parameters of the optomechanical system are taken in

the classical regime, (g0, γc, γm, EL,∆, nth) = (0.01, 0.3, 0.0001, 1.0, 1.0, 0)× ωm.
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This form of the Adler equation agrees with [48]. In Fig. 4.4 we plot sin δφ as a function

of (ωope − ωeff
m ) for different drive strengths, where the overline refers to time-averaging.

We can further test this analytical equation by comparing it with the classical numerical

prediction, which can be obtained by integrating the EOMs [5]

α̇ = i∆α+ ig0(β + β∗)α− γc
2
α+ EL,

β̇ = ig0|α|2 − iωmβ −
γm
2
β + Eme e

−iωme t.
(4.65)

The comparison is seen in the inset of Fig. 4.4. A very good agreement is found between

the analytical Adler equation and the numerical simulation.

4.4 Quantum synchronization: Numerical demonstration

The optomechanical system is theoretically suggested to demonstrate synchronization

also in a quantum parameter regime, in which g0 � ωm does not hold anymore. In

that parameter regime, the quantum shot noise plays an important role, and cannot be

neglected as in the previous section. The quantum synchronization of two such systems

was theoretically studied in Ref. [138]. In this section we show numerically that the

mechanical self-oscillator is expected to synchronize to a reference drive in the quantum

parameter regime.

Synchronization of a self-oscillator to an external drive is the development of phase

preference for the self-oscillator as it tends towards phase-locking to the phase of the

external drive. As shown in Fig. 4.2, this phase preference is easily seen in the phase space

distribution of the mechanical oscillator. To quantify the emergence of synchronization

using the information stored in the phase space distribution, we use the synchronization

measure that was used in Ch. 2 and in Ch. 3,

S =
| 〈b〉 |√
〈b†b〉

, (4.66)

where the bracket 〈. . .〉 denotes averaging over the phase space distribution. A brief

discussion regarding S can be found in Sec. 1.1.2.

Note that in the optomechanical system, the self-oscillations developing in the mechan-

ical oscillator are centered around some point in phase space, βc, which is generally

different than the origin. This is seen in Fig. 4.2 (a). This deviation from the origin

influences the synchronization measure, Eq. (4.66). This can be easily corrected and

accounted for. To do so, we move to a displaced frame by using the displacement oper-

ator D(−βc) = exp(−βcb† + βcb). For the rest of this work, we will be working in the

appropriate displaced frame.

The problem of an optomechanical system with an additional reference drive, Eq. (4.2)

with either Eq. (4.5) or Eq. (4.6), contains a time-dependent Hamiltonian. For that
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reason, a steady state does not emerge. However, in the late-time dynamics, the system

evolves into a state which is periodic in time with periodicity τ ≡ 2π/ωie, where i denotes

the optical- or the mechanical-reference drive. This is true in the synchronized state and

outside the synchronized state, and it is the result of the periodic time dependence of the

Hamiltonian. For that reason, in the late-time dynamics the synchronization measure

S is a function of time with the same periodicity, S(t) = S(t + τ). The variation of

S over the time scale τ in the late-time dynamics is relatively small, and is of order

S ∼ 0.01 at maximum. To conveniently discuss synchronization, we use S̄, defined as

the time-average of S over a period τ .

Numerical Results

To numerically study synchronization of the mechanical self-oscillator to an external

drive, we use QuTiP [60, 61].

Figure 4.5: The time-averaged synchronization measure S̄ as a function of the external
drive frequency, shown in blue for an optical drive with Eop

e /ωm = 0.08 and in a red
dashed line for a mechanical drive with Em

e /ωm = 0.008. For the mechanical drive there
is only one synchronization peak at ωm

e = ωeff
m , while the optical drive leads to multiple

synchronization peaks at ωop
e =

{
ωeff
m /3, ωeff

m /2, ωeff
m , 2ωeff

m

}
. The black dotted lines are

plotted at these frequencies. The synchronization peaks at ωop
e =

{
ωeff
m /3, 2ωeff

m

}
are

hardly noticeable in the scale of the figure, and are therefore shown in the two insets.
Optomechanical parameters are the same as in Fig. 4.2.
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Case (1): Optical laser drive. In Fig. 4.5, the time-averaged synchronization measure S̄

is plotted in blue as a function of the frequency of the reference drive, ωope . A main syn-

chronization peak appears about an effective mechanical frequency, ωeff
m , slightly shifted

from ωm. This shift of the mechanical frequency is known [5, 107] to be the result of

the average dynamics of the electromagnetic cavity. Synchronization peaks at other

frequencies are found as well: A synchronization peak about ωope = ωeff
m /2 is clearly

visible, and in the insets of Fig. 4.5 we zoom in on the very small synchronization peaks

at ωope =
{
ωeff
m /3, 2ω

eff
m

}
. These synchronization peaks are known in the literature as

high-order synchronization [10, 99]. While in principle high-order synchronization is

always present when synchronizing a self-oscillator to a reference drive, it is in prac-

tice very difficult (if not impossible) to detect. The presence of a reference drive which

contains many frequency components in its oscillation can enhance the synchronization

peaks [10]. As was shown in the theoretical previous section, the effective drive of the

mechanical self-oscillator, Eq. (4.22), indeed contains multiple frequencies. For that rea-

son, and in contrast to case (2), we can observe the smaller synchronization peaks. We

can also notice an asymmetry in the synchronization peak with respect to the reference

field’s frequency. This can be also be seen in Figs. 4.6 and 4.7. While there is no reason

to expect perfect symmetry, it is visible that the case of an optical reference drive is

more asymmetric. This is due to the high-order synchronization peaks.

In Fig. 4.6 we focus on the synchronization peak for ωope = ωeff
m . This corresponds to

the maximal synchronization peak shown in Fig. 4.5. The synchronization measure S̄

Figure 4.6: Arnold Tongue: The synchronization measure S̄ is plotted as a function
of the drive frequency and strength for the optical case. S̄ has the typical shape
of an Arnold tongue. The black lines marks the optomechanical effective frequency
ωop
e = ωeff

m . The horizontal white lines mark the cut along which Fig. 4.5 is plotted.
Optomechanical parameters are the same as in Fig. 4.2.
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Figure 4.7: Arnold Tongue: The synchronization measure S̄ is plotted as a function
of the drive frequency and strength for the mechanical case. As in the optical case, S̄
has the shape of an Arnold tongue. The black lines marks the optomechanical effective
frequency ωm

e = ωeff
m . The horizontal white lines mark the cut along which Fig. 4.5 is

plotted. Optomechanical parameters are the same as in Fig. 4.2.

is plotted as a function of both Eope and ωope . Indeed, the “Arnold tongue” is present, a

signature for synchronization.

Case (2): Mechanical drive. - The reference drive synchronizes the mechanical oscillator

at frequency ωme = ωeff
m . This is shown by the red dashed curve in Fig. 4.5. In contrast to

the optical case, no high-order synchronization is seen. Indeed, as the mechanical drive

is acting directly on the mechanical self-oscillator, its influence is harmonic. Therefore

high-order synchronization is not detected [10, 99].

In Fig. 4.7 we focus on this synchronization peak. In this figure we vary both the external

frequency ωme and the strength of the external drive, Eme , and the “Arnold tongue” is

clearly observed.

4.5 Conclusions

In the work presented in this chapter, we have filled a gap in the study of synchroniza-

tion of an optomechanical system. Starting from the microscopic master equation, we

have analytically derived Adler equations describing the synchronization of the mechan-

ical self-oscillator to a reference drive, in a classical parameter regime. This was done

for two different reference drives, an optical one and a mechanical one (as was shown

in Ref. [48]). We also show numerically that synchronization in a quantum parameter

regime is expected, therefore suggesting the optomechanical system as a good candidate
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for the study of quantum synchronization. In the context of this thesis, this work pro-

vides a theoretical description of the synchronization phenomenon, in both the classical

and quantum parameter regimes, in a known experimental platform.

We hope that the results presented in this work can be used for future research. This

may include using the FPE obtained, Eq. (4.45), and the corresponding diffusion coeffi-

cients, to explore noise-reduction. This noise reduction could perhaps be obtained in the

radial direction, stabilizing the amplitude of the self-oscillator. Alternatively, it could

perhaps be obtained in the tangential direction, reducing phase noise and increasing the

synchronization signal in the quantum noisy regime.
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CHAPTER 5

NONLOCAL QUANTUM STATE

ENGINEERING WITH THE COOPER

PAIR SPLITTER BEYOND THE

COULOMB BLOCKADE REGIME

“The end justifies the means”

Was not said in Nicolo Machiavelli’s “The Prince”

This chapter is based on our results that were published in

• Ehud Amitai, Rakesh P. Tiwari, Stefan Walter, Thomas L. Schmidt, and Simon

E. Nigg

Nonlocal quantum state engineering with the Cooper pair splitter beyond the Coulomb

blockade regime

Phys. Rev. B 93, 075421 (2016)

Copyright (2016) by the American Physical Society

A Cooper pair splitter consists of two quantum dots side-coupled to a conventional

superconductor. Usually, the quantum dots are assumed to have a large charging energy

compared to the superconducting gap, in order to suppress processes other than the

coherent splitting of Cooper pairs. In this work, in contrast, we investigate the limit in

which the charging energy is smaller than the superconducting gap. This allows us, in

particular, to study the effect of a Zeeman field comparable to the charging energy. We

find analytically that in this parameter regime the superconductor mediates an interdot

tunneling term with a spin symmetry determined by the Zeeman field. Together with

electrostatically tunable quantum dots, we show that this makes it possible to engineer

a spin triplet state shared between the quantum dots. Compared to previous works,

we thus extend the capabilities of the Cooper pair splitter to create entangled nonlocal

electron pairs.
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5.1 Introduction

In the context of this thesis, the following chapter is somewhat off topic. There is

no relation to self-oscillators, quantum or classical, and therefore also no relation to

synchronization or amplitude death. Still, it has become a standard for PhD candidates

to try and tackle off-topic problems, if they find the problem interesting. Here, we

present our published research [4] regarding quantum state engineering with a Cooper

pair splitter (CPS) system, in which we propose a scheme to generate entangled non-local

electronic triplet states.

Entanglement [117] is arguably one of the most fundamental aspects of quantum me-

chanics and is an essential resource for emerging quantum technologies. Non-local entan-

glement manifests itself in correlations between spatially separated parts of a quantum

system that defy any classical explanation. A natural way to explore this phenomenon

is by creating EPR pairs of particles, named after the influential Einstein-Podolsky-

Rosen paper [36], which violate Bell’s inequalities [7, 13, 43, 49, 118]. These EPR pairs

are the basis for many applications of quantum information theory, such as quantum

computation [31], quantum teleportation [14], and quantum communication [129].

The preparation of EPR pairs of photons is well established in the field of quantum

optics and has already been applied in quantum teleportation and quantum communi-

cation [14, 129]. However, preparing an electronic EPR pair has proved to be rather

difficult. Still, a solid state source of electronic EPR pairs is highly desirable. For

example, (on-demand) generation of electronic EPR pairs would greatly facilitate the

construction of quantum repeaters that are essential ingredients of a future quantum

network (quantum internet) [64]. One promising approach makes use of the natural

occurrence of singlet pairs of electrons in the ground state of conventional s-wave su-

perconductors. By coupling such a superconductor to two spatially separated quantum

dots (QDs), individual Cooper pairs can split and the two electrons from a pair tun-

nel to a different QD each. Because this process is coherent the resulting state of the

two QDs is a non-local entangled singlet EPR pair. This process is dominant if both

the superconducting gap ∆ and the Coulomb repulsion of electrons on one QD, char-

acterized by the on-site interaction strength U > 0, are large compared with the single

electron tunneling rate between the superconductor and the QDs. Such devices are

usually called Cooper pair splitters and were first proposed in Refs. [25, 75, 104] and

realized experimentally in Refs. [27, 50, 52]. In these experiments, measurements of the

current and current noise flowing out of the QDs have confirmed the spatial separation

of the electrons from a Cooper pair. Theoretical analysis of the branching currents and

their crossed correlations was done in [23, 103], and the subgap transport was studied

in [37]. Only recently, measurements of the Josephson current flowing between supercon-

ducting contacts through two parallel QDs have demonstrated that the pairs are indeed

entangled [29]. CPSs can also be used to probe the symmetry of the order parameter in

unconventional superconductors [121, 127], as a model system exhibiting unconventional
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pairing [122], to entangle mechanical resonators [133], or to engineer Majorana bound

states which are not topologically protected [74].

Typical theoretical treatments of the CPS assume an infinite charging energy for each

QD, making it energetically impossible for two electrons to occupy the same QD. This

is known as the Coulomb blockade approximation and is valid as long as the QDs have a

relatively large charging energy compared to other relevant energy scales in the device

such as the superconducting gap and the thermal energy. In the present work we explore

the opposite regime of a small charging energy compared with the superconducting gap.

We show that by leveraging a combination of effects due to Coulomb repulsion, finite

Zeeman magnetic field, and electrostatic tuning of the system, it is possible to prepare

also non-local triplet states with zero spin in the CPS system. This is particularly

interesting for solid state quantum information processing, where information is encoded

in the spin degree of freedom of electrons trapped in semiconductor QD structures [31].

This chapter is organized as follows: We begin by summarizing the main results obtained

in this research in Sec. 5.2. In Sec. 5.3 we describe the model we have used for the CPS

system. In Sec. 5.4 we introduce the effective low-energy Hamiltonian, obtained for zero-

temperature and a small charging energy in the QDs compared with the superconducting

gap. Section 5.5 introduces a scheme for the generation of a non-local triplet state on

the two QDs. The scheme is then explored both numerically and theoretically. We

comment on possible experimental schemes to verify the successful generation of the

non-local triplet state and conclude in Sec. 5.6.

5.2 Summary of the main results

For simplicity, we restrict ourselves to the zero-temperature limit and consider the co-

herent dynamics on time scales that are assumed to be much shorter than the coherence

time of the system. Employing a Schrieffer-Wolff (SW) transformation [116], we inte-

grate out the degrees of freedom of the superconductor and derive an effective low-energy

model for the dynamics of the QDs [see Eqs. (5.10) to (5.13)].

As expected, but in contrast to the case of infinite charging energy, this effective low-

energy model contains a term that allows two electrons to tunnel to the same QD. This

term competes with the Cooper pair splitting process and thus reduces its efficiency.

However, this suppression is of order Γ0/U , where Γ0 is the bare Cooper pair splitting

rate and can thus be made small by reducing the tunneling strength between the su-

perconductor and the QDs at the cost of increasing the duration of singlet generation

∼ 1/Γ0.

More interestingly, we also find that for finite on-site Coulomb repulsion on the QDs,

the superconductor induces an effective inter-dot interaction term. In the presence of

an (in-plane) magnetic field that lifts the spin degeneracy via the Zeeman effect by ∆Z ,

the spin symmetry of this new term can be altered and the part which is anti-symmetric
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under spin exchange can be made to dominate over the zero-field symmetric part. This

effect together with electrostatic tuning of the QD levels can be used to generate a non-

local triplet state with zero spin on the two QDs with high fidelity. We investigate this

triplet generation scheme in detail both numerically and, within a simplified model, also

analytically. We find that in a regime where Γ0 � U � ∆Z � ∆, the triplet fidelity

that can be achieved is approximately given by

FT ≈ 1−
(
U

∆Z

)2

− 8

(
Γ0

U

)2

, (5.1)

which takes its optimal value FT ≈ 1 − 25/2Γ0/∆Z for U = 23/4
√

Γ0∆Z . This simple

and intuitive fidelity formula can be used for a quick estimate of parameters for a given

CPS realization. A more general expression for the fidelity, which relaxes some of the

above strong inequality constraints, is derived in Sec. 5.5.

5.3 Description of the physical system and model

The system we consider is depicted schematically in Fig. 5.1. It consists of a conven-

tional BCS (Bardeen-Cooper-Schrieffer) superconductor tunnel-coupled to two other-

wise isolated QDs. We assume the coupling is local, which is justified in the limit where

the superconducting coherence length is much larger than the distance between the two

points on the superconductor from which the electrons tunnel onto the QDs [40, 91, 104].

We assume that only one orbital energy level per QD is relevant. This approximation

essentially requires sufficiently small QDs with large level spacings. This is typical for

Figure 5.1: Schematics of the CPS system. Such a system can for example be realized
by deposition of a superconductor [wide (purple) structure on the top] on top of a
patterned 2DEG at the interface of a semiconductor heterostructure. The 2DEG is
electrostatically depleted underneath the superconductor and underneath the gates
defining the QDs (yellow structures). Further gates (elongated thin gray structures)

can be used to electrostatically control the potential of the QDs.
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QDs from the III-V semiconductors, for which the relevant level would be a state from

the heavy-hole band [46]. States in the light-hole and conduction bands can be safely

ignored due to their larger detuning from the chemical potential of the superconductor

as compared to the coupling strength. We consider the zero-temperature limit where

Bogoliubov quasi-particles are absent in the system. The Coulomb repulsion between

two electrons of opposite spins on one QD is accounted for by the on-site energies UL
(left QD) and UR (right QD). The chemical potentials µL and µR of the two QDs can

be tuned electrostatically by a gate. Finally we also allow for an (in-plane) magnetic

field to be applied to the system. This leads to a Zeeman splitting ∆Z of the QD levels.

The full system is modeled by the Hamiltonian

H = HBCS +HQDs +K, (5.2)

where

HBCS =
∑

σ∈{+,−}

∑
k

Ekα
†
kσαkσ (5.3)

describes the BCS superconductor via the Bogoliubov quasi-particle operators αkσ of

momentum k and spin σ, and energies Ek. The Hamiltonians of the QDs are given by

HQDs =
∑

λ∈{L,R}

∑
σ

ελσc
†
λσcλσ +

∑
λ∈{L,R}

Uλnλ+nλ−. (5.4)

Here cλσ is a fermionic annihilation operator for an electron with spin σ in QD λ. The

corresponding number operator is denoted by nλσ = c†λσcλσ, and the energy levels are

given by

ελσ = µλ + σ∆Z/2. (5.5)

Finally, the coupling between the QDs and the superconductor is given by the tunneling

Hamiltonian

K =
∑
λ

wλ
∑
kσ

(
cλσd

†
kσ + h.c.

)
, (5.6)

where the tunnel matrix elements wλ are assumed to be spin and momentum independent

and dkσ represents the fermionic annihilation operator for an electron with energy ξk in

the superconductor. In this tunneling Hamiltonian the superconductor is coupled only

to the relevant orbital energy level of the QDs (as previously explained).

The electron operators are related to the Bogoliubov operators in the usual fashion:

dk+ = ukαk,+ + vkα
†
−k,−, d−k,− = ukα−k,− − vkα†k,+, (5.7)

with uk = (1/
√

2)
√

1 + ξk/Ek, vk = (1/
√

2)
√

1− ξk/Ek and Ek =
√

∆2 + ξ2
k.
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5.4 Effective low-energy model

Since we are interested in a system where the tunnel coupling between the QDs and the

superconductor is small compared with both the superconducting gap and the on-site

charging energy of the QDs, we proceed in this section to derive an effective low-energy

Hamiltonian. This model will form the basis of our investigation of the CPS beyond the

Coulomb blockade regime.

The first-order process described by the tunneling Hamiltonian K is basically the tun-

neling of a quasi-particle from the superconductor to one of the QDs or the conjugate

process. However, as we are working in the limit of zero-temperature, quasi-particles are

not present. It is therefore useful to distinguish between the “high-energy subspace”,

which contains quasi-particle excitations, from the “low-energy subspace”, which con-

tains states with no quasi-particles. Transitions between states in the low-energy sub-

space can occur via virtual excursions to the high-energy subspace. This picture suggests

the use of the SW transformation [116]. The SW transformation eliminates the first-

order tunneling term from the Hamiltonian, at the expense of introducing all higher

orders. By keeping only the leading order terms (second order in wλ), one obtains an

effective low-energy Hamiltonian. This procedure effectively integrates out the degrees

of freedom of the superconductor and allows for a clearer understanding of the CPS

dynamics.

The SW transformation [116] is a unitary transformation, U ≡ eS . After trans-

forming H, Eq. (5.2), we obtain

H̃ = eSHe−S = H + [S,H] +
1

2!
[S, [S,H]] + . . .+

1

n!
[S [S, [. . . [S,H] . . .]]] + . . .

We choose the generator S of the canonical transformation such that it eliminates

the perturbation to first-order in wλ, i.e.

[S,HBCS +HQDs] = −K. (5.8)

Then, the transformed Hamiltonian becomes,

H̃ = HBCS +HQDs +
1

2
[S,K] +O(w3

λ).

Keeping terms up to second order in wλ/∆, we find our low-energy Hamiltonian,

HLE = HBCS +HQDs +HSW,
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where we have defined HSW ≡ [S,K]/2. The solution of Eq. (5.8) is given by [110]

S =
∑
λ

∑
k

∑
σ

wλk

[(
1− nλσ̄
Ek − ελ,σ

+
nλσ̄

Ek − ελ,σ − Uλ

)
ukα

†
kσcλσ

+σ

(
1− nλσ
Ek + ελ,σ̄

+
nλσ

Ek + ελ,σ̄ + Uλ

)
vkαkσcλσ̄

]
− h.c.,

as can be easily verified by substitution. Using this generator, one can calculate

HSW. This can be done quite generally, for different values of ∆,∆Z , Uλ and kBT

(as long as one keeps in mind that keeping the leading order term in the SW

transformation is justified for ∆ � kBT ). However, as we are interested in the

regime where the superconducting gap ∆ is much larger than the thermal energy,

we furthermore assume that the superconductor is at zero-temperature (i.e. we

eliminate the quasi-particle αkσ degrees of freedom by taking the expectation

value of HSW in a state with no quasi-particles). After integrating out the k

dependence using the assumption ∆ > Uλ + ∆Z/2, one obtains an effective low-

energy Hamiltonian,

HLE = HQDs +HS +HP +HD, (5.9)

where HQDs is the QDs Hamiltonian appearing in Eq. (5.4), and the other terms

are given by

HS

ΓLR
=

2− nL− − nR+√
1−

(
∆Z
2∆

)2
+

nL−√
1−

(
∆Z/2+UL

∆

)2
+

nR+√
1−

(
∆Z/2−UR

∆

)2

 c†L+c
†
R−

−

2− nR− − nL+√
1−

(
∆Z
2∆

)2
+

nL+√
1−

(
∆Z/2−UL

∆

)2
+

nR−√
1−

(
∆Z/2+UR

∆

)2

 c†L−c
†
R++h.c.,

HD

ΓLR
=

2− nL− − nR−√(
2∆
∆Z

)2
− 1

+
nL−√(
∆

∆Z/2+UL

)2
− 1

+
nR−√(
∆

∆Z/2+UR

)2
− 1

 cL+c
†
R+

−

2− nL+ − nR+√(
2∆
∆Z

)2
− 1

+
sgn

(
∆Z
2 − UR

)
nR+√(

∆
∆Z/2−UR

)2
− 1

+
sgn

(
∆Z
2 − UL

)
nL+√(

∆
∆Z/2−UL

)2
− 1

 cL−c
†
R−+h.c.,
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HP=ΓRR


1√

1−
(

∆Z
2∆

)2
+

π+2 tan−1


∆Z/2+UR

∆√
1−
(

∆Z/2+UR
∆

)2


2π

√
1−
(

∆Z/2+UR
∆

)2
+

π−2 tan−1


∆Z/2−UR

∆√
1−
(

∆Z/2−UR
∆

)2


2π

√
1−
(

∆Z/2−UR
∆

)2


c†R+c

†
R−

+ΓLL


1√

1−
(

∆Z
2∆

)2
+

π+2 tan−1


∆Z/2+UL

∆√
1−
(

∆Z/2+UL
∆

)2


2π

√
1−
(

∆Z/2+UL
∆

)2
+

π−2 tan−1


∆Z/2−UL

∆√
1−
(

∆Z/2−UL
∆

)2


2π

√
1−
(

∆Z/2−UL
∆

)2


c†L+c

†
L−+h.c.,

where we have defined Γij = πρ0ωiωj/2, with i, j ∈ [L,R], and where ρ0 is the

normal state density of states at the Fermi energy of the superconductor. In

the last equation, HS contains the standard Cooper pair splitting process which,

in contrast to the Cooper pair splitting described using the Coulomb blockade

approximation, depends now on the occupation of the QDs via the number oper-

ators. HD describes an effective inter-dot tunneling processes which is mediated

via the superconductor, and Hp describes the tunneling of a Cooper pair onto a

single QD. The processes described in HP and in HD are obviously not accounted

for in the standard Coulomb blockade approximation. Assuming wL = wR = w

and UL = UR = U , one can obtain the reduced form of the low-energy Hamil-

tonian which we shall use further below, Eq. (5.10). In the zero-field limit these

expressions further simplify and are provided here for completeness. They read:

H∆Z→0
S =

Γ0

2

2− nL− − nR+ +
nL− + nR+√

1−
(
U
∆

)2
 c†L+c

†
R−

−

2− nL+ − nR− +
nL+ + nR−√

1−
(
U
∆

)2
 c†L−c

†
R+

+ h.c.

H∆Z→0
P =

Γ0

2

1 +

1 + 2
π tan−1

(
1√

(∆
U )

2−1

)
√

1−
(
U
∆

)2

∑
α=L,R

c†α+c
†
α− + h.c.

H∆Z→0
D =

Γ0

2

1√(
∆
U

)2 − 1

∑
σ=±

(nLσ + nRσ) cLσ̄c
†
Rσ̄ + h.c.,

where Γ0 = πρ0|ω|2. Further insight into the effective Hamiltonian, Eq. (5.9),

can be gained by examining the limiting case of an infinite superconducting gap.

In that limit, important for transport processes involving Andreev reflection, ef-

fective Hamiltonians for proximised QDs have already been introduced in the
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literature [33, 37, 122]. Taking this limit in Eq. (5.9), one obtains

H∆→∞
LE =

HQDs

2
+2ΓLRc

†
L+c

†
R−−2ΓLRc

†
L−c

†
R++2ΓRRc

†
R+c

†
R−+2ΓLLc

†
L+c

†
L−+h.c.

This result agrees with [122] for example.

After employing the SW transformation, we shall now consider a left-right symmetric

system, i.e. wL = wR = w and UL = UR = U . Note that the chemical potentials of the

left and right QDs can still differ from each other. The expression for the corresponding

effective low-energy Hamiltonian is given by

HLE = HQDs +HS +HP +HD, (5.10)

where HQDs is given in Eq. (5.4), and the other terms are given by

HS =
Γ0

2

2− nL− − nR+√
1−

(
∆Z
2∆

)2
+

nL−√
1−

(
U+∆Z/2

∆

)2
+

nR+√
1−

(
U−∆Z/2

∆

)2

 c†L+c
†
R−

− Γ0

2

2− nL+ − nR−√
1−

(
∆Z
2∆

)2
+

nL+√
1−

(
U−∆Z/2

∆

)2
+

nR−√
1−

(
U+∆Z/2

∆

)2

 c†L−c
†
R+ + h.c.,

(5.11)

HP = ΓP

(
c†R+c

†
R− + c†L+c

†
L−

)
+ h.c., (5.12)

HD =
Γ0

2

 nL− + nR−√(
∆

U+∆Z/2

)2
− 1

+
2− nL− − nR−√(

2∆
∆Z

)2
− 1

 cL+c
†
R+

+
Γ0

2

sgn(U −∆Z/2)(nL+ + nR+)√(
∆

U−∆Z/2

)2
− 1

− 2− nL+ − nR+√(
2∆
∆Z

)2
− 1

 cL−c
†
R− + h.c.. (5.13)

Here we have defined the bare resonant Cooper pair splitting rate Γ0 = πρ0|w|2, with

the normal state density of states at the Fermi energy of the superconductor ρ0, and
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where

ΓP =
Γ0

2

 1√
1−

(
∆Z
2∆

)2
+

1
2 + 1

π tan−1

(
U+∆Z/2√

∆2−(U+∆Z/2)2

)
√

1−
(
U+∆Z/2

∆

)2
(5.14)

+

1
2 + 1

π tan−1

(
U−∆Z/2√

∆2−(U−∆Z/2)2

)
√

1−
(
U−∆Z/2

∆

)2


is the pair tunneling rate. Each of the above terms describes a different physical process:

HS describes the Cooper pair splitting, which now depends on the occupancies of the

QDs via the number operators nλσ. HP describes the pair-tunneling to the same QD.

In addition, the superconductor is found to mediate an effective interaction between

the two QDs as described by HD. The latter term has been derived previously in the

infinite-U limit [91]. However, since double occupancy is strictly forbidden, this term

does not contribute to the dynamics in the latter case. As we show next, for finite U ,

this term is relevant and can be utilized to generate a non-local triplet state on the

two QDs. Equations (5.10) to (5.13) represent the main technical result of the work

presented in this chapter. This effective model is a valid low-energy approximation as

long as Γ0,∆Z/2, U � ∆.

5.5 Triplet generation for finite onsite repulsion and Zee-

man field

In this section we present a scheme to generate a non-local triplet state on the two QDs

with finite on-site repulsion and in the presence of a finite Zeeman field. This scheme is

illustrated in Fig. 5.2. The central ingredient of this scheme is the inter-dot tunneling

term HD in the regime where U < ∆Z/2. In this case, when HD acts on a state where

one of the QDs is empty while the other is doubly occupied it can be simplified to

HD = Γ+

(
cL+c

†
R+ + cL−c

†
R−

)
+ Γ−

(
cL+c

†
R+ − cL−c

†
R−

)
+ h.c., (5.15)

with

Γ+ =
Γ0

4

 1√(
∆

U+∆Z/2

)2
− 1

− 1√(
∆

U−∆Z/2

)2
− 1

 , (5.16)

Γ− =
Γ0

4

 1√(
∆

U+∆Z/2

)2
− 1

+
1√(

∆
U−∆Z/2

)2
− 1

+

(
∆Z

2∆

)
ΓS
2
, (5.17)
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superconductor

QD (left)

QD (right)

Figure 5.2: Schematics of the dominant processes for generating the non-local triplet
state |T 〉 = (|+〉L |−〉R + |−〉L |+〉R)/

√
2. Panel (a) shows the initial state right after

switching the potential of the right QD to µR = −U/2. Both QDs are unoccupied and
electrons form CPs in the superconductor. A magnetic field lifts the spin-degeneracy
of the QD levels by ∆Z . Panel (b) shows the state where a CP has been transferred to
the right QD at time T1. The rate for this process is given by ΓP , Eq. (5.14). Panel
(c) shows the state right after time T1 when the potential of the right QD has been
switched to −U . Taking into account the chemical potential and the charging energy,
we see that now the energy levels are shifted by −U . Panel (d) shows the state after
an electron from the right QD (here the down spin electron) has been transferred to
the left QD at time T1 + T2. This process is driven by the inter-dot tunneling term.
If U � ∆Z/2, the latter is dominated by the spin anti-symmetric term with rate
Γ−, Eq. (5.17), as compared with the spin symmetric term with rate Γ+, Eq. (5.16).
The same processes but with the spin states interchanged are equally likely and their

amplitudes add coherently resulting in the generation of a triplet state.

ΓS =
Γ0√

1−
(

∆Z
2∆

)2
. (5.18)

The terms proportional to Γ+ are symmetric under spin exchange and induce non-local

singlet pairs, while the terms proportional to Γ− are anti-symmetric under spin exchange

and induce non-local triplet pairs. The last two observations are the basis for our non-

local triplet state generating scheme:

• We shall prepare a state where one QD is empty and the other is doubly occupied.

To do so, we take advantage of the Coulomb repulsion and the gate tunability

87



Chapter 5. Nonlocal quantum state engineering with the Cooper pair splitter beyond. . .

of the energy levels of the QDs. Specifically, if the charging energy is such that

U/2 � Γ0 and if we initially detune say the right QD by µR = −U/2, then the

Cooper pair splitting term HS and the inter-dot tunneling term HD are detuned

off resonance and hence suppressed while the pair tunneling term to the right QD

in HP = ΓP

(
c†R+c

†
R− + c†L+c

†
L−

)
is made resonant [see Fig. 5.2, panels (a) and

(b)]. Hence after half a Rabi period T1 (to be calculated below) the right QD will

be doubly occupied and the left QD will be empty.

• At time T1, the right QD is then quickly detuned further to µR = −U . This detunes

the pair tunneling term off resonance and hence suppresses it while making the

inter-dot term resonant [see Fig. 5.2, panels (c) and (d)]. After another half a

Rabi period of T2 (to be calculated below), a state with a large non-local triplet

population is generated on the two QDs.
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time (1/Γ0 )
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∆Z /∆ =0.76,Γ0/∆ =0.004,U/∆ =0.12

Empty

Singlet

Triplet〈
nR ↑nR ↓

〉

Figure 5.3: Dynamics of the triplet state generation for U/∆ = 0.12, ∆Z/∆ = 0.76
and Γ0/∆ = 0.004. The two shaded areas of the graph correspond to the two stages of
the protocol described in the text and are separated by the switching of the potential
of the right QD from −U/2 to −U , (see also Fig. 5.2). In the first stage, population
is transferred from the vacuum (solid (blue) line) to the doubly occupied state of the
right QD (dotted (black) line). In the second stage, population is transferred from the
doubly occupied state to the non-local triplet (solid thick (red) line). A maximal triplet
fidelity of 97% is reached at time T1 + T2. Note also the presence of a small oscillatory

population of the non local singlet state (dashed (green) line).
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5.5.1 Numerical results

Using the scheme just described, we have numerically solved the Schrödinger equation

with the full Hamiltonian (5.10). The results are illustrated in Fig. 5.3, where it is

shown that a triplet state with 97% fidelity can be obtained for parameters satisfying

Γ0 � U � ∆Z � ∆. In the simulation, we assume a chemical potential switching time

fast compared to T1 and T2.

Figure 5.4 shows how the maximal triplet fidelity depends on the on-site interaction

strength and Zeeman field. The general trend is well captured by the analytic approxi-

mation (5.1) (see upper panel of Fig. 5.4 for a direct comparison). It is noteworthy that

for small values of U , the fidelity suppression is somewhat stronger than predicted by

Eq. (5.1). This together with the weak oscillations of the fidelity as a function of U can

be attributed to higher order terms, neglected in the analytic approximation, which is

shown in the following Sec. 5.5.2.
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Figure 5.4: The contour plot shows the fidelity of the triplet state generation as a
function of on-site interaction strength U and Zeeman field ∆Z for Γ0/∆ = 0.004. The
(black) cross indicates the parameters used in the plot of Fig. 5.3. The solid (red) line
in the upper panel shows the fidelity for a fixed value of ∆Z = 0.56 indicated by the
solid (red) line in the contour plot. In the regime where Γ0 � U � ∆Z � ∆, the triplet
fidelity is well approximated by the analytic expression FT ≈ 1− (U/∆Z)2− 8(Γ0/U)2

(dotted (red) line). Weak oscillations of the fidelity as a function of U are clearly visible.
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5.5.2 Analytical treatment

In the following, we introduce and analytically solve a simplified model for the dynamics

of the triplet state generation scheme. We motivate this model using Fig. 5.3, which

shows the population dynamics in the parameter regime suitable for triplet generation.

The crucial observation is that in each of the two stages of the scheme, only three states

are significantly populated. More specifically, in stage I, these states are (i) the vacuum

|V 〉 = |0〉L |0〉R, (ii) the doubly occupied state of the right QD |D〉 = c†R+c
†
R− |V 〉,

and (iii) the non local singlet state |S〉 = (c†L+c
†
R− − c†L−c

†
R+)/

√
2 |V 〉. In stage II

the three states are (i) the doubly occupied state |D〉, (ii) the non local triplet state

|T 〉 = (c†L+c
†
R− + c†L−c

†
R+)/

√
2 |V 〉, and (iii) the non local singlet |S〉. This fact suggests

that we can approximately neglect the occupation of all other states and project the

system onto three dimensional subspaces in both stages I and II and match the solutions

at the interface (i.e. at time T1). We proceed by treating the two stages separately.

Stage I: In the subspace {|V 〉 , |D〉 , |S〉} the Hamiltonian is given by

HI =

 0 ΓP

√
2ΓS

ΓP 0
√

2Γ+√
2ΓS

√
2Γ+ −U/2

 ,

where the matrix elements are defined in terms of the rates given in Eqs. (5.14), (5.16)

and (5.18), and the factors of
√

2 appear because of the normalization of the singlet

state. We now make use of the fact that in stage I, the QDs are tuned such that the

vacuum state and the doubly occupied state are resonant with each other while the

singlet is off resonance by U/2� ΓS ,Γ+,ΓP . To carry out the degenerate perturbation

theory, we switch to a new basis given by the states

|0〉 ≡ 1√
2

(|V 〉+ |D〉) ,

|1〉 ≡ 1√
2

(|V 〉 − |D〉) ,

|2〉 ≡ |S〉 .

In this new basis, the Hamiltonian takes the form

H =

 ΓP 0 ΓS + Γ+

0 −ΓP ΓS − Γ+

ΓS + Γ+ ΓS − Γ+ −U/2

 .
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Treating the off-diagonal terms as perturbation, we find the corrections to the states

|0〉 , |1〉 and |2〉 and the corresponding eigenenergies up to second order:

|0̃〉 =
|V 〉+ |D〉√

2
+

ΓS + Γ+

U/2 + ΓP
|S〉 ,

|1̃〉 =
|V 〉 − |D〉√

2
+

ΓS − Γ+

U/2− ΓP
|S〉 ,

|2̃〉 = |S〉+
√

2

(
ΓSU/2− Γ+ΓP

Γ2
P − (U/2)2

|V 〉+
Γ+U/2− ΓSΓP

Γ2
P − (U/2)2

|D〉
)

Ẽ0 = ΓP +
(ΓS + Γ+)2

U/2 + ΓP
,

Ẽ1 = −ΓP +
(ΓS − Γ+)2

U/2− ΓP
,

Ẽ2 = −U
2
− (ΓS + Γ+)2

U/2 + ΓP
− (ΓS − Γ+)2

U/2− ΓP
.

Assuming that at time t = 0 the system is in the vacuum state |V 〉, we can approximate

the state at time t as

|ψ(t)〉 =
2∑

n=0

e−iẼnt/~ 〈ñ|V 〉 |ñ〉 .

Hence the probability that the right QD is doubly occupied at time t (equivalent to the

fidelity of the doubly occupied state) is found to be

F (I)
D (t) = | 〈D|ψ(t)〉 |2 =

1

1 +
8Γ2

S
U2

{
sin2

[
t

(
ΓP +

4ΓSΓ+

U

)]

−16ΓSΓ+

U2
sin (ΓPt) sin

[
t

(
U

2
+ 6

Γ2
S + Γ2

+

U

)]}
. (5.19)

The term on the first line of this equation describes the leading order suppression of

the fidelity due to the off-resonant transitions between the vacuum and the singlet while

the second line describes higher order corrections (∼ O
(
ΓSΓ+/U

2
)
). Physically, the

latter describe the second order process where a non local singlet is first created out

of the vacuum and then transferred to a doubly occupied state by the action of the

spin-symmetric part of the inter-dot tunneling Hamiltonian. Because the amplitude of

this process adds coherently, it leads to small amplitude oscillations of the fidelity at

a frequency of the order of charging energy U . Neglecting these small oscillations and

expanding to leading order, we obtain the estimates for the optimal double occupancy

time

T1 ≈
π

2

(
ΓP +

4ΓSΓ+

U

)−1

, (5.20)

as well as the maximal fidelity of double occupancy

FD ≈ 1− 8(ΓS/U)2. (5.21)
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Using the perturbative approach, we note also that the probability for the system to be

found in the vacuum state |V 〉 at time t is

F (I)
V (t) =

1

1 +
8Γ2

S
U2

{
cos2

[
t

(
ΓP +

4ΓSΓ+

U

)]
+

16Γ2
S

U2
cos (ΓPt) cos

[
t

(
U

2
+ 6

Γ2
S + Γ2

+

U

)]}
,

(5.22)

and the probability for the system to be found in the singlet state |S〉 at time t is given

by

F (I)
S (t) =

2
U2

Γ2
S

+ 8

{
4 + sin2

[
t

(
ΓP +

4ΓSΓ+

U

)]
+ 4

(
cos2

[
t

(
ΓP +

4ΓSΓ+

U

)]

−2 cos (ΓPt) cos

[
t

(
U

2
+ 6

Γ2
S + Γ2

+

U

)])}
. (5.23)

Stage II: The analysis of stage II is very similar. In this stage the relevant states form

the subspace {|D〉 , |T 〉 , |S〉}. The resulting three level Hamiltonian is given by

H =

 −U
√

2Γ−
√

2Γ+√
2Γ− −U 0√
2Γ+ 0 −U

 ,

where Γ+ and Γ− were defined in Eqs. (5.16) and (5.17). Owing to the threefold degen-

eracy of the bare states, this Hamiltonian can easily be diagonalized. The eigenstates

are given by

|ψ0〉 =
1√

Γ2
+ + Γ2

−

(−Γ+ |T 〉+ Γ− |S〉) ,

|ψ1〉 =
1√

2
(
Γ2

+ + Γ2
−
) (−√Γ2

+ + Γ2
− |D〉+ Γ− |T 〉+ Γ+ |S〉

)
,

|ψ2〉 =
1√

2
(
Γ2

+ + Γ2
−
) (√Γ2

+ + Γ2
− |D〉+ Γ− |T 〉+ Γ+ |S〉

)
.

The corresponding eigenenergies are

E0 = −U,

E1 = −U −
√

2
(
Γ2

+ + Γ2
−
)
,

E2 = −U +
√

2
(
Γ2

+ + Γ2
−
)
.

To account for an imperfect state preparation after stage I, we consider and initial state

for stage II of the form a |D〉 + b |S〉 with |a|2 + |b|2 = 1. With this, the probability of
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finding the system in the triplet state |T 〉 at time t is given by

F (II)
T (t) =

Γ2
−(

Γ2
+ + Γ2

−
)2 ×{|a|2 (Γ2

+ + Γ2
−
)

sin2

(
t
√

2
(
Γ2

+ + Γ2
−
))

+|b|2Γ2
+

[
1− 2 cos

(
t
√

2
(
Γ2

+ + Γ2
−
))

+ cos2

(
t
√

2
(
Γ2

+ + Γ2
−
))]}

. (5.24)

Note that because only the initial state probabilities |a|2 and |b|2 appear in Eq. (5.24),

there are no interference terms between stage I and II in the present approach. Thus

we can simply obtain the triplet fidelity by multiplying the fidelities of the double oc-

cupancy (5.19) and the ideal triplet fidelity obtained from (5.24) by setting a = 1 and

b = 0. The latter is given by

F ideal
T (t) =

1

1 +
(

Γ+

Γ−

)2 sin2

(
t
√

2
(
Γ2

+ + Γ2
−
))

, (5.25)

from which we immediately obtain an estimate for the ideal duration of stage II,

T2 ≈ (π/2)
[
2
(
Γ2
− + Γ2

+

)]−1/2
, (5.26)

as well as an estimate for the maximal triplet fidelity, given an initially doubly occupied

QD,

F ideal
T ≈ 1

1 +
(

Γ+

Γ−

)2 ≈ 1−
(
U

∆Z

)2

. (5.27)

An estimate for the achievable triplet fidelity in the regime Γ0 � U � ∆Z � ∆

is therefore obtained by multiplying the obtained fidelities in the end of each stage,

Eqs. (5.21) and (5.27). This results in the triplet fidelity of Eq. (5.1),

FT ≈ FDF ideal
T ≈ 1−

(
U

∆Z

)2

− 8

(
Γ0

U

)2

. (5.28)

The expression on the right hand side has a simple interpretation: The term 8(Γ0/U)2

describes the loss of fidelity due to the competition between resonant pair tunneling and

off resonant Cooper pair splitting in the first stage of the scheme. The term (U/∆Z)2

describes the loss of fidelity during the second stage of the scheme due to the residual

spin-symmetric term in HD that favors singlet pairing and competes with the spin anti-

symmetric term that favors triplet pairing.
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Figure 5.5: Analytical prediction for the dynamics of the triplet state generation for
U/∆ = 0.12, ∆Z/∆ = 0.76 and Γ0/∆ = 0.004. This result agrees qualitatively with

the full numerics shown in Fig. 5.3.

Using this analytic model, we also note that the probability for the system to be found

in the doubly occupied state |D〉 at time t is given by

F (II)
D (t) = |a|2 cos2

(
t
√

2
(
Γ2

+ + Γ2
−
))

+
|b|2

1 +
(

Γ−
Γ+

)2 sin2

(
t
√

2
(
Γ2

+ + Γ2
−
))

, (5.29)

while the probability for the system to be found in the singlet state |S〉 at time t is given

by

F (II)
S (t) =

Γ2
+(

Γ2
+ + Γ2

−
)2 ×{|a|2 (Γ2

+ + Γ2
−
)

sin2

(
t
√

2
(
Γ2

+ + Γ2
−
))

+|b|2Γ2
+

[
Γ4
−

Γ4
+

+
2Γ2
−

Γ2
+

cos

(
t
√

2
(
Γ2

+ + Γ2
−
))

+ cos2

(
t
√

2
(
Γ2

+ + Γ2
−
))]}

. (5.30)

We have plotted in Fig. 5.5 the occupation of the different states in stage I and in stage

II using the analytical results obtained, Eqs. (5.19)-(5.30). This can be compared with

Fig. 5.3.

5.6 Conclusions

In order to experimentally verify the successful generation of a non local triplet and

distinguishing it from a non local singlet state, we propose two different schemes. Firstly,
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the QDs could be attached to mesoscopic wires forming the inputs of an electronic beam-

splitter. Depending on whether the two interfering electrons form a singlet or a triplet,

the sign of the two particle interference term will differ [16, 111]. Secondly, a gate tunable

direct inter-dot tunneling term makes it possible to employ the spin-blockade technique

pioneered in [94, 98]. This enables a mapping from the two spin states onto two distinct

charge states of one of the two QDs. The charge states can then be distinguished via a

capacitively coupled rf-single electron transistor device [44, 115].

In conclusion, our work represents a first step in the investigation of the CPS beyond

the infinite-U limit. We analyze effects of electron-electron interaction in the CPS in

the presence or absence of a magnetic Zeeman field. We derive an analytic low-energy

effective Hamiltonian for this system and identify a novel term that describes an inter-

QD interaction mediated by the superconductor. We make use of this interaction and

of the electrostatic tunability of the QD levels to propose a scheme to generate a non

local triplet state on the two QDs. Thereby we extend the capabilities of the CPS to

generate two of the four maximally entangled Bell states with high fidelities. Experi-

mental investigations testing the validity of the presented effective low-energy model in

this novel parameter regime seem feasible with current technologies and would be a very

useful step towards quantum state engineering with the CPS.
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CHAPTER 6

CONCLUSIONS

“Be the change you wish to see in the world”

Was not said by Gandhi. Perhaps it was said by his

grandson Arun.

In most of the work presented in this thesis, we have studied the phase and amplitude

dynamics of quantum self-oscillators. Specifically, we have investigated the synchroniza-

tion and amplitude death phenomena in the quantum regime. First, in Ch. 2, we have

found synchronization behavior which is qualitatively different than the synchronization

behavior which is expected from a corresponding semiclassical model. Examining a

quantum anharmonic van der Pol (vdP) oscillator model, we found that an external ref-

erence drive may lead to synchronization of the quantum anharmonic vdP oscillator at

each of its different possible quantized oscillation frequencies. When plotting our choice

of synchronization measure S as a function of the detuning ∆, Figs. 2.3 and 2.4, this

was clearly observed as discrete maximas. We expect this result to be quite general, and

to be present for different self-oscillators with anharmonicity in their energy spectrum.

We have developed an analytical model, predicting the existence of these maximas. We

have further related the occupation number of the different Fock levels to the number

of apparent synchronization resonances. As a complementary view, we have shown that

the frequency of the self-oscillator can be entrained by the frequency of the reference

drive at the expected synchronization resonances. In addition we have demonstrated

that negative densities in the steady-state Wigner function quasi-probability distribu-

tion appear for strong driving. This is another clear indication of the non-classicality

of the resulting synchronized state. We believe these results could be relevant in future

studies:

• Synchronization of oscillator networks: The Hilbert space of a vdP oscillator

model, when operating in a very quantum parameter regime, may be truncated

above the second energy level. Having such a small Hilbert space may allow for
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the investigation of synchronization of oscillator networks. How will the synchro-

nization of a harmonic oscillator network behave in comparison with the syn-

chronization of an anharmonic oscillator network? Could we observe quantized

synchronization in networks as well? A first step in that direction was taken in

Ref. [78].

• Synchronization to a two-photon drive: Ref. [120] had theoretically studied the

synchronization of a squeezing-driven quantum vdP oscillator. It was demon-

strated that squeezing enhances synchronization in this system. Can it also en-

hance quantum synchronization in quantum anharmonic vdP oscillators? Will

stronger synchronization resonances then be found? Will a narrower steady-state

power spectrum be observed? This may allow the use of smaller values for the Kerr

parameter, therefore enabling an experimental verification of this phenomenon

with current optomechanical systems.

• Synchronization to a two-tone drive: In the work presented in Ch. 2, we have stud-

ied the synchronization of a self-oscillator with multiple quantized frequencies to a

harmonic reference drive. One can also study the synchronization to a drive with

multiple frequencies. Could the anharmonic self-oscillator exhibit simultaneous

synchronization to multiple frequencies? In a semi-classical model we expect the

self-oscillator to synchronize to only one of the driving frequencies, with possible

transitions to other frequencies due to noise.

In Ch. 3, we have examined the amplitude death phenomenon for two coupled quan-

tum vdP oscillators with Kerr anharmonicity in their energy spectrum. We have first

demonstrated that the anharmonicity suppresses the oscillation amplitude in the pres-

ence of noise. We have shown that this suppression is not accounted for in a classical

noiseless model, and we have further shown quantitative differences in the strength of

this suppression between a quantum model and a semiclassical noisy model. Then, as

in Ch. 2, we have found a behavior in the amplitude death phenomenon which is qual-

itatively different from the behavior expected when using a corresponding semiclassical

model. This was reflected as quantized resonances in the mean phonon number of the

oscillators, which are not seen in the corresponding semiclassical model. These reso-

nances appeared for frequency detunings which match relevant transition frequencies in

the energy spectrum of the anharmonic vdP oscillators. To the best of our knowledge,

this is the first time that genuine quantum effects are discussed in the context of the

amplitude death phenomenon. An interesting direction for future investigations:

• Amplitude death of oscillator networks: As is seen by comparing Fig. 3.5 to

Fig. 3.6, the phonon number peaks are more pronounced when one of the self-

oscillators is harmonic. It will be interesting to examine oscillator networks, in

which multiple harmonic oscillators and one anharmonic oscillator are present.

Will the anharmonic oscillator still lead to quantized amplitude death? Could

the many resonances become almost equal in magnitude to the single resonance

appearing when only harmonic oscillators are dissipatively coupled?
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In the work presented in Ch. 4, we have studied the synchronization of an optomechanical

system to two different drives: (1) An optical drive, applied onto the electromagnetic

cavity; (2) A mechanical drive, applied onto the mechanical oscillator. For both these

cases, we used the master equation as our starting point, applied the laser theory for

optomechanical limit cycles [79], and have obtained an analytical description of the

emerging synchronization, which is contained in an Adler equation. In the process of

doing so, we have also obtained Fokker-Planck equations describing the dynamics of the

self-oscillator for these two cases. This description was valid in a classical parameter

regime. We then demonstrated using numerical exact simulations that synchronization

is expected also in a quantum parameter regime. A future use of this work may be:

• Noise-reduction for the mechanical self-oscillator: In the Fokker-Planck equation

obtained, Eq. (4.45), the additional laser drive appears as terms in the diffusion

coefficients. It will be interesting to use this analytical description to explore

noise-reduction in the radial direction, therefore stabilizing the amplitude of the

self-oscillator, or in the tangential direction, hoping to achieve a better signal-to-

noise ratio for the synchronization.

While our work presented in Chs. 2-4 has dealt with self-oscillators demonstrating an

almost circular limit-cycle in phase-space, an interesting direction of future research in

the study of phase and amplitude dynamics of quantum self-oscillators may be in the

direction of relaxation oscillators:

• Relaxation oscillators produce a non-sinusoidal repetitive output signal, such as a

triangle wave or a square wave (this is indeed captured by the classical equation for

the vdP oscillator, Eq. (1.2)). Brain neurons and fireflies are examples of relaxation

oscillators. Constructing a quantum model for such an oscillator had never been

done, and may help to advance our understanding of quantum self-oscillators. If

this mission could be accomplished, many research questions may follow: Could

quantum relaxation oscillators synchronize? What is the effect of quantum noise?

How about networks of relaxations oscillators?

In Ch. 5 of this thesis, we have investigated the Cooper pair splitter beyond the Coulomb

blockade approximation. We have analytically derived a low-energy effective Hamilto-

nian for this system, describing the allowed transport processes. These include Cooper

pair splitting, Cooper pair tunneling, and an inter-quantum dot (QD) interaction which

is mediated by the superconductor. We have made use of this interaction, together with

the electrostatic tunability of the QD levels and an in-plane magnetic field, and proposed

a scheme to generate a non local triplet state on the two QDs. We have numerically and

analytically demonstrated that this triplet state could be generated with high fidelity.

This research therefore extends the capabilities of the Cooper pair splitter to generate

two of the four maximally entangled Bell states.
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APPENDIX A

NUMERICAL METHODS

“There’s a sucker born every minute”

Adam Forepaugh (not P. T. Barnum)

In each work presented in this thesis, we have used numerical simulations. These sim-

ulation were employed for different reasons: (1) Obtaining exact numerical results was

used to test analytical approximations, approving the used analytical approach (Ch. 2,

Ch. 4 and Ch. 5); (2) Using numerical methods allowed us to deal with problems for

which an analytical treatment was not possible (Ch. 3); (3) Some problems were analyt-

ically accessible in some parameter regime, but not in another (Ch. 2, Ch. 4). Numerical

simulations were used to explore the parameter regime in a more complete manner.

In this appendix, it is our goal to clearly explain the numerical code used in Chapters 3-

5. It is our hope that it should help future researchers exploring the themes covered in

this thesis. Explaining the numerical principles of simulating open quantum systems, of

numerically solving complex-valued differential equations, and of simulating stochastic

processes is not within the scope of this appendix. For thorough explanations regarding

these topics, the reader is refered to Refs. [60, 61, 67, 123].

The numerical simulations were mostly coded in the high-level programming python

language. We have further used the open-source computational toolbox for quantum

optics, QuTiP [60, 61], since it offers easy-to-use, quick-to-handle, and simple commands

to define Hamiltonians and Lindblad operators. It further allows for simulating the

time-evolution of systems defined via these operators. Additionaly, standard packages

of python were used: numpy, scipy and matplotlib. We have also used Mathematica

in numerical simulations performed in Ch. 3.

Throughout this appendix, when using the scripting language python, we have used the

QuTiP and numpy packages, which were imported as
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from qutip import *

import numpy as np

A.1 Numerics of Chapter 3

Quantum Model

The parameters of the system can then be easily defined,

Dc = ? # Hilbert space dimensions for one oscillator .

omega1 = ? # Natural oscillation frequency of 1st oscillator .

omega2 = ? # Natural oscillation frequency of 2nd oscillator .

K1 = ? # Kerr nonlinearity of 1st oscillator .

K2 = ? # Kerr nonlinearity of 2nd oscillator .

G = ? # Energy gain rate.

kappa = ? # Energy decay rate.

V = ? # Strength of dissipative coupling

One can then define the relevant operators, which describe a system of two dissipatively

coupled vdP oscillators with Kerr nonlinearities in their energy spectrum,

a1 = tensor(destroy(Dc), qeye(Dc)) # Annihilation operator for 1st oscillator .

a2 = tensor(qeye(Dc), destroy(Dc)) # Annihilation operator for 2nd oscillator .

H = omega1*a1.dag ()*a1 + omega2*a2.dag()*a2 # Hamiltonian

+K1*(a1.dag()*a1*a1.dag ()*a1)+K2*(a2.dag()*a2*a2.dag ()*a2)

c_ops = [] #Lindblad operators

c_ops.append(np.sqrt(G)*a1.dag ()) # Linear energy gain - 1st oscillator .

c_ops.append(np.sqrt(G)*a2.dag ()) # Linear energy gain - 2nd oscillator .

c_ops.append(np.sqrt(kappa)*a1**2) # Nonlinear energy loss - 1st oscillator .

c_ops.append(np.sqrt(kappa)*a2**2) # Nonlinear energy loss - 2nd oscillator .

c_ops.append(np.sqrt(V)*(a1 - a2)) # Dissipative coupling.

In the work done in Ch. 3, we have always solved for the steady state of the system.

Implementing it in QuTiP is extremely simple,

rho_ss = steadystate(H, c_ops) # Solve for steady state density matrix

Using the steady state density matrix, obtaining the wanted expectation value is done

via
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? = expect(?, rho_ss)# Obtain expectation value for operator ’?’

Using this simple code is enough to reproduce all quantum simulation results of Ch. 3.

Classical Model

When numerically simulating the classical model, Eq. (3.2), one needs to solve a system

of complex-valued coupled differential equations. After defining the parameters of the

system (done in the same manner as for the quantum model), solving our equation is

done using

def odeintz(func , z0, t, ** kwargs ):

""" An odeint -like function for complex valued differential equations ."""

# Make sure z0 is a numpy array of type np. complex128 .

z0 = np.array(z0, dtype=np.complex128 , ndmin =1)

def realfunc(x, t, *args):

z = x.view(np.complex128)

dzdt = func(z, t, *args)

# func might return a python list , so convert its return

# value to an array with type np.complex128 , and then return

# a np.float64 view of that array.

return np.asarray(dzdt , dtype=np.complex128 ).view(np.float64)

# Standard ’odeint ’ to solve real -valued coupled differential equations .

result = odeint(realfunc , z0.view(np.float64), t, ** kwargs)

if kwargs.get(’full_output ’, False):

z = result [0]. view(np.complex128)

infodict = result [1]

return z, infodict

else:

z = result.view(np.complex128)

return z

if __name__ == "__main__":

# Define the right -hand -side of the differential equation.

def zfunc(z, t):

alpha1 , alpha2 = z

return [-1j*( omega1+K1*(np.abs(alpha1 )**2 + 1))* alpha1 +(G/2)* alpha1 -

(kappa)*np.abs(alpha1 )**2* alpha1 +(V/2)*( alpha2 -alpha1)

, -1j * (omega2+K2*(np.abs(alpha2 )**2 + 1)) * alpha2 + (G/2)* alpha2 -

(kappa)*np.abs(alpha2 )**2* alpha2 +(V/2)*( alpha1 -alpha2 )]

# Set up the inputs and call odeintz to solve the system.

z0 = np.array ([0.01+0.0j, 0.01+0.0j])

t_f = 300 # final time.

t_points = 1000 # number of points in the time grid.

t = np.linspace(0, t_f , t_points)
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z, infodict = odeintz(zfunc , z0 , t, full_output=True)

In the last code, the complex-valued differential equations are replaced with real-valued

differential equations in the user defined odeintz function. This function then uses

the standard differential equation solver odeint. Our classical equations, Eq. (3.2), are

defined using a function zfunc. The initial conditions are given using z0, and the time

grid is defined in the variable t.

Semiclassical Model

To numerically simulate the semiclassical Langevin equation, Eq. (3.10), we have used

Mathematica. We start by defining a function for the drift vector µ

defineMuVec[omega1_ , omega2_ , G_, kappa_ , V_, K1_ , K2_ ]:= Module [{},

# Dirft vector x1 , y1 , x2 and y2 components :

mux1 = (omega1 + K1(2(x1**2+y1 **2)))* y1

+ (G/2-kappa(x1**2+y1**2-1)-V/2)*x1+V/2*x2;

muy1 = -(omega1 + K1(2(x1**2+y1 **2)))* x1

+ (G/2-kappa(x1**2+y1**2-1)-V/2)*y1+V/2*y2;

mux2 = (omega2 + K2(2(x2**2+y2 **2)))* y2

+ (G/2-kappa(x2**2+y2**2-1)-V/2)*x2+V/2*x1;

muy2 = -(omega2 + K2(2(x2**2+y2 **2)))* x2

+ (G/2-kappa(x2**2+y2**2-1)-V/2)*y2+V/2*y1;

mu = {mux1 , muy1 , mux2 , muy2} # Returns vector mu

mu]

and a function for the noise matrix σ

defineSigmaMat[omega1_ , omega2_ , G_, kappa_ , V_]:= Module [{},

# Dirft vector x1 , y1 , x2 and y2 components :

nu1 = G/2 + kappa (2(x1**2 + y1**2) -1) + V/2;

nu2 = G/2 + kappa (2(x2**2 + y2**2) -1) + V/2;

uplus = -(nu1 - nu2 + ((nu1 - nu2 )**2 + V**2)**(1/2)) /V;

uminus = -(nu1 - nu2 - ((nu1 - nu2 )**2 + V**2)**(1/2)) /V;

lambdaplus = (nu1 + nu2 + ((nu1 - nu2 )**2 + V**2)**(1/2) /4;

lambdaminus = (nu1 + nu2 - ((nu1 - nu2 )**2 + V**2)**(1/2) /4;

sigmaMat = (( lambdaplus )**(1/2)/( uplus -uminus )){

{uplus -uminus *( lambdaminus/lambdaplus )**(1/2) , 0,

1 - (lambdaminus/lambdaplus )**(1/2) , 0}

{0, uplus -uminus *( lambdaminus/lambdaplus )**(1/2) ,

0, 1 - (lambdaminus/lambdaplus )**(1/2)}

{1-( lambdaminus/lambdaplus )**(1/2) , 0,

uplus*( lambdaminus/lambdaplus )**(1/2) - uminus , 0}

{0, 1-( lambdaminus/lambdaplus )**(1/2) ,

0, uplus *( lambdaminus/lambdaplus )**(1/2) - uminus}

};

sigmaMat]
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The Langevin equation itself is defined via the function

defineItoProcess[mu, sigmaMat ]:= Module [{},

proc = ItoProcess[

\[ DifferentialD]x1[t]==mu [[1]]\[ DifferentialD]t +

(sigmaMat [[1 ,1]] + sigmaMat [[1 ,2]] + sigmaMat [[1 ,3]] + sigmaMat [[1 ,4]])

\[ DifferentialD]w1[t],

\[ DifferentialD]y1[t]==mu [[2]]\[ DifferentialD]t +

(sigmaMat [[2 ,1]] + sigmaMat [[2 ,2]] + sigmaMat [[2 ,3]] + sigmaMat [[2 ,4]])

\[ DifferentialD]w2[t],

\[ DifferentialD]x2[t]==mu [[3]]\[ DifferentialD]t +

(sigmaMat [[3 ,1]] + sigmaMat [[3 ,2]] + sigmaMat [[3 ,3]] + sigmaMat [[3 ,4]])

\[ DifferentialD]w3[t],

\[ DifferentialD]x2[t]==mu [[1]]\[ DifferentialD]t +

(sigmaMat [[4 ,1]] + sigmaMat [[4 ,2]] + sigmaMat [[4 ,3]] + sigmaMat [[4 ,4]])

\[ DifferentialD]w4[t],

{x1[t]**2, y1[t]**2, x2[t]**2, y2[t]**2},

{{x1, y1, x2, y2}, {x1_0 , y1_0 , x2_0 , y2_0}}, t,

{w1 = WienerProcess [], w2 = WienerProcess [],

w3 = WienerProcess [], w4 = WienerProcess []}

];

proc];

where the solution will be found for the square of the x and y coordinates, i.e. for

x2
1(t), y2

1(t), x2
2(t), y2

2(t), and the initial conditions should be defined by specifying the

appropriate value for x1(0), y1(0), x2(0), y2(0). To obtain realizations of this stochastic

process, we use the functions just defined in the following manner:

mu = defineMuVec [];

sigmaMat = defineSigmaMat [];

process = defineItoProcess[mu, sigmaMat ];

fTime = ?;

stepSize = ?;

numPaths = ?;

realization = RandomFunction[process , {0., fTime , stepSize}, numPaths ];

In the last piece of code, the command RandomFuncion generates n = numPaths random

realizations of process, from time t = 0 to t = fTime, using a time step stepSize. In

Ch. 3 we have used this code on several occasions. On each occasion, different physical

parameters were used. This difference in physical parameters led to a different choice

of numerical parameters . This varying choices of numerical parameters, used for the

different plots appearing in Ch. 3, are summarized in the following table:
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Parameters used in Ch. 3

Figure name ’fTime’ ’stepSize’ ’numPaths’

Fig. 3.2, V = {2, 4, 6, 8, 10} 20.0 5 ∗ 10−5 1500

Fig. 3.5, V = 2 1.0 5 ∗ 10−6 60000

Fig. 3.5, V = 8 2.0 10−5 6000

Fig. 3.6, V = 2 0.2 10−6 60000

Fig. 3.6, V = 8 2.0 5 ∗ 10−6 6000

Because of the large number of trajectories involved, and the large number of time

steps, the numerical calculations were performed at sciCORE (http://scicore.unibas.ch/)

scientific computing core facility at University of Basel. Finally, to obtain the radius of

oscillation from the many realizations, we use

r = TimeSeriesThread[Mean , realization][‘‘ValueList ’’][[1]][[All ,1]]

+ TimeSeriesThread[Mean , realization][‘‘ValueList ’’][[1]][[All ,2]];

radius = Mean[r[[ Floor[Fraction*fTime/stepSize ];; Floor[fTime/stepSize ]]]];

where the variable Fraction should be chosen such as to keep only this part of r for

which the system is already in the steady state.

A.2 Numerics of Chapter 4

In this section, we would like to describe the code used to obtain the results which are

described in Ch. 4. Let us first define a few parameters and operators, which would be

used later on in the suggested code,

H # Full Hamiltonian .

H0 # Hamiltonian with no additional external drive.

c_op_list # List of collapse operators

omega_e # Frequency of additional external drive.

acc # Accuracy to accept quasi -steady state (see below ).

Initial # Initial state.

ppc # points per cycle.

tnc # Number of cycles to evolve.

NP # Number of points.

N_opt # Number of optical Fock states

N_mech # Number of mechanical Fock states

Now, as discussed in Sec. 4.4, the system does not reach a steady state, but a time-

periodic quasi-steady state. That means, that in the quasi-steady state, the expectation

value of some operator 〈b〉, for example, should fulfill 〈b(t)〉 = 〈b(t+ T )〉, with T =
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1/ωop,me being the periodicity. To make sure the system has reached the quasi-steady

state, we let the system evolve a time t = T using the function

def evolve_one_cycle(H, c_op_list , omega_e , Initial ):

NP = 200

time_list = np.linspace(0, 2*np.pi/np.abs(omega_e), NP)

result_one_cycle = mesolve(H,Initial ,

time_list , c_op_list , [],args=args)

Initial = result_one_cycle.states [-1] # Last state

b_expect = expect(b, result_one_cycle.states [-1]) # Last <b>

return (Initial , b_expect)

and then check if 〈b(t)〉 = 〈b(t+ T )〉 holds (up to some given accuracy). If it is indeed so,

we have reached the quasi-steady state. The whole process is captured by the following

function

def evolve_until_steady_state(H, H0, c_op_list , omega_e , acc):

psi0_temp = steadystate(H0 , c_op_list)

# Initial state for the calculation .

b_exp = []; count = 0; count_cycles = 0;

while (count <15):

(psi0_temp , b_temp) = evolve_one_cycle(H

, c_op_list , omega_e , psi0_temp)

count_cycles = count_cycles + 1

b_exp.append(b_temp)

if (count_cycles > 2):

if (np.abs(np.real(b_exp[-1]-b_exp [-2]))<acc):

count = count + 1

else:

count = 0

print(’The quasi -steady state begin after %s cycles ’ % (count_cycles ))

return(psi0_temp) # quasi -steady state.

Using the last two functions, it is easy to reproduce Fig. 4.2. After reaching the quasi-

steady state, we would like to calculate the time-average synchronization measure S̄, as

shown in Figs. 4.5-4.7. The first stage is therefore obtaining a structure containing the

states of the system over a period T . This is easily done in QuTiP,

(psi0_qss) = evolve_until_steady_state(H, H0, c_op_list , omega_e , acc)

times = np.linspace (0.0, 2*np.pi*tnc/omega_e , ppc*t_number_cycles)

result_state = mesolve(H, psi0_qss , times , c_op_list , [],args=args)

Now, as further described ins Sec. 4.4, we need to displace the resulting states by βc.

This is done via the defined function
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def shift_quantum_object(Result_State ):

(beta_c , rho_steadystate )= beta_shift (H0, c_op_list)

D = tensor(qeye(N_opt),displace(N_mech , -beta_c ))

Result_State_Copy = copy.deepcopy(Result_State)

for i in range(len(Result_State_Copy.states )):

Result_State_Copy.states[i] = D* Result_State_Copy.states[i] * D.dag().

return Result_State_Copy

which shifts all density matrices appearing in a quantum object of QuTiP type result.states.

The synchronization measure S can be calculated using

def S1_SS(result_State ):

test=np.abs(expect(b,result_State ))/np.sqrt(expect(b_dag*b,result_State ))

return test

We would like to calculate S for each state in appearing in our structure of QuTiP type

result.states, and then average. This is achieved via

S_Temporal = np.zeros(ppc)

for NS in range(0, ppc):

S_Temporal[NS] = S1_measure(shifted_result_state.states[NS])

S_Final = np.average(S_Temporal)

Of course, in order to obtain Figs. 4.5-4.7, this suggested algorithm should be repeated

many times. We have therefore parallelized the computation, using a different core at

sciCORE (http://scicore.unibas.ch/) scientific computing core facility at University of

Basel, for each specific S̄ value.

Obtaining Figs. 4.3-4.4 is rather straightforward, as we have specific form for the an-

alytical predictions. Simulating Eqs. (4.62)-(4.65) can be done using the differential

equation integrator we have introduced in Sec. A.1.

A.3 Numerics of Chapter 5

In the following, we shall present the code used to numerically simulate the Schrödinger

equation which time-evolves according to the effective low-energy Hamiltonian, Eq. (5.10).

The operators acting on a single QD are defined as a Class instance using QuTiP as

import qutip as q

import numpy as np

class OpDot:
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# Identity operator

I0 = q.tensor(q.qeye(2), q.qeye (2))

# Fermionic creation and annihilation operators

cU = q.tensor(q.destroy (2), q.qeye (2))

cD = q.tensor(q.qeye(2), q.destroy (2))

cUd = cU.dag()

cDd = cD.dag()

# Number operators

nU = cUd * cU

nD = cDd * cD

# Several electron states

sEmpty = q.tensor(q.basis(2, 0), q.basis(2, 0))

sU = q.tensor(q.basis(2, 1), q.basis(2, 0))

sD = q.tensor(q.basis(2, 0), q.basis(2, 1))

sDouble = q.tensor(q.basis(2, 1), q.basis(2, 1))

# Projection operators

pEmpty = sEmpty * sEmpty.dag()

We can then move further to define a Class instance for the operators which act on the

Hilbert space of the double QDs,

class OpDoubleDot:

QD1 = OpDot()

QD2 = OpDot()

# Identity operator

I0 = q.tensor(QD1.I0, QD2.I0)

# Fermionic creation and annihilation operators.

# We use the Jordan -Wigner transform to enforce proper anti - commutation

c1U = q.tensor(QD1.cU , QD2.I0)

c1Ud = c1U.dag()

c1D = q.tensor(QD1.cD , QD2.I0)

c1D = c1D * (-1j*np.pi*c1Ud*c1U).expm()

c1Dd = c1D.dag()

c2U = q.tensor(QD1.I0 , QD2.cU)

c2U = c2U * (-1j*np.pi*(c1Ud*c1U + c1Dd*c1D)). expm()

c2Ud = c2U.dag()

c2D = q.tensor(QD1.I0 , QD2.cD)

c2D = c2D * (-1j*np.pi*(c1Ud*c1U + c1Dd*c1D + c2Ud*c2U)). expm()

c2Dd = c2D.dag()

# Number operators

n1U = q.tensor(QD1.nU , QD2.I0)

n1D = q.tensor(QD1.nD , QD2.I0)

n2U = q.tensor(QD1.I0 , QD2.nU)

n2D = q.tensor(QD1.I0 , QD2.nD)

# Several electron states

sEmpty = q.tensor(QD1.sEmpty , QD2.sEmpty)

sSinglet = 1/np.sqrt (2) * (c1Ud * c2Dd - c1Dd * c2Ud) * sEmpty
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sTriplet0 = 1/np.sqrt (2) * (c1Ud * c2Dd + c1Dd * c2Ud ) * sEmpty

sTripletp = (c1Dd * c2Dd) * sEmpty

sTripletm = (c1Ud * c2Ud) * sEmpty

sTripletSameDot = (c1Ud * c2Ud) * sEmpty

sSingletSameDot = (c2Ud * c2Dd) * sEmpty

sDoubleDot1 = (c1Ud * c1Dd) * sEmpty

# Projectors

pSinglet = sSinglet * sSinglet.dag()

pTriplet0 = sTriplet0 * sTriplet0.dag()

pTripletp = sTripletp * sTripletp.dag()

pTripletm = sTripletm * sTripletm.dag()

pEmpty = sEmpty * sEmpty.dag()

The parameters for the numerical simulation are defined via

class Para:

class Times:

# Simulation times

tInitial = 0.0

T1 = 62.5

T2 = 200.0

tStep = 0.01

tEvalStep = 5

class DotHH:

# Parameters for the "heavy hole band",

# i.e., the dot levels which absorb the split Cooper pair

Delta = 1.0 # that is the scale for all parameters .

# Therefore DeltaZ =0.01 means 1/100 of Delta.

MuL = ? # On -site energy of left dot

MuR = 0.0 # On -site energy of right dot

DeltaZ = ? # Zeeman splitting

U = ? # Charging energy of the left dot

GammaC = 0.01 # Half the value which is given in the paper

class DriveDip:

# Parameters related to the drive due to the change of chemical

# potential which fills the heavy hole band with a split Cooper pair

ADriveL = -0.2

ADriveR = 0.0

alphaDrive = 100.00

DriveFuncL = ’ADriveL *(1 + tanh(alphaDrive *(t-tStartDrive )))/2.0 ’

DriveFuncR = ’ADriveR *(1 + tanh(alphaDrive *(t-tStartDrive )))/2.0 ’

Please note that using ADriveR = 0.0 sets the driving of the chemical potential of the

right QD to zero. This is important for the transition between the first and second phase

of the triplet generating scheme. The time-dependence of the driving of the chemical

potential of the left QD is given by DriveFuncL. Now we can finally define the low-energy

Hamiltonian,
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# Shortcut for the heavy -hole band parameters and the

# corresponding quantum operators for the double dot system

op = self.op = OpDoubleDot ()

# Shortcuts for the Hamitlonian parameters

D = Para.DotHH.Delta

DZ = Para.DotHH.DeltaZ

UL = Para.DotHH.U

UR = Para.DotHH.U

MuL = Para.DotHH.MuL

MuR = Para.DotHH.MuR

GammaC = Para.DotHH.GammaC

# Define the Hamiltonian for the onsite energies

h0_left = (MuL + DZ/2) * op.n1U + (MuL - DZ/2) * op.n1D + UL * op.n1U * op.n1D

h0_right =(MuR + DZ/2) * op.n2U + (MuR - DZ/2) * op.n2D + UR * op.n2U * op.n2D

# Define the Hamiltonian for the proximity terms:

# Cooper pair splitting

h_prox = q.Qobj(

GammaC * (1.0/np.sqrt (1.0-(DZ/(2*D))**2)*(2.0 - op.n1D -op.n2U)

+ 1.0/np.sqrt (1.0 -((DZ/2+UL)/D)**2)* op.n1D

+ 1/np.sqrt (1-((DZ/2-UR)/D)**2)* op.n2U)

*op.c2Dd * op.c1Ud

- GammaC * (1/np.sqrt(1-(DZ/(2*D))**2)*(2 - op.n1U - op.n2D)

+ 1/np.sqrt (1-((DZ/2 - UL)/D)**2)* op.n1U

+ 1/np.sqrt (1-((DZ/2+UR)/D)**2)* op.n2D)

* op.c2Ud * op.c1Dd

)

# Tunneling to the same dot

h_prox += GammaC *(1.0/ np.sqrt (1.0 -(DZ/(2*D))**2)

+(0.5+ np.arctan (((DZ/2+UR)/D)/np.sqrt (1-((DZ/2+UR)/D)**2))/ np.pi)

/np.sqrt (1-((DZ/2+UR)/D)**2)

+(0.5-np.arctan (((DZ/2-UR)/D)/np.sqrt (1-((DZ/2-UR)/D)**2))/ np.pi)

/np.sqrt (1.0 -((DZ/2-UR)/D)**2))

* op.c2Dd * op.c2Ud

+ GammaC * (1/np.sqrt (1.0-(DZ/(2*D))**2)

+ (0.5+ np.arctan (((DZ/2+UL)/D)/np.sqrt (1-((DZ/2+UL)/D)**2))/ np.pi)

/np.sqrt (1-((DZ/2+UL)/D)**2)

+ (0.5-np.arctan (((DZ/2-UL)/D)/np.sqrt (1-((DZ/2-UL)/D)**2))/ np.pi)

/np.sqrt (1-((DZ/2-UL)/D)**2))

* op.c1Dd * op.c1Ud

# Tunneling from one dot to the other

h_prox += GammaC *(DZ/2.0/ np.sqrt(D**2-(DZ /2)**2)*(2.0 - op.n1D -op.n2D)

+(DZ /2.0+UL)/np.sqrt(D**2-(DZ/2+UL )**2)* op.n1D

+(DZ /2.0+UR)/np.sqrt(D**2 -(DZ/2+UR )**2)* op.n2D)

* op.c2Ud * op.c1U

- GammaC * (DZ/2/np.sqrt(D**2-(DZ /2)**2)*(2.0 - op.n1U -op.n2U)

+(DZ/2-UL)/np.sqrt(D**2-(DZ/2-UL )**2)* op.n1U

+(DZ/2-UR)/np.sqrt(D**2-(DZ/2-UR )**2)* op.n2U)

* op.c2Dd * op.c1D

# add the h.c. terms

h_prox = h_prox + h_prox.dag()

# Construct the full time - independent Hamiltonian

h = h0_right + h0_left + h_prox

# Time - dependent parts of the Hamiltonian

h_time_left = op.n1U + op.n1D

h_time_right = op.n2U + op.n2D
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self.hamiltonian = [h, [h_time_left , Para.DriveDip.DriveFuncL],

[h_time_right , Para.DriveDip.DriveFuncR ]]

The time-dependent part of the Hamiltonian is just the detuning of the chemical poten-

tial at the transition between the first phase and second phase of our scheme, starting

about t = T1. The time evolution of the system can then be calculated using the

function,

def time_evolution(self , initial_state=OpDoubleDot.sEmpty ):

times = np.arange(Para.Times.tInitial , Para.Times.T1 +

Para.Times.T2, Para.Times.tStep)

args = {

’ADriveL ’: Para.DriveDip.ADriveL ,

’ADriveR ’: Para.DriveDip.ADriveR ,

’alphaDrive ’: Para.DriveDip.alphaDrive ,

’tStartDrive ’: Para.Times.T1 ,

}

sol = q.sesolve(self.hamiltonian , initial_state , times , [], args=args)

return sol

The quantum object sol contains all the information regarding the time evolution of

the system. Using it, one can easily obtain the occupation of the different states as a

function of time, and therefore reproduce Fig. 5.3 for example. The process described

here can be performed for different parameters. Varying ∆Z and U , in particular, allows

one to reproduce Fig. 5.4.
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Quantum signatures of chimera states. Phys. Rev. E, 92:062924.

113



Bibliography

[13] Bell, J. S. (1964). On the Einstein-Podolsky-Rosen paradox. Physics, 1:195.

[14] Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., and Zeilinger,

A. (1997). Experimental quantum teleportation. Nature, 390:575.

[15] Breuer, H.-P. and Petruccione, F. (2002). The Theory of Open Quantum Systems.

Oxford University Press.

[16] Burkard, G., Loss, D., and Sukhorukov, E. V. (2000). Noise of entangled electrons:

Bunching and antibunching. Phys. Rev. B, 61:R16303.

[17] Buters, F. M., Eerkens, H. J., Heeck, K., Weaver, M. J., Pepper, B., de Man, S., and

Bouwmeester, D. (2015). Experimental exploration of the optomechanical attractor

diagram and its dynamics. Phys. Rev. A, 92:013811.

[18] Carmele, A., Kabuss, J., Schulze, F., Reitzenstein, S., and Knorr, A. (2013). Single

photon delayed feedback: A way to stabilize intrinsic quantum cavity electrodynamics.

Phys. Rev. Lett., 110:013601.

[19] Carmichael, H. (1999). Statistical Methods in Quantum Optics 1: Master Equations

and Fokker-Planck Equations. Springer.

[20] Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J., and Vahala, K. J. (2005).

Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity

phonon mode. Phys. Rev. Lett., 94:223902.

[21] Chan, C.-K., Lee, T. E., and Gopalakrishnan, S. (2015). Limit-cycle phase in

driven-dissipative spin systems. Phys. Rev. A, 91:051601.

[22] Chan, J., Alegre, T. P. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Groblacher,

S., Aspelmeyer, M., and Painter, O. (2011). Laser cooling of a nanomechanical oscil-

lator into its quantum ground state. Nature, 478:89.

[23] Chevallier, D., Rech, J., Jonckheere, T., and Martin, T. (2011). Current and noise

correlations in a double-dot Cooper-pair beam splitter. Phys. Rev. B, 83:125421.

[24] Chiaverini, J. and Sage, J. M. (2014). Insensitivity of the rate of ion motional

heating to trap-electrode material over a large temperature range. Phys. Rev. A,

89:012318.

[25] Choi, M.-S., Bruder, C., and Loss, D. (2000). Spin-dependent Josephson current

through double quantum dots and measurement of entangled electron states. Phys.

Rev. B, 62:13569.

[26] Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F., and Schoelkopf, R. J.

(2010). Introduction to quantum noise, measurement, and amplification. Rev. Mod.

Phys., 82:1155.

114



Bibliography

[27] Das, A., Ronen, Y., Heiblum, M., Mahalu, D., Kretinin, A. V., and Shtrikman, H.

(2012). High-efficiency Cooper pair splitting demonstrated by two-particle conduc-

tance resonance and positive noise cross-correlation. Nat. Commun., 3:1165.

[28] Davis-Tilley, C. and Armour, A. D. (2016). Synchronization of micromasers. Phys.

Rev. A, 94:063819.

[29] Deacon, R. S., Oiwa, A., Sailer, J., Baba, S., Kanai, Y., Shibata, K., Hirakawa,

K., and Tarucha, S. (2015). Cooper pair splitting in parallel quantum dot Josephson

junctions. Nat. Commun., 6:7446.

[30] Diehl, S., Micheli, A., Kantian, A., Kraus, B., Büchler, H. P., and Zoller, P. (2008).
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[120] Sonar, S., Hajdušek, M., Mukherjee, M., Fazio, R., Vedral, V., Vinjanampathy, S.,

and Kwek, L.-C. (2018). Squeezing enhances quantum synchronization. Phys. Rev.

Lett., 120:163601.

[121] Sothmann, B. and Tiwari, R. P. (2015). Josephson response of a conventional and

a noncentrosymmetric superconductor coupled via a double quantum dot. Phys. Rev.

B, 92:014504.

[122] Sothmann, B., Weiss, S., Governale, M., and König, J. (2014). Unconventional

superconductivity in double quantum dots. Phys. Rev. B, 90:220501.

[123] Stanoyevitch, A. (2005). Introduction to Numerical Ordinary and Partial Differ-

ential Equations Using Matlab. Wiley-Interscience.

[124] Strogatz, S. H. (2003). Sync: How Order Emerges from Chaos in the Universe,

Nature, and Daily Life. Hachette Books.

[125] Teufel, J. D., Donner, T., Li, D., Harlow, J. W., Allman, M. S., Cicak, K., Sirois,

A. J., Whittaker, J. D., Lehnert, K. W., and Simmonds, R. W. (2011). Sideband

cooling of micromechanical motion to the quantum ground state. Nature, 475:359.

121



Bibliography

[126] Thompson, J. D., Zwickl, B. M., Jayich, A. M., Marquardt, F., Girvin, S. M.,

and Harris, J. G. E. (2008). Strong dispersive coupling of a high-finesse cavity to a

micromechanical membrane. Nature, 452:72.

[127] Tiwari, R. P., Belzig, W., Sigrist, M., and Bruder, C. (2014). Quantum transport

signatures of chiral edge states in Sr2RuO4. Phys. Rev. B, 89:184512.

[128] Ullner, E., Zaikin, A., Volkov, E. I., and Garćıa-Ojalvo, J. (2007). Multistability
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