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INTRODUCTION  

 Bone tissue is capable of spontaneous self-repair, with no scarring, generating new 

tissue that is (all but) indistinguishable from surrounding bone. However, in certain 

circumstances the defect is too large (due to tumour resection, osteomyelitis, atrophic non-

unions, peri-prosthetic bone loss), or the underlying physiological state of the patient impairs 

natural healing (osteoporosis, infection, diabetes, smoking) necessitating intervention. 

Autologous bone grafting is today the gold standard for bone repair, although the costs of this 

approach are considerable due to the additional surgical procedures required to harvest the 

bone material, the consequent donor site morbidity (Silber 2003), and the risk of infection 

and complications. Additionally, this approach is hampered by the limited amount of donor 

material available for transplantation which can be prohibitive when dealing with large 

defects. To resolve these issues, both allograft- and xenograft-based strategies have been 

proposed, however the risk of rejection in the former and of zoonoses in the latter has 

reduced their clinical impact. Bone tissue engineering (BTE) is an alternative strategy that 

has been explored to fill the clinical need for autologous bone transplantation.  

 

Background 

 Almost half a century has passed since the demonstration that ectopic transplantation 

of bone marrow and bone fragments leads to the formation of de novo bone tissue which, 

when transplanted subcutaneously, is later filled with bone marrow (Friedenstein 1966, 

Tavassoli 1968). Nowadays, the notion that a set of cells present in the bone marrow stroma 

can be cultured in vitro and can regenerate fully functional bone organs in vivo is well 

accepted, although the identity and precise molecular characterisation of the cell population 

responsible is still a matter of study and debate (reviewed in (Bianco 2013, Keating 2012)) 

and the ex vivo expansion and manipulation of stromal cells derived from various sources 
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forms the foundation of the majority of current bone tissue engineering attempts to meet the 

clinical demands for bone regeneration and repair.   

Over the last 50 years, the BTE field has made significant advances towards overcoming 

the limitations of conventional methods which is particularly relevant when an underlying 

pathology calls for alternatives to the status quo. Clinically, several examples of successful 

application of tissue engineering techniques to bone reconstruction exist within the literature 

(Quarto 2001, Sandor 2014), however, on the whole, advances in basic science have not 

translated well into significantly increased clinical application. The reasons are, in part, 

financial, but additional problems such as low efficiency of differentiation, intra-patient 

variability in the differentiation potential of ex-vivo cultured cells (Schwartz 1998), as well as 

the risk of ectopic bone growth (Deutsch 2010), possible transformation (Vilalta 2008) or an 

incomplete understanding of the underlying pathways which are being manipulated with 

factors, such as transforming growth factor β (TGF-β) and bone morphogenic proteins 

(BMPs) (Chapellier 2015, Smith 2008, Siegel 2003), certainly play a role. 

 Minimal clinical adoption has prompted the exploration and adaptation of alternative 

methods including the use of stromal cells from non-bone sources (Kern 2006, Evans 2015), 

most commonly, adipose tissue (Zuk 2002, Murata 2015), but also muscle (Evans 2015); the 

development of new tissue engineering paradigms in which the focus is shifted from 

“cells+cytokines” to the engineering and in vitro optimisation of treatments as a means to 

support in vivo developmental processes by harnessing innate developmental pathways 

(Lenas 2009A, Lenas 2009B, Scotti 2010, Tonnarelli 2014); and finally, attempts to create 

“off-the-shelf” products to stimulate the regeneration of bone through adoption of 

developmental engineering principles (Bourgine 2014, Cunniffe 2015, Gawlitta 2015). 

 

Embryological Development  
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Bone forming tissues are derived from the mesoderm or a specialized part of the 

ectoderm named the neuroectoderm(Reichert 2013). Two distinct processes, called 

intramembranous and endochondral ossification, are executed by the progenitor cells in 

order to generate bone(Long 2012). During intramembranous ossification, progenitor cells 

in the connective tissue directly differentiate into osteoblasts and begin secreting osteoid 

matrix, which calcifies and later becomes lamellar bone. During endochondral ossification 

(Figure 1), progenitor cells first condensate and, through N-cadherin, upregulate Sox-9 and 

differentiate into chondrogenic cells, thus forming cartilaginous templates, for the 

subsequent bone formation(Macjke 2011). The chondrogenic cells further differentiate, 

becoming the so-called hypertrophic chondrocytes that express characteristic markers such 

as collagen type X, metalloproteniases (MMPs) and pro-angiogenic factors such as 

VEGF(Mackie 2011). Mesenchymal stem cells directly adjacent to the hypertrophic matrix 

(“perichondral cells”) form the perichondral bone collar through intramembranous 

ossification (Riminucci 1998). At the same time, vasculature is attracted towards the central 

portion and begins to invade the hypertrophic cartilage providing osteoclasts and 

mesenchymal cells. During this invasion, hypertrophic matrix calcifies and is replaced by 

woven bone (Mackie 2011, Mackie 2008). From the center, this process continues towards 

both proximal and distal ends of the bone rudiment. Near both ends, secondary ossification 

centers appear and undergo the same process. At the aricular surfaces, a thin layer of hyaline 

cartilage persists and allow for the smooth function of joints. This hyaline cartilage appears 

similar to the rudimentary cartilage template, but evidence suggests that the mesenchymal 

progenitors and the process of formation are different (Hyde 2007, Fosang 2011). At the 

border between diaphysis and epiphysis, a cartilaginous area (“growth plate”) persists until 

adulthood and is responsible for bone lengthening during growth. In fact, endochondral 

ossification takes place also in adult life in both skeletal growth and repair. 
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Figure 1: Principle of endochondral ossification. Adapted from Mackie EJ, Tatarczuch L, & Mirams M (2011) The skeleton: 

a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. The Journal of endocrinology 

211(2):109-121.  

 

Skeletal growth 

The growth plate has a well-defined hierarchical structure that reflects the various stages 

of progenitor cells differentiation (Abad 2002) (Figure 2). Close to the secondary ossification 

center of the epiphysis there is a zone of resting cartilage, which resembles the hyaline 

cartilage found in adult joints and contains few chondrocytes. The next zone contains a higher 

number of cells and is called the proliferative zone. Next to it is the pre-hypertrophic zone, in 

which the cells begin to oragnize in distinct columns. In the subsequent hypertrophic zone, 

cells increase in volume and modify their phenotype and the content of the extracellular 

matrix. In the final zone of remodeling, cells undergo apoptosis and the matrix calcifies, while 

osteoclasts and vessels invade the zone actively remodeling the matrix, followed by 

osteoblasts which deposit osteoid matrix.  
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Figure 2: Organization of the growth plate cartilage. Safranin-O staining with fast green counterstaining. Adapted from 

Kim HK, Stephenson N, Garces A, Aya-ay J, & Bian H (2009) Effects of disruption of epiphyseal vasculature on the proximal 

femoral growth plate. J Bone Joint Surg Am 91(5):1149-1158. 

It is assumed that the proliferating chondrocytes have stem cells features(Abad 2002) as 

one daughter cell continues proliferating while the other differentiates progressively along 

the endochondral route. Proliferation is highly regulated by multiple pathways and feedback 

loops and can be guided by both endocrine and paracrine signals. For example growth 

hormone (GH) is secreted by the hypophysis and stimulates secretion of insulin-like growth 

factor 1(IGF-1) by liver cells and pre-hypertrophic chondrocytes, which in turn stimulates 

proliferating chondrocytes(Abad 2002). Indian hedgehog (IHH) is produced by 

prehypertrophic chondrocytes and increases proliferation and hypertrophy. On the other 

hand, parathyroid hormone related peptide (PTHrP) is mainly produced by proliferating 

chondrocytes and inhibits hypertrophy.  IHH can induce expression of PTHrP, whereas PTHrP 

suppresses IHH expression(Studer 2012). In this way a negative feedback loop is formed 

(Figure 2), which finely controls the maturation of the growth plate(van Donkelaar 2007). 

Other signals such as Wingless/Int (Wnt) or bone morphogenic proteins (BMP) can promote 

chondrocyte proliferation, whereas fibroblast growth factor (FGF) can repress it(Abad 2002). 



 

12 
 

Any alteration to this fine equilibrium may lead to developmental anomalies. For example, 

the most frequent disease leading to dwarfism, results from an overactivation of the FGF 

pathway(Shiang 1994).  

The main activity of chondrocytes is secreting extracellular matrix components such as 

proteoglycans and collagen type II. Other proteins are found in lower concentrations and 

mainly aid the assembly of the matrix and its interconnections(Abad 2002). Expression of 

these cartilage-specific matrix components is absolutely dependent on Sox9(Long 2012) and 

can be stimulated by tumor growth factor beta (TGFb) superfamily members (TGFb-1, BMP-

2) and FGF.  

Once the chondrocytes become hypertrophic through expression of Runt-related 

transcription factor 2 (Runx2)(Mackie 2008), they increase production of collagen type X, 

matrix metalloproteinase 13 (MMP-13), alkaline phosphatase (ALP) and IHH(Studer 2012). 

Their volume increases up to 10 fold(Bush 2008), though they do not necessarily degrade the 

ECM to make space(Abad 2002).  Thyroxin is the most important systemic regulator of 

hypertrophy(Shao 2006) and its local effect is most likely transmitted by Wnt signaling(Wang 

2007).  

The hypertrophic chondrocytes induce matrix mineralization through secretion of matrix 

vesicles, which contain akaline phosphatase and are able to nucleate hydroxyapatite crystals 

(Yadav 2011). They are also the master regulator of the endochondral ossification route as 

they actively communicate with the subsequently invading cells, for example by expressing 

vascular endothelial growth factor (VEGF) to attract endothelial cells(Ortega 2010), receptor 

aktivator of NF-kB ligand (RANKL) to attract and differentiate osteoclasts(Boyce 2008), and 

IHH / Wnt to induce osteoblast differentiation of attracted mesenchymal stem cells(Abad 

2002). At the end of hypertrophy, most hypertrophic chondrocytes undergo apoptosis(Long 

2012), however, in literature there is a growing body of evidence that few of them 

transdifferentiate towards osteoblasts and osteocytes(Yang 2014). 
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 The hypertrophic matrix is degraded by apoptotic hypertrophic chondrocytes and 

osteoclasts (Knowles 2012) through secretion of MMP-13 and MMP-9 respectively (Ortega 

2003). Endothelial cells(Abad 2002) or macrophages(Blumer 2008) can aid matrix 

degradation and may increase MMP-9 expression if MMP-13 is absent(Inada 2004). The 

degradation of the matrix releases factors which attract additional osteoclasts, endothelial 

cells and mesenchymal progenitors(Gerber 1999).  

When the bone growth finishes during young adulthood, the growth plate closes due to 

the influence of oestrogens, which deplete the pool of proliferating chondrocytes (Weise 

2001). 

 

Skeletal repair 

Bone development and repair are tightly linked and are characterized by very similar 

processes. In addition, the bone is one of the few human tissues that regenerate and not just 

repair itself with a scar. Being a mechanical-sensitive organ, according to the mechanical and 

anatomical environment, two distinct processes of fracture healing can occur. If the two 

stumps are compressed (e.g., by an osteosynthesis device) and no movement occurs, new 

osteons will directly form at both ends and continue the process of homeostasis detailed 

above(Bruder 1998). The fracture will thus be bridged by many new osteoid laminae 

originating by the two bony stumps.  

If the fracture is complex, separated by a large gap or subjected to high movement (e.g., 

dynamically stabilized by an intramedullary nail or just by a cast), a process resembling the 

embryonic endochondral ossification begins (Martin 1997, Warnke 2004). In the first stage, 

the fracture gap is filled by blood from the ruptured vessels of the endostium, periosteum and 

bone itself. The blood clot is rapidly invaded by a wave of inflammatory cells (mainly 

neutrophils and macrophages)(Warnke 2004) and mesenchymal stem cells. The latter 
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differentiate to chondrocytes and form a type of disorganized fibrocartilage which represents 

the soft fracture callus (Figure 3). This tissue has better mechanical properties than the blood 

clot and is able to temporarly stabilize the fracture(Marcacci 2007). Similarly to embryonic 

bone development but in a much less organized manner, the fibrocartilage becomes 

hypertrophic and undergoes endochondral ossification as detailed above. The tissue calcifies, 

is invaded by vessels and replaced by osteoid matrix. Initially, a woven-bone like structure is 

fomed to be then replaced by lamellar bone. In particular, the outside shell is substituted by 

compact bone, whereas the interior of the callus is replaced with bone marrow and trabecular 

structures (Figure 3). After the callus has ossified, the process of bone homeostasis will 

reshape it according to the mechanical loads and stresses, until a final shape that can 

resemble almost perfectly the one before the fracture. Of course, the final shape depends on 

the previous alignment of the fracture fragments and on the age of the person and may take 

several years to be fully reached(Bruder 1998). Although usually effective, in several clinical 

scenarios bone repair is impaired and made impossible determining a high clinical need for 

bone regeneration strategies. 

 

Figure 3: Fracture healing through endochondral ossification, safranin-O and fast green staining. Modified from Ai-Aql 

ZS, Alagl AS, Graves DT, Gerstenfeld LC, & Einhorn TA (2008) Molecular mechanisms controlling bone formation during 

fracture healing and distraction osteogenesis. Journal of dental research 87(2):107-118. 

The challenge of bone regeneration 
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Bone has the intrinsic capacity to regenerate without the formation of scar tissue, but will 

only do so in practice under certain conditions, largely related to (i) the size of the defect, (ii) 

its location and vicinity to an efficient vascular bed for vascularisation, and (iii) the 

mechanical stability of this defect. Under suboptimal conditions, complete bone regeneration 

can not occur properly and a combination of bone and scar tissues will then result in a poor 

outcome for the patient. In particular, bone loss from trauma, neoplasia, reconstructive 

surgery and congenital defects remains a major health problem, making the development of 

effective bone regeneration therapies a primary priority. Existing treatments such as the use 

of autologous or allogenic bone grafts are successful in many instances. However, 

complications due to the additional autograft surgery, limited quantity of material available 

for harvesting, and limited availability of transplant tissue from bone banks remain serious 

shortcomings. Distraction osteogenesis provides a surgical alternative but requires long 

healing times. On the other hand, the efficacy of non-viable bone obtained from cadavers and 

of synthetic materials is still under debate. The combination of osteoconductive substrates 

with osteoinductive factors (e.g., bone morphogenetic proteins) capable to recruit local 

osteoprogenitor cells holds a great promise, though optimal combinations, doses and release 

kinetics for such factors are still far from being identified and implemented in safe and 

clinically effective products. Therefore, an alternative approach that can improve the 

outcome of bone defects is highly required. 

 

Bottlenecks in cell-based approaches to bone repair 

Osteogenic grafts may be engineered by the combination of suitable scaffolds with viable 

osteoprogenitor cells. Culture-expanded, bone marrow-derived MSC have been 

demonstrated to support formation of de novo bone tissue in ectopic and orthotopic animal 

models, and have been tested in pilot clinical studies for bone repair (Quarto 2001). However, 
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their use in the routine clinical practice is hampered by a series of technical, scientific and 

clinical issues, as discussed below. 

 (i) Inter-donor MSC variability. Despite the advances in identification of putative markers 

for human MSC (Sacchetti 2008), populations of expanded human MSC are still highly 

heterogenous and extremely variable in their differentiation potential, when isolated from 

different donors, even in the same age range. This represents a major bottleneck for the 

standardization of therapeutic protocols. Indeed, it is generally accepted that only MSC from 

selected donors are capable of generating bone tissue upon ectopic implantation, and culture 

conditions allowing reproducible maintenance of MSC osteogenic capacity are yet to be 

identified. 

(ii) Need of a mineralized scaffold substrate. Human MSC have been so far reported to 

generate bone tissue exclusively through direct osteogenic differentiation, in a manner akin 

to intramembranous ossification, using a mineralized surface as “priming” substrate (Martin 

1997). The need of mineralized scaffolds, as compared to polymeric materials, results in a 

limited flexibility in the tailoring of the properties required for specific compartments/defect 

types, especially with regard to mechanical features and degradation rate.  

(iii) Cell survival after grafting. Limited MSC survival and function after implantation, 

especially in the inner core of constructs upscaled in size, is often a limiting factor for the bone 

repair efficiency. The issue of engraftment can be addressed by accelerating and improving 

construct vascularization, but no reliable and safe strategy has yet been validated in a clinical 

setting .  

(iv) Complex and costly manufacturing. Ex vivo processing of autologous cells requires 

dedicated Good Manufacturing Practice (GMP) facilities, with accredited quality management 

systems. Since these infrastructures are not easily available within the confinement of 
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hospitals or medical centers, cells and engineered grafts are typically transported to 

centralized facilities, with obvious logistics-, safety- and cost-related issues. 

As a result of these bottlenecks, it is not yet convincing that currently available MSC-based 

approaches to bone repair can lead to a cost-effective, reproducible and predictable benefit 

for patients. Therefore, there is a high need of alternative paradigms to tackle this 

challenging clinical scenario. 

 

Develomental Engineering  

Initial hopes for the application of tissue engineering to the repair and regeneration of 

bone have not yet come to fruition. Unfortunately, the unmet clinical need which generated 

the enthusiasm that surrounded TE in the 1990’s (Ingber 2006) persists today (Jakob 2012).  

Developments, particularly in animal models, have advanced the field, but the resulting 

clinical impact has been limited.  

 Traditionally, BTE has focused on tissue replacement through the in vitro/ex vivo 

generation of implants which effectively mimic the mature tissue as it is found in the adult. 

This has been achieved through the use of different cells, scaffold materials, and soluble 

factors to create a mechanical /biochemical profile that is similar to the tissue it is designed 

to replace (Ingber 2006). Scaffolds give physical strength, durability, malleability and three-

dimensional structure, allowing for custom-sized implants with specific mechano-physical 

characteristics. Different scaffold materials can be combined (Sheehy 2013) or supplemented 

with growth factors such as BMPs (Deutsch 2010). Various combinations of growth factors 

are routinely used to guide cell differentiation towards the desired phenotype; however the 

use of a limited number of factors is a long way from the complexity seen in vivo (Jakob 2012, 

Sharpe 2005). Bioreactors, using controlled perfusion of media through three-dimensional 

scaffolds recapitulate, to some degree, mechanical(Haugh 2011, Hoffmann 2015) and 
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hydrostatic forces (Steward 2012), representing a step towards replicating the tempo-spatial 

complexity of the in vivo micro-environment, something which may well be impossible to re-

create in vitro.   

 Instead of aiming to phenocopy the adult tissue-state, researchers are drawing on the 

work of developmental biology, which states that “normal tissue healing in the adult involves 

progressive remodelling of pre-existing tissue structures” (Ingber 2006) to generate grafts 

that recapitulate the immature tissue-state. By implanting the precursor-state of a tissue, or 

“organ germ” (Nakao 2010, Janicki 2010), elements of the implant can interact with natural 

developmental cues to regulate differentiation and growth, and to provide cues for cell 

invasion, remodelling, and re-vascularisation in the correct spatio-temporal context. In this 

manner we might overcome one of the greatest challenges facing TE, i.e. effectively mimicking 

the complexity of natural developmental processes, thereby leading to formation of an 

authentic mature tissue.   

 Recently, Lenas et al. (Lenas 2009A, Lenas 2009B) described a fusion of engineering 

principles and concepts from developmental biology, which they termed “developmental 

engineering” (DE). The authors outlined the utility of applying concepts such as path-

dependence, robustness, and modularity, to the manufacture of tissue grafts/implants. 

Robustness, within the context of developmental processes, refers to the ability of a system 

to function consistently despite external fluctuations. A robust developmental mechanism 

would therefore be able to cope with a degree of dissimilarity between the native tissue and 

the implant. A problem encountered when trying to gauge the characteristics necessary for 

successful stimulation of native repair processes is one of sensitivity; the basic tools and the 

limited sensitivity of currently applied methods means we are not yet able to predict whether 

a certain implant will function effectively, leading to much trial and error. However, the 

modularity of many developmental processes permits ex vivo experimentation to determine 

optimal conditions and timing for implantation to achieve the best results in vivo (Scotti 2013, 
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Liebowitz 1995). Additionally, ex vivo experiments can be used to identify markers for the 

successful completion of multi-stage developmental processes (Hall 2000). In this fashion, 

the progress of the implant can be monitored, in vivo, through the stages of development, 

highlighting where problems lie and thus, where refinement is needed. The successful 

completion of each step of development sets the stage for the next step, providing optimal 

conditions. This concept, rooted in economics, law (Gerstenfeld 2002) and biology, is called 

path-dependence and describes a situation where the outcome of one process directly 

influences the effectiveness of a successive process.  Thus, one process acts a check-point for 

the correct completion of the previous step, and at the same time completion of the previous 

step sets the stage for the following stages. In the context of bone regeneration, this is 

exemplified by hypertrophic chondrocytes which act as a natural scaffold for osteogenesis as 

well as secreting factors which orchestrate the differentiation of osteoblasts from 

perichondrial cells, as well as the mineralisation and vascularisation of the neo-bone tissue, 

restoring normoxic conditions required for optimal bone growth and bringing vital materials 

(Nakao 2007). This concept has experimental support, hypertrophic chondrocytes have been 

shown to stimulate bone regeneration in vivo, while lesser developed tissues were not as 

effective in stimulating the formation of bone tissue, likely reflecting the path-dependence of 

this process (Cunniffe 2015). 

Historically, TE has directed the formation of neo-bone through the intramembraneous 

route relying on the presence of mineralised substrate scaffolds to initiate bone growth 

through intramembraneous ossification, however more recently numerous studies illustrate 

the advantages of bone formation through endochondral ossification. As described before, 

endochondral ossification is the method by which the axial and long bones of the skeleton, 

(the vast majority of bones) are formed during embryogenesis (Ogawa 2013) and has many 

features common to bone regeneration after fracture (Sheehy 2014, Jukes 2008) including 

activation of key signalling pathways such as Indian hedgehog (IHH), parathyroid-related 

hormone receptor (PTHrP), wingless (wnt), and BMPs (although notably, the post-natal 
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environment differs from that of the developing embryo (Sheehy 2014)). The process entails 

the condensation (clustering together through cell surface receptors and adhesion molecules 

(Kronenberg 2003)) of chondrocytes, which secrete a collagenous (type II) matrix rich in 

proteoglycans. Under the control of two of the master regulators of bone development, IHH, 

and PTHrP (see (Ogawa 2003)), chondrocytes at the centre of the proto-bone organ cease to 

proliferate and become enlarged (hypertrophic), producing large amounts of type X collagen, 

directing initial mineralisation (Gerstenfeld 2003) and vascularisation through VEGF 

production, before undergoing apoptosis to leave a cartilage scaffold that will eventually be 

remodelled into mature bone(Ogawa 2013). This strategy has been exploited for bone 

regeneration; implantation of hypertrophic human bone marrow derived mesenchymal 

stromal cells (huBMSCs) in nude mice has been demonstrated to lead to the growth of ectopic 

bone structures as a result of human cells playing an active role in osteogenesis (Scotti 2010). 

BMSCs embedded in β-TCP scaffolds were able to generate frank bone in vivo, but 

chondrogenic priming was necessary for the production of bone containing bone marrow 

(BM) (Liebowitz 1995), while huBMSCs seeded on collagen type I scaffolds induced towards 

endochondral ossification formed not only bone organs, but also a fully functional BM which 

was shown to sustain haematopoiesis in lethally irradiated mice (Scotti 2013). In a previous 

study cells that were not hypertrophic at the time of implantation failed to generate bone and 

were resorbed, indicating that the developmental stage is a critical factor in dictating whether 

the implant will proceed to the next stage (Vortkamp 1997). 

There are multiple advantages to implanting chondrogenically primed cells: 

chondrocytes are more likely to survive the hypoxic in vivo environment (D’Amour 2006), 

they stimulate vascularization (Gerber 1999), and have been shown to increase bone 

formation in vivo through BMP production (Jakob 2012). Additionally, by selecting a starting 

material which most closely matches the in vivo precursor to the tissue of interest, and by 

guiding those cells though developmental stages using known markers, an intermediate form 
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of the tissue is generated which “contains all the necessary and sufficient instructive elements 

for its regeneration” (Martin 2014).  

 While the adoption of processes which mimic embryogenesis have demonstrated 

merit (Liebowitz 2015), there are salient physical, biochemical, mechanical, and 

immunological differences between the developing embryo and a mature tissue 

microenvironment (Jakob 2012, Sharpe 2005). Accordingly, we must adjust the design of 

prospective implants to reflect these differences (Tonnarelli 2014). Embryonic development 

occurs under different immunological and inflammatory settings as well as at a much smaller 

scale than in the adult, both of these factors must be addressed if embryonic processes are to 

be harnessed for the successful engineering of bone grafts.  

 Paracrine signalling gradients which function at the embryonic scale are likely to be 

inefficient in a much larger graft. Modular implants, comprising many smaller units may be 

utilised to overcome this hurdle (modular implants – cellular sheets (Yang 2007)) in addition 

to addressing some of the limitations of mass transfer such as necrosis at the core of the 

engineered tissue. 

 The immunological milieu controlling developmental processes and the influx of cells 

at the embryonic stage of bone growth remains to be fully elucidated. This is likely to be a 

crucial step if we are to fully harness the potential of developmental engineering, as immune 

factors are significant mediators of bone healing and re-growth (Sheehy 2014), which can 

result in retardation of healing, if suppressed (Burd 2003). Interestingly, this last point serves 

to highlight the differences between developmental processes underway during 

embryogenesis and those involved in the adult: while inflammation represents one of the 

main drivers of bone repair, it is absent during normal bone development. In fact, the 

significance of interleukin 1-β (IL-1β) in the re-vascularisation, mineralisation, and cartilage 

remodelling activity of huBMSCs has been illustrated and will be described in Chapter 3.  
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In conclusion, the adoption of a developmental engineering paradigm for the 

regeneration of bone represents a potential method to mitigate the enormous hurdle 

presented by largely unknown in vivo complexity. By generating pre-cursor organ germs 

based on observable in vitro-elucidated markers, and allowing natural cues to orchestrate the 

development of hypertrophic chondrocyte templates, it is foreseeable that future bone repair 

strategies will achieve clinical use. However, if we are to effectively utilise this technique, a 

clearer more complete understanding of the biochemical and mechanical forces at work in 

both the developing embryo and the adult are required. 

 

Proof-of-principle for the developmental engineering of bone 

We previously reported for the first time the capacity of expanded human MSC to 

generate frank bone tissue through an endochondral route if primed in vitro by appropriate 

stimuli and ectopically implanted in nude mice (Scotti 2010). This milestone work represents 

a proof of principle for the “Developmental Engineering” paradigm. As a matter of fact, the 

process closely recapitulated the temporal and spatial sequence of events typical of limb 

development, namely (i) cellular condensation and hypertrophic chondrogenesis, (ii) 

dependency from the activation of Indian Hedgehog (IHH) signalling, (iii) formation of a bony 

collar through perichondral ossification, (iv) MMP-mediated matrix remodelling, 

vascularization, and osteoclastic resorption, (v) bone matrix deposition over the resorbed 

cartilaginous template, and (vi) formation of a complete bone organ, including hematopoietic 

elements. Importantly, we clarified that successful implementation of the endochondral 

ossification paradigm critically required a cartilaginous template in a mature stage of 

hypertrophy, either obtained in vitro or in vivo, whereby cells strongly positive for type X 

collagen were surrounded by osteoblastic cells expressing abundant bone sialoprotein. 

However, due to the limited reproducibility of human MSC from different donors, the 

approach was validated using cells from selected primary cells with kown chondrogenic 
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potential. Moreover, the paradigm was developed with a small scale, scaffold-free transwell 

model and required to be scaled-up in size in order to be proposed for a clinically relevant 

scenario.  

 

 

Figure 4. Remodelling of the cartilaginous template after 4 and 8 weeks in vivo. (a, e, i) Four weeks after implantation, 

early hypertrophic samples had differentiated further towards hypertrophy, displaying larger lacunae, Col X accumulation and 

initiated BSP deposition in the outer rim. (b, f, j) Eight weeks after implantation, early hypertrophic samples had differentiated 

even further. This was evidenced by a decrease in GAG accumulation, while Col X was maintained and BSP had also been 

deposited within the cartilaginous core. (c, g, k) After 4 weeks, late hypertrophic specimens had undergone more intense 

remodeling, such that GAG and Col X levels were reduced, while BSP had already been deposited within the cartilaginous core. 

(d, h, l) After 8 weeks, the cartilaginous template was almost completely resorbed: bone structures substituted the GAG positive 

areas in the central region, while Col X and BSP positive areas were restricted to scattered islands. All the pictures were taken at 

the same magnification, scale bar = 200μm. Taken from Scotti C, et al. (2010) Recapitulation of endochondral bone formation 

using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proceedings of the National Academy 

of Sciences of the United States of America 107(16):7251-7256. 
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Figure 5. Bone tissue is generated over the cartilaginous template after 8 weeks in vivo. a) Microtomography 

showing bone trabeculae after 5 weeks of in vitro culture and 8 weeks in subcutaneous pouches of nude mice. b) Histology 

confirming the bony nature of the stractures highlighted by the microtomography. c) Histology showing hematopoietic elements 

and adipose tissue within the mature bone, confirming the generation of a complete bone organ. Taken from Scotti C, et al. (2010) 

Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental 

engineering. Proceedings of the National Academy of Sciences of the United States of America 107(16):7251-7256. 

 

A crucial achievement of our previous studies was that during in vitro culture and in vivo 

implantation, expanded human MSC recapitulated the finely orchestrated events occurring 

during limb development. (Figures 5 and 6). These data demonstrate that human MSC from 

adult individuals – if appropriately manipulated – maintain the capacity to undergo an 

endochondral ossification process by closely recapitulating embryonic pathways involved in 

limb development: this represents an attractive validation of the “Developmental 

Engineering” paradigm. In principle, according to this feature, the potential of hMSC to 

achieve hypertrophic differentiation, enter the endochondral route and subsequently 

determine bone formation could be even further enhanced with the use of agonists of IHH 

pathway. 
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Figure 6. Activation of pathways involved in endochondral ossification (Scotti et al., 2010). a), b) After implantation 

for 4 weeks, representative genes, assessed by in situ hybridization (IHH, and GLI1 as IHH effect mediator) were expressed. c), 

d) Functional inhibition of the IHH pathway through administration of cyclopamine blocked the differentiation and maturation 

of the cartilaginous templates, as assessed by Safranin-O stain. e) mRNA expression of genes involved in IHH signalling (IHH, 

GLI1, PTCH1), PTH signalling (PTHLH, PTHR1), as well as chondrogenic/hypertrophic genes (Col II, VEGF), and osteogenic genes 

(Cbfa-1, Col I, BSP) confirmed suppression of the endochondral route by cyclopamine. Taken from Scotti C, et al. (2010) 

Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental 

engineering. Proceedings of the National Academy of Sciences of the United States of America 107(16):7251-7256. 

 

The described principles have lead to the development of engineered hypertrophic 

cartilage as a bone substitute (Scotti 2010), which displays advantageous properties such as 

resistance to hypoxia (Sheehy 2012, Grimshaw 2000) and gradual vascular invasion(Sheehy 

2015). This type of graft has been used in orthotopic models such as calvarial(Kuhn 2014) or 

femoral segmental defects (van der Stok 2014, Harada 2014) and with strategies as diverse 

as monolithic constructs (Harada 2014), pellets between 1-3mm  in diameter (Bahney 2014) 

or complex modified structures (Cunniffe 2015). Generation of greater tissue volumes has 

been proposed using bioreactor systems(Kock 2014, Hoffmann 2015). As a next biomimetic 
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step, co-cultures of hypertrophic cartilage with endothelial cells have been performed to 

improve mineralization(Freeman 2015). For clinical applications of engineered hypertrophic 

cartilage, a remaining drawback is the use of autologous MSC to form the graft. Although 

necessary to prevent immunologic rejection, autologous MSC use means additional extraction 

and a significant time-delay. The interdonor variability encountered with MSC (Solchaga 

2011) may also lead to unpredictable outcomes. For this reason, there is a high need of bone 

regeneration strategies characterized by a standardized bone-forming potential and a 

sustainable cost for the payers. 

Devitalized Extracellular Matrices 

The use of allogeneic hypertrophic cartilage of high quality would be possible if 

immunologic rejection could be prevented. This could be achieved through removal of cells, 

since matrix constituents are hihgly conserved and may even prevent an adaptive immune 

response(Bollyky 2009). Indeed, the extracellular matrix itself may hold sufficient cues to 

instruct cell function and identity(136). Moreover, in the case of hypertrophic cartilage, 

apoptosis of hypertrophic chondrocytes(Crapo 2011) and the release of matrix bound signals 

such as VEGF through MMP-mediated matrix degradation are part of the natural 

developmental and growth processes. Thus devitalization of allogeneic hypertrophic 

cartilage by chemical or physical means or induction of apoptosis(Bourgine 2013) can be an 

alternative to the use of patient derived grafts. For these reasons, a devitalized endochondral 

“engineered extracellular matrix” (eECM) would be an attractive and clinical-compliant 

strategy to achieve bone regeneration at the most challenging sites.  

In fact, from a clinical and commercial standpoint, an eECM with the capacity to induce 

bone formation would be highly attractive. In particular, it would: (i) avoid autologous cells 

processing, which is time consuming and costly; (ii) lead to standardized “off the shelf” 

products; and (iii) by-pass inter-individual variability in the cell differentiation capacity, 

which severely limits clinical applications of MSC-based approaches, thus making the clinical 
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translation of this approach more cost-effective, feasible and effective than typical tissue 

engineering strategies.  

General Aim of the Thesis 

Briefly, this thesis includes the translational effort towords the development of a clinical 

“product” from an innovative scientific concept. In other words, upon demonstration of the 

potential of the developmental engineering paradigm (scotti 2010) for the regeneration of 

the bone tissue, I aimed at developing a clinically-relevant application of this concept.  This 

strategic goal lead me to (i) the extension of this concept to an upscaled model that allowed 

showing unprecedented features of engineered “bone organ”; (ii) the application of the 

paradigm to the process of bone repair, that is tightly linked to bone development; and (iii) 

the development of an innovative method of devitalization that allows to preserve key factors 

harbored within the ECM in order to show the potential for an “off-the-shelf” product for bone 

regeneration.  

 

Specific Aims of the Chapters 

The scientific work is presented in the form of three scientific publications. 

Chapter 2 Engineering Of A Functional Bone Organ Through Endochondral 

Ossification 

In this chapter, it was hypothesized that human MSC primed through endochondral 

ossification can engineer a scaled-up ossicle with features of a “bone organ”, including 

physiologically remodeled bone, mature vasculature and a fully functional haematopoietic 

compartment.  This represents the essential backbone on which the subsequent translational 

works have been based, as well as the prerequisite for the controlled manipulation of HSC 

niches in physiology and pathology.    
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Chapter 3 Interleukin-1beta Modulates Endochondral Ossification By 

Human Adult Bone Marrow Stromal Cells 

Inflammatory cytokines present in the milieu of the fracture site are important 

modulators of bone healing and they are not present during embryonic development. This 

represents a crucial factor for a successful translation of the developmental engineering 

paradigm. In this chapter, in order to duplicate some features of the fracture callus, we 

investigated the effects of interleukin-1β (IL-1β) on the main events of endochondral bone 

formation by human MSC, namely cell proliferation, differentiation and 

maturation/remodeling of the resulting hypertrophic cartilage.  

Chapter 4 Osteoinductivity Of Engineered Cartilaginous Templates 

Devitalized By Inducible Apoptosis 

A key hurdle that limits translation to the clinic of regenerative therapies is the use of 

autologous cells. In this chapter, we hypothesized that the preservation of the ECM integrity, 

serving as a reservoir of multiple growth factors at physiological levels, is a key pre-requisite 

to recruit and instruct endogenous progenitors to initiate bone regeneration and that this 

capability can be used to engineer cell-free, off-the-shelf biomaterials to be used for the 

regeneration of the bone tissue. In particular, we aimed at inducing de novo bone organ 

formation using cell-free hypertrophic cartilage templates, devitalized by apoptotic induction 

through retroviral transduction of an inducible Caspase-9 (inducible Death System – iDS). The 

results reported in this chapter outline a broader paradigm in regenerative medicine, based 

on the engineering of cell-based but cell-free niches capable to recruit and instruct 

endogenous cells to the formation of predetermined tissues. 
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DISCUSSION  

 In this thesis, three papers are discussed. In the first, we upscaled the previously 

developed model in order to generate a bone organ that allowed us to better describe the 

tissue remodeling and the interplay between bone and haematopoietic cells. In the second, 

we further improved the model by making it more similar to bone repair, by adding a pro-

inflammatory cytokine (IL-1β) to the system and evaluating its effect of the bone remodeling 

and haematopoietic cells processes. In the third, we worked towards developing an eECM by 

retroviral transduction of an inducible Capsase-9 of human BMSCs. In these three consecutive 

works, we highlighted the potential for the endochondral route to be translated into clinical 

practice and progressively streamlined our model by making it more similar to bone repair 

and more clinically compliant. Further in vitro and in vivo studies are currently ongoing in 

order to fully elucidate the potential of this strategy. 

 With the objective of bone repair in a manner which recalls natural healing processes, 

both cell-based and cell-free methods have been utilised, both have advantages, but currently 

cell-based therapeutic strategies are the status quo in pre-clinical science. This usually 

comprises BMSCs which have been extracted and either re-injected intra-operatively or 

cultured ex vivo for several passages to generate many more cells which are then re-injected 

in their current state, or, more commonly, seeded on a three-dimensional scaffold material. 

Cell-based strategies, most often utilising BMSCs, have been shown to be more successful at 

stimulating bone healing than cell-free approaches, resulting in greater mineralisation, 

ossification, and increased angiogenic potential (Cunniffe 2015, Gawlitta 2015, Kon 2000). 

These results are supported by data showing cell-based techniques to be clinically 

advantageous (Liebergall 2013, Dallari 2007). This has obvious implications for the choice of 

cell source, since a cell containing detectable genetic, epigenetic, proteomic modifications 

which are optimal for a particular developmental path is not only more likely to produce a 

higher quality final product, but is also likely to contain additional characteristics which the 
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limited and basic range of tests at our disposal cannot gauge. That said, ADSCs, which had low 

intrinsic bone-forming potential and produced no neo-bone in their un-induced state, when 

chondrogenically primed deposited a proteoglycan-rich cartilaginous matrix and were able 

to generate a similar amount of bone as non-induced BMSCs (Brocher 2013). This suggests 

that by re-routing ADSCs through endochondral ossification, a precursor state is created that 

favours bone formation. It is noteworthy that despite the successful re-routing of ADSCs, 

uninduced BMSCs achieved better final results, perhaps reflecting intrinsic factors that 

predispose them to bone formation (Shao 2013). 

However, the downsides to autologous cell-based therapy are significant, and can be 

prohibitive in some cases. The rarity of BMSCs can be limiting to the point of rendering cell 

extraction unfeasible (especially in the elderly and the ill) and too few Colony Forming Unit -

fibroblast (CFU-f) within a BM extract will fail to generate neo-bone tissue (Braccini 2005). 

Even in healthy individuals, cell extraction requires an additional procedure which carries 

added morbidity. Eliminating the need for extra surgery is a strong motivation behind intra-

operative techniques which, while avoiding the time-expensive and laborious GMP handling 

of cells in the laboratory, are also limited by the number of BMSCs available for re-injection.  

 Cell-free technologies have been proposed as an alternative to sidestep many of the 

barriers associated with cell-based techniques for bone-specific and other areas of tissue 

engineering. A product which is available “off-the-shelf” following decellularisation and 

sterilisation, has obvious practical advantages from a surgical perspective, such as the 

reduction of intra-patient variability, and would allow the selection and preparation of the 

implant prior to surgery. Additionally, the implant can be re/cellularised with autologous 

BMSCs prior to use if sufficient BMSCs are available (Gawlitta 2015). Also, a sterile acellular 

product would be amenable to storage and thus easily transported to areas of need, such as 

impoverished nations where the resources for preserving cell-based products might be 
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lacking. All of these reasons would act to increase the clinical up-take and motivated our 

research in this direction. 

 Many recent studies have attempted to mimic the inherent complexity of the 

biological microenvironment, in terms of architecture and biochemical constituents, through 

the use of decellularised extracellular matrix (ECM) from a variety of animal sources, both 

human (Badylak 2012) and non-human (Irvine 2011). The latter option presents the 

possibility of benefiting from existing slaughter processes to access a large volume of material 

for decellularisation. The risk of zoonoses, especially prion diseses, can be reduced by 

sourcing animals from prion-free island populations (Lun 2010). The use of cell lines derived 

from either human or non-human animals to produce a functional eECM presents the 

possibility of standardisation, reducing donor-to-donor variability. 

 The concept of using eECM as bone substitutes could represent a significant 

innovation and breakthrough in the field of bone regeneration. The prospective of generating 

standardized off-the self-products with customizable properties to provide a consistently 

effective solution for several clinical scenarios render this approach highly attractive from 

both clinical and commercial standpoints. The unavoidable increased complexity of eECM as 

compared to native- or synthetic- derived ECM substitutes could be compensated by their 

superior biological performance and customization potential that allow not only to support 

but to actively drive tissue repair. However, the successful implementation of this approach 

requires deep understanding of the complex events of the bone healing process that can be 

driven and finely coordinated by the bioactivity of “smart” materials derived from eECM 

approach. In this context, multidisciplinary efforts have led to the establishment of methods 

to provide robust biomimetic protocols inspired from biological processes occurring during 

embryonic tissue development and further revised in the context of adult bone tissue repair, 

taking into consideration immune and mechanical aspects. The multitude of parameters 

involved in this approach may also require the use of miniaturized high-throughput devices 
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(e.g. microfluidic devices) followed by combinatorial analyses in order to define the minimal 

set of necessary eECM signals which are required for predictable instruction of bone 

regeneration. 

Prospectively, established conditions for the generation of customized eECM can be 

translated to suitable bioreactor devices to address the challenges of engineered graft 

production by providing both a more sustainable manufacturing process and a more 

clinically-compliant procedure. Indeed by using a bioreactor-based approach one could 

possibly streamline the processes of ECM production and its decellularization within the 

same device, reducing thus complexity and cost in the manufacturing. Moreover, the 

reproducible behavior of the cell-lines together with the monitor capabilities of bioreactor 

technologies may facilitate the establishment of the relevant cell culture parameters and 

release criteria, predicting ultimately grafts quality. Obviously, GMP-compliant concepts 

related to the manufacturing devices and processes need to be introduced to conform to 

regulatory guidelines for the production of engineered grafts for clinical use.  

With regard to bone engineering, the works presented in this thesis and others that have 

been published by other groups suggest that the endochondral route is a promising  template. 

Previously, hypertrophic chondrocytes derived from human BMSCs were shown to be 

remodelled and replaced by frank bone tissue, including a functional haematopoietic 

compartment (Scotti 2010). Accordingly, decellularised hypertrophic cartilage has been used 

as a template to stimulate the regeneration of bone material through endochondral pathways, 

promoting the invasion and proliferation of host cells  – although in the case of Cunniffe et al. 

(Cunniffe 2015) the implant was not 100% decellularised and was implanted in a nude mouse 

model. As shown in the third paper discussed in this thesis (Chapter 4), we proposed to induce 

apoptosis by retroviral transduction of an inducible Caspase-9 of hypertrophic chondrocytes, 

in order to decellularise ECM and, therefore, generate an eECM for bone regeneration. 

Importantly, this was shown to be superior to a standard freeze-thaw protocol for the 
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regeneration of bone. In our work, post-apoptotic cartilage and implants containing live 

BMSCs, but not non-hypertrophic cartilage, underwent extensive remodelling and after 12 

weeks in vivo tested positive for the presence of a BM space, although implants containing 

live cells outperformed the “apoptosed” tissue. Elsewhere, non-hypertrophic cartilage was 

shown to be inferior to hypertrophic constructs in a mouse femoral defect model, where only 

the latter were successful in bridging the defect (Cunniffe 2015).  

 To date, the use of cell-free techniques has yet to demonstrate equivalence to cell-

containing preparations. Developments in the methods used for decellularisation will 

undoubtedly result in more effective materials, due to greater retention of ECM-associated 

molecules with simultaneous removal of cellular material, as it happens with the method we 

proposed, to yield bone-engineering products with off-the-shelf convenience, as well as low-

maintenance storage, and increased customisation. 
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Intrinsic bone repair mechanisms are highly effective, but in certain cases external 

intervention is required.  In some instances, BTE has been shown to provide clinical relief, but 

improvement in BTE technologies are required to allow its application to greater numbers of 

patients, particularly those to whom traditional bone grafting procedures are unfeasible.  

BMSCs form bone and BM in vivo which is essential if creation of the HME is required. 

This is a striking difference compared to typical tissue engineering methods resembling 

intramembranous ossification. However, the factors (genetic, epigenetic, proteomic, etc.) 

responsible for the pre-destination of BMSC to form functional bone and BM are unknown.  

Likely a fraction of these factors driving BMSC to form bone containing BM will also regulate 

additional steps in skeletal development and remodelling allowing cells to correctly react to 

autocrine and paracrine developmental signals.  

Regardless of cell source, currently live cell-based implants tend to be superior to cell-

free, and decellularised alternatives at regenerating bone tissue. Recent advances in 

decellularisation protocols are bringing the performance of decellulariced and devitalised 

tissues to ever greater levels, approaching that of vital implants, with the added value of 

storage, transportation and the possibility of allogenic or xenogenic-derived grafts to 

circumgate the difficulties in obtaining autologous cells for bone regeneration and repair. 

Recent strategies in bone repair and regeneration have sought to embrace a 

developmental engineering approach, following as closely as possible the natural processes 

of bone development through the remodelling of hypertrophic cartilage templates via 

endochondral ossification. Our work represents one of the first efforts aimed at translating 

the scientifically fascinating but clinically challenging paradigm of developmental 

engineering to the regeneration of the bone tissue. In particular, we provided the first proof 

that human adult MSCs can undergo the full endochondral route and generate a bone organ, 

triggering the development of a new strategy in bone regeneration. The three papers 

presented in this thesis are tightly connected in the effort of streamlining the implementation 
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of the endochondral route to the clinic. Of course, further improvements and simplifications 

are required to really make this happen.  

In the Introduction, I outlined bottlenecks that limit the translation to the clinic of 

experimental bone regeneration strategies. In the following, I discuss how the proposed 

strategy address these issues and can be used to overcome current hurdles. 

(i) Inter-donor MSC variability. This remains a relevant issue in all MSC-based 

regenerative therapies. However, this can be overcome by providing a decellularized 

hypertrophic cartilage eECM, to be then re-cellularized in situ. In fact, the manufacturing of 

such an eECM can be obtained with allogeneic MSC, previously tested as per endochondral 

potential, and subsequently decellularized (e.g., as shown in Chapter 4) to minimize eECM 

immunogenicity. 

(ii) Need of a mineralized scaffold substrate. This issue has been totally overcome by 

the endochondral approach to bone regeneration. In fact, being based on the chondrogenic 

differentiation of MSCs, a mineralized substrate is not strictly needed by this approach. Of 

course, some degree of mineralization may help in order to improve bone formation but it is 

not mandatory with this strategy, allowing for the use of more flexible ECM, hydrogel or 

polymer material. 

(iii) Cell survival after grafting. In our work we showed that bone formation can be 

achived independelty from cell survival, with a decellularized eECm approach. In addition, we 

showed the role of both cell survival and cell apoptosis following implantation. This reflects 

the dual role of hypertrophic chondrocyte that can either participate to bone formation at 

some extent or massively die through apoptosis and leave the ECM to be colonized by skeletal 

progenitor cells and hematopoietic cells. This is also confirmed by the fact that, although 

being able to generate bone tissue with hematopoietic compartments, a fully decellularized 

ECM can be remodeled into a bone organ at a lesser extent than vital tissues.  
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(iv) Complex and costly manufacturing. We are currently addressing this issue by 

developing bioreactor-based culture of hypertrophic cartilage templates. Bioreactor culture 

allows out-scaling and automating the production of tissues, making it more affordable, 

controlled and reproducible.  

In an effort to further streamline bone regeneration strategies, future research will be 

aimed at dissecting the intricate interplay between the ECM and cells, in order to identify 

potential molecular targets and allow for the development of biologics capable to trigger the 

execution of the endochondral ossification route. For example, as growth factors and 

cytokines harbored within the ECM can trigger the process, one could speculate that even 

only the secretome of hypertrophic chondrocytes may be enough to do so. And that, also, a 

combination of such a secretome with a scaffold providing structural stability can be a more 

efficient solution compared to an eECM. In addition, a biologic or a small molecule 

characterized by a high safety (e.g., compared to BMPs) and a very specific mode of action 

could be even more feasible to be manufactured and commercialized, from a pharmacologic 

standpoint. However, as mentioned above, considering the challenging mechanical demands 

to the bone tissue, a combination approach including a scaffold biomaterial (being either an 

ECM or a synthetic biomaterial) will always be required. 

By combining all the abovementioned concepts, we can envision a large scale production 

of hypertrophic cartilage tissue, in an automated, highly controlled bioreactor manufacturing 

system, using engineered human cells (e.g., MSCs or iPS) with high endochondral potential 

and capable to undergo apoptosis upon induction. This will allow the generation of a series 

of cost-effective custom eECMs to be used for tissue regeneration at the most challenging 

sites. 
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