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Abstract

Computing statistical quantities of interest of the solution of PDE on random domains is an
important and challenging task in engineering. We consider the computation of these quantities
by the perturbation approach. Especially, we discuss how third order accurate expansions of the
mean and the correlation can numerically be computed. These expansions become even fourth
order accurate for certain types of boundary variations. The correction terms are given by the
solution of correlation equations in the tensor product domain, which can efficiently be computed
by means of H-matrices. They have recently been shown to be an efficient tool to solve correlation
equations with rough data correlations, that is, with low Sobolev smoothness or small correlation
length, in almost linear time. Numerical experiments in three dimensions for higher order ansatz
spaces show the feasibility of the proposed algorithm. The application to a non-smooth domain
is also included.
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1. Introduction

The numerical solution of strongly elliptic linear partial differential equations (PDEs) is an
important task in science and engineering. It is nowadays well understood and can be accomplished
up to high accuracy, provided that the input data are known exactly. Motivated by tolerances in
manufacturing processes and measurement errors, the computation of statistical output functionals
of the solution of PDEs on objects with uncertain shapes has recently gained a lot of interest. The
domain mapping approach, see e.g. [1, 2, 3], is well suited for modelling large variations in the
domain, but usually leads to high-dimensional and costly integration problems, which suffer from
the curse of dimensionality. The perturbation approach, see e.g. [4, 5, 6, 7], is motivated by
small disturbances in manufacturing processes and models uncertain small deformations under
the following view point. Notice that both approaches have recently been combined in [8].

Given a reference domain D0, the random domains Dε(ω) are defined by the perturbation of
the reference domain’s boundary in some ε tube, leading to the model problem

∆uε(ω) = 0 in Dε(ω),

uε(ω) = g on ∂Dε(ω).

Using shape calculus, cf. [9, 10], and under some smoothness assumptions, the non-linear depen-
dence of the solution uε(ω) on Dε(ω) can, in a suitable compact subdomain K, be expanded in a
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Taylor expansion in ε, i.e.,

uε(ω) = u0 + εδu(ω) +
ε2

2
δ2u(ω) +O(ε3) in K. (1)

The zero order term u0 can directly be computed by solving the deterministic PDE

∆u0 = 0 in D0,

u0 = g on ∂D0,

on the unperturbed domain. The first and second order correction terms can be computed by
solving the very same equation as for the zero order term, but with different boundary conditions.

Based on the Taylor expansion (1), statistical quantities of the solution like the mean

E[uε] = u0 + εE[δu] +
ε2

2
E[δ2u] +O(ε3) in K,

the covariance
Cov[uε] = ε2 Cor[δu] +O(ε3) in K,

and the correlation

Cor[uε] = u0⊗u0+ε
(
u0⊗E[δu]+E[δu]⊗u0

)
+ε2

(
Cor[δu]+

u0

2
⊗E[δ2u]+E[δ2u]⊗u0

2

)
+O(ε3) in K

can be expanded into asymptotic expansions in ε. It has already been shown in [7] that the second
order correction term Cor[δu] is the solution to a correlation equation in the higher-dimensional
product domain D0 ×D0. While the first and second order correction terms E[δu] and E[δ2u] of
the mean are given as the solution of PDEs on D0, the computation of the boundary values for
E[δ2u] has not been investigated yet. We show that they can likewise be obtained by the solution
of a correlation equation, but in the product domain ∂D0 × ∂D0. As this equation lives solely
on the domain boundary, the boundary element method is an obvious discretization method for
its solution. Hence, we will use it as a discretization scheme for all occurring equations, omitting
the meshing of D0. We provide the full convergence analysis for the proposed discretization
scheme and slightly relax the assumptions from [7] on the boundary perturbations on our way.
Additionally, we remark that the asymptotics can even be up to fourth order accurate, if the law
of the prescribed boundary variations behaves in a specific way.

We therefore have to solve two correlation equations in the tensor product domain in order
to compute third order accurate approximations in the perturbation amplitude ε. As a naive
discretization of these higher dimensional problems, also referred to as the full tensor approach,
is prohibitively expensive, the solution of such correlation equations has been the topic of several
articles, cf. [5, 7, 11, 12, 13, 14, 15, 16] for example. Except for [5, 12], where a low-rank approx-
imation of the underlying correlation is employed, all of the mentioned approaches rely in some
sense on a sparse tensor approximation. Both, low-rank approximations and sparse tensor dis-
cretizations, are best suitable if the prescribed correlation is sufficiently smooth, compare [17, 18]
for the behaviour of low-rank approximations in dependence of the smoothness, and are known to
struggle for “rough” correlations. This means that the prescribed correlation exhibits only minor
smoothness assumptions or has a high concentration of measure. While rough correlations do not
necessarily have an influence on the convergence rates ([19] discusses an specific example where
the rate is reduced), they may have a huge influence on the constants involved in the complexity
estimates.

Recently, the hierarchical matrix approach (in short H-matrix approach) to correlation equa-
tions, cf. [19, 20, 21], has been shown to be a promising approach to cope with rough correlations.
In the context of correlation equations, H-matrices provide an alternative compression scheme to
represent the full tensor approach and allow the solution of correlation equations in almost linear
time. Being introduced in [22, 23], H-matrices are feasible for the data-sparse representation of
(block-) matrices which can be approximated block-wise with low-rank. They have originally been
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Figure 1: The boundary of the reference domain ∂D0, a family of perturbed domains ∂Dε(ω), and the compactum
K.

employed for the efficient treatment of boundary integral equations, as they arise in the boundary
element method. Nonetheless, they also provide an arithmetic which can be employed for the
solution of matrix equations, as they occur from the discretization of correlation equations.

The rest of this article is organized as follows. In Section 2, we derive expansions of the
mean, the covariance, and the correlation with respect to the perturbation’s amplitude via shape
calculus. Section 3 is concerned with the necessary boundary integral equations to allow for a
natural treatment of the random perturbations of the boundary. In Section 4, we introduce the
corresponding Galerkin discretization, whereas Section 5 is concerned with its error estimation.
Section 6 is concerned with the efficient treatment of the derived equations with H-matrices. We
demonstrate the feasibility of the proposed approach by numerical experiments in three spatial
dimensions in Section 7. Finally, in Section 8, we draw our conclusions.

2. Random Domains

2.1. Basic Definitions

For the following considerations, let D0 ⊂ Rn be a reference domain with, in order to ensure
C3,1-continuity of its outer normal, a C4,1-boundary. On a separable, complete probability space
(Ω,Σ,P), consider a random vector field V ∈ L2

P(Ω;C3,1(∂D0,Rn)) with ‖V(ω, ·)‖C3,1(∂D0;Rn) . 1
uniformly for all ω ∈ Ω, which perturbs the boundary of the reference domain ∂D0 in accordance
with ∂Dε(ω) := ∂D0 + εV(ω, ∂D0) for some given ε > 0. A random domain Dε(ω) is then given
by the interior of the perturbed boundary ∂Dε(ω). For later considerations, we also introduce a
compact set K, which is contained in all possible boundary variations and, in particular, in the
reference domain, i.e.,

K b D0 ∩D∩Ω
ε , D∩Ω

ε :=
⋂
ω∈Ω

Dε(ω).

The complete setting of the introduced sets is illustrated in Figure 1.
Note that, in contrast to the domain mapping approach, which requires a vector field on the

whole reference domain, the perturbation approach only requires a vector field on the boundary.
A correspondence between the two approaches is given by the fact that every vector field on the
boundary ∂D0 can smoothly be extended into the interior of D0 in such a way that it vanishes on
the compactum K.

For all further considerations, let g ∈ H3(D0 ∪D∪Ω
ε ), where D∪Ω

ε denotes the hold-all domain

D∪Ω
ε :=

⋃
ω∈Ω

Dε(ω).

Then, it follows u0 ∈ H3(D0) for the unique solution u0 of the unperturbed problem

∆u0 = 0 in D0,

u0 = g on ∂D0,
(2)

see [24, Theorem 20.4] for example. Here and in the following, the Dirichlet and Neumann data
have to be understood in the trace sense.
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2.2. Shape Calculus for Parametrized Domains

We look at the randomly perturbed boundary value problem

∆uε(ω) = 0 in Dε(ω),

uε(ω) = g on ∂Dε(ω),
(3)

which is posed on the random domain Dε(ω). To deal with the non-linear dependence of uε(ω)
on Dε(ω), we may exploit that the dependence is Fréchet-differentiable, see, e.g., [25]. More
precisely, given the reference domain D0 and the vector field V ∈ L2

P(Ω;C3,1(∂D0;Rn)) with
‖V(ω, ·)‖C3,1(∂D0;Rn) . 1 uniformly for all ω ∈ Ω, one can expand uε into a shape Taylor expansion

uε(ω,x) = u0(x) + εδu[V(ω)](x) +
ε2

2
δ2u[V(ω),V(ω)](x)+R2(εV(ω))(x),

x ∈ K b D0 ∩Dε(ω),

(4)

which holds for all 0 < ε ≤ ε0 for some ε0 > 0 small enough. Here, the first order local shape
derivative δu[V(ω)] ∈ H2(D0) is given by

∆δu[V(ω)] = 0 in D0,

δu[V(ω)] = 〈V(ω),n〉∂(g − u0)

∂n
on ∂D0,

(5)

cf. [9, Chapter 10] and [10, Chapter 3.1]. Given a second vector field V′ ∈ L2
P(Ω;C3,1(D0;Rn))

for which it holds ‖V′(ω, ·)‖C3,1(D0;Rn) . 1 uniformly for all ω ∈ Ω, the second order local shape
derivative δ2u[V(ω),V′(ω)] ∈ H1(D0) is given, cf. [25, Theorem 1], by

∆δ2u[V(ω),V′(ω)] = 0 in D0,

δ2u[V(ω),V′(ω)] =
∂2(g − u0)

∂n2
〈V(ω),n〉〈V′(ω),n〉

− 〈V(ω),n〉∂δu[V′(ω)]

∂n

− 〈V′(ω),n〉∂δu[V(ω)]

∂n
on ∂D0.

(6)

Of course, according to (4), we only need the second order local shape derivative in case of
identical fields, i.e., V = V′ and it only remains to explain how to compute ∂2(g − u0)/∂n2 on
∂D0. On a C2-boundary and for ϕ ∈ H3(D), we know that, cf. [10, Proposition 2.68],

∆ϕ = ∆Γϕ+ 2H∂ϕ
∂n

+
∂2ϕ

∂n2
on ∂D0, (7)

where ∆Γ denotes the Laplace-Beltrami operator and H denotes the mean curvature of ∂D0 given
by 2H = −∇ · n. Since u0 = g on ∂D0, see (2), we have ∆Γ(g − u0) = 0, and obtain

∂2(g − u0)

∂n2
= ∆g − 2H∂(g − u0)

∂n
on ∂D0 (8)

by the use of (7).
By definition of the Fréchet derivative, the remainder R2 in (4) is uniformly in εV(ω) negligible

with respect to ‖εV(ω)‖2C3,1(∂D0), i.e., R2(εV(ω)) = o
(
‖εV(ω)‖2C3,1(∂D0)

)
. However, one can show

that the second order correction term satisfies a Lipschitz-condition, see [26]. Together with the
assumption that ‖V(ω, ·)‖C3,1(∂D0;Rn) . 1 uniformly for all ω ∈ Ω, this allows to show that

R2(εV(ω)) = O(ε3), (9)

where the constant is independent of ω.
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2.3. Statistical Moments on Random Domains

For the following considerations, we can assume without loss of generality that the boundary
perturbations are centered, i.e.,

E[V] = 0, and thus formally E[Dε] = D0,

which is not a restriction, since one can easily recenter the random field by considering V′ =
V − E[V]. This especially means that the mean of the first order local shape derivative (5)
vanishes, which implies, using (9) and taking the mean of (4),

E[uε](x) = u0(x) +
ε2

2
E[δ2u](x) +O(ε3), x ∈ K b D∩Ω

ε . (10)

By using (9), tensorizing (4), and integrating over Ω, we further obtain

Cor[uε](x,y) = u0(x)u0(y) + ε2 Cor[δu](x,y) (11)

+
ε2

2

(
u0(x)E[δ2u](y) + E[δ2u](x)u0(y)

)
+O(ε3), x,y ∈ K b D∩Ω

ε .

Finally, using (9), subtracting (10) from both sides in (4), and tensorizing and integrating over Ω
yields

Cov[uε](x,y) = ε2 Cor[δu](x,y) +O(ε3), x,y ∈ K b D∩Ω
ε . (12)

In order to compute the quantities E[uε], Cor[uε], and Cov[uε], appearing in (10), (11), and
(12), we have to solve for E[δ2u] and Cor[δu]. To this end, combing (6) and (8), taking the mean,
and interchanging integration and differentiation yields, see also [7],

∆E
[
δ2u[V,V]

]
= 0 in D0,

E
[
δ2u[V,V]

]
=

(
∆g − 2H∂(g − u0)

∂n

)
Cor[〈V,n〉]

∣∣∣
x=y
− 2E

[
〈V,n〉∂δu[V]

∂n

]
on ∂D0.

(13)

Next, tensorizing (5), integrating over Ω, and interchanging integration and differentiation yields

(∆⊗∆) Cor[δu] = 0 in D0 ×D0,

(∆⊗ Id) Cor[δu] = 0 on D0 × ∂D0,

(Id⊗∆) Cor[δu] = 0 on ∂D0 ×D0,

Cor[δu] = Cor[〈V,n〉]
(
∂(g − u0)

∂n
⊗ ∂(g − u0)

∂n

)
on ∂D0 × ∂D0.

(14)

The asymptotic expansions for E[uε], Cor[uε], and Cov[uε] can, under certain circumstances,
be improved to fourth order accuracy with help of the following lemma, which is inspired by [6,
Lemma 2.3] and [27, Chapter XI].

Lemma 2.1. Assume that the boundary perturbations in normal direction are given by an expan-
sion

〈V(ω,x),n〉 =

M∑
i=1

κi(x)Xi(ω),

where Xi, i = 1, . . . ,M , are independent and identically distributed random variables. Then, it
holds

δu[V(ω)] =

M∑
i=1

δu[κi · n]Xi(ω),

δ2u[V(ω),V(ω)] =

M∑
i,j=1

δ2u[κi · n, κj · n]Xi(ω)Xj(ω),
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and

δ3u[V(ω),V(ω),V(ω)] =

M∑
i,j,k=1

δ3u[κi · n, κj · n, κk · n]Xi(ω)Xj(ω)Xk(ω),

provided that the third order local shape derivative δ3u, as usual given as the local shape derivative
of the second order local shape derivative, exists.

Proof. The first two expressions were already provided in [6, Lemma 2.3], whereas the third one
is analogously derived by exploiting the trilinearity of δ3u.

Obviously, due to the independence of the random variables (Xi)
M
i=1, it holds

E[δ3u] =

M∑
i=1

δ3u[κi · n, κi · n, κi · n]E[X3
i ] = 0,

if the probability distribution of the Xi is symmetric around zero. The expansion of the mean
E[uε] (10) is thus fourth order accurate if we assume that the third order local shape derivative is
Lipschitz-continuous. Similarly, it holds under the same assumptions

Cor[δ2u, δu] =

M∑
i=1

δ2u[κi · n, κi · n]δu0[κi · n]E[X3
i ] = 0.

Hence, the expansion for Cor[uε] (11) becomes fourth order accurate, and, likewise, the expansion
for Cov[uε] (12) also becomes fourth order accurate.

3. Boundary Integral Equations

We shall use boundary integral equations to compute the asymptotic expansions (10), (11), and
(12) for the statistics of the random solution. To this end, observe that the boundary conditions
for the PDEs of E[δ2u] and Cor[δu], (13) and (14), depend on the Neumann data t(u0) = ∂u0/∂n
of the solution u0 of the unperturbed problem (2). Having the Dirichlet data g of u0 at hand, the
corresponding Neumann data are given by the Dirichlet-to-Neumann map,

S : H1/2(∂D0)→ H−1/2(∂D0), S := V−1
(1

2
+K

)
, g 7→ t(u0), (15)

where the single layer operator is given by

V : H−1/2(∂D0)→ H1/2(∂D0), (Vρ)(x) =

∫
∂D0

ρ(y)

4π‖x− y‖
dσy, x ∈ ∂D0, (16)

and the double layer operator is given by

K : H1/2(∂D0)→ H1/2(∂D0), (Kρ)(x) =

∫
∂D0

〈x− y,ny〉ρ(y)

4π‖x− y‖3
dσy, x ∈ ∂D0, (17)

cf. e.g. [28].
To obtain the second term of the Dirichlet data of E[δ2u] in (13), we employ that it can be

equivalently rewritten as the diagonal of a correlation, call it A,

E
[
〈V,n〉∂δu[V]

∂n

]
= E

[
〈V(·,x),nx〉

∂δu[V(·,y)])

∂ny

]∣∣∣∣
x=y

=: A(x,y)
∣∣
x=y

. (18)
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The Dirichlet-to-Neumann map and the definition of the first order local shape derivative (5) then
yield

A(x,y) := E
[
〈V(·,x),nx〉

∂δu[V(·,y)])

∂ny

]
= E

[
〈V(·,x),nx〉S

(
〈V(·,y),ny〉

(
∂g

∂ny
− t(u0)

))]
=
(

Id⊗S
)(

E
[
〈V(·,x),nx〉〈V(·,y),ny〉

](
1⊗

(
∂g

∂ny
− t(u0)

)))
=
(

Id⊗S
)((

1⊗
(
∂g

∂ny
− t(u0)

))
Cor[〈V,n〉]

)
. (19)

Given the Dirichlet data

g(E[δ2u]) =

(
∆g − 2H∂(g − u0)

∂n

)
Cor[〈V,n〉]

∣∣
x=y
− 2A

∣∣
x=y

(20)

and the Neumann data
t(E[δ2u]) = Sg(E[δ2u])

of E[δ2u], the solution E[δ2u] of (13) can be represented inside the domain by using the represen-
tation formula

E[δ2u](x) = Ṽ
(
t(E[δ2u])

)
(x)− K̃

(
g(E[δ2u])

)
(x), x b D∩Ω. (21)

Here, the single layer potential is given by

Ṽ : H−1/2(∂D0)→ H1(D0), (Ṽρ)(x) =

∫
∂D0

ρ(y)

4π‖x− y‖
dσy, x ∈ D∩Ω,

and the double layer potential is given by

K̃ : H1/2(∂D0)→ H1(D0), (K̃ρ)(x) =

∫
∂D0

〈x− y,ny〉ρ(y)

4π‖x− y‖3
dσy, x ∈ D∩Ω,

cf. e.g. [28].
To obtain a boundary reduction of (14), we observe that the solution to (5) can be obtained,

see also [28], by solving

Vρ(δu[V(ω)]) = 〈V(ω),n〉∂(g − u0)

∂n

and computing
δu[V(ω)](x) = Ṽρ(δu[V(ω)]), x ∈ D∩Ω.

Tensorizing both equations, integrating over Ω, and applying Fubini’s theorem yields that, for
given Dirichlet data of Cor[δu],

g(Cor[δu]) =

(
∂(g − u0)

∂n
⊗ ∂(g − u0)

∂n

)
Cor[〈V,n〉],

one may solve (
V ⊗ V

)
ρ(Cor[δu]) = g(Cor[δu]) (22)

to compute the second order correction term Cor[δu] by the representation formula

Cor[δu](x,y) =
(
Ṽ ⊗ Ṽ

)(
ρ(Cor[δu])

)
(x,y), x,y ∈ D∩Ω, (23)

see also [19] for explicit computations in a similar setting.
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4. Galerkin Discretization

For the following discussion of the Galerkin discretizations, let Sdh be the N -dimensional space
of piecewise polynomial ansatz functions of order d on ∂D0, generated from a quasi-uniform mesh
on ∂D0. To improve readability, we choose a basis (ψi)

N
i=1 of Sdh and introduce the system matrices

V =
[
(Vψj , ψi)L2(∂D0)

]N
i,j=1

, M =
[
(ψj , ψi)L2(∂D0)

]N
i,j=1

,

K =
[
(Kψj , ψi)L2(∂D0)

]N
i,j=1

, CCor[〈V,n〉] =
[(

Cor[〈V,n〉], ψi ⊗ ψj
)
L2(∂D0×∂D0)

]N
i,j=1

.

Moreover, the tensor product between two matrices in the following equations has, as usual, to
be understood as the Kronecker product. We will also use the fact that, for matrices A ∈ Rk×n,
B ∈ R`×m and X ∈ Rm×n, there holds the relation

(A⊗B) vec(X) = vec(BXAᵀ). (24)

Here, for A = [a1, . . . ,an] ∈ Rm×n, the operation vec(A) is defined as

vec([a1, . . . ,an]) :=

a1

...
an

 ∈ Rmn.

4.1. Dirichlet-to-Neumann Map

Since the Neumann data t(u0) of the solution u0 of the unperturbed boundary value problem
(2) are needed for the computation of both of the correction terms E[δ2u] and Cor[δu], we will first
consider the discretization of the Dirichlet-to-Neumann map (15). Although the discretization is
pretty standard in boundary element methods, cf., e.g., [28], we believe its repetition is useful to
establish notation and will help the reader to understand the following more involved steps.

The variational formulation of the Dirichlet-to-Neumann map (15) is given as follows:

Find t(u0) ∈ H−1/2(∂D0) such that(
Vt(u0), v

)
L2(∂D0)

=

((
1

2
+K

)
g, v

)
L2(∂D0)

for all v ∈ H−1/2(∂D0).

Replacing the energy space H−1/2(∂D0) by the finite dimensional space Sdh ⊂ H−1/2(∂D0) and
replacing g with its L2-projection Πhg onto Sdh, we end up with the system of linear equations

Vt(u0) =

(
1

2
M + K

)
M−1g. (25)

Here, the corresponding vectors are given by

g =
[(
g, ψi

)
L2(∂D0)

]N
i=1

, t(u0) =
[
t
(u0)
i

]N
i=1

,

where the coefficients t
(u0)
i are the coefficients of the basis expansion

t
(u0)
h =

N∑
i=1

t
(u0)
i ψi.
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4.2. Computation of Cor[δu]

For determining Cor[δu] via the representation formula (23), we have to compute ρ(Cor[δu]),
which is given as the solution of the tensor equation (22). We therefore introduce the Sobolev
spaces Hs,t

mix(∂D0 × ∂D0), s, t ∈ R, of dominant mixed derivatives on ∂D0 × ∂D0 defined by

Hs,t
mix(∂D0 × ∂D0) := Hs(∂D0)⊗Ht(∂D0).

The variational formulation of (22) is then given as follows:

Find ρ(Cor[δu]) ∈ H−1/2,−1/2
mix (∂D0 × ∂D0) such that((

V ⊗ V
)
ρ(Cor[δu]), v

)
L2(∂D0×∂D0)

=
(
g(Cor[δu]), v

)
L2(∂D0×∂D0)

for all v ∈ H−1/2,−1/2
mix (∂D0 × ∂D0).

Similar to the discretization of the Dirichlet-to-Neumann map (15), we introduce L2-projections
to replace the right-hand side g(Cor[δu]) by the approximation

g
(Cor[δu])
h :=

((
∂g

∂n
− t(u0)

h

)
⊗
(
∂g

∂n
− t(u0)

h

))((
Πh ⊗Πh

)
Cor[〈V,n〉]

)
.

Then, replacing the energy space H
−1/2,−1/2
mix (∂D0 × ∂D0) by the finite dimensional ansatz space

Sdh ⊗ Sdh ⊂ H
−1/2,−1/2
mix (∂D0 × ∂D0), we end up with the system of linear equations

(V ⊗V) vec
(
Cρ,Cor[δu]

)
= (N⊗N)(M⊗M)−1 vec

(
CCor[〈V,n〉]

)
. (26)

The corresponding matrices N and Cρ,Cor[δu] are given by

N =

[((
∂g

∂n
− t(u0)

h

)
ψj , ψi

)
L2(∂D0)

]n
i,j=1

Cρ,Cor[δu] =
[
c
ρ,Cor[δu]
i,j

]n
i,j=1

,

where the coefficients c
ρ,Cor[δu]
i,j are the coefficients of the basis expansion

ρ
(Cor[δu])
h =

n∑
i,j=1

c
ρ,Cor[δu]
i,j

(
ψi ⊗ ψj

)
.

Due to (24), we can write (26) equivalently as

VCρ,Cor[δu]V
ᵀ = NM−1CCor[〈V,n〉]M

−ᵀNᵀ. (27)

4.3. Computation of E[δ2u]

For the computation of E[δ2u], we shall first consider the numerical treatment of the compu-
tation of the correlation A as given by (19). Its variational formulation is:

Find A ∈ H0,−1/2
mix (∂D0 × ∂D0) such that((
Id⊗V

)
A, v

)
L2(∂D0×∂D0)

=((
Id⊗

(
1

2
+K

))((
1⊗

(
∂g

∂n
− t(u0)

))
Cor[〈V,n〉], v

)
L2(∂D0×∂D0)

for all v ∈ H0,−1/2
mix (∂D0 × ∂D0).

To deal with the products in the right-hand side, we can use the same strategy as for the Dirichlet-
to-Neumann map (15) and as for (26), i.e., by introducing L2-projections. Then, replacing the
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energy space H
0,−1/2
mix (∂D0×∂D0) by the finite dimensional ansatz space Sdh⊗Sdh ⊂ H

0,−1/2
mix (∂D0×

∂D0), we end up with the system of linear equations

(M⊗V) vec(A) =

(
M⊗

(
1

2
M + K

))
(M⊗M)−1(M⊗N)(M⊗M)−1 vec

(
CCor[〈V,n〉]

)
,

where A contains the coefficients of the basis expansion of the Galerkin solution Ah ∈ Sdh ⊗ Sdh.
Rearranging this system according to (24) yields the matrix equation

VAMᵀ =

(
1

2
M + K

)
M−1NM−1CCor[〈V,n〉]. (28)

Having approximated the correlation A, the Dirichlet data of E[δ2u] can now be computed. Fol-
lowing the considerations of the discretization of the Dirichlet-to-Neumann map from Section 4.1
we employ again L2-projections to deal with the products of the right-hand side. The Neumann
data t(E[δ2u]) of E[δ2u] are then given by

Vt(E[δ2u]) =

(
1

2
M + K

)
M−1

((
G− LM−1N

)
M−1d− 2b

)
(29)

with corresponding vectors and matrices

d =
[(

Cor[〈V,n〉]
∣∣
x=y

, ψi
)
L2(∂D0)

]n
i=1

, b =
[(
Ah|x=y, ψi

)
L2(∂D0)

]n
i=1

,

L =
[(

2Hψj , ψi
)
L2(∂D0)

]n
i,j=1

, G =
[(

∆gψj , ψi
)
L2(∂D0)

]n
i,j=1

.

The correction term E[δ2u] itself is then given by the representation formula (21).
The error estimation of the approximate solutions is the topic of the next section.

5. Error Estimates

For the following error estimates, it is important to carefully distinguish between the regular-
ity requirements of the involved shape calculus and the regularity assumptions for the Galerkin
discretization. More specifically, let us remark that a regularity assumption on the boundary ∂D0

of the reference domain does not necessarily imply the same regularity to the perturbations and
the perturbed domains D(ω). Throughout our proofs, we require that the domain D0 is of class
Cd,1 and that the prescribed Dirichlet data satisfy g ∈ Hd+1(∂D0).

5.1. Preliminaries

We start by restating a convergence result for the Dirichlet-to-Neumann map.

Lemma 5.1. For the Neumann data t(u0) of the solution u0 of the unperturbed problem (2) and

their approximation t
(u0)
h , it holds for −d ≤ s ≤ 0 that∥∥∥t(u0) − t(u0)

h

∥∥∥
Hs(∂D0)

. hd−s.

Proof. The proof for the case −d ≤ s ≤ −1/2 is standard, we refer to [28] and remark that
K : Hs(∂D0)→ Hs+1(∂D0) is a continuous operator on Cd,1-boundaries. To extend the result to
the case −1/2 < s ≤ 0, consider the inequality∥∥∥t(u0) − t(u0)

h

∥∥∥
Hs(∂D0)

≤
∥∥∥t(u0) −Πht

(u0)
∥∥∥
Hs(∂D0)

+
∥∥∥Πht

(u0) − t(u0)
h

∥∥∥
Hs(∂D0)

.
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The first term on the right hand side can again be estimated by the standard approximation
property of the L2-projection, whereas, for the second term on the right hand side, we employ the
inverse estimate to obtain∥∥∥Πht

(u0) − t(u0)
h

∥∥∥
Hs(∂D0)

≤ hs−1/2
∥∥∥Πht

(u0) − t(u0)
h

∥∥∥
H−1/2(∂D0)

≤ hs−1/2

(∥∥∥Πht
(u0) − t(u0)

∥∥∥
H−1/2(∂D0)

+
∥∥∥t(u0) − t(u0)

h

∥∥∥
H−1/2(∂D0)

)
.

This yields the assertion together with the first part of the lemma and the standard approximation
estimates of the L2-projection.

The following technical lemma is needed for the error estimation and is inspired in parts by
the proof of [7, Theorem 7.3].

Lemma 5.2. Assume that a ∈ L2(∂D0), b ∈ Hd(∂D0) and that the numerical approximation ah
of a satisfies ‖a− ah‖L2(∂D0) . hd, and ‖a− ah‖Hs(∂D0) . hd−s for −d ≤ s < −(n− 1)/2. Then,
we have ∥∥ab− ahΠhb

∥∥
Hs(∂D0)

. hd−s.

Proof. We start by splitting the error into two parts∥∥ab− ahΠhb
∥∥
Hs(∂D0)

≤
∥∥(a− ah)b

∥∥
Hs(∂D0)

+
∥∥ah( Id−Πh

)
b‖Hs(∂D0).

For u, v ∈ H−s(∂D0), we have the estimate ‖uv‖H−s(∂D0) . ‖u‖H−s(∂D0)‖v‖H−s(∂D0), cf. [29, 30],
Thus, we conclude by duality that it holds for u ∈ Hs(∂D0) and v ∈ H−s(∂D0) that

‖uv‖Hs(∂D0) = sup
‖w‖H−s(∂D0)=1

(uv,w)L2(∂D0)

= sup
‖w‖H−s(∂D0)=1

(u, vw)L2(∂D0)

≤ ‖u‖Hs(∂D0) sup
‖w‖H−s(∂D0)=1

‖vw‖H−s(∂D0)

. ‖u‖Hs(∂D0)‖v‖H−s(∂D0).

Thus, the first part of the error can easily be estimated by∥∥(a− ah)b
∥∥
Hs(∂D0)

.
∥∥a− ah∥∥Hs(∂D0)

‖b‖H−s(∂D0),

whereas the second part of the error is treated in accordance with∥∥ah( Id−Πh

)
b‖Hs(∂D0)

= sup
‖w‖H−s(∂D0)=1

(
ah
(

Id−Πh

)
b, w

)
L2(∂D0)

= sup
‖w‖H−s(∂D0)=1

((
(ah − a)

(
Id−Πh

)
b, w

)
L2(∂D0)

+
(
a
(

Id−Πh

)
b, w

)
L2(∂D0)

)
.

Since H−s(∂D0) is continuously embedded into L∞(∂D0) on Cd,1-smooth boundaries for −s >
(n− 1)/2, one can estimate(

(ah − a)
(

Id−Πh

)
b, w

)
L2(∂D0)

≤
∥∥(ah − a)

(
Id−Πh

)
b
∥∥
L1(∂D0)

‖w‖L∞(∂D0)

. ‖a− ah‖L2(∂D0)

∥∥( Id−Πh

)
b
∥∥
L2(∂D0)

‖w‖H−s(∂D0),
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and, by employing Galerkin orthogonality,(
a
(

Id−Πh

)
b, w

)
L2(∂D0)

=
((

Id−Πh

)
b, aw

)
L2(∂D0)

=
((

Id−Πh

)
b,
(

Id−Πh

)
(aw)

)
L2(∂D0)

≤
∥∥( Id−Πh

)
b
∥∥
L2(∂D0)

∥∥( Id−Πh

)
(aw)

∥∥
L2(∂D0)

.

The assertion follows by applying the standard approximation estimates of the L2-projection,
implying that the first part of product is bounded by . hd and the second part of product is
bounded by . h−s.

By a tensor product argument, we arrive at a similar statement on the tensor product domain.

Corollary 5.3. Assume that a ∈ L2(∂D0×∂D0) and b ∈ Hd,d
mix(∂D0×∂D0) and that the numerical

approximation ah of a satisfies ‖a− ah‖L2(∂D0×∂D0) . hd, and ‖a− ah‖Hs,s
mix(∂D0×∂D0) . hd−s for

−d ≤ s < −(n− 1)/2. Then, it holds that∥∥ab− ah(Πh ⊗Πh

)
b
∥∥
Hs,s

mix(∂D0×∂D0)
. hd−s.

Proof. The proof is very similar to the proof of the preceding lemma. We refer to the proof of [7,
Theorem 7.3], where the details are given for the case s = −d, using the estimate ‖uv‖Hd(∂D0) ≤
‖u‖Cd−1,1(∂D0)‖v‖Hd(∂D0) instead of ‖uv‖Hd(∂D0) . ‖u‖Hd(∂D0)‖v‖Hd(∂D0).

Remark 5.4. The focus of the present article is on the cases n = 2, 3 such that (n − 1)/2 < d
implies d ≥ 1 for n = 2 and d ≥ 2 for n = 3, respectively. To simplify the presentation of the
following results, we will therefore restrict ourselves to the case d ≥ 2, i.e., we are considering
discretizations with at least piecewise linear continuous ansatz functions.

5.2. Approximation Error of Cor[δu]

In order to bound the approximation error of Cor[δu] given by the representation formula (23),
we first have to bound the approximation error of its boundary values. This is in parts due to the
following lemma.

Lemma 5.5. Let Cor[〈V,n〉] ∈ Hd,d
mix(∂D0 × ∂D0). Then, it holds∥∥∥g(Cor[δu]) − g(Cor[δu])

h

∥∥∥
H−d,−d

mix (∂D0×∂D0)
. h2d.

Proof. The assertion is an immediate consequence of Corollary 5.3 with

a =

(
∂g

∂n
− t(u0)

)
⊗
(
∂g

∂n
− t(u0)

)
, ah =

(
∂g

∂n
− t(u0)

h

)
⊗
(
∂g

∂n
− t(u0)

h

)
,

and b = Cor[〈V,n〉]. The required convergence in the H−d(∂D0)-norm and in the L2(∂D0)-norm
is proven in Lemma 5.1 for the non-tensor product case. For the tensor product case, consider for
−d ≤ s ≤ 0 that

‖a− ah‖Hs,s
mix(∂D0×∂D0)

=

∥∥∥∥( ∂g∂n
− t(u0)

)
⊗
(
t
(u0)
h − t(u0)

)
+

(
t
(u0)
h − t(u0)

)
⊗
(
∂g

∂n
− t(u0)

h

)∥∥∥∥
Hs,s

mix(∂D0×∂D0)

≤
∥∥∥∥ ∂g∂n

− t(u0)

∥∥∥∥
Hs(∂D0)

∥∥∥t(u0) − t(u0)
h

∥∥∥
Hs(∂D0)

+
∥∥∥t(u0) − t(u0)

h

∥∥∥
Hs(∂D0)

∥∥∥∥ ∂g∂n
− t(u0)

h

∥∥∥∥
Hs(∂D0)

. hd−s.

This completes the proof.
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We are finally in the position to estimate the error of Cor[δu]h.

Lemma 5.6. Let Cor[δu] be given as in (23) and let Cor[〈V,n〉] ∈ Hd,d
mix(∂D0 × ∂D0). It then

holds ∣∣Cor[δu](x,y)− Cor[δu]h(x,y)
∣∣ . h2d for all x,y ∈ K b D∩Ω.

Proof. By employing the representation formula (23), we obtain∣∣Cor[δu](x,y)− Cor[δu]h(x,y)
∣∣

=

∣∣∣∣(Ṽ ⊗ Ṽ)(ρ(Cor[δu]) − ρ(Cor[δu])
h

)
(x,y)

∣∣∣∣
.

∥∥∥∥ 1

16π2‖x− ·‖ ⊗ ‖y − ·‖

∥∥∥∥
Hd+1,d+1

mix (∂D0×∂D0)

∥∥∥ρ(Cor[δu]) − ρ(Cor[δu])
h

∥∥∥
H−d−1,−d−1

mix (∂D0×∂D0)
.

Using Strang’s first lemma and Lemma 5.5, we further derive∥∥∥ρ(Cor[δu]) − ρ(Cor[δu])
h

∥∥∥
H−d−1,−d−1

mix (∂D0×∂D0)
. h2d,

which, in view of K b ∂D0 and thus dist(K, ∂D0) > 0, implies the assertion.

Remark 5.7. The assumptions of the presented result are slightly weaker than the related result
from [7]. Whereas [7] requires Cor[〈V,n〉] to be in Cd−1,1

mix (∂D0 × ∂D0), we only require it to

be in Hd,d
mix(∂D0 × ∂D0). This means that we do not need any extra regularity of the boundary

perturbation in addition to the regularity required for the first order shape derivative and the
Galerkin approximation of Cor[〈V,n〉].

5.3. Approximation Error of E[δ2u]

In order to estimate the discretization error of E[δ2u] given by (13), we need to know the
discretization error of its Dirichlet data. Especially, we need to estimate the error of the correlation
A as given by (19).

Lemma 5.8. Let Cor[〈V,n〉] ∈ Hd,d
mix(∂D0 × ∂D0). It then holds for

Ah =
(

Id⊗V−1
)(

Id⊗
(

1

2
+KΠh

))((
1⊗

(
∂g

∂n
− t(u0)

h

))(
Πh ⊗Πh

)
Cor[〈V,n〉]

)
that ∥∥A−Ah∥∥H−d+1,−d+1

mix (∂D0×∂D0)
. h2(d−1).

Proof. For

a = 1⊗
(
∂g

∂n
− t(u0)

)
, ah = 1⊗

(
∂g

∂n
− t(u0)

h

)
, b = Cor[〈V,n〉],

it holds∥∥A−Ah∥∥H−d+1,−d+1
mix (∂D0×∂D0)

≤
∥∥ Id⊗V−1

∥∥
H−d+2,−d+2

mix (∂D0×∂D0)→H−d+1,−d+1
mix (∂D0×∂D0)∥∥∥∥( Id⊗

(
1

2
+K

))
(ab)−

(
Id⊗

(
1

2
+KΠh

))(
ah(Πh ⊗Πh)b

)∥∥∥∥
H−d+2,−d+2

mix (∂D0×∂D0)

. ‖ Id⊗K‖H−d+2,−d+2
mix (∂D0×∂D0)→H−d+2,−d+2

mix (∂D0×∂D0)∥∥ab− ( Id⊗Πh

)
(ab)

∥∥
H−d+2,−d+2

mix (∂D0×∂D0)

+

∥∥∥∥ Id⊗
(

1

2
+KΠh

)∥∥∥∥
H−d+2,−d+2

mix (∂D0×∂D0)→H−d+2,−d+2
mix (∂D0×∂D0)∥∥∥ab− ah(Πh ⊗Πh

)
b
∥∥∥
H−d+2,−d+2

mix (∂D0×∂D0)
.
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The assertion now follows from the approximation property of the L2-projection, Lemma 5.1, and
Corollary 5.3.

The previous lemma allows us to bound the error of the Dirichlet data of the boundary value
problem (13) for E[δ2u].

Lemma 5.9. Let Cor[〈V,n〉]
∣∣
x=y

∈ Hd(∂D0) and Cor[〈V,n〉] ∈ Hd,d
mix(∂D0 × ∂D0). For the

Dirichlet data of E[δ2u] and their numerical approximation

g
(E[δ2u])
h =

(
∆g − 2HΠh

(
∂g

∂n
− t(u0)

h

))
Πh

(
Cor[〈V,n〉]

∣∣
x=y

)
− 2Ah

∣∣
x=y

,

it holds ∥∥∥g(E[δ2u]) − g(E[δ2u])
h

∥∥∥
H−d(∂D0)

. h2(d−1) (30)

and ∥∥∥g(E[δ2u]) −Πhg
(E[δ2u])
h

∥∥∥
H−d(∂D0)

. h2(d−1). (31)

Proof. By exploiting Πht
(u0)
h = t

(u0)
h and setting

a =
∂g

∂n
− t(u0), ah = Πh

∂g

∂n
− t(u0)

h , b = Cor[〈V,n〉]
∣∣
x=y

,

we conclude∥∥∥g(E[δ2u]) − g(E[δ2u])
h

∥∥∥
H−d(∂D0)

≤
∥∥(∆g)

(
b−Πhb

)∥∥
H−d(∂D0)

+
∥∥∥2H

(
ab− ahΠhb

)∥∥∥
H−d(∂D0)

+ 2
∥∥∥A∣∣x=y

−Ah
∣∣
x=y

∥∥∥
H−d(∂D0)

.

Herein, the first term on the right hand side can be bounded by . h2d by applying the standard
approximation estimates of the L2-projection. The second term on the right hand can be estimated
by using the inequality ‖uv‖H−d+2(∂D0) . ‖u‖Hd−2(∂D0)‖v‖H−d+2(∂D0) derived in the proof of
Lemma 5.2: ∥∥2H

(
ab− ahΠhb

)∥∥
H−d(∂D0)

≤
∥∥2H

(
ab− ahΠhb

)∥∥
H−d+2(∂D0)

. ‖2H‖Hd−2(∂D0)

∥∥ab− ahΠhb
∥∥
H−d+2(∂D0)

.

To estimate the third term on the right hand side, we follow the arguments in [31, Chapter 3.3]
and remark that the diagonal operator Hs,s

mix(∂D0 × ∂D0) → W s,1(∂D0) is continuous for s ≥ 1.
Exploiting that the embedding W s,1(∂D0) ↪→ Hs−1(∂D0) is also continuous, we conclude by a
density argument that∥∥∥A∣∣x=y

−Ah
∣∣
x=y

∥∥∥
H−d(∂D0)

.
∥∥A−Ah∥∥H−d+1,−d+1

mix (∂D0×∂D0)
.

In view of Lemmata 5.2 and 5.8, this implies the estimate (30).
Estimate (31) follows finally from (30) and Strang’s first lemma by considering the Galerkin

projection as the solution of Idψ = g with a perturbed right-hand side.

We are now in the position to bound the error of the Neumann data t(E[δ2u]) of E
[
δ2u
]
.

Lemma 5.10. Let Cor[〈V,n〉]
∣∣
x=y
∈ Hd(∂D0) and Cor[〈V,n〉] ∈ Hd,d

mix(∂D0 × ∂D0). Then, the

Neumann data t(E[δ2u]) are approximated with the rate∥∥∥t(E[δ2u]) − t(E[δ2u])
h

∥∥∥
H−d−1(∂D0)

. h2(d−1).
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Proof. Since V : Hd(∂D0) → Hd+1(∂D0) is self-adjoint, continuous, and boundedly invertible in
case of a Cd,1-boundary, it holds∥∥∥t(u0) − t(u0)

h

∥∥∥
H−d−1(∂D0)

= sup
‖v‖

Hd+1(∂D0)
=1

(
t(u0) − t(u0)

h , v
)
L2(∂D0)

= sup
‖w‖

Hd(∂D0)
=1

(
V
(
t(u0) − t(u0)

h

)
, w
)
L2(∂D0)

‖Vw‖Hd+1(∂D0)

≤ sup
‖w‖

Hd(∂D0)
=1

(
V
(
t(u0) − t(u0)

h

)
, w −Πhw

)
L2(∂D0)

‖Vw‖Hd+1(∂D0)

+ sup
‖w‖

Hd(∂D0)
=1

(
V
(
t(u0) − t(u0)

h

)
,Πhw

)
L2(∂D0)

‖Vw‖Hd+1(∂D0)

.

Using the continuity and bounded invertibility of V, we further estimate

sup
‖w‖

Hd(∂D0)
=1

(
V
(
t(u0) − t(u0)

h

)
, w −Πhw

)
L2(∂D0)

‖Vw‖Hd+1(∂D0)

≤
∥∥∥V(t(u0) − t(u0)

h

)∥∥∥
H1/2(∂D0)

sup
‖w‖

Hd(∂D0)
=1

‖w −Πhw‖H−1/2(∂D0)

‖Vw‖Hd+1(∂D0)

.
∥∥∥t(u0) − t(u0)

h

∥∥∥
H−1/2(∂D0)

sup
‖w‖

Hd(∂D0)
=1

‖w −Πhw‖H−1/2(∂D0)

‖w‖Hd(∂D0)

.

Using standard error estimates for the Galerkin method, the error of the Neumann data in the
H−1/2(∂D0)-norm is bounded by . hd+1/2, whereas the second factor can be estimated by the
standard error estimates for the L2-projection.

To estimate the second part of the sum, consider(
V
(
t(u0) − t(u0)

h

)
, vh

)
L2(∂D0)

=

(
1

2
(g − gh) +K

(
g −Πhgh

)
, vh

)
L2(∂D0)

for all vh ∈ Sdh,

and conclude(
V
(
t(u0) − t(u0)

h

)
,Πhw

)
L2(∂D0)

=

(
1

2
(g − gh) +K

(
g −Πhgh

)
,Πhw

)
L2(∂D0)

=

(
1

2
(g − gh) +K

(
g −Πhgh

)
, w

)
L2(∂D0)

+
(
K
(
g −Πhgh

)
,Πhw − w

)
L2(∂D0)

+
1

2

(
g − gh,Πhw − w

)
L2(∂D0)

.
(
‖g − gh‖H−d(∂D0) +

∥∥K(g −Πhgh)
∥∥
H−d(∂D0)

)
‖w‖Hd(∂D0)

+
∥∥K(g −Πhgh)

∥∥
H1(∂D0)

‖w −Πhw‖H−1(∂D0)

+
∥∥g − gh∥∥L2(∂D0)

‖w −Πhw‖L2(∂D0).

The assertion now follows by exploiting that K : Hs(∂D0) → Hs(∂D0) is a continuous operator
for s = −d and s = 1 on Cd,1-boundaries, the previous lemma, and inverse estimate in complete
analogy to the proof of Lemma 5.1.
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As an immediate consequence of the error estimates, we finally obtain an error estimate for the
potential of the second order local shape derivative E[δ2u]. The following approximation result
can be derived by standard arguments, see [28] for instance.

Lemma 5.11. Let Cor[〈V,n〉]
∣∣
x=y
∈ Hd(∂D0) and Cor[〈V,n〉] ∈ Hd,d

mix(∂D0 × ∂D0). Then, for

the mean of the second order local shape derivative E[δ2u] from (13), it holds that∣∣E[δ2u](x)− E[δ2u]h(x)
∣∣ . h2(d−1) for all x ∈ K b D∩Ω.

Remark 5.12. Although we can only prove a reduced convergence rate of h2(d−1), we will see in
the numerical experiments that we reach the same convergence rate as for the correlation, i.e.,
h2d.

6. Hierarchical Matrix Compression of Dense Matrices

Depending on the properties of the underlying correlation kernel, correlation matrices are
usually densely populated. Similarly, it is well known from the numerical treatment of bound-
ary integral equations that the Dirichlet-to-Neumann map leads to dense system matrices of the
single layer operator (16) and the double layer operator (17). Although both operators live on
the boundary ∂D0, and have thus the spatial dimension reduced by one compared to D0, the
memory requirements and assembly time still scale at least like O(N2), if ansatz spaces with
dimension N are used. To reduce the complexity to linear or almost linear (i.e. linear up to poly-
logarithmic terms) scaling in N , fast boundary element methods such as the fast multipole method
[32], the panel clustering method [33], the wavelet Galerkin scheme [34, 35], and the adaptive
cross approximation [36] exploit analytic properties of the kernel function to derive (data-)sparse
approximations to the dense system matrices. Except for the wavelet Galerkin scheme, all theses
methods can be cast into the framework of hierarchical matrices, cf. [37, 38], which we are going
to employ throughout the rest of the article.

6.1. Asymptotically Smooth Kernels

We discuss the compression of the boundary operator matrices of the Dirichlet-to-Neumann
map in a terms of the more general asymptotic smooth asymptotically smooth kernels.

Definition 6.1. The function k : Rn × Rn → R is called asymptotically smooth if for some
constants c1, c2 > 0 and q ∈ R there holds

∣∣∂αx ∂βy k(x,y)
∣∣ ≤ c1 (|α|+ |β|)!

c
|α|+|β|
2

‖x− y‖−n−2q−|α|−|β|
2 , x 6= y, (32)

independently of α and β. It is called asymptotically smooth in one variable, if the above condition
holds only for the derivatives in x or y.

We note especially that, besides the kernel functions of the single layer and the double layer
operator, the widely used correlation kernels of the Matérn class, which include, in particular, the
Gaussian kernel, cf. [39, 40] and the references therein, are asymptotically smooth or asymptoti-
cally smooth in one variable. We will therefore restrict ourselves to kernel functions of this type
for the rest of this article and will exploit that they exhibit a data-sparse representation by means
of hierarchial matrices (H-matrices in short).
H-matrices rely on local low-rank approximations of a given matrix X ∈ RN×N . For suitable

nonempty index sets ν, ν′ ⊂ {1, . . . , N}, a matrix block X|ν×ν′ can be approximated by a rank-k
matrix. This approximation can be represented in factorized form X|ν×ν′ ≈ YZᵀ with factors
Y ∈ Rν×k and Z ∈ Rν′×k. Hence, if k � min{#ν,#ν′}, the complexity for storing the block is
considerably reduced. The construction of the index sets is based on the cluster tree.
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6.2. Cluster Tree

For a tree T = (V,E) with vertices V and edges E, we define its set of leaves by

L(T ) := {σ ∈ V : σ has no sons}.

Furthermore, we say that T is a cluster tree for the set {1, . . . , N} if the following conditions hold.

• {1, . . . , N} is the root of T .

• All σ ∈ V \ L(T ) are the disjoint union of their sons.

The level of σ ∈ T is its distance to the root, i.e., the number of son relations that are required
for traveling from {1, . . . , N} to σ. We define the set of clusters on level j as

T (j) := {σ ∈ T : σ has level j}.

The construction of the cluster tree is based on the support of the clusters. The support Υσ of
a cluster σ is defined as the union of the supports of the basis functions corresponding to their
elements, that is

Υσ =
⋃
i∈σ

Υi, where Υi := suppϕi for all i ∈ {1, . . . , N}.

For computing complexity bounds, the cluster tree should match the following additional require-
ments, uniformly as N →∞:

• The cluster tree is a balanced tree in the sense that the maximal level satisfies J ∼ log2N .

• The diameter of the support Υσj
, σj ∈ T (j), is local with respect to the level j, i.e.,

diam Υσj
∼ 2−j/d. Moreover, the number #σj of indices contained in a cluster σj ∈ T (j)

scales approximately like 2J−j , i.e., #σj ∼ 2J−j .

Until further notice, a binary cluster tree T with the indicated terms should be given for
our further considerations. A common algorithm for its construction is based on a hierarchical
subdivision of the point set which is associated with the basis functions, cf., e.g., [37, 38]. We
begin by embedding the point set {x1, . . . ,xN} in a top-level bounding-box. This bounding-box
is subsequently subdivided into two cuboids of the same size where the corresponding clusters
are described by the points in each bounding-box. This process is iterated until a bounding-box
encloses less than a predetermined number of points. In accordance with [41], simplifications can
be made by mapping an canonical cluster tree on the reference domain to the surface when a
parametric surface representation is used for the boundary ∂D0. This situation appears especially
in isogeometric analysis, see [42] and the references therein.

6.3. Hierarchical Matrix Approximation

For the discretization of kernel functions which are asymptotically smooth in at least one of
the variables, we introduce a partition of its domain of definition which separates smooth and
non-smooth areas of the kernel function.

Definition 6.2. Two clusters σ and σ′ are called admissible if

max{diam(Υσ),diam(Υσ′)} ≤ η dist(Υσ,Υσ′) (33)

holds for some fixed η > 0.

We can obtain the set of admissible blocks by means of a recursive algorithm: Starting with
the root (σ0,0, σ0,0), the bounding-boxes of the current cluster pair are checked for admissibility.
If they are admissible, the cluster pair is added to the set F , which corresponds to the correlation
kernel’s farfield. Otherwise, the admissibility check will be performed on all bounding-boxes of
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the possible pairs of son clusters of the two original clusters. When we arrive at a pair of leaf
clusters with inadmissible bounding-boxes, the clusters are added to the set N , which corresponds
to the correlation kernel’s nearfield. The set B = F ∪ N obviously inherits a tree structure from
the recursive construction of F and N and is called the block cluster tree, see [37, 38].

With the definition of the block cluster tree at hand, we are finally in the position to introduce
H-matrices.

Definition 6.3. The set H(B, k) of H-matrices of maximal block rank k is defined according to

H(B, k) :=
{
X ∈ RN×N : rank

(
X|σ×σ′

)
≤ k for all

(
σ, σ′

)
∈ F

}
.

Note that all nearfield blocks X|σ×σ′ , (σ, σ′) ∈ N , are allowed to be full matrices.

In accordance with [37, 38], the storage cost of an H-matrix X ∈ H(B, k) is O(kN logN).
Here, for correlation kernels which are asymptotically smooth in at least one variable, the rank
k depends poly-logarithmically on the desired approximation accuracy ε, which in turn usually
depends on the degrees of freedom N . While the asymptotical smoothness of explicitely given
kernel functions can easily be verified, other kernel functions are the topic of the next subsection.

6.4. Covariance Calculus

The compressibility of an implicitly given kernel function, such as ρ(Cor[δu]) in (22), has been
studied in [21] for the case of smooth domains and manifolds. We restate the main theorem for
the setting of the present article which employs that the Hilbert-Schmidt operator(

C〈V,n〉ψ
)
(x) :=

∫
∂D0

Cor[〈V,n〉](x,y)ψ(y) dσy,

related with the correlation kernel Cor[〈V,n〉], is in general a pseudo-differential operator, see,
e.g., [43] and the references therein.

Theorem 6.4. Let ∂D0 be an analytic manifold and consider the correlation equation

(Ψ⊗Ψ) Cor[u] = Cor[〈V,n〉]. (34)

Assume that the correlation kernel Cor[〈V,n〉] gives rise to an operator C〈V,n〉 ∈ OPSθcl,s, i.e.,
to a classical pseudo-differential operator with symbol a〈V,n〉(x, ξ) of order θ and of Gevrey class
s ≥ 1 in the sense of [44, Definition 1.1]. Then, if Ψ ∈ OPSrcl,s is properly supported, the solution

correlation kernel Cor[u] is the Schwartz kernel of an operator Cu ∈ OPSθ−2r
cl,s .

Moreover, the kernel Cor[u] of the correlation operator Cu is smooth in local coordinates away
from the diagonal, and there holds the pointwise estimate

|∂αx ∂βy Cor[u](x,y)| ≤ cA |α+β|(|α|!)sβ!‖x− y‖−θ−n−|α|−|β|−2
2 (35)

in local coordinates away form the diagonal for all α,β ∈ Nn−1
0 , with some constants c and A

which depend only on M , κ, and a〈V,n〉.

Obviously, for s = 1, estimate (35) directly implies condition (32) for the asymptotic smooth-
ness of Cor[u], whereas s > 1 implies the asymptotic smoothness in one variable. We can thus
approximate Cor[u] by means of H-matrices. The assumption of an analytic manifold can be
relaxed to a manifold of Gevrey class s in the case s > 1. In particular, [21] provides also some
numerical evidence that the result could likely be extended to Lipschitz domains. An example of
correlation kernels for Cor〈V,n〉, which satisfy the conditions of this theorem for s ≥ 1, is again
the Matérn class of kernels. We refer to [21] for more details on how to verify the assumptions of
the theorem for other kernel functions.

Theorem 6.4 does not immediately show that the kernel functions A from (19) and ρ(Cor[δu])

from (22) are asymptotically smooth, but it can be extended to the following slightly modified
version.
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Corollary 6.5. Let ∂D0 be a manifold of Gevrey class s > 1 or an analytic manifold (i.e. s = 1),
and let Cor[〈V,n〉] fulfil the same requirements as in Theorem 6.4 for s ≥ 1. Let further g be
analytic in the case s = 1 and of Gevrey class s > 1 otherwise. Then, the solutions of the
equations (19) and (22) are asymptotically smooth functions for s = 1 and asymptotically smooth
in one variable for s > 1.

Proof. We first remark that the single layer operator belongs to OPS−1
cl,s and the double layer

operator belongs to OPS0
cl,s for s ≥ 1, cf. [43]. Let us further remark that the multiplication of

two functions g(x)f(x) can be written as an application of an integral operator

g(x)f(x) =

∫
∂D0

k(x,x− y)f(y) dσy = (Ψf)(x),

with distributional Schwartz kernel k(x,x − y) = g(x)δ(x − y), with δ denoting the delta distri-
bution. Since the Fourier transform of the delta distribution is a constant, the multiplication by
a function gives thus rise to a pseudo-differential operator in OPS0

cl,s. Rewriting finally (19) as

(
Id⊗V

)
A =

(
Id⊗

(
1

2
+K

))((
1⊗

(
∂g

∂n
− t(u0)

)
Cor[〈V,n〉]

)
,

the rest of the proof is in complete analogy to [21, Theorems 1,2, and 3].

Since sparse matrices corresponding to local operators can easily be represented by H-matrices,
it is thus reasonable to compress all matrices in (27) and (28) as H-matrices. However, it remains
to explain how to actually compute the representations for Cρ,Cor[δu] in (27) and A in (28).

6.5. H-Matrix Arithmetic and Iterative Solution

An important feature of H-matrices is that efficient algorithms for approximate matrix arith-
metic operations are available. For two H-matrices H1,H2 ∈ H(B, k), the approximate matrix-
matrix addition H1+H2 ∈ H(B, k) can be performed in O(k2N logN) operations, while the ap-
proximate matrix-matrix multiplication H1*H2 ∈ H(B, k) can be performed in O(k2N log2N)
operations. Both of these operations are essentially block matrix algorithms with successive recom-
pression schemes. Moreover, employing the recursive block structure, the approximate inversion
or the approximate computation of the LU -decomposition within H(B, k) can also be performed
in only O(k2N log2N) operations. We refer the reader to [23, 37, 38, 45] for further results and
implementation details.

In the context of correlation equations, this approximate H-matrix arithmetic has successfully
been used in [19, 20] to solve correlation equations as (34), where the operator Ψ has been a
differential operator in a domain or a boundary integral operator on a domain’s boundary. The
resulting matrix equation has been solved by using an iterative solver based on iterative refinement,
cf. [46, 47, 48], which we are also going to employ here and has originally been introduced in [48]
for the improvement of solutions to linear systems of equations based on the LU-factorization.

More general, having all matrices in the general matrix equation ΨXΦᵀ = R represented
by H-matrices, the solution is derived as follows. Let Ξ ≈ L̂ΞÛΞ, where L̂Ξ, ÛΞ ∈ H(B, k),
Ξ ∈ {Ψ,Φ}, be approximate LU-decompositions to Ψ and Φ, e.g., computed by the H-matrix

arithmetic. Starting with the initial guess X0 = Û−1
Ψ L̂−1

Ψ RL̂−ᵀΦ Û−ᵀΦ , we iterate

Θi = R−ΨXiΦ
ᵀ, Xi+1 = Xi + Û−1

Ψ L̂−1
Ψ ΘiL̂

−ᵀ
Φ Û−ᵀΦ , i = 0, 1, . . . . (36)

The idea of iterative refinement is that the residual Θi is computed with a higher precision than the
correction Û−1

Ψ L̂−1
Ψ ΘiL̂

−ᵀ
Φ Û−ᵀΦ . This yields an improvement of the iterate in each step. Note that

this algorithm also algebraically coincides with an undamped preconditioned Richardson iteration.
Before we conclude this section, we want to remark that the approximate LU-decomposition can

be replaced by an approximate Cholesky decomposition if the corresponding matrix is symmetric
and positive definite, such as the system matrix of the single layer operator.
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Figure 2: Different realizations of the jiggled unit sphere for the spherical harmonic Y 5
3 and ε = 0.3.

7. Numerical Examples

The following numerical experiments are divided into three parts. The first part is concerned
with the convergence of the Galerkin scheme for the correction terms Cor[δu]h and E[δ2u]h with
respect to the mesh size h. The second part is concerned with the asymptotics of the perturbation
approach in ε, whereas the third part deals with an example on non-smooth domains.

All of the computations in the following experiments were carried out on a computing server
with two Intel(R) Xeon(R) CPU E5-2643 v3 with a clock rate of 3.40GHz and a main memory
of 256GB. Each of the CPUs provides 12 physical cores, thus, with Hyper-Threading enabled, we
may access up to 24 cores in total. For the discretization and the assembly of the H-matrices, we
employ the black-box higher order fast H2-multipole method proposed in [41]. The computations
in the tensor product domain ∂D0 × ∂D0 are based on discontinuous (elementwise) polynomial
ansatz functions and the computations in the non-product domain on globally continuous B-splines
of the same order. For the arithmetic H-matrix operations, we apply the H-matrix arithmetic
tailored to parametric surfaces as described in [19], where the almost linear scaling with respect to
N has been verified. We employ a simple OpenMP parallelization to accelerate the computations
and refer to [49], where a more sophisticated parallelization has been discussed.

7.1. Convergence in h

To construct an example, where the solution is analytically known, we consider the unit ball
whose boundary is perturbed in normal direction in accordance with

ε〈V(ω,x),nx〉 = Y `m(x)X(ω),

where Y `m is a spherical harmonic and X(ω) is a uniformly distributed random variable on [−ε, ε].
The correlation of this boundary perturbation thus implies

Cor[〈V,n〉](x,y) =
1

3
Y `m(x)Y `m(y), x,y ∈ ∂D0.

Several possible shapes are depicted in Figure 2, while the used compactum K was visualized in
Figure 1.

As boundary values on the hold-all domain, we choose

g(x) = ‖x‖2, x ∈ D∪Ω
ε .

Since ‖x‖`Y `m(x/‖x‖) is harmonic in R3, it is then a short computation to show that it holds

Cor[δu](x,y) =
4

3
‖x‖`‖y‖`Y `m

(
x

‖x‖

)
Y `m

(
y

‖y‖

)
, x,y ∈ D0.

Since the spherical harmonic Y `m is an eigenfunction of the Dirichlet-to-Neumann map with eigen-
value ` on the sphere, cf. [50], and since the unit sphere has the constant mean curvature of
H = −1, cf. [51], one verifies that there holds

g(E[δ2u]) =
(2− 4`)

3

(
Y `m
)2

on ∂D0,
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Figure 3: Convergence rates for Cor[δu] and E[δ2u] on the jiggled unit ball for different orders d of the ansatz
functions.

for the Dirichlet data of the mean’s second order correction term E[δ2u] from (13). Having thus
access to the exact Dirichlet data, we can easily compute an overkill solution of E[δ2u] as a reference
solution by an additional refinement in h.

Figure 3 validates that we achieve the convergence rates predicted by Lemma 5.6 and Lemma 5.11
for both, Cor[δu] and E[δ2u]. In fact, E[δ2u] has even a higher convergence rate than predicted.
Although not covered by our theory, the case d = 1, i.e., the case of piecewise constant boundary
elements, seems to converge as well at a rate of h2. Notice that the computed quantities are
independent of the amplitude of the jiggling ε, as long as the compactum K b D∩Ω

ε does not
depend on ε.

7.2. Asymptotics in ε

As the mean, the correlation, and the covariance for the example on the unit ball are not
analytically known, we have to use quadrature methods to compute a reference solution in order
to study the asymptotics in ε. Choosing ε = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, we use a one-dimensional
15 point Gauss-Legendre quadrature rule to compute the stochastic integral of the mean, the
correlation, and the covariance on a spatial discretization with continuous piecewise linear ansatz
functions on a mesh with 24,576 elements. The PDE solves are accelerated by an OpenMP
parallelization.

Since the probability distribution of 〈V,n〉 is symmetric around zero, we can expect fourth
order accurate approximations to the mean, the correlation, and the covariance in ε. Thus, for
the numerical solutions E[uε]h, Cor[uε]h, and Cov[uε]h computed by our expansions, the errors
should behave like ∣∣E[uε]− E[uε]h

∣∣ = O
(
h2d + ε2h2(d−1) + ε4

)
in K,∣∣Cor[uε]− Cor[uε]h

∣∣ = O
(
h2d + ε2h2d + ε4

)
in K ×K,∣∣Cov[uε]− Cov[uε]h

∣∣ = O
(
ε2h2d + ε4

)
in K ×K,

as h and ε tend to zero. The fourth order asymptotic is then reached as soon as the mesh size is
small enough.

Figure 4 shows the errors for the former second order (see [7] for the details) and the new fourth
order accurate approximations. We indeed reach the fourth order accuracy already for relatively
coarse mesh sizes. A comparison with the second order accurate approximation shows that the
consideration of the correction terms for the fourth order approximation can improve the error by
several orders of magnitude.

7.3. Non-smooth Boundaries

In order to demonstrate that the perturbation approach is not necessarily limited to smooth
surfaces, we consider the unit cube D0 = [0, 1]3 as the reference domain. We assume the perturbing
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Figure 4: Asymptotics in ε for the numerical approximation of the second order and fourth order accurate
expansions for the mean, the correlation, and the covariance by different mesh sizes h.
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Figure 5: Realizations of the perturbed cube with its solution visualized on the inscribed compactum K for ε = 0.05.

vector field to jiggle the upper side of the cube. More precisely, given uniformly distributed random
variables Xij ∼ U [−1, 1], i, j = 1, . . . , 4, the perturbation field is given as

V(ω,x) =

{∑4
i,j=1Bi(x1)Bj(x2)Xij(ω), x3 = 1,

0, otherwise,

where Bi, i = 1, . . . , 4 are fifth order B-splines on [0, 1], which, as well as their derivatives,
are zero at the interval boundaries. As a result, the shape derivatives are well defined and no
singularities occur in the boundary values of the PDEs for the correction terms, which means that
the expansions for the mean, the correlation, and the covariance are well defined.

A visualization of different realizations for ε = 0.05 for the Dirichlet boundary values

g(x) = (x1 − 0.5)2 + (x2 − 0.5)2

and the used compactum K with the corresponding solution of (3) is found in Figure 5.
Since the contributions of all 16 boundary perturbations are equally important, the dimension

for the stochastic integrals for our quantities of interest is truly 16-dimensional. Therefore, we use
a Monte-Carlo simulation with M = 10, 000 samples for a visual comparison with the asymptotic
expansions for the choice ε = 0.05. Then, the error of a Monte-Carlo approximation XM to X,
computed from M samples, is given by

E
[
|X −XM |

]
≤
√

V[X]

M
.

All computations are performed by using continuous piecewise linear ansatz functions on a mesh
with 24,576 elements, while we accelerate the Monte-Carlo simulation by computing only the
changed matrix entries for each sample. The computation time on all 24 cores takes for all
quantities 67’241 seconds using the perturbation approach and 496’582 seconds using the Monte-
Carlo simulation. Still, due to the slow convergence rate of the Monte-Carlo simulation and the
high-dimensionality of the problem, we only aim at a qualitative comparison of the mean and the
diagonal of the correlation, which is presented in Figure 6.

8. Conclusion

In this article, we considered the approximate computation of the mean, the correlation, and
the covariance of the solution of PDEs on random domains by the perturbation approach. Addi-
tionally to existing third order accurate expansions of the covariance discussed in [7], we derived
third order accurate expansions of the mean and the correlation and discussed their numerical
computation. These expansions become even fourth order accurate for specific types of boundary
variations. While the solution on the unperturbed domain yields a second order accurate solution,
the correction terms for the more accurate expansions are given by correlation equations.

Omitting the meshing of the computational domain, we employ the boundary element method
to discretize the correlation equations with ansatz spaces of piecewise polynomials of at least
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Figure 6: Comparison between the perturbation approach (left) and a Monte-Carlo simulation (right) with 10’000
samples for ε = 0.05.

second order. To obtain computational efficiency, we solve the corresponding matrix equations
in almost linear complexity by the H-matrix approach. The numerical experiments in three di-
mensions validate the asymptotic expansions and show the convergence of the proposed method
for piecewise linear and piecewise quadratic boundary elements. Piecewise constant boundary
elements, although not covered by the theory, seem to work as well. Finally, we provided numer-
ical experiments which indicate how the perturbation approach could be applied on nonsmooth
domains.
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(2002) 95–121.
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