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Abstract  

The expression of neuronal NO synthase (nNOS) alpha- and beta-isoforms in 

skeletal muscle is well documented but only little information is available about their 

regulation/functions. Using different mouse models, we now assessed whether the 

expression of nNOS-isoforms in muscle fibers is related to mitochondria 

content/activity and regulated by peroxisome proliferator-activated receptor gamma 

coactivator-1alpha (PGC-1alpha). Catalytic histochemistry revealed highest nNOS-

concentrations to be present in type-2 oxidative muscle fibers. Differences in 

mitochondrial density between nNOS-KO-mice and WT-littermates established by 

morphometry after transmission electron microscopy were significant in the oxidative 

portion of the tibialis anterior muscle (TA) but not in rectus femoris muscle (RF) 

indicating an nNOS-dependent mitochondrial pool in TA. Quantitative immunoblotting 

displayed the nNOS alpha-isoform to preponderate in those striated muscles of 

C57Bl/6-mice that comprise of many type-2 oxidative fibers, e.g. TA, while roughly 

even levels of the two nNOS-isoforms were expressed in those muscles that mainly 

consist of type-2 glycolytic fibers, e.g. RF. Differences in citrate synthase-activity in 

muscle homogenates between nNOS-KO-mice and WT-littermates were positively 

related to nNOS alpha-isoform levels. In transgenic-mice over-expressing muscular 

PGC-1alpha compared to WT-littermates, immunoblotting revealed a significant shift 

in nNOS-expression in favor of the alpha-isoform in six out of eight striated muscles 

(exceptions: soleus muscle and tongue) without consistent relationship to changes in 

the expression of mitochondrial markers. In summary, our study demonstrated the 

nNOS alpha-isoform expression to be related to mitochondrial content/activity and to 

be up-regulated by up-stream PGC-1alpha in striated muscles, particularly in those 

enriched with type-2 oxidative fibers implying a functional convergence of the two 

signaling systems in these fibers. 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 3

Key words 

neuronal nitric oxide synthase (nNOS) 

nNOS alpha- and beta-isoforms 

skeletal muscle 

mitochondria 

peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) 

 

Abbreviations 

NO, nitric oxide; nNOS, neuronal nitric oxide synthase; PGC-1alpha, peroxisome 
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Highlights  

• Highest nNOS-levels are expressed in type-2 oxidative fibers in striated muscles 

of mice 

• Muscle nNOS-alpha isoform is positively related to differences in citrate 

synthase-activity between nNOS-KO-mice and WT-littermates 

• nNOS alpha-isoform preponderates in striated muscles with many type-2 

oxidative fibers 

• In muscles of PGC-1alpha transgenic mice, nNOS-expression is shifted in favor 

of the alpha-isoform without consistent relationship to changes in the expression of 

mitochondrial markers 
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1. Introduction 

Gaseous nitric oxide (NO) is generated by the catalytic activity of neuronal NO 

synthase (nNOS) in skeletal muscles of rodents and humans. Dimer aggregates of 

nNOS are clustered at the sarcolemma, especially in fast-twitch (type-2) oxidative 

muscle fibers of rodents [1; 2]. The fiber surface targeting of nNOS is mediated either 

indirectly via interaction with alpha-syntrophin [3] and/or other adapter proteins [4] or 

by direct binding to dystrophin [5; 6; 7] and is pivotal for its correct and integrated 

function. Accordingly, variations in the sarcolemmal anchorage of nNOS contribute to 

the etiology and progression of several distinctive muscular dystrophies [8; 9; 10].  

As a pleiotropic second messenger, NO produced by nNOS-activity influences via 

the established soluble guanylate cyclase/cGMP-signaling cascade [11] and/or S-

nitrosylation of enzymes and fibrillar proteins in skeletal muscle fibers [12]. As a 

result, several reactions of the oxidative metabolism in skeletal muscle fibers are 

modulated at different levels, e.g. to establish an intact mitochondrial phenotype [13; 

14], although the integration of nNOS action into the cell signaling network that 

controls the oxidative phenotype of muscle fibers is currently only partially 

understood [15]. Because nNOS exerts also a positive effect on sarcomeric 

assembly in vitro [16], it has been speculated that the nNOS/NO system influences 

hypertrophy [17] and age-related sarcopenia [18]. Other studies revealed that nNOS-

generated NO also acts as a paracrine signaling molecule that impacts the 

microvascular system in skeletal muscle [19; 20]. Taken together, nNOS may 

influence simultaneously the phenotype and function of both the muscle fibers and 

the microcirculation in skeletal muscle at several levels and is thus an enzyme that is 

well positioned to modulate the interplay between the two tissues. This integrative 

character of the nNOS/NO-system in skeletal muscle is especially relevant for the 

higher requirement of oxygen and substrates during endurance exercise [21].  

Studies using nNOS-KO mice [22] and nNOS-overexpressing transgenic mice [23] 

have previously shown that an alteration of nNOS expression levels in skeletal 

muscle is accompanied by a change in the availability of superoxide and, 

subsequently, hydrogen peroxide (SOD-1 dependent) and/or peroxynitrite. Thus, 

nNOS participates in the scavenging of reactive oxygen species (ROS), which could 

damage proteins and lipids within the skeletal muscle fibers [24]. Because ROS also 

exert important cell signaling functions, the nNOS/NO system may act not only as 
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direct but also indirect (by depletion of ROS) modulator of cell signaling processes 

[25].  

Various isoforms of nNOS are expressed in skeletal muscle. Among the nine nNOS-

variants with the alternatively spliced non-translated exon-1 being present in humans 

[26], only four (1b, 1c, 1g and 1h) mRNA-variants were likewise found in the mouse 

[3]. At the protein level, two major nNOS-isoforms have been identified in human and 

mouse striated muscles: alpha (160 kDa) and beta-isoforms (140 kDa) of nNOS that 

differ in the presence/absence of a 237 amino acid long stretch at the N-terminus 

which is generated by alternative splicing of exon-2 [3]. Both alpha- and beta-variants 

of nNOS might display a 102-bp long nucleotide stretch (designated exon-mu) 

subjected to alternative splicing between exons 16 and 17 [27].  

The additional exon-2 of the nNOS alpha-isoform contains a PDZ domain that 

mediates the fiber surface targeting [3]. The physiology of the nNOS alpha-isoform is 

well studied [15]: due to its sarcolemmal anchorage this enzyme or rather its reaction 

product NO impacts the metabolic demands of the striated musculature, as 

mentioned above. In contrast, the beta-variant of nNOS has not been thoroughly 

characterized so far - a circumstance that reflects the non-availability of a specific 

antibody against this nNOS-isoform.  

There is only few and partly conflicting information available about distinctive 

expression patterns, biochemical properties and functional relevance in skeletal 

muscle of these nNOS-variants. Recombinant alpha and beta-isoforms of nNOS 

exhibit NOS activity with similar catalytic properties in homogenates of transfected 

COS-cells [3]. Percival et al. have attributed a Golgi apparatus-associated 

localization in muscle fibers of the nNOS beta-isoform and a role in force 

maintenance during and after exercise in mice [28]. However, this interpretation of 

the data of this is largely speculative, since no information regarding the expression 

of the beta-isoform was furnished at either the mRNA or protein level. Using a set of 

antibodies that recognize either only the alpha-isoform or simultaneously both nNOS-

variants, we have found evidence that both nNOS-isoforms are associated at the 

sarcolemma [29] possibly acting as a heterodimer. The reason for the differences in 

the determination of nNOS isoform localization in skeletal muscle fibers [28; 29] 

remains to be clarified. 

The incomplete characterization of the nNOS action within the oxidative metabolism 

as well as the fragmented knowledge about the biochemistry of the nNOS-variants in 
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skeletal muscles provided so far has encouraged us to speculate that the 

appearance of one or both nNOS-isoforms is/are related to the mitochondrial 

phenotype of this tissue. To address this hypothesis, we first systematically 

monitored the expression patterns of the two major isoforms in several striated 

muscles of mice with different metabolic profiles to relate these data to the 

mitochondrial density in these tissues. In order to obtain insights into the regulation of 

the nNOS isoform-specific expression patterns, we have also characterized the 

interaction of the alpha- and beta-isoforms of nNOS with PGC-1alpha, a master 

regulator gene of mitochondrial biogenesis [30; 31]. Our analysis reveals that the 

expression of the nNOS alpha-isoform is positively related to mitochondria density 

and PGC-1alpha expression in striated muscles with many type-2 fibers, suggesting 

a close connection between the nNOS alpha-isoform and the oxidative capacity in 

type-2-rich skeletal muscles, which has hitherto not been described. 
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2. Materials and methods 

2.1  Animals 

Histochemical, electron microscopy and biochemical studies were performed on 

striated muscles from male C57/BL6 mice in the age of nine weeks (Charles River, 

Sulzfeld, Germany). 

The nNOS-knockout (KO) strain of mice with C57BL/6-background utilized in this 

study was originally generated by the recombinant replacement of exon-2 of the 

nNOS-gene with a neomycin cassette [32]. We purchased a founder generation of 

these mice from Jackson Laboratories, Bar Harbor, ME, USA. By inbreeding of 

heterozygous (C57BL/6-WT x nNOS-KO) mice (F1-offsprings), seven litters were 

obtained (F2-offsprings) which were subjected to genotyping using DNA from 

biopsies of the tail tips (Supplementary Fig. 1). The homozygous male mice of 

these litters were euthanized at the age of 16-weeks to collect the skeletal muscles 

for molecular and structural analyses [33].  

The keeping of the muscle-specific PGC-1alpha (PGC-1alpha) transgenic (TG) mice 

and their WT littermates was previously described [34].  

All mice were maintained in conventional animal facilities in Bern or Zurich, 

respectively, with a fixed 12-h light/dark cycle on a commercial pelleted chow diet 

with free access to tap water. At sacrifice, mice were anesthetized with a 

ketamine/xylazine (100 mg*kg-1/5 mg*kg-1) cocktail via IP injection. All mice were 

treated and sacrificed in accordance with the approvals published by the Cantonal 

Committee on Animal Welfare [Amt für Landwirtschaft und Natur des Kantons Bern 

(51/08 and 27/12)] and the Universities of Bern and Zurich. 

 

2.2 Muscles 

For the analyses, the following striated muscles of the nNOS-KO mice and their WT 

littermates as well as PGC-1alpha-TG mice and their WT littermates were used: 

tibialis anterior (TA), extensor digitorum longus (EDL), rectus femoris (RF) of the 

quadriceps femoris, plantaris (PLNT), soleus (SOL), gastrocnemius (GC) - caput 

lateralis (lat) and caput medialis (med) and the tongue.  

 

2.3 Histochemistry 

For succinate dehydrogenase (SDH) histochemistry, unfixed cryostat sections of 10 

µm thickness were incubated in a moist chamber with SDH medium (1.5 mg/ml 
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sodium-succinate, 0.25 mg/ml nitroblue tetrazolium (NBT) salt in 0.1 M phosphate 

buffer, pH 7.2) at 37°C for 30 min, then washed with deionized water and finally 

cover-slipped in glycerol gelatin.  

NADPH diaphorase histochemistry specific for nNOS was carried out using 1 M urea 

in the incubation buffer as previously reported [35]. Quantification of SDH and nNOS-

diaphorase histochemical activity in individual muscle fibers was performed by image 

analysis as previously described in detail [2].  

 

2.4 Electron microscopy and morphometry 

TA and RF muscles were subjected to transmission electron microscopy (TEM) 

analysis. Therefore, TA muscle was longitudinally sliced to obtain the oxidative 

proportion (originally adjacent to the tibia), which was processed for TEM analysis. 

Ultrathin sections (50-60 nm in thickness) of Epon resin blocks of the muscles were 

prepared as previously described [36]. The inspection of the Epon blocks was carried 

out using a transmission electron microscope (Morgagni M268; FEI, Brno, Czech 

Republic). Morphometric estimation of the mean volume density (Vv) of mitochondria 

on 20 randomly depicted micrographs taken of each of the ultrathin sections, at a 

magnification of x24,000, were also carried out using established methods as 

previously described [36]. 

 

2.5 Immunoblotting 

The muscles were homogenized in solubilization buffer (1% (w/v) Triton-X 100 and 1 

mM phenylmethylsulfonyl fluoride in PBS-HCl, pH 7.4), as previously described [33]. 

Immunoblotting was performed using 50 µg of protein from skeletal muscles. The blot 

matrices were incubated with the following primary anti-nNOS antibody in final 0.1 

µg/ml concentration diluted in washing buffer (0.1% (w/v) Tween 20 in PBS, pH 7.4) 

overnight at 4°C: N-7280 (Sigma-Aldrich, Buchs, Switzerland), which specifically 

identifies amino acids 1409-1429 in the C-terminal region of the rat and mouse 

primary structure or with the mitochondria-specific OXPHOS Rodent WB Antibody 

Cocktail (ab110413; Abcam, Cambridge, UK), diluted 1:1.000 in washing buffer. 

The immunoblots were developed by enhanced chemiluminescence (GE Healthcare 

Life Sciences, Glattbrugg, Switzerland). Ponceau S-staining of the blot matrices was 

conducted for the normalization of the loading required for the densitometric 

quantification [33]. 
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2.6 Citrate synthase activity assay  

Approximately 10 mg of the muscles were homogenized in 500 ml of 100 mM Tris-

buffered saline, pH 8.3 (TBS) and 0.1% Triton X-100 at 4°C using a Polytron 

ultraturrax PT 1200 E (Kinematica, Luzern, Switzerland). Subsequently, the lysates 

were centrifuged at 14.000 rpm for 5 min at 4°C to subject aliquots of the 

supernatants to the CS activity assay and BCA protein assay. CS activity was 

determined spectrophotometrically at 30°C by measuring the appearance of 

mercaptide ion by acetyl-CoA deacylase activity according to the protocol described 

previously in detail [37]. 

 

2.7 Nitrate/nitrite fluorometric assay 

The nitrate/nitrite fluorometric assay (780051) from Cayman (Ann Arbor, MI, USA) 

was used as indirect measure for NO production. Therefore, approximately one third 

of a RF muscle per mouse was homogenized in 5 ml PBS, pH 7.4 at 4°C. After 

quantification of the protein concentration in aliquots, NOS activity was initiated by 

addition of the cofactor mixture to 1 mg of homogenate protein at RT and stopped 

after 15 min by centrifugation through ultrafiltration tubes (UFC703008, Centricon 

Plus-70, Merck, Darmstadt, Germany). Aliquots of the supernatants collected at 

initiation and termination of the reaction as well as nitrate standards were subjected 

in duplicates to the nitrate/nitrite fluorometric assay according to the instructions of 

the manufacturer. The extinction of the samples was recorded at an excitation 

wavelength of 360-365 nm and an emission wavelength of 430 nm in a SpectraMax 

190 Microplate Reader (Molecular Devices, Sunnyvale, CA, USA) and used to 

calculate the rates of nitrate/nitrite production per time unit and mg of homogenate 

protein. 

 

2.8 Data analysis and statistics 

All numerical data were expressed as mean values together with the standard 

deviation. Parameters pertaining to the structural and molecular analyses were 

compared using a paired Student’s t-test. Pearson's correlation was calculated to 

assess significance of relationship. The significance level was set at P≤0.05.  
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3 Results 

3.1 Relationship of nNOS and mitochondria in skeletal muscles  

For assessment of the nNOS/mitochondria relationship at the muscle fiber level, we 

performed nNOS-specific diaphorase and succinate dehydrogenase (SDH; 

mitochondrial marker) catalytic histochemistry on serial sections of the tibialis anterior 

(TA) muscle, which is a skeletal muscle that is almost exclusively composed of type-

2 muscle fibers [38]. As shown in Fig 1A, nNOS-specific diaphorase activity was 

exclusively located at the sarcolemma, whereas SDH activity was present inside the 

muscle fibers (Fig 1B). In both histochemical reactions, the end product formazan 

was not uniformly distributed within the muscle: the smaller skeletal muscle fibers 

contained high nNOS and SDH activities, while the larger ones showed only slight 

formazan generation. As exemplarily displayed for one TA muscle (Fig 1D), 

regression analysis with both catalytic histochemistry data sets revealed the 

expression of nNOS to be significantly (P≤0.05) related to the SDH-defined oxidative 

capacity at the muscle fiber level.  

To extend the investigation on nNOS/mitochondria relationship to the total muscle 

level, the ultrastructural phenotypes of two exemplary striated muscles were 

compared in nNOS-KO mice and WT mice (Fig 2A). When the compartmental 

composition of the skeletal muscle fibers in the oxidative portion of the TA muscle 

(rich in type-2 oxidative fibers) was assessed by morphometry, significantly less (-

9.6%; P≤0.05) mitochondria volume density was found in nNOS-KO mice than in WT 

mice (Fig 2B). While the intrafibrillar pool of mitochondria was significantly lower (-

9.9%; P≤0.05), the subsarcolemmal pool only tended to be reduced (-5.7%; P=0.08) 

in the nNOS-KO strain compared to the WT mice. In contrast, the morphometric 

analysis of the rectus femoris (RF) muscle (rich in glycolytic type-2 fibers) revealed 

the mitochondrial volume density to only non-significantly differ (+6.1%; P>0.05) 

between the two mouse strains (Fig 2C). These data indicate that the manifestation 

of the nNOS/NO-system in skeletal muscle of WT mice has a promotional effect on 

mitochondrial density in oxidative TA muscle but not glycolytic RF muscle.  

The expression patterns of nNOS in murine striated muscles were assessed by 

quantitative immunoblotting on detergent extracts of eight striated muscles (seven 

skeletal muscles of the hind limb and the tongue) from C57Bl/6-mice. As shown in 

Fig 3A, nNOS was consistently displayed in all muscle extracts as a double band 

with sizes of 160-kDa (alpha-isoform) and 140-kDa (beta-isoform). Although identical 
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amounts of protein were loaded on the gels, the intensities of the nNOS-

immunoreactive bands varied greatly between the muscles. Actually, densitometric 

analysis (Fig 3B) revealed highest levels of nNOS to be present in TA muscle, 

whereas moderate-high levels of nNOS (44-72% of concentration in TA) were 

expressed in RF, extensor digitorum longus (EDL), plantaris (PLNT), gastrocnemius 

(GC)-lateralis muscles and tongue. Only very low levels of nNOS were displayed in 

GC-medialis (11% of concentration in TA) and soleus (SOL; 4% of concentration in 

TA) muscles as anticipated, since both muscles consist to a large extent of nNOS-

poor, type-1 muscle fibers.  

 

3.2 Relationship of nNOS-isoforms and mitochondria in skeletal muscles 

The ratio of nNOS alpha- and beta-isoform expression in the immunoblots was not 

constant in the muscle samples. As assessed by densitometry (Fig 3C), nNOS 

alpha-isoform expression preponderated in most muscles (TA, EDL, GC-lat, GC-

med, SOL and tongue; 69 up to 91% versus 31 up to 9%), while roughly equal levels 

of the two nNOS-isoforms were expressed in RF (41% versus 59%) and PLNT 

muscles (56% versus 44%).  

We furthermore measured the citrate synthase (CS) activity (another mitochondrial 

marker enzyme) by an in vitro-assay in homogenates of eight striated muscles 

isolated from nNOS-KO mice and their WT littermates (Fig 4A). While the differences 

in CS activity between the two mouse strains were only non-significant (P>0.05) in 

most muscle homogenates (+6% up to -12% in nNOS-KO versus WT), the CS 

activity was significantly (P≤0.05) lower in TA (-16%) and GC-lat (-19%) muscle 

homogenates and tended to be lower (P=0.09) in the tongue homogenate (-21%) of 

the nNOS-KO mice compared to the WT mice.  

When we performed regression analysis with the data sets of CS activities in muscle 

homogenates (shown in Fig 4A) and the quantitative nNOS isoform expression in the 

muscles of the WT mice determined by immunoblotting (shown in Fig 3C and 3D), 

we found a significant (r=0.73; P≤0.05) positive relation between the nNOS alpha-

isoform expression levels and the differences in CS activities between WT mice and 

nNOS-KO mice (Fig 4B). Correspondingly, the nNOS beta-isoform expression levels 

and the differences in CS activities were negatively related (P≤0.05; data not shown). 

All other regression analyses (particularly those with the absolute CS activities from 

the WT mice) yielded only non-significant relationships between nNOS expression 
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and mitochondrial density (P>0.05; data not shown) particularly due to inclusion of 

the SOL and GC-med values, which consist mainly of oxidative type-1 fibers lacking 

substantial nNOS-expression [1]. These findings indicate that a pool of mitochondria 

exists in murine skeletal muscles with many type-2 fibers, which is related to the ratio 

of the nNOS alpha-isoform-to-beta-isoform expression in the muscle.  

 

3.3 Expression levels of nNOS isoforms in muscles of PGC-1alpha-TG mice 

The statistical relationship between nNOS alpha-isoform expression and 

mitochondrial density/activity in type-2 fibers encouraged us to clarify whether PGC-

1alpha (established transcriptional co-activator of mitochondriogenesis) influences 

the nNOS isoform expression patterns. Therefore, we analyzed detergent extracts of 

striated muscles from transgenic mice over-expressing PGC-1alpha (PGC-1alpha-

TG mice) and their WT littermates by means of quantitative immunoblotting with anti-

nNOS antibodies. In a preliminary experiment, we found the nitrite production rates in 

RF muscle homogenates, in which nNOS alpha- and beta-isoforms occur in an 

approximately balanced relationship, to differ only non-significantly (9%; P>0.05) 

between the two mouse strains suggesting that the up-regulation of PGC-1alpha 

does not impact the total NOS activity in this muscle (Fig. 5A).  

When we assessed the nNOS isoform-composition in detergent extracts of eight 

striated muscles by quantitative immunoblotting, we observed a distinctive shift in the 

expression patterns of the nNOS-isoforms in the PGC-1alpha-TG mice compared to 

their WT-littermates: in most striated muscles, the concentration of the alpha-isoform 

was increased, while the levels of the beta-isoform were simultaneously decreased 

(Supplementary Figs. 2 and 3). This effect was most pronounced in the RF muscle 

(Fig 5B). Densitometry revealed significantly (P≤0.05) higher levels of the nNOS 

alpha-isoform and simultaneously significantly (P≤0.05) lower levels of the beta-

isoform to be expressed in six muscles from PGC-1alpha TG mice compared to WT 

mice (Fig 5C). In contrast, the distribution of the nNOS alpha- and beta-isoforms 

differed only non-significantly (P>0.05) between the two mouse strains in the SOL 

and the tongue. Interestingly, the expression levels of total nNOS were inconsistent 

in the striated muscles of PGC-1alpha TG mice compared to WT mice (Fig 5D): 

while in RF, GC-med, SOL and tongue similar nNOS expression levels were 

displayed in the two mouse strains, significantly lower levels of total nNOS were 
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found in the other five skeletal muscles of PGC-1alpha TG mice (TA, EDL, GC-lat, 

PLNT, SOL). 

In order to assess whether the shift of nNOS-isoform expression in muscle extracts 

of PGC-1alpha TG mice is actually related to the PGC-1alpha-dependent increase in 

mitochondrial density, we performed immunoblotting on the detergent extracts of the 

different striated muscles with the mitochondria-specific OXPHOS antibody cocktail. 

Densitometric analysis of the blot matrices revealed that the levels of the 

mitochondrial proteins were higher in six out of the eight striated muscles of the 

PGC-1alpha TG mice compared to WT mice (Supplementary Fig. 4 and Fig 6A,B). 

The levels of mitochondrial ATP5A, quantified as a representative example (Fig 6C), 

differed only non-significantly between the two mouse strains in the soleus muscle 

and in the tongue, which concurrently exhibited a likewise non-significant shift in the 

expression of the nNOS isoforms. Accordingly, significant up-regulated ATP5A levels 

in RF, EDL and TA muscles of PGC-1alpha TG mice were accompanied by 

significant changes in the nNOS alpha/beta-isoform relationship. However, there 

were also striking deviations from this co-regulated relationship: GC-lat, GC-med and 

PLNT muscles exhibited non-significant ATP5A increases in combination with 

significant nNOS isoform-shifts, suggesting that the increases in mitochondrial 

density are only inconsistently associated with the altered nNOS-isoform expression 

patterns in striated muscles of PGC-1alpha TG mice.
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4 Discussion 

This paper addresses the relationship between nNOS isoforms, mitochondrial 

density/activity as well as PGC1alpha expression in murine striated muscles. Our 

investigation resulted in four main findings: 1. nNOS was enriched in striated muscles 

with a high proportion of type-2 oxidative fibers, 2. differences in mitochondrial 

density/activity between nNOS-KO mice and their WT littermates were more 

pronounced in type-2 oxidative than in glycolytic striated muscles, 3. the expression 

levels of the nNOS alpha-isoform in striated muscles were positively related to the 

differences in citrate synthase (CS) activity between nNOS-KO mice and their WT 

littermates and 4. the isoform expression pattern of nNOS was shifted in favor of the 

alpha-isoform and at the expense of the beta-isoform in striated muscles of 

transgenic mice over-expressing PGC-1alpha. 

 

4.1 Enrichment of nNOS in muscles with a many type-2 oxidative fibers 

Our quantitative immunoblot analysis revealed nNOS to be inconsistently distributed 

in the striated musculature of C57/Bl6-mice. Lowest levels of nNOS were found in 

muscles with a high proportion of type-1 muscle fibers (e.g. SOL, GC-med [38]), 

which is in accordance to the observation that only low nNOS concentrations are 

expressed in this fiber type in murine striated muscles [1]. In contrast, high levels of 

nNOS expression were confined to skeletal muscles with a high proportion of 

oxidative type-2 fibers, e.g. to TA muscle which consists of 40% of type-2d/x and 

type-2a fibers [38]. The single fiber analysis by catalytic histochemistry on serial 

sections of the TA muscle confirmed this distribution of nNOS: nNOS-specific 

diaphorase activity was enriched in type-2 oxidative fibers, Thus, the appearance of 

nNOS in skeletal muscles of mice resembles that of rats, in which nNOS is enriched 

in fast-twitch (type-2) oxidative fibers [2], while the enzyme is more evenly distributed 

throughout all fiber types (at least) in human vastus lateralis muscle [39; 40].  

 

4.2 Mitochondrial density/activity in nNOS-KO mice and WT littermates 

Highest CS activity levels were found in homogenates of GC-med muscle, while 

significantly lower CS activities were evidenced in RF and GC-lat muscles of both 

mouse strains. Strikingly, the differences in CS activities between the nNOS-KO mice 

and their WT littermates were likewise inconsistent within the muscles: pronounced 

differences in CS activities between the two mouse strains were found in TA and GC-
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lat muscles, while only minor differences were present in RF muscle. We understand 

such differences in CS activities between the nNOS-KO mice and their WT 

littermates as quantitative indicators for a pool of mitochondria that depends on the 

manifestation of nNOS. It is striking that striated muscles with such a large nNOS-

dependent mitochondrial pool, e.g. TA and GC-lat muscles, are those that consist to 

a greater extent of type-2 oxidative fiber types [38; 41; 42; 43]. 

The mitochondrial content of skeletal muscles in nNOS-KO mice and WT mice has 

previously been assessed several times. Morphometry after EM analysis performed 

by Schild and colleagues revealed a trend towards reduced mitochondria density in 

the GC muscle of nNOS-KO mice compared to WT mice, although they 

simultaneously observed non-significantly higher CS levels determined in 

immunoblots and significantly elevated CS activity [44]. Wadley and colleagues found 

significantly higher mRNA levels of mitochondria-associated marker genes (NRFs, 

mtTFA) in the EDL muscle (with a similar muscle fiber composition as TA) but not in 

the SOL muscles of nNOS-KO mice than in those of WT mice [13]. At the same time, 

CS activities in the EDL were not significantly higher in the nNOS-KO mice compared 

to the WT mice [13]. It has furthermore been reported that the mitochondrial DNA 

levels in TA muscles do not significantly differ between nNOS-KO and WT mice [14] 

although the graph presented in the paper shows a clear trend for lower 

mitochondrial DNA levels in the nNOS-KO strain. Taken together, the previous 

publications on this topic do not draw a consistent picture of the quantitative 

incidence of mitochondria in skeletal muscles of nNOS-KO mice compared to WT 

mice. It seems possible that specific bias of the indirect methods that were applied to 

determine the mitochondria content in these studies are (at least partially) 

responsible for the inconsistency of the results.  

To overcome this methodological drawback, we performed morphometry after EM 

analysis, which is considered as the ‘gold standard’ method for the determination of 

the compartmental composition in tissues due to the direct visualization and 

quantification of the cellular structures [45]. In this investigation, we found the 

mitochondrial volume density in the oxidative proportion of the TA muscle to be 

significantly lower in nNOS-KO mice than in their WT littermates. In contrast, when 

we subjected the non-oxidative RF muscle to the same morphometric protocol, the 

values for mitochondrial volume density differed only non-significantly between the 

two mouse strains. These findings are in line to the conclusion drawn on the basis of 
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the CS activity assay that an nNOS-dependent mitochondrial pool exists in type-2 

oxidative skeletal muscle fibers. 

Remarkably, on the electron micrographs we have never observed myopathic 

structural changes of the mitochondrial phenotype in the skeletal muscles of the 

nNOS-KO mice, which had been previously reported [14; 28]. The reasons for these 

contradictory findings are unknown. 

 

4.3 nNOS alpha-isoform is enriched in oxidative striated muscles of mice 

Our immunoblotting investigation is the first one in which the relation between 160-

kDa alpha- and 140-kDa beta-isoforms of nNOS was systematically quantified in 

murine striated muscles. Highest concentrations of the alpha-isoform of nNOS were 

seen in TA, while almost equal levels of alpha- and beta-isoforms were present in RF 

and PLNT muscles of mice. All other muscles exhibited an nNOS alpha-isoform/beta-

isoform ratio between these two outsider values. As mentioned above, TA muscle is 

composed of a high proportion of fast-twitch oxidative 2d/x and 2a fibers, while RF 

and PLNT muscles consist almost entirely of type-2b glycolytic fibers [38]. We 

therefore suspect that the alpha-isoform of nNOS is enriched in type-2 oxidative 

fibers (type-2d/x and type-2a), while type-2b fibers contain equivalent levels of nNOS 

alpha- and beta-isoforms. This hypothesis has to be confirmed by other approaches, 

e.g. fiber typing in combination with anti-nNOS immunohistochemistry, which 

however is a difficult task because a specific antibody against the nNOS beta-isoform 

is not available.  

When we performed regression analysis with the data sets from the CS activity assay 

and the quantitative nNOS-immunoblotting we found a significant positive relation 

between the differences in mitochondrial density of nNOS-KO mice and their WT 

littermates and the expression levels of the nNOS alpha-isoform. The statistical link 

between the nNOS alpha-isoform expression levels and the CS-dependent activity 

does however not allow concluding that this nNOS-variant is the enzyme that 

specifically controls the extent of the nNOS-dependent mitochondrial pool in murine 

skeletal muscles with a high proportion of oxidative fibers. In fact, additional 

investigations must be undertaken in order to demonstrate such a potential functional 

relationship between nNOS alpha-isoform and mitochondrial density. 

Interestingly, it has recently been shown that the nNOS alpha-isoform but not the 

beta-isoform is translocated to the nucleus in C2C12 cells via an alpha1-syntrophin 
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binding leading to S-nitrosylation of the transcriptions factor CREB and subsequent 

mitochondriogenesis owing to the up-regulation of mitochondrial genes such as 

TFAM and MtCO1 [46]. This sequence of cellular events could be (at least be part of) 

the molecular cascade(s) that elicits the nNOS alpha-isoform-dependent higher 

mitochondrial density in vivo, as described here. 

This investigation was performed on striated muscles of resting mice. It is possible 

that the statistical relations described here (e.g. between nNOS alpha-isoform and 

mitochondrial activity in type-2 fibers) are altered during/after endurance exercise 

when both nNOS levels/activities [46] and mitochondrial density are increased. 

Further research has to be done to clarify this issue. 

 

4.4 Shift in favor of the nNOS alpha-isoform in PGC-1alpha transgenic mice 

Emanating from the observation nNOS alpha-isoform is related to the mitochondrial 

density in murine skeletal muscle, we assessed whether the expression patterns of 

the nNOS variants are regulated in relation to genes that control the mitochondrial 

density. For this task, we focused to study the relation of nNOS to PGC-1alpha, 

which belongs to a family of established (co)factors that drive the quantity of 

mitochondria in many tissues, including skeletal muscle [30; 31]. This decision was 

based on the observation that even type-2 fibers express low levels of PGC-1alpha in 

WT mice [30], and, thus, exhibit the potential to adapt to the strong increase in PGC-

1alpha expression induced by the genetic manipulation of the TG mice.  

In detergent extracts of striated muscles with many type-2 oxidative fibers, we 

observed a significant shift in the expression patterns of the nNOS isoforms in favor 

of the alpha-isoform and at the expense of the beta-isoform in PGC-1alpha TG mice 

compared to their WT littermates. These findings suggest that PGC-1alpha has an 

up-stream impact on the regulation of the nNOS isoforms expression patterns by 

increasing the levels of the alpha-isoform in combination with the simultaneous 

down-regulation of the beta-isoform in these muscles. Interestingly, the nitrite 

production rates in VL muscle extracts of PGC-1alpha TG mice and WT mice were 

alike indicating that the nNOS alpha- and beta-isoforms exhibit similar catalytic NOS 

activities. This conclusion is in accordance to the findings obtained with the 

recombinant proteins [3]. 

As signaling enzyme, nNOS is involved in the regulation of many physiological 

processes in skeletal muscle fibers [15]. The nNOS/NO system lowers in an 
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autocrine fashion the contraction force [1], contributes to glucose uptake during 

contraction/exercise in a complex pattern [47; 48; 49], exhibits a positive allosteric 

effect on phosofructokinase-1 activity [50] and impacts the lipid metabolism [44] in 

skeletal muscle fibers. Furthermore, nNOS has likewise a positive influence on the 

capillary density, which is reduced in nNOS-KO mice [33]. Common consequence of 

this wide spectrum of functions is the increase in glucose availability in the skeletal 

fibers either by accelerating anaplerotic reactions or inhibition of carbohydrate 

oxidation. 

PGC-1alpha has likewise a modulatory effect on a broad range of metabolic 

processes in skeletal muscles. Originally identified as a master co-regulating factor of 

mitochondriogenesis via interaction with multiple transcription factors, it was 

subsequently shown that PGC-1alpha also modulates numerous other metabolic 

processes, which prevent glucose consumption and promote lipid oxidation [34]. It is 

also established that PGC-1alpha increases capillary density and angiogenesis in 

skeletal muscle [51]. Thus, from a biological point-of-view it is conceivable that nNOS 

and PGC-1alpha may functionally converge in type-2 oxidative muscle fibers: cell 

signaling processes of both proteins merge e.g. into an increase of the intrafibrar 

glucose availability. Because the increases in mitochondrial density were only 

inconsistently associated with the altered nNOS-isoform expression patterns in 

striated muscles of PGC-1alpha TG mice we suggest that the two proteins are not 

obligatory linked to induce the biogenesis of new mitochondria. 

The findings of this study imply that PGC-1alpha is located up-stream of nNOS within 

the signaling chain inside type-2 oxidative skeletal muscle fibers to induce the shift in 

nNOS expression in favor of the nNOS alpha-isoform. Other studies revealed that 

PGC-1alpha might also be situated down-stream of nNOS action: NO is capable to 

increase PGC-1alpha expression to up-regulate mitochondrial biogenesis in many 

cells and tissues [52], including L6 myotubes [53].  

Baldelli and colleagues [54] have recently proposed that both nNOS and PGC-1alpha 

are integrative linkers within a molecular network that commonly influences the 

metabolism in muscle cells/fibers. Our in vivo findings specify this hypothesis 

demonstrating that a nNOS-dependent pool of mitochondria is established in type-2 

oxidative skeletal muscle fibers related to the nNOS alpha-isoform, which may be 

considerably up-regulated by PGC-1alpha action. Therefore, the interaction between 
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nNOS and PGC-1alpha appears to be nNOS isoform-specific and seems to involve 

the mutual regulation of both proteins in a fiber type-specific manner. 

 

5. Conclusions 

Combination of the conclusions on our main findings (1. preponderance of nNOS in 

type-2 oxidative skeletal muscle fibers, 2. existence of a nNOS-dependent 

mitochondrial pool in type-2 oxidative skeletal muscle fibers, 3. correlation between 

nNOS-alpha isoform and this nNOS-dependent mitochondrial pool in type-2 oxidative 

fibers and 4. up-regulation of the nNOS-alpha isoform in striated muscles of PGC-

1alpha TG mice) leads us to hypothesize that the two signaling systems functionally 

converge in type-2 oxidative skeletal muscle fibers of mice. 
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Figure legends 

 

Fig 1: Catalytic histochemistry to determine the statistical relationship between 

nNOS-specific diaphorase and succinate dehydrogenase activities at the 

muscle fiber level. A,B: Representative serial sections of the TA muscle subjected 

to catalytic histochemistry to monitor the activity of nNOS-specific diaphorase (A) and 

mitochondria-related succinate dehydrogenase (SDH; B). Note that the larger 

skeletal muscle fibers (asterisks) contain simultaneously less nNOS-diaphorase and 

SDH activities than smaller ones. C: Negative control for nNOS-specific diaphorase 

reaction shown in A. D: Linear regression analysis revealing a significant positive 

relation between nNOS-specific diaphorase and SDH activities. The plot mirrors the 

densitometric values in skeletal muscle fibers from the oxidative portion of TA 

muscle. Shown is the Pearson product-moment correlation coefficient (r) together 

with its probability (P). Bear in mind that the TA muscle of mice is almost exclusively 

composed of type-2 skeletal muscle fibers.  

 

Fig 2:  Morphometry after transmission electron microscopy to estimate 

mitochondria volume density in tibialis anterior (TA) and rectus femoris (RF) 

muscles of nNOS-KO mice and their WT littermates. A: Representative electron 

micrographs of TA muscle from an nNOS-KO mouse and a WT littermate each 

depicting a cross-sectioned capillary profile surrounded by profiles of three skeletal 

muscle fibers. Note the subsarcolemmal and the myofibrillar pool of mitochondria 

manifested in all muscle fibers. B, C: Morphometric quantification of the total 

mitochondrial volume density in skeletal muscle fibers as well as its allocation among 

the subsarcolemmal and intrafibrillar pools in TA muscle (B) and RF muscle (C) of 

nNOS-KO mice and WT littermates. Mean values ± SD, n=5 for both mouse strains. 

Significance level: *: P ≤ 0.05. 

 

Fig 3: Inconsistent expression of nNOS in striated muscles of C57/Bl6 mice. A: 

50 µg of protein from detergent solubilsates of eight striated muscles taken from 

C57BL/6-mice were subjected to immunoblot analysis with a polyclonal anti-nNOS 

antibody (anti-C-terminus). B: The blot matrices were stained with Ponceau Red after 

immunoblotting for loading control. C: The nNOS-immunoreactive bands in the 

muscle solubilsates were densitometrically quantified and normalized to protein 
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loading assessed by Ponceau S-staining in order to depict the nNOS level in each 

muscle. The concentration of nNOS bands in TA muscle was set as 100%. Mean 

values ± SD, n=4. D: The expression ratio between the 160-kDa (alpha)- and 140-

kDa (beta)-isoforms of nNOS in striated muscles of mice, as determined by 

densitometry of the nNOS-bands after immunoblotting. Mean values ± SD, n=4. 

 

Fig 4:  Citrate synthase assay to establish the statistical relationship between 

alpha-isoform expression and mitochondrial density in striated muscle. A: 

Citrate synthase (CS) activity was assessed in homogenates of eight striated 

muscles from nNOS-KO mice and their WT littermates. Mean values ± SD, n=3 

triplicates for both strains. *: P ≤ 0.05. B: Linear regression analysis revealing the 

difference in CS activity between WT mice and nNOS-KO mice (data from Fig 4A) to 

be significantly positive related to the relative nNOS alpha-isoform levels in striated 

muscles of WT mice (data from Fig 1C and 1D). Shown is the Pearson product-

moment correlation coefficient (r) together with its probability (P). 

 

Fig 5:  Shift of the nNOS-isoform expression patterns in striated muscles of 

PGC-1alpha-transgenic (TG) mice in comparison to WT mice. A: The nitrite 

production rates, which correspond to NOS activity, were assessed in RF muscle 

homogenates of PGC-1alpha-TG mice and their WT littermates by a fluorometric 

assay based on the nitrosylation of 2,3-diaminonaphthalene (DAN) to yield 

fluorescent 2,3-naphthotriazole. Mean values ± SD, n=6 duplicates for both strains. 

B: 50 µg of protein from solubilsates of RF muscle from PGC-1alpha-TG mice and 

WT mice were subjected to immunoblot analysis with a polyclonal anti-nNOS 

antibody. Note the increased levels of the nNOS alpha-isoform (160-kDa) relative to 

those of the beta-isoform (140-kDa) in the PGC-1alpha-TG mice compared to WT 

mice. D: Relation of the nNOS alpha- and beta-isoforms in detergent extracts of eight 

striated muscles from PGC-1alpha-tg mice and WT mice. The total nNOS 

concentration in each muscle was set as 100%. Mean values ± SD, n=6 for each 

group (with exceptions, see Supplementary Fig. 2). E: Densitometric quantification of 

total nNOS-immunoreactivity in detergent extracts of eight striated muscles from 

PGC-1alpha-tg mice and WT mice. The mean nNOS concentration in the WT mice 

was set as 100%. Mean values ± SD, n=6 for each group (with exceptions, see 

Supplementary Fig. 3).  
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Fig. 6: The shift in nNOS-isoform expression patterns is inconsistently related 

to the increase in mitochondria protein levels in muscle extracts of PGC-1alpha 

TG mice compared to WT littermates. Detergent extracts of the tongue (A), the 

rectus femoris (RF) muscle (B) and six other striated muscles (Supplementary Fig 4) 

were subjected to immunoblotting with the mitochondria-specific OXPHOS antibody 

cocktail accounting for ATP5A of complex (C) 5 (55 kDa), SDHB of C2 (30 kDa) and 

NDUFB8 of C1 (20 kDa). * denote samples which contained higher (P<0.05) protein 

levels in the detergent extracts of the PGC-1alpha-TG mice than the WT mice. C: 

The changes in expression levels of mitochondrial ATP5A, quantified as 

representative example by densitometry of the immunoblot bands, were related to 

the shift in the expression of the nNOS-isoforms in the eight striated muscles of the 

PGC-1alpha-TG mice versus those of the WT mice.  
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Supporting information 

Supplementary Fig. 1: Genotyping to demonstrate the absence of nNOS in the 

genome of nNOS-KO mice and its presence in that of their WT littermates. 

Using primers for exon-2 of the nNOS gene, a cDNA fragment of the neomycin 

resistance gene (280 base pairs (Bp) long) was amplified, whereas the presence of 

the nNOS gene was demonstrated by the amplification of its exon-2 containing 

fragment (117 Bp long). 

 

Supplementary Figure 2: Shift of the nNOS isoform expression pattern in the 

rectus femoris muscle of PGC-1alpha transgenic (TG) mice in comparison to 

wild-type (WT) littermates (left side) and the Ponceau Red-stained blot matrices 

(right side). Note the higher expression of the alpha-isoform of nNOS (160 kDa) 

than the beta-isoform (140 kDa) in the PGC-1alpha TG mice than the WT mice. 

Shown are all immunoblots used for the densitometric analysis presented in Fig. 5C 

and 5D. Therefore, the densitometric values for nNOS-immunoreactive bands were 

normalized to the densitometric values of total protein loaded on the gels, as 

visualized by Ponceau Red-staining. 

 

Supplementary Fig. 3: Immunoblot analysis for the quantification of nNOS 

isoform expression in eight striated muscles from PGC-1alpha-TG mice and 

their WT littermates. The immunoblots were used for the densitometric 

quantification of nNOS isoform expression shown in Fig. 5d and 5e. For both strains, 

detergent extracts of six mice (1-6) were subjected to the analysis. * denote samples 

which were not included into the densitometry due to inaccurate gel loading and/or 

incorrect supply with ECL reagent during development of immunoblots. 

 

Supplementary Figure 4: Immunoblot analysis for the quantification of 

mitochondrial protein expression in six striated muscles from PGC-1alpha-TG 

mice and their WT littermates. For both strains, detergent extracts of six mice (1-6) 

were subjected to the analysis using the OXPHOS antibody cocktail accounting for 

ATP5A of complex (C) 5 (55 kDa), SDHB of C2 (30 kDa) and NDUFB8 of C1 (20 

kDa) * denote samples which contained higher (P<0.05) protein levels in the 

detergent extracts of the PGC-1alpha-TG mice than the WT mice. Please note that 
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the immunoblots with the extracts of two additional striated muscles (RF and tongue) 

are presented in Fig. 6. 
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Highlights  

• Highest nNOS-levels are expressed in type-2 oxidative fibers in striated muscles 

of mice 

• Muscle nNOS-alpha isoform is positively related to differences in citrate 

synthase-activity between nNOS-KO-mice and WT-littermates 

• nNOS alpha-isoform preponderates in striated muscles with many type-2 

oxidative fibers 

• In muscles of PGC-1alpha transgenic mice, nNOS-expression is shifted in favor 

of the alpha-isoform without consistent relationship to changes in the expression of 

mitochondrial markers 


