
Increased thalamic resting-state connectivity
as a core driver of LSD-induced
hallucinations

M€uller F, Lenz C, Dolder P, Lang U, Schmidt A, Liechti M, Borgwardt
S. Increased thalamic resting-state connectivity as a core driver of LSD-
induced hallucinations.

Objective: It has been proposed that the thalamocortical system is an
important site of action of hallucinogenic drugs and an essential
component of the neural correlates of consciousness. Hallucinogenic
drugs such as LSD can be used to induce profoundly altered states of
consciousness, and it is thus of interest to test the effects of these drugs
on this system.
Method: 100 lg LSD was administrated orally to 20 healthy
participants prior to fMRI assessment. Whole brain thalamic functional
connectivity was measured using ROI-to-ROI and ROI-to-voxel
approaches. Correlation analyses were used to explore relationships
between thalamic connectivity to regions involved in auditory and
visual hallucinations and subjective ratings on auditory and visual drug
effects.
Results: LSD caused significant alterations in all dimensions of the 5D-
ASC scale and significantly increased thalamic functional connectivity
to various cortical regions. Furthermore, LSD-induced functional
connectivity measures between the thalamus and the right fusiform
gyrus and insula correlated significantly with subjective auditory and
visual drug effects.
Conclusion: Hallucinogenic drug effects might be provoked by
facilitations of cortical excitability via thalamocortical interactions. Our
findings have implications for the understanding of the mechanism of
action of hallucinogenic drugs and provide further insight into the role
of the 5-HT2A-receptor in altered states of consciousness.
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Significant outcomes

• This fMRI study demonstrated widespread increases in functional connectivity after the administra-
tion of LSD to healthy subjects

• These alterations correlated with characteristic auditory and visual drug effects

• Whole brain voxel-wise global correlation analysis revealed LSD-induced increases in functional con-
nectivity in thalamus and striatum

Limitations

• Relatively small sample size

• No dose-response data provided

• Ratings on subjective drug effects did not correspond to the duration of the MRI scan exclusively
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Introduction

Substances known as hallucinogenic drugs are of
interest for their specific effects on the mind (1, 2),
as well as their potential therapeutic use (e.g. 3–5).
These substances alter the human psyche in a pro-
found way, including alterations in cognition,
emotions and perception, which are unique among
psychoactive drugs (1, 2, 6). Investigations of the
neural correlates of these altered states of con-
sciousness might provide insight into the mecha-
nisms underlying these distinctive effects. For
empirical and theoretical reasons, it has been pro-
posed that the thalamus is an important site of
action for hallucinogenic drugs (7). An important
model suggested that hallucinogens disrupt thala-
mic gating of external and internal signals, leading
to increased passage of information across the cor-
tex (8). Several neuroimaging studies indicated that
hallucinogenic drugs affect thalamic glucose meta-
bolism and blood flow (9–12), while other evidence
reveals that hallucinogens, which mainly act as
5HT2A receptor agonists (13, 14), induce cortical
activation via binding on thalamic 5HT2A-recep-
tors with consecutive release of glutamate in the
cortex (15–17). Features of increased thalamocorti-
cal resting-state functional connectivity (rFC) after
the administration of psilocybin (18) and LSD (19)
have been reported, but not yet investigated in
detail.

The thalamocortical system has also been closely
associated with consciousness. Along with the
reticular formation, the thalamus seems to be the
only region in the brain where small lesions can
lead to loss of consciousness (20). Neuroimaging
studies found reduced thalamocortical rFC in
patients in vegetative states, and this was restored
after recovery (21). The thalamus was also found
to be the common site of action of at least eight
different anaesthetics (22). More specifically, it has
been shown that unconsciousness induced by the
anaesthetic dexmedetomidine was associated with
decreased rFC between the thalamus and the
default mode network (23). It is particularly inter-
esting that, after recovery from unconsciousness,
thalamocortical connectivity was the only measure
that was restored. Moreover, reduced rFC between
the thalamus and various cortical regions was
reported after administration of the anaesthetic
propofol; again, connectivity was restored after
recovery (24). Similar results were found in a PET
study using two other anaesthetics (25). These
observations (and other reasons) have given rise to
several theories stating that the thalamocortical
system is an essential component for regulating
consciousness (22, 26, 27). Hallucinogens such as

LSD can be used to induce profoundly altered
states of consciousness, and it is thus of interest to
test the effects of these drugs on a system that has
been so closely associated with consciousness.

Aims of the study

This study sought to investigate the acute brain
effects of LSD in healthy participants, using a pla-
cebo-controlled design. Resting-state fMRI was
used to investigate the effects of 100 lg orally
administered LSD on thalamic rFC. We further
tested the relationship between thalamic rFC mea-
sures and subjective LSD effects on ratings of
visual and auditory changes. Our hypothesis was
that LSD would increase thalamocortical connec-
tivity relative to placebo and that this effect would
be associated with the subjective LSD-induced
visual and auditory alterations.

Material and methods

We used a randomised, placebo-controlled, dou-
ble-blind cross-over design and a washout period
of at least 7 days between the two study sessions.
Each participant completed two study sessions.
The study was approved by the Ethics Committee
for Northwest/Central Switzerland (EKNZ) and
by the Federal Office of Public Health. Experi-
ments were undertaken with the understanding
and written consent of each subject. The study was
registered at clinicaltrials.gov prior to study start
(NCT02308969). Placebo and LSD were adminis-
tered orally at 9:00 am. The MRI scan took place
at 11:30 am (starting 2.5 h after administration of
placebo and LSD), taking into account the time to
peak effects of oral LSD (1, 6, 28).

Participants

Twenty-four participants completed the study.
Due to our quality assurance criteria (cumulative
head motion of >2 mm translation or >2° rotation
or considerable MRI image artefacts), we had to
exclude four subjects, resulting in a final sample of
20 participants (10 male, 10 female; mean age
32.4 � 10.9 years; range: 25–60 years, all right-
handed and all but one with university education).
The lifetime drug use of the 20 included subjects is
shown in Table S1. None of the participants tested
positive for any drug (including tetrahydro-
cannabinol) in the screening or test session. No
serious adverse reactions or events occurred during
the whole period of the study in any of the partici-
pants.
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Assessments of subjective drug effects and plasma levels

Subjective effects of LSD were measured 3 h after
administration of placebo or LSD, using the five
dimensions of altered states of consciousness (5D-
ASC) scale. The 5D-ASC was designed to measure
altered states of consciousness via visual analogue
scales and is well validated (29). Subjects were
asked to retrospectively rate subjective effects as
the administration of LSD and placebo. Blood was
collected into lithium heparin tubes 2 and 3 h after
administration of LSD and placebo respectively.
Blood samples were immediately centrifuged, and
plasma was rapidly stored at �20°C until analysis.
LSD concentrations in plasma were determined
using a validated liquid chromatography–tandem
mass spectrometry method (28).

Image acquisition and preprocessing

Scanning was conducted on a three Tesla MRI sys-
tem (Magnetom Prisma, Siemens Healthcare,
Erlangen, Germany), using a 20-channel phased
array radio frequency head coil. Functional MRI
acquisition was based on an interleaved T2*-
weighted echo planar imaging sequence, with 35
axial slices with a slice thickness of 3.5 mm, a 0.5-
mm interslice gap, a field-of-view of
224 9 224 cm2 and an in-plane image matrix size
of 64 9 64 – resulting in 3.5 9 3.5 9 3.5 mm3 res-
olution. To restrict motion, each participants head
was fixed using two foam wedges. The correspond-
ing repetition time was 1.8 s, echo time 28 ms and
bandwidth = 2442 Hz/pixel. Subjects were asked
to close their eyes and not to fall asleep. In total,
300 volumes were acquired (including five dummy
scan volumes to ensure signal stabilisation).

Processing was performed using SPM12 (http://
www.fil.ion.ucl.ac.uk/spm/) and the CONN func-
tional connectivity toolbox 16.b (http://www.nitrc.
org/projects/conn) (30). Five dummy scans were
excluded from any further processing, and the
remaining volumes were quality checked for severe
head motion and image artefacts. Subjects with
cumulative head motion of >2 mm translation or
>2° rotation were excluded. We further tested for
differences in head motion between drug and pla-
cebo sessions. Mean composite motion (a measure
for scan-to-scan movement) was 0.15 � 0.11 mm
(mean � SD) for the LSD condition and
0.13 � 0.07 mm (mean � SD) for the placebo
condition. There were no significant differences
between conditions (t = 1.10, P = 0.29; paired t
test, two tailed). Additionally, mean and maximum
movement was aggregated across all six motion
parameters and compared between conditions.

Again, no significant differences were found (mean
movement: t = �0.85, P = 0.42; maximal move-
ment: t = 1.60, P = 0.13; paired t test, two tailed).

All volumes were slice time corrected, realigned,
co-registered to the preprocessed T1-weighted
structural volume, normalised into a standard
stereotactic space (Montreal Neurological Insti-
tute) and smoothed with a 5 mm full width at half
maximum Gaussian kernel. Noise correction
included scrubbing (31) with a global signal thresh-
old of z > 3 and a composite subject motion
threshold of >0.5 mm using ART as implemented
in CONN, linear regression of the six motion
parameters, of the effects of each condition, and
the white matter and cerebrospinal fluid signals,
using individual tissue masks obtained from the
T1-weighted structural images. The resulting func-
tional images were band-pass filtered
(0.008 < f < 0.09 Hz).

Thalamic resting-state functional connectivity analysis

Three functional connectivity analyses were per-
formed: (i) an ROI-to-ROI (region of interest)
analysis using the left and right thalamus as sepa-
rate sources and ROIs covering the whole brain as
targets, (ii) a ROI-to-voxel analysis using the com-
bined ROIs of the the left and right thalamus as
the source and voxels covering the whole brain as
targets, (iii) lastly, global rFC was assessed by a
global correlation analysis. Global correlation is a
data-driven, whole brain measure for network cen-
trality, calculated by the averaged correlation coef-
ficients of each voxel to each other voxel of the
brain (30).

For all analysis, structural ROIs were defined
according to areas of the Harvard–Oxford atlas
for cortical and subcortical structures and the
automated anatomical labelling atlas for the cere-
bellum. For analysis i), rFC was assessed using
separate ROIs for the left and the right thalamus;
for analysis ii), a combined ROI for the left and
right thalamus was used. Targets of analysis i)
were a set of 130 ROIs covering the whole brain as
targets (see Supporting Information for more
details). Time courses were compared using bivari-
ate correlations. Effects of the drug and the pla-
cebo condition were estimated using two-tailed
one-sample t tests. Differences between conditions
were assessed using two-tailed paired t tests.
Results were corrected for multiple comparisons
across all ROI pairs (2 9 130), and all voxels,
respectively, using false discovery rate (FDR) pro-
cedures. Results were considered significant at a
threshold of P < 0.05 (FDR) for ROI-to-ROI-ana-
lysis. For voxel-based analysis ii) and iii), cluster
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size correction (P < 0.05, FDR) based on a clus-
ter-forming threshold of P < 0.05, FDR was
applied.

Relation with drug plasma concentrations and subjective effect
ratings and connectivity

Subsequently, individual plasma levels of LSD,
individual subjective ratings on visual and auditory
hallucinations and levels of vigilance were corre-
lated (Pearson0s r) with individual FC measures for
the contrast LSD > placebo.

Ratings on the 5-ASC major dimensions ‘vision-
ary restructuralization’ and ‘auditory alterations’
(the main scales for sensory alterations) were cor-
related with rFC measures between the thalamus
and regions known to be involved in auditory and
visual hallucinations respectively (32). Masks were
defined according to the Harvard–Oxford atlas for
cortical and subcortical structures and the auto-
mated anatomical labelling atlas for the cerebel-
lum. Masks of these meta-analytically (32)
identified regions (for visual hallucinations: right
and left lingual gyrus, right cuneus, right cerebel-
lum, right middle occipital gyrus and right fusi-
form gyrus; for auditory hallucinations: right and
left superior temporal gyrus, right and left insula,
right inferior frontal gyrus and right precentral
gyrus) were used to extract significant clusters
obtained in analysis ii) (cluster size corrected at
P < 0.05, FDR, based on a cluster-forming thresh-
old of P < 0.05, FDR). RFC measures between
the bilateral thalamus and ROIs (six for the analy-
sis of visual drug effects and six for the analysis of
auditory drug effects) were correlated with individ-
ual ratings on the 5-ASC major dimensions ‘vision-
ary restructuralization’ and ‘auditory alterations’
respectively. Results of each analysis were cor-
rected for multiple comparisons (FDR). Signifi-
cance was assumed at P < 0.05, FDR (two tailed).

Furthermore, rFC measures obtained in analysis
ii) (mean of all significant voxels) were correlated
with plasma levels of LSD obtained directly before
the MRI scan (2 h after administration), because
resting-state measures were the first sequence in
our protocol. Plasma levels were also correlated
with rFC measures between the thalamus and
ROIs found to be significantly associated with sub-
jective drugs. Statistical significance was assumed
at P < 0.05 (two tailed).

As alterations in thalamocortical rFC between
conditions might be due to differences in vigilance
between conditions (33–35), results of rFC analy-
ses (mean connectivity across all significant voxels
in ROI-to-voxel analysis, mean of all significant
voxels in global correlation analysis, rFC between

thalamus and right insula/fusiform gyrus) for the
LSD > placebo contrast were correlated with rat-
ings on the item ‘I felt sleepy’ of the 5D-ASC
(tenth item of the questionnaire) assessed under
both conditions (placebo condition: mean 12 �
SD 20.7%; LSD condition: mean 21.3 � SD
29.1%).

Calculations were performed using SPSS version
23.00 (IBM). Additional Methods and Materials
are provided in the Supporting Information.

Results

Plasma levels and subjective drug effects

Plasma concentrations of LSD were 0.0 � 0.0 ng/
ml (mean � SD) at baseline, 1.3 � 0.6 ng/ml
(mean � SD) at 2 h after administration (directly
before the MRI scan) and 1.1 � 0.5 ng/ml
(mean � SD) at 3 h after administration. Plasma
concentrations of LSD after administration of pla-
cebo were 0.0 � 0.0 ng/ml (mean � SD) at all
time points. LSD caused subjective alterations in
all lower-order scales of the 5D-ASC measured 3 h
after administration, directly after the MRI scan
(see Fig. 1). All ratings were significantly increased
compared with placebo (P < 0.01).

Functional connectivity analysis

ROI-to-ROI analysis showed significantly
increased rFC between the thalamus and regions
distributed across the whole brain under LSD,

Fig. 1. Effects of LSD 3 h after administration measured with
the major dimensions of the 5D-ASC. The graph shows the
mean of the ratings in per cent of the visual analogue scale
(ASC, altered states of consciousness total score; OB, oceanic
boundlessness; AED, anxious ego dissolution; VR, visionary
restructuralization; AA, auditory alterations; VIR, reduction
of vigilance). Error bars indicate � 1 standard deviation.
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relative to placebo (all P < 0.05, FDR). Overall
rFC between the left and right thalamus and 104
of 130 investigated regions was increased.
Decreased connectivity was found in one case
between the left thalamus and vermis 10 (see
Fig. 2a). For detailed results, see Table S2. Similar
patterns were observed for the right and the left
thalamus (see Figure S1).

The results obtained in the ROI-to-ROI analysis
were further investigated using a ROI-to-voxel
approach with the bilateral thalamus as the region
of interest. Under the placebo condition, we
observed connectivity patterns which were consis-
tent with previous findings (23). LSD significantly
increased rFC relative to placebo across various
regions, with pronounced clusters in the occipital
lobe. The results are shown in Fig. 2b; for detailed
results, see Table S3.

Global correlation analysis showed increased
network centrality in a cluster (841 voxels,

P < 0.000001, FDR) comprising the left and the
right thalamus (266 voxels, and 262 voxels respec-
tively), the left and right caudate (103 and 2 voxels
respectively) and the right putamen (41 voxels). A
second cluster (186 voxels, P < 0.000001, FDR)
comprised the left caudate (58 voxels), the left
putamen (48 voxels) and the left pallidum (8 vox-
els). Results are shown in Fig. 3.

Relation of thalamocortical connectivity to drug plasma levels and
subjective effect ratings

Plasma levels of LSD did not significantly correlate
with thalamocortical rFC measures derived in
ROI-to-voxel analysis ii) (r = 0.19, P = 0.42).

RFC measures between the thalamus and the
right fusiform gyrus correlated significantly with
ratings on the ‘visionary restructuralization’ scale
(r = 0.66, P = 0.008, FDR) and connectivity mea-
sures between the thalamus and the right insula

(b)(a)

Fig. 2. (a) Connectome ring showing the results of the ROI-to-ROI-analysis using the right and left thalamus as separate sources
and ROIs covering the whole brain as targets (Table S2 for ROI-labels). LSD significantly increased rFC between the left or right
thalamus and 104 of 130 investigated ROIs relative to placebo. Results were very similar for the right and left thalamus ROI (Fig-
ure S1). Results are corrected for multiple comparisons (P < 0.05, FDR) across all ROI-pairs (2 9 130). The colour bar represents
the t value. (b) ROI-to-voxel rFC analysis for the combined thalamus ROI. Positive rFC is shown in red, negative rFC is shown in
blue (P < 0.05, cluster size FDR-corrected on the basis of a cluster-forming threshold of P < 0.05, FDR). Right is right side of the
brain.
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correlated significantly with ratings on the ‘audi-
tory alterations’ scale (r = 0.60, P = 0.021, FDR).
Results are shown in Fig. 4. No significant correla-
tions were found between these rFC measures and
plasma levels of LSD (thalamus-right fusiform
gyrus: r = 0.42, P = 0.07; thalamus-right insula:
r = 0.16, P = 0.49).

The 5D-ASC item ‘I felt sleepy’ obtained under
the drug and the placebo condition did not signifi-
cantly correlate with any of the investigated rFC
measures (see Table S4).

Discussion

In this study, we have investigated the acute
effect of LSD on thalamic resting-state FC in
healthy subjects. Our key finding was that LSD
induced globally increased thalamocortical rFC
compared with placebo. Subjective drug effect
ratings on ‘visionary restructuralization’ and ‘au-
ditory alterations’ correlated significantly with
rFC measures between the thalamus and the

right fusiform gyrus and insula, two regions
known to be involved in visual and auditory hal-
lucinations respectively (32). No significant corre-
lations were found between these measures and
LSD plasma levels, which is in line with previous
findings on correlations of LSD plasma exposure
with subjective drug effects (see 36 and discussion
therein). Global correlation analysis indicated
that the bilateral thalamus and parts of the basal
ganglia showed significantly increased network
centrality after LSD administration compared
with placebo.

The notion that the thalamus might be a cru-
cial site of action of hallucinogens has been
under debate for years (7, 8). One important
model proposed that hallucinogenic drugs dis-
rupt thalamic gating and thalamocortical func-
tioning, which was compared with alterations in
psychosis (8). In this notion, both states are
characterised by a deficit in filter or gate internal
and external stimuli, leading to increased input
to the cortex. Previous neuroimaging studies
reported diverging effects of psilocybin, mesca-
line and DMT on the thalamus. Using different
imaging modalities, such as SPECT, PET and
fMRI, glucose metabolism and blood flow were
found to be decreased (9–11), unchanged (37,
38) or increased (12) in this studies. Consistently
with our findings, a recent fMRI study reported
increased global functional connectivity of thala-
mic subdivisions after the administration of LSD
(19). In contrast with our results, this study
additionally reported increased global functional
connectivity of several cortical regions. As these
authors used a ROI-to-ROI approach, they
might be capable to detect alterations in rFC

Fig. 3. Voxel-to-voxel global correlation analysis (P < 0.05,
cluster size FDR-corrected on the basis of a voxel-threshold of
0.05 FDR-corrected). Right is right side of the brain.

(a) (b)

Fig. 4. Correlations between acute LSD-induced thalamic rFC measures and subjective ratings on the (a) ‘visionary restructuraliza-
tion’ (VR) and (b) ‘auditory alterations’ (AA) scales.
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more sensitively than our approach (using an
ROI-to-voxel approach in combination with a
conservative threshold).

Functional significance of increased thalamocortical connectivity

The classical notion of the thalamus as a mere
relay for sensory information has been revised.
The cortex and thalamus form a complex system
of extensive and reciprocal connections, capable of
generating oscillatory rhythms (39). Corticothala-
mocortical pathways are thought to serve integra-
tion and transfer of information between cortical
regions, possibly via synchronisation (40). Activi-
ties of the thalamocortical system are also reflected
in rFC measured with rsfMRI. Thalamocortical
rFC was shown to be in relatively good aggree-
ment with the known anatomy (41), and specific
connectivity was observed between the thalamic
subdivions and known resting-state networks (42).
Although some links have been described, the rela-
tionship between electrophysiological measures
and rsfMRI connectivity is still a matter of debate.
Associations between connectivity measured by
local field potentials and BOLD rFC have been
described for a visual thalamocortical network
(43), with the highest association between BOLD
connectivity and fluctuations in low frequencies
(<20 Hz), particularly pronounced for the alpha
band. The same study also found that low-fre-
quency oscillations, especially alpha bands, modu-
lated gamma activity within regions of the
network, a phenomenon known as cross-frequency
coupling. Cross-frequency coupling (CFC; i.e. the
modulation of a frequency band by another fre-
quency band) is a relatively new field of interest, and
is thought to be important for large-scale integration
of local activity via regulation of local high-frequency
activity (44). CFC has also been described for frontal
(45) and parietal (46) thalamocortical systems. A
recent causality analysis reported that thalamic activ-
ity drives CFC within the thalamocortical system
(47). As regards function, thalamocortical interac-
tions via CFC have been implicated in memory for-
mation (48) and memory retrieval (49). Once again,
one of those studies found that the thalamus was the
source of the signal (49).

Potential mechanisms of increased thalamocortical rFC under LSD
exposure and relationship to subjective drug effects

Taken together, the available electrophysiological
data suggest that thalamocortical resting-state FC
best corresponds to fluctuations in low frequencies.
While slow frequencies are thought to serve large-
scale interactions, gamma frequencies represent

local processing (50). The observed increase in tha-
lamocortical rFC under LSD exposure might thus
represent large-scale interactions via slow frequen-
cies changes, which might facilitate local cortical
excitability, possibly via CFC. It can be speculated
that this mechanism is actually driven by signals of
thalamic origin (47). This model could explain cor-
relations between thalamocortical connectivity and
auditory and visual alterations observed in our
study. Interestingly, it has already been proposed
that synchronised thalamocortical oscillations
independent of sensory input may underlie halluci-
nations (51). Our findings could potentially explain
various other effects induced by LSD, some of
which have also been proposed to be associated
with dysfunction of the thalamocortical system,
including synthesthesia via coupling of qualita-
tively different sensory regions (52) or dream-like
states (53). However, we restricted our analysis to
auditory and visual drug effects, to limit multiple
comparisons.

A specific site of action for the observed effects
of LSD on thalamocortical connectivity might lie
in the reticular nucleus, a thin shell of inhibitory,
GABAergic neurons surrounding the dorsal thala-
mus. The reticular nucleus has also already been
proposed as a key element in the action of hallu-
cinogenic drugs (7) and in neural correlates of con-
sciousness (22, 26). LSD mainly acts by activation
of serotonin 5-HT2A-receptors (7), which are
expressed in all nuclei of the thalamus (54), includ-
ing the reticular nucleus (55). Several studies have
indicated that 5-HT2A-receptors often activate
inhibitory GABA neurons (7), and this has also
been specifically shown for the reticular nucleus
(55). The reticular nucleus is known to be involved
in thalamic oscillations and manipulation of this
system might probably alter synchronised thalamic
activity (56). The thalamus is also part of the cor-
tico-basal-ganglia-thalamo-cortical circuitry.
Besides its involvement in motor function, this cir-
cuitry has also been implicated in other functions
like emotions and cognition. The striatum (com-
prised of caudate and putamen) is the main input
structure of the basal ganglia and receives afferents
from various cortical regions (57). Output nuclei of
the basal ganglia mainly project to the thalamus
which then projects back to the cortex (57). Like in
the thalamus, 5HT2A-receptors are expressed in
the basal ganglia (54) and involvement of this cir-
cuitry in the mechanism of action of hallucinogenic
drugs has already been suspected (8). Global corre-
lation analysis in this study revealed significantly
increased global rFC of the striatum after the
administration of LSD. This observation could
suggest that the whole cortico-basal-ganglia-
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thalamo-cortical circuitry is involved in changes in
rFC induced by LSD.

The thalamus and the thalamocortical system
have been proposed as an important neural corre-
late of consciousness (22, 26, 27), a view that is
supported by various empirical findings (see Intro-
duction and Ward, 2011, for an overview). What is
critical to these models is the capacity of the thala-
mocortical system to integrate information via its
ubiquitous connections and its ability to exhibit
synchronised activity. These features are believed
to serve the integration of different sensations
(such as perception and memory) within one uni-
fied experience, which is one of the phenomenolog-
ical core features of consciousness. One prominent
model, the dynamic core theory, was formulated
by Edelman and Tonini (27). The dynamic core
represents a cluster of coherent neural activity that
integrates fractured activity of cortical regions via
synchronisation, but which changes over time, cor-
responding to different states of consciousness.
Although not necessarily restricted to it, the
dynamic core essentially involves the thalamocorti-
cal system. A second and more detailed model in
terms of neurophysiology was introduced by
Llin�as et al. (26). According to this model, con-
sciousness experience is based on coherent oscilla-
tions (~40 Hz) in the thalamocortical system.
Thalamocortical loops arising from specific thala-
mic nuclei are thereby thought to carry the ‘con-
tent’ (e.g. sensory information), while the
interaction with non-specific loops allows fusion
into a single consciousness experience. It is
remarkable that we found widespread alterations
caused by a drug known for its potency to alter
consciousness in a system that has been closely
linked to consciousness itself. Given the frame-
work of the models referred to, our findings might
be interpreted as recruitment of data that is usually
suppressed data, which enters consciousness by re-
entry into the thalamocortical system.

Our study has several limitations. We do not
provide dose-response data and used a moderate
dose of 100 lg LSD in a relatively small sample of
20 subjects. The treatment assignment was
unavoidably unblinded due to the obvious psy-
choactive effects of LSD. Moreover, the MRI envi-
ronment might have influenced the subjective drug
effects. We do not provide a causality analysis of
the thalamocortical interaction and restricted our
analysis to auditory and visual drug effects, to limit
multiple comparisons. Thalamocortical connectiv-
ity was investigated for both thalamic hemispheres;
however, it should be kept in mind that the time
courses of these structures are also correlated. Fur-
thermore, 5D-ASC major dimensions ‘visionary

restructuralization’ and ‘auditory alterations’ are
not specific for hallucinations, but also comprise
other drug effects. Ratings on the 5D-ASC did
cover the whole period as administration of pla-
cebo and LSD and thus did not correspond to the
duration of the MRI scan exclusively. We did not
specifically assess sleepiness during the fMRI but
used an item of the 5D-ASC which covered the
whole period since administration of placebo and
LSD. In comparison with previous investigations
of thalamocortical connectivity after administra-
tion of a hallucinogenic drug (18, 19), the strengths
of our study are the documentation of plasma
LSD concentrations, the absence of significant dif-
ferences in head movement between conditions
and a larger, sex-balanced and almost hallucino-
gen-na€ıve sample (only two subjects had had used
a hallucinogen before, both on only one occasion).
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Supporting Information

Additional Supporting Information may be found in the online
version of this article:
Figure S1. Connectome ring showing the results of the ROI-to-
ROI-analysis using the right (a) and left (b) thalamus as
sources and ROIs covering the whole brain as targets (see
Table S2 for ROI labels). Results are corrected for multiple
comparisons across all ROI-pairs (P < 0.05, FDR). The colour
bar represents the t value.
Table S1. Cumulative lifetime use by the included subjects of
legal and illicit drugs.
Table S2. Results of the ROI-to-ROI analysis using the right
and left thalamus as seeds and ROIs covering the whole brain
as targets. Results are corrected for multiple comparisons
across all ROI-pairs (2 9 130, P < 0.05, FDR).
Table S3. Results of the ROI-to-voxel using the bilateral thala-
mus as seed (cluster-size corrected (P < 0.05, FDR) on the
basis of a cluster-forming threshold of P < 0.05, FDR).
Table S4. Correlation between functional connectivity mea-
sures and the tenth item (“I felt sleepy”) of the 5D-ASC.
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