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Normalizing effect of heroin maintenance
treatment on stress-induced brain connectivity

André Schmidt,1,2,3 Marc Walter,1,3 Hana Gerber,1,3 Erich Seifritz,4 Rudolf Brenneisen,5

Gerhard A. Wiesbeck,1,3 Anita Riecher-Rössler,1,3 Undine E Lang1,3 and
Stefan Borgwardt1,2,3,6

Recent evidence has shown that a single maintenance dose of heroin attenuates psychophysiological stress responses in heroin-

dependent patients, probably reflecting the effectiveness of heroin-assisted therapies for the treatment of severe heroin addiction.

However, the underlying neural circuitry of these effects has not yet been investigated. Using a cross-over, double-blind, vehicle-

controlled design, 22 heroin-dependent and heroin-maintained outpatients from the Centre of Substance Use Disorders at the

University Hospital of Psychiatry in Basel were studied after heroin and placebo administration, while 17 healthy controls from the

general population were included for placebo administration only. Functional magnetic resonance imaging was used to detect brain

responses to fearful faces and dynamic causal modelling was applied to compute fear-induced modulation of connectivity within

the emotional face network. Stress responses were assessed by hormone releases and subjective ratings. Relative to placebo, heroin

acutely reduced the fear-induced modulation of connectivity from the left fusiform gyrus to the left amygdala and from the right

amygdala to the right orbitofrontal cortex in dependent patients. Both of these amygdala-related connectivity strengths were

significantly increased in patients after placebo treatment (acute withdrawal) compared to healthy controls, whose connectivity

estimates did not differ from those of patients after heroin injection. Moreover, we found positive correlations between the left

fusiform gyrus to amygdala connectivity and different stress responses, as well as between the right amygdala to orbitofrontal

cortex connectivity and levels of craving. Our findings indicate that the increased amygdala-related connectivity during fearful face

processing after the placebo treatment in heroin-dependent patients transiently normalizes after acute heroin maintenance treat-

ment. Furthermore, this study suggests that the assessment of amygdala-related connectivity during fear processing may provide a

prognostic tool to assess stress levels in heroin-dependent patients and to quantify the efficacy of maintenance treatments in drug

addiction.
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Introduction
Dysfunction of stress pathways increases relapse vulnerabil-

ity in drug-addicted individuals (Sinha, 2008). Stress-

induced drug craving and hypothalamus-pituitary-adrenal

axis responses are even predictive of the outcome of co-

caine relapse (Sinha et al., 2006), thus suggesting potential

biological markers for relapse propensity. The aversive

state in drug addiction is partly mediated by activation of

corticotropin-releasing factor in prefrontal and limbic brain

areas, such as the orbitofrontal cortex (OFC) and the

amygdala (Koob and Kreek, 2007; Koob, 2013). The

OFC has direct projections to the amygdala (Ghashghaei

et al., 2007) and is functionally connected with the amyg-

dala during the integration of emotional and motivational

information (Schoenbaum and Roesch, 2005). For ex-

ample, human neuroimaging studies reveal that the OFC

and the amygdala are coactivated during withdrawal-

induced craving (Koob and Volkow, 2010), probably

through downstream modulation of the OFC on limbic re-

gions (Rolls, 2004). OFC–amygdala interactions may thus

reflect connections of vulnerability that are susceptible to

relapses after periods of abstinence.

A study in heavy alcohol drinkers showed that acute al-

cohol ingestion reduced functional connectivity between the

right amygdala and OFC during fearful face processing

(Gorka et al., 2013), an effect that was only evident for

the right amygdala–OFC connectivity, whereas the left cou-

pling seemed to be sensitive only for positive emotions.

Given that acute alcohol intoxication reduces subjective

and physiological responses to stress (Sayette et al., 1992;

Hefner and Curtin, 2012), the authors concluded that this

reduced right amygdala-OFC interplay may lead to reduced

negative affect after alcohol intoxication (Gorka et al.,

2013). In the same vein, depressed patients with bipolar

disorder showed significantly greater right prefrontal–

amygdala connectivity during fearful face processing than

healthy controls, which was reduced after antidepressant

treatment (Perlman et al., 2012). These findings are in

line with studies showing the impact of stress on the

right OFC (Hanson et al., 2010) and on right OFC–amyg-

dala connectivity (Fan et al., 2014).

The prescription of pharmaceutical heroin has repeatedly

been found to be an effective treatment for severe heroin

addiction (van den Brink et al., 2003; Haasen et al., 2007;

Oviedo-Joekes et al., 2009) and for heroin addicts who

have failed to benefit from methadone maintenance treat-

ment (Blanken et al., 2010), although methadone mainten-

ance failures may often be due to low dosing levels (Strain

et al., 1993; Farré et al., 2002). Compared with healthy

control subjects, chronic heroin users exhibit increased

functional connectivity between the right amygdala and

the OFC during resting state (Ma et al., 2010). Although

recent evidence has demonstrated that a daily maintenance

dose of heroin acutely reduced levels of stress hormones,

withdrawal, craving and anxiety (Walter et al., 2013), it

has not yet been explored whether this heroin-induced at-

tenuation of psychophysiological stress responses is also

mirrored in reduced OFC-amygdala connectivity during

fearful processing, analogously to the effect of acute alco-

hol ingestion.

The processing of facial affects provides a suitable frame-

work for the study of OFC-amygdala interactions. That is,

fearful face processing underlies integrated activity between

the inferior occipital gyrus that receive input from the

retina, the fusiform gyrus, which already processes facial

valences, the amygdala and the ventral prefrontal cortex,

subsuming the OFC, which evaluates emotional stimuli

(Haxby et al., 2002; Fusar-Poli et al., 2009b). Within this

visual-limbic-prefrontal network, the amygdala is thought

to play a key role in the rapid detection of facial affect and

in orchestrating network integrity during evaluation of af-

fective stimuli (Adolphs, 2008; Pessoa and Adolphs, 2010).

It has been suggested that prefrontal regions, such as the

OFC, regulate amygdala activity during evaluation of emo-

tional face stimuli (Nomura et al., 2004). However, visual

processing of fearful face emotions is also mediated

through a re-entry mechanism of connections from the

visual cortex to amygdala and connections from the amyg-

dala to the visual cortex (Vuilleumier et al., 2004;

Herrington et al., 2011). This visual-limbic coupling

during fearful face processing can be increased by psycho-

social stress (Li et al., 2014) and hyper-connectivity be-

tween the amygdala and visual cortex may underlie

increased negative emotion processing and anxiety (Frick

et al., 2013). We have previously reported significant

heroin effects on amygdala activity during fear processing

in heroin-dependent patients compared to a placebo treat-

ment (acute heroin withdrawal) (Schmidt et al., 2014),

which suggests abnormalities in the underlying connectiv-

ity, in particular to the visual cortex (i.e. fusiform gyrus).

In this study, the objective was to detect how heroin

acutely modulated right OFC–amygdala connectivity com-

pared to a placebo treatment in heroin-dependent patients

(experimentally-induced state of acute withdrawal; Schmidt

et al., 2014) and healthy controls. In particular, we used

functional MRI and dynamic causal modelling (DCM;

Friston et al., 2003) to assess modulation of OFC–amyg-

dala connectivity during fearful face processing. DCM

explicitly allowed us to compute the directionality of fear-

induced connectivity among the face network (Dima et al.,

2011; Diwadkar et al., 2012; Volman et al., 2013) and

how this is altered after pharmacological manipulations

(Grefkes et al., 2010; Schmidt et al., 2013). Besides explor-

ing acute heroin effects on amygdala–OFC connectivity, the

second aim of this study was to address whether the acute

heroin effect on local amygdala activity (Schmidt et al.,
2014) was due to abnormal connectivity from the fusiform

gyrus. Finally, to validate the biological basis of our model,

we further tested whether the amygdala-related connectivity

strengths were related to previously reported psychophysio-

logical stress responses in these patients (Walter et al.,

2013). We hypothesized that heroin injection would
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by guest on N
ovem

ber 25, 2014
D

ow
nloaded from

 



reduce amygdala-related connectivity within the fear net-

work relative to the placebo treatment, in accompaniment

to its effect on psychophysiological stress responses (Walter

et al., 2013). Notably, fearful faces were not used to stress

participants, but rather to assess whether amygdala-related

connectivity strengths during fearful face processing differ-

entiated between the stress-related placebo treatment and

the heroin treatment.

Materials and methods
The presented DCM analyses are based on the functional MRI
data previously published by Schmidt et al. (2014). Details of
image acquisition and the mass-univariate statistical paramet-
ric mapping analyses are described in the previous publication
and in the Supplementary material. Here, we provide a sum-
mary of the participants’ characteristics, study design and de-
tails of data analysis with DCM and Bayesian model selection.
Furthermore, data on psychophysiological stress responses and
plasma levels were taken from recently published studies
(Walter et al., 2013, 2014). As these data had to be adapted
explicitly to subjects who completed the face paradigm, a brief
description of these methods is also provided.

Clinical trial registration information

Clinical trial information can be found at http://clinicaltrials.
gov/show/NCT01174927. Name: Effects of Diacetylmorphine
(DAM) on Brain Function and Stress Response. Number:
NCT01174927.

Participants

The study population consists of 17 healthy control subjects
[females/males: 4/13; mean age � standard deviation (SD):
42.2 � 2.6 years] and 22 patients with opioid dependence ac-
cording to ICD-10 criteria (females/males: 8/14; mean
age � SD: 41.1 � 7.2 years). All participants were smokers
and groups were matched for age [F(1,37) = 0.173;
P = 0.680], gender (�2 = 0.742; P = 0.389) and cannabis con-
sumption (four healthy control subjects and seven patients,
�2 = 0.325; P = 0.567). Patients had a past history of intraven-
ous heroin consumption, with current maintenance for at least
6 months, and with an unchanged heroin dose during the pre-
vious 3 months. In more detail, the patient age at first heroin
use was 19.09 � 3.27 years, with a current duration of de-
pendence of 21 � 6.40 years and a daily maintenance dose
of 309.55 � 121.48 mg (methadone-equivalent doses of
77.39 � 30.37 mg). Patients were excluded from participation
if they currently had additional physical diseases or a psychi-
atric disorder including other comorbid conditions such as
substance dependencies. We did not exclude patients with a
past history of psychiatric disorders or substance dependence.
Clinically experienced psychiatrists (M.W.) conducted a struc-
tured clinical interview for DSM-IV Axis II Disorders to assess
the diagnosis of comorbid personality disorders. Patients were
told to abstain from illicit drug consumption during the study
and to abstain from alcohol intake and smoking 72 and 2 h
before scanning, respectively. Thus, patients with a positive
alcohol breathalyzer test were excluded. Nevertheless, urine

samples of nine patients (no healthy controls) were tested posi-
tive for cocaine at one or both points of the measurement
(�2 = 9.041; P = 0.003). We have incorporated this potential
confounder into our analyses. Healthy control subjects were
recruited from the general population by advertisement in the
same geographical area. Participants who consumed 420 g
alcohol per day, or who had any psychiatric, neurological,
or severe medical illness history were excluded. After complete
description of the study to the subjects, written informed con-
sent was obtained.

Study design

Placebo and heroin were administered through an indwelling
intravenous catheter over a period of 30 s, using a cross-over,
double-blind, vehicle-controlled design. Heroin hydrochloride
was dissolved on site in 5 ml sterile water and aspirated into a
syringe, as previously described (Stohler et al., 1999). Each
patient was scanned twice, with a short interval between
scans (mean 9 � 3.8 days). Of the 22 patients included, 11
received heroin at the first scan and saline at the second.
Those subjects who received heroin before scanning were ad-
ministered vehicle after scanning, whereas the subjects who
received saline before scanning were administered heroin
after scanning. Patients received two doses of heroin per day,
one before/after scanning in the morning, and one in the even-
ing. Thus, the last regular heroin injection was 12 h before the
experiment. The healthy controls participated only in the pla-
cebo condition.

Fear processing paradigm

Study subjects participated in one 6-min experiment with
event-related functional MRI (Fusar-Poli et al., 2009a), in
which they were presented with 10 different facial identities,
each expressing 50% or 100% intensities of fear or a neutral
expression.(Young et al., 2002). There were thus 30 different
facial stimuli in total; each face was presented twice for 2 s.
The order of facial identities and expression type was pseudo-
randomized, such that there was no successive presentation of
the same facial expression type. The interstimulus interval was
varied from 3 to 8 s according to a Poisson distribution, with
an average interval of 5.9 s; the individuals then viewed a fix-
ation cross. The face paradigm was conducted �30 min after
treatments.

Assessment of psychophysiological
stress responses and plasma levels

Craving (‘desire to use heroin’) was assessed 60 min after pla-
cebo/heroin treatment using the 45-item Heroin Craving
Questionnaire (Tiffany, 1999), which measures positive and
negative aspects of craving on five theory-derived nine-item
scales. The German version of the State-Trait Anxiety
Inventory was used to quantify state-anxiety after both treat-
ments in patients as well as in healthy controls (Spielberger
et al., 1970). Symptoms of withdrawal were reported on a
visual analogue scale (values ranging from 0 to 10). Samples
of adrenocorticotropic hormone and cortisol were collected
through an intravenous catheter at baseline, 20 and 60 min
after substance administration. Salivary cortisol was analysed
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with a time-resolved immunoassay with fluorescence detection.
Total cortisol concentrations were measured in serum with the
Immulite 2000 Cortisol-Test (Siemens). The measurement
range of the test is at 1–50 mg/dl; the analytical sensitivity is
0.20 mg/dl. Adrenocorticotropic hormone (ACTH) was mea-
sured in EDTA plasma with the ACTH Immulite-Test
(Siemens). The intra-assay precision was 56.1% for concen-
trations 450 pg/ml; the interassay precision was 9.4% for con-
centrations 451 pg/ml. The plasma concentrations of heroin
(diacetylmorphine) and morphine were measured in venous
ammonium-heparinized plasma and assessed using high-
performance liquid chromatography on a 125 � 2 mm i.d.
Nucleosil 50 C-8 ec column with a particle size of 5mm and
a 8 � 3 mm i.d. precolumn packed with Nucleosil 120 C-8 and
a particle size of 3 mm followed by diode-array detection.
Sample preparation and instrumental conditions were as
described previously (Bourquin et al., 1999).

Network connectivity analysis

Dynamic causal modelling

DCM (Friston et al., 2003) is a generic Bayesian system iden-
tification technique used to compute effective connectivity be-
tween brain regions for inferences related to ‘hidden’
neurophysiological mechanisms. In DCM for functional MRI,
the dynamics of the neural states underlying regional blood
oxygen level-dependant response are modelled by a bilinear
differential equation that describes how the neural states (x)
change over time (t) as a function of endogenous interregional
connections (matrix A), as well as modulatory effects on these
connections (matrix B), and driving inputs (matrix C) (Friston
et al., 2003; Stephan et al., 2007). The endogenous connec-
tions represent coupling strengths in the absence of input to
the system, whereas the modulatory effects represent task-spe-
cific alterations in this connectivity. In this study, we focused
on the fear-induced modulation of visual-limbic-prefrontal
connections (modulatory effect), but also examined heroin ef-
fects on endogenous connections and driving inputs.

f x;uð Þ ¼
dx

xt
¼ Aþ

Xm
i¼1

uBðjÞ

 !
xþ Cu

Volumes of interest

We selected visual-limbic-prefrontal volumes of interest in ac-
cordance with previous DCM studies of emotional face pro-
cessing (Fairhall and Ishai, 2007; Dima et al., 2011;
Herrington et al., 2011; Goulden et al., 2012; Sladky et al.,
2013; Volman et al., 2013). In particular, these volumes of
interest comprised the bilateral fusiform gyrus and amygdala
and the right OFC. The bilateral fusiform gyrus and amygdala
were selected based on studies indicating bilateral activity in
these regions during fearful versus neutral face processing
(Fusar-Poli et al., 2009b). As the aim of this study was to
explore whether the acute heroin-induced reduction of stress
hormone release, craving and anxiety, was reflected in altered
brain connectivity during fearful face processing, we only
incorporated the right OFC as prefrontal region into our
model, on the basis of following sources: (i) evidence showing
that the right OFC can be critically influenced by stress

(Hanson et al., 2010), as well as its connectivity to the right
amygdala (Fan et al., 2014); (ii) a previous study in heavy
alcohol drinkers, which showed that acute alcohol ingestion
reduced functional connectivity between the right amygdala
and right OFC during fearful face processing (Gorka et al.,
2013), thus suggesting that this reduced right amygdala–OFC
connectivity may lead to reduced negative affect after alcohol
intoxication (Sayette et al., 1992; Hefner and Curtin, 2012). In
this study, we tested whether acute heroin treatment in de-
pendent patients induced a similar effect; and (iii) previous
studies emphasizing the association of the right OFC during
states of drug craving (Volkow et al., 1999). The coordinates
were based on the maxima across all subjects for the contrast
of fearful minus neutral faces within the same anatomical area
as defined by the PickAtlas toolbox (Fig. 1A) (Maldjian et al.,
2003). For each subject, time series from these regions of inter-
est were extracted within spheres of 10-mm radii centred on
the peak for the effects of interest F contrast (P5 0.05, ad-
justed) as previously performed (Sladky et al., 2013).

Defining model architecture

Starting from this initial model, we created three different vari-
ations per model, in which fearful faces (modulatory effect)
were allowed to modulate the endogenous connections
(Fig. 1B). All presented stimuli (neutral and fearful faces)
were entered into the bilateral fusiform gyrus, the visual
input region of our model. These three variations, namely
modulation of (i) forward connection; (ii) backward connec-
tion; or (iii) both were guided by studies emphasizing the
modulation of bottom-up or top-down connectivity induced
by facial affect among the fusiform gyrus, amygdala and
OFC (Nomura et al., 2004; Vuilleumier et al., 2004; Fairhall
and Ishai, 2007; Dima et al., 2011; Herrington et al., 2011).
Although previous studies indicated interhemispheric func-
tional connectivity between the fusiform gyrus and the amyg-
dala (Irwin et al., 2004; Davies-Thompson and Andrews,
2012), this interhemispheric visual and limbic coupling has
been found during resting state and during the presentation
of faces versus objects or places. In other words, while the
model captured inter-hemispheric visual and limbic connectiv-
ity induced by the driving input of all stimuli, fearful faces
were not allowed to modulate these interhemispheric endogen-
ous connections. A graphical overview of our model architec-
ture is depicted in Fig. 1.

Bayesian model selection and averaging

Bayesian model selection is an essential procedure of DCM
studies, as it can be used to test competing hypotheses for
the neural mechanisms generating the data. Bayesian model
selection rests on comparing the evidence of a predefined set
of models (the model architecture). A random-effects Bayesian
model selection approach has been suggested for group studies,
as this is capable of quantifying the degree of heterogeneity in
a population, while being extremely robust to potential out-
liers (Stephan et al., 2009). The probability that one model is
more likely than any other model can be expressed by the
exceedance probability of each model. After inferring the
most likely network architecture underlying a specific neural
process, one can compare the parameter estimates obtained
from Bayesian model selection for between-group inferences.

Statistical comparison of model parameter estimates across
groups is only valid if those estimates stem from the
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same model. If different models or families are found to be
optimal across groups, Bayesian model averaging has been
recommended as the standard approach for clinical DCM stu-
dies (Seghier et al., 2010; Stephan et al., 2010). Bayesian
model averaging averages posterior parameter estimates over
models, weighted by the posterior model probabilities
(Penny et al., 2010). Thus, models with a low posterior prob-
ability contribute little to the estimation of the marginal
posterior.

Group statistics of dynamic causal modelling

parameters

After Bayesian model averaging, we used the resulting poster-
ior means from the averaged DCM for examining differences
among groups. Statistical analysis of group differences in con-
nection strengths concerned the posterior means of coupling
estimates, when using Bayesian model averaging for all three
models. In other words, we compared the parameter estimates
from participant-specific DCMs that were averaged over the
three models (by using Bayesian model averaging) separately
within each group and treatment. Thus, we were able to test
for differences in 12 parameters describing the endogenous
connections (matrix A), study how eight of these parameters
were modulated by fearful faces (modulatory effect, matrix B),
and use two parameters to describe the driving input bilateral
into the fusiform gyrus. Paired t-tests were used to compare
the heroin and placebo treatment in patients, whereas two
sample t-tests were used to compare patients with healthy

control subjects. The statistical threshold was adjusted for
multiple comparisons using the Bonferroni correction.
Thus, the threshold was adjusted by dividing the P-value by
the number of connections tested (12, eight and two,
respectively).

Results

Network connectivity analysis

Optimal model search

Model 2, incorporating the modulation of backward

connections, was clearly the best fitting model in healthy

controls (exceedance probability: 70%). Although Model 2

was also superior to other models after the heroin

treatment (exceedance probability: 36%), it was only

marginally superior to Model 1 (exceedance probability:

34%) and Model 3 (exceedance probability: 30%). In the

placebo condition, there was a preference for Model 1

(modulation of forward connections) (exceedance

probability: 40%), followed by Model 3 (exceedance

probability: 30%) and Model 2 (exceedance probability:

29%). Bayesian model selection results are depicted in

Fig. 2.

Figure 1 Model architecture. (A) Task-related brain activation within the anatomical mask during fearful versus neutral face processing in the

right (x = 32, y = �70, z = �10; cluster size 895) and left fusiform gyrus (x = �38, y = �62, z = �22; cluster size 1081), right (x = 26, y = �4,

z = �14; cluster size 271) and left amygdala (x = �20, y = �2, z = �22; cluster size 229) and right OFC (x = 34, y = 24, z = �8; cluster size

736). Activations are corrected for FWE cluster-level at P5 0.05 with a voxel-level threshold of P5 0.001. (B) Specification of model archi-

tecture. The sources comprising the models were the bilateral fusiform gyrus (FG), bilateral amygdala (AMG) and right OFC. From this basic

layout, three models were created by considering where the modulatory effect of fearful faces might be expressed, namely on forward (M1),

backward (M2) or bilateral connections (M3) among the visual-limbic-prefrontal network.
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Heroin effects on driving input and
endogenous connections

We found no heroin effect on driving inputs relative to the

placebo treatment in patients, neither for the input into

the left [t(21) = 0.207, P = 0.838] nor for the input into

the right fusiform gyrus [t(21) = �0.608, P = 0.550].

Relative to healthy controls, no significant effects on the

driving inputs were found after heroin [left fusiform

gyrus: F(1,37) = 0.744, P = 0.872; right fusiform gyrus:

F(1,37) = 0.003, P = 0.255] and placebo treatment in pa-

tients [left fusiform gyrus: F(1,37) = 0.534, P = 0.973;

right fusiform gyrus: F(1,37) = 0.815, P = 0.558].

No significant differences were found between the heroin

and placebo treatment in patients regarding endogenous

connections, or between the heroin treatment in patients

and healthy controls. Compared with healthy controls,

patients after placebo treatment manifested increased con-

nectivity from the left fusiform gyrus to the left amygdala

[F(1,37) = 6.183, P = 0.029, uncorrected for multiple com-

parisons]. Posterior parameters after Bayesian model aver-

aging for driving inputs and endogenous connections are

depicted in Table 1.

Heroin effect on the fear-induced
modulation of connectivity

Relative to placebo in patients, heroin significantly reduced

the fear-induced modulation of connectivity from the left

fusiform gyrus to the left amygdala [t(21) = 2.95,

P = 0.006, corrected for multiple tests] and from the right

amygdala to the right OFC [t(21) = 2.38, P = 0.027, uncor-

rected] (Fig. 3). Importantly, this heroin effect was found to

be independent of whether patients consumed cocaine

(n = 9) [fusiform gyrus!amydgala: F(1,8) = 4.46,

P = 0.002, corrected; amygdala!OFC: F(1,8) = 2.44,

P = 0.041, uncorrected] or not (n = 13) [fusiform gyr-

us!amydgala: F(1,12) = 3.02, P = 0.011, uncorrected;

amygdala!OFC: F(1,12) = 2.19, P = 0.049, uncorrected].

Compared with healthy controls, patients under placebo

exhibited a significantly higher fear-induced modulation of

connectivity from left fusiform gyrus to the amygdala

[F(1,37) = 19.16, P = 0.002, corrected] and from the right

amygdala to the right OFC ([F(1,37) = 3.89, P = 0.045, un-

corrected] (Fig. 3). It is noteworthy that these increased

connectivity estimates were evident in patients without [fu-

siform gyrus!amydgala: F(1,28) = 14,69, P = 0.001, cor-

rected; amygdala!OFC: F(1,28) = 3.18, P = 0.046,

uncorrected] or with cocaine consumption [fusiform gyr-

us!amydgala: F(1,24) = 10,03, P = 0.001, corrected;

amygdala!OFC: F(1,24) = 0.73, P = 0.048]. No difference

was found between healthy controls and patients under

heroin, regardless of whether cocaine was consumed or

not. Bayesian model averaging results for each treatment

separately are summarized in Table 2.

Plasma levels

Heroin (diacetylmorphine) plasma concentrations decreased

from 898 ng/ml (SD: 807) to 170 (SD: 260) and 8 (SD: 33)

ng/ml at 3, 10 and 60 min, respectively. 6-Acetylmorphine

exhibited a similar time-concentration profile to that of

Figure 2 Bayesian model selection results. Bayesian model selection results among all three dynamic causal models. The models differed in

whether they included fear-induced modulation of forward (Model 1), backward (Model 2) or both forward and backward connections (Model 3)

among the visual-limbic-prefrontal network. Results for each treatment are expressed in terms of exceedance probability, the relative probability

that this model is more likely than any other of the models tested, given the treatment data.
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Table 1 DCM driving inputs and endogenous connections

Healthy controls Placebo treatment Heroin treatment

Driving inputs

Left FG �0.0187 (0.0224)* �0.0185 (0.0243)* �0.0206 (0.0338)*

Right FG �0.0264 (0.0272)* �0.0120 (0.0248)* �0.016732 (0.0240)*

Endogenous connections

Left FG!right FG �0.0068 (0.0830) 0.0474 (0.0929)* 0.0353 (0.1206)

Left FG!left AMG 0.1500 (0.0626)* 0.0626 (0.1452) 0.1535 (0.1071)*

Right FG!left FG 0.0053 (0.1322) 0.0643 (0.1233)* 0.0564 (0.0996)

Right FG!right AMG 0.0084 (0.1876) 0.0278 (0.1405) 0.1105 (0.1242)*

Right FG!OFC 0.0679 (0.1572) 0.0065 (0.1728) 0.0943 (0.1008)*

Left AMG!left FG �0.0024 (0.0345) �0.0034 (0.0416) 0.0028 (0.0478)

Left AMG!Right AMY 0.0061 (0.0316) 0.0123 (0.0198)* 0.0209 (0.0308)*

Right AMG!Right FG �0.0005 (0.0395) 0.0074 (0.0422) �0.0017 (0.0378)

Right AMG!left AMG 0.0141 (0.0212)* 0.0134 (0.0310) 0.0313 (0.0332)*

Right AMG!OFC 0.0120 (0.0120)* 0.0174 (0.0364)* 0.0170 (0.0280)*

OFC!right FG �0.0135 (0.0235)* 0.0071 (0.0397) 0.0005 (0.0269)

OFC!right AMG 0.0137 (0.0420) 0.0214 (0.0370)* 0.0155 (0.0237)*

Values are mean (SD). Values were obtained after Bayesian model averaging across all three dynamic causal models. FG = fusiform gyrus; AMG = amygdala.

*Significant t-tests within each group compared with zero (P’s5 0.05).

Figure 3 Differences in fear-induced modulation of effective connectivity among groups and treatments. Fear-induced modula-

tion of the left fusiform gyrus!amygdala and right amygdala!OFC connectivity for each treatment condition. Significant differences between

healthy controls and patients after placebo and heroin administration are indicated at *P5 0.05 uncorrected and at **P5 0.00625 corrected for

multiple comparisons. Error bars indicate standard errors. FG = fusiform gyrus; AMG = amygdala.

Table 2 DCM parameter estimates for the modulation of connectivity induced by fearful faces

Modulatory parameters Healthy controls Patients under placebo Patients under heroin

Left FG!Left AMG 0.0084 (0.0129)* 0.0471 (0.0502)* 0.0055 (0.0330)

Right FG!Right AMG �0.0063 (0.0229) 0.0055 (0.0595) 0.0145 (0.0359)

Right FG!Right OFC �0.0099 (0.0332) 0.0245 (0.0813) �0.0063 (0.0512)

Left AMG!Left FG �0.0052 (0.0246) �0.0013 (0.0114) 0.0020 (0.0119)

Right AMG!Right FG �0.0002 (0.0119) 0.0009 (0.0120) �0.0017 (0.0095)

Right AMG!Right OFC 0.0001 (0.0081) 0.0072 (0.0114)* �0.0011 (0.0104)

Right OFC!Right FG �0.0031 (0.0066) 0.0014 (0.0117) �0.0006 (0.0059)

Right OFC!Right AMG 0.0037 (0.0104) 0.0009 (0.0095) 0.0015 (0.0097)

Values for the modulatory effect of fearful faces were obtained after Bayesian model averaging across all three dynamic causal models. FG = fusiform gyrus;

AMG = amygdala; *Significant t-tests within each group compared with zero (P’s5 0.05).
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diacetylmorphine, decreasing from 910 ng/ml (SD: 549) to

317 ng/ml (SD: 167) and 60 ng/ml (SD: 33) at 3, 10 and

60 min, respectively. In contrast, the mean concentrations

of morphine at 3, 10 and 60 min after heroin injection were

349 ng/ml (SD: 140), 295 ng/ml (SD: 122), and 217 ng/ml

(SD: 92), respectively. Morphine-6-b-D-glucuronide plasma

concentrations steadily increased over the study period,

from 140 ng/ml (SD: 25) to 235 ng/ml (SD: 28) and

509 ng/ml (SD: 44) at 3, 10 and 60 min, respectively.

Plasma levels are depicted in Fig. 4.

Psychophysiological stress responses

The results of stress hormone release have already been

published (Schmidt et al., 2014), but we report them here

for the sake of completeness. Significantly lower levels of

craving [t(21) = 8.32, P = 0.0001], withdrawal symptoms

[t(21) = 6.64, P = 0.0001], state-anxiety [t(21) = 6.17,

P = 0.001], as well as concentrations of serum cortisol

[t(21) = 4.95, P = 0.0001], saliva cortisol [t(21) = 4.47,

P = 0.0002] and adrenocorticotropic hormone

[t(21) = 5.17, P = 0.001] were observed after heroin relative

to the placebo treatment in patients. Healthy controls

showed significantly lower anxiety scores than patients

under placebo [F(1,37) = 5.38, P = 0.0001], whereas no dif-

ference was found in patients after heroin administration

[F(1,37) = 3.55, P = 0.072]. Compared with healthy con-

trols, patients exhibited significantly higher levels of adre-

nocorticotropic hormone [F(1,37) = 16.80, P = 0.001],

serum cortisol [F(1,37) = 1.02, P = 0.0027], and salivary

cortisol [F(1,37) = 4.52, P = 0.001] after placebo treatment,

whereas patients under heroin showed significantly lower

levels of adrenocorticotropic hormone [F(1,37) = 0.004,

P = 0.0001] but not of serum cortisol [F(1,37) = 5.41,

P = 0.694] or salivary cortisol [F(1,37) = 2.65, P = 0.831].

These parameters were not related to the results for plasma

levels.

Relation between amygdala connec-
tivity and stress responses

Across patients, we found significant positive correlations

between the left fusiform gyrus!amygdala connectivity

and levels of state-anxiety (r = 0.415, P = 0.005, corrected),

craving (r = 0.373, P = 0.013, uncorrected), withdrawal

symptoms (r = 0.450, P = 0.002, corrected), serum cortisol

(r = 0.309, P = 0.042, uncorrected) and adrenocorticotropic

hormone (r = 0.468, P = 0.001, corrected) (Fig. 5A). The

right amygdala!OFC connectivity also correlated posi-

tively with levels of craving (r = 0.418, P = 0.005, uncor-

rected) (Fig. 5B).

No relationships were found between connectivity esti-

mates and plasma levels.

Discussion
This paper presents a model-based investigation of amyg-

dala-related connectivity that underlies the emotional regu-

lation effect of heroin substitution in dependent patients.

Our findings showed that stress-related placebo treatment

in patients was accompanied by significantly increased fear-

induced modulation of left fusiform gyrus!amygdala and

right amygdala!OFC connectivity. Critically, heroin ad-

ministration reduced both of these amygdala-related con-

nectivity strengths to a level that did not differ from those

Figure 4 Plasma concentrations after acute heroin treatment. Plasma concentrations (mean � SE) of heroin (diacetylmorphine,

DAM), morphine, 6-acetylmorphine (6AM) and morphine-6-b-D-glucuronide (M6G) 3, 10 and 60 min after heroin administration.
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by guest on N
ovem

ber 25, 2014
D

ow
nloaded from

 



of healthy controls. Given that corticotropin-releasing fac-

tors are recruited in the amygdala during the stage of with-

drawal (Koob and Kreek, 2007; Koob, 2013), as reflected

here by the placebo condition, the heroin-induced reduction

of amygdala-related connectivity relative to the placebo

treatment was probably driven by the attenuation of

stress hormone release after heroin administration in these

patients (Walter et al., 2013). Indeed, we found a positive

relation between fusiform gyrus!amygdala connectivity,

state-anxiety, withdrawal symptoms and stress hormone re-

lease across all patients, which supports the biological real-

ism of our model.

Our connectivity findings add to recent evidence that

the left amygdala response to fearful faces correlates

significantly with psychophysiological stress responses

in heroin-dependent patients (Schmidt et al., 2014).

The present analyses suggest a more fine-grained mechan-

istic interpretation of this relationship, namely that the

increased left amygdala activity during acute heroin with-

drawal (placebo treatment) may be the result of increased

input from the fusiform gyrus induced by fearful faces.

This finding of pronounced fear-induced visual-limbic inter-

play in the anxious withdrawal state corresponds with the

increased connectivity between the fusiform gyrus and

amygdala during the resting state in other psychiatric con-

ditions, such as social anxiety disorder (Liao et al., 2010).

In accordance with this, functional connectivity analyses

have shown that visual-limbic coupling during fearful

Figure 5 Relation between modulation of connectivity by fearful faces and psychophysiological stress responses. Significant

positive correlations between the modulatory effect induced by fearful faces and stress responses across patients. (A) Correlation between left

fusiform gyrus!amygdala connectivity and levels of state-anxiety (top left; r = 0.415, P = 0.005, corrected), craving (middle left; r = 0.373,

P = 0.013, uncorrected), withdrawal symptoms (top right; r = 0.450, P = 0.002, corrected), adrenocorticotropic hormone (bottom left; ACTH,

r = 0.468, P = 0.001, corrected) and cortisol (middle right; r = 0.309, P = 0.042, uncorrected). (B) Correlation between amygdala!OFC con-

nectivity and levels of craving (r = 0.418, P = 0.005, uncorrected). FG = fusiform gyrus. Red dots represent the placebo treatment, while blue dots

represent the heroin treatment.
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face processing can be increased by psychosocial stress

(Li et al., 2014). Furthermore, a recent study showed that

non-relapse participants exhibited reduced resting state

functional connectivity between the amygdala and visual

processing regions compared to controls and relapsed

cocaine-addicted participants, which suggests that this

may be a marker of early relapse risk (McHugh et al.,

2014). Our results thus suggest that the stress-related

state during acute heroin withdrawal is accompanied by

increased fear-induced modulation of visual-limbic connect-

ivity. Crucially, heroin injection normalized this connectiv-

ity, as no difference from healthy controls was observed,

which may point to a negative reinforcement mechanism at

the neural system level.

Furthermore, relative to the placebo treatment in pa-

tients, heroin injection also reduced the right amygdala–

OFC connectivity, giving a level comparable to that

observed in healthy controls. It is interesting that the

degree of amygdala!OFC connectivity was positively

related to patients’ craving behaviour. This result is consist-

ent with evidence demonstrating functional connectivity be-

tween the OFC and amygdala during withdrawal-induced

craving (Koob and Volkow, 2010). The contribution of the

OFC to heroin craving has further been demonstrated in a

previous PET study (Sell et al., 2000). The OFC seems to

be important for stress-induced reinstatement of drug-seek-

ing, i.e. it drives the motivation for new drug intake

(Schoenbaum and Shaham, 2008), during which it is recip-

rocally connected with the amygdala (Lasseter et al., 2009).

Therefore, the finding of increased amygdala!OFC con-

nectivity during acute heroin withdrawal may indicate

that there is both stress-induced increase in heroin craving

and resulting reinforced motivation for renewed heroin

intake. This stress-induced compulsion to consume the

drug was normalized by acute heroin administration, as

indicated by reduced amygdala–OFC connectivity. In con-

trast to this acute heroin-induced normalization of OFC–

amygdala connectivity in heroin-dependent patients, a

previous investigation in methadone-maintained patients

showed that the OFC still remained high in response to

heroin-related cues after the daily methadone dose

(Langleben et al., 2008), which suggested that methadone

maintenance patients remain at risk for relapse into illicit

heroin use. Thus, in accordance with data supporting the

superiority of heroin compared to methadone maintenance

in severely opioid-dependent subjects, especially if treat-

ment is maintained for 12 months or longer (van den

Brink et al., 2003; Oviedo-Joekes et al., 2009), heroin-

induced normalization of OFC connectivity may reflect a

benefit compared to methadone maintenance treatment in

preventing relapses to self-administrations in prone pa-

tients. However, this is clearly a speculative observation

at the present time and it is important to emphasize that

we do not wish to make any claims here for an advantage

of heroin maintenance therapy over methadone mainten-

ance therapy. The results from the two studies are not dir-

ectly comparable, owing to a number of major

methodological differences, including different measure-

ment protocols and fundamentally different paradigms.

For instance, Langleben et al. (2008) measured functional

MRI responses to heroin-related cues pre- and post-treat-

ment, whereas we used a fearful face task to assess stress

responses after heroin and placebo administration.

There are important limitations to our studies. Effective

connectivity was computed using a fairly simplistic neur-

onal face network, without considering, for example, the

precuneus or a more detailed partitioning of visual face-

sensitive processing areas, as done in previous DCM studies

(Fairhall and Ishai, 2007; Dima et al., 2011). However,

given the impact of stress, craving and anxiety on visual-

limbic and prefrontal-limbic connections (Koob and

Volkow, 2010; Frick et al., 2013; Fan et al., 2014; Li

et al., 2014) and that heroin acutely reduced levels of

stress hormones, withdrawal, craving and anxiety (Walter

et al., 2013), we were explicitly interested in how heroin

acutely modulated fear-induced modulation of fusiform

gyrus-amygdala and amygdala–OFC connectivity.

Nevertheless, including more visual regions implicated in

face processing—such as the inferior occipital gyrus—may

influence how information enters into the fusiform gyrus

and propagates further across the network. In this respect,

there is evidence that fusiform gyrus activity decreases with

increasing repetitions of faces (Reber et al., 2005), which is

perhaps reflected by the negative driving inputs into the

fusiform gyrus in this study. Repeated exposure to identical

emotional faces also modulates fusiform gyrus-amygdala

connectivity (Herrington et al., 2011). It is therefore im-

portant in further studies to address how such priming ef-

fects evolve across different visual processing areas and

propagate further to the limbic and prefrontal system.

Furthermore, because of the cross-sectional design of this

study, we were not able to infer how this acute heroin

effect on amygdala-related connectivity developed over

the duration of the maintenance therapy and how long it

lasted. This should be addressed in longitudinal studies and

compared with long-acting steady-state managements, such

as methadone maintenance therapies using adequate metha-

done dosing levels, given that high doses of methadone

were more effective than low doses in the reduction of illicit

opioid use (Strain et al., 1999; Farré et al., 2002). A dis-

tinction must be drawn between the placebo-induced state

of withdrawal in the current study and the withdrawal state

in active drug users. Although the experimentally induced

increase in withdrawal signs after placebo treatment

allowed us to study negative reinforcement mechanisms,

this approach also impedes clinical inferences. Therefore,

further analyses of this sort are needed in various levels

of withdrawal, as well as before and after substitution

treatments. Expectation effects might have influenced our

findings, given that healthy controls were aware that they

were going to receive a placebo treatment only. Finally, we

cannot exclude the possibility that some of the patients had

a history of psychiatric disorder, including other comorbid

conditions, which is a potential confounding factor.

10 | BRAIN 2014: Page 10 of 12 André Schmidt et al.
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In conclusion, our findings extend previous evidence for

hyperactive amygdala-related network connectivity in ab-

stinent heroin addicts (Xie et al., 2011) and suggest that

the stressful state during acute heroin withdrawal is asso-

ciated with increased amygdala-related connectivity during

fearful face processing. The results further indicate that a

single dose of heroin to heroin-maintained patients transi-

ently normalizes amygdala-related brain connectivity

during fearful face processing. More research with follow-

up measurements is required to quantify whether the re-

cording of amygdala-related connectivity during fearful

face processing may provide a prognostic tool to assess

stress levels in heroin-dependent patients before and after

maintenance treatments.
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