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ARTICLE

Highly modified and immunoactive N-glycans
of the canine heartworm
Francesca Martini1, Barbara Eckmair 2, Saša Štefanić3, Chunsheng Jin4, Monika Garg5, Shi Yan 2,6,

Carmen Jiménez-Castells2, Alba Hykollari 2, Christine Neupert7, Luigi Venco8, Daniel Varón Silva 5,

Iain B.H. Wilson 2 & Katharina Paschinger 2

The canine heartworm (Dirofilaria immitis) is a mosquito-borne parasitic nematode whose

range is extending due to climate change. In a four-dimensional analysis involving HPLC,

MALDI-TOF–MS and MS/MS in combination with chemical and enzymatic digestions, we

here reveal an N-glycome of unprecedented complexity. We detect N-glycans of up to 7000

Da, which contain long fucosylated HexNAc-based repeats, as well as glucuronylated

structures. While some modifications including LacdiNAc, chitobiose, α1,3-fucose and

phosphorylcholine are familiar, anionic N-glycans have previously not been reported in

nematodes. Glycan array data show that the neutral glycans are preferentially recognised by

IgM in dog sera or by mannose binding lectin when antennal fucose and phosphorylcholine

residues are removed; this pattern of reactivity is reversed for mammalian C-reactive protein,

which can in turn be bound by the complement component C1q. Thereby, the N-glycans of D.

immitis contain features which may either mediate immunomodulation of the host or confer

the ability to avoid immune surveillance.
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Many species of nematodes are parasites of mammals and
have specific tissue and host tropisms. The dog heart-
worm, Dirofilaria immitis, has specialised in infestation

of pulmonary artery and heart; it infects canine and feline species
causing severe disease, but has also been reported in humans
especially in the Americas and Japan1,2. D. immitis is spread via
mosquitoes and thus has a lifecycle not very dissimilar from other
insect-borne filarial worms including Onchocerca volvulus and
Wuchereria bancrofti, which though reside, respectively, in the
human subcutaneous and lymphatic tissues. Owing to the
expansion of the geographical range of the relevant insect vectors,
insect-borne nematode diseases are spreading across Europe and
so D. immitis is an example of a zoonotic threat emerging due to
climate change3,4. On the other hand, as for many nematodes,
treatment of dirofilariasis is based on macrocyclic lactones such
as ivermectin, but cases of resistance have now been reported in
parts of the United States5; thus, other treatment or prevention
strategies, including vaccination, have been considered6–8.

There is some evidence that glycoproteins of the heartworm are
immunogenic as judged by studies on preparation of monoclonal
and polyclonal antibodies9–11, although these antigens may not be
necessarily accessible on the surface of adult D. immitis. Further-
more, as some nematode glycoconjugates are immunomodulatory,
especially those modified by phosphorylcholine12, the analysis of
the protein-linked glycans of nematodes is of interest not just for
inter-species comparison, but also to understand their potential
biological activity. In the case of D. immitis, there is fragmentary
information regarding its glycomic capacity (i.e. the range of pos-
sible glycan modifications) with data based on radiolabelling and
lectin affinity indicating the potential presence of core and antennal
fucose on tri- and tetra-antennary N-glycans, some of which are
capped with N-acetyl-galactosamine13, as well as of oligomannosi-
dic structures14.

Considering the potential biological relevance of the glycans of
this species, we embarked on a glycomic analysis using mass
spectrometric-based methods of male and female adult heart-
worms. Not only were the expected fucosylated and non-
fucosylated forms of LacdiNAc (GalNAcβ1,4GlcNAc) motifs
found, but also high molecular weight N-glycans with long
N-acetylhexosamine (HexNAc)-based repeat units with mod-
ifications by fucose (Fuc), phosphorylcholine (PC) or glucuronic
acid (GlcA). Particularly, the presence of poly-HexNAc-based
antennae capped with glucuronic acid is unprecedented in any
species, especially as anionic N-glycans have previously not been
found in nematodes. Furthermore, for the first time, we test
the ability of selected lectins, immunoglobulins, a pentraxin
(C-reactive protein) and the complement component C1q to
directly or indirectly bind natural parasitic nematode glycans in
an array format, which paves the way for structure-informed
functional studies.

Results
General strategy for Dirofilaria N-glycomics. N-glycans were
released from proteins of female and male Dirofilaria immitis
using serial PNGase F and A digestion and separated into neutral
and anionic pools (see Supplementary Figure 1 for workflow).
Reflector mode MALDI-TOF–MS with or without permethylation
(see Supplementary Figures 2 and 3) initially suggested a rather
limited range of mannosidic glycans with Hex3HexNAc2Fuc1 (m/z
1135) as the major species, but linear mode MALDI-TOF–MS of
the neutral pools indicated the presence of glycans of 5000 Da
or more with series based on Δm/z 349 (corresponding to
N-acetyl-hexosamine and fucose), which was simplified upon
hydrofluoric acid treatment due to removal of antennal fucose
(Supplementary Figure 2B and C). This is compatible with the

occurrence of very large glycans with more than eighteen HexNAc
residues on the antennae. Also, surprisingly for a nematode,
anionic N-glycans appeared to be present forming a series of up to
4700Da with Δm/z 203, which was an indication that these could
also be based on multiple HexNAc residues; hydrofluoric acid
treatment had, however, only a minor effect on the spectrum of
the anionic pool, possibly due to less antennal fucose than on the
neutral glycans (Supplementary Figure 2 E–H).

The different N-glycan pools (male and female, both neutral
and anionic) were separately labelled by pyridylamination prior
to HPLC; due to the poorly-resolved later regions of the RP-
amide HPLC chromatograms containing many glycan species
(see Supplementary Figures 4A/B and 11), a 2D-HPLC approach
was employed. Thereby, a size/charge-based separation by HIAX
was followed by a second dimension on the RP-amide column in
order to achieve isomeric separation (Fig. 1). The structural
proposals, summarised in various figures, are based on manually
interpreted MS/MS data before and after chemical and enzymatic
digests (for theoreticalm/z values refer to Supplementary Tables 1
and 2).

Paucimannosidic and other simple structures. In terms of
MALDI-TOF–MS intensity and RP-amide HPLC data, the most
abundant glycan is the paucimannosidic Man3GlcNAc2Fuc1
structure (m/z 1135 eluting at 9.2 g.u.; see also Supplementary
Figures 4 and 5A and Supplementary Note 1). Additionally, other
paucimannosidic, oligomannosidic, hybrid, pseudohybrid and
small core di-fucosylated N-glycans were detected as well as one
minor structure with galactosylated core fucose (see Fig. 1 and
Supplementary Figure 5 B, C and E). As such glycans are very
common in other nematodes (as well as invertebrates in general)
and the RP-amide retention times in terms of glucose units as well
as MS/MS data were comparable to those in previous studies15–17,
there was no major effort to further re-characterise these.

Antennal LacdiNAc and longer HexNAc-based extensions. In
the overall neutral spectra of D. immitis, Fuc/HexNAc-based
glycan series were found; indeed, both fucosylated and unfuco-
sylated forms of LacdiNAc (GalNAcβ1,4GlcNAc) have previously
been observed as a feature of some nematodes and proposed as
modifications of N-glycans in D. immitis on the basis of lectin
binding and monosaccharide composition13. 2D-HPLC could
resolve multiple isomers of, e.g. Hex3HexNAc4-6Fuc0-1 (m/z 1541,
1744, 1801 and 1947). While some of these co-eluted with
previously-defined bi- and tri-antennary structures decorated
with single GlcNAc residues16,18, MS/MS of others resulted in
signature B fragments at m/z 407 and 610 indicating the presence
of two or three N-acetylhexosamines in series on one antenna
(Fig. 2, Supplementary Figure 5 F–T and Supplementary Fig-
ure 6). For instance, it appears that Hex3HexNAc5Fuc1 (m/z
1744) can occur either in tri-antennary form (two isomers; with
the upper arm β1,6-GlcNAc-modified one being the most com-
mon as opposed to small amounts of the later-eluting lower arm
β1,4-GlcNAc-modified form; Fig. 1c) or in mono-/bi-antennary
forms with HexNAc2-3 motifs; furthermore, one form of Hex3-
HexNAc6Fuc1 is tetra-antennary (m/z 1947; Fig. 1d). Also, the
products of HF/chitinase digestion, which removed antennal
fucose and serial HexNAc residues (Supplementary Figure 4D;
see also below), show that more-or-less all possible combinations
of HexNAc-containing antennae in Dirofilaria are based on
hybrid, pseudohybrid, bi-, tri- and tetra-antennary structures.

Various hexosaminidases were used to test for the presence of
certain N-acetylgalactosamine and N-acetylglucosamine
modifications19,20. Most glycans with either an m/z 407 (HexNAc2)
or 610 (HexNAc3) fragment were sensitive to HEX-4. In the case of

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07948-7

2 NATURE COMMUNICATIONS |           (2019) 10:75 | https://doi.org/10.1038/s41467-018-07948-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


HexNAc3 motifs, the terminal GalNAc was removed by C. elegans
HEX-4, but the underlying residue only by the more unspecific
Streptomyces chitinase (Fig. 2c, d, f and g). This led to the
conclusion that GlcNAcβ1,4GlcNAc motifs can be capped with
β1,4-linked GalNAc. On the other hand, Xanthomonas β-N-
acetylglucosaminidase only removed unsubstituted β1,2-GlcNAc

residues directly linked to mannose, which was useful in defining
the antennal configuration (see, e.g., data in in Supplementary
Figures 6–9 and Supplementary Notes 1 and 2).

Fucosylated antennae. In nematodes, modifications of the N-
glycan core chitobiosyl region with up to three fucose residues are
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known20; here, in the case of Dirofilaria, some of the m/z values
indicated di- and tri-fucosylation (e.g. 1484, 1687, 1833, 1890,
2036 and 2239; Hex3HexNAc3-6Fuc2-3), but MS/MS of these
revealed an m/z 446 Y-fragment indicative of only one fucose on
the core (Fig. 3e and Supplementary Figures 5D, 7E/G, 8C/E/H
and 9M). Thus, the second or third fucoses were presumed to be
antennal, as confirmed by alterations in the MS/MS pattern upon
defucosylation with hydrofluoric acid (i.e. loss of m/z 553, 699 or
902 B fragments; Fig. 3b, e and f and Supplementary Figures 7–9).
As judged by the pattern of HEX-4 and chitinase resistance or
sensitivity after hydrofluoric acid treatment, the underlying
motifs were concluded to be normally GalNAcβ1,4GlcNAc
motifs, but sometimes GlcNAcβ1,4GlcNAc was present (Sup-
plementary Figure 8).

In later-eluting HIAX fractions (i.e. higher molecular weight
regions), there were various glycans with four or more fucose
residues; each m/z was detected in multiple 2D-HPLC fractions,
which was indicative of many isomers being present (Fig. 1h).
Hydrofluoric acid was again used to defucosylate these structures,
prior to re-chromatography and/or hexosaminidase digestion.
MS/MS of defucosylated glycans revealed HexNAc2-4-based
fragments of m/z 407, 610 and 813 replacing fucosylated
fragments at, e.g. m/z 756, 902, 1048 or 1251 (HexNAc3-4Fuc1-3);
for instance, in the case of fractions containing species of m/z 2589
and 2735 (Hex3HexNAc7Fuc4-5), three or four fucose residues were
removed with hydrofluoric acid resulting in a fragment of m/z 813
(compare Fig. 4a/b, d/e and f/g). Thus, also due to the HEX-4
resistance and chitinase sensitivity of the underlying HexNAc4
(Fig. 4c), the fucosylated antennae of these N-glycans were
concluded to be based on a chito-oligomer.

Further larger glycans were detected, but due to relatively low
amounts as well as isomeric diversity meant that exact structures
could not be proposed (Supplementary Figure 10 A–C). However,
for some glycans of between 3000 and 5000 Da, MS/MS data
could be obtained before and after hydrofluoric acid treatment
and were indicative of extended poly-N-acetylhexosamine chains
modified with fucose residues (Supplementary Figure 10 D-H). In
another approach, the entire pool of female N-glycans was
separated by RP-amide HPLC after hydrofluoric acid treatment in
order to remove antennal α1,3-fucose residues (Supplementary
Figure 4C); a subset of these fractions were treated with chitinase
resulting in a relatively simple chromatogram containing various
hybrid, bi-, tri- and tetra-antennary glycans (Supplementary
Figure 4D), which were assessed by various glycosidase digestions
and MS/MS; the unusual m/z 1541 product, eluting at 8.2 g.u.,
with upper arm β1,2- and β1,6-linked GlcNAc residues is the
basis for the polyfucosylated forms shown in Fig. 4. The
cumulative dataset suggests that long fucosylated poly-HexNAc
chains modify D. immitis glycans with up to four antennae.

Phosphorylcholine-modified N-glycans. Phosphorylcholine
modifications in nematodes are often associated with immuno-
modulation12 and a hallmark for this moiety on N-glycans is the
B positive mode fragment at m/z 369 (HexNAc1PC1; Figs. 3, 4j–m
and Supplementary Figure 9J); the next fragment in series was
always one at m/z 572 (HexNAc2PC1), whereas other zwitterionic
fragments included signals at m/z 718, 734 and 775 (respectively,
HexNAc2Fuc1PC1, Hex1HexNAc2PC1 and HexNAc3PC1). Such
fragment ions suggested that the phosphorylcholine was always
terminally associated with HexNAc2, HexNAc3 or HexNAc2Fuc1
motifs, but not on GlcNAc residues directly modifying
mannose. Hydrofluoric acid treatment was performed as this
is known to efficiently remove phosphodiesters in addition to
α1,3-fucose (Fig. 3). Together with re-chromatography and/or
enzymatic digestions (e.g. HEX-4, chitinase or Xanthomonas
N-acetylglucosaminidase; see, e.g. Supplementary Figure 9),
the underlying structures could be fixed as being a range of
bi- and tri-antennary or hybrid structures with terminal N-acet-
ylgalactosamine, the latter being the site of substitution with the
phosphorylcholine residue.

Glucuronylated N-glycans. The big surprise in this study, in
comparison to other nematodes, was the presence of anionic N-
glycans for which a modification of 176 Da as compared to some
of the neutral structures could be calculated; as the glycans were
most easily detected in the negative-ion mode, it was assumed
that this 176 Da modification is a hexuronic acid rather than a
methylhexose. MS/MS resulted typically in an m/z 583 fragment
in positive mode (m/z 581 in negative mode; HexA1HexNAc2),
but also sometimes in one at m/z 786 (HexA1HexNAc3); this
contrasts with the m/z 542 and 745 fragments observed with
glucuronylated insect N-glycans21. Thus, the underlying
residue was concluded to be a HexNAc rather than a β1,3-
galactose as found in insects. As for the neutral pool, an initial
trial with RP-amide HPLC alone indicated a poorly-resolved
glycome (Supplementary Figure 11). Structures of up to nearly
5000 Da were detected after removal of antennal α1,3-fucose with
hydrofluoric acid, suggesting that a non-fucosylated backbone
of HexA1Hex3HexNAc18 was possible amongst mono-
glucuronylated structures (Supplementary Figure 2F and G).
Furthermore, jack bean β-N-acetylhexosaminidase treatment of
an aliquot of the entire anionic pool resulted in a major mono-
glucuronylated product (m/z 1918; Hex3HexNAc5Fuc1HexA1)
with some residual antennal fucosylated structures remaining and
subsequent bovine fucosidase digestion primarily resulted in the
loss of a core fucose; re-chromatography enabled resolution
of some major monoglucuronylated glycans (Supplementary
Figure 11 A–C). Thus, it was assumed that a subset of anionic
glycans contain rather long HexNAc-based chains which can be

Fig. 1 Two-dimensional HPLC fractionation of neutral N-glycans from Dirofilaria immitis. For the first dimension, the pyridylaminated N-glycans were
separated by HIAX (calibrated with a set of glycans from white beans, e.g. Man3GlcNAc2Xyl1 and Man6-9GlcNAc2) and detected by fluorescence; shown in
the top panel is the overall profile of one female N-glycome, whereas the zoom shows more detail of a second preparation. The male N-glycome had a
similar profile (see also the MALDI-TOF–MS and 1D-RP-amide HPLC data in Supplementary Figures 2 and 4). Indicated are pooled regions whose second-
dimension RP-amide HPLC profiles are shown in a–j, whereby chromatograms a–c, i and j are from the male glycome and d–h from a female preparation
(note that subfraction j contains Man8GlcNAc2, but not Man7GlcNAc2 isomers as present in the subfractions d, e and i of overlapping retention time). The
RP-amide chromatograms, calibrated in terms of glucose units (g.u.), are annotated with selected glycan structures according to the Symbol Nomenclature
for Glycans (see also grey inset; mannose is depicted by green circles, GalNAc/GlcNAc by yellow or blue squares, fucose by red triangles and
phosphorylcholine by PC, whereas the angle of the GlcNAc-Man bond for tri-/tetra-antennary structures is indicative of either a 2-, 4- or 6-linkage70). The
m/z for the protonated ions as detected by MALDI-TOF–MS are also given with the depicted structures based on conclusions derived from elution time,
chemical and/or enzymatic digestion and MS/MS data of which selected examples are shown in Figs. 2–4 and Supplementary Figures 5–9. The light green,
pink and blue boxes highlight isomers of m/z 1744, 1890 and 1947 differing in the positions of antennal fucose and HexNAc residues. Based on integrated
fluorescence intensity, the HIAX peaks eluting later than 22mins are estimated to account for 8% of the total N-glycome, of which half (i.e. 4% of the
total) are larger non-oligomannosidic structures of over 1800 Da with novel and/or multiple antennae
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capped with glucuronic acid or are otherwise modified with
fucose and, sometimes, phosphorylcholine.

For a closer examination, the 2D-HPLC approach was
employed to fractionate the anionic glycome, i.e. HIAX size/
charge-based separation followed by RP-amide HPLC of selected
pools (Fig. 5). Enzymatic digestion with H. pomatia β-
glucuronidase was employed in time-limited digestions prior to
re-chromatography. Thereby, glucuronic acid was shown to be
removed from various example glycans resulting in neutral forms
no longer ionisable in the negative mode and accompanied by
loss of the m/z 583 B-fragment and appearance of one at m/z 407
(Fig. 6a–c and Supplementary Figure 12).

Even amongst the simple, monoglucuronylated forms, there
were different isomers as exemplified by the RP-amide-separated
structures of m/z 1774 and 1920 with either lower or upper arm
(α1,3- or α1,6) antennal modifications being present (Fig. 5b); the
m/z 1920 structures were, like many of the glucuronylated
glycans, modified with one core α1,6-fucose as shown by the
relatively late elution time of glycans with an m/z 446 Y-fragment
(Fuc1GlcNAc1-PA; Figs. 6b, d and 7 and Supplementary
Figure 12). Some structures were also of the hybrid type (m/z
1733 and 1895; Fig. 6f and g) and a further example (m/z 1863)
was di-fucosylated on the core, as defined by the m/z 592 Y-
fragment (Fuc2GlcNAc1-PA; Fig. 6h). In accordance with the

HIAX C , RP 15 g.u.

+ JBMan

+ HEX-4

+ HEX-4 + chitinase

1338.9
Na

1400 1500 1600 1700 1800 400m/z 600 800 1000 1200 1400 m/z

m/z2500225020001750150012501000750500m/z280026002400220020001800

HIAX H, RP 12 g.u.

+ HEX-4

+ HEX-4 + chitinase
1947.7

Na

–5HexNAc

–4HexNAc

2963.9
Na

2150.4
Na

MS/MS 2963 (H3N11F)
407.0

610.0

H2N4
1137.6

1379.7
1582.8

1785.8
PA

1947.8 1988.8 2353.9
2150.8

2557.1

1948.0

–406
1744.9

1582.8
1541.7

PA

1379.7

1176.7H2N2
731.4

407.1

MS/MS 2150 (H3N7F)

MS/MS 1947 (H3N6F)

PA
445.9 649.2 1030.4 1233.4

1379.3
PA

1744.5
–203

–HexNAc –HexNAc –Man –HexNAc –HexNAc –HexNAc –2HexNAc

* *
–HexNAc

–HexNAc

–Hex

1744.6

1582.7
Na*

*

1541.7

MS/MS 1744 (H3N5F)

407.0

446.0 610.0 827.2

973.2

1135.2
–609

PA

1192.2
1338.2

1541.4

–609
973.1

PAPA

811.2

665.3
610.3

446.4

MS/MS 1582 (H2N5F)

MS/MS 1541 (H3N4F)

407.1
446.4

649.3
PA 827.3

973.3
–406

1135.4

PA

MS/MS 1338 (H3N3F)
446.4
PA

649.5
PA

827.6 1191.8 1338.9

a

b

c

d

e

f

g

Fig. 2 Example glycosidase digestions of N-glycans with tri- and di-HexNAc motifs. Pyridylaminated Hex3HexNAc5Fuc1 (m/z 1744) and Hex3HexNAc11Fuc1
(m/z 2963) glycans isolated in different 2D-HPLC fractions (Fig. 1, HIAX C and H) were subject to positive mode MALDI-TOF–MS (left) and MS/MS
(right) before (a, e) and after treatment with either jack bean α-mannosidase (b), C. elegans HEX-4 (c, f) or C. elegans HEX-4 followed by Streptomyces
chitinase (d, g). Contaminant peaks in enzyme digests (B and D; m/z 1570, 1689, 1696, 1407 and 1476) are indicated by asterisks. The MS/MS spectra are
annotated with selected B- and Y-ion fragments (the latter, e.g. m/z 446, 973 or 1176, containing the reducing terminal PA label with the possible structure
for the selected fragments based on the assumption of a single fragmentation event) as well as relevant serial losses (indicated in blue) or a single loss of
203, 406 or 609 from the parent (i.e. HexNAc1-3; indicated with black arrows); the loss of m/z 407 or 610 B-ions (HexNAc2-3) upon HEX-4 or chitinase
digestions are indicative of removal of antennal GalNAc or GlcNAc residues. As defined by this and other data (including Supplementary Figures 6, 8 and
23, previous publications as well as controls with LacdiNAc and chitobiose-glycoconjugates and standard N-glycans), C. elegans HEX-4 is specific for β1,4-
linked GalNAc and chitinase for either β1,4-linked HexNAc. Thereby, the nature of the HexNAc2 and HexNAc3 motifs of the m/z 1744 and 2963 glycans
can be defined
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presence of tetra-antennary glycans in the neutral glycome, the
assumption that up to four glucuronic acid residues were present
on D. immitis N-glycans was verified by the observation upon
MS/MS in positive ion mode of serial losses of 582 or 785 Da
(Fig. 6j–p).

An exact isomeric analysis of many anionic glycans was
difficult due to the presence of four antennae based on HexNAc2-
3 motifs with the maximal variations amongst the monoglucur-
onylated species. Based on the data on the neutral glycans, the
presence of either GalNAcβ1,4GlcNAc or GalNAcβ1,4Glc-
NAcβ1,4GlcNAc motifs, some capped with glucuronic acid was
assumed. In some cases, these motifs carried additional antennal
fucose or phosphorylcholine residues, which could be removed by
HF treatment with alterations in the RP-amide retention time and
MS/MS spectra (Fig. 6e and i as well as Supplementary Figures 13
and 14G and H). Exemplifying the isomeric separation of such
glycans, it was possible to identify multiple versions of m/z 2123
and 2326 (HexA1Hex3HexNAc6-7Fuc1; HIAX pools C and D as
shown in Fig. 5) on the basis of MS/MS as well as of retention

time shifts upon selected digestions with specific hexosaminidases
to remove unsubstituted GalNAc residues (Supplementary
Figure 14A-F and I-L; see also Supplementary Note 1).

A final proof that glucuronic acid actually capped β1,4-linked
N-acetylgalactosamine came from performing H. pomatia
β-glucuronidase treatment of two bi-antennary biglucuronylated
glycans followed by HPLC and further exoglycosidase digests.
Under time-limited digestion conditions, primarily one glucuro-
nic acid was removed, which resulted in shifts in retention
time and in MS/MS fragmentation (Fig. 8). Subsequent linkage-
specific HEX-4 and chitinase digestions led to the respective
loss of 203 or 406 Da (i.e. of one or two N-acetylhexosamine
residues), thereby verifying that the underlying HexNAc3
motif was based on GalNAcβ1,4GlcNAcβ1,4GlcNAc (Fig. 8g
and h as well as Supplementary Figure 15). Also, LC-ESI–MSn of
glycans carrying one glucuronic acid indicated that the
glucuronic acid is β1,4-linked to the underlying HexNAc2-3
motifs (Fig. 7 and Supplementary Figure 12); therefore,
in combination with the MSn data, it is concluded that
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Fig. 3 Analysis of example phosphorylcholine and fucose-modified N-glycans. a–f RP-amide HPLC, MALDI-TOF–MS and MS/MS analysis of an example
2D-isolated fraction before (a, c, e) and after (b, d, f) hydrofluoric acid treatment. A shift to higher elution due to altered hydrophobicity of the glycans
(b) and alterations in the MS/MS spectra (removal of one fucose and one phosphorylcholine from m/z 1852 or of two fucoses from m/z 2239 correlating
with losses of the m/z 184 (PC+H2O), 369 (GlcNAc1PC), 718 (HexNAc2Fuc1PC) and 902 (HexNAc3Fuc2) B-fragment ions) verify the proposed
compositions, whereas the ability to remove one GalNAc from both with HEX-4 (data not shown) enabled the proposition of the isomeric structure.
g–lMS/MS of other phosphorylcholine-containing glycans as well as one example (j) after hydrofluoric acid treatment; other sensitivities to this reagent or
to hexosaminidases are noted. The contrast in the spectra of the two isomers of Hex3HexNAc4Fuc1PC1 (m/z 1706; g, h) is due to the position of the fucose
residue. Selected B- and Y-fragments are annotated as well as certain losses of fucose or hexose; due to the excellent ionisation of PC-containing fragments
(e.g. at m/z 718 and 572), the presence of core fucose is shown by the loss of 445 Da from the parent and by the presence of an m/z 446 Y-fragment
observable after hydrofluoric acid treatment. The terminal position of phosphorylcholine is inferred by the minimal fragment containing both the PC and a
hexose (i.e. m/z 734 [Hex1HexNAc2PC1], rather than m/z 531 [Hex1HexNAc1PC1] as in other nematodes). See Fig. 4 and Supplementary Figure 9 for
further examples of data on phosphorylcholine-modified N-glycans
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GlcAβ1,4GalNAcβ1,4GlcNAcβ1,4GlcNAc represents the longest
anomerically proven glucuronylated antenna in D. immitis.

Glyco-epitopes in Dirofilaria adults and larvae. Based on the
glycomic analyses, GalNAc/LacdiNAc, chitobiose, core/Lewis-
type α1,3-fucose and phosphorycholine are potentially interesting
epitopes represented in the neutral N-glycome (Fig. 9a and
Supplementary Table 3). Therefore, selected blotting, his-
tochemistry and glycan array experiments were performed; due to
the reagents available and comparisons with other nematodes, an
initial focus was on N-acetylhexosamine, fucose and

phosphorylcholine epitopes. These should be, respectively,
recognised by Coprinopsis CGL3 binding β-HexNAc22, Copri-
nopsis CCL2 recognising core α1,3-fucose23 and TEPC 15, a
monoclonal IgA known to bind phosphorylcholine24 and indeed
a wide range of proteins cross-reacted with these reagents in both
male and female extracts (Supplementary Figure 16). Other
indications for the presence of various nematode glyco-epitopes
came from histochemical fluorescence microscopy of L3 larvae,
which showed that (i) CGL3 bound exclusively to the surface of
internal worm organs, (ii) CCL2 recognised structures in all tis-
sues and (ii) TEPC 15 staining presented a dotted pattern in the
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gastrointestinal tract (Fig. 9b and Supplementary Figure 16). An
indication that CGL3 and TEPC 15 actually recognised Dirofilaria
proteins is the mass spectrometric identification of a predicted
parasite glycoprotein following affinity enrichment with either of
these two reagents (Supplementary Figure 17).

The presence of certain epitopes specifically on the N-glycans
was tested in a glycan array format. The abundant neutral N-
glycan pool was labelled with AEAB and immobilised either
before or after hydrofluoric acid treatment (Fig. 9c and
Supplementary Figure 18). We tested their binding to the
aforementioned fungal lectins (CGL3 and CCL2), plant lectins
(wheat germ, tomato and Aleuria aurantia lectins as
commercially-available surrogates to test interactions with N-
acetylhexosamine and fucose residues) and human mannose
binding lectin MBL which has a range of glycan ligands25–27;
concanavalin A and Aleuria aurantia lectin were also used to
screen HPLC-fractionated AEAB-labelled N-glycans (Supplemen-
tary Figure 19). Generally binding to lectins was higher after
chemical removal of most antennal α1,3-fucose and phosphor-
ylcholine residues, while that to TEPC 15 decreased as
expected and the calcium-dependent interaction with MBL was
reduced upon endoglycosidase H treatment suggestive of binding
to oligomannosidic and hybrid N-glycan structures (Fig. 9d and
Supplementary Figure 18).

Immune-relevant N-glycan epitopes. In order to test whether D.
immitis glycan epitopes are the targets of either the innate or
adaptive immune system, arrayed glycans were also probed with
either dog immunoglobulins or human C-reactive protein.
Binding of natural dog IgM (regardless of infection status) to
fucosylated LacdiNAc (LDNF) and chitobiose was significantly
above background levels for all three sera, but was higher for the
chemically stripped Dirofilaria glycans than for the native
structures (Fig. 10a); on the other hand, pronounced IgG binding
to natural N-glycans as well as to fucosylated LacdiNAc was
detected only for the infected dogs, while IgG from the control
and infected dogs also bound fucosylated and non-fucosylated
forms of chitobiose (Fig. 10b).

The binding of C-reactive protein (CRP), an acute phase
protein known to bind zwitterionic moieties and to elicit
complement activation, to D. immitis glycans decreased after
hydrofluoric acid treatment (Fig. 10c). CRP-dependent binding of
the complement component C1q to the natural, untreated glycans
was also observed (Fig. 10c and Supplementary Figure 20A), as
was binding of endogenous CRP in dog sera to native glycans
(Supplementary Figure 20B). On the other hand, in the case of
one of the infected dog sera, indirect calcium-dependent binding
of C1q28 to the natural glycans on the array was seen (Fig. 10d

and Supplementary Figure 20C). Significantly, regardless of
whether anti-CRP or C1q were used for detection, the binding
of CRP to Dirofilaria glycans was highest to the larger molecular
weight N-glycans as judged by arraying after NP-HPLC of the
AEAB-labelled N-glycome; the same fractions, containing
Hex3HexNAc7-9Fuc0-1PC2, also had the most significant binding
to the TEPC 15 antibody, thus verifying that CRP binding
correlated with the presence of glycans with two phosphorylcho-
line residues (Supplementary Figure 21).

Discussion
It is a common assumption that lower eukaryotes have simple N-
glycans; however, the data accumulated in recent years challenge
this view29. Indeed, the present study exemplifies that a nematode
can produce N-glycans with as many antennae as known in
mammals and, using 2D-HPLC with MS/MS before and after
chemical/enzymatic digestion, a large and diverse range of gly-
cans can be proposed. The ~150 verified compositions (see
Supplementary Tables 1-3 and the summary in Fig. 9a) is a
number which not only hides the multiple isomers for many
masses, but is definitely an underestimate considering the lim-
itations of identifying and fragmenting the larger mass glycans of
3000 Da or more. Some variations between the two preparations
of female N-glycomes were observed (e.g. a tendency for more
phosphorylcholine in the second preparation) as well as between
male and female worms as evidenced by the relative HPLC and
MS peak intensities (e.g. Supplementary Figures 2 and 4); how-
ever, due to the complexity of the glycome, it is difficult to discern
an obvious degree of gender difference as previously noted for the
glycome of another parasitic nematode20. Thus, the overall
similarity of chromatograms and spectra suggests that we have
identified the typical N-glycosylation pattern of this species;
revealing the most interesting features of both the neutral and
anionic N-glycomes by off-line LC-MALDI-TOF–MS is another
demonstration of the power of our approach to deeply mine the
glycomes of invertebrates to reveal species-specific patterns of
glycosylation.

Previously, in addition to neutral structures, only zwitterionic
and not anionic N-glycans were found in nematodes17. Thus, the
outstanding feature of the D. immitis N-glycome is not just
the long fucosylated antennae on neutral glycans, but also
the presence of branched and elongated glucuronylated oligo-
saccharides (5% of the total), which could be identified as con-
taining GlcAβ1,4GalNAcβ1,4GlcNAc motifs; the minimal
glucuronylated structure of Hex3HexNAc4GlcA1 suggests that
LacdiNAc would prove a suitable substrate for a D. immitis
β-glucuronyltransferase. While long chito-oligomers have, at least
after hydrofluoric acid treatment, been previously found in other

Fig. 4 Analysis of larger fucosylated and phosphorylcholine-modified N-glycans. a–i Fucosylated glycans from HIAX pool H (see Fig. 1, 42-48min) were
separated by RP-amide HPLC prior to MALDI-TOF–MS/MS before (a, d, f, h) and after treatment with hydrofluoric acid (b, e, g, i) and hexosaminidases
(example shown in c); the RP-amide retention times for the original and treated glycans (as glucose units) aid the structural interpretation. Hydrofluoric
acid results in loss of three or four antennal fucose residues which correlates with loss of B-fragments such as those at m/z 756, 902, 1251 and 1397 and
appearance of ones at m/z 610 or 813 (HexNAc3-4), whereas core fucosylated Y-fragments containing the PA label (m/z 973, 1176 and 1338) were
unaffected. The HEX-4 insensitivity, but chitinase sensitivity, of the defucosylated products led to the conclusion that the HexNAc chains contain GlcNAc
only and are not capped with GalNAc; uncertainty regarding the elongation of the 2- or 6-arm is indicated by a bracket (f–i). For all four glycans (a, d, f, h),
loss of three or four Fuc yields glycans of m/z 2150 (see b, e, g, i) of different elution times and the subsequent removal of three GlcNAc residues (c, g, i)
results in co-elution with two different m/z 1541 Hex3HexNAc4Fuc1 isomers (with either two β1,2- or one each of β1,2/6-GlcNAc residues eluting at 10.2
and 8.2 g.u.; compare with Fig. 1b, Supplementary Figures 4D and 5G/I). Example MS/MS of longer fucosylated glycans are shown in Supplementary
Figure 10. j–m Phosphorylcholine-modified glycans from individual HIAX fractions were subject to MS/MS revealing PC substitution of HexNAc2-3 motifs
with or without fucose; in comparison to other phosphorylcholine-modified glycans from this species (as shown by HEX-4 sensitivity after hydrofluoric acid
treatment; see, e.g. Fig. 3, also for similar B-fragments such as m/z 572 and 718) and by the minimal fragment containing the phosphorylcholine and a
hexose of the trimannosyl core, it is assumed that the zwitterion substitutes a terminal GalNAc, unlike the PC-GlcNAc motifs found in many other
nematodes; selected losses and mass differences are highlighted
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filarial species30, the glucuronylated series represent a new variant
of nematode N-glycan modification, which is reminiscent (but
not identical) to N-glycans from insects which are based on
GlcAβ1,3Galβ1,3GalNAc/GlcNAc18,21. The exact linkage as
found here is also unlike the GlcAβ1,3GalNAcβ of chondroitins,
the GlcAβ1,4GlcNAcα of heparans, the GlcAβ1,3Galβ of the
HNK-1 epitope or the β1,3-linkage previously found in C. elegans
O-glycans31–33. It may be that glucuronylation is the closest the
parasite can metabolically get to the sialylation of the host, as
there is certainly a supply of UDP-GlcA in the nematode Golgi in
order to enable synthesis of such anionic glycan structures.

Other than glucuronic acid, fucose and phosphorylcholine can
also substitute N-acetylgalactosamine on D. immitis N-glycans;
however, the only double substitution is a relatively rare
GlcA1PC1GalNAc1 unit (see Supplementary Figure 13C).
Otherwise, N-acetylgalactosamine is a relatively common cap and
may constitute a stop signal during the extension of chito-
oligomer-based antennae in this species. It is also interesting to
note which features the D. immitis N-glycome does not display as
compared to other nematodes: there is no sign of a fucose on the
distal core GlcNAc15,20,34 nor of bisecting fucosylated galactose35,
neither modification being biosynthetically compatible with the
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Fig. 5 Two-dimensional HPLC fractionation of Dirofilaria immitis anionic N-glycans. As for the neutral preparations, the pyridylaminated N-glycans were
separated by HIAX as calibrated with a set of glycans from white beans (Man3GlcNAc2Xyl1 and Man6-9GlcNAc2) and detected by fluorescence. Indicated
are pooled regions whose second-dimension RP-amide HPLC profiles (normalised in terms of fluorescence) are shown in a–m as well as the regions in
which mono-, di-, tri- and tetra-glucuronylated glycans elute from the HIAX column in a size- and charge-dependent manner. The RP-amide HPLC
chromatograms, calibrated in terms of glucose units (g.u.), are annotated with glycan structures according to the Standard Nomenclature for Glycans
(mannose is depicted by green circles, GalNAc/GlcNAc by yellow or blue squares, fucose by red triangles, glucuronic acid by diamonds and
phosphorylcholine by PC) as well as the m/z for the [M+H]+ ions as detected by MALDI-TOF–MS; the depicted structures are based on conclusions
derived from RP-amide elution time, chemical and/or enzymatic digestion and MS/MS data of which a selection is shown in Figs. 6–8 and Supplementary
Figures 12–15. Overall MALDI-TOF–MS and 1D-HPLC profiles of an anionic glycan pool are shown in Supplementary Figures 2 and 11. Based on summed
fluorescence intensities as compared to the neutral chromatograms, it is estimated that 5% of the N-glycome is in the anionic pool
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presence of four antennae. Also, galactosylation of core
α1,6-fucose (GalFuc36) is represented by a single detected glycan,
while neither further substitution of the GalFuc motif nor
methylation of any fucose residue was detected in D. immitis.

The initial MALDI-TOF–MS screening of the neutral glycan
pools suggested that structures of 3000 Da and more were pre-
sent; examination of HIAX fractions (separating the neutral
glycans on the basis of size) showed signals of around even 7000
Da. The size is thereby striking, although not as high as the
18,000 Da proposed for large poly-LacNAc-containing N-glycans
from Trypanosoma brucei37. However, due to adducts and a
mixture of fucose and phosphorylcholine modifications, a clear

picture of the maximal glycan size in D. immitis was not possible,
but the presence of long decorated HexNAc oligomers is remi-
niscent of the chito-oligomers of another filarial worm (e.g.
Onchocerca). Also, the occurrence of four antennae has been
proposed for glycans from, e.g. Acanthocheilonema and
Trichinella30,38, whereas only maximally three antennae are
observed in Caenorhabditis or its relatives16. This would correlate
with the presence of N-acetylglucosaminyltransferase I, II, IV and
V homologues in filarial worms, but the lack of a N-acet-
ylglucosaminyltransferase IV in the Rhabditae (unpublished
homology searches). The activities of both N-acet-
ylglucosaminyltransferases IV and V results in a mixture of
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Fig. 6 Example MS/MS data of glucuronylated N-glycans. a–c MALDI-TOF–MS/MS (with MS in insets) of the 2D-HPLC purified m/z 1918 (negative) or
1920 (positive) glycan eluting at 8.2 g.u. (Fig. 5b) before (a, b) and after (c) Helix pomatia β-glucuronidase treatment; removal of the glucuronic acid
residue correlates with loss of 176 Da from the parent and of the positive mode B-fragment ion at m/z 583 (HexA1HexNAc2). In general, the positive ion
mode MS/MS spectra of the protonated forms of glucuronylated glycans were more intense and more informative than the negative-ion mode MS/MS
spectra, despite the excellent ionisation in negative mode of the parent species. d–i Positive mode MS/MS of monoglucuronylated N-glycans, including two
isomeric forms of m/z 1920 differing in the position of the fucose residue (as shown by the m/z 932 HexA1HexNAc3Fuc1 fragment for one form), two
hybrid, one core di-fucosylated and one phosphorylcholine-modified structures found in RP-amide fractions derived from HIAX anionic pools b, c and h;
the presence of an upper arm antenna on the di-fucosylated glycan (h) is compatible with the requirement of nematode core α1,3-fucosyltransferase for
an unsubstituted α1,3-mannose residue, whereas the m/z 592 Y-fragment defines the core difucose modification (see also Supplementary Figure 5B
and C). j–p Positive ion mode MS/MS of 2D-HPLC-purified di-, tri- and tetra-glucuronylated N-glycans (see Fig. 5h, j–l). Losses of one, two or three
HexA1HexNAc2-3 motifs (Δm/z 582 or 785) are indicated in addition to selected antennal B- and pyridylamino-containing Y-fragment ions. The concluded
structures reflect the presence of corresponding non-glucuronylated tri- and tetra-antennary forms in the neutral pools with 4-linked GlcNAc leading to
later RP-amide elution than a 6-linked GlcNAc. The two m/z 2502 glycans (j, k) differ in the location of the fucose residue, while the m/z 3521 glycan
(o) elutes earlier than that of m/z 3667 (p) due to the retentive effect of the core α1,6-fucose; for further characterisation of bi-antennary forms including
glycosidase digests, refer to Fig. 8 and Supplementary Figures 13–15
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isomers of tri-antennary structures, which can either have
GlcNAc β1,2 and β1,4-linked to the α1,3-mannose and β1,2-
linked to the α1,6-mannose or have solely β1,2 on the α1,3-arm
and both β1,2 and β1,6 antennae on the α1,6-arm. The pre-
dominance of β1,6- over β1,4-linked GlcNAc amongst the tri-
antennary structures (estimated as a 3:1 ratio, also when con-
sidering the chemically defucosylated structures; see Supple-
mentary Figure 4), as well as the presence of tetra-antennary
forms, is in keeping with an older model for D. immitis glycans13.
It is probable that the largest glycans are due to elongation of all
four arms.

The D. immitis N-glycome is rich in non-mammalian glycan
motifs, all of which could be immunogenic: core and antennal
α1,3-fucose, phosphorylcholine and glucuronic acid capping.
Whereas core α1,3-fucose is an IgE epitope in Haemonchus-
infected sheep39, as well as being a cross-reactive determinant of
bee venom and various plant allergens40, anti-glycan antibodies
are known to bind antennal fucosylated epitopes in unrelated
trematode Schistosoma species, whereby the presence of Lacdi-
NAc with and without fucose is shared41, but D. immitis shows
no sign of chains of fucose linked to fucose. Phosphorylcholine is
recognised by human C-reactive protein42 and is a known
immunomodulatory epitope in the case of the Acanthocheilonema
ES-62 protein43. Glucuronylated N-glycan structures based on a
different motif have been recently found to be a common element
in glycomes of Diptera, Lepidoptera and Hymenoptera21,44, but
the immunological repercussions of glucuronylation of proteins
expressed in insect cell lines is unknown. Schistosomes also
express an unusual glucuronic acid containing oligosaccharide,
but this is an immunoreactive O-glycan45.

In terms of infection, it is the glycome of the insect-borne L3
larvae which is most relevant; certainly, microscopy experiments
indicate that LacdiNAc, phosphorylcholine and core/antennal
α1,3-fucose epitopes are present in the larvae, but unfortunately
the amounts of L3 material were insufficient for a glycomic
analysis; however, older work revealed the presence of LacdiNAc-
containing and oligomannosidic structures in the microfilariae
derived from canine blood, which is the stage taken up by the
insect vector13,14. As there are no massive glycomic shifts between
L3 and adult in another nematode species20 and at least some
adult epitopes can be found in the larvae by indirect histo-
chemical means, we assume the adult glycome contains glycan
motifs already present during the stage infective to mammals. We
can only speculate as to whether the glucuronylated N-glycans of
D. immitis have roles in the interactions between the parasite and
the insect vector, which expresses similar (but not identical)
anionic motifs18.

Using the adult N-glycome, we developed the first natural N-
glycan array for a parasitic nematode complemented by synthetic
conjugates and tested for binding to different reagents including
pentraxins, lectins and antibodies. C-reactive protein is a poten-
tial marker for pulmonary hypertension in canine dirofilariasis or
for chronic lymphatic pathology in human wuchereriasis46,47 and
so interactions affecting the ability of this pentraxin to elicit or
modulate a response are biologically relevant. Thus it is inter-
esting that C-reactive protein recognised the natural parasite N-
glycans on the array, either when using anti-CRP or C1q/anti-
C1q for detection, especially higher molecular weight fractions
containing glycans predicted to carry two phosphorylcholine
residues (Fig. 10 and Supplementary Figure 21); the estimated 45
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Fig. 7 Negative mode LC-ESI–MSn of a glucuronylated glycan. a The Hex3HexNAc5Fuc1HexA1 m/z 1920 glycan eluting at 14 g.u. (see also corresponding
positive and negative mode MALDI-TOF–MS/MS data in b and c, whereby the latter shows some of the same non-cross-ring fragments as the ESI-MS/
MS) and containing a HexA1-4HexNAc-4HexNAc-4GlcNAc motif as shown by MS2 of ions at m/z 958.64 (Hex3HexNAc5HexA1Fuc1-PA, [M−2H]2−) and
MS3 of ions at m/z 784.20 (HexNAc3HexA1, [M−H]−) and at m/z 581.20 (HexNAc2HexA1, [M−H]−). Fragmentation ions at m/z 664 and 1390 were
annotated as 2,4A and 0,2A cleavage of penultimate GlcNAc, both cleavages are diagnostic ions for N-glycans69. The presence of fragmentation ions at m/z
1036 (0,3A of βMan) and “D ions” at m/z 1090/1108 suggest the HexNAc3HexA1 motif linked to Man on the 6-antenna. No fragments are compatible with
the presence of terminal HexNAc, while a series of B ions at m/z 378, 581 and 784 suggests a linear HexA-HexNAc-HexNAc linked to β1,2-linked GlcNAc
on the 6-antenna. To determine the linkage between HexA-HexNAc-HexNAc, MS3 of the fragmentation ions at m/z 581, which contain HexNAc2HexA1,
was performed. Fragments at m/z 295/277 (0,2AHexNAc/0,2AHexNAc-H2O) suggest terminal HexA linked to C4 of HexNAc; the ions at m/z 295 would be
compatible with either a 3-, 4- or 6-linkage, but the m/z 277 fragment is most compatible with a 4-linkage. In addition, fragmentation ions at m/z 498/480
(0,2AHexNAc/0,2AHexNAc-H2O) indicate the presence of HexA-4HexNAc linked to C4 of HexNAc. Taken together, this special N-glycan antennal motif was
annotated as a HexA-4HexNAc-4HexNAc sequence linked to the β1,2-linked GlcNAc on the 6-antenna
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Å distance between longer glycan antennae is similar to that
between the phosphorylcholine-binding sites of the pentameric
C-reactive protein (Supplementary Figure 22) and so could
explain the highest binding of this pentraxin to the fractions
containing glycans with two phosphorylcholine residues. It is also
interesting to make a comparison with bacterial polysaccharides,
which can also contain one or more phosphorylcholine resi-
dues48; indeed the expression and exact position of this mod-
ification correlates with both the persistence of Haemophilus in
the upper respiratory tract and its CRP-dependent killing49,50.
However, whereas bacteria can escape complement by phase
variation in the expression of phosphorylcholine, the strategy of
nematodes is different: it may be the flexible conformation of
their multiantennary N-glycans carrying one or more

phosphorylcholine residues, as found on the aforementioned ES-
62 protein30, which mediate binding by CRP in a manner
resulting in inefficient complement activation at the stage of C2
cleavage51.

Not just CRP-dependent binding of C1q, but also binding of
C1q mediated by dog serum to the arrays were observed, which
could be due to either endogenous CRP or IgG. However, as C1q
has potential immunoregulatory and physiological effects other
than complement activation52, we cannot yet conclude whether
this binding would elicit or inhibit downstream responses in vivo.
Complement can also be activated by MBL and indeed micro-
filariae of Brugia malayi survive longer in MBL-A-deficient
mice53; as endoglycosidase H is known to cleave oligomannosidic
and hybrid glycans54, its impact on MBL binding to natural
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Fig. 8 Effect of glucuronidase treatment on diglucuronylated N-glycans. a–f Two RP-amide HPLC example fractions from anionic HIAX pool H (see Fig. 5)
were treated for 75 min with a commercial H. pomatia β-glucuronidase (GlcAse) prior to re-analysis by MALDI-TOF–MS (see also chromatograms in i)
showing removal or one or two glucuronic acid residues (losses of 176 Da) as well as, due to an impurity in the enzyme preparation, partial defucosylation
(loss of 146 Da). g, h Subsequent chitinase and HEX-4 treatment of the underlying exposed HexNAc3 motif followed by negative mode MALDI-TOF–MS
reveals that the glucuronic acid on the upper antenna substitutes a GalNAcβ1,4GlcNAcβ1,4GlcNAc motif, which correlates also with LC–MSn data (see
Fig. 7). i Removal of glucuronic acid and fucose (as defined by changes in m/z as shown in c, d and f) correlates with shifts in RP-amide HPLC elution time
as compared to the original chromatogram for anionic HIAX pool H (see arrows showing the forward shift caused by defucosylation (blue) and the
backward shift after deglucuronylation (red), which is larger when the GlcA residue is lost from the lower arm); structures are annotated with m/z values
for the [M+H]+ ions. j–m Positive mode MALDI-TOF–MS/MS of the 7.5 g.u. glycan before and after glucuronidase treatment revealing differences in
fragmentation between the original glycan (j) and the partially (k and l) and fully deglucuronylated (m) products of different elution times; key changes in
the B- and Y-fragments are indicated (e.g. loss of B-ions at m/z 583 and 786, appearance of ones lacking glucuronic acid at m/z 407 and 610 and shifts in
the pyridylamino-containing Y-ions). For the MS/MS of the untreated and treated forms of the m/z 2502 glycan (refer to Fig. 6k and Supplementary
Figure 15)
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glycans can be explained (Supplementary Figure 18 and 21A). We
can, though, only speculate why this enzyme abolished the
increased binding to D. immitis N-glycans printed after hydro-
fluoric acid treatment, unless HF-stripped versions of the
observed PC-/Fuc-modified hybrid glycans are also MBL ligands;
however, low affinity binding to fucosylated structures has been
previously seen on a standard glycan array27.

The available dataset also suggests that, regardless of the
infection status, the native antennal modifications may even
inhibit binding of IgM antibodies as these bind preferentially to
Dirofilaria N-glycans when the antennal fucose and

phosphorylcholine residues are removed (Fig. 10a). Binding to a
chitobiose conjugate was detected in all three sera, which is con-
sistent with natural anti-chitobiose IgM and IgG being found in
sera of healthy mice and humans55. Interestingly, β1,6-poly-
GlcNAc polymers (i.e. isomeric forms of the filarial-type β1,4-
chito-oligomers) expressed by some bacteria, protists and fungi
are also recognised by natural antibodies56. In contrast, IgG
binding to the natural glycans as well as to a fucosylated form of
LacdiNAc (i.e. LDNF) was highest for the two infected sera
(Fig. 10b), although the difference in binding as compared to non-
fucosylated LacdiNAc is not as obvious as for Trichinella-infected

Pauci- and oligomannosidica

c d

b

Simple bi-, tri- and tetra-antennary

Monoglucuronylated

Tri- and tetra-glucuronylated

F
lu

or
es

ce
nc

e 
in

te
ns

ity
F

lu
or

es
ce

nc
e 

in
te

ns
ity

D. immitis AEAB neutral

DAPI TEPC15 CGL3 DIC Merge

Hybrid and pseudohybrid

Antennally fucosylated

Di-glucuronylated

Phosphorylcholine-modified

PC

H3N2F
1220.6

H5N2
1398.7

H3N3F
1423.7

ΔPC

ΔPCΔF

ΔF

ΔF

ΔF

ΔF
ΔF

ΔPC
H3N2F
1220.6

H4N2F
1382.6

H3N3
1277.7

H3N4
1480.7

H6N2
H7N2 H8N2

H3N4F
1626.7

H3N5
1683.7

H3N5F
1829.7

H9N2
2046.9

H3N2
1074.5

1200

200

N-Glycans

N-Glycans

N-Glycans + HF

N-Glycans + HF

Spotting buffer

150

100

50

0

2500

2000

1500

1000

500

0

CGL3

*

*

MBL

WGA

WGA MBL

TEPC

1300 1500 1700 1900 m /z

H5N2

H3N2
1074.5

+ HF

H3N4F
1626.7

H7N2
1722.7

H8N2
1884.8

H3N6F
2032.6

H6N2
1560.8

H9N2
2046.9

H3N2F2PC
1531.4

H3N4F2
1772.7

H3N4PC
1645.7 H3N5F2

1975.8

H3N2F2
1366.7 H3N3FPC

1588.7

PC

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07948-7 ARTICLE

NATURE COMMUNICATIONS |           (2019) 10:75 | https://doi.org/10.1038/s41467-018-07948-7 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


humans57; other studies reveal that various mono- and di-
fucosylated LacdiNAc-containing glycans are also recognised by
antibodies of Schistosoma-infected animals58,59.

Overall it can be stated that at least a portion of the neutral and
anionic N-glycans are of extreme size and charge and modelling
suggests rather extended conformations with distances between
the antennae being estimated as 45 Å (Supplementary Figure 22).
Although shorter than those between antigen-binding sites in
IgG, this is within the shortest distance between the binding sites
of some multivalent lectins60 as well as between the protomers of
C-reactive protein61; thereby, the large glycans of D. immitis may
act as a type of natural glycodendrimer. Thus, we can hypothesise
that the modifications of D. immitis glycans may cross-link some
proteins of the innate immune system, as suggested above for C-
reactive protein, but prevent binding to others, including natural
IgM. It may be that some heartworm glycoproteins, whether
membrane-bound, excretory–secretory products or on exo-
somes62, act as a barrier preventing access of antibodies, lectins or
other proteins to the external and internal surfaces of the
nematode during its life in the mammalian host; alternatively,
they may inhibit host elicitor functions or indeed be required for
completion of the infection cycle. Thereby, our glycomic and
array data could be an indication that glycomimickry or glyco-
gimmickry (i.e. presenting either host-like glycans engendering
invisibility or rather unusual glycans which are immunomodu-
latory) are, as proposed for other helminths63, potential
mechanisms during Dirofilaria infection.

Methods
Biological material. Dirofilaria immitis adults were isolated upon surgical heart-
worm removal from pulmonary arteries (via the left jugular vein using flexible
alligator forceps) of dogs whose infection was originating either in Italy or in
Thailand; the dogs were privately owned and underwent surgery for therapeutic
reasons. The female worms could be identified due to their larger size and the
shape of the tail whereas the males are smaller and have a coiled tail. Approxi-
mately 2 g (wet weight) of worm material were used for each preparation, which
corresponds to 10 female or 20 male worms. Dog blood containing D. immitis
microfilariae used as the source of infected sera for glycan array analyses as well as
live L3 larvae were obtained from BEI Resources, Manassas, VA.

Enzymatic release and purification of N-glycans. The worms were lyophilised
before grinding in liquid nitrogen and nematode homogenates were proteolysed
with thermolysin64, prior to cation exchange and gel filtration chromatography of
the proteolysate. Thereafter, N-glycans were released from glycopeptides using
peptide:N-glycosidase F (recombinant PNGase F; Roche) as previously described64;
the pH was adjusted to pH 4 and peptide:N-glycosidase A (recombinant almond
PNGase A, in-house His-tag purified recombinant form expressed in insect cells)
added and digestion continued for another 24 h. After an initial purification by
cation-exchange chromatography (Dowex AG50; flow-through), the glycans were
subject to solid-phase extraction on non-porous graphitised carbon (SupelClean
ENVICarb, Sigma-Aldrich) as described64,65; the neutral and anionic-enriched
fractions were subsequently eluted with (i) 40% acetonitrile and (ii) 40% acetoni-
trile containing 0.1% trifluoroacetic acid, respectively. The pools of glycans were

then subjected to a second solid-phase extraction on C18 and the glycans in the
flowthrough and 15% methanol elution were pooled and labelled via reductive
amination using 2-aminopyridine (PA)64. Refer to Supplementary Figure 1 for the
workflow as well as for Supplementary Note 2 further explanations regarding the
glycomic analyses and assignments. The female glycomes were prepared twice: the
first female preparation and the male preparation were subject to RP-amide
separation as 1D-HPLC as well as 2D-HPLC, whereas the second female pre-
paration was subject to 2D-HPLC only; there were no major differences between
the female and male glycomes and the second female preparation. There was no
evidence for canine glycans in the prepared glycomes as judged by the lack of
sialylated, α-galactosylated or bisected LacNAc-modified glycans previously
detected in dogs66,67; also, the fucosylated chitobiose core regions of the glycans
detected would not be compatible with contamination from a bacterial source.

HPLC fractionation. For 1D-HPLC, complete pyridylaminated N-glycomes were
fractionated by reversed-phase HPLC (Ascentis Express RP-amide from Sigma-
Aldrich; 150 × 4.6 mm, 2.7 µm) and a gradient of 30% (v/v) methanol (buffer B) in
100 mM ammonium acetate, pH 4 (buffer A) was applied at a flow rate of 0.8 ml/
min (Shimadzu LC-30 AD pumps) as follows: 0–4 min, 0% B; 4–14 min, 0–5% B;
14–24 min, 5–15% B; 24–34 min, 15–35% B; 34–35 min, return to starting condi-
tions16. The RP-amide HPLC column was calibrated daily in terms of glucose units
using a pyridylaminated dextran hydrolysate and the degree of polymerisation of
single standards was verified by MALDI-TOF–MS64. Alternatively, hydrophilic
interaction anion exchange (HIAX) HPLC for size/charge separation was per-
formed with an IonPac AS11 column (Dionex; 4 × 250 mm) using a Shimadzu
Nexera UPLC system as described previously65. A two solvent gradient was applied
with buffer A (0.8 M ammonium acetate, pH 3.85) and buffer B (80% acetonitrile)
at a flow rate of 1 ml/min: 0–5 min, 99% B; 5–50 min, 90% B; 50–65 min, 80% B;
65–85 min, 75% B. A pool of pyridylaminated oligomannosidic N-glycans from
white beans (containing Man3-9GlcNAc2) was used to calibrate the column. RP-
amide and HIAX glycan fractions were collected manually based on observation of
the fluorescence intensity (excitation/emission at 320/400 nm; Shimadzu RF 20
AXS detector) and analysed by MALDI-TOF–MS and MS/MS. For 2D-HPLC,
HIAX fractions, selected on the basis of the mass spectrometric data, were re-
chromatographed on the RP-amide column. In total, over 120 HPLC runs on
whole glycomes, sub-pools and digested fractions were performed. Thereby, iso-
meric separation of many glycans could be attained; as shown in previous studies
using RP-HPLC as well as by use of standards such as asialoagalacto N-glycans
derived from bovine fetuin, tri-antennary isomers can be separated with the 2/4/2-
substituted forms eluting later than those with 6/2/2; also, RP-HPLC can resolve
glycans carrying a single GlcNAc on the α1,3-mannose as opposed to those with
one on the α1,3-arm68.

Mass spectrometry. MALDI-TOF–MS was performed using an Autoflex Speed
(Bruker Daltonics, Bremen) instrument in either positive or negative reflectron
modes with 6-aza-2-thiothymine (ATT; Sigma-Aldrich) as matrix; samples (0.8 µl)
were vacuum dried on ground or polished steel plates before addition of matrix
(0.8 µl of 3 mg/ml ATT in 50% ethanol) and crystallisation again under vacuum64.
The matrix region was suppressed and so MS spectra were normally recorded in
the range m/z 700-3500, but as required up to 4500 in reflector mode or higher in
linear mode; for some samples, the lens voltage was decreased either to facilitate
detection of low abundance glycans or to reduce in source fragmentation of
structures with multiple anionic residues. MS/MS was in general performed by
laser-induced dissociation of the singly charged [M+H]+ or [M-H]- ions (selection
window typically 0.6%); typically 1000 shots were summed for MS and 5000 for
MS/MS. Spectra were processed with the manufacturer’s software (Bruker Flex-
analysis 3.3.80) using the SNAP algorithm with a signal/noise threshold of 6 for MS
(unsmoothed) and 3 for MS/MS (four-times smoothed). The over 5500 MS and
4000 MS/MS spectra were manually interpreted on the basis of the masses of the

Fig. 9 Glycan epitopes in D. immitis. a A summary of neutral and anionic N-glycan structures highlighting major antennal modifications; for a fuller set of
defined structures refer to Supplementary Table 3. b The presence of HexNAc and phosphorylcholine residues in L3 larvae was probed using CGL3 (red)
and TEPC 15 (green) by indirect fluorescence microscopy; also shown are the DAPI staining (for DNA) and DIC (differential interference contrast) images
and the scale bar corresponds to 10 µm. c MALDI-TOF–MS of the AEAB-labelled neutral N-glycome before and after hydrofluoric acid treatment indicating
loss of antennal fucose and phosphorylcholine residues. d The binding of Coprinopsis galectin (CGL3; 10 µg/ml), wheat germ agglutinin (WGA; 10 µg/ml)
and human mannose binding lectin (MBL) to the Dirofilaria glycans increases after hydrofluoric acid treatment, while that to anti-phosphorylcholine (TEPC
15 IgA monoclonal) decreases. The charts indicate the uncorrected fluorescence values with the standard deviations (mean of 10 spots; analysed with an
unpaired two-tailed parametric t-test with a 95% confidence level) as well as a negative control (spotting buffer only; example array scans are shown for
the WGA and MBL data). Note that previous data indicate that CGL3 can recognise LacdiNAc, whereas WGA is known to bind HexNAcn motifs and MBL
to a wide range of glycans including those with terminal mannose or N-acetylglucosamine residues. Refer to Supplementary Figures 16–19 and 21 for (i)
western blotting and further micrograph data (including controls) on epitopes recognised by CGL3 and TEPC 15, (ii) a summary of MS data on proteins
affinity purified on CGL3- and TEPC 15-Sepharose, (iii) further MBL binding experiments (before and after endoglycosidase H treatment) to the
immobilised glycome pools and fractionated immobilised glycans as well as data on other lectin interactions to the natural glycans and to defined di- and
tri-saccharides

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07948-7

14 NATURE COMMUNICATIONS |           (2019) 10:75 | https://doi.org/10.1038/s41467-018-07948-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


predicted component monosaccharides, differences of mass in glycan series, frag-
mentation pattern, comparison with co-eluting structures from other nematodes
and chemical or exoglycosidase treatments. Two selected 2D-HPLC-purified glu-
curonylated N-glycans were subject to LC–MSn as previously described using a
5 µm porous graphitised carbon column and a LTQ ion trap mass spectrometer
(Thermo Scientific) in negative-ion mode34 with the spectral interpretation being
performed in comparison to the literature69. The symbolic annotations of spectra,
chromatograms or molecular models are according to the standard
nomenclature70,71; tables of theoretical m/z values for relevant compositions are
presented in the Supplementary Tables 1 and 2.

Enzymatic and chemical treatments. Glycans were treated, prior to re-analysis by
MALDI-TOF–MS, with α-fucosidase (bovine kidney from Sigma-Aldrich), α-
mannosidase (jack bean from Sigma), β-glucuronidases (E. coli from Megazyme or
Helix pomatia from Sigma; desalted and concentrated ten-fold with a centrifugal
device with a 10 kDa molecular weight cut-off before use) or β-N-acetylhex-
osaminidases (jack bean from Sigma-Aldrich, Xanthomonas manihotis from

New England Biolabs, Streptomyces plicatus chitinase from New England Biolabs or
in-house-produced recombinant forms of Caenorhabditis elegans HEX-4 specific
for β1,4-GalNAc-linked residues or Apis mellifera FDL specific for the β1,2-linked
product of GlcNAc-transferase I19) in 50 mM ammonium acetate, pH 5, at 37 °C
overnight (except for pH 6.5 in the case of HEX-4, or pH 7 in the case of E. coli β-
glucuronidase or an incubation time of only 3 h in the case of FDL or <2 h for H.
pomatia β-glucuronidase). Hydrofluoric acid was used for removal of core or
antennal α1,3-fucose or of phosphorylcholine17. As appropriate, treated glycans
were re-chromatographed by RP-amide HPLC to ascertain retention time shifts
prior to MALDI-TOF–MS. See also Supplementary Note 2 for discussion of gly-
cosidase specificities and Supplementary Figure 23 for the HEX-4 and chitinase
sensitivity of defined disaccharide conjugates.

Lectin production and biotinylation. For use in western blotting and fluorescence
microscopy, two nematotoxic fungal lectins (CGL3 and CCL2 from Coprinopsis
cinerea) were expressed and purified as previously described23,72. In brief: the lectin
cDNAs were amplified and cloned into relevant plasmids and then the proteins
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Fig. 10 Binding of dog antibodies and C-reactive protein to D. immitis N-glycans. a, b The binding of IgM and IgG antibodies in three different dog sera
(1:250 diluted; non-infected dog, infected dog I and infected dog II) were tested toward natural AEAB-labelled Dirofilaria N-glycans before and after
hydrofluoric acid treatment, as well as reference 6-(5-aminopentanamido)-N-(2-[2-[oligosaccharyl-N-methoxyamino]ethoxy)ethyl]-2-naphthamides (see
Supplementary Figure 23), which resemble selected terminal carbohydrate modifications of D. immitis glycans, i.e. fucosylated LacdiNAc (LDNF), LacdiNAc
(LDN), fucosylated chitobiose (F-chito) and chitobiose (chito; see also symbolic depictions). IgM binding toward the HF-treated glycan pool was stronger
than to the natural glycan pool and was also significant towards LDNF, chitobiose and F-chito; the pattern of IgG binding was more variable, but was highest
towards N-glycans and LDNF for infected dogs. c The binding of human pentraxin C-reactive protein (5 µg/ml CRP; detected either with anti-CRP or with
C1q/anti-C1q) was examined by probing the AEAB-labelled N-glycan pool (before or after hydrofluoric acid treatment) on NHS-modified glass slides as
compared to relevant negative controls (spotting buffer only or anti-CRP alone); the binding of C-reactive protein decreased after chemical removal of
phosphorylcholine. d The binding of exogenous complement C1q (10 µg/ml) in the presence of Ca(II) ions (5 mM) toward natural dog CRP interacting with
Dirofilaria N-glycans was also tested using the three different sera (1:250 diluted). The strongest response was detected for the infected dog serum II (ID-II)
compared to the other dog sera (control serum NID or infected dog ID-I) or the controls with no dog sera (+CRP/C1q or +C1q). The presented data are
typical of the three experiments performed per binding combination and are based on uncorrected fluorescence values with standard deviations (mean of
10 spots); significance levels (analysed unpaired two-tailed parametric t-test at α 0.05) are shown by either dashed lines or asterisks. For further array-
related data, including the HPLC chromatograms and example MS/MS of AEAB-labelled glycans, data on binding of CRP and TEPC 15 to sub-fractionated
N-glycans and controls for CRP or C1q interactions in the presence of EDTA, refer to Supplementary Figures 18–21
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were expressed in Escherichia coli (strain BL21). The lectins were purified via their
hexahistidine tags using an Ni-NTA column (Qiagen), subsequently concentrated
and buffer-exchanged to phosphate-buffered saline (PBS) using a 10 kDa cut-off
Amicon Ultra-4 centrifugal device (Millipore). Both for use in western blotting and
in fluorescence microscopy, purified lectins were biotinylated73 with EZ-Link sulfo-
NHS-biotin kit (Pierce) according to the manufacturer’s instructions, followed by a
desalting step on a PD-10 column (Amersham Biosciences).

Western blotting. For detection of glycan epitopes, protein extracts of adult
worms, both female and male were analysed. The worms were cut into pieces of ~2
mm and homogenised using a Dounce homogeniser in lysis buffer (20 mM MES
buffer pH 7, 1% Triton X-100, 0.01% protease inhibitor cocktail from Roche). The
homogenate was then sonicated for 3 s, centrifuged at 10,000×g for 10 min and the
supernatant denatured at 95 °C in 4× sample buffer (60 mM Tris–Cl pH 6.8, 2%
SDS, 10% glycerol, 5% β-mercaptoethanol, 0.01% bromophenol blue) prior to SDS-
PAGE separation (8% acrylamide, 120 V) for subsequent analysis by either Coo-
massie staining or blotting on nitrocellulose (GE Healthcare). After overnight
blocking of the membrane at 4 °C with 0.5% bovine serum albumin in PBST, lectin
or antibody detection was performed using either 10 μg/ml of biotinylated lectins
(CGL3 or CCL2) or 1:5000 dilution of the murine IgA TEPC 15 (Sigma, M1421).
Subsequently the membrane was incubated with, in the lectin case, 10 μg/ml of
Streptavidin coupled with HRP (Vector Laboratories, SA-5004) and in the TEPC
15 case a 1:3000 dilution of HRP coupled anti-mouse IgA (Bethyl, A90-103P).
After extensive washing (PBST), horseradish peroxidase activity was detected using
ECL Direct™ detection reagent (VWR, RPN2105) and exposure to photographic
film.

Histochemistry. For detection of glycan epitopes in tissues, sections of L3 worms
were stained with in-house-produced lectins and antibodies. The sample slides
were prepared by washing the worms twice with PBS and then fixing them
overnight in 4% formaldehyde. After fixation, the sample was washed twice with
PBS and incubated overnight in 30% sucrose. Afterwards, the sucrose was
completely removed and the worms were embedded in O.C.T. solution (VWR
361603E) in a mould (Fisher 15-182-501-D) and frozen over dry ice. The blocks
were stored at −80 °C until sectioning (Cryostat 2800 Frigocut, Cambridge
Instruments GmbH with Feather microtome blades N35). The 8 µm slides were
air dried for 30 min before the post-sectioning fixation with 4% formaldehyde
for 20 min at room temperature. Subsequently, the slides were washed with PBS
and blocked in 0.1 M glycine in PBS for 5 min at room temperature and then
incubated in 2% BSA in PBS overnight at 4 °C. The slides were then probed
either with 10 μg/ml biotinylated lectins (CGL3 or CCL2), or a 1:200 dilution of
the monoclonal antibody (TEPC 15) for 1 h at room temperature. After washing
with PBS, the slides were incubated with either 15 μg/ml Atto 655 Streptavidin
(Sigma-Aldrich, 02744; fluorescently labelled for detection of lectins) or with
FITC-conjugated polyclonal goat IgG against mouse immunoglobulins IgG, IgA
and IgM (Cappel, 55499; for detection of immunoglobulins) for 1 h at 4 °C in the
dark. Finally, the slides were washed three times with PBS and embedded using
Vectashield embedding solution containing DAPO (Vector Labs, Burlingame,
CA) prior to microscopy with a Leica confocal laser scanning TCS SP8 micro-
scope at the appropriate settings.

Synthesis of di- and tri-saccharides on an aminoxy-based linker for glycan
arraying. N,N′-diacetylchitobiose was purchased from Carbosynth and N,N′-dia-
cetyllactosediamine (LacdiNAc) synthesised as detailed in the Supplemen-
tary Methods (see also Supplementary Figures 24 and 25). The corresponding 6-(5-
aminopentanamido)-N-(2-[2-[disaccharyl-N-methoxyamino]ethoxy)ethyl]-2-
naphthamides were prepared as previously described74 using the free unprotected
disaccharides; these conjugates were also fucosylated with C. elegans FUT-6 α1,3-
fucosyltransferase and almost quantitative conversion was demonstrated by
MALDI-TOF–MS and HPLC (see Supplementary Figure 23).

Preparation of AEAB-labelled natural glycan pools for glycan arraying. Free N-
glycans of the neutral pool were modified reductively with 2-amino-N-(2-amino-
ethyl)-benzamide (AEAB; excitation/emission of 330/420 nm) as described by
Song75. An aliquot of the AEAB-labelled glycans was treated for 2 days at 0 °C with
hydrofluoric acid to remove core/antennal α1,3-fucose as well as phosphorylcho-
line. Both the native and treated pools were injected onto a normal phase column
(TSKgel Amide-80; reverse gradient of acetonitrile) prior to re-pooling. Fractions
were analysed by MALDI-TOF–MS and MS/MS to determine glycan compositions
in terms of Hex, HexNAc, Fuc and PC moieties. For both pools and fractions, the
integrated HPLC fluorescent peak areas were used to normalise the amounts used
for subsequent non-contact printing.

Glycan array-based lectin and antibody screening. Derivatised glycans were
mixed 1:1 with spotting buffer (300 mM sodium phosphate pH 7.5, 0.005% Tween-
20) then spotted (n= 10; 1–2.5 fmol as described in the supplement) by non-
contact printing (Scienion Flexarrayer S1) onto NHS-derivatised Nexterion H glass
slides (Schott). After 16 h of hybridisation, slides were blocked (50 mM ethanola-
mine in 50 mM sodium borate, pH 9.0) for 1 h at RT, washed serially with TSM

(20 mM Tris, pH 7.4, 150 mM NaCl, 2 mM CaCl2, 2 mM MgCl2) with 0.05%
Tween-20, TSM alone and H2O prior to drying44,74,75. The slides were incubated
with either dilutions of dog sera (one control and two infected), biotinylated fungal
CGL3 and CCL2 (see above) or biotinylated forms of wheat germ agglutinin,
Aleuria aurantia lectin, concanavalin A or tomato lectin (Vector Laboratories;
B1025, B1395, B1005 and B1175), murine TEPC 15 IgA monoclonal (Sigma-
Aldrich; M1421), recombinant human mannose binding lectin (Biotechne; 9085-
MB-050) or natural human C-reactive protein (MPBio; 215231505) followed by the
relevant secondary and/or tertiary antibodies. In experiments with human C1q
(Sigma; C1740), slides were incubated first with sera or with C-reactive protein in
the absence or presence of additional CaCl2 or EDTA, prior to serial application of
C1q and fluorescent anti-C1q (Bioss Antibodies; bs-10750R-A647). Slides were
scanned with an Agilent G2565CA Microarray Scanner (multiple photomultiplier
tube (PMT) gain values from 10 to 100%) and raw image files were analysed by
GenePix software. The fluorescence values (green for FITC and red for AlexaFluor-
647) were used to calculate (in Excel) the mean and standard deviation from all ten
spots. The negative controls (spotting buffer or no primary reagent) show fluor-
escence due to either the labels themselves or non-specific binding of the fluor-
escent secondary antibodies. For further details regarding conditions, buffers and
dilutions, refer to Supplementary Note 3.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the paper and its
Supplementary Information files or from the corresponding author upon request.
In addition, MS/MS data underlying Figs. 2–8 and Supplementary Figures 5–15 are
available as mzxml files (in the case of MALDI-TOF–MS/MS) or as an excel file (in
the case of LC–MS/MS) on Figshare (doi: 10.6084/m9.figshare.7387496). A
reporting summary for this Article is available as a Supplementary Information file.
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