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Summary 

Membrane-less organelles (MLOs) are liquid-like subcellular compartments that form through 

phase separation of proteins and RNA. While their biophysical properties are increasingly 

understood their regulation and the consequences of perturbed MLO states for cell 

physiology are less clear. To study the regulatory networks, we targeted 1,354 human genes 

and screened for morphological changes of nucleoli, Cajal bodies, splicing speckles, PML 

nuclear bodies (PML-NBs), cytoplasmic processing bodies and stress granules. By 

multivariate analysis of MLO features we identified hundreds of genes that control MLO 

homeostasis. We discovered regulatory crosstalk between MLOs, and mapped hierarchical 

interactions between aberrant MLO states and cellular properties. We provide evidence that 

perturbation of pre-mRNA splicing results in stress granule formation, and reveal that PML-

NB abundance influences DNA replication rates and that PML-NBs are in turn controlled by 

HIP kinases. Together, our comprehensive dataset is an unprecedented resource for 

deciphering the regulation and biological functions of MLOs.   

 

Introduction 

Membrane-less organelles (MLOs) are subcellular compartments in the cyto- and 

nucleoplasm of eukaryotic cells. MLOs contain proteins with intrinsically disordered regions 

that together with RNA phase separate from the surrounding milieu (Banani et al., 2017; 

Brangwynne et al., 2009). These local concentrations of proteins and RNAs have two major 

functional implications. First, MLOs may concentrate components to facilitate biochemical 

reactions. Nucleoli, for instance, are nucleated at sites of actively transcribed ribosomal RNAs 

and control most aspects of ribosome biogenesis (Sirri et al., 2007). Likewise, Cajal bodies 

(CBs) are small nuclear domains that form on active loci of small nuclear (sn)RNA 

transcription and are typically present in highly proliferative cells that have a high demand in 

splicing (Cioce and Lamond, 2005; Machyna et al., 2012). The second functional implication 

of MLOs is that they could act as dynamic buffers for both protein and RNAs (Saunders et al., 

2012; Stoeger et al., 2016). Nuclear splicing speckles, for instance, are enriched in 

spliceosomal snRNPs and components of the pre-mRNA splicing machinery but are not 

considered as sites of pre-mRNA splicing. Instead, they might constitute storage sites of 

splicing factors to supply them to adjacent active transcription sites according to need 

(Spector and Lamond, 2011). Analogous to splicing speckles, nuclear bodies that form 
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around promyelocytic leukemia protein (PML-NBs) harbor proteins involved in transcriptional 

regulation, DNA damage response and apoptosis and are considered as storage sites and 

hubs for protein modification (Bernardi and Pandolfi, 2007; Hsu and Kao, 2018; Lallemand-

Breitenbach and de The, 2010). Last, cytoplasmic processing bodies (PBs) form around 

translationally repressed mRNAs and were initially considered as sites of mRNA degradation 

as they contain numerous proteins associated with mRNA deadenylation, decapping, and the 

5’-to-3’ mRNA decay pathway (Luo et al., 2018; Sheth and Parker, 2003). However, there is 

increasing evidence that mRNA degradation might not occur in PBs and that PBs are rather 

storage sites for repressed mRNAs that can be released and translated according to the cell’s 

needs (Horvathova et al., 2017; Hubstenberger et al., 2017). 

Most constitutive MLOs are regulated according to the physiological state of the cell. Size and 

abundance of MLOs change along the cell cycle, and morphology and composition of MLOs 

are altered upon stress (Boulon et al., 2010; Courchaine et al., 2016; Dellaire and Bazett-

Jones, 2004). One key factor that contributes to MLO formation is the concentration of both 

protein and RNA components. Active rDNA transcription, for instance, is essential for 

nucleolar assembly (McCann and Baserga, 2014), and depletion of proteins involved in 

ribosome biogenesis leads to diminished nucleolar number, as discovered by a recent 

genome-wide siRNA screen (Farley-Barnes et al., 2018). Another key factor in the assembly 

of MLOs are posttranslational modifications of proteins, such as phosphorylation, that can 

alter the number of transient interactions between MLO components and thus, influence the 

phase separation of MLO scaffolds or the recruitment of individual components 	
(Bah and Forman-Kay, 2016; Dundr and Misteli, 2010; Hebert, 2013; Hernandez-Verdun, 

2011). However, only few kinases and phosphatases have been identified as MLO regulators 

so far. We previously discovered that DYRK3 kinase controls the dissolution of stress 

granules upon stress relief likely by phosphorylating multiple RNA-binding proteins, and is 

required for splicing speckle disassembly in pre-mitotic cells (Wippich et al., 2013; Rai et al., 

2018). Similarly, MBK-2, the C. elegans homologue of DYRK3, controls the dissolution of P-

granules (Wang et al., 2014) and over expression of the human dual-specificity kinases CLK 

and DYRK1A leads to a phosphorylation-dependent disassembly of splicing speckles 

(Alvarez and la Luna, 2003; Sacco-Bubulya, 2002).  

Here, we present a parallel image-based RNAi screening approach with single cell resolution, 

in which we targeted 1,354 genes including the kinome and phosphatome, as well as multiple 

known MLO components to uncover regulators of six major MLOs in human cells, similar to 

an approach we previously applied to membrane-bound organelles (Liberali et al., 2014). We 

applied computer vision and machine learning methods to quantify the morphological 

changes of nucleoli, CBs, splicing speckles, PML-NBs, cytoplasmic PBs and SGs in 

thousands of single cells per perturbation. Single cell clustering allowed us to identify more 

than 500 genes involved in multiple biological processes that regulate one or more MLOs. 

We identified gene perturbations that provoke the assembly of SGs and discovered a link 

between perturbation of pre-mRNA splicing and SG formation. Moreover, our approach 
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allowed us to uncover co-occurrence of perturbed MLO states and their functional 

consequences on the cellular state. In particular, we found that the abundance of PML-NBs 

controls the rate of DNA replication, and that size and composition of PML-NBs are regulated 

by the dual-specificity kinases HIPK1 and HIPK2. 

 

Results 
 

Image-based RNAi screens on six membrane-less organelles with single-organelle 

resolution 

To uncover the regulatory complexity underlying the homeostasis of MLOs, we targeted 1,354 

human genes with pools of three siRNAs per gene and stained the cells against key marker 

proteins of nucleoli, CBs, PML-NBs, splicing speckles, PBs and SGs (Figures 1A and 1B). 

The gene library contained protein kinases and phosphatases, and known MLO components 

that are modified by phosphorylation (Figures 1C, S1A and Table S1). After imaging 

thousands of cells per condition, we applied computer vision approaches to segment nuclei 

and cells, and extracted multiple single cell features such as size and shape, or protein and 

DNA content. We used support vector machine classification (Ramo et al., 2009) for quality 

control and data cleanup on multiple levels (Figure S1B). We fully excluded 31 perturbations 

(2.3 percent of the gene library) that strongly impaired cell viability (Figure S1C). Cell 

numbers showed no plate position bias and both cell numbers and cell cycle classifications 

were highly reproducible between the screens (Figures S1D-S1F). 103 gene perturbations 

(7.6 percent of the gene library) displayed significantly altered fractions of cells in G1, S and 

G2 in all three screens along with reduced fitness (Figures S1G-S1I). In order to quantify 

MLO morphology in each of the single cells we used a custom pixel classification-based 

software to accurately segment individual MLOs across a wide range of intensities, sizes, 

shapes, and background signals (Figures 1D and 1E). We combined segmented MLOs per 

cell and extracted phenotypic features (see STAR Methods). All cell and MLO intensity 

measurements were corrected for plate positional staining biases on the single-cell level. 

Finally, we confirmed that the resulting numbers of MLOs per cell derived from more than 

700,000 unperturbed cells were in agreement with previous reports (Figure S1J and (Mao et 

al., 2011)).  

 

Identification of gene perturbations with aberrant MLO morphologies 

The number and morphology of MLOs is to a large extent determined by the cell cycle and 

thus highly heterogeneous even in unperturbed cell populations. To account for this cell-to-

cell variability, we analyzed the screens by means of unsupervised clustering of single cells 

based on their morphological MLO features (Figure 2A, STAR Methods, and (Van Gassen et 

al., 2015)). Each MLO was analyzed separately. For instance, about 3.7 million single cells 

from unperturbed and perturbed conditions of the nucleoli screen were analyzed together and 

clustered into 30 phenotypic nodes according to their nucleolar features (Figures 2B and 

S2A).  
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First, we explored the cell cycle-dependent MLO heterogeneity of unperturbed cells using cell 

cycle trajectories (CCTs) (Gut et al., 2015). CCTs are inferred from the cellular state 

information of fixed cell populations and reflect cell cycle progression. We mapped features 

describing the cellular state as well as features of MLOs on the CCTs (Figures 2C, and S2B-

S2D) and observed their largest fluctuations during S phase. The intensity of the nucleolar 

marker NPM, for example, transiently drops in early S-phase cells but recovers towards late S 

phase (Figure 2C), a phenomenon that can not be revealed by simply binning cells into G1, S 

and G2 phases (Figure S2E). Consistently, unperturbed cells in early S phase were assigned 

to different phenotypic nodes than unperturbed cells in late S phase (Figure 2D). These data 

underscore the high quality of our screens and the sensitivity of our single cell clustering 

approach to distinguish even subtle phenotypic changes of MLOs. 

Next, we calculated the median MLO feature values from all perturbed and unperturbed cells 

that were sorted into one phenotypic node and subsequently clustered the phenotypic nodes 

of each MLO (Figures 3A, and S3A-S3D). When we analyzed how cells from control 

populations distribute over the nodes we found that unperturbed cells primarily enrich in 

nodes with intermediate feature values and are absent in nodes with rather extreme MLO 

features (Figures 3B, S3A-S3D, and Table S2). In order to identify gene perturbations that 

drastically alter MLO morphology we then defined two globally perturbed states for each 

MLO, namely an increased and a decreased state, which each contain cells from one or more 

phenotypic nodes (see STAR Methods). Notably, exclusively for P-bodies and nucleoli we 

were able to discern a third perturbed MLO state, reflecting the absence of MLOs similar to 

the decreased state but with elevated levels of the marker proteins localizing diffuse in the 

cyto- or nucleoplasm, respectively. We then calculated for each gene perturbation the fraction 

of single cells that was clustered into the nodes belonging to each of the two or three 

perturbed MLO states, and used these values for further analysis (Figures 3B, S3A-S3D, and 

Table S1). For instance, 72 percent of NPM1 knock down cells were found in nodes of the 

perturbed state ‘decreased NPM’ while the remaining cells were clustered into nodes with 

intermediate nucleolar features that do not reflect a perturbed state. In contrast, down 

regulation of RPL11 results in ‘increased nucleoli’ for 97 percent of the cells. Gene 

perturbations resulting in perturbed MLO states for fractions higher than 2.5 standard 

deviations from the mean across the whole screen were then considered as hits (Figures 3C-

3G). For all MLOs, the gene perturbation of the respective marker protein was identified 

among the highest scoring hits in the ‘decreased MLO marker’ state. Importantly, our single-

cell clustering analysis has the potential to identify more than the perturbed MLO states 

portrayed here. For instance, node 5 of the Cajal body (CB) screen contains cells with 

fragmented CBs (high CB numbers without altered CB intensities), and node 11 of the 

splicing speckle screen contains cells with SRRM2 droplets in the cytoplasm (Figures S3E, 

S3F, and Table S2). 

To assess the technical reproducibility of our analysis we compared how cells of three 

replicate conditions distributed over the nodes (Figures S3G-S3H). Reassuringly, the 
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fractions of single cells assigned to each phenotypic node were nearly identical between the 

biological replicates. Finally, to evaluate the biological consistency of our results with previous 

literature, we visualized 48 genes that are present in our library and are known components 

of P-bodies as a network in which the color and shape of nodes indicate PB morphology 

(Figure 3H). We identified LSM14A, PATL1 (Pat1b) and EDC4 (Ge-1) among the genes 

required for PB assembly as previously reported (Ozgur et al., 2010; Yang et al., 2006; Yu et 

al., 2005). We further identified four genes coding for proteasomal subunits (PSMA2, PSMA4, 

PSMA6 and PSMC2) as positive regulators of PBs, supporting previous findings that 

exposure of cells to the proteasome inhibitor MG132 resulted in PB dissolution (Mazroui, 

2007). Moreover, we found that depletion of the mRNA decapping factors DCP1A and DCP2 

leads to increased PB formation, as it was previously shown in yeast (Sheth and Parker, 

2003). Together, these results provide confidence that our single-cell clustering approach is 

of high quality both in terms of technical reproducibility and biological outcome. 

 

Perturbation of pre-mRNA splicing leads to stress granule formation 

Stress granules (SGs) are typically absent in unperturbed cells and form either when cells 

experience stress or upon over expression of certain SG components, such as G3BP-1 or 

TIA-1 (Anderson and Kedersha, 2002; Anderson and Kedersha, 2009; Dewey et al., 2011). 

We included the SG marker G3BP-1 to screen for the formation of SGs upon gene 

perturbation. We did detect some SG-containing cells among unperturbed cell populations, 

which we used to train a pixel classification-based model for SG segmentation. Although SGs 

were accurately segmented (Figure 1D), we could not entirely prevent the classifier to also 

segment granule-like G3BP-1 staining resembling cytoplasmic blebs. However, cluster 

analysis of the morphological features of the segmented objects allowed the separation of 

gene perturbations resulting in blebs from perturbations resulting in actual SGs (Figures 4A, 

S4A-S4D, and STAR Methods). We identified 53 genes, whose perturbation caused a 

marked increase in the fraction of cells with SGs as compared to unperturbed cells (Figures 

4B and 4C). Remarkably, when we explored the biological function of these genes, we found 

that eight out of 53 genes encode for either spliceosome components or contribute to its 

assembly, seven genes function as splicing regulators and six genes play roles in RNA 

editing, processing and export, respectively (Figure 4D). To corroborate this finding, we 

treated cells with either mRNA transcription or mRNA splicing inhibitors. Strikingly, in all three 

cell lines tested we observed formation of SGs in about 5-15 percent of cells when pre-mRNA 

splicing is inhibited, but not in cells where mRNA transcription is blocked (Figures 4E, 4F, and 

S4E). In addition, we performed fluorescence in situ hybridization in these cell lines to detect 

polyA-mRNAs. While polyA-mRNAs are almost absent in transcriptionally inhibited cells, they 

accumulate in the nucleus of cells treated with splicing inhibitors and can be detected in 

cytoplasmic SGs in HeLa and A-431 cells (Figure S4F). Thus, our screen revealed a 

previously unrecognized functional link between pre-mRNA splicing and SG formation, which 

can be observed in various cell lines originating from different tissues. 
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Shared and distinct regulatory pathways control MLO formation  

One main goal of generating this dataset was to reveal systems-level properties that go 

beyond the identification of particular genes involved in the regulation of one MLO but emerge 

from the cross-comparable scoring of genes. First, we calculated functional annotation 

enrichments for all identified hits per MLO separately and visualized them as networks of 

gene ontology (GO)-terms (Figures 5A-5F, S5A and S5B). Comparing the resulting patterns 

revealed that the six different MLOs have distinct as well as shared control pathways. To 

relate the functional enrichments to individual genes we created interaction networks of the hit 

genes in which the color and shape of nodes indicates the respective MLO morphology upon 

perturbation (Figures 5G-5K). The genes whose perturbation induces SG formation are 

particularly enriched in splicing-related functions, but also in transcription, mRNA binding, 

processing, and transport (Figure 5A), and display eleven-fold enrichment in the KEGG 

pathway term ‘spliceosome’ (Figure S5C). Genes that regulate nucleolar morphology are also 

enriched in splicing-related functions, but in addition cover a wide range of other functions, 

such as transcriptional regulation, proteasome and APC-dependent protein degradation, and 

Wnt and other signaling pathways (Figures 5B and 5G). For both PBs and Cajal bodies 

(CBs), we observed a particular functional enrichment in second messenger signaling 

(Figures 5C and 5E). We found that down-regulation of the cAMP phosphodiesterases 

PDE4C and PDE3B leads to increased PBs, while several other phosphodiesterase-encoding 

genes (PDE2A, PDE3A, PDE6A, PDE6D) as well as PRKAA1 (AMPK) are required for PB 

assembly (Figure 5H). A study in yeast previously linked cAMP signaling to PB regulation by 

demonstrating that cAMP-dependent protein kinase (PKA) could dissociate PBs via 

phosphorylation of Pat1 (Ramachandran et al., 2011) indicating that this regulation is 

evolutionary conserved. For CBs, we identified PRKACB, the catalytic subunit of PKA, and 

PRKX/PKX1, a protein kinase with similarity to PKA, to be required for CB formation (Figure 

5J). Unexpectedly, we found that genes whose silencing resulted in altered splicing speckle 

morphology show less functional enrichment in splicing as compared to genes whose 

silencing affected nucleolar morphology or resulted in SG formation (Figure 5D). Instead, 

regulators of splicing speckles show a strong enrichment in cell cycle-related functions. We 

identified Aurora kinase A (AURKA) and CDC25B (a phosphatase and substrate of Aurora-A) 

among other centrosome-related genes, as well as genes coding for regulatory subunits of 

the phosphatase PP2A (PPP2R2B, PPP2R2C and PPP2R2D) that was shown to regulate 

Aurora-A stability in mitosis (Figure 5I, and Horn et al., 2007). Last, for PML nuclear bodies 

(PML-NBs) we observed a strong enrichment for plasma membrane/endosome-related terms 

(Figures 5F and S5C). Among the strongest negative regulators are PIP5K1C, a 

phosphatidylinositol-4-phosphate 5-kinase, and PIK3CG, the catalytic subunit of 

phosphatidylinositol-4,5-bisphosphate 3-kinase, as well as INPP5F, an inositol 

polyphosphate-4-phosphatase (Figure 5K). Consistently, we also identified the growth factor 

receptor TGFBR1, which acts upstream of these signaling kinases, as a negative regulator of 

PML-NB formation.  Previous work has shown that TGF-β induces the expression of a 
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cytoplasmic isoform of PML, which is required for the accumulation of TGFBR1 in early 

endosomes (Lin et al., 2004), but how that connects to the control of PML-NB abundance 

remains to be investigated. Thus, our screen provides a resource for exploring numerous 

biological processes that were previously not linked to the regulation of MLOs. In addition, our 

data demonstrates that some genes act specifically on one MLO, whereas other regulatory 

pathways control more than one MLO, indicating regulatory crosstalk. 

 

Co-occurrence of deregulated MLO states 

To investigate this coordination in more detail, we asked whether two or more perturbed 

states of MLOs co-occur and which gene perturbations are causing them. We pooled all 

genes that were scored as a hit in at least one of the six MLO screens. For these 453 genes 

we used the phenotypic scores of the twelve different perturbed MLO states (Table S1) to 

compile a dataset that can be visualized as a two-dimensional t-SNE map (Figures 6A, S6A, 

S6B, and STAR Methods). In such a map, genes are positioned relative to all other genes 

based on their similarity in effects across the various perturbed MLO states. By coloring these 

genes according to their phenotypic scores for each of the 12 perturbed MLO states and 

comparing the resulting patterns, we discovered partial co-occurrences. For instance, a 

subset of gene perturbations that lead to increased PML-NBs do not form PBs (Figure 6A, 

encircled in left panels). Another example is a set of gene perturbations that lead to both 

disturbed nucleoli (NPM diffuse in the nucleoplasm) and increased formation of CBs (Figure 

6A, encircled in right panels). We next calculated how often a gene was scored as a hit for 

any of the perturbed MLO states (including SG formation) and highlighted the result on the 

gene t-SNE map (Figure 6B). Of the 453 gene perturbations more than 70 percent (325 

genes) affected only one MLO, 20 percent (92 genes) affected two MLOs and less than 10 

percent (36 genes) affected the morphology of three or more MLOs (Figure S6C). The most 

abundantly perturbed MLO states observed for the 128 gene perturbations with pleiotropic 

effects were increased nucleoli, followed by SG formation, increased CBs, and increased 

splicing speckles (Figure S6D).  

We next calculated which of the co-occurrences of perturbed MLO states are statistically 

significant and visualized the results as a network in which the edge width indicates the 

number of genes that are hits for both perturbed MLO states (Figure 6C). This shows that 

both the co-occurrence between increased PML-NBs and absence of PBs, and between 

disturbed nucleoli and increased CBs (as highlighted in Figure 6A) were significant. In 

addition, the network reveals an interesting anti-correlation between nucleolar (light blue 

nodes) and PB (dark blue nodes) morphology. Some gene perturbations that lead to 

increased nucleoli also display dissolved PBs where DDX6 is either cytoplasmic diffuse or 

present at very low levels (Figure 6D, groups 1 and 2). Conversely, gene perturbations 

leading to increased PBs negatively affect nucleoli (decreased NPM; Figure 6D, group 3). 

Since the major function of nucleoli is to regulate ribosome biogenesis, this finding could 
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suggest the existence of a system that adjusts ribosome availability to the needs of mRNA 

translation. 

 

Hierarchical functional interactions between perturbed MLOs and cellular states 
An important and often still poorly understood question is how MLOs are integrated into 

cellular physiology. While the uncovered genetic networks controlling the formation of MLOs 

may suggest certain links, they do not directly infer this from the data. Our multivariate image-

based approach extracts besides multiple properties of MLOs also multiple features 

describing the phenotypic state and physiology of cells, allowing us to directly map such 

interactions. To achieve this, we applied a statistical method termed the hierarchical 

interaction score (HIS) that we previously developed to infer hierarchical interactions from 

multivariate datasets (Snijder et al., 2013). We calculated the HIS between 13 perturbed MLO 

states and 17 features describing properties of the cellular state and physiology derived from 

1,326 gene perturbations and 218 control populations (see STAR Methods). We obtained 50 

functional interactions with HIS scores greater than zero and visualized them as a hierarchical 

interaction network (Figure 6E). It is important to note that the inferred directionality of the 

interaction between two properties can be interpreted as the statistical likelihood of a cell 

having the downstream property if a gene perturbation caused the upstream property and 

does not by itself reveal a direct causality.  

To substantiate the inferred functional interactions we explored three examples from the HIS 

network in more detail. We plotted the values of cellular state properties on the t-SNE map 

that was generated from data on perturbed MLO states and does not contain any information 

about the cellular state (see STAR Methods). By doing so, we observed patterns of cellular 

states that explain the inferred hierarchy of interactions. For example, cell area is increased 

for the majority of gene perturbations but only a subset also has increased CBs (Figures 6F 

and 6G). In contrast, almost all gene perturbations that lead to increased CBs also display 

increased cell area (Figure 6H). Another example is the hierarchical interaction between 

increased PML-NBs and the fraction of cells in S phase. While the majority of gene 

perturbations in the t-SNE map displays reduced fractions of S phase cells only a subset 

have increased PML-NBs (Figures 6I and 6J). Conversely, all gene perturbations that lead to 

increased PML-NBs have lower fractions of S phase cells (Figure 6K). As a third example, we 

highlight the directionality between the absence of PBs and increased cytoplasmic protein 

concentration (Figures 6L-6N). Almost all gene perturbations that result in the dissolution of 

PBs with DDX6 being diffuse in the cytoplasm have a higher cytoplasmic protein 

concentration, while not all gene perturbations that lead to high cytoplasmic protein 

concentration have this perturbed PB state.  

 

Increased PML-NBs cause a delay in DNA replication 

To characterize one of these interactions in more detail, we decided to explore the 

hierarchical interaction between increased PML-NBs and the fraction of cells in S phase. 
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First, we analyzed whether this correlation holds true for single cells. Indeed, when we 

compared cell populations of hit genes for increased PML-NBs to cells of gene perturbations 

that lead to G1 arrest we observed the same hierarchical interaction as shown before. Single 

cells with increased PML-NBs have a low level of 5-ethynyl-2'-deoxyuridine (EdU) 

incorporation (Figure 7A). G1-arrested cells, in contrast, though displaying a similar reduction 

in EdU intensity, do not have increased PML-NBs.  

We next included the DNA content to explore whether cells with increased PML-NBs are 

arrested in G1 (Figures 7B and S7A). Surprisingly, we found that many cells with increased 

PML-NBs have the DNA content of S phase cells but very low levels of EdU incorporation 

(dashed black box in Figure 7B) suggesting that these cells have a slower DNA replication 

rate. To confirm these findings in independent experiments, we targeted five genes that are 

both components of PML-NBs and the strongest negative regulators of PML-NBs (Figure 

S7B) with siRNAs in two cell lines and stained the cells with antibodies against two PML-NB 

markers, PML and Sp100. We reproduced the findings of the screen in HeLa cells and 

confirmed that cells with increased PML-NBs also contained elevated levels of Sp100, as well 

as reduced EdU incorporation (Figures 7C-7E). In A-431 cells three out of five gene 

perturbations resulted in elevated fractions of cells with increased PML-NBs and the reduced 

EdU incorporation was observable albeit less pronounced due to the smaller proportion of 

cells with increased PML-NBs (Figure S7C and S7D). To verify that EdU incorporation rates 

are slower in cells with increased PML-NBs we allowed cells to incorporate EdU for 60 

minutes instead of 15. Indeed, cells with increased PML-NBs displayed higher EdU intensity 

as compared to the 15 minute pulse but the levels remained lower as compared to control 

cells (Figure 7F), underscoring that aberrantly increased PML-NBs correlate with decreased 

DNA replication rates.  

Finally, we addressed the directionality inferred by the HIS network. If increased PML-NBs 

were the cause and not the consequence of a slower DNA replication rate, other 

perturbations of DNA replication would not lead to increased PML-NBs. To test this, we 

treated cells with either hydroxyurea (HU) or deoxythymidine (dT), which both stall replication 

forks. EdU incorporation was abolished in cells treated with either drug and the replication 

factor RPA1/p70 changed from a diffuse to a speckled nuclear pattern localizing with PCNA 

at stalled replication forks (Figure 7G) as previously described (Urban et al., 2017). However, 

we did not observe increased PML-NBs in cells treated with HU or dT (Figures 7H and 7I). 

HU- and dT-treated cell populations displayed the same fraction of cells with increased PML-

NBs as control populations (below five percent) and did not reach the values observed for cell 

populations depleted of HIPK1 or HIPK2 (grey dotted boxes in Figure 7I). Consistently, 

genetically perturbing the DNA helicases BLM (Bloom syndrome protein) or WRN (Werner 

syndrome ATP-dependent helicase), which promote replication fork movement (Urban et al., 

2017), did not lead to increased PML-NBs (Table S1). This indicates that aberrantly large 

PML-NBs are likely to cause slower DNA replication rates and that homeodomain-interacting 

protein kinases (HIPKs) are required to prevent this effect.  



	 10 

HIPKs are known to interact with and phosphorylate PML-NB components (Rinaldo et al., 

2008) and Figure S7B), and are also members of the dual-specificity protein kinase family, 

like DYRK3 and MBK-2, which promote the dissolution of other MLOs in a kinase-dependent 

manner (Wippich et al., 2013; Rai et al., 2018; Wang et al., 2014). To test whether HIPKs 

perform their action in a similar manner as DYRK3 by promoting the dissolution of PML-NB 

constituents through phosphorylation we overexpressed HIPK1 and HIPK2 and quantified 

their effect on PML-NBs. Intriguingly, and consistent with previous work (Ecsedy et al., 2003; 

Engelhardt et al., 2003), HIPK1 and HIPK2 both partition into PML-NBs (Figures S7E and 

S7F). While their overexpression does not cause a dissolution of the scaffold protein PML 

(Figures S7G-S7I) it does dissolve other components of PML-NBs, such as Sp100, in a 

concentration-dependent manner (Figures S7J-S7L). Thus, HIPKs can be added to the 

growing list of dual-specificity kinases that control the condensation of proteins into MLOs, 

which in their case are PML-NBs. 

 

Discussion 

 

Biological processes that regulate MLO formation  

Among the many biological processes we found to control MLO formation, one unexpected 

finding was the discovery that several genes involved in growth factor signaling at the plasma 

membrane impact on the abundance of PML nuclear bodies (PML-NBs). Although the 

molecular aspects of this control remain to be elucidated it suggests a mechanism by which 

growth factor signaling induces cell proliferation through modulating PML-NB size, which may 

act upstream of DNA replication rates, as indicated by our findings. As another example, we 

identified multiple genes involved in pre-mRNA splicing whose genetic perturbation induced 

SG formation. We currently do not know whether SG formation is induced by a leakage of 

unspliced pre-mRNA into the cytoplasm, or by the protein products of these unspliced 

mRNAs. One mechanism by which cells could link spliceosome integrity to SG formation 

would involve a protein sensor that shuttles between the nucleus and the cytoplasm. Indeed, 

some SG components, such as TIA-1, regulate splicing in the nucleus under normal 

conditions and might translocate to the cytoplasm upon stress where they contribute to SG 

formation. Thus, the nuclear-cytoplasmic translocation of certain RNA-binding proteins could 

be a feedback mechanism by which cells sense splicing stress and arrest mRNA translation. 

 

Regulatory crosstalk between MLOs 

The translocation of MLO components could be a general principle by which cells sense 

stress in one MLO and signal it to other, functionally related MLOs. For example, previous 

work has shown that inhibition of transcription induces the reorganization of nucleoli and the 

formation of nucleolar caps, which recruit numerous non-resident proteins including coilin and 

PML, the scaffold proteins for CBs and PML-NBs (Boulon et al., 2010; Shav-Tal et al., 2005).  

The recruitment of coilin and PML to nucleolar caps might in turn alter the integrity and 
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function of CBs and PML-NBs, respectively. Here, we identified an anti-correlation between 

the morphology of nucleoli and cytoplasmic P-bodies (PBs), which likewise could be achieved 

by relocating components between the two MLOs. PATL1, for instance, is primarily a PB 

component and required for PB formation (Figure 3H). However, PATL1 shuttles between the 

nucleus and the cytoplasm and, upon inhibition of transcription, was found in nucleolar caps 

when its nuclear export was prevented (Marnef et al., 2011). Thus, aberrantly perturbed 

nucleoli might segregate PATL1, and its nucleolar detention then disrupts PB assembly in the 

cytoplasm. Regulatory crosstalk might also be mediated by RNAs. In the case of 

dysfunctional ribosome biogenesis, higher levels of ribosome-free mRNAs in the cytoplasm 

might induce an increased formation of PBs. Indeed, treatment of cells with puromycin, which 

inhibits translation by triggering premature release of mRNAs from ribosomes, enhances P-

body assembly (Eulalio et al., 2007). Such crosstalk between nucleoli and PBs might be an 

elegant mechanism to adapt the production of ribosomes to the levels of mRNAs. Importantly, 

our identification of regulatory crosstalk between different MLOs complements recent 

advances in deciphering the molecular composition of MLOs (Fong et al., 2013; 

Hubstenberger et al., 2017; Youn et al., 2018). It will be interesting to monitor such 

compositional changes upon stress or gene perturbations that together with our findings 

might illuminate how MLOs sense and react to stressful conditions and how this impacts 

physiological processes in the cell.  

 

Functional consequences of deregulated MLO morphology  

A particularly unique nature of our systems-level study is the ability to infer interactions 

between MLO states and physiological properties of cells. In general, if MLOs serve as 

‘bioreactors’ that concentrate components to facilitate biochemical reactions, their absence 

would decrease the efficiency of reactions and reduce proliferation rates and/or the cell’s 

ability to respond to stress, while an aberrant increase could imply increased production rates 

of, for instance, RNPs. If MLOs serve as storage compartments, however, the up regulation 

of the scaffold proteins or core components might enhance the recruitment of other MLO 

residents through multivalent interactions, and thus deplete the cell from these molecules. If 

in this case the proteins or RNAs function elsewhere in the cell, abnormally increased MLOs 

have negative implications for cellular processes. Our data revealed that cells with increased 

PML-NBs have decreased DNA replication rates. Multiple scenarios might explain our 

observation. First, PML-NBs contain many proteins required for DNA replication and repair 

(Van Damme et al., 2010) hence increased PML-NBs could lead to increased segregation or 

residence time of replication or DNA-repair factors. Second, PML-NBs are considered as 

platforms for protein modification, in particular sumoylation (Bernardi and Pandolfi, 2007; Van 

Damme et al., 2010). Sumoylation is a key modification for factors involved in DNA replication 

and repair (Lecona and Fernandez-Capetillo, 2016). Increased PML-NBs might interfere with 

the sumoylation and de-sumoylation cycles of replication factors and thus slow down DNA 

replication progression. Sentrin-specific proteases (SENPs) catalyze the maturation of SUMO 
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proteins and de-conjugation of SUMO-linked proteins, and knock down of SENP1, SENP2 or 

SENP6 leads to increased PML-NBs and accumulation of SUMO1 and SUMO2 in PML-NBs 

(Figure S7B, and Hattersley et al., 2011; Yates et al., 2008). This suggests that PML-NB 

homeostasis requires turnover of SUMO. Last, recent work demonstrated a key role for the 

ubiquitin hydrolase USP7/HAUSP in regulating replication fork progression through de-

ubiquitinating SUMO-2 (Lecona et al., 2016). We identified USP7 as a negative regulator of 

PML-NBs (Figure 5K). Since USP7 partially colocalizes with PML-NBs and is repressed by 

the PML-NB component DAXX, increased PML-NBs might segregate and inhibit USP7, which 

consequently decreases DNA replication rates. Although untangling the exact molecular 

mechanisms of how increased PML-NBs impact on replication rates requires further studies, 

this example illustrates the importance of controlling the properties of MLOs in this process. 

 

Dual-specificity kinases as key regulators of MLO formation  

Our finding that depletion of HIPK1 or HIPK2 leads to increased PML-NBs strengthened a 

key role for HIPKs in the control of PML-NB homeostasis and/or composition. HIPKs belong 

to the DYRK kinase family and share some interesting parallels with DYRK kinases (van der 

Laden et al., 2015). First, HIPKs and DYRKs seem to phosphorylate several MLO 

components which may contribute to global changes in MLO size and composition. Second, 

HIPKs and DYRKs have intrinsically disordered domains and low complexity regions, by 

which they might associate with specific MLOs. This could be one mechanism for 

homeostatic size control of MLOs in that larger MLOs would recruit more kinases, which then 

counteract a further size increase. Third, DYRKs and HIPKs are constitutively active but 

appear to be tightly regulated by proteasomal degradation. We recently demonstrated that 

DYRK3 is present at low levels in G1 and S phase but its presence increases in G2 and 

during mitosis where it contributes to the dissolution of splicing speckles (Rai et al., 2018). 

HIPK2 is largely unstable in unperturbed cells and becomes stabilized upon DNA damage, 

which might contribute to the compositional and spatial rearrangements observed for PML-

NBs (Dellaire and Bazett-Jones, 2004; Eskiw and Bazett-Jones, 2003; Winter et al., 2008). 

Having such broad impact on diverse MLOs, low levels of DYRKs and HIPKs might be 

sufficient under normal conditions to achieve homeostasis of splicing speckles and PML-NBs, 

respectively. Thus, our finding that HIPKs act as regulators of PML-NB homeostasis adds to 

the growing importance of DYRK family kinases as central regulators of MLOs. 
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Figure Legends 

 

Figure 1: Image-based RNAi screens with single organelle resolution 

A) Images of unperturbed HeLa cells stained with antibodies against the indicated marker 

proteins of the six screened MLOs. Scale bars 20 µm. 

B) Overview of the experimental set up and the computational workflow. 

C) Network view of the molecular function of the 1,354 screened genes. Node sizes represent 

the number of genes in the library with the indicated GO-term, and nodes are connected (gray 

lines) when at least five genes overlap. 

D) Gray scale images of unperturbed cells stained with antibodies against the indicated MLO 

markers. Cell segmentation is shown in blue and MLO segmentation in red. Scale bars 20 

µm.  

E) Gray scale images of control and perturbed cells stained with antibodies against NPM. 

Scale bar 20 µm.  

See also Figure S1. 

 

Figure 2: Single cell clustering accounts for cell cycle-dependent heterogeneity in MLO 

morphology 

A) Schematic of the computational workflow per MLO marker.  

B) Phenotypic nodes contain perturbed and unperturbed single cells with similar MLO 

features. The clustergram depicts 1,000 subsampled single cell feature profiles of ten 

example nodes of the nucleoli screen. Features of nucleoli are 1) NPM concentration (conc.) 

around nucleoli, 2) nuclear NPM conc., 3) median NPM conc. in nucleoli, 4) median NPM 

intensity in nucleoli, 5) total NPM intensity in nucleoli, 6) total area of nucleoli, 7) ratio area of 

nucleoli to nucleus, 8) ratio nucleolar to nuclear NPM intensity, 9) ratio NPM conc. in to conc. 

around nucleoli, and 10) number of nucleoli. False color images of four example cells that 

were clustered into the indicated nodes are shown on the right. Scale bars 20 µm. 

C) Morphological changes of nucleoli over the cell cycle. Nucleolar features are plotted along 

a cell cycle trajectory (CCT) of more than 10,000 unperturbed cells (upper panel). False 

colored images of representative cells derived from the indicated CCT positions are shown 

(lower panel). Scale bar 10 µm.  

D) Unperturbed cells (same as in C) are clustered into different nodes that reflect the 

morphological changes of nucleoli over the cell cycle. Fractions were calculated as moving 

average of 1,000 cells. Note that not all node fractions are shown. 

See also Figure S2. 

 

Figure 3: Identification of gene perturbations that alter MLO morphology 

A) Clustered median feature values of the 30 phenotypic nodes of the nucleoli screen. 

Features 1-10 as indicated in Figure 2B.  
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B) Fractions of cells clustered into the 30 phenotypic nodes of the nucleoli screen 

(Scrambled: n=726,715, mock: n=77,824). Nodes that were combined to perturbed states are 

indicated, as well as the sum of the fractions of the perturbed cell populations that clustered 

into these nodes. 

C) Gene perturbations above the threshold (2.5 standard deviations (stds) of the mean of all 

fractions, gray dotted lines) are considered as hits. False colored images of cells from control 

(green) and hit genes (orange or blue) are shown. Scale bar 20 µm. 

D-G) Fractions of cells plotted as in C for perturbed states of D) Cajal bodies, E) PML nuclear 

bodies, F) splicing speckles, and G) P-bodies. 

H) Network of 48 genes representing the overlap of the P-body (PB) interactome (194 genes) 

with the 1,323 analyzed gene perturbations. Node colors and shape indicate the effect of the 

respective gene perturbation on PBs. Phenotypic strength indicates the total fraction of cells 

with the respective perturbed MLO state in stds from the mean of all perturbations and 

controls. 

See also Figure S3, and Tables S1 and S2. 

 

Figure 4: Genetic and chemical perturbation of pre-mRNA splicing induces stress 

granule formation 

A) Identification of gene perturbations with an increased fraction of cells with segmented 

stress granules (SGs). 

B) Fraction of cells with SGs of control populations (green, n=199 wells, mean 

fraction=0.0077, std=0.0024) and of gene perturbations (orange, n=53). 

C) Representative images of control cells and cells with the indicated gene perturbations 

stained for SGs (G3BP-1, magenta) and nuclei (blue). Scale bar 20 µm. 

D) Protein interaction network for 25 out of 53 genes whose perturbation leads to the 

formation of SGs. Node colors indicate the functional annotation of the genes. 

E) Images of cells treated with either DMSO or the indicated chemical compounds and 

stained for SGs. Scale bars 20 µm. 

F) HeLa, A-431 and COS-7 cells were treated with the indicated chemical compounds and 

the fractions of cells that form SGs upon treatment were quantified. Bars represent the mean 

fraction of cells derived from three independent experiments, error bars represent the std. 

 

See also Figure S4 and Table S1. 

 

Figure 5: Distinct regulatory pathways control MLOs  
A-F) Network visualization of functional annotation enrichments calculated for gene 

perturbations resulting in A) stress granules, or increased or decreased states of B) nucleoli, 

C) P-bodies, D) splicing speckles, E) Cajal bodies, and F) PML nuclear bodies. Nodes 

represent GO-terms and are colored and grouped according to functional similarity. Node 
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edges (gray lines) are shown if two annotations share more than 20% of genes. Node sizes 

represent fold enrichment.  

G-K) Gene networks of the regulators of G) nucleoli, H) P-bodies, I) splicing speckles, J) 

Cajal bodies, and K) PML nuclear bodies. Node colors and shape indicate the effect of the 

respective gene perturbation on MLO morphology. 

See also Figure S5. 

 

Figure 6: Co-occurrence of perturbed MLO states and their functional consequences 

on the cellular state 

A) Gene t-SNE maps of 453 gene perturbations (nodes) that are scored as hit for one or 

more perturbed MLO states. Color indicates the respective phenotypic strength per gene. 

B) Gene t-SNE map highlighting gene perturbations with pleiotropic effects on the six 

screened MLOs.  

C) Network visualization of significant co-occurrences between two perturbed MLO states 

(nodes). Node colors represent individual MLOs (see cartoon in E). Edge width (gray lines) 

indicates the number of gene perturbations with both perturbed MLO states. 

D) Heat map of the phenotypic strength of gene perturbations that affect both nucleoli and P-

bodies (PBs). Gene groups 1-3 refer to the indicated edges of the network in C.   

E) Network visualization of the hierarchical interaction score (HIS) between perturbed MLO 

states (colored nodes, see cartoon) and features describing the cellular state (gray nodes). 

Edges (gray arrows) indicate the directionality and strength of the inferred interaction. 

F-H) Hierarchical interaction between increased Cajal bodies (CBs) and cell area. F) Gene t-

SNE map as in A showing the distribution of gene perturbations with increased CBs. G) Gene 

t-SNE map as in A. Color indicates the median cell area of each gene perturbation 

normalized to controls. H) Correlation between increased CBs and cell area. Color indicates 

the phenotypic strength of increased CBs as in F. Light blue dashed line indicates the median 

cell area of controls. 
I-K) Hierarchical interaction between increased PML nuclear bodies (PML-NBs) and fraction 

of cells in S phase. I) Gene t-SNE map as in A showing the distribution of gene perturbations 

with increased PML-NBs. J) Gene t-SNE map as in A. Color indicates the fraction of cells in S 

phase per gene perturbation normalized to controls. K) Correlation between increased PML-

NBs and fraction of cells in S phase. Color indicates the phenotypic strength of increased 

PML-NBs as in I. Light blue dashed line indicates the fraction of control cells in S phase. 

L-N) Hierarchical interaction between absent P-bodies (DDX6 cytoplasmic diffuse) and 

increased cytoplasmic protein concentration. L) Gene t-SNE map as in A showing the 

distribution of gene perturbations with DDX6 cytoplasmic diffuse. M) Gene t-SNE map as in 

A. Color indicates the median cytoplasmic protein concentration of each gene perturbation 

normalized to controls. N) Correlation between ‘DDX6 cytoplasmic diffuse’ and cytoplasmic 

protein concentration. Color indicates the phenotypic strength of ‘DDX6 cytoplasmic diffuse’ 



	 23 

as in L. Light blue dashed line indicates the median cytoplasmic protein concentration of 

controls. 

See also Figure S6. 

 

Figure 7: Increased PML nuclear bodies cause a decrease in DNA replication rates  

A) EdU intensity of 800 subsampled cells of control wells (derived from five different plates), 

five hits for increased PML-NBs, and five perturbations that lead to G1 arrest. Color indicates 

total PML intensity in segmented PML-NBs as std from the mean of all control wells. Dashed 

line indicates approximate threshold for SVM-based classification of S phase cells. Note that 

the total nuclear EdU intensity also includes weak signal of the protein stain 

succinimidylester. 

B) DAPI and EdU intensity of single cells. Color indicates total PML intensity in segmented 

PML-NBs as in A. Box (dashed black outline) highlights cells with increased PML-NBs and 

reduced EdU incorporation. Note that the total nuclear EdU intensity also includes weak 

signal of the protein stain succinimidylester. 

C) Sp100 (magenta) is enriched with PML (green) in increased PML-NBs.  

D) EdU intensity and total PML intensity in segmented PML-NBs of control cells and HIPK1 or 

HIPK2 depleted cells (upper panel). Lower panel shows the fraction of cells with a total PML 

intensity in segmented PML-NBs of more than two stds from the mean of control cells 

(n=1,336 to 3,086 per condition). 

E) EdU intensity of the same cells as in D but color indicates the total Sp100 intensity in 

segmented PML-NBs (upper panel). Lower panel shows the fraction of cells with a total 

Sp100 intensity in segmented PML-NBs of more than two stds from the mean of control cells. 

F) EdU intensity and mean PML intensity in segmented PML-NBs of control cells and HIPK1 

or HIPK2 depleted cells. Cells were incubated with EdU for 15 or 60 minutes before fixation. 

(n=1,336 to 3,086 per condition). 

G-I) Stalled replication forks do not induce an increase in PML-NBs. Representative images 

of unperturbed cells or cells treated with 2 mM hydroxyurea (HU) were labeled with EdU and 

stained with antibodies against RPA1 (G) or PML (H). Scale bars 20 µm. I) EdU intensity and 

mean PML intensity in segmented PML-NBs of control cells or cells treated with the indicated 

concentration of HU or deoxythymidine (dT) (upper panel). Lower panel shows the fraction of 

cells with a mean PML intensity in segmented PML-NBs of more than two stds from the mean 

of control cells (n=2,214 to 3,070 per condition). For comparison, dotted grey boxes show the 

fractions as calculated in D but for mean PML intensity in segmented PML-NBs. 

See also Figure S7. 
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STAR Methods  
 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Lucas Pelkmans (lucas.pelkmans@imls.uzh.ch). 

 

MODEL AND SUBJECT DETAILS 

HeLa MZ cells were cultivated at 37ºC and 5% CO2 in DMEM (ThermoFisher) supplemented 

with 1% GlutaMAX (ThermoFisher) and 10% FBS (Merck). A-431 and COS-7 cells were 

cultivated at 37ºC and 5% CO2 in DMEM containing sodium pyruvate (PAN-Biotech) 

supplemented with 1% GlutaMAX (ThermoFisher) and 10% FBS (Merck).  

 

METHOD DETAILS 

 

Transfections 

For the screens, about 900 HeLa cells were plated per well in 384-well plates (Greiner) for 

reverse transfection on top of a mixture of pooled siRNAs (5 nM final concentration) and 

RNAiMAX (0.08 µl per well in OptiMEM; ThermoFisher) according to manufacturer’s 

specifications. Cells were subsequently grown for 72 hours at 37ºC in complete DMEM to 

establish efficient knock down of the targeted genes. For plasmid transfections cells were 

seeded in 96-well plates (Greiner) and incubated at 37ºC till cells reached ~70% confluency. 

Cells were transfected with 100 ng of plasmid per well using Lipofectamine 2000 

(ThermoFisher) according to manufacturer’s specifications and incubated for 24 hours at 

37ºC. 

 

Assays and drug treatments 

For measuring DNA synthesis rates cells were incubated for 15 or 60 minutes at 37ºC in 

DMEM containing 200 µm 5-ethynyl-2'-deoxyuridine (see Click-iT EdU Alexa Fluor 647 

Imaging Kit, ThermoFisher). For stalling DNA replication forks cells were incubated for 2 

hours at 37ºC with the indicated concentrations of hydroxyurea or deoxythymidine. For 

chemical inhibition of pre-mRNA splicing cells were incubated with 100 ng/ml FR901464 or 10 

nM Meayamycin for 20 hours at 37ºC. For inhibition of mRNA transcription cells were 

incubated with 10 ug/ml alpha-Amanitin for 20 hours at 37ºC. 

 

siRNA library 
The siRNA library consists of three pooled siRNAs against each of 1,354 human genes (listed 

in Table S1). Among the genes targeted are the human kinome and phosphatome (Plates 1-3 

of the Ambion Silencer Select Drugable Genome Library, ThermoFisher) and a custom set of 

300 genes (Ambion Silencer Select, ThermoFisher) encoding for phosphoproteins with GO-

term annotations for any of the six screened MLOs. GO-terms and gene candidates were 

retrieved from QuickGO (https://www.ebi.ac.uk/QuickGO/). 199 wells with negative controls 
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(Silencer Select Negative Control No. 1, ThermoFisher), 19 wells with mock controls (no 

siRNAs) and 10 wells with positive controls (siRNA against KIF11) were positioned 

throughout the screen plates.  

 

Cell stains 

All staining and washing steps were performed on a semi-automated liquid handling platform 

(BioTek). Between each staining step cells were washed four times with PBS. Cell were fixed 

with 4% PFA in PBS for 30 min and permeabilized with 0.25% Triton X-100 in PBS for 30 

min. EdU Click-iT reactions were performed before blocking according to manufacturer’s 

specifications (Click-iT EdU Alexa Fluor 647 Imaging Kit, ThermoFisher) and as previously 

described (Gut et al., 2015). Cells were blocked in 5% donkey serum (Abcam) for 1 hour at 

room temperature (RT) and incubated over night at 4°C in primary antibodies diluted in 5% 

donkey serum. Cells were incubated for 90 minutes at RT in secondary antibodies diluted 

1:500 in 5% donkey serum. Cells were subsequently stained for 10 minutes with DAPI 

(1:1,000) and for 5 minutes with succinimidyl ester (Alexa Fluor 647 NHS Ester; 

ThermoFisher; 1:80,000). For detection of polyA-mRNA fluorescence in situ hybridization 

(FISH) was performed according to manufacturer’s specifications using Stellaris RNA FISH 

buffers (LGC Biosearch Technologies) and a custom ATTO 488-labelled 18-nucleotide long 

oligo-dT probe (Microsynth). Cells were fixed with 4% PFA in PBS for 10 min and 

permeabilized with 70% ethanol for 6 h at 4°C. Cells were washed and incubated over night 

at 37°C in hybridization buffer containing the probe before they were washed and processed 

for immunofluorescence. 

 

Imaging 

Images were acquired with an automated spinning disc microscope (CellVoyager 7000, 

Yokogawa) using a 40x air objective (0.95 NA, Olympus) and two Neo sCMOS cameras 

(Andor). 

Images from two wavelengths were acquired simultaneously (405 and 568 nm, 488 and 647 

nm). Twelve z-planes spaced by 1 µm were acquired per site and channel, and maximum 

intensity projections were saved. All images presented in the same panel of a figure are 

rescaled to the same brightness/contrast values. 

 

Image processing 

Two image processing pipelines were set up with CellProfiler (Carpenter et al., 2006). In a 

first pipeline, images were illumination corrected and camera-dependent invariant background 

signal was subtracted (Stoeger et al., 2015). A five-pixel y-shift between two band pass filters 

was corrected for 488 and 647 nm images. Nuclei and cells were segmented based on DAPI 

and succinimidyl ester signal intensity, respectively (Stoeger et al., 2015). Intensity, texture, 

area and shape features were extracted from segmented nuclei, cells and cytoplasms. In a 

second pipeline, segmentations of nuclei, cells, and MLOs were loaded and segmented 
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MLOs were related to either parent nuclei or parent cytoplasms. Intensity, texture, area and 

shape features were extracted from each single segmented MLO. MLOs with an area smaller 

than three pixels were discarded. For all segmented MLOs related to one parent nucleus or 

parent cytoplasm, mean, median and total values of intensity and area features were 

calculated. Segmented MLOs were subtracted from their parent nuclei or cytoplasms to 

measure the MLO marker intensity around MLOs.  

 

Segmentation of MLOs using pixel classification 

For pixel classification-based MLO segmentation a customized GUI was written in MATLAB. 

The code is available as Supplemental Software and can be downloaded from GitHub 

(https://github.com/pelkmanslab/PixelClassification). Analogous to the pixel classifier ilastik 

(http://ilastik.org/) the pixel features used for classification are based on a variety of image 

filters outlined in detail in the GeneratePixelFeature.m function of the Supplemental Software. 

Briefly, image filters include Gaussian filters, difference-of-Gaussian and Laplacian-of-

Gaussian filters, mean and median filters, entropy filters, morphological opening and closure, 

as well as measurements of the local background, blind deconvolution of images, watershed 

lines (Stoeger et al., 2015), and top hat filters. Image filters and scales were selected prior to 

training according to the morphology of the six different MLOs (see Supplemental Software). 

For the segmentation of nucleoli, features of nuclei and cell segmentations were also 

included. For each MLO the training set was composed of more than 1,000 manually selected 

pixels from 150 to 200 different wells associated with a binary label (signal or background) 

and the list of feature values for each pixel. The classification model was trained using the 

inbuilt support vector machine functionality of MATLAB (fitsvm.m). In the case of ring- or 

donut-shaped MLOs, such as Cajal bodies or nucleoli, the segmentation algorithm was 

trained in such a way that resulting holes in segmented structures were filled.  

 

Data clean up and classification of cell cycle phases 
Cells that extended beyond the field of view (border cells) were discarded from all images. 

For the remaining cells supervised machine learning was applied to discard apoptotic, 

wrongly segmented and multinucleated cells (Ramo et al., 2009; Stoeger et al., 2015). To 

remove gene perturbations that strongly decreased cell number a mixture-model of three 

Gaussians was fit to the cell number distribution of all wells. The minimal cell number per well 

was set to the 95th percentile of the first Gaussian. We excluded 31 perturbations, among 

them PLK1, WEE1, AURKB and the positive control KIF11 (in total 2.3 percent of the gene 

library) that seemed to be essential for cell viability as their knock down resulted in low 

numbers of vital cells (<246). Supervised machine learning was applied to classify cells in S-

phase based on intensity and texture of the 5-ethynyl-2'-deoxyuridine (EdU) Click-iT stain 

(Gut et al., 2015). Support vector machines were trained to classify mitotic (pro, meta, ana, 

and telo phase) and early G1 cells to exclude them from this analysis. To assign the 

remaining cells to either G1 or G2 phase, histograms of the DNA content (total nuclear DAPI 
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intensity) were plotted for all interphase cells of one 384-well plate. Cells classified as S-

phase were subtracted and two Gaussians were fitted using the gmdistribution.fit function. 

The minimal point between the two means was used as split point and populations on either 

side of the split point were classified as G1 and G2, respectively. Subsequently, for each well 

a Gaussian was fit on either histogram of G1 and G2 cell populations using the 

sgm.fit_distribution function and outliers were discarded.  

 

Correction of single cell intensity-based features 

To correct single cell intensity and texture measurements for positional staining biases within 

each plate a well correction factor was derived as follows: Correction factor fi,j = median(rowi) 

+ median(columnj) - 2×median(plate), where median(rowi) is the median value for the given 

feature of all single cells in rowi, likewise median(columnj) is the median value for the given 

feature of all single cells in columnj and median(plate) is the median of all single cell feature 

values of the plate. The corrected single cell value Ci,j,k was given by Ci,j,k = fi,j + Oi,j,k , where 

Oi,j,k  is the original value of the given feature for cell k of well(rowi, columnj). To normalize 

feature values between different plates we computed Ni,j,k = (Ci,j,k - median(Cplate)) / 

mad(Cplate), where median(Cplate) is the median of all corrected cell values of a given plate and 

mad(Cplate) is the median average deviation of all corrected cell values of the plate. 

 

Single cell clustering in multivariate MLO feature space 
In addition to the derived single cell MLO features from CellProfiler (see Image Processing), 

such as ‘Total marker intensity in MLOs’, or ‘Median marker concentration in MLO’ 

(concentration = total intensity divided by area), the following ratios were calculated: MLO 

area to total area of parent nucleus or cytoplasm, MLO marker intensity in segmented MLOs 

to marker intensity in parent nucleus or cytoplasm, and marker intensity in MLOs to marker 

intensity around MLOs within the parent nucleus or cytoplasm. These ratios are particularly 

important to avoid bias in hit detection due to size scaling effects. For each MLO marker only 

features that displayed sufficient variability over all single cells were included in the analysis. 

The features are indicated in Figures 3A, S3A-S3D, S4A, and Table S2. For instance, PML 

intensity around segmented PML nuclear bodies was close to background in all single cells, 

thus this feature was excluded. This selection resulted in 8-12 features per MLO. Unperturbed 

and perturbed conditions were analyzed together per MLO and about ~3.7 million single cells 

per screen were clustered in a multivariate feature space using the FlowSOM algorithm in R 

(Van Gassen et al., 2015). FlowSOM was used with the Euclidean distance function. First, 

self-organizing maps (SOMs) were built with a high node number (e.g. 100 nodes) and the 

result was visualized as minimal spanning tree to identify single nodes with large distances to 

the majority of nodes. These nodes contained cells with wrongly segmented MLOs, as 

confirmed by visual image inspection, and all cells assigned to these nodes were removed 

from the dataset. The procedure was repeated until all cells with wrongly segmented MLOs 

were excluded. For the final clustering the node number was reduced in such a way that cells 
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within one node had highly similar MLO morphological features while MLO features of cells 

between two nodes were noticeably different. For splicing speckles, PML nuclear bodies and 

P-bodies the node number was set to 15 as this node number was sufficient to represent all 

possible phenotypes of these MLOs. For Cajal bodies and nucleoli 30 nodes were used since 

these MLOs have a higher phenotypic variability. 

 

Definition of perturbed MLO states 

To identify gene perturbations that affected MLO formation we aimed to analyze two states of 

each MLO: an increased state which includes a high intensity of the MLO marker within the 

segmented MLO and/or increased MLO area, and a decreased state where the MLO is either 

smaller or absent, and/or the marker intensity is markedly decreased within detectable MLOs. 

In many cases, we combined multiple phenotypic nodes with the strongest or weakest MLO 

feature values, respectively, into one perturbed MLO state, e.g. ‘Increased nucleoli’. The 

decision which nodes to combine was made on the basis of the median feature strength of 

the nodes, the absence of control cells in these nodes, and a visual inspection of single cells 

that clustered into these nodes. The decreased MLO state, meaning the absence or size 

reduction of a MLO can occur in two scenarios: 1) when the marker protein is down regulated 

to a level where no MLOs are detectable anymore, and 2) when the marker protein is present 

yet no MLOs form (diffuse marker localization). We observed down regulation and 

concomitant absence of MLOs for all five MLOs. However, only for P-bodies and nucleoli we 

observed that the marker proteins were diffuse in the cyto- or nucleoplasm. We never 

observed cells with nucleoplasmic diffuse SRRM2, PML or coilin. Thus, only P-bodies and 

nucleoli have a third MLO state termed ‘DDX6 cytoplasmic diffuse’ and ‘NPM nucleoplasmic 

diffuse’, respectively. 

 

Identification of gene perturbations that induce stress granule formation  

Single stress granules were segmented by pixel classification and SG features were 

extracted as previously described for the other MLOs. To separate cells with segmented SGs 

from cells with falsely segmented cytoplasmic blebs, we first calculated the fraction of cells 

per well that had at least two segmented objects (SGs or blebs). From these cells, we 

calculated the following five features per well: The mean number of segmented objects, the 

median of the total area of segmented objects per cell, the median of the total G3BP-1 

intensity in segmented objects per cell, and the median of the G3BP-1 concentration around 

segmented objects per cell. The latter is an important feature to distinguish segmented SGs 

from segmented blebs since the G3BP-1 signal around blebs is high while it is very low 

around SGs. Perturbations with at least 5 percent of cells with at least two segmented objects 

were hierarchically clustered (Euclidean distance) and split into three groups based on the 

five features. Cells with segmented SGs show high feature values for number, area and 

intensity but low G3BP-1 concentration around segmented objects. Blebby cells show low 

feature values for number, area, and intensity but have high G3BP-1 concentration around 
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segmented objects. The third group consists of cell populations that show both SGs and 

blebs. To plot all wells we performed a principal component (PC) analysis on the same five 

features but included all controls and perturbations. The first two PCs are plotted and colors 

indicate the three classes as defined from the clustergram. The group of gene perturbations 

with high fractions of SGs was subsequently confirmed by visual inspection of the images and 

false positives were excluded.  

 

Cell cycle trajectories 

Cell cycle trajectories (CCTs) were constructed with Cycler (Gut et al., 2015). In brief, for 

each CCT around 10,000 unperturbed cells derived from three adjacent wells were pooled 

and sorted by Cycler in a multivariate feature space consisting of single cell measurements of 

DNA (DAPI) content, EdU content, DNA replication pattern (texture), and nuclear area 

corrected for local cell crowding. Classification of cells into discrete cell cycle phases (G1, S, 

G2) was achieved independently (see above) and was used to identify the cell-cycle phase 

transition points along the CCT. Phenotypic features of cells or MLOs were plotted along the 

constructed CCT as moving average of 200 cells unless otherwise stated.  

 

Functional Enrichment Analysis  

Functional enrichment analysis was performed with DAVID version 6.8. For each MLO, gene 

perturbations that were classified as hit for any of the perturbed MLO states (increased MLO, 

decreased marker, or diffuse staining) were pooled and analyzed for GO-term enrichments 

against the background of 1,323 genes in the siRNA library. From the functional annotation 

clustering only GO-terms or KEGG pathways with a fold enrichment higher than 1.5 for at 

least 4 genes were considered. The network of GO-terms was created with Cytoscape 3.5.1.  

 

Two-dimensional maps of perturbed MLO states and cellular features 

For the two-dimensional visualization of perturbed MLO states 453 gene perturbations that 

were classified as hit for at least one of the following 13 perturbed MLO states were 

considered: 1) Increased nucleoli, 2) NPM nucleoplasmic diffuse, 3) decreased NPM, 4) 

increased Cajal bodies, 5) decreased coilin, 6) increased PML nuclear bodies, 7) decreased 

PML, 8) increased splicing speckles, 9) decreased SRRM2, 10) increased P-bodies, 11) 

decreased DDX6, 12) DDX6 cytoplasmic diffuse, and 13) formation of stress granules. For 

these 453 genes we combined the phenotypic scores (sum of the fraction of single cells per 

well that were assigned to the nodes that reflect the perturbed MLO state) of the first twelve 

perturbed MLO states, excluding the Boolean classification for stress granule formation. After 

z-score normalization of the values we applied t-Distributed Stochastic Neighbor Embedding 

(t-SNE) dimensionality reduction (van der Maaten and Hinton, 2008) using the MATLAB 

drtoolbox and visualized the compiled dataset as a two-dimensional map. Features describing 

the cellular state were not used to create the two-dimensional gene map but were plotted on 

the generated map afterwards. Cell features were calculated as median per well but only for 
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the subpopulation of single cells that were assigned to nodes, which reflect one of the 

aforementioned perturbed MLO states. Likewise, fractions of cells in G1, S, or G2 phase were 

calculated for these subpopulations. In the case of genes with pleiotropic effects, cell features 

were calculated for each subpopulation (single cells with either perturbed MLO state) 

separately and values were then averaged. The resulting cell features were z-score 

normalized to the mean values of unperturbed cell populations, which were calculated from 

199 controls wells (scrambled) in each of the three parallel screens.  

 

Calculation of hierarchical interaction scores (HIS)  

Hierarchical interaction scores (HIS) (Snijder et al., 2013) were calculated between 13 

perturbed MLO states and 17 features describing the cellular state derived from 1,326 gene 

perturbations and 218 controls. Feature values describing cell morphology, such as cell area, 

shape, or protein content, were calculated as mean per well. From the cell cycle 

classifications of single cells fractions of cells per well in G1, S, or G2 phase were calculated. 

Each of the 17 features describing the cellular state was calculated separately for each of the 

three screens and the resulting values were then averaged. After z-score normalization 

values were split at zero and positive values were used as score for ‘increased’ states (e.g. 

increased cell area), while negative values were used as score for ‘decreased’ states. 

Perturbed MLO states were scored using the z-scored sum of fraction of single cells per well 

that was assigned to the respective phenotypic nodes. Instead of the Boolean classification 

for stress granule formation, the fraction of stress granule-positive cells per well of positive 

scored genes was used and normalized to the minimal and maximal threshold of the HIS. HIS 

scores were calculated with the following settings: The minimal threshold (intMin) was set to 

1.5, the maximal threshold (intMax) was set to 5, and the step number was set to 1,000 for 

single tail (one directional) distributions. 50 out of 435 possible pairwise combinations 

(functional interactions) between the 30 MLO or cell features had a HIS greater than zero and 

were visualized as network using Cytoscape 3.5.1.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

All data analysis was done using MATLAB unless otherwise stated. If statistical values were 

calculated they are indicated in the Figure Legends. N represents the number of single cells 

unless otherwise stated and all exact values of n are indicated in the figures or figure legends. 

Single cells were excluded as outlined in detail in STAR Methods. 

 

DATA AND SOFTWARE AVAILABILITY  
The raw images of the figures have been deposited in Mendeley Data 

(http://dx.doi.org/10.17632/h8byr7w3sx.1). The full image data set (>680,000 images, approx. 

3.5 TB) is available upon reasonable request. The MATLAB code required for the pixel 

classification-based MLO segmentation can be downloaded from GitHub 
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(https://github.com/pelkmanslab/PixelClassification). Additional information can be found in 

the ‘README’ file. 
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Supplemental Information 
 

Table S1: Fractions of cells with perturbed MLO states. Related to Figure 3 and 4  

This table contains the fractions of single cells per perturbation that were clustered into the 

respective phenotypic nodes, which reflect one out of twelve perturbed MLO states. Fractions 

of gene perturbations that were identified as hits for the respective perturbed MLO state are 

highlighted (bold). For gene perturbations that were identified as hits for stress granule (SGs) 

formation the fraction of cells with SGs is indicated.  

 

Table S2: Fractions of cells clustered into phenotypic nodes. Related to Figure 3 

This table contains the fractions of single cells per perturbation that were clustered into any 

phenotypic node of the nucleoli, Cajal body, P-body, splicing speckle, and PML nuclear body 

screen, respectively. MLO features and their median values per phenotypic node are 

indicated. 



 
 

Figure S1: Quality controls of the siRNA screens. Related to Figure 1. 

A) Network view of the subcellular localization of the 1,354 screened genes. Node sizes represent the 

number of genes in the library with the indicated GO-term for cellular component, and nodes are 

connected (gray lines) when at least five genes overlap. Nodes that represent one of the six screened 

MLOs are colored green. B) Diagram indicating the total numbers of segmented cells in all screens and 

the percentages of excluded cells due to various quality controls (for details see STAR Methods). C) 

Distribution of cell number per well. Only cells that passed the quality controls are used for further 

analysis. Control wells with unperturbed cells are highlighted in green (mock, n=57 wells) and blue 



(Scrambled siRNA, n=597 wells). Positive controls are highlighted in red (KIF11 kd, n=30 wells). 31 

perturbations (including KIF11) were excluded from further analysis since knock down of these genes 

resulted in low numbers of vital cells (n<246, orange dashed line). D) Heat map showing the correlations 

of cell cycle classifications between the three screens. The R-value was calculated on the fraction of cells 

per well classified as G1, S, and G2, respectively. E) Cell numbers of mock (green), negative (Scrambled, 

blue) and positive controls (KIF11, red) are plotted for each plate of the three siRNA screens. Note that 

plate 5, 11 and 17 do not contain control wells. F) Correlations of cell numbers per well between siRNA 

screens each. G) Fractions of cells in G1, S or G2 phase were calculated per well (n=4,632), and 

normalized so that their sum equals one. Control wells (scrambled, n=597) are highlighted in green. H) 

Normalized fractions of cells in G1, S or G2 phase per well are plotted as in S1G. The total cell number 

per well is indicated in color. I) Normalized fractions of cells in G1, S or G2 phase per well are plotted as 

in S1G. Gene perturbations with significant alterations in cell cycle fractions are shown in orange and 

were calculated as follows: The mean and standard deviation (std) of G1, S and G2 fractions were 

calculated from all scrambled control wells (n=597; meanG1=0.59, meanS=0.28, meanG2=0.1; 

stdG1=0.098, stdS=0.086, stdG2=0.04). Perturbations with any fraction more than 2 std away from the 

mean of controls are considered significantly (alpha=0.05) different. Gene perturbations that lead to G1 

arrest are encircled (light blue dashed line). J) Frequency plots of MLO numbers derived from more than 

700,000 unperturbed cells. Segmented nucleoli, Cajal bodies, PML nuclear bodies, splicing speckles and 

P-bodies were counted per nucleus and cytoplasm, respectively, and numbers are plotted as fractions. 

For the latter three MLOs, numbers were binned and bin edges are indicated. The frequency of MLO 

numbers is shown for all interphase cells (gray bars) and for cells classified as G1, S or G2, respectively. 

Total number of cells and average MLO number are indicated.  

 

 



 
 
Figure S2: Single cell clustering accounts for cell cycle-dependent heterogeneity in MLO 

morphology. Related to Figure 2. 

A) Clustergram of 1,000 subsampled single cell profiles of all 30 phenotypic nodes of the nucleoli screen. 

Unperturbed and perturbed cells were sorted together into the 30 nodes based on 10 z-scored feature 

values: 1) NPM concentration (conc.) around nucleoli, 2) Nuclear NPM conc., 3) Median NPM conc. in 

nucleoli, 4) Median NPM intensity in nucleoli, 5) Total NPM intensity in nucleoli, 6) Total area of nucleoli, 

7) Ratio area of nucleoli to nucleus, 8) Ratio nucleolar to nuclear NPM intensity, 9) Ratio NPM conc. in 

nucleoli to conc. around, and 10) Number of nucleoli. Gray circles indicate the total number of single cells 



clustered into each node. B) Morphological changes of cells over the cell cycle. Cellular features are 

plotted along a cell cycle trajectory (CCT) of more than 10,000 unperturbed cells. C) Morphological 

changes of P-bodies (PBs) over the cell cycle. PB features are plotted along a CCT of more than 9,000 

unperturbed cells. D) Cajal body features are plotted along a CCT of more than 10,000 unperturbed cells. 

E) Binning of unperturbed cells into three discrete cell cycle phases does not reveal the morphological 

changes of nucleoli during early S-phase. Boxplots show the same data as plotted in Figure 2C (green 

line, ‘Nucleolar to nuclear NPM intensity’) but binned into G1, S, and G2 cells, respectively. 

 

  



 
 

Figure S3: Identification of gene perturbations with perturbed MLO states. Related to Figure 3. 
A) Clustered median feature values of the 30 phenotypic nodes of the Cajal body (CB) screen (middle 

panel). The top panel indicates the total number of unperturbed and perturbed cells clustered into each 

phenotypic node. The lower panels (purple heat maps) show the node occupancy profiles for controls 

(Scrambled and mock) and two gene perturbations (n indicates the number of cells). Nodes that were 

combined to perturbed CB states are indicated, as well as the sum of the fractions of the perturbed cell 

populations that clustered into these nodes. B) Clustered median feature values of the 15 phenotypic 

nodes of the PML nuclear body (PML-NBs) screen (middle panel). The top panel indicates the total 

number of unperturbed and perturbed cells clustered into each phenotypic node. The lower panels 

(purple heat maps) show the node occupancy profiles for controls (Scrambled and mock) and two gene 

perturbations (n indicates the number of cells). Nodes that were combined to perturbed PML-NB states 



are indicated, as well as the sum of the fractions of the perturbed cell populations that clustered into these 

nodes. C) Clustered median feature values of the 15 phenotypic nodes of the splicing speckle screen 

(middle panel). The top panel indicates the total number of unperturbed and perturbed cells clustered into 

each phenotypic node. The lower panels (purple heat maps) show the node occupancy profiles for 

controls (Scrambled and mock) and two gene perturbations (n indicates the number of cells). Nodes that 

were combined to perturbed splicing speckle states are indicated, as well as the sum of the fractions of 

the perturbed cell populations that clustered into these nodes. D) Clustered median feature values of the 

15 phenotypic nodes of the P-body (PB) screen (middle panel). The top panel indicates the total number 

of unperturbed and perturbed cells clustered into each phenotypic node. The lower panels (purple heat 

maps) show the node occupancy profiles for controls (Scrambled and mock) and three gene 

perturbations (n indicates the number of cells). Nodes that were combined to perturbed PB states are 

indicated, as well as the sum of the fractions of the perturbed cell populations that clustered into these 

nodes. E) Gene perturbations ranked by the highest fraction of cells clustered into phenotypic node 5 of 

the CB screen. Two gene perturbations are highlighted and representative false colored images are 

shown on the right. Cells were stained with antibodies against coilin and cell and nuclear segmentation is 

shown in white. Scale bar 20 µm. F) Gene perturbations ranked by the highest fraction of cells clustered 

into phenotypic node 11 of the splicing speckle screen. Two gene perturbations are highlighted and 

representative false colored images are shown on the right. Cells were stained with antibodies against 

SRRM2 and cell and nuclear segmentation is shown in white. Scale bar 20 µm. G-H) Node occupancy 

profiles of three gene duplicates in the screens underscore the high technical reproducibility of the 

analysis method. G) Heat maps of the fraction of cells of three duplicate gene perturbations (SKP2, 

PPP1R8 and ANP32B) clustered into the phenotypic nodes of the five MLO screens. H) Heat map of the 

correlation coefficient (R-values) between the occupancy profiles of the three duplicate gene 

perturbations. 



 
Figure S4: Genetic and chemical perturbation of pre-mRNA splicing induces stress granule 

formation. Related to Figure 4.  



A) Clustergram of gene perturbations that have at least five percent of cells with at least two segmented 

objects (Stress granules (SGs) or cytoplasmic blebs). Gene perturbations were clustered based on the 

five indicated features per well, and grouped into three phenotypic classes: i) Perturbations with an 

increased fraction of cells with segmented SGs (orange), ii) perturbations with an increased fraction of 

cells with segmented blebs (blue), and iii) perturbations with an increased fraction of cells with both 

segmented SGs and blebs (purple). B) Principal component (PC) analysis was performed on the same 

features as used in A but for controls and perturbations. The first two PCs are plotted. Colors indicate the 

three classes as defined in A. Controls are shown in green. C) Representative images of cells with the 

indicated gene perturbations that lead to an increased fraction of cells with SGs and cytoplasmic blebs. 

The SG marker G3BP-1 is shown in magenta and nuclei in blue. Scale bar 20 µm. D) Representative 

images of cells with the indicated gene perturbations that lead to an increased fraction of cells with 

cytoplasmic blebs. The SG marker G3BP-1 is shown in magenta and nuclei in blue. Scale bar 20 µm. E) 
Images of A-431 (upper panel) and COS-7 (lower panel) cells treated with either DMSO or the indicated 

chemical compounds. Cells were stained with antibodies against the SG markers G3BP-1 (magenta) and 

PABP-1 (green). Scale bars 20 µm. F) Images of HeLa, A-431, and COS-7 cells treated with either 

DMSO or the indicated chemical compounds. RNA FISH was performed with probes against polyA-

mRNAs (green) and cells were stained with antibodies against the SG marker G3BP-1 (magenta). Scale 

bars 20 µm. 

 

  



 
 

Figure S5: Functional annotations of MLO regulators. Related to Figure 5. 

A) Network visualization of the functional annotation enrichments as shown in Figures 5A-5F. Nodes 

represent the indicated Gene Ontology (GO)-terms and are grouped and colored according to functional 

similarity. Node edges (gray lines) are shown if two annotations share more than 20 percent of genes. B) 

Functional annotation enrichments calculated for gene perturbations resulting in either stress granules 

(SGs), or up-/down-regulation of nucleoli, P-bodies (PBs), splicing speckles, Cajal bodies (CBs), and PML 

nuclear bodies (PML-NBs), respectively, that were omitted in A. Circle size represents fold enrichment of 

the indicated GO-term. C) KEGG pathway enrichments calculated for gene perturbations resulting in 

either SGs, or up-/down-regulation of nucleoli, PBs, splicing speckles, CBs, and PML-NBs, respectively. 

Bars are colored in dark gray if fold enrichment was higher than 1.5 (black dotted line) for at least four 

genes.  

  



 
Figure S6: Gene perturbations with pleiotropic effects on MLOs. Related to Figure 6. 

A) Gene t-SNE maps of 453 gene perturbations that are scored as hit for one or more perturbed MLO 

states. The distribution of eight perturbed MLO states is shown. Color indicates the respective phenotypic 

strength per gene. B) Gene t-SNE map of 453 gene perturbations that are scored as hit for one or more 

perturbed MLO states. Gene perturbations that resulted in increased fraction of cells with SGs are colored 

in red. C) Fractions of the 453 gene perturbations that display one or more perturbed MLO states. D) 

Clustered heat map of the phenotypic strength of the 128 gene perturbations that display more than two 

perturbed MLO states. The asterisk indicates that the phenotype of SG formation is Boolean, thus was 

set to the highest phenotypic strength and was not used for clustering. 



 
Figure S7: HIP kinases regulate PML-NB size and integrity. Related to Figure 7. 

A) DAPI and EdU intensity of single cells treated for 72 hours with siRNAs against HIPK1, DAPK2, 

MYST3 and PAK4, respectively. Color indicates total PML intensity in segmented PML-NBs as stds from 

the mean of all controls. Note that the total nuclear EdU intensity also includes weak signal of the protein 



stain succinimidylester. B) Cell cycle classifications for control cells and cells treated for 72 hours with 

siRNAs against HIPK2 and EWSR1, respectively. DAPI and EdU intensity of single cells are plotted as in 

Figure 7B. Colors indicate classification as G1, S or G2 cell. Box (dashed black outline) highlights cells 

with increased PML-NBs and reduced EdU incorporation as in Figure 7B. Note that the total nuclear EdU 

intensity also includes weak signal of the protein stain succinimidylester. C) STRING network visualization 

of 56 genes representing the overlap of 104 genes with a functional annotation for PML-NBs 

(GO:0016605~PML body, derived from QuickGO) with the set of 1323 screened genes. Edges (gray 

lines) indicate the relative physical and functional interaction strength derived from STRING database. 

Node colors indicate the effect of the respective gene perturbation on PML-NB morphology in stds from 

the mean of all perturbations and controls. Genes with a phenotypic strength higher than 2.5 stds from 

the mean are considered hits. D) Overexpressed GFP-tagged HIPK1 and HIPK2 partially colocalize with 

PML in PML-NBs. Cells were fixed after 24 hours of transfection and stained with antibodies against PML. 

Images showing the GFP signal (left column in both panels) are rescaled the same. Images showing the 

overlay of the GFP signal with PML (right column in both panels) are rescaled individually. Nuclear 

segmentation is shown in white. Scale bars 10 µm. E-G) Overexpressed GFP-tagged HIPK1 and HIPK2 

do not alter PML speckle abundance or intensity. E) Representative images of cells transfected for 24 

hours with GFP, GFP-HIPK1, or GFP-HIPK2, and stained with antibodies against PML. Nuclear 

segmentation is shown in white. Scale bar 10 µm. F) Number of segmented PML-positive speckles in 

control cells (gray boxes, n=1,445-4,029) and cells transfected (green boxes) for 24 hours with GFP 

(n=2,621), GFP-HIPK1 (n=975), and GFP-HIPK2 (n=1,143), respectively. G) Total PML intensity in 

segmented PML-positive speckles of the same cells as quantified in F. H-J) Overexpressed GFP-tagged 

HIPK1 and HIPK2 dissolve Sp100-positive speckles in a concentration-dependent manner. H) 

Representative images of cells transfected for 24 hours with GFP, GFP-HIPK1, or GFP-HIPK2, and 

stained with antibodies against Sp100. Nuclear segmentation is shown in white. Scale bar 10 µm. I) 

Probability distributions of the number of nuclear Sp100 speckles in control cells (gray) and cells 

transfected for 24 hours with GFP, GFP-HIPK1, and GFP-HIPK2, respectively. Numbers of quantified 

cells are indicated. J) Fractions of cells with no nuclear Sp100 speckles. Cells were treated as above and 

fractions were calculated for GFP-positive cells (GFP control: n=2,967, GFP-HIPK1: n=806, GFP-HIPK2: 

n=1,387). The fractions were calculated as a function of nuclear GFP concentration (sliding window 

method on log10-transformed intensity values) and smoothed afterwards. 
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