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The vagus nerve represents the main component of the parasympathetic nervous  
system, which oversees a vast array of crucial bodily functions, including control of 
mood, immune response, digestion, and heart rate. It establishes one of the connections 
between the brain and the gastrointestinal tract and sends information about the state of 
the inner organs to the brain via afferent fibers. In this review article, we discuss various 
functions of the vagus nerve which make it an attractive target in treating psychiatric 
and gastrointestinal disorders. There is preliminary evidence that vagus nerve stimulation 
is a promising add-on treatment for treatment-refractory depression, posttraumatic 
stress disorder, and inflammatory bowel disease. Treatments that target the vagus nerve 
increase the vagal tone and inhibit cytokine production. Both are important mechanism 
of resiliency. The stimulation of vagal afferent fibers in the gut influences monoaminergic 
brain systems in the brain stem that play crucial roles in major psychiatric conditions, 
such as mood and anxiety disorders. In line, there is preliminary evidence for gut bacteria 
to have beneficial effect on mood and anxiety, partly by affecting the activity of the vagus 
nerve. Since, the vagal tone is correlated with capacity to regulate stress responses 
and can be influenced by breathing, its increase through meditation and yoga likely 
contribute to resilience and the mitigation of mood and anxiety symptoms.

Keywords: depression, PTSD, vagus nerve stimulation, nutrition, probiotics, yoga, meditation, inflammatory 
bowel disease

iNTRODUCTiON

The bidirectional communication between the brain and the gastrointestinal tract, the so-called 
“brain–gut axis,” is based on a complex system, including the vagus nerve, but also sympathetic (e.g., 
via the prevertebral ganglia), endocrine, immune, and humoral links as well as the influence of gut 
microbiota in order to regulate gastrointestinal homeostasis and to connect emotional and cognitive 
areas of the brain with gut functions (1). The ENS produces more than 30 neurotransmitters and has 
more neurons than the spine. Hormones and peptides that the ENS releases into the blood circula-
tion cross the blood–brain barrier (e.g., ghrelin) and can act synergistically with the vagus nerve, 
for example to regulate food intake and appetite (2). The brain–gut axis is becoming increasingly 
important as a therapeutic target for gastrointestinal and psychiatric disorders, such as inflammatory 
bowel disease (IBD) (3), depression (4), and posttraumatic stress disorder (PTSD) (5). The gut is an 
important control center of the immune system and the vagus nerve has immunomodulatory proper-
ties (6). As a result, this nerve plays important roles in the relationship between the gut, the brain, and 
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FiGURe 1 | Overview over the basic anatomy and functions of the vagus nerve.
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inflammation. There are new treatment options for modulating 
the brain–gut axis, for example, vagus nerve stimulation (VNS) 
and meditation techniques. These treatments have been shown 
to be beneficial in mood and anxiety disorders (7–9), but also 
in other conditions associated with increased inflammation (10).  
In particular, gut-directed hypnotherapy was shown to be effective 
in both, irritable bowel syndrome and IBD (11, 12). Finally, the 
vagus nerve also represents an important link between nutrition 
and psychiatric, neurological and inflammatory diseases.

BASiC ANATOMY OF THe vAGUS NeRve

The vagus nerve carries an extensive range of signals from diges-
tive system and organs to the brain and vice versa. It is the tenth 
cranial nerve, extending from its origin in the brainstem through 
the neck and the thorax down to the abdomen. Because of its long 
path through the human body, it has also been described as the 
“wanderer nerve” (13).

The vagus nerve exits from the medulla oblongata in the 
groove between the olive and the inferior cerebellar peduncle, 
leaving the skull through the middle compartment of the jugular 
foramen. In the neck, the vagus nerve provides required inner-
vation to most of the muscles of the pharynx and larynx, which 
are responsible for swallowing and vocalization. In the thorax, 
it provides the main parasympathetic supply to the heart and 
stimulates a reduction in the heart rate. In the intestines, the 
vagus nerve regulates the contraction of smooth muscles and 
glandular secretion. Preganglionic neurons of vagal efferent 

fibers emerge from the dorsal motor nucleus of the vagus nerve 
located in the medulla, and innervate the muscular and mucosal 
layers of the gut both in the lamina propria and in the mus-
cularis externa (14). The celiac branch supplies the intestine 
from proximal duodenum to the distal part of the descending 
colon (15, 16). The abdominal vagal afferents, include mucosal 
mechanoreceptors, chemoreceptors, and tension receptors 
in the esophagus, stomach, and proximal small intestine, and 
sensory endings in the liver and pancreas. The sensory afferent 
cell bodies are located in nodose ganglia and send information 
to the nucleus tractus solitarii (NTS) (see Figure 1). The NTS 
projects, the vagal sensory information to several regions of the 
CNS, such as the locus coeruleus (LC), the rostral ventrolateral 
medulla, the amygdala, and the thalamus (14).

The vagus nerve is responsible for the regulation of internal 
organ functions, such as digestion, heart rate, and respiratory 
rate, as well as vasomotor activity, and certain reflex actions, such 
as coughing, sneezing, swallowing, and vomiting (17). Its activa-
tion leads to the release of acetylcholine (ACh) at the synaptic 
junction with secreting cells, intrinsic nervous fibers, and smooth 
muscles (18). ACh binds to nicotinic and muscarinic receptors 
and stimulates muscle contractions in the parasympathetic nerv-
ous system.

Animal studies have demonstrated a remarkable regeneration 
capacity of the vagus nerve. For example, subdiaphragmatic 
vagotomy induced transient withdrawal and restoration of cen-
tral vagal afferents as well as synaptic plasticity in the NTS (19). 
Further, the regeneration of vagal afferents in rats can be reached 
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18 weeks after subdiaphragmatic vagotomy (20), even though the 
efferent reinnervation of the gastrointestinal tract is not restored 
even after 45 weeks (21).

FUNCTiONS OF THe vAGUS NeRve

The Role of vagus in the Functions  
of the Autonomic Nervous System
Alongside the sympathetic nervous system and the enteric nerv-
ous system (ENS), the parasympathetic nervous system represents 
one of the three branches of the autonomic nervous system.

The definition of the sympathetic and parasympathetic nerv-
ous systems is primarily anatomical. The vagus nerve is the main 
contributor of the parasympathetic nervous system. Other three 
parasympathetic cranial nerves are the nervus oculomotorius, the 
nervus facialis, and the nervus glossopharyngeus.

The most important function of the vagus nerve is afferent, 
bringing information of the inner organs, such as gut, liver, heart, 
and lungs to the brain. This suggests that the inner organs are 
major sources of sensory information to the brain. The gut as the 
largest surface toward the outer world and might, therefore, be a 
particularly important sensory organ.

Historically, the vagus has been studied as an efferent nerve 
and as an antagonist of the sympathetic nervous system. Most 
organs receive parasympathetic efferents through the vagus 
nerve and sympathetic efferents through the splanchnic nerves. 
Together with the sympathetic nervous systems, the parasym-
pathetic nervous system is responsible for the regulation of 
vegetative functions by acting in opposition to each other (22). 
The parasympathetic innervation causes a dilatation of blood 
vessels and bronchioles and a stimulation of salivary glands.  
On the contrary, the sympathetic innervation leads to a constric-
tion of blood vessels, a dilatation of bronchioles, an increase in 
heart rate, and a constriction of intestinal and urinary sphincters. 
In the gastrointestinal tract, the activation of the parasympathetic 
nervous system increases bowel motility and glandular secretion. 
In contrast to it, the sympathetic activity leads to a reduction of 
intestinal activity and a reduction of blood flow to the gut, allow-
ing a higher blood flow to the heart and the muscles, when the 
individual faces existential stress.

The ENS arises from neural crest cells of the primarily vagal 
origin and consists of a nerve plexus embedded in the intestinal 
wall, extending across the whole gastrointestinal tract from 
the esophagus to the anus. It is estimated that the human ENS 
contains about 100–500 million neurons. This is the largest accu-
mulation of nerve cells in the human body (23–25). Since the ENS 
is similar to the brain regarding structure, function, and chemical 
coding, it has been described as “the second brain” or “the brain 
within the gut” (26). It consists of two ganglionated plexuses—the 
submucosal plexus, which regulates gastrointestinal blood flow 
and controls the epithelial cell functions and secretion and the 
myenteric plexus, which mainly regulates the relaxation and con-
traction of the intestinal wall (23). The ENS serves as intestinal 
barrier and regulates the major enteric processes, such as immune 
response, detecting nutrients, motility, microvascular circulation, 
and epithelial secretion of fluids, ions, and bioactive peptides (27). 

There clearly is “communication” between the vagal nerve and the 
ENS, and the main transmitter is cholinergic activation through 
nicotinic receptors (24). Interaction of ENS and the vagal nerve 
as a part of the CNS leads to a bidirectional flow of information. 
On the other hand, the ENS in the small and large bowel also is 
able to function quite independent of vagal control as it contains 
full reflex circuits, including sensory neurons and motor neurons. 
They regulate muscle activity and motility, fluid fluxes, mucosal 
blood flow, and also mucosal barrier function. ENS neurons are 
also in close contact to cells of the adaptive and innate immune 
system and regulate their functions and activities. Aging and 
cell loss in the ENS are associated with complaints, such as 
constipation, incontinence, and evacuation disorders. The loss of 
the ENS in the small and large intestine may be life threatening 
(Hirschsprung’s disease; intestinal pseudo-obstruction), whereas 
as loss of the vagal nerve in these areas is not.

vagus Nerve as a Link between  
the Central and eNS
The connection between the CNS and the ENS, also referred 
to as the brain–gut axis enables the bidirectional connection 
between the brain and the gastrointestinal tract. It is responsible 
for monitoring the physiological homeostasis and connecting 
the emotional and cognitive areas of the brain with peripheral 
intestinal functions, such as immune activation, intestinal per-
meability, enteric reflex, and enteroendocrine signaling (1). This 
brain–gut axis, includes the brain, the spinal cord, the autonomic 
nervous system (sympathetic, parasympathetic, and ENS), and 
the hypothalamic–pituitary–adrenal (HPA) axis (1). The vagal 
efferents send the signals “down” from brain to gut through effer-
ent fibers, which account for 10–20% of all fibers and the vagal 
afferents “up” from the intestinal wall to the brain accounting 
for 80–90% of all fibers (28) (see Figure  1). The vagal afferent 
pathways are involved in the activation/regulation of the HPA 
axis (29), which coordinates the adaptive responses of the organ-
ism to stressors of any kind (30). Environmental stress, as well 
as elevated systemic proinflammatory cytokines, activates the 
HPA axis through secretion of the corticotropin-releasing factor 
(CRF) from the hypothalamus (31). The CRF release stimulates 
adrenocorticotropic hormone (ACTH) secretion from pituitary 
gland. This stimulation, in turn, leads to cortisol release from the 
adrenal glands. Cortisol is a major stress hormone that affects 
many human organs, including the brain, bones, muscles, and 
body fat.

Both neural (vagus) and hormonal (HPA axis) lines of com-
munication combine to allow brain to influence the activities 
of intestinal functional effector cells, such as immune cells, 
epithelial cells, enteric neurons, smooth muscle cells, interstitial 
cells of Cajal, and enterochromaffin cells (32). These cells, on the 
other hand, are under the influence of the gut microbiota. The 
gut microbiota has an important impact on the brain–gut axis 
interacting not only locally with intestinal cells and ENS, but also 
by directly influencing neuroendocrine and metabolic systems 
(33). Emerging data support the role of microbiota in influencing 
anxiety and depressive-like behaviors (34). Studies conducted on 
germ-free animals demonstrated that microbiota influence stress 
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reactivity and anxiety-like behavior and regulate the set point 
for HPA activity. Thus, these animals generally show a decreased 
anxiety (35) and an increased stress response with augmented 
levels of ACTH and cortisol (36).

In case of food intake, vagal afferents innervating the gastro-
intestinal tract provide a rapid and discrete account of digest-
ible food as well as circulating and stored fuels, while vagal 
efferents together with the hormonal mechanisms codetermine 
the rate of nutrient absorption, storage, and mobilization (37). 
Histological and electrophysiological evidence indicates that 
visceral afferent endings of the vagus nerve in the intestine 
express a diverse array of chemical and mechanosensitive 
receptors. These receptors are targets of gut hormones and 
regulatory peptides that are released from enteroendocrine 
cells of the gastrointestinal system in response to nutrients, by 
distension of the stomach and by neuronal signals (38). They 
influence the control of food intake and regulation of satiety, 
gastric emptying and energy balance (39) by transmitting 
signals arising from the upper gut to the nucleus of the solitary 
tract in the brain (40). Most of these hormones, such as peptide 
cholecystokinin (CCK), ghrelin, and leptin are sensitive to the 
nutrient content in the gut and are involved in regulating short-
term feelings of hunger and satiety (41).

Cholecystokinin regulates gastrointestinal functions, includ-
ing inhibition of gastric emptying and food intake through 
activation of CCK-1 receptors on vagal afferent fibers innervat-
ing the gut (42). In addition, CCK is important for secretion 
of pancreatic fluid and producing gastric acid, contracting the 
gallbladder, decreasing gastric emptying, and facilitating diges-
tion (43). Saturated fat, long-chain fatty acids, amino acids, and 
small peptides that result from protein digestion stimulate the 
release of CCK from the small intestine (44). There are various 
biologically active forms of CCK, classified according to the num-
ber of amino acids they contain, i.e., CCK-5, CCK-8, CCK-22, 
and CCK-33 (45). In neurons, CCK-8 is always the predominat-
ing form, whereas the endocrine gut cells contain a mixture of 
small and larger CCK peptides of which CCK-33 or CCK-22 
often predominate (42). In rats, both long- and short-chain fatty 
acids from food activate jejunal vagal afferent nerve fibers, but 
do so by distinct mechanisms (46). Short-chain fatty acids, such 
as butyric acid have a direct effect on vagal afferent terminals 
while the long-chain fatty acids activate vagal afferents via a 
CCK-dependent mechanism. Exogenous administration of CCK 
appears to inhibit endogenous CCK secretion (47). CCK is also 
present in enteric vagal afferent neurons, in cerebral cortex, in 
the thalamus, hypothalamus, basal ganglia, and dorsal hindbrain, 
and functions as a neurotransmitter (45). It directly activates 
vagal afferent terminals in the NTS by increasing calcium release 
(48). Further, there is evidence that CCK can activate neurons in 
the hindbrain and intestinal myenteric plexus (a plexus which 
provides motor innervation to both layers of the muscular layer 
of the gut), in rats and that vagotomy or capsaicin treatment 
results in an attenuation of CCK-induced Fos expression (a type 
of a proto-oncogene) in the brain (43). There is also substantial 
evidence that elevated levels of CCK induce feelings of anxiety 
(49). Therefore, CCK is used as a challenge agent to model anxiety 
disorders in humans and animals (50).

Ghrelin is another hormone released into circulation from 
the stomach and plays a key role in stimulating food intake by 
inhibiting vagal afferent firing (51). Circulating ghrelin levels are 
increased by fasting and fall after a meal (52). Central or peripheral 
administration of acylated ghrelin to rats acutely stimulates food 
intake and growth hormone release, and chronic administration 
causes weight gain (53). The action of ghrelin’s on feeding is 
abolished or attenuated in rats that have undergone vagotomy or 
treatment with capsaicin, a specific afferent neurotoxin (54, 55).  
In humans, intravenous infusion or subcutaneous injection 
increases both feelings of hunger and food intake, since ghrelin 
suppresses insulin release (56). Therefore, it is not surprising that 
secretion is disturbed in obesity and insulin resistance (57).

Leptin receptors have also been identified in the vagus nerve. 
Studies in rodents clearly indicate that leptin and CCK interact 
synergistically to induce short-term inhibition of food intake 
and long-term reduction of body weight (40). The epithelial cells 
that respond to both ghrelin and leptin are located near the vagal 
mucosal endings and modulate the activity of vagal afferents, act-
ing in concert to regulate food intake (58, 59). After fasting and 
diet-induced obesity in mice, leptin loses its potentiating effect on 
vagal mucosal afferents (59).

The gastrointestinal tract is the key interface between food and 
the human body and can sense basic tastes in much the same 
way as the tongue, through the use of similar G-protein-coupled 
taste receptors (60). Different taste qualities induce the release of 
different gastric peptides. Bitter taste receptors can be considered 
as potential targets to reduce hunger by stimulating the release of 
CCK (61). Further, activation of bitter taste receptors stimulates 
ghrelin secretion (62) and, therefore, affects the vagus nerve.

vagus Nerve as Modulator of intestinal 
immune Homeostasis
The gastrointestinal tract is constantly confronted with food 
antigens, possible pathogens, and symbiotic intestinal microbiota 
that present a risk factor for intestinal inflammation (63). It is 
highly innervated by vagal fibers that connect the CNS with the 
intestinal immune system, making vagus a major component, 
the neuroendocrine-immune axis. This axis is involved in coor-
dinated neural, behavioral, and endocrine responses, important 
for the first-line defense against inflammation (64). For example, 
in response to pathogens and other injurious stimuli, tumor-
necrosis factor-alpha (TNF-α), a cytokine, is produced by acti-
vated macrophages, dendritic cells, and other cells in the mucosa 
(3, 65). Together with prostaglandins and interferons, TNF-α 
is an important mediator of local and systemic inflammation 
and increases cause the cardinal clinical signs of inflammation, 
including heat, swelling, pain, and redness (66, 67). Counter-
regulatory mechanisms, such as immunologically competent 
cells and anti-inflammatory cytokines normally limit the acute 
inflammatory response and prevent the spread of inflammatory 
mediators into the bloodstream. Further, there is a “hard-wired” 
connection between the nervous and immune system functions 
as an anti-inflammatory mechanism. The dorsal vagal complex, 
comprising the sensory nuclei of the solitary tract, the area 
postrema, and the dorsal motor nucleus of the vagus, responds 
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to increased circulating amounts of TNF-α by altering motor 
activity in the vagus nerve (68).

The anti-inflammatory capacities of the vagus nerve are medi-
ated through three different pathways (18). The first pathway 
is the HPA axis, which has been described above. The second 
pathway is the splenic sympathetic anti-inflammatory pathway, 
where the vagus nerve stimulates the splenic sympathetic nerve. 
Norepinephrine (NE) (noradrenaline) released at the distal end 
of the splenic nerve links to the β2 adrenergic receptor of splenic 
lymphocytes that release ACh. Finally, ACh inhibits the release of 
TNF-α by spleen macrophages through α-7-nicotinic ACh recep-
tors. The last pathway, called the cholinergic anti-inflammatory 
pathway (CAIP), is mediated through vagal efferent fibers that 
synapse onto enteric neurons, which in turn release ACh at 
the synaptic junction with macrophages (18). ACh binds to 
α-7-nicotinic ACh receptors of those macrophages to inhibit 
the TNF-α (69). Compared to the HPA axis, the CAIP has some 
unique properties, such as a high speed of neural conductance, 
which enables an immediate modulatory input to the affected 
region of inflammation (70). Therefore, the CAIP plays a crucial 
role in the intestinal immune response and homeostasis, and 
presents a highly interesting target for the development of novel 
treatments for inflammatory diseases related to the gut immune 
system (6, 18).

The inflammation-sensing and inflammation-suppressing 
functions outlined above provide the principal components of the 
inflammatory reflex (71). The appearance of pathogenic organ-
isms activates innate immune cells that release cytokines. These 
in turn activate sensory fibers that ascend in the vagus nerve 
to synapse in the nucleus tractus solitarius. Increased efferent 
signals in the vagus nerve suppress peripheral cytokine release 
through macrophage nicotinic receptors and the CAIP. Thus, 
experimental activation of the CAIP by direct electrical stimula-
tion of the efferent vagus nerve inhibits the synthesis of TNF-α 
in liver, spleen, and heart, and attenuates serum concentrations 
of TNF-α (72, 73).

vAGUS NeRve STiMULATiON

Vagus nerve stimulation is a medical treatment that is routinely 
used in the treatment of epilepsy and other neurological condi-
tions. VNS studies are not just clinically, but also scientifically 
informative regarding the role of the vagus nerve in health and 
disease.

Device and Method
Vagus nerve stimulation works by applying electrical impulses 
to the vagus nerve. The stimulation of the vagus nerve can be 
performed in two different ways: a direct invasive stimulation, 
which is currently the most frequent application and an indirect 
transcutaneous non-invasive stimulation. Invasive VNS (iVNS) 
requires the surgical implantation of a small pulse generator 
subcutaneously in the left thoracic region. Electrodes are attached 
to the left cervical vagus nerve and are connected to the pulse 
generator by a lead, which is tunneled under the skin. The 
generator delivers intermittent electrical impulses through the 

vagus nerve to the brain (74). It is postulated that these electri-
cal impulses exert antiepileptic (75), antidepressive (76), and 
anti-inflammatory effects by altering the excitability of nerve 
cells. In contrast to iVNS, transcutaneous VNS (tVNS) allows 
for a non-invasive stimulation of the vagus nerve without any 
surgical procedure. Here, the stimulator is usually attached to the 
auricular concha via ear clips and delivers electrical impulses at 
the subcutaneous course of the afferent auricular branch of the 
vagus nerve (77). A pilot study that examined the application of 
VNS in 60 patients with treatment-resistant depressive disorder 
showed a significant clinical improvement in 30–37% of patients 
and a high tolerability (78). Five years later, the stimulation of 
the vagus nerve for the treatment of refractory depression was 
approved by the U.S. Food and Drug Administration (FDA) (79). 
Since then, the safety and efficacy of VNS in depression has been 
demonstrated in numerous observational studies as can be seen 
below. In contrast, there is no randomized, placebo-control clini-
cal trial that reliably demonstrates antidepressant effects of VNS.

The Neural Mechanism of vNS
The mechanism by which VNS may benefit patients nonrespon-
sive to conventional antidepressants is unclear, with further 
research needed to clarify this (80). Functional neuroimaging 
studies have confirmed that VNS alters the activity of many 
cortical and subcortical regions (81). Through direct or indi-
rect anatomic connections via the NTS, the vagus nerve has 
structural connections with several mood regulating limbic and 
cortical brain areas (82). Thus, in chronic VNS for depression, 
PET scans showed a decline in resting brain activity in the 
ventromedial prefrontal cortex (vmPFC), which projects to the 
amygdala and other brain regions modulating emotion (83). VNS 
results in chemical changes in monoamine metabolism in these 
regions possibly resulting in antidepressant action (84, 85). The 
relationship between monoamine and antidepressant action has 
been shown by various types of evidence. All drugs that increase 
monoamines—serotonin (5-HT), NE, or dopamine (DA)—in the 
synaptic cleft have antidepressant properties (86). Accordingly, 
depletion of monoamines induces depressive symptoms in indi-
viduals who have an increased risk of depression (87).

Chronic VNS influences the concentration of 5-HT, NE, and 
DA in the brain and in the cerebrospinal fluid (88). In rats, it has 
been shown that VNS treatments induce large time-dependent 
increases in basal neuronal firing in the brainstem nuclei for 
serotonin in the dorsal raphe nucleus (89). Thus, chronic VNS 
was associated with increased extracellular levels of serotonin in 
the dorsal raphe (90).

Several lines of evidence suggest that NE is a neurotransmitter 
of major importance in the pathophysiology and treatment of 
depressive disorders (91). Thus, experimental depletion of NE in 
the brain led to a return of depressive symptoms after successful 
treatment with NE antidepressant drugs (91). The LC contains 
the largest population of noradrenergic neurons in the brain and 
receives projections from NTS, which, in turn, receives afferent 
input from the vagus nerve (92). Thus, VNS leads to an enhance-
ment of the firing activity of NE neurons (93), and consequently, 
an increase in the firing activity of serotonin neurons (94). Thus, 
VNS was shown to increase the NE concentration in the prefrontal 
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cortex (95). The pharmacologic destruction of noradrenergic 
neurons resulted in the loss of antidepressant VNS effects (96).

In case of DA, it has been shown that the short-term effects 
(14 days) (94) and the long-term effects (12 months) (97) of VNS 
in treatment of resistant major depression may lead to brainstem 
dopaminergic activation. DA is a catecholamine that to a large 
extent is synthesized in the gut and plays a crucial role in the 
reward system in the brain (98).

Further, beneficial effects of VNS might be exerted through 
a monoamine-independent way. Thus, VNS treatments might 
result in dynamic changes of monoamine metabolites in the hip-
pocampus (93) and several studies reported the influence of VNS 
on hippocampal neurogenesis (99, 100). This process has been 
regarded as a key biological process indispensable for maintain-
ing the normal mood (101).

Serotonin is also an important neurotransmitter in the gut that 
can stimulate peristalsis and induce nausea and vomiting by acti-
vating the vagus nerve. In addition, it is essential for the regulation 
of vital functions, such as appetite and sleep, and contributes to 
feelings of well-being. To 95%, it is produced by enterochromaffin 
cells, a type of neuroendocrine cell which reside alongside the 
epithelium lining the lumen of the digestive tract (102). Serotonin 
is released from enterochromaffin cells in response to mechani-
cal or chemical stimulation of the gastrointestinal tract which 
leads to activation of 5-HT3 receptors on the terminals of vagal 
afferents (103). 5-HT3 receptors are also present on the soma of 
vagal afferent neurons, including gastrointestinal vagal afferent 
neurons, where they can be activated by circulating 5-HT. The 
central terminals of vagal afferents also exhibit 5-HT3 receptors 
that function to increase glutamatergic synaptic transmission to 
second order neurons of the nucleus tractus solitarius within the 
brainstem. As a result, interactions between the vagus nerve and 
serotonin systems in the gut and in the brain appear to play an 
important role in the treatment of psychiatric conditions.

vAGUS-ReLATeD TReATMeNT  
OF DePReSSiON

Basic Pathophysiology of Depression
Major depressive disorder ranks among the leading mental health 
causes of the global burden of disease (104). With a lifetime 
prevalence of 1.0% (Czech Republic) to 16.9% (US) (105), the cost 
of depression poses a significant economic burden to our society 
(106). The pathophysiology of depression is complex and includes 
social environmental stress factors; genetic and biological pro-
cesses, such as the overdrive of the HPA axis, inflammation (31), 
and disturbances in monamine neurotransmission as described 
above (91). For example, a lack of the amino acid tryptophan, 
which is a precursor to serotonin, can induce depressive symp-
toms, such as depressed mood, sadness, and hopelessness (86).

The overdrive of the HPA axis is most consistently seen in sub-
jects with more severe (i.e., melancholic or psychotic) depression, 
when the cortisol feedback inhibitory mechanisms are impaired, 
contributing to cytokine oversecretion (107). It has been shown 
that chronic exposure to elevated inflammatory cytokines can 
lead to depression (108). This might be explained by the fact that 

cytokine overexpression leads to a reduction of serotonin levels 
(109). In line with that, treatment with anti-inflammatory agents 
has the potential to reduce depressive symptoms (110). In line, 
IBD are important risk factor for mood and anxiety disorders 
(111), and these psychiatric conditions increase the risk of exac-
erbation of IBD (112).

vNS in Depression
A European multicenter study demonstrated a positive effect of 
VNS on depressive symptoms, in patients with treatment-resist-
ant depression (113). The application of VNS over a period of 
3 months resulted in a response rate of 37% and a remission rate 
of 17%. After 1 year of treatment, the response rate reached 53% 
and the remission rate reached 33%. A meta analysis that com-
pared the application of VNS to the usual treatment in depressed 
patients showed a response rate of approximately 50% in the acute 
phase of the disease and a long-term remission rate of 20% after 
2 years of treatment (114). Several other studies also demonstrated 
an increasing long-term benefit of VNS in recurrent treatment-
resistant depression (84, 85, 115). Further, a 5-year prospective 
observational study which compared the effects of treatment as 
usual and VNS as adjunctive treatment with treatment as usual 
only in treatment-resistant depression, showed a better clinical 
outcome and a higher remission rate in the VNS group (116). This 
was even the case in patients with comorbid depression and anxi-
ety who are frequent non-responders in trials on antidepressant 
drugs. It is important to note that all these studies were open-label 
and did not use a randomized, placebo-controlled study design.

Patients with depression have elevated plasma and cerebro-
spinal fluid concentrations of proinflammatory cytokines. The 
benefit of VNS in depression might be due to the inhibitory 
action on the production of proinflammatory cytokines (117) and 
marked peripheral increases in anti-inflammatory circulating 
cytokines (118). Further, improvement after VNS was associated 
with altered secretion of CRH, thus preventing the overdrive the 
HPA axis (119). Altered CRH production and secretion might 
result from a direct stimulatory effect, transmitted from the vagus 
nerve through the NTS to the paraventricular nucleus of the 
hypothalamus. Finally, VNS has been shown to inhibit peripheral 
blood production of TNF-α which is increased in clinical depres-
sion (10).

influence of Nutrition Depressive 
Symptoms
The gut microbiota is the potential key modulator of the immune 
(120) and the nervous systems (121). Targeting it could lead to 
a greater improvement in the emotional symptoms of patients 
suffering from depression or anxiety. There is growing evidence 
that nutritional components, such as probiotics (122, 123), gluten 
(124), as well as drugs, such as anti-oxidative agents (125) and anti-
biotics (126), have a high impact on vagus nerve activity through 
the interaction with the gut microbiota and that this effect varies 
greatly between individuals. Indeed, animal studies have provided 
evidence that microbiota communication with the brain involves 
the vagus nerve and this interaction can lead to mediating effects 
on the brain and subsequently, behavior (127). For example, 
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Lactobacillus-species have received tremendous attention due 
to their use as probiotics and their health-promoting properties 
(128). Bravo et al. (129) demonstrated that chronic treatment of 
mice with Lactobacillus rhamnosus (strain JB-1) caused a reduc-
tion in stress-induced corticosterone levels and in anxiety-like and 
depression-like behavior (129). It has been shown that chronic 
treatment with L. rhamnosus (JB-1) induced region-dependent 
alterations in GABA(B1b) mRNA in the brain with increases 
in cortical regions (cingulate and prelimbic) and concomitant 
reductions in expression in the hippocampus, amygdala, and LC. 
In addition, L. rhamnosus (JB-1) reduced GABA(Aα2) mRNA 
expression in the prefrontal cortex and amygdala, but increased 
GABA(Aα2) in the hippocampus (129), which counteracts the 
typical pathogenesis of depressive symptoms: lack of prefrontal 
control and overactivity of subcortical, anxiogenic brain regions. 
Importantly, L. rhamnosus (JB-1) reduced stress-induced cor-
ticosterone and anxiety- and depression-related behavior. This 
is not surprising, since alterations in central GABA receptor 
expression are implicated in the pathogenesis of anxiety and 
depression (130, 131). The antidepressive and anxiolytic effects of 
L. rhamnosus were not observed in vagotomized mice, identifying 
the vagus as a major modulatory constitutive communication 
pathway between the bacteria exposed to the gut and the brain 
(129). In line with that, in a model of chronic colitis associated to 
anxiety-like behavior, the anxiolytic effect obtained with a treat-
ment with Bifidobacterium longum, was absent in mice that were 
vagotomized before the induction of colitis (132).

In humans, psychobiotics, a class of probiotics with anti-
inflammatory effects might be useful to treat patients with 
psychiatric disorders due to their antidepressive and anxiolytic 
effects (133). Differences in the composition of the gut microbiota 
in patients with depression compared with healthy individuals 
have been demonstrated (134). Importantly, the fecal samples 
pooled from five patients with depression transferred into germ-
free mice, resulted in depressive-like behavior.

influence of Relaxation Techniques  
on Depressive Symptoms
It has been shown that self-generated positive emotions via 
loving-kindness meditation lead to an increase in positive emo-
tions relative to the control group, an effect moderated by baseline 
vagal tone (135). In turn, increased positive emotions produced 
increases in vagal tone, which is probably mediated by increased 
perceptions of social connections. Individuals suffering from 
depression, anxiety, and chronic pain have benefited from regular 
mindfulness meditation training, demonstrating a remarkable 
improvement in symptom severity (9).

Controlled studies have found yoga-based interventions to 
be effective in treating depression ranging from mild depressive 
symptoms to major depressive disorder (MDD) (136). Some yoga 
practices can directly stimulate the vagus nerve, by increasing the 
vagal tone leading to an improvement of autonomic regulation, 
cognitive functions, and mood (137) and stress coping (138). The 
proposed neurophysiological mechanisms for the success of yoga-
based therapies in alleviating depressive symptoms suggest that 
yoga breathing induces increased vagal tone (139). Many studies 
demonstrate the effects of yogic breathing on brain function 

and physiologic parameters. Thus, Sudarshan Kriya Yoga (SKY), 
a breathing-based meditative technique, stimulates the vagus 
nerve and exerts numerous autonomic effects, including changes 
in heart rate, improved cognition, and improved bowel function 
(140). During SKY, a sequence of breathing techniques of differ-
ent frequencies, intensities, lengths, and with end-inspiratory and 
end-expiratory holds creates varied stimuli from multiple visceral 
afferents, sensory receptors, and baroreceptors. These probably 
influence diverse vagal fibers, which in turn induce physiologic 
changes in organs, and influence the limbic system (140). A 
recent study showed that even patients who did not respond to 
antidepressants showed a significant reduction of depressive and 
anxiety symptoms compared to the control group after receiving 
an adjunctive intervention with SKY for 8 weeks (141).

Iyengar yoga has been shown to decreased depressive symp-
toms in subjects with depression (142). Iyengar yoga is associated 
with increased HRV, supporting the hypothesis that yoga breath-
ing and postures work in part by increasing parasympathetic  
tone (143).

vAGUS-ReLATeD TReATMeNT OF PTSD

Pathophysiology of PTSD
Posttraumatic stress disorder is an anxiety disorder that can 
develop after trauma and is characterized by experiencing intru-
sive memories, flashbacks, hypervigilance, nightmares, social  
avoidance, and social dysfunctions (144). It has a lifetime 
prevalence of 8.3% using the definition for DSM-5 (145). The 
symptoms of PTSD can be classified into four clusters: intrusion 
symptoms, avoidance behavior, cognitive and affective alterations, 
and changes in arousal and reactivity (146). People who suffer 
from PTSD tend to live as though under a permanent threat. 
They exhibit fight and flight behavior or a perpetual behavioral 
shutdown and dissociation, with no possibility of reaching a calm 
state and developing positive social interactions. Over time, these 
maladaptive autonomic responses lead to the development of an 
increased risk for psychiatric comorbidities, such as addiction 
and cardiovascular diseases (147).

Posttraumatic stress disorder symptoms are partly mediated 
by the vagus nerve. There is evidence for diminished parasym-
pathetic activity in PTSD, indicating an autonomic imbalance 
(148). The vagal control of heart rate via the myelinated vagal 
fibers varies with respiration. Thus, the vagal influence on the 
heart can be evaluated by quantifying the amplitude of rhythmic 
fluctuations in heart rate—respiratory sinus arrhythmia (RSA).  
A recent study has demonstrated a reduced resting RSA in vet-
erans with PTSD (149). Further, patients with PTSD have been 
shown to have lower high-frequency heart rate variability than 
healthy controls (150).

Continuous expression of emotional symptoms to conditioned 
cues despite the absence of additional trauma is one of the many 
hallmarks of PTSD. Behavioral therapies employed to treat PTSD 
rely on helping the patient to gradually reduce her/his fear of this 
cue over time. Thus, exposure-based therapies are considered the 
gold standard of treatment for PTSD (151). The goal of exposure-
based therapies is to replace conditioned associations of the 
trauma with new, more appropriate associations which compete 
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with fearful associations. Studies have shown that PTSD patients 
exhibit deficient extinction recall along with dysfunctional acti-
vation of the fear extinction network (152, 153). This network 
includes the vmPFC, the amygdala, and the hippocampus. It is 
highly important for the contextual retrieval of fear memories 
after extinction (154).

Posttraumatic stress disorder symptom severity and structural 
abnormalities in the anterior hippocampus and centromedial 
amygdala have been associated (155). There is evidence for 
increased activation of the amygdala in humans and rodents dur-
ing conditioned fear (156). The amygdala and the vmPFC have 
reciprocal synaptic connections (157). Indeed, under conditions 
of uncertainty and threat, the PFC can become hypoactive leading 
to a failure to inhibit overactivity of the amygdala with emergence 
of PTSD symptoms, such as hyperarousal and re-experiencing 
(158). Further, in response to stressful stimuli as fearful faces, 
patients with PTSD showed a higher activation of the basolat-
eral amygdala during unconscious face processing compared 
to healthy controls as well as patients with panic disorder and 
generalized anxiety disorder (159).

The hippocampus is also a crucial component of the fear circuit 
and implicated in the pathophysiology of PTSD. Patients with 
PTSD show a reduced hippocampal volume that is associated 
with symptom severity (160). The hippocampus is a key structure 
in episodic memory and spatial context encoding. Hippocampal 
damage leads to deficits in context encoding in humans as well 
as rodents. The neural circuit consisting of the hippocampus, 
amygdala, and vmPFC is highly important for the contextual 
retrieval of fear memories after extinction (154). Impairment 
of hippocampal functioning, resulting dysfunctional context 
generalization in patients with PTSD, might cause patients to 
re-experience trauma-related symptoms (161).

vNS in PTSD
Vagus nerve stimulation has shown promise as therapeutic 
option in treatment-resistant anxiety disorders, including PTSD 
(8). Chronic VNS has been shown to reduce anxiety in rats (96) 
and improve scores on the Hamilton Anxiety Scale in patients 
suffering from treatment-resistant depression (8). When stimu-
lated, the vagus nerve sends signals to the NTS (162) and the NTS 
sends direct projections to the amygdala and the hypothalamus. 
Further, VNS increases the release of NE in basolateral amygdala 
(163) as well as the hippocampus and cortex (93). NE infusion 
in the amygdala results in better extinction learning (164). Thus, 
VNS could be a good tool to increase extinction retention. For 
example, in rats, extinction paired with VNS treatment can lead 
to remission of fear and improvements in PTSD-like symptoms 
(151). Further, VNS paired with extinction learning facilitates the 
plasticity between the infralimbic medial prefrontal cortex and 
the basolateral complex of the amygdala to facilitate extinction 
of conditioned fear responses (165). Additionally, VNS may also 
enhance extinction by inhibiting activity of the sympathetic nerv-
ous system (119). It is possible that an immediate VNS-induced 
reduction in anxiety contributes to VNS-driven extinction by 
interfering with the sympathetic response to the CS, thus break-
ing the association of the CS with fear. However, there is need for 
randomized controlled trials to approve these observations.

One of the most consistent neurophysiological effects of 
VNS is decreasing the hippocampal activity, possibly through 
enhancement of GABAergic signaling (166). As described above, 
the hippocampus is a crucial component of the fear circuit, since 
it is a key structure in episodic memory and spatial context 
encoding. Decreased hippocampal activity after VNS has been 
reported in a number of other studies in other conditions such as 
depression (77, 167) or schizophrenia (168).

Positive influence of Nutritive 
Components on PTSD
Emerging research suggests that probiotics may have the 
potential to decrease stress-induced inflammatory responses, 
as well as associated symptoms. An exploratory study that 
investigated the microbiome of patients with PTSD and 
trauma exposed controls revealed a decreased existence of 
three bacteria strains in patients with PTSD: Actinobacteria, 
Lentisphaerae, and Verrucomicrobia that were associated with 
higher PTDS symptom scores. These bacteria are important 
for immune regulation and their decreased abundance could 
have contributed to a dysregulation of the immune system and 
development of PTSD symptoms (169). A study using a murine 
model of PTSD (170) has demonstrated that immunization 
with a heat-killed preparation of the immunoregulatory bac-
terium Mycobacterium vaccae (NCTC 11659) induced a more 
proactive behavioral response to a psychosocial stressor (171). 
Studies performed in healthy volunteers have shown that the 
administration of different probiotics were associated with an 
improved well-being (172–174), as well as a decrease in anxiety 
and psychological distress (174, 175). These findings are all 
preliminary. There is an urgent need for well-designed, double-
blind, placebo-controlled clinical trials aimed at determining 
the effect of bacterial supplements and controlled changes in 
diet on psychological symptoms and cognitive functions in 
patients with PTSD.

Positive influence of Meditation  
and Yoga on PTSD
There is clinical evidence for the efficacy of mindfulness-based 
stress reduction (MBSR) in the treatment of PTSD (176–178). 
During MBSR, slow breathing and long exhalation phases lead to 
an increase in parasympathetic tone (179). In addition, clinical 
studies have demonstrated the effectiveness of yoga as a thera-
peutic intervention for PTSD and dissociation through a down-
regulation of the stress response (180–182). Yoga practices also 
decreased symptoms in PSTD after natural disasters (183, 184). 
Yoga-responsive anxiety disorders, including PTSD, go together 
with low HRV and low GABA activity (139). The interactions of 
the PFC, hippocampus, and amygdala in conjunction with inputs 
from the autonomous nervous system and GABA system provide 
a network through which yoga-based practices may decrease 
symptoms (185). There are indications that impaired extinction 
of conditioned fear in PTSD is associated with decreased vmPFC 
control over amygdala activity (157). PFC activation associated 
with increased parasympathetic activity during yoga could 
improve inhibitory control over the amygdala via PFC GABA 
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projections, decreasing amygdala overactivity, and reducing 
PTSD symptoms.

vAGUS-ReLATeD TReATMeNT  
iN iNFLAMMATORY DiSeASe

Pathophysiology iBD
Inflammatory bowel disease comprises mainly two disorders: 
ulcerative colitis (UC) and Crohn’s disease (CD) (186). The hall-
mark of IBD is chronic, uncontrolled inflammation of the intes-
tinal mucosa. Symptoms are characterized by abdominal pain, 
diarrhea, fever, weight loss, and extraintestinal (skin, eyes, joints) 
manifestations. In CD, the predominant symptoms are diarrhea, 
abdominal pain, and weight loss, whereas in UC diarrhea is the 
main symptom, often accompanied by rectal bleeding (187).

Inflammatory bowel disease affects about 1.5 million persons 
in the USA and 2.2 million in Europe (188), and about 20% of 
IBD patients have a positive family history (189). In addition, 
industrialization led to marked increases in IBD prevalence rates 
in Asia (190). There is increasing evidence that environmental 
risk factors, including infections, Western diet and food addi-
tives, air and water pollution, drugs (antibiotics, hormones), and 
psychosocial stress work in concert with genetic factors (more 
than 250 genetics factors have been consistently identified) in 
the pathogenesis of IBD, finally leading to an abnormal immune 
response to microbial exposure (191, 192). What distinguishes 
IBD from inflammatory responses seen in the normal gut is an 
inability to downregulate inflammatory responses, like it hap-
pens when intestine becomes inflamed in response to a potential 
pathogen. Thus, in individuals with IBD inflammation is not 
downregulated, the mucosal immune system remains chronically 
activated, and the intestine remains chronically inflamed (191). 
During inflammation, proinflammatory cytokines (IL-1β, IL-6, 
TNF-α) released from the intestinal mucosa activate VN afferents 
that terminate in the NTS (188), then relaying visceral informa-
tion to activate the HPA axis. Moreover, an anti-inflammatory 
role of vagus efferents through the CAIP has been reported (188). 
As stated earlier, ACh released at the distal end of VN efferents 
decreases the production of proinflammatory cytokines, such as 
TNF-α (188). The overexpression of the TNF-α may present a 
curical step in the development of IBD (193).

vNS in iBD
Vagus nerve stimulation attenuates the systemic inflammatory 
response to endotoxin (73) and intestinal inflammation (194). 
The VNs also indirectly modulates immune activity of the spleen 
through connections with the splenic sympathetic nerve (13). 
In rats with colonic inflammation, the 3 h long daily VNS for a 
period of 5 days led to a reduction in inflammatory markers and 
an improvement in symptoms of colitis (195).

Vagus nerve stimulation should be of interest in other inflam-
matory diseases, such as rheumatoid arthritis, another TNF-α-
mediated disease. In patients with rheumatoid arthritis, a study 
that demonstrated an improvement of symptoms in the early and 
late stages of the disease through 1–4 min of VNS daily (10). This 
study was also the first to show that VNS inhibits the production 

of TNF-α and other cytokines in humans by stimulating the 
inflammatory reflex, leading to an improvement of symptom 
severity. These data argue for an anti-inflammatory role of the 
vagus nerve and provide potential therapeutic applications for 
patients with IBDs (18, 195, 196).

Positive influence of Nutritive 
Components on iBD
Mechanistically, the role that inflammation plays in the onset and 
perpetuation of psychiatric symptoms has garnered increased 
attention (197). The increase of dysfunctional immunological 
responses in modern urban societies are posited to be at least 
in part associated with reduced exposure to commensal and 
environmental microorganisms that normally prime immu-
noregulatory circuits and suppress inappropriate inflammation 
(198). The intestinal bacterial flora is thought to be an important 
factor in the development and recurrence of IBD and various 
attempts have been made to modify the flora with probiotics. 
In animals with experimental colitis orally or rectally admin-
istered lactobacilli have yielded improvements. For example, 
Lactobacillus plantarum 299V prevented the onset of disease 
and reduced established colitis (199). Further, a multispecies 
probiotic (VSL#3) given to mice with established colitis normal-
ized gut barrier function, reduced proinflammatory cytokines, 
and lessened histological disease (200). In humans, Lactobacillus 
casei GG improved symptoms in children with moderately 
active CD (201). In addition, a combination of probiotics with 
Saccharomyces boulardii, Lactobacillus, and VSL#3 showed slight 
improvements of CD symptoms (202). These data are preliminary 
and need confirmation by future studies. So far, no probiotic 
treatments have been officially recommended for the treatment 
of CD (203).

In UC, there is reliable evidence for VSL#3 to be beneficial 
in the treatment of mildly active pouchitis (204). E. coli Nissle, 
part of VSL#3, may be as effective as the drug mesalamine in 
maintaining remission (205).

Positive influence of Hypnotherapy, 
Meditation, and Yoga in iBD
An increasing number of studies have shown benefits with 
relaxation-related treatment of IBD. For example, a randomized 
controlled trial of a relaxation-training intervention compared to 
a control group has shown decrease in pain as well as decreased 
anxiety levels and improvements in quality of life (206). Also 
mindfulness-based therapy (207), a comprehensive mind-body  
program (208), meditation (209), mind-body alternative 
approaches (210), yoga (211), and relaxation response-based 
mind-body interventions (212) have shown to be beneficial for 
IBD patients. In addition, hypnotherapy, which increases vagal 
tone (213), has been effective in the treatment of IBD (12).

CONCLUSiON

The interaction between the gut and the brain is based on a 
complex system that includes not only neural but also endocrine, 
immune, and humoral links.
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The vagus nerve is an essential part of the brain–gut axis and 
plays an important role in the modulation of inflammation, the 
maintenance of intestinal homeostasis, and the regulation of food 
intake, satiety, and energy homeostasis. An interaction between 
nutrition and the vagus nerve is well known, and vagal tone can 
influence food intake and weight gain.

Moreover, the vagus nerve plays an important role in the 
pathogenesis of psychiatric disorders, obesity as well as other 
stress-induced and inflammatory diseases.

Vagus nerve stimulation and several meditation techniques 
demonstrate that modulating the vagus nerve has a therapeu-
tic effect, mainly due to its relaxing and anti-inflammatory 
properties.

Extinction paired with VNS is more rapid than extinction 
paired with sham stimulation. As it is currently approved by the 
Federal FDA for depression and seizure prevention, VNS is a 
readily available and promising adjunct to exposure therapy for 
the treatment of severe anxiety disorders.

Vagus nerve stimulation is an effective anticonvulsant device 
and has shown in observational studies antidepressant effects in 
chronic treatment-resistant depression. Because the vagus nerve 
sends information to brain regions is important in the stress 
response (LC, orbitofrontal cortex, insula, hippocampus, and 
amygdala), this pathway might be involved in perceiving or mani-
festing various somatic and cognitive symptoms that characterize 
stress-related disorders.

Psychotropic drugs, such as serotonin reuptake inhibitors, 
have effects on both the brain and the gastrointestinal tract and 
consequently should be understood as modulators of the brain–
gut axis.

Research investigating the interaction between nutritive 
factors, somatic factors, such as heart rate, psychological and 
pharmacological treatments, and vagal activity has the potential 
to lead to integrative treatment options that incorporate VNS, 
nutritional approaches, drugs, and psychological interventions, 
such as mindfulness-based approaches, which can be tailored to 
the needs of the individual patient.
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