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Abstract: An algorithm for the systematic analytical approximation of multi-scale Feyn-

man integrals is presented. The algorithm produces algebraic expressions as functions of

the kinematical parameters and mass scales appearing in the Feynman integrals, allowing

for fast numerical evaluation. The results are valid in all kinematical regions, both above

and below thresholds, up to in principle arbitrary orders in the dimensional regulator. The

scope of the algorithm is demonstrated by presenting results for selected two-loop three-

point and four-point integrals with an internal mass scale that appear in the two-loop

amplitudes for Higgs+jet production.
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1 Introduction

Feynman integrals [1] are a fundamental constituent of perturbative calculations in theo-

retical particle physics and many techniques have been developed to calculate them. Going

beyond one loop, the calculation of multi-scale multi-loop integrals is still a limiting factor

in the theoretical predictions of hard processes.

The use of differential equations [2–9] and expression of the resulting integrals in terms

of generalised polylogarithms [10–19] has proven most successful over the past years and

has led to a plethora of analytically available results [20–32], leading in turn to important

phenomenological predictions. With the presence of internal massive lines or particular

non-planar graphs, elliptic structures appear which cannot be expressed in terms of poly-

logarithms alone. While progress is being made towards a description of these [33–39],

the numerical approach using sector decomposition [40–43] in publicly available programs

[44–52] has become more and more viable with successful phenomenological applications

to up to two-loop four-point four-scale processes [53–57]. Still, the numerical evaluation

suffers from long evaluation times or it is limited in accuracy, and more often than not,

a tuning of the integration parameters is needed to allow for a fastly-converging accurate

result.

To shorten the evaluation times the results have to be algebraic in the kinematical

parameters (Mandelstam invariants, external and internal particle masses). Then the eval-

uation at each kinematic point takes just as long as the time needed for the insertion of their

numerical values. Algebraic results can be obtained if the integrands are Taylor expanded

in the Feynman parameters. To ensure that the approximation is fastly-converging, each

integrand must be manipulated so that it is in a form optimised for a Taylor expansion.

To obtain such results in an algorithmic way, and thus find a compromise between

analytic and numerical approaches, TayInt, an algorithm to analytically approximate
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loop integrals, and generate an algebraic integral library which can be instantaneously

evaluated, is presented in this paper. The generation of the integral library is a lengthy

undertaking, and the backbone of the method to do so is as follows:

1. Input an integral.

2. Reduce the integral to a quasi-finite basis introduced in Refs. [58, 59], such that the

divergences are in the coefficient of the simplest integrals. An automated script using

the libraries of the publicly available program Reduze [59–61] performs this.

3. For the quasi-finite basis integrals, carry out a decomposition into subsectors with

smoother integrands. These are obtained using the publicly available program SecDec

3 [49–52], without its contour deformation option. The subsector integrands are an-

alytic within the integration region, but may contain integrable singularities over

thresholds and at upper integration boundaries.

4. Use a conformal mapping to move the singularities outside of the region of integration

as far away as is possible. This is done in Mathematica [62]. The structure of

conformal mappings is such that the singular behaviour is moved as far as possible.

5. (a) To produce a result valid below the kinematic thresholds, the integrand is Taylor

expanded around the midpoint of the integration region, and integrated over the

Feynman parameters. This is all done in FORM [63, 64].

(b) To produce a result valid above thresholds, there is a separate algorithm which

determines how to calculate integrals in each kinematic region that is over a

threshold. This algorithm is implemented in Mathematica. The subsectors are

first mapped onto the complex half plane. The algorithm then determines which

configuration to use for each sector, that is, which contour orientation to use

for the multiple variable integration and how to partition the subsequent region

into smaller pieces. The Taylor expansion and integration are then performed

on the new integrands specified by TayInt. The expansion points are always

the midpoints of each interval.

In Section 2, each step of the TayInt algorithm is described in more detail. Section 3

gives an analysis of the virtues of each step of the algorithm, while applications to integrals

relevant for phenomenological applications are given in Section 4. Conclusions are drawn

in Section 5.

2 The Algorithm

A generic Feynman loop integral G in an arbitrary number of dimensions D at loop level L

with N propagators, wherein the propagators Pj̃ with mass mj̃ can be raised to arbitrary
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powers νj̃ , has the momentum space representation

Gµ1...µRα1...αR
({p}, {m}) =

(
L∏
α=1

∫
dDκα

)
kµ1α1 · · · k

µR
αR∏N

j̃=1 P
νj̃

j̃
({k}, {p},m2

j̃
)

(2.1)

dDκα =
µ4−D

iπ
D
2

dDkα , Pj̃({k}, {p},m
2
j̃
) = q2

j̃
−m2

j̃
+ iδ , (2.2)

where the qj̃ are linear combinations of external momenta pi and loop momenta kα. The

rank R of the integral is indicated by the number of loop momenta appearing in the

numerator and the indices αi denote which of the L loop momenta belongs to which Lorentz

index µi. In what follows, R = 0 is taken for conciseness, although the TayInt algorithm

is valid for arbitrary rank. The factor of iπ
D
2 in κ in Eq. (2.2) is chosen by convention.

The renormalisation scale is denoted by µ, which preserves the dimensionless nature of the

coupling constant and is set to unity from here onward. The +iδ in Eq. (2.2) results from

the solutions of the field equations in terms of causal Green functions.

For the calculation of unknown integrals, we rewrite every propagator in terms of

Feynman parameters tj̃ . After integrating the loop momenta, the general form of a scalar

Feynman-parameterised multi-loop integral reads

G({q}, {m}) =
(−1)Nν∏N
j̃=1 Γ(νj̃)

N∏
j̃=1

∫ ∞
0

dtj̃ t
νj̃−1

j̃
δ(1−

N∑
l̃=1

tl̃)
UNν−(L+1)D/2

FNν−LD/2({q}, {m})
, (2.3)

where the functions U and F are the first and second Symanzik polynomial, respectively,

and are homogeneous in the Feynman parameters.

In order to calculate Feynman parameterised loop integrals as rational functions of

the kinematic parameters, the first universal step (U1) in the TayInt algorithm is to

express the given Feynman integral G as a superposition of finite Feynman integrals GF

multiplying factorised poles in ε. These finite integrals are either defined in a shifted

number of dimensions about D = 4 − 2 ε, have propagator powers greater than unity, or

both. The combination of these quasi-finite integrals which yields the original integral is

found via integration-by-parts [65, 66] and Lorentz invariance identities [6] and the Laporta

algorithm [67]. In practice, an automated script steers the performance of all necessary

steps in the program Reduze [59, 60] towards the generation of the quasi-finite basis. The

user must input the integral to be reduced and the integrals that are preferred for the quasi-

finite basis. In the output, the divergences are restricted to the coefficients of the simpler

integrals in the basis, so that the most complicated integral is always finite. Finding an

optimal basis partially requires making an educated guess. The guiding principles are to

express ultraviolet divergences in terms of vacuum integrals, and to relate subdivergences

to sub-graphs of the original integral under consideration.

Once the original Feynman integral has a quasi-finite basis representation, the integrals

in this basis are written in terms of their Feynman parametrisation and then decomposed

into subsectors which have smoother integrands. These subsector integrals are the building

blocks of the rest of the calculation. Their improved smoothness is achieved using sector
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decomposition [40–43]. Thus, the second universal step (U2) in the TayInt algorithm

is to perform the sector decomposition of the integrals GF in the quasi-finite basis by

passing them to version 3 of the program SecDec [51]. Therein, the strategy G2, based

on Ref. [68, 69] and combined with the Cheng-Wu theorem [70, 71] in Ref. [51], is used to

yield sectors of the form

GF
l ({q}, {m}) =

N∏
j̃=2

∫ 1

0
dtj̃ t

Alj̃−Blj̃ε
j̃

UNν−(L+1)D/2
l

(
~tj̃

)
FNν−LD/2l

(
~tj̃ , {q}, {m}

) , l = 1, . . . , r , (2.4)

where r is the number of subsector integrals. Alj̃ and Blj̃ are numbers independent of

the dimensional regulator ε. There are only N − 1 integrations in total because the first

Feynman parameter t1 is always integrated out with the δ-distribution. By construction,

the deterministic algorithm results in integrands of the type

Ul = 1 + u
(
~tj̃

)
(2.5)

Fl = s1 +
∑
β

sβfβ

(
~tj̃

)
, (2.6)

where u
(
~tj̃

)
and fβ

(
~tj̃

)
are polynomials in the Feynman parameters tj̃ , and s1, sβ ∈

{{q}, {m}} are kinematic invariants including masses. If the integral were not finite, the

singular behaviour would now be contained entirely in the exponents Alj̃ of Eq. (2.4).

Knowing that the integrals to be computed are finite, a sector decomposition might seem

unnecessary. However, it is observed to be vital for an improved convergence of the series

expansion.

As the first Feynman parameter has been integrated out, the substitution tj̃ → tj is

performed to have a sensible hierarchy of parameters, where j runs from 0 to J − 1. The

full integral can then be written in terms of its subsectors

GF({q}, {m}) =
(−1)Nν∏N
j=1 Γ (νj)

Γ (Nν − LD/2)
r∑
l=1

GF
l ({q}, {m}) . (2.7)

For calculations below threshold, there still exist singular behaviours outside of the

integration region. Thus the first below-threshold step (BT1) in the TayInt algorithm

is to maximise the distance to the nearest point of non-analyticity and so maximise the

accuracy of the expansion. This is acheived by exporting the finite subsector integrands to

Mathematica [62] and applying conformal mappings,

tj =
ayj + b

cyj + d
. (2.8)

In the cases considered so far, for an integrand decomposed into r subsectors and

containing J Feynman parameters the optimal mapping has taken the following form,

tj =


−yj−1
yj

, j ∈ {0, ...J − 1} and yj , j = J − 1 for l = 1
−yj−1
yj

, j ∈ {0, ...J − 1} for l ∈ {2, ..., r}.
(2.9)
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For the examples considered, we never mapped the final Feynman parameter in the

first sector, as this parameter always appeared in the form (1 + tJ−1) in the denominators

of the sectors. Thus, it is of no benefit to stretch the surface in that direction.

The second below-threshold step (BT2) in the TayInt algorithm is to perform the

Taylor expansion of the integrand, the relative simplicity of which is best suited to using

FORM [63, 64]. To this end, a FORM procedure was written which Taylor expands

functions of the form of the subsector integrands, around any point and to any order.

The third below-threshold step (BT3) is to integrate the yj from yj(0) to yj(1), again

in FORM. This yields results for Feynman integrals as rational functions of the kinematics

valid everywhere below threshold. The precision is controlled by the order of the expansion.

However, in the kinematic region above the lowest mass threshold of a particular

integral, the integrands contain discontinuities on the real axis which prevent a Taylor

expansion from converging. Thus, the TayInt algorithm returns to the result of U2,

specifically the multivariate integrands of GF
l . These subsector integrands are defined as

G̃F
l . The Feynman +iδ prescription of Eq. (2.2) is then implemented in Mathematica.

This is done by mapping the multivariate integrands of GF
l , onto complex half planes. The

TayInt algorithm then determines the contour configuration which avoids the poles in

each kinematic region that is over a threshold. The outline of the over-threshold part of

the algorithm, which is implemented in each kinematic region that is above a threshold, is

as follows:

1. Implement the Feynman +iδ prescription of Eq. (2.2) by transforming the sector

integrands G̃F
l as

G̃F
l (tj)→ G̃F

l (t′j) = G̃F
l

(
1

2
+

1

2
eiθj

)
, (2.10)

with j ∈ {0, . . . , J − 1}. The mapping is chosen such that the real part stays be-

tween zero and one and the imaginary part parametrises a contour around a Landau

singularity.

2. Find the optimum contour configuration for each θj with endpoints 0 and ±π, the

combination of which is denoted by + or −, respectively. On this contour config-

uration, find the optimum variable θ∗j to integrate exactly, and hence the optimum

post-integration contour configuration, if exact integration is possible.

3. Determine the optimum n-fold partitioning Pj= {(l, h)1, ..., (l, h)n}j of the integrals

in θj , ∫ ±π
0

dθj =

n∑
k=1

∫ hk,j

lk,j

dθj , (2.11)

with hn,j = ±π and l1,j = 0, to use for the Taylor expansion of each sector integrand.

4. Perform the Taylor series expansion in each partition, about the points

ej,k = 1
2(lk,j + hk,j) up to order p in each sector

GF
l ({q}, {m}) ≈ TF

l ({q}, {m}) = T
F(0)
l ({q}, {m}) + · · ·+ T

F(p)
l ({q}, {m}) , (2.12)
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and estimate the uncertainty of the full result by comparing the relative size of

the contribution of the p-th order to the full Taylor series expansion, adding the

contribution from each p-th order expanded sector in quadrature,

max[GF({q}, {m})− TF({q}, {m})] <
∑r

l=1(T
F (p)
l ({q}, {m}))2∑r

l=1 T
F
l ({q}, {m})

. (2.13)

Because of the use of exact one-fold integrations where possible, and because of the par-

titioning of the surface, the over-threshold algorithm combines algebraic and analytic ma-

nipulations, requiring flexibility. Therefore, it is implemented in Mathematica.

To elaborate, the first over-threshold step (OT1) is to transform the Feynman param-

eters of the r subsectors, according to the rule, tj → 1
2 + 1

2 exp (iθj), and also generate a

representative sample of the kinematic region in which the results are to be valid. This is a

nested list of values for the β scales in the integral at γ points in the kinematic region within

which we desire results, K = {{s1, . . . , sβ}1, . . . , {s1, . . . , sβ}γ} = {K1, . . . ,Kγ}. After that,

the second over-threshold step (OT2) uses the mean absolute value of the θj derivatives

(MAD: m̄l), with the kinematic invariants set to the sample values,

m̄l(Θ
A
o(0),...,o(J−1)) =

1

A

A∑
a=1

1

γ

γ∑
i=1

Abs

 1

J

J−1∑
j=0

(
∂

∂θj
G̃F
l (θj ,Ki)

)∣∣∣∣∣∣
{θj}→Θa

o(0),...,o(J−1)

.

(2.14)

Note that the mean is also taken over the kinematic sample and the points for the θj
inserted along the surface, ΘA

o(0),...,o(J−1) ⊂ Θo(0),...,o(J−1). The MAD is calculated for all

possible J-variable complex surfaces in the θj . These surfaces are the Θo(0),...,o(J−1), where

o(j) = ± is the orientation of the jth contour. Each surface is classified by replacing the θj
variables by A points along it, ΘA

o(0),...,o(J−1) , in the mean absolute derivative with respect

to the θj . Scanning the surfaces Θo(0),...,o(J−1) using the MAD is done to determine which

contour orientation, for example Θ+−+ for J = 3 yields the Θo(0),...,o(J−1) best suited for an

expansion. The plus and minus signs indicate the direction of motion around the contour.

The separation of the points in the ΘA
o(0),...,o(J−1) in the MAD is set to a default value of

0.1 which is sufficient to determine the optimum Θo(0),...,o(J−1) surface. However this value

can be varied by the user.

The scanning is done in two stages. Firstly, the MAD in the corners of the Θo(0),...,o(J−1)

surfaces is calculated, as it is here that the change is always the most substantial. Any

contour configurations which yield extreme changes at the corners are discarded. Then,

the MAD for the remaining Θo(0),...,o(J−1) surfaces is calculated, with the corners excluded.

This is because the larger changes in the corners mask the changes in the bulk of the

Θo(0),...,o(J−1) surfaces. The Θo(0),...,o(J−1) which minimises the MAD in the second stage is

then selected.

As this is a J-fold surface, the third over-threshold step (OT3) is to perform all possible

one-fold integrations in the θj exactly, without using an integrand expansion. A time limit

is imposed on this operation. If the limit is exceeded, TayInt automatically reverts to the

Θo(0),...,o(J−1) from OT2.

– 6 –



Next, the fourth over-threshold step (OT4) is to determine the optimum post-integration

surface, Θo(0),...,o(J−2). To achieve this, all the one-fold exact integrations are performed

and all resultant J − 1 variable integrands examined, using the two-step surface scanning

process with the MAD. The Θo(0),...,o(J−2) which minimises the MAD is selected. If the

mean absolute derivatives of each of the possible J or J − 1 surfaces are, within a relative

difference of 0.01, equally smooth, then we stop the process. This is because all the possi-

ble surfaces are then producing predictions of similar quality and the potential for further

optimisation is negligible. Provided there is another J variable contour which has a MAD

within a relative difference of 0.01, the second-best surface is taken and the procedure

starts again. The MADs of each surface, with and without exact integration, are finally

compared, and the surface with the overall minimum MAD is selected. In the vast majority

of cases the post-integration surfaces are chosen, if an exact integration is possible.

The fifth over-threshold step (OT5) determines the optimal way to partition the surface

into sections Pj within which the expansions are carried out. The algorithm determines

the number of partitions to use and the size of each partition. This is done by using the

MAD to calculate the relative size of the fluctuations in each section of the surface. A

suitable partitioning is then chosen, i.e., the more fluctuations, the greater the number of

partitions, and the denser the fluctuations, the smaller the section enclosing that region of

the surface. If no exact integration can be performed, TayInt can use two more orders or

twice as many partitions to maintain the same degree of accuracy.

In summary, the over-threshold part of the algorithm makes a complex mapping in

several variables and determines the optimum pre- and post-exact integration contour

configuration and the optimum partitions for the integrand expansion. This is done for

each kinematic region that is over a thereshold. The resulting integrands of each sec-

tor, G̃Fl (θ0, . . . , θJ−1) are then expanded and integrated in the sixth above-threshold step

(OT6),

TFl ({q}, {m}) =

J−1∏
j=0

 nj∑
kj=1

∫ hkj

lkj

dθj

mj∑
sj=0

(θj − ej,k)sj
sj !

∂s1+...+sJ

∂θs11 . . . ∂θ
sJ−1

J−1

G̃Fl ({q}, {m}, e1, . . . , eJ−1)

 ,
(2.15)

where ej,k are the expansion points, the midpoints of each partition, mj the order of the

expansion and nj the number of partitions, in each parameter θj . The algorithm calculates

the Taylor expansion of the integrand and then integrates this expansion to produce an

approximation of the integral as a function of the expansion points and integration bound-

aries. Then all the relevant expansion points and boundaries are inserted to generate the

result in each partition. These results are then summed to give the result for each sector.

Adding up the results from each sector in each kinematic region generates an expression

for the full finite Feynman integral in terms of rational functions of the kinematic scales

that is valid everywhere in that region. Thus, systematic approximations are obtained for

Feynman integrals with full kinematic dependence, valid in all kinematic regions, above

and below mass thresholds. The precision of the approximation is controlled by the order

of the expansion and the resolution of the partitioning.
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Finally, to estimate the uncertainty in the TayInt calculation, the truncation error in

the Taylor expansion is calculated. To do this, the highest order contribution of all TFl ,

where sj = mj , are considered, summed in quadrature and divided by the full result, TF ,

where sj runs from 0 to mj . Due to the fact that an integration over all θj parameters is

performed, including the parameter which gives the largest contribution to the uncertainty,

all possible sources of uncertainty are taken into account. The resulting uncertainties for

each sector are then added in quadrature to produce the final uncertainty estimate in the

result. Note that the uncertainty will be overestimated in the vicinity of any kinematical

point at which one of the sectors evaluates to a numerical zero by TayInt, meaning that

the G̃Fl (θ0, . . . , θJ−1) is oscillatory. Nevertheless it always constitutes an overestimation

of the uncertainty when less reliable. Moreover, the uncertainty estimate is always highly

conservative as the p-th order of the Taylor expansion is used to estimate the truncation

errors in the results calculated using an expansion up to p-th order, rather than the order

p+ 1.

U1: reduce the Feynman Integral to a quasi finite basis

U2: perform a sector decomposition on the finite integrals in the basis

below-threshold over-threshold

BT1: tj → yj OT1: tj → θj , generate K
BT2: Taylor expand the integrand OT2: find optimum

and integrate Θo(0),...,o(J−1)

OT3: perform one-fold integrations

OT4: post-integration, find optimum

Θo(0),...,o(J−2)

OT5: determine partition Pj
OT6: Taylor expand and integrate

Table 1. Summary of the individual steps of TayInt.

A summary of all steps of the TayInt algorithm is given in Tab. 1.

3 Discourse on the Method

To facilitate a deeper understanding of the method, the different steps are illustrated for the

integrals in Fig. 1, their characteristics being listed in Tab. 2. The finite sunrise S1401220 [72]

and triangle graph T41 [72] serve as examples to illustrate the TayInt algorithm. The

integrals I10 [73], I21 [73], I246 [74] and I39 appear in the two-loop amplitudes [31, 56,

75] for Higgs-plus-jet production in gluon fusion, mediated through a massive top quark

loop. They demonstrate the applicability of TayInt to complicated multi-loop multi-

scale integrals. The number of Feynman parameters quoted in Tab. 2 is counted after

performing the integration of the δ-distribution of Eq. (2.3). In what follows and where

given, the powers of each propagator are denoted by superscripts, i.e. Xijk. The kinematic

invariants s, and u are defined as s = (p1 + p2)2 and u = (p2 + p3)2, respectively. All

momenta are considered incoming.
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m

m

p p

(a) S1401220

p1

p2

m

m

m p1 + p2

(b) T41

m2

p1

m1

m1

m1

p4

p2 + p3

(c) I10

p1

p4m1

m1

m1

m1
m2

p2 + p3

(d) I21

p4

p1

m1

m1

m1 m1

m2

p2 + p3

(e) I246

m2

m1p1

p2 p3
m1

m1 m1

p4

(f) I39

Figure 1. The two-loop finite sunrise S1401220 and triangle T41, I10, I21 graphs for which analytical

results are available [72, 73]. No fully analytical expressions exist for the non-planar I246, (e), and

the box-type integral I39, (f). Dashed lines indicate massless, solid internal lines massive, and

dots squared propagators. Solid external lines denote, where indicated, massive and else off-shell

particles.

Graph Scales Feynman parameters Subsectors

S1401220 2 2 3

T14 2 4 28

I10 3 3 8

I21 3 4 16

I39 4 4 16

I246 3 6 36

Table 2. Properties of the integrals corresponding to the diagrams depicted in Fig. 1. The stated

numbers of Feynman parameters correspond to the dimensionality of the expansion and integration

steps of TayInt.

As an example of the step U1 of the TayInt algorithm, the divergent sunrise integral

S1401110 [72] is written in terms of the finite integrals S1401220, S1401320 and the tadpole

S630300,
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S1401110 =
8m2 (p2 − 4m2) (p2 + 2m2)

(−3 +D)(−8 + 3D)(−10 + 3D)
· S1401320

+
((4−D) p4 + (−5 +D) 8m4 + (18− 5D) 4 p2m2)

(−3 +D)(−8 + 3D)(−10 + 3D)
· S1401220

− 16m4 ((−4 +D) p2 + 2 (−24 + 7D)m2)

(−3 +D)(−4 +D)2(−8 + 3D)(−10 + 3D)
· S630300 ,

(3.1)

where the poles in ε can be seen as the (−4 +D)−1 terms.

As an example of the TayInt step U2, the O(ε0) coefficient of the first subsector of

S1401220 reads

S1401220
1 = −

1∏
j=0

∫ 1

0
dtj

2

m2(1 + t0 + t0t1) ((1 + t1)(1 + t0 + t0t1) + t0t1p2/m2)
, (3.2)

and has two Feynman parameters, t0, t1 and two scales, p2 and m2. The O(ε0) coefficient

of the first and second subsector of the I10 [73] integral read

I101 =

2∏
j=0

∫ 1

0
dtj
(
(1 + t0 + t1 + t0t2 + t1t2) (−m2

2t0 − ut1 +m2
1(1 + t20(1 + t2)

+ t21(1 + t2) + t1(2 + t2) + t0(2 + t2 + t1(2 + 2t2))))
)−1

,

(3.3)

I102 =

2∏
j=0

∫ 1

0
dtj
(
(1 + t0 + t1 + t2 + t1t2) (t0(−u−m2

2t1) +m2
1(1 + t20 + t2 + t21

(1 + t2) + t1(2 + 2t2) + t0(2 + t2 + t1(2 + t2))))
)−1

.

(3.4)

They have three Feynman parameters and three kinematic scales, m1, m2 and u.

The most precise way of computing the resulting subsector integrals was investigated by

comparing the results obtained using various ways of expanding integrands to the literature

for the analytically known Feynman integrals. In particular, a comparison of expansions

into Taylor series, geometric series, reverse Padé approximations, Chebyshev and Gegen-

bauer polynomials exposed the Taylor expansion as the most accurate given a variety of

test cases. In Fig. 2, the relative difference between a fifth-order expansion of, and the ac-

tual S1401220
1 subsector integrand is plotted. While the expansion is rather accurate around

the expansion point (t1, t2) = (1
2 ,

1
2), the differences between an ordinary Taylor expansion

and the actual integrand can become large close to the edges of the integration region. In

the case of S1401220
1 , these amount to roughly 1%.

The Taylor expansion turns the rational function R(tj) into a polynomial P (tj) which

can be integrated analytically. Thus, it is necessary to check that accurate results for inte-

grals can still be obtained after expanding the integrand. To this end, the example integral

– 10 –
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Figure 2. A contour plot of the relative difference between an ordinary sixth-order Taylor expansion

and the actual integrand of S14012201 . The Taylor expansion is around the point (t1, t2) = ( 1
2 ,

1
2 )

and p2 = − 1
2m

2, m2 = 20000 GeV2.

T41, the kinematic dependence of which is parameterised entirely by the dimensionless

ratio x,

x =

√
s+ 4m2 −

√
s√

s+ 4m2 +
√
s

, (3.5)

was calculated by Taylor expanding the integrand to sixth order. In Fig. 3(a), the result is

compared to the exact result of Ref. [72], with the truncation error of the Taylor expansion

shown in the lower half of the plot. The Taylor-obtained result is plotted as a solid blue line

in contrast to the literature result in a red dot-dash line. The sixth-order truncation error

is plotted below using a lilac band. It can be observed that the combination of expansion

and integration is effective for calculating Feynman integrals via their subsectors for most

values of x.

For x ≈ 100, the discrepancy between approximated and exact result roughly reaches

an unacceptable 9%.

To improve on the quality of the approximation, methods to maximise the distance

to the nearest point of non-analyticity were investigated. The underlying rationale is that

the convergence radius of a Taylor expansion is limited by the distance from the expansion

point to the nearest point of non-analyticity. The latter are found in the region tj ∈ [0,−∞]

for the subsectors. The use of conformal mappings in the tj , as detailed in Eqs. (2.8) and

(2.9), maximises the convergence radius for the examples considered. As an example, the

effect of a conformal mapping at the integrand level can be seen in Fig. 4. In the upper
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Figure 3. A comparison between the integrated approximated result for the O(ε0) coefficient of

T41 and the analytic result, using 3(a) an ordinary Taylor expansion on the integrand, and 3(b) a

Taylor expansion enhanced by a conformal mapping. The inlay figures have the same axis labels as

the larger plots.

plot, the integrand of integral I101 with two Feynman parameters set to zero,

I101(t0, t1 = 0, t2 = 0) =
2∏
j=0

∫ 1

0
dtj

1

(1 + t0)(−m2
2t0 +m2

1(1 + 2t0 + t20))
, (3.6)

is shown. It has a point of non-analyticity outside the integration region, at t0 = −1.

Applying the conformal mapping,

t0 =
−1− y0

y0
, (3.7)

on the integrand, as detailed in Eq. (2.9), the region of integration changes to y0 ∈ [−1,−1
2 ]

and the non-analytic point is stretched to infinity, as shown in the lower plot of Fig. 4. The

plot insets zoom into the actual region of integration.

The quantitative improvement can be seen by comparing Figs. 3(a) and 3(b). In

Fig. 3(a), the sixth-order Taylor expanded result for the O(ε0) coefficient of the T41 integral
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Figure 4. Plot of the one dimensional integrand of Eq. (3.6), before and after the conformal

mapping. The integration region is shaded and also shown in the inset plots. The masses are set

to m1 = 173 GeV and m2 = m1√
2
.

is compared to the exact result known from the literature [32]. In Fig. 3(b), a conformal

mapping is applied to the T41 integrand before performing a Taylor expansion up to sixth

order. For x ≈ 100, the discrepancy between approximated and exact result decreases to

less than 3% when using a conformal mapping. The inset plot shows the behaviour around

the threshold in s.

To view the effect of applying a conformal mapping to a more complicated example,

the ratio of the result computed with an integrand Taylor expansion up to sixth order and

the result computed numerically using SecDec is plotted for the O(ε0) coefficient of the

full integral I10, see Fig. 5. Error bars on the numerical results from SecDec are not

plotted due to the high requested numerical accuracy of 10−8. The ratio is plotted over

a kinematic range below threshold, the result with a conformal mapping shown in green

and the one without mapping in blue. The mean ratio between SecDec and the TayInt

result over the plotted range is 1.00043 with the conformal mapping, and 1.00134 without

it. Using the conformal mapping therefore increases the precision by more than a factor of

three.

No further steps are required to calculate Feynman integrals below threshold. How-
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Figure 5. The ratio of the SecDec result and an ordinary Taylor expansion (sixth-order) are

shown with (green) and without (blue) conformal mapping, for the O(ε0) coefficent of the integral

I10. The scale u is below the 4m2
1 threshold and m2 = m1√

2
, m1 = 173 GeV.

ever, above thresholds there are integrable singularities in the subsectors, within the region

of integration, which renders all steps beyond the sector decomposition moot. By trans-

forming to the complex plane (OT1), these singularities can be avoided. In Fig. 6 a slice of

I102 is plotted in t0 without, and in θ0 with, a complex mapping, respectively. In Fig. 6(a),

the integrand without an analytical continuation to the complex plane contains a series

of threshold singularities. The ridges are cut for better comparison with Fig. 6(b). The

complex integrand in Fig. 6(b) shows a smooth behaviour everywhere in the integration

region. This demonstrates how integrable poles in the physical region can be avoided and

confirms that an ordinary series expansion of the integrand in the Feynman parameters tj
is not sufficient to reproduce the actual result.

OT1 yields a version of the subsectors which can take different forms depending on

the configuration of the complex contours. Thus, the optimum contour configuration from

the possible Θo(0),...o(J−1) surfaces must be determined. So must the optimum variable

to integrate exactly, θ∗j , if exact integration is possible. This yields the optimum post-

integration surface, Θo(0),...,o(J−2). Finding these optimum configurations is done in steps

OT2-4. In Fig. 7, the integrand of I102 is plotted, with one integration performed exactly.

There exist many possible pre- and post-integration contours. Not all of these contours

are suitable for a Taylor expansion of the integrand. This is because, along the unsuitable

contours, the integrand contains non-analytic structures within the region of integration.

If such a contour was chosen, the algebraic result for that sector would not always converge

at all kinematic points. The TayInt algorithm avoids these and selects a pre- and post-

integration contour configuration which yields a smoothly behaved integrand, which has

a well defined Taylor expansion. Figs. 7(a) and 7(b) illustrate this. The optimal result is

achieved when both contours are determined by TayInt, see Fig. 7(c).
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(a) (b)

Figure 6. A slice of the I102 integrand at O(ε0) (a) without a complex mapping and (b) with a

complex mapping and the contour orientation determined via TayInt, setting θ0 = π
2 , u = 5.44m2

1,

m2 = m1√
2

and m1 = 173 GeV. In (a) no reorientation of contours is possible as the surface is

constrained to the real line.

After the analytic continuation of the subsector integrands is optimised, large gradi-

ents along the edges of the complex surfaces, see e.g. the integrand surface along θ0 = π

of Fig. 7(c), are addressed in OT5. To maximise the precision of the result, the surfaces

are partitioned and expansions performed around the central value of each partition. The

Taylor expanded sections are then integrated and combined to yield a result for the en-

tire sector. The rationale behind the partitioning is demonstrated in Fig. 8, where the

one-dimensional integrand of Eq. (3.6) is shown for kinematic invariants set to arbitrarily

chosen over-threshold values m2 = 781.249 GeV and m1 = 173 GeV. In the upper plot,

a discontinuity along the real line arising from the missing implementation of an analytic

continuation of the integrand into the complex plane can be observed. To remedy this

problem, the integrand is analytically continued into the complex plane, as described in

Eq. (2.10) and demonstrated by showing the transformed real and imaginary part of the

integrand in the lower plot of Fig. 8, in green and blue, respectively. Even though the

integrand is now suited to a Taylor expansion, the gradient of the integrand is large for

θ0 → 0. Thus, the integration region is split according to Eq. (2.11), with the new integra-

tion boundaries (l, h)k,j marked by black lines in the bottom plot of Fig. 8. The expansion

and integration is performed in each partition individually. The algorithm splits the inte-

gral such that within each partition the gradient is small. Hence, the convergence of the

Taylor expansion within each integral piece is faster than that of an expansion of the whole

integrand.

For generating results valid above thresholds, one might ask why an ordinary Taylor

expansion cannot be used after steps OT1-4. The importance of a partitioning is illustrated

for the I10 diagram in Fig. 9. The result generated with a Taylor expansion without

partitions is plotted as a dot-dashed blue line, the result obtained with partitions is shown

as a solid blue line and the SecDec points are orange crosses. Without using partitions,

the Taylor result converges slowly and a huge number of orders in the expansion would be

required. But if a particular integrand is extremely complicated then there will be a limit on
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(a) (b)

(c)

Figure 7. The I102 integrand at O(ε0) is shown after a complex mapping and exact integration

of one variable in three different configurations. In (a), the contour orientation is chosen by the

algorithm but an arbitrary choice of integration variable is allowed. In (b), the exact integration

variable is chosen by the algorithm but an arbitrary choice of contour is allowed. In (c), the contour

and exact integration variable are chosen by TayInt. The kinematic scales are set to u = 5.44m2
1,

m2 = m1√
2

and m1 = 173 GeV.

the order to which the Taylor expansion can be computed before intermediate expressions

in FORM or Mathematica become too large for the expansion to be completed. For the

subsectors of I10, with each increase in the order of the Taylor expansion the intermediate

expressions in TayInt increase in size by a factor of three. To put this into context, it is

instructive to take a closer look at the first subsector of the integral I39,

I391 =
3∏
j=0

∫ 1

0
dtj
(
(1 + t0 + t1 + t2) (1 + t0 + t1 + t2 + (1 + t0)(t1 + t2) t3)

(1 + t0 + t1 + t2 + (1 + t0)(t1 + t2) t3)m2
1 − t0t2u− t1(s+ t0m

2
2)
)−1

.

(3.8)

All subsectors of I39 have four Feynman parameters and four scales, s, u, m1 and m2.

Because of the complexity of these sectors after performing the first integration exactly,

an expansion beyond (typically) tenth-order in the Taylor series is not possible beyond

O(ε1) over threshold, due to the size of the algebraic expressions that are generated at
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intermediate stages. However, the result can still be made as precise as required by using

more partitions. It is important to notice that the increase in the number of partitions

allows the circumvention of memory bottlenecks. The expressions for each partition can be

truncated at a lower order in the Taylor series than the full expression, owing to the smaller

distance from the expansion point. Increasing the number of partitions does increase the

algebraic computation time required to obtain the series expansion, which can however be

parallelised trivially. Once the result is computed, an instant evaluation at arbitrary phase

space points is possible. Thus, an increased partitioning enables the result to meet a target

precision. For example, the I10 sectors have three Feynman parameters and three scales,

and the Taylor series can be computed to beyond tenth order. Doubling the number of

partitions at sixth order reduces the error in the real part by 91% and that of the imaginary

part by 86%.

The over-threshold part of TayInt is implemented in each kinematic region that is

over a mass threshold. To illustrate this in the case of multiple thresholds, we consider

the integrand of one specific sector of the integral I246, Fig. 1(e), which we denote as

I2461. This integrand is plotted prior to running the TayInt algorithm, and using the

TayInt algorithm to determine the contour configuration, over the first threshold in Fig.

10, and over the second threshold in Fig. 11. In Fig. 10(a), the integrand is plotted

in terms of the (undeformed) Feynman parameters and contains threshold singularities.

The complex integrand shown in terms of the deformed variables in Fig. 10(b) manifests

smooth behaviour throughout the integration region. Likewise, in Fig. 11(a), the integrand

in terms of the undeformed Feynman parameters contains more threshold singularities,

but the complex integrand in Fig. 11(b) still manifests smooth behaviour throughout the

integration region. Thus in both regions over thresholds TayInt can take integrands with

threshold singularities and convert them into smooth integrands which can be calculated

algebraically by means of a Taylor expansion, to produce results valid everywhere in each

threshold region. Moreover, the TayInt results for individual sectors of I246 have been

checked against the corresponding SecDec results at a kinematic point above the first

threshold in u, on the transitional point between the first and the second threshold, and

above the second threshold, explicitly u = 47886.4GeV2, 119716GeV2, 146053.52GeV2. The

TayInt and SecDec results are in agreement.

4 Application to three-scale two-loop four-point integrals

To illustrate the power of TayInt, explicit results for the integrals I10 and I39 are presented

below and above threshold, and for different orders in ε, respectively.

In Fig. 12, results for the finite I10 integral below threshold and up to O(ε2) are shown.

In the upper half of the plots, the approximated TayInt result is shown as a blue solid line,

overlaid with results generated with the program SecDec, depicted as orange crosses. The

only, though hardly noticeable, deviation can be seen directly on and around the threshold,

at u = 4m2
1, where the difference of the TayInt with respect to the exact result reaches

at most 0.7%. In the lower half of the plots, the uncertainty band of TayInt is shown

in lilac and can be compared to the uncertainties coming from SecDec shown in green.
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(a) (b)

Figure 10. A slice of the absolute value of the I2461 integrand at O(ε0) in the first over-threshold

region (a) without a complex mapping, t0 = 1, t1 = 1
10 , t4 = 1

10 , t5 = 0 and (b) with a complex

mapping, θ0 = −π, θ1 = − π
10 , θ4 = − π

10 , θ5 = 0, and the contour orientation determined via

TayInt, setting u = 3.2m2
1, m2 = m1√

2
and m1 = 173 GeV.

(a) (b)

Figure 11. A slice of the absolute value of the I2461 integrand at O(ε0) in the second over-threshold

region (a) without a complex mapping, t0 = 1, t1 = 1
10 , t4 = 1

10 , t5 = 0 and (b) with a complex

mapping, θ0 = −π, θ1 = − π
10 , θ4 = − π

10 , θ5 = 0, and the contour orientation determined via

TayInt, setting u = 7.2m2
1, m2 = m1√

2
and m1 = 173 GeV.

The SecDec results were computed using default numerical integration parameters and

the integrator Vegas [76], asking for a relative accuracy of 10−3. The relative accuracy

is adapted to the accuracy of the TayInt results. The same colour coding is used for all

subsequent plots of results.

There is no appreciable precision loss as the order in ε increases. For I10 the mean
SecDec
TayInt ratios are 1.0006, 1.00039, 1.00021 at ε0, ε1 and ε2, respectively.

In Fig. 13, results for the finite I39 integral up to O(ε2) are plotted in s below threshold,

asking for a relative SecDec accuracy of 10−3. Again, the maximal deviation between the

TayInt and SecDec results can be found on the threshold of s = 4m2
1 at O(ε0), where the

difference reaches 0.1%, rounded up. There is no appreciable precision loss as the order in

ε increases. In fact, quite the contrary, the mean SecDec
TayInt ratios are 1.0003, 1.00017, 1.00009
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Figure 12. I10 below threshold, calculated with an eighth-order series expansion at; (a) O(ε0),

(b) O(ε1), (c) O(ε2) with m2 = 1√
2
m1 and m1 = 173 GeV. The lower plots show the relative

uncertainties of the TayInt and numerical SecDec results, respectively.
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Figure 13. I39 below threshold, calculated with a sixth-order series expansion at; (a) O(ε0), (b)

O(ε1), (c) O(ε2) with u = −59858 GeV2, m2 = 1√
2
m1 and m1 = 173 GeV. The lower plots show

the relative uncertainties of the TayInt and numerical SecDec results, respectively.
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at ε0, ε1, ε2 respectively.
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Figure 14. I10 over the threshold, calculated at O(ε0) with a sixth-order series expansion choosing

m2 = 1√
2
m1 and m1 = 173 GeV. The lower plots show the relative uncertainties of the TayInt

and numerical SecDec results, respectively.

In Fig. 14 the TayInt result for I10 at O(ε0), obtained with a sixth-order, four-

fold partitioned, Taylor expansion, is plotted and compared to results from the program

SecDec. The SecDec results were computed using default numerical integration param-

eters and the integrator Vegas, asking for a relative accuracy of 10−4. The plot shows

the dependence on the scale u in the threshold region around u = 4m2
1 ∼ 120000 GeV2

and above the threshold. By referring to Fig. 12(a), a smooth transition from the below-

threshold expansion to the over-threshold expansion can be observed. The size of the error

directly on threshold is rooted in the fact that it displays a Landau singularity, a physical

discontinuity, where the function is no longer holomorphic and the Taylor series has zero

radius of convergence. Hence a Taylor series expansion has to break down by construction.

Nonetheless, even on the threshold, the relative accuracy of the TayInt result only drops

to 10−2. To generate the SecDec results for Figs. 14 and 15 a relative accuracy of 10−4,

and the integrator Vegas were chosen. Fig. 15 is a zoom into the region of larger u values.

The TayInt truncation errors in the lower half of the plot are shown in yellow, using a

four-fold partitioning, and in lilac, using an eight-fold partitioning. A strong increase in

accuracy can be observed when the integrand is partitioned more often. More specifically,

the relative truncation errors decrease from O(10−4) with 4 partitions, to O(10−5) when 8

partitions are used.
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Figure 15. I10 calculated at O(ε0) with a sixth-order series expansion. The scale u is over the 4m2
1

threshold, with the near threshold region excluded, and m2 = 1√
2
m1, m1 = 173 GeV. The lower

plots show the relative TayInt, with 4 and 8 partitions, and SecDec uncertainties, respectively.

A more thorough quantitative analysis of the impact of the partitioning is given in

Tab. 3, where the relative truncation error for the integral I10 is shown for different expan-

sion orders and integral partitions. On the one hand, it shows that the accuracy increase

by doubling the number of partitions is roughly equivalent to raising the order of the ex-

pansion by two. On the other hand, each doubling of the number of partitions leads to an

order of magnitude gain in precision.

Mean relative TayInt truncation error

Number of
4 8

Partitions

Order Re(I10) Im(I10) Re(I10) Im(I10)

0 0.530165 0.623989 0.0812167 0.242449

2 0.0221554 0.0242271 0.000642405 0.00237282

4 0.00278254 0.00242541 0.000163342 0.000079292

6 0.000284179 0.000281809 0.0000239721 0.000038864

Table 3. The impact on the mean relative TayInt truncation error of changing the order of

the Taylor expansion and the number of partitions in the TayInt algorithm applied to I10 at

O(ε0). The kinematic region over which the mean is taken is given by u ∈ [16m2
1, 32m2

1] =

[467864, 957728] GeV2, m2 = 1√
2
m1 and m1 = 173 GeV.
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(a) (b)

(c)

Figure 16. The first subsector of I10 at O(ε0) after OT3 at; (a) a near threshold point u =

179574 GeV2, (b) a point a reasonable distance over the threshold u = 748225 GeV2, (c) a point

very far over the threshold, u = 1017586 GeV2. In all cases, m2 = 1√
2
m1 and m1 = 173 GeV.

Close to thresholds, there can be occasional rapid changes at the endpoints of inte-

gration regions which lead to larger truncation errors, for example increases of 10 % are

observed for the O(ε0) coefficient of I10. Beyond u = 30m2
1 in the kinematic region over

the threshold, the points of rapid fluctuation move closer to the boundary of the integration

region, however do not enter it. This also leads to a small reduction in the precision of the

TayInt results, however this loss is at the 0.01% level for the O(ε0) coefficient of I10. This

is illustrated in Fig. 16 by plotting the first I10 sector near to the threshold, reasonably

over the threshold, and very far over the threshold in u.

In Fig. 17 the fourth-order (with eight partitions) TayInt O(ε1) result for the integral

I10 is compared to the SecDec result in the over threshold region, showing no drop in

accuracy with respect to the lower order in ε. The SecDec results were computed using a

relative accuracy of 10−3 with default numerical integration parameters and the integrator

Vegas.

In Fig. 18, the O(ε2) result for the integral I10 is compared to the SecDec result in

the over threshold region, again without diminished accuracy with respect to the lower

orders in ε. The results shown are based on a fourth-order Taylor expansion with sixteen

partitions. A relative accuracy of 10−4 was used for the production of the SecDec results.
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Figure 17. The I10 Integral calculated at O(ε1) with a fourth-order series expansion. The scale u

is over the 4m2
1 threshold, with m2 = 1√

2
m1 and m1 = 173 GeV. The lower plots show the relative

uncertainties of the TayInt and numerical SecDec results, respectively.

TheO(ε2) result for I10 is obtained without OT3-4, as theO(ε2) coefficients of the subsector

integrands cannot be integrated exactly. However, the same level of accuracy with respect

to the lower orders in ε is achieved by increasing the number of partitions used in OT5,

with respect to the lower ε orders. To make the behaviour of the uncertainty estimates in

the near threshold region clearer, more points are plotted in the u ∈ [4m2
1, 6m

2
1] region. It

is important to observe that the O(ε0) and O(ε2) results for I10 of Fig. 14 and 18, each

display a region (well above the threshold) with an apparent deterioration of the TayInt

error. This is not a result of the Taylor expansion having a smaller radius of convergence,

as is the case near or well above the threshold. Rather, this is a parametric effect that

arises from two of the subsector integrands exhibiting oscillatory behaviour around zero in

the vicinity of these kinematical points. These result in enhanced numerical cancellations

among consecutive orders of the expansion. As a consequence, the uncertainty is grossly

overestimated by the truncation error.

In Fig. 19 the TayInt approach is applied to the O(ε0) coefficient of the integral

I39, with more propagators and scales, without a loss in accuracy compared to the simpler

examples discussed above. For the calculation an eight-fold partitioning and a fourth-order

Taylor expansion was used. The TayInt results agree well with the SecDec results, and

are stable over the whole kinematic region, given the truncation error only ever varies by

0.01%. For the SecDec results a relative accuracy of 10−3 was chosen. In Fig. 20, the
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Figure 18. The I10 Integral calculated at O(ε2) with a fourth-order series expansion. The scale u

is over the 4m2
1 threshold, with m2 = 1√

2
m1 and m1 = 173 GeV. The lower plots show the relative

TayInt and SecDec errors, respectively.

TayInt approach is applied to theO(ε1) coefficient of the integral I39. No exact integration

could be performed and a fourth-order Taylor expansion with six partitions was used, and

the TayInt results are consistent with the SecDec results across their full kinematic range.

Given the complexity of the integrand, a comparably small number of partitions was used,

however no further precision was needed to obtain agreement between the SecDec and

TayInt result within the associated uncertainty. To put this into context, the TayInt

result, 0.000934066 + 0.000126179i, at the ninth kinematic point at which SecDec is

evaluated, the result of which is 0.000933183 + 0.000127422i, has an associated absolute

uncertainty of 3.5495 · 10−6 + 3.48459 · 10−6i. Thus there is agreement between TayInt

and SecDec within the TayInt uncertainty. For the sake of comparison, the SecDec

results for Fig. 20 were obtained asking for a relative accuracy of 10−3. In Fig. 21, the

O(ε2) coefficient of the integral I39 is calculated with TayInt. No exact integration could

be performed and a fourth-order Taylor expansion with eight partitions was used, and the

algebraic TayInt result coincides with the SecDec results at the set of points considered

above the 4m2
1 threshold. The O(ε2) SecDec results were obtained at a requested relative

accuracy of 10−3. It is already apparent from Fig. 13 that the accuracy of the results

obtained for I39,an integral for which there is, thus far, no analytic result, below s = 4m2
1 is

independent of the order in ε. This is now shown to also be true over the 4m2
1 threshold. By

its application to integrals with increasing numbers of scales and propagators, for different
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Figure 19. The I39 Integral calculated at O(ε0) with a fourth-order series expansion. The scale

s is over the 4m2
1 threshold, with u = −59858GeV2, m2 = 1√

2
m1 and m1 = 173 GeV. The lower

plots show the relative TayInt and SecDec uncertainties, respectively.

Graph Re (∆) Im (∆)

I10 0.000658179 0.000270775

I21 0.00126601 0.000277579

I39 0.0000763027 0.0000668706

Table 4. The mean difference ∆ between TayInt and SecDec, normalised to the SecDec

result. The kinematic points are u ∈ [4m2
1, 36m2

1] = [119716, 1077444] GeV2 for I10 and I21 and

s ∈ [4m2
1, 16m2

1] = [119716, 478864] GeV2 for I39.

kinematic hierarchies and to order O(ε2), the versatility of TayInt has been demonstrated.

To reinforce this, the mean difference between the TayInt and SecDec results for

I10, I21 and I39 over the threshold,

∆ =

∑ξ
i=1

(
TFl ({qi}, {m1})−GFSecDec({qi}, {m1})

)
ξ
(
GFSecDec({qi}, {m1})

) (4.1)

is tabulated in Tab. 4. GFSecDec({q}, {m}) is the SecDec result for the full Feynman

integral GF ({q}, {m}). The index i runs over the ξ different kinematic points at which

results for each integral were generated, so {qξ} = {16m2
1,−2m2

1, 0.5m
2
1} for I39. In all

cases {m} = {m1}. All TayInt results are based on a sixth-order, four partition, series

expansion. The results for I10 are 792.8 MB in size, while for I39 they total 1.3488 GB. The
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Figure 20. The I39 Integral calculated at O(ε1) with a fourth-order series expansion. The scale

s is over the 4m2
1 threshold, with u = −59858GeV2, m2 = 1√

2
m1 and m1 = 173 GeV. The lower

plots show the relative TayInt and SecDec uncertainties, respectively.

file sizes refer to their unsimplified version. Using the plain Simplify command in Math-

ematica the size of the results can already be reduced by a factor of 1.33. Furthermore,

removal of floating point zeros, 0., that appear in the results files leads to a reduction in

size by a factor of 2.6 from the sizes quoted here. With the planned improved automation

of TayInt, the simplification of the result files will also be addressed. One of the most

attractive features is that the precision of the TayInt results is independent of the ε order.

Nevertheless the computation time required, both for the configuration determination and

the actual calculation, increases significantly when going to higher orders in ε.

In Fig. 22 the truncation errors obtained using 8 and 16 partitions are plotted for the

integral I39 at O(ε0) in yellow and purple bands, respectively. The y-axis is truncated so

that the larger ratios near the threshold, due to the TayInt and SecDec results being

consistent with zero, cannot be seen. However, given the size of the SecDec errors in the

imaginary part, an inset provides a closer look at the TayInt error bands. The TayInt

result is based on a fourth-order series expansion. The SecDec results have a relative

accuracy of 10−3. The TayInt uncertainties decrease by an order of magnitude when the

number of partitions is doubled, replicating the effect seen for the I10 integral. The average

SecDec evaluation time at a phase-space point increases by a factor of 1.6 for each order of

magnitude increase in relative precision, while, due to the fact that the TayInt algorithm

produces an algebraic integral library, analytic in the kinematical scales, the evaluation
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Figure 21. The I39 Integral calculated at O(ε2) with a fourth-order series expansion. The scale

s is over the 4m2
1 threshold, with u = −59858GeV2, m2 = 1√

2
m1 and m1 = 173 GeV. The lower

plots show the relative TayInt and SecDec uncertainties, respectively.

using the TayInt result is always instantaneous.
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Figure 22. The relative TayInt uncertainty obtained with 8 and 16 partitions respectively, for the

integral I39 at O(ε0) above the threshold, with u = −59858 GeV2, m2 = 1√
2
m1 and m1 = 173 GeV.
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5 Conclusion

TayInt is a new algorithm which calculates systematic approximations to Feynman in-

tegrals algebraically in the kinematic invariants such that the results have validity in all

kinematic regions and can be made arbitrarily precise.

The algorithm takes the propagators as input and works with subsector integrals gen-

erated by the program SecDec. The actual integration is facilitated via a Taylor expan-

sion in the integration parameters. The accuracy is bolstered by conformal mappings and

partitioning of the integrand before performing the Taylor expansion. The validity over

threshold is ensured by performing a variable transformation which implements the correct

analytical continuation of the integrand into the complex plane. Results can be obtained

to higher orders in the dimensional regulator ε, both above and below mass thresholds.

We demonstrated the application of TayInt on two-loop three-point and four-point

integrals with an internal mass, and used these examples to illustrate several features and

virtues of the TayInt algorithm.

The TayInt algorithm expands upon the SecDec framework, and is in principle ap-

plicable to Feynman integrals with any number of loops and any number of kinematical

scales. Its practical application could be limited by the algebraic complexity of interme-

diate expressions and final expansions, or the availability of a quasi-finite basis. Based

on the proof-of-principle applications considered here, we are confident that our expansion

algorithm can be fully automated and applied to many two-loop and three-loop problems

of high phenomenological interest, where closed analytical expressions can not be obtained.
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