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The aim of the present study was to investigate the effect of hypoxia-inducible factor 1o (HIF1A) on the early healing (4 weeks)
of extraction sockets exhibiting partial loss of the labial bone. Two extraction sockets of the maxillary incisors from each of six
dogs were assigned to two treatment modalities: deproteinized bovine bone mineral (i) with 10% collagen (DBBM-C) soaked with
HIFIA and covered by a collagen membrane (CM) (HIF group) or (ii) treated with DBBM-C only and covered by a CM (control
group). Microcomputed tomography revealed some degree of collapse of the labial contour. The totally augmented volume and new
bone volume did not differ significantly between two groups (P > 0.05). The histological analysis revealed that the apical area of
the socket was mostly filled with newly formed bone, while there was less newly formed bone in the coronal area and incomplete
cortex formation. The histomorphometric analysis revealed that the area of newly formed bone was significantly larger in the HIF
group than the control group (12.16+3.04 versus 9.48 +2.01 mm?, P < 0.05), while there was no significant intergroup difference in
the total augmented area. In conclusion, even though DBBM-C soaked with HIF1A enhanced histomorphometric bone formation,
this intervention did not demonstrate superiority in preventing ridge shrinkage compared to DBBM-C alone. Clinical relevance of

these findings should be further studied.

1. Introduction

The interest in counteracting ridge shrinkage has increased
in recent years [1], which has led to detailed investigations
of so-called alveolar ridge preservation (ARP) using a variety
of protocols and biomaterials [2]. A gold standard has yet
to be established, even though many preclinical and clinical
studies have demonstrated that ARP reduces ridge shrinkage
compared to a naturally healed socket [1].

Previous clinical studies regarding ARP have generally
used a healing period after ARP of more than 3 months before
implant placement [3]. Although such period was used to
ensure maturation of newly formed hard tissue, ARP may
delay the overall treatment time [4]. A systematic review

also suggested that ARP procedures might not be able to
accelerate or keep up with natural healing [3].

Another criticism of ARP is the possibility of further
augmentation at the time of implant placement [1], which is
mainly due to ARP not completely preventing ridge shrink-
age. Moreover, most clinical studies have targeted sockets
with minimal destruction, with even further augmentation
sometimes being reported [5]. It is reasonable to suspect that
further augmentation is more likely for damaged sockets.

Enhancers for bone formation may be required in practi-
cal applications to address the above-mentioned issues. Bone
morphogenetic protein-2, platelet-derived growth factor, and
enamel matrix derivative have previously been utilized [6-8],
but their effects have been somewhat unclear.
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The establishment of a vascular network precedes the
formation of mineralized tissue. Insufficient vascularity will
inevitably interrupt the nutritional and metabolic supply,
leading to compromised healing [9]. Hypoxia-inducible fac-
tor lae (HIF1A) is able to stimulate angiogenesis by activating
genes encoding proangiogenic factors [10, 11] and enhance
new bone formation and bone mineral density [12-14]. Such
angiogenic-osteogenic coupling has been tested in bone frac-
ture, osteoporosis, and distraction osteogenesis models [12,
13, 15-17], suggesting that HIF1A has potential in bone tissue
engineering. However, to the best of the present authors’
knowledge, HIF1A has yet to be investigated in the field of
ARP.

Previously, Jeon et al. (2017) induced HIFIA overexpres-
sion using novel protein transduction domain (PTD; Hph-
1-GAL4, ARVRRRGPRRR) and demonstrated that PTD-
induced HIFIA increased angiogenesis [18]. PTD is com-
posed of short amino acid sequences of less than 30bp
and can penetrate the plasma membrane [19, 20], and thus
it has been considered effective for delivering proteins,
DNA/RNA, drugs, and biological factors to target cells [21].
The osteogenic potential of HIF1A assisted by PTD could be
useful for addressing the above-described long and delayed
healing and probability of further augmentation.

The aim of the present study was to investigate the effect
of HIF1A on healing of sockets exhibiting partial loss of the
labial bone plate at the early stage in dogs.

2. Materials and Methods

2.1. Animals. Six male beagle dogs weighing 10-12 kg were
used for the present study (Gukje, Pocheon, Korea). An
individual cage under standard laboratory condition was
allowed for each dog. Daily monitoring by a veterinarian was
provided throughout the study. The protocol for the animal
experiments was approved by the Institutional Animal Care
and Use Committee of Yonsei Medical Center, Seoul, Korea
(IACUC Approval No. 2013-0317-4).

2.2. Study Design. Bilateral maxillary incisors (teeth #102 and
#202) were chosen as the recipient sites. After extracting
the teeth, a bone defect was created on the labial socket
wall (4mm wide and 6 mm high). The extraction sockets
were randomly assigned to the following two groups: (i)
treatment with deproteinized bovine bone mineral with 10%
collagen (DBBM-C; Bio-Oss® Collagen, Geistlich Pharma,
Wolhusen, Switzerland) soaked with 0.2 ml of HIF1A (4 ug of
HIF1A DNA was mixed with 100 ug of Hph-1-GAL4 at room
temperature for 15 min, and 0.2-ml aliquots of the solutions
were used) and covered by a collagen membrane (CM; Bio-
Gide®, Geistlich Pharma) (HIF group) or (ii) treatment with
DBBM-C soaked with saline and covered by a CM (control

group).

2.3. Experimental Materials: HIFIA and Hph-1-G4D. HIFIA
was generated and Hph-1-G4D (GAL4-DBD) was purified
as described by [18]. In brief, Homo sapiens HIFIA (NCBI
Reference Sequence: NM_001530.3) was amplified using the
polymerase chain reaction (PCR). The PCR product was
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inserted into the pEGFPN1 plasmid vector (Invitrogen, Carls-
bad, CA, USA) using restriction enzyme Nhel (Takara Bio,
Otsu, Japan) at 5’ termini and Kpnl (Takara Bio) at 3’ termini
of the PCR fragment. The DNA of G4D combined with Hph-1
was transformed with Escherichia coli BL-21 Star (DE3) pLysS
(Invitrogen). The recombinant proteins were subsequently
mixed with SP Sepharose Fast Flow (GE Healthcare, Mil-
waukee, WI, USA) and Hph-1-G4D protein was eluted. The
eluted proteins were desalted using PD-10 Sephadox B-25
(Amersham Pharmacia Biotech, Piscataway, NJ, USA) with
10% glycerol phosphate-buffered saline (Sigma-Aldrich, St
Louis, MO, USA).

2.4. Animal Surgery. General anesthesia was induced by
a subcutaneous injection of atropine (Kwangmyung Phar-
maceutical, Seoul, Korea) and an intravenous injection of
xylazine (Rompun, Bayer Korea, Seoul, Korea) and Zoletil
(Virbac, Carros, France). Tracheal intubation for enflurane
inhalation (Gerolan, Choongwae Pharmaceutical, Seoul,
Korea) was performed. Surgical sites were locally anes-
thetized using 2% lidocaine HCI (Huons, Seoul, Korea).

Two vertical incisions were made at the mesial line angle
of the mesial tooth and distal line angle of the distal tooth, and
a sulcular incision was performed. Teeth #102 and #202 were
carefully extracted, and defects were created on the labial
aspect of the socket using a high-speed bur. Either DBBM-C
soaked with HIF1A or DBBM-C soaked with saline (depend-
ing on the group allocation) was placed to fill the labial defect
and the upper portion of the socket. DBBM-C was gently
packed against the lingual wall and lightly squeezed between
the lateral walls of the socket. Condensation into the apical
direction was minimally performed. No labial overcorrection
was performed. The defect and socket entrance were then
covered by a CM. Primary flap closure was obtained through
a periosteal releasing incision (Figure 1).

Antibiotic (20 mg/kg cefazoline, Yuhan, Seoul, Korea)
was administered intramuscularly for 3 days postoperatively.
The surgical wounds were disinfected daily using chlorhex-
idine (Bukwang, Seoul, Korea), and the animals were fed a
soft diet throughout the healing period. After 4 weeks of
healing, the dogs were euthanized by an overdose injection
of pentobarbital sodium (90-120 mg/kg).

2.5. Microcomputed Tomography Analysis. The block sections
of the experimental sites were harvested and immersed in
5% formic acid for 14 days. A microcomputed tomography
(micro-CT) scan was performed (SkyScan 1072, SkyScan,
Aartselaar, Belgium) at a resolution of 35 ym (achieved using
100 kV and 100 pA), and the acquired data were reconstructed
with NRecon software (version 1.6.8.0, SkyScan, Kontich,
Belgium).

2.5.1. Volumetric Measurements. The binarization was con-
ducted using the grayscale threshold values defined by
ranging 115-225 for bone substitute and 69-115 for new
bone. The following parameters were measured: total volume
(TV) of the volume of interest, volume of newly formed
bone (NV), and volume of residual bone substitute material
(RV).
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F1GURE 1: Clinical photographs of the surgical procedures. (a) Extraction and defect creation (4 mm wide and 6 mm high), (b) placement of
either demineralized bovine bone mineral with 10% collagen (DBBM-C) soaked with hypoxia-inducible factor 1o (HIF1A) or DBBM-C only
in the defect and the upper part of the socket, (c) coverage of the defect using a collagen membrane, and (d) primary flap closure.

(a)

(b)

FIGURE 2: Representative microcomputed tomography (micro-CT) images: (a) control group and (b) HIF group.

2.5.2. Linear Measurements. The linear measurements were
based on the assumption that the lingual plate of the socket
would exhibit minimal resorption. A vertical reference line
was drawn along the long axis in the center of each recipient
socket, and perpendicular lines to this vertical reference were
drawn at1, 3, and 5 mm below the lingual crest. The horizontal
width was determined at each of these levels, defined as HW,
HW,;, and HW,.

2.6. Histological Processing and Histomorphometric Analysis.
The resected specimens were then decalcified, trimmed, and
embedded in paraffin. The blocks were sectioned serially in
5 um thickness perpendicular to the long axis of the socket.
The central-most section was chosen for histological and his-
tomorphometric analyses. Hematoxylin/eosin and Masson’s
trichrome staining were performed. The histological slides

were scanned using digital slide scanner (Panoramic 250
Flash III, 3DHISTECH, Budapest, Hungary) and observed
through CaseViewer (version 2.1, 3DHISTECH). The his-
tomorphometric analysis was performed using CaseViewer
(version 2.1, 3DHISTECH) and Photoshop CS6 (Adobe, CA,
USA) by a single experienced investigator (H.C.L.) who was
blinded to the group assignment.

The histomorphometric measurements were performed
for both the entire augmented area and three rectangular
regions of interest (ROIs) within the augmented area (each
of size 2.0 mm?) set up by dividing the entire augmented area
into three equal areas, defined as the coronal, ;;, middle, ;,
and apical, /5 areas. The following parameters were measured
(Figure 2): (i) total augmented area including new bone,
residual material, and nonmineralized tissue (TA), (ii) area
of newly formed bone (NB), and (iii) area of residual bone
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FIGURE 3: Parameters measured in the microcomputed tomography analysis: (a) total augmented volume (TV), (b) volume of newly formed
bone (NV), and (c) volume of residual bone substitute material (RV). None of these parameters differed significantly between the two groups.

substitute material (RM). The number of blood vessels (BV)
was measured in each ROI.

2.7, Statistics. Statistical analyses were performed using a
commercially available statistical package (SPSS 21.0, SPSS,
Chicago, IL, USA). Data are presented as mean + SD values.
Shapiro-Wilk tests were used to check if the data conformed
to a normal distribution, and then a paired ¢-test or the
Wilcoxon signed-ranked test was applied. The cutoff for
statistical significance was set at P < 0.05.

3. Results

3.1 Clinical Findings. Clinical healing was uneventful in
all experimental animals. No adverse reaction such as pus
discharge or swelling was observed.

3.2. Micro-CT Analysis. The labial contour at the coronal
level of the socket generally shrunk in both the HIF and
control groups. This tendency became pronounced from the
margin of the defect to the labial crest. DBBM particles
predominated in the upper half of the socket, with a small
amount of newly formed bone between these particles. Some
of the DBBM particles were displaced and scattered. Fewer
DBBM particles were present in the lower half of the socket,
with newly formed bone mostly occupying the space. Newly
formed bone could still be differentiated from the socket wall
due to its low radiopacity (Figure 2).

The horizontal width did not differ significantly between
the HIF and control groups at any level (P > 0.05): HW,

TaBLE 1: Microcomputed tomographic data.

Control HIF1A P value
TV (mm3) 35.48 +14.43 41.58 +9.34 0.300
NV (mm?) 15.27 + 3.47 18.29 + 3.94 0.120
RV (mm3) 917 £ 6.14 10.18 + 4.47 0.685

Data are expressed as mean + SD; T'V, total volume of the volume of interest;
NV, the volume of newly formed bone; RV, the volume of residual bone
substitute material.

was 5.79 £ 0.67 versus 5.47 + 0.54 mm, HW, was 6.71 £ 0.71
versus 6.70 + 0.68 mm, and HW; was 7.80 + 0.50 versus
7.97 £ 0.58 mm.

TV and NV were larger in the HIF group than the control
group (41.58+9.34 versus 35.48 + 14.43 mm” and 18.29+3.94
versus 15.27 + 3.47 mm®, resp.), but there was no significant
intergroup difference (P > 0.05). RV also did not differ
significantly between the HIF and control groups (10.18+4.47
versus 9.17 + 6.14 mm?>, P > 0.05) (Figure 3, Table 1).

3.3. Histological Observations. At the coronal level of the
ridge, the labial contour generally showed shrinkage in both
groups, which started from the apical margin of the dehis-
cence defect. In contrast, the palatal bone plate remained
almost unaffected. Most of the coronal area of the sockets
was filled with DBBM. Some DBBM particles placed in the
outermost area of the dehiscence defect were displaced and
scattered in a few specimens (Figures 4 and 5).

The pattern of new bone formation was similar in the two
groups, but the amount of newly formed bone appeared to
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(b)

(d)

FIGURE 4: Histological views of the control group (Massons trichrome stain). (a) Overall view of the alveolus. (b, ¢, d) High-magnification
images of the boxed areas in the alveolus. *Newly formed bone; black arrow, residual bone substitute material.

be greater in the HIF group. New bone formation generally
appeared to start from preexisting socket walls. There were
finger-shaped projections of newly formed bone from the
palatal, apical, and remaining labial socket walls. In the apical
area, there were few DBBM particles, with it being filled
by newly formed bone with osteocytes and reversal lines.
Various amounts of DBBM particles were observed in the
middle and coronal areas in both groups, but there appeared
to be more particles in the control group. Newly formed bone
and provisional matrix were observed on the DBBM particles
in those areas (Figures 4 and 5).

Vascular structures of varying sizes were observed
throughout the socket. Some blood vessels formed around the
DBBM particles, but there were very few blood vessels around
the particles in the outermost coronal part of the socket.

3.4. Histomorphometric Analysis. TA did not differ signifi-
cantly between the HIF and control groups (26.38 + 3.88
versus 26.05 + 321 mm?, P > 0.05). NB was significantly
larger in the HIF group than the control group (12.16 + 3.04
versus 9.48 + 2.0l mm’, P = 0.042). RM was larger in the
control group (3.22 + 2.22 mm?) than the HIF group (1.69 +
1.55 mm?), but there was no significant intergroup difference
(Figure 6, Table 2).

TaBLE 2: Histomorphometric data of the entire socket.

Control HIF1A P value
TA (mm?) 26.05 + 3.21 26.38 + 3.88 0.886
NB (mm?) 9.48 +2.01 12.16 + 3.04 0.042
RM (mmz) 3224222 1.69 + 1.55 0.080

Data are expressed as mean + SD; TA, total augmented area including new
bone, residual material, and nonmineralized tissue; NB, the area of newly
formed bone; RM, the area of residual bone substitute material.

Inall ROIs (coronal, /5, middle, /3, and apical, ; areas), NB
and BV were larger in the HIF group than the control group,
but there was no significant intergroup difference (P > 0.05).
RM in all ROIs did not differ significantly between the HIF
and the control group (P > 0.05) (Table 3).

4. Discussion

This study investigated whether or not HIFIA enhanced
bone formation in extraction sockets exhibiting partial loss
of the labial bone plate. Following 4 weeks of healing, it
was demonstrated that (i) the histomorphometric amount of
newly formed bone was significantly greater in the HIF group
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FIGURE 5: Histological views of the HIF group (Masson’s trichrome stain). (a) Overall view of the alveolus. (b, ¢, d) High-magnification images
of the boxed areas in the alveolus. *Newly formed bone; black arrow, residual bone substitute material.

TaBLE 3: Histomorphometric data of the three regions of interest

(ROIs) within the socket.

Control HIF1A P value

NB (mm?)

Coronal, 0.46 + 0.50 0.67 £ 0.39 0.463

Middle, 0.65 + 0.49 1.01+0.19 0.204

Apical, 5 1.01 + 0.42 1.08 +0.27 0.767
RM (mm?)

Coronall/3 0.66 + 0.42 0.26 £ 0.31 0.141

Middle1/3 0.33+0.30 0.07 £ 0.11 0.080

Apical, 5 0.00 + 0.01 0.06 +0.14 0.655
BV (n)

Coronall/3 26.17 £11.70 30.33 £10.11 0.320

Middlell3 28.67 £ 8.31 36.50 £10.09 0.108

Apicall/3 29.00 £13.91 31.50 +16.17 0.207

Data are expressed as mean + SD. The dimension of each ROI was 2.0 mm?>.
NB, the area of newly formed bone; RM, the area of residual bone substitute
material; BV, the number of blood vessels.

than the control group and (ii) the shrinkage of the labial
contour was comparable in the two groups.

Many preclinical and clinical studies have investigated
ARP [2, 22]. The results of previous studies appeared to be

quite promising, but some disadvantages were also found,
such as long healing periods after ARP and the possibility
of further augmentation at the time of implant placement
[4, 5]. Considering that angiogenesis always precedes osteo-
genesis, HIFIA might be one solution for overcoming these
obstacles. Previous studies found that disruption of HIFIA
in the osteoblasts led to thinner and less-vascularized bone
[14] and that HIFIA injection enhanced gap healing fol-
lowing distraction osteogenesis [15]. These findings support
angiogenic-osteogenic coupling by HIF1A. In line with those
studies, the present study found greater new bone formation
in the HIF group than the control group based on both
histomorphometry (12.16 +3.04 versus 9.48 + 2.01 mm?) and
micro-CT (18.29 + 3.94 versus 15.27 + 3.47 mm°) analyses,
although the difference was statistically significant only in the
histomorphometric analysis.

However, irrespective of new bone formation, both
groups showed shrinkage of the coronal area of the socket
and with no significant difference in the resultant width.
This result might be consistent with those from a previous
comparison of ARP for different protocols (only DBBM,
DBBM + CM, DBBM + rhBMP-2) with natural healing in
sockets with the buccal bone removed [23]. Even though
those authors found a significant intergroup difference in new
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FIGURE 6: Parameters measured in the histomorphometric analysis: (a) total augmented area (TA), (b) area of newly formed bone (NB), and
(c) area of residual bone substitute material (RM). *Significantly different compared to the control group.

bone formation, there was no difference in ridge shrinkage
(approximately 20%) in the coronal area of ARP-received
sockets. The addition of a barrier membrane and enhancers
might improve the healing process from a histological point
of view compared to simply filling the socket with bone
substitute, but the maintenance of ridge dimension might not
fulfill the expectations of clinicians.

In all of the present histological specimens, no cortex
formation was observed in the labial area and the outermost
part of the coronal area of the socket mainly consisted of
DBBM particles. This healing pattern can be compared with
the findings of De Santis et al. (2011) using the same recipient
sites (canine maxillary incisors) [24]. They immediately
placed external-type implants in extraction socket with a
dehiscence defect on the labial aspect, performed guided
bone regeneration with either autogenous bone or DBBM and
a CM, and histologically examined the specimens after 8 and
16 weeks of healing. Those authors found that DBBM particles
were located above the new alveolar crest of the defect and
were not incorporated with bone matrix after 8 weeks, but
the particles became in close contact with newly formed bone
after 16 weeks. It can therefore be conjectured that DBBM
particles located in the outermost part of the coronal area
would be incorporated into the bone volume over time. A
recent preclinical study also demonstrated that the above-
mentioned immature tissue was capable of being modeled
into bone tissue for implant placement during the early
healing period after ARP [4]. However, it is disappointing that
cortex formation still requires a sufficient healing time even
when HIF1A is used.

It was expected that HIFIA would increase angiogenesis
in the socket. BV was slightly higher in the HIF group than
the control group, but there was no significant intergroup
difference. This observation might be explained by several
factors. First, during the surgery, DBBM-C was stabilized
by squeezing into the dehiscence defect, but some scattering
and displacement of the DBBM particles were observed in
the histology and micro-CT analyses. This might have been
due to uncontrolled pressure from the labial side, resorption
of the collagen component in the DBBM-C, and no apical
securement causing micromotion in the graft, since it was
demonstrated that micromotion during the early healing
period could favor fibrous tissue that lacks blood vessels
[25]. Second, no delivery protocol for applying HIFIA has
been verified in medium-sized and large animals. Jiang et al.
(2016) locally injected two different doses of HIFIA (10 and
20 pug) and saline daily into a distraction osteogenesis model
in rabbit and found that the 20 ug dose led to the highest
mineralization [15]. The present study is the first to utilize
DBBM-C for carrying HIF1A and Hph-1-G4D, and so further
investigations are required.

One of the particularly interesting findings in the present
study is related to the apical healing in both groups. During
the surgery, DBBM-C was placed mainly in the labial defect
area and the upper portion of the socket, and so the apical
area received only a small amount of DBBM-C. After 4
weeks, there was abundant bone formation in the apical
area, in contrast to the middle and coronal areas where
most of the DMMB-C had been placed. This is in line with
previous studies showing a complete filling of woven bone



in the healing of nongrafted sockets at 4 weeks after tooth
extraction [26, 27] and less woven bone formation in the
socket filled with bone substitute material [28]. Clinically,
these observations may question the necessity of apical filling.
It has been clearly demonstrated that the most-susceptible
area for ridge resorption following extraction is confined to
the coronal area of the socket [29]. The area below the middle
of the socket could remain stable without ARP, and so focused
filling with a bone substitute material into the upper part of
the socket may be feasible option for ARP.

The labial bone plates of the anterior teeth are prone to
defects resulting from periodontal disease and trauma due
to its natural thinness. In the present study, we therefore
selected anterior teeth and tried to simulate sockets with
defects by creating a dehiscence-type defect on the labial wall.
Also, considering that immediate or early implant placement
might be more straightforward than ARP for a socket with
intact walls, the current model may be more relevant to
many clinical situations. However, it should be noted that the
present study used an acute type of defect, because the healing
capacity differs between sockets with chronic pathologies and
intact sockets [30].

The present study used both histomorphometric and
micro-CT data to evaluate the effects of HIFIA. Although
the general trends of newly formed bone were similar in
these two types of analysis, statistically significant results
were only detected in histomorphometry. The trend was
somewhat opposite for residual bone substitute material. This
kind of discrepancy was also previously noted [31]. Micro-
CT analyses sometimes appear to be less sensitive because
they require different ranges of grayscale values to be chosen
for various tissues, and when a bone substitute is mixed with
living bone tissue, the grayscale range for the bone substitute
could overlap that for bone tissue. Care is therefore needed
when interpreting the results from both types of analysis.

5. Conclusion

In conclusion, new bone formation was enhanced histomor-
phometrically when using DBBM-C with HIFIA compared
to DBBM-C alone in sockets exhibiting partial loss of the
labial bone plate. However, clinical relevance of this difference
should be carefully interpreted due to small amount of
difference and short healing period. Moreover, DBBM-C with
HIFIA was not superior to DBBM-C alone in preventing
ridge shrinkage in the coronal part of the socket.
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