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Abstract

Most published research works on the development of tool life model in machining 
of hardened steels have been mainly concerned with the turning process, whilst the milling 
process has received little attention due to the complexity of the process. Thus, the aim of 
present study is to develope a tool life model in end milling of hardened steel AISI D2 
using PVD TiAlN coated carbide cutting tool. The hardness of AISI D2 tool lies within the 
range of 56-58 HRC. The independent variables or the primary machining parameters 
selected for this experiment were the cutting speed, feed, and depth of cut. First and second 
order models were developed using Response Surface Methodology (RSM). Experiments 
were conducted within specified ranges of the parameters. Design-Expert 6.0 software was 
used to develop the tool life equations as the predictive models. The predicted tool life 
results are presented in terms of both 1st and 2nd order equations with the aid of a statistical 
design of experiment software called Design-Expert version 6.0. Analysis of variance 
(ANOVA) has indicated that both models are valid in predicting the tool life of the part 
machined under specified condition and the prediction of average error is less than 10%.
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1. Introduction
Machining hardened steel parts has become more pronounce in manufacturing process, particularly in 
the mold and die industries and subsequently mostly contributed in making automotive and aerospace 
components. Due to the hardness of the material, abrasive processes such as grinding, polishing, etc. 
have been typically required, but advances in machine tool and cutting tool materials has allowed 
machining of hardened steels to become a realistic replacement for many grinding applications. 
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Despite of having outstanding machinery, no one could not expect the failure of tool life for certain 
conditions in machining operation. It will become most apparent when machining hard materials such 
as hardened steel. Thus, how to find the best way to prolong the life of a tool subjected to hardened 
material cutting is the aim of this study.

Tool wear/tool life is an important aspect commonly considered in evaluating the performance 
of a machining process. In addition, tool wear/tool life estimates and the corresponding economic 
analysis are among the most important topics in process planning and machining optimization (Ee et 
al., 2006). Plus tool life prediction is an important factor that has profound influence on the higher 
productivity in industrial activities. High metal removal rate is intended to reduce the manufacturing 
cost and operation time. The productivity interms of a machining operation and machining cost, as well 
as quality assurance, and the quality of the workpiece machined surface and its integrity are strongly 
depend on tool wear and consequently it depends on the life of the tool. Moreover, despite having the 
target of achieving optimum superficial finishing with the shortest possible time one must take into 
account the consideration of tool life, so that the complete finishing operation can be carried out with 
just one tool, avoiding the intermediate stops in order to change the tool due to its wear (Lopez de 
Lacalle et al., 2007). Eventually, sudden failure of cutting tools lead to loss of productivity, rejection of 
parts and consequential economic losses (Palanisamy et al., 2007).

Selection of cutting tools and cutting conditions represents an essential element in process 
planning for machining. This task is traditionally carried out on the basis of the experience of process 
planners with the help of data from machining handbooks and tool catalogs. Process planners continue 
to experience great difficulties due to lack of performance data on the numerous new commercial 
cutting tools with different materials, coatings, geometry and chip-groove configurations for high wear 
resistance and effective chip breaking, etc. (Jawahir & Wang, 2007). Moreover, specific data on 
relevant machining performance measures such as tool-life, surface roughness, chatter&vibration, chip 
formation, and cutting forces are hard to find due to lack of predictive models for these measures. 
Therefore, it is indispensable to predict tool life under varying cutting conditions and it becomes main 
issue towards this study. In order to establish the knowledge base for tool life, a large number of 
experiments have to be performed and analysed. However, it is well known that obtaining reliable 
machining data is very costly in terms of time and material (Tsai et al., 2005). Thus, various 
methodologies and strategies have been adopted by researchers in order to predict tool life in milling 
and turning. Four major categories were created to classify the methodologies. These are: (i) 
approaches that are based on machining theory to develop analytical models and/or computer 
algorithms to represent the machined surface; (ii) approaches that examine the effects of various 
factors through the execution of experiments and analysis of the results; (iii) approaches that use 
designed experiments; and (iv) the artificial intelligence (AI) approaches (Benardos & Vosniakos 
2003).

Response surface methodology (RSM) which is classified into designed experiments approach 
seems to be the most wide-spread methodology for the tool life prediction. RSM is an important 
methodology used in developing new processes, optimizing their performance, and improving the 
design and/or formulation of new products. It is often an important concurrent engineering tool in 
which product design, process development, quality, manufacturing engineering, and operations 
personnel often work together in a team environment to apply RSM. It is a dynamic and foremost 
important tool of design of experiment (DOE), wherein the relationship between responses of a process 
with its input decision variables is mapped to achieve the objective of maximization or minimization of 
the response properties (Raymond & Douglas 2002).

Many researchers have used RSM for their experimental design and analysis of the results in 
end milling, but very few of them were engaged in machining hard material which is commonly known 
as hard milling. Vivancos et. al. (2005) presented a model for the prediction of surface roughness in 
high-speed side milling of hardened die steels. Palanisamy et al. (2007) predicted the response variable 
tool wear based on DOE combined with RSM technique in a universal milling machine on AISI 1020 
steel using carbide insert. The development of a surface roughness model for end milling EN32 
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casehardening carbon steel (160 BHN steel) using design of experiments and RSM was discussed by 
Mansor & Abdalla (2002).

In this paper, the RSM has been applied to develop a mathematical model to predict the tool life 
for end milling of hardened steel AISI D2 tool steel which is categorized as a difficult to cut material. 
Machining was conducted using PVD TiAlN carbide coated SANDVIK 1030 inserts. The accuracy of 
the model has been tested using the analysis of variance (ANOVA) with the aid of a statistical design 
of experiment software called Design-Expert version 6.0. Knowledge of tool life will help the process 
planner or operator in selecting the optimum parameters to minimize the tool wear.

2. Mathematical Model by RSM
The relationship between tool life and other independent variables is modelled as follows;

mlk fdCVTL  (1)
Where ‘C’ is a model constant and ‘k’, ‘l’ and ‘m’ are model parameters. The above function 

(1) can be represented in linear mathematical form as follows;
fmdlVkCTL lnlnlnln)ln(  (2)

the first-order linear model of the above Eq. (2) can be represented as follows;

332211001ˆ xbxbxbxbεyy  (3)
Where, ŷ1 is the estimated response based on first-order equation and y is the measured tool life 

on a logarithmic scale, x0 = 1 (dummy variable), x1, x2, x3 are logarithmic transformations of cutting 
speed, depth of cut and feed respectively. The parameters b0, b1, b2, and b3 are to be estimated where ε 
the experimental error. The second-order model can be extended from the first-order equation as 
follows;
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Where, 2ŷ  is the estimated response based on the second-order model. Analysis of variance 
(ANOVA) is used to verify and validate the model.

3. Experimental Design and Methodology
Experimental works were carried out on CNC Vertical Milling Center (VMC) Excell PMC-10T24 with 
40 mm diameter tool holder. End milling operation was performed under dry cutting conditions with a 
5 mm constant radial depth of cut. Down milling method was employed to secure the advantageous 
outcomes such as better surface finish, less heat generation, larger tool life, better geometrical accuracy 
and compressive stresses favorable for carbide edges (Li et al., 2006). In this experiment only one 
insert was used for each set of experimental conditions so that the variation due to the wear of cutting 
tool edge is minimized among the trials. Machining was implemented with initially a sharp insert and 
moved every 100 mm pass of cut for flank wear measurement by Olympus Tool Maker microscope for 
which flank wear was recorded at 20 times magnification. Flank wear have been measured for each 
combination of cutting conditions in accordance with the ISO standard for tool life testing of end 
milling (ISO Standard 8688-2, 1989).

The cutting conditions were selected by considering the recommendations of the cutting tool’s 
manufacturer (Sandvik Tools) and the knowledge of practices, gathered through contemporary 
literatures on hard machining. The three main selected parameters: cutting speed, depth of cut and feed 
were then coded to the levels using the following transformations;
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The independent variables with their corresponding selected levels of variation and coding 
identification are presented in Table 1.

Table 1: Independent variables with levels and coding identification

Levels in Coded Form
-√2 -1 0 +1Indep. Variables

(lowest) (low) (centre) (high)
+√2 (highest)

Cutting speed (V) (m/min) (X1) 40 44.27 56.57 72.28 80
Depth of cut (d) (mm) (X2) 0.50 0.61 1.00 1.63 2.00
Feed (F) (mm/tooth) (X3) 0.02 0.025 0.044 0.079 0.10

A well-planned design of experiment can substantially reduce the number of experiments and 
for this reason a small CCD with five levels was selected to develop the first order and second order 
models. This is the most popular class of designs used for fitting these models and has been established
as a very efficient design for fitting the second order model (Douglas, 2005). The analysis of 
mathematical models was carried out using Design Expert version 6.0 package for both the first and 
second order models. The machining process carried out in random manner in order to reduce error due 
to noise. The overall cutting conditions with CCD is presented in Table 2.

Table 2: Design Cutting Conditions with CCD

Coded Form Actual Form
Trial 

no. (T)
Location in 

CCD
X1 X2 X3

Cutting speed
(m/min)

Depth of cut
(mm)

feed
(mm/tooth)

1 Factorial +1 +1 -1 72.28 1.63 0.025
2 Factorial +1 -1 +1 72.28 0.61 0.079
3 Factorial -1 +1 +1 44.27 1.63 0.079
4 Factorial -1 -1 -1 44.27 0.61 0.025
5 Center 0 0 0 56.57 1.00 0.044
6 Center 0 0 0 56.57 1.00 0.044
7 Center 0 0 0 56.57 1.00 0.044
8 Center 0 0 0 56.57 1.00 0.044
9 Center 0 0 0 56.57 1.00 0.044
10 Axial -1.414 0 0 40.00 1.00 0.044
11 Axial +1.414 0 0 80.00 1.00 0.044
12 Axial 0 -1.414 0 56.57 0.50 0.044
13 Axial 0 +1.414 0 56.57 2.00 0.044
14 Axial 0 0 -1.414 56.57 1.00 0.020
15 Axial 0 0 +1.414 56.57 1.00 0.100

4.  Results and Discussion
The tool life values (response) and the other values that correspond to the tool life have been presented 
in Table 3.



596 M.A. Lajis, A.N. Mustafizul KARIM, A.K.M. Nurul AMIN, A.M.K. HAFIZ and L.G. Turnad

Table 3: Measured Values and Responses

Actual Form Measured Values Response

Trial 
no. (T) Cutting 

speed
(m/min)

Depth of cut
(mm)

feed
(mm/tooth)

Feed rate
(mm/min)

Length of 
cut (mm)

Toolwear
VBmax.

=0.3mm

Tool life (TL) 
(min)

1 72.28 1.63 0.025 14.38 400 0.307 27.83
2 72.28 0.61 0.079 45.43 400 0.299 8.81
3 44.27 1.63 0.079 27.82 700 0.303 25.16
4 44.27 0.61 0.025 8.80 1100 0.292 124.93
5 56.57 1.00 0.044 19.80 600 0.367 30.30
6 56.57 1.00 0.044 19.80 600 0.353 30.30
7 56.57 1.00 0.044 19.80 600 0.363 30.30
8 56.57 1.00 0.044 19.80 600 0.359 30.30
9 56.57 1.00 0.044 19.80 600 0.361 30.30
10 40.00 1.00 0.044 14.00 1600 0.297 114.27
11 80.00 1.00 0.044 28.00 300 0.314 10.71
12 56.57 0.50 0.044 19.80 1400 0.301 70.70
13 56.57 2.00 0.044 19.80 400 0.343 20.20
14 56.57 1.00 0.02 9.00 500 0.302 55.55
15 56.57 1.00 0.10 45.00 400 0.453 8.89

4.1. Development of First & Second Order Models by ANOVA

Using the experimental results as obtained in the form of tool life values against all the set 
experimental conditions and followed by ANOVA analogy, the following tool life prediction model 
has been developed;

321 79.028.0ln74.036.3)ln( XXXTL  (6)

This is a first order model. By substituting Eq.(5) into Eq.(6), the model finally can be 
expressed as;

14.157.002.3167711  fdVTL (7)
From this 1st order model (Eq.7) it is apparent that higher cutting speed will lower the tool life 

values followed by feed and depth of cut. This equation is valid for cutting speed (40≤V≤80), depth of 
cut (0.5≤d≤2) and feed (0.02≤f≤0.1). Since the second-order model is very flexible, easy to estimate 
the parameters with method of least square error, and work well in solving real response surface 
problems (Raymond & Douglas 2002), the analysis was extended in prediction of more robust 
modeling of tool life. Using the experimental data in Table 3, the second order model is derived with 
the following equation;

3231
2
3

2
2321 199.0329.0175.009.0668.0443.0837.0462.3)( XXXXXXXXXTLLn  (8)

Or by conversion of inverse logarithm we could simplify the eq.(8) as such below;
)( TLLneTL  (9)

This model takes into account of the interaction and quadratic effects of the cutting variables. 
Both Eq. (7) and (8) representing 1st and 2nd order CCD models respectively have indicated that cutting 
speed would give significant effect on tool life values followed by feed and depth of cut. Tool wear 
tends to increase with increasing cutting speed. It has been reported by Eldem & Barrow (1976) that 
increase in cutting speed accelarates thermally activated wear mechanisms in addition to generating 
more intense mechanical impact. These promote an increase in the thermal gradient which tends to 
increase too wear as thermal crack generation rate increases (Bhatia et al., 1979). Similar trends were 
also reported by Ping & Yeong (1997) and Shaw (1991). Plus similar phenomena were also founded by 
Vivancos et al. (2005), Ghani et al. (2004), Ghani et al. (2004a), Becze et al. (2000) when machining 
hardened steel at higher cutting speed. According to previously research reported by Shaw (1991), the 
high hardness will enhance too wear, and the content of the constituents C and Cr in hardened steels 
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will give rise to hard particles in the workpiece, and increase the wear of the tool. Furthermore, 
because the longer time contact position (high cutting speed) between the tool and workpiece will 
cause high temperature in the cutting zone, the constituents C,Cr and Ni will harden the workpiece, and 
then tool life will be reduced. Thus, the tendency of tool wear to increase with increasing cutting is 
found to be predominant. These effects are further explained with the help of response surface plots as 
shown in Figs. 1 and 2. It is evident from the contour surface that tool life is maximum (125 min) when 
cutting speed (V=40m/min) and feed rate (f=0.027mm/tooth) at the lower limit (<-1.00).

Figure 1: Contour plot on 2-D contour RSM response surface plot with the optimization area of tool life (TL) 
[Design point: TL=4.83@125min, V=-1.00@40m/min, d=-1.00@0.6m/min, 
f=0.83@0.027mm/tooth]

Figure 2: Contour plot on 3-D contour RSM response surface plot with the maximum and minimum values of 
tool life (TL) [Design point: TL=4.83@125min, V=-1.00@40m/min, d=-1.00@0.6m/min, 
f=0.83@0.027mm/tooth]

4.2. Checking the adequacy of the developed model

The accuracy of both models (linear and quadratic) has been tested using the analysis of variance 
technique (ANOVA) (Douglas, 2005; Raymond & Douglas, 2002) and with the aid of computer 
system simulation called Design Expert System version 6.0.
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4.2.1. Checking the adequacy of the linear model
From Table 4 below, the Model F-value of 45.13 implies the model is significant. There is only a 
0.01% chance that a "Model F-Value" this large could occur due to noise. Values of "Prob > F" less 
than 0.0500 indicate model terms are significant. In this case V, d, f are significant model terms. 
Values greater than 0.1000 indicate the model terms are not significant. If there are many insignificant 
model terms (not counting those required to support hierarchy), model reduction may improve your 
model. The "Pred R-Squared" of 0.7840 is in reasonable agreement with the "Adj R-Squared" of 
0.9106. "Adeq Precision" measures the signal to noise ratio. A ratio greater than 4 is desirable. Your 
ratio of 19.388 indicates an adequate signal. The "Lack of Fit F-value" of 0.30 implies the Lack of Fit 
is not significant relative to the pure error. There is a 82.66% chance that a "Lack of Fit F-value" this 
large could occur due to noise. Non-significant lack of fit is good -- we want the model to fit.

Table 4: ANOVA of 1st order (linear) CCD Model

ANOVA for Response Surface Linear Model
Analysis of Variance Table [Partial sum of squares]

Source Sum of Squares DF Mean Square F Value Prob > F Signifinicant or not significant
Block 2.853E-003 1 2.853E-003
Model 8.54 3 2.85 45.13 < 0.0001 Significant
V 4.35 1 4.35 68.98 < 0.0001
d 0.62 1 0.62 9.80 0.0107
f 3.57 1 3.57 56.61 < 0.0001
Residual 0.63 10 0.063
Lack of 
Fit

0.1134 6 0.0189 0.30 0.8266 Not significant

Pure error 0.18 4 0.045
Adj R-Squared = 0.9106 Pred R-Squared = 0.784 R = 0.885 Adeq Precision = 19.388

4.2.2. Checking the adequacy of the quadratic model
The Model F-value of 299.22 implies the model is significant. There is only a 0.01% chance that a 
"Model F-Value" this large could occur due to noise. Values of "Prob > F" less than 0.0500 indicate 
model terms are significant. In this case V, d, f, d2, f2, Vf, df are significant model terms. Values 
greater than 0.1000 indicate the model terms are not significant. If there are many insignificant model 
terms (not counting those required to support hierarchy), model reduction may improve your model. 
The "Pred R-Squared" of 0.8523 is in reasonable agreement with the "Adj R-Squared" of 0.9938. 
"Adeq Precision" measures the signal to noise ratio. A ratio greater than 4 is desirable. Your ratio of 
51.031 indicates an adequate signal. The "Lack of Fit F-value" of 0.21 implies the Lack of Fit is not 
significant relative to the pure error. There is a 65.13% chance that a "Lack of Fit F-value" this large 
could occur due to noise. Non-significant lack of fit is good -- we want the model to fit.
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Table 5: ANOVA of 2st order (Quadratic) CCD Model

ANOVA for Response Surface Quadratic Model
Analysis of Variance Table [Partial sum of squares]

Source
Sumof 

Squares
DF Mean Square F Value Prob > F

Signifinicant or
not significant

Block 2.853E-003 1 2.853E-003
Model 9.14 7 1.31 299.22 < 0.0001 significant
V 2.80 1 2.80 642.01 < 0.0001
d 0.78 1 0.78 179.78 < 0.0001
f 3.57 1 3.57 817.88 < 0.0001
d2 0.062 1 0.062 14.11 0.0094
f2 0.23 1 0.23 52.85 0.0003
Vf 0.22 1 0.22 49.85 0.0004
df 0.079 1 0.079 18.19 0.0053
Residual 0.026 6 4.365E-003
Lack of Fit 1.833E-003 2 9.166E-004 0.21 0.6513 Not significant
Pure error 0.071

Adj -Squared = 0.9938 Pred R-quared = 0.8523 R = 0.923
Adeq Precision = 
51.031

4.3. Checking the estimated of error of the developed model

Table 6 shows the values of tool life for experimental, predicted by linear and quadratic models, and 
error terms. From the table, it is clear that the error of quadratic model is much less than the error of 
linear model for which the average error of quadratic model given by the eq. 12 is only 0.04. For 
average error of linear model which has been calculated by the eq.10 is 0.08. As has been seen here the 
error of linear model is almost twice to the quadratic model. It is thus clear that the quadratic model is 
much reliable in predicting the tool life model with CCD design. Additionally, it is revealed that CCD 
design has been established as a very efficient design for fitting the second order model (Douglas, 
2005). To the extent possible, for each model, we shall calculate the standard deviation that has been 
demonstrated in eqs. 11 and 13. The value of standard deviation for quadratic model which is 0.028 
compared with linear model 0.183 is remarkably much smaller. These results provided insight for 
predicting tool life modelling and as well as the optimization.



600 M.A. Lajis, A.N. Mustafizul KARIM, A.K.M. Nurul AMIN, A.M.K. HAFIZ and L.G. Turnad

Table 6: Experimental, Predicted and Error Values

Design cutting condition Response=Tool life (TL)(min) Error (ei)Trial 
no. (T) Cutting 

speed 
(m/min)

Depth of 
cut (mm)

Feed 
(mm/tooth)

Experim. 
values

Predicted 
value 

Linear

Predicted 
value 

Quadratic

Linear 
model

Quadrati
c model

1 72.28 1.63 0.025 27.83 20.69 26.05 0.26 0.06
2 72.28 0.61 0.079 8.81 9.76 9.03 -0.11 -0.03
3 44.27 1.63 0.079 25.16 24.49 25.47 0.03 -0.01
4 44.27 0.61 0.025 124.93 159.23 122.83 -0.27 0.02
5 56.57 1.00 0.044 30.30 30.08 31.88 0.01 -0.05
6 56.57 1.00 0.044 30.30 30.08 31.88 0.01 -0.05
7 56.57 1.00 0.044 30.30 30.08 31.88 0.01 -0.05
8 56.57 1.00 0.044 30.30 30.08 31.88 0.01 -0.05
9 56.57 1.00 0.044 30.30 30.08 31.88 0.01 -0.05

10 40.00 1.00 0.044 114.27 85.67 104.18 0.25 0.09
11 80.00 1.00 0.044 10.71 10.56 9.76 0.01 0.09
12 56.57 0.50 0.044 70.70 44.65 71.72 0.37 -0.01
13 56.57 2.00 0.044 20.20 20.26 20.37 0.00 -0.01
14 56.57 1.00 0.02 55.55 73.89 57.00 -0.33 -0.03
15 56.57 1.00 0.10 8.89 11.80 8.92 -0.33 0.00

Average of error (linear),
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Standard deviation (quadratic), Stdq =
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= 0.028

5.  Conclusions
This research work was undertaken to develop a mathematical relationship between the tool life in end 
milling of hard material (AISI D2) and the machining variables by using the experimental results 
obtained through use of the concept of RSM. It has been possible to develop the first order (linear 
model) as well as the second order (quadratic model). Adequacy or validity of the models has been 
evaluated by ANOVA which indicates that the models are reliable. These models can be safely used to 
predict the tool life of the machined part of AISI D2 tool steel under the specified cutting conditions. 
These models are valid within the ranges of the cutting parameters in end milling which for cutting 
speed range is 40 - 80 m/min, for depth of cut range is 0.5 - 2.0 mm and for feed range is 0.05 - 0.1 
mm/tooth. Both models linear (1st order) and CCD quadratic (2nd order) have shown similar trends 
indicating that the cutting speed has the most significant influence on tool life followed by feed and 
depth of cut. Hence, the percentage average of error between the predicted and measured tool life of 
both models is less than 10% but for quadratic model we found the average percentage error is less 
than 5%. Finally, a reliable technique for modelling tool life knowledge in end milling operations has 
been demonstrated in this paper.
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