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Resource use efficiency (RUE) is an ecological concept that measures the proportion

of supplied resources, which is converted into new biomass, i.e., it relates realized to

potential productivity. It is also commonly perceived as one of the main mechanisms

linking biodiversity to ecosystem functioning based on the assumption that higher

species numbers lead to more complementary and consequently more efficient use of

the available resources. While there exists a large body of literature lending theoretical and

experimental support to this hypothesis, there are a number of inconsistencies regarding

its application: First, empirical tests use highly divergent approaches to calculate RUE.

Second, the quantification of RUE is commonly based on measures of standing stock

instead of productivity rates and total pools of nutrients instead of their bioavailable

fractions, which both vary across systems and therefore can introduce considerable bias.

Third, conceptual studies suggest that the relationship between biodiversity, productivity

and RUE involves many more mechanisms than complementary resource use, resulting

in variable magnitude and direction of biodiversity effects on productivity. Moreover,

RUE has mainly been applied to single elements, ignoring stoichiometric, or metabolic

constraints that lead to co-limitation by multiple resources. In this review we illustrate and

discuss the use of RUE within and across systems and highlight how the various drivers

of RUE affect the diversity-productivity relationship with increasing temporal and spatial

scales as well as under anthropogenic global change. We illustrate how resource supply,

resource uptake and RUE interactively determine ecosystem productivity. In addition,

we illustrate how in the context of biodiversity and ecosystem functioning, the addition

of a species will only result in more efficient resource use, and consequently, higher

community productivity if the species’ traits related to resource uptake and RUE are

positively correlated.

Keywords: resource limitation, uptake, productivity, biodiversity, ecological stoichiometry, diminishing marginal

returns, ecosystem functioning

RUE IN ECOLOGY

Resource use efficiency (RUE) is defined as the amount of biomass produced per unit of supplied
resource. It is commonly applied to explain and understand ecological phenomena such as the
link between potential and realized productivity or biodiversity effects on ecosystem biomass
production, and therefore constitutes a concept of major interest to research questions in various
ecological contexts.
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The origins of the concept go back to early agricultural
research. In a comprising review, de Wit (1992) summarizes
how during the agricultural industrialization, the increasing
use of fertilizers and the ensuing environmental consequences
triggered ideas to define the optimal supply of resources
so as to maximize the efficiency of agricultural production.
This agricultural view on resource use efficiency dates
back to the law of the minimum (Sprengel, 1826; Liebig,
1840) and Liebscher’s (1895) law of the optimum, which
defines the optimal supply rate and ratio of mineral
nutrients to foster plant growth. Based on Liebscher’s
work, Mitscherlich (first in 1909) and others expressed the
decelerating production of biomass with linear increases
in fertilizer addition as a law of diminishing returns.
Derived from this work in agricultural sciences, ecology
developed similar questions, but focused on morphological or
physiological mechanisms regulating the observed patterns in
resource use and its efficiency (Vitousek, 1982; Chapin et al.,
1997).

Its oldest and most direct conceptual application is clearly
the link between potential and realized productivity within
and across communities and ecosystems (for a full history of
this debate, see the supplement published with Grace et al.,
2016). The higher the proportion of resources turned into new
biomass, the higher are the levels of realized productivity. In
that respect, RUE can be understood analogously to Odum’s
concept of transfer efficiency (Odum, 1957) which describes the
amount of energy that is transferred from one trophic level
to the next measured in, e.g., joules. Similar to reductions in
energy transfer due to respiration at each trophic level, the
amount of resource or matter that is converted to biomass
at the next higher trophic level is constrained. Reasons are
manifold and include inaccessibility of resources (Soares et al.,
2017), stoichiometric mismatch and the need to respire, excrete,
or exudate excess resources (Andersen et al., 2004) as well
as co-limitation (Danger et al., 2008). Consequently, transfer
efficiency and RUE determine important emergent properties
of ecosystems such as food chain length (Hessen et al., 2004)
or the internal (re)cycling of nutrients (Vitousek, 1982). Also,
community composition and biodiversity turnover are affected
by RUE, as species differ in their ability to sequester resources
and turn these into growth. Tilman’s competition theory (1982)
is directly based on these ideas, predicting that the outcome of
resource competition will be directly linked to community-wide
RUE.

The growing interest in understanding RUE as a fundamental
constraint of realized productivity over the last decades has
been driven by research on how species diversity affects
community or ecosystem production. The central hypothesis of
the biodiversity—ecosystem functioning (BEF) research is that
higher levels of diversity (species richness, functional diversity)
result in a more efficient use of the available resources and will
therefore yield greater amounts of biomass than the same system
at lower levels of diversity (Chapin et al., 1997; Loreau, 2001).
In other words, species loss will result in a reduction of RUE
and therefore decreased ecosystem function (Cardinale et al.,
2006). In addition to ample support for this general hypothesis

from theoretical work and experimental studies, there also
exists an increasing number of empirical tests, especially from
natural communities (Filstrup et al., 2014; Hodapp et al., 2015;
Fontana et al., 2018), highlighting the importance of individual
traits rather than simple diversity measures. Acknowledging
this trait-dependence results in potentially different signs and
strengths of BEF relationships, as different relationships between
traits mediating coexistence and traits mediating RUE can exist
(Hillebrand and Matthiessen, 2009). This implies potentially
high degrees of context dependence in BEF relationships, which
requires to shed light on RUE as a central mechanism linking
composition and function in ecological systems (Nijs and
Impens, 2000; Binkley et al., 2004; Forrester and Bauhus, 2016).

However, as we detail below, the way RUE has been used in
ecology generally, and BEF research especially, differs broadly.
This includes conceptual and mathematical differences, which
come with rarely-stated specific assumptions in the way RUE
is implemented. Therefore, in this review paper, we aim to
unify the concept of RUE across different types of ecological
systems and scales of ecological organization, as well as
spatial and temporal extent to identify and describe common
mechanisms and distinguish these from system- or organism-
specific phenomena. Based on an overview of the existing use of
the concept (section Definitions and Differences in RUE Across
Systems: Interpretation and Limitations), we present the basis
for a unified view on RUE (section Unifying the Concept of
RUE: a Suggestion). We discuss the validity of this concept
in light of recent discussions on multiple resource limitation
(section RUE Under Multiple Resource Limitation) and across
scales (section RUE Across Ecological, Temporal, and Spatial
Scales). Finally, we specifically address the importance of RUE
in the context of global change (section RUE in a Changing
Environment) and BEF (Section Biodiversity Effects on RUE)
research.

DEFINITIONS AND DIFFERENCES IN RUE
ACROSS SYSTEMS: INTERPRETATION
AND LIMITATIONS

Despite the common applicability of RUE as a concept,
measurement and quantification of the relevant quantities
vary considerably across ecosystems. These differences arise
from distinct types of resource use, organism physiology,
and ecosystem properties. Table 1 gives an overview of
examples for the definition and quantification of resource use
efficiency for different types of resources, ecosystems, and
organisms.

One early suggestion of how to quantify nutrient use efficiency
in plants goes back to (Chapin, 1980). He stated that the resource
use efficiency defined as the amount of dry matter produced per
unit nutrient taken up (e.g., g biomass/g nutrient) is simply the
inverse of nutrient concentration in plant tissue (e.g., expressed
as % nutrient in dry mass or g nutrient/g tissue). In addition,
he mentioned that future productivity could be influenced by
mechanisms such as luxury consumption or accumulation of
storage polysaccharides and that consequently respiration or
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TABLE 1 | Examples for definitions and uses of resource use efficiency for different organism types along different ecological scales.

Limiting

resource

Organism type Definition Measured as Ecological scale References Limitation

Nutrient Terrestrial plants Inverse of nutrient

concentration in plant tissue

Tissue nutrient concentration Individual

organism/

community

Chapin, 1980 Only valid for

short-lived plants

Nutrient Forest Inverse of nutrient

concentration in the

aboveground litterfall, root

turnover and organic matter

increment of vegetation

Litterfall mass/ litterfall N

content

Individual

organism/

community

Vitousek, 1982 Assumption that

litterfall is a

constant

proportion of

ANPP

Nutrient Microbial Fraction of consumed

organic N that is not

released as ammonium

(UN-MN)/UN

UN, gross rates of amino-acid

consumption

MN, gross N mineralization

rate determined via stable

isotope analysis

Community Mooshammer et al.,

2014

Nutrient Freshwater and

marine plankton

Biomass production per unit

of limiting nutrient

Biomass or biovolume/total

phosphorus

Community Ptacnik et al., 2008;

Filstrup et al., 2014;

Hodapp et al., 2015

Standing stock,

not considering

loss due to

consumption

Nutrient Terrestrial

ecosystems

Nutrient uptake Left over nutrient in soil Ecosystem Cardinale et al., 2006

Nutrient Marine Plankton Amount of C or nutrient

incorporated into biomass

Copepod RUE was calculated

total copepod C produced

per unit algal N

Copepod NUE was calculated

as copepod tissue N per unit

algal N

Community Plum et al., 2015 Standing stock

Water Terrestrial, forest,

peatlans,

grassland

The amount of C

assimilated per unit of water

loss by transpiration or

inverse of transpiration ratio

GPP/ transpiration Ecosystem Briggs and Shantz, 1913;

Cowan and Farquhar,

1977, see also Brümmer

et al., 2012

Water Temperate steppe Photosynthesis per unit of

water loss due to respiration

Leaf photosynthesis/ leaf

transpiration

Leaf Niu et al., 2011

Water Temperate steppe Gross ecosystem

productivity per unit water

transpired

GEP/ transpiration Canopy Niu et al., 2011

Water Temperate steppe Productivity per unit water

transpired

GEP/ canopy transpiration,

net ecosystem CO2

exchange/ evapotranspiration,

leaf photosynthesis/ leaf

transpiration

Leaf, canopy and

ecosystem

Niu et al., 2011

Radiation Forest ecosystems GPP per unit radiation

intercepted by terrestrial

vegetation

Net ecosystem exchange

fluxes of CO2/absorbed

photosynthetically active

radiation (PAR)

Ecosystem Garbulsky et al., 2010

Carbon Microbial Biomass C produced per

unit organic carbon

resource C consumed

Growth rate/(growth rate +

respiration rate)

Community Keiblinger et al., 2010

The limiting resources used for the examples as well as possible limitations of the respective measurements are given.

rates of photosynthesis and assimilation might be more adequate
measures of the efficiency of nutrient use. Vitousek (1982) further
pointed out that the definition of inverse concentrations in
plant tissue can only be applied to short-lived plants, because in
perennial plant species seasonal processes, such as withdrawal
of nutrients from senescing leaves, allow within-individual
recycling of nutrients. He suggested quantifying resource use
efficiency as the inverse of the nutrient concentration of the

aboveground litterfall, root turnover, and the organic matter
increment. However, this approach only works when litterfall
mass is a constant proportion of ecosystem production, which
is usually not the case since higher proportions of nutrients
are allocated to wood production than leaf production across
gradients of forest productivity (Binkley et al., 2004).

Water use efficiency (WUE) in plant communities is
usually quantified as ratios of gross primary production
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over transpiration, i.e., unit of water loss (Garbulsky et al.,
2010; Niu et al., 2011; Brümmer et al., 2012). In aquatic
systems, RUE usually refers to biomass production per unit of
nitrogen or phosphorus. Here, biomass production is commonly
quantified as somemeasure of standing stock (particulate carbon,
biovolume, or other proxies, such as chlorophyll a concentration
for phytoplankton) and divided by values of total pools of the
limiting nutrient (Ptacnik et al., 2008) or similar quantities
representing the degree of nutrient limitation (Breton et al.,
2017). Another example is the approach by Hood et al. (2018)
who used the ratio of net primary production, calculated as
the difference between gross primary production (GPP) and
autotrophic respiration divided by nutrient uptake as a measure
for RUE of the autotroph community. Rates of GPP are generally
laborious or even infeasible to obtain, especially in the field.
Hence, the above definitions all use measures of standing stock
as proxies for productivity. However, few studies report actual
rates, such as photosynthetic capacity per leaf nitrogen content
(Field and Mooney, 1983) and ratios of productivity rates over
nutrient supply (Lehtinen et al., 2017).

Thus, the major divide between different applications of RUE
is the difference between using gross and net production, and
replacing the latter with estimates of standing stock. This is
crucial as it has strong implications for interpretation. Gross
production is an estimate of realized productivity including
losses (exudation, excretion, or mortality through senescence and
consumption), whereas especially in aquatic systems, realized
productivity is often only weakly related to standing stock at all.
Hence, a major drawback of using estimates of standing stock
instead of productivity rates is that it is impossible to determine
biomass losses due to consumption, which is a bias that will differ
strongly between ecosystems.

For example, one general difference between aquatic and
terrestrial systems is that aquatic systems are characterized by
rapidly growing primary producers, which are more efficiently
consumed by herbivores (Shurin et al., 2006). In part, this
originates from better palatability of phytoplankton compared
to terrestrial plants due to lower proportions of low-quality
structural components, such as lignin or cellulose (Hessen et al.,
2004). Consequently, aquatic systems have higher energy transfer
efficiency compared to terrestrial ecosystems (Cebrian, 1999).

However, other system-specific caveats in using gross or net
productivity or standing stocks also apply. In forests, nitrogen use
efficiency (NUE) depends on resource resorption from senescing
leaves and should therefore be integrated over the whole year,
which is hardly feasible inmost studies (Birk andVitousek, 1986).
Thus, any resource use efficiency determined based on standing
stock values is confounded by system-specific conditions, which
complicates the interpretation of observed differences between
systems.

Similar issues are debated regarding differing ways to quantify
the amount of limiting resource in a system. Using total resource
pools such as soil N or P, or total N and P in water, ignores
the fact that not all of this pool may be available to organisms.
Additionally, bioavailability of resources differs considerably
between nutrient types (Soares et al., 2017). Thus, any RUE
calculated based on “total nutrient pool” measurements will

inevitably deviate from the real ratio. Similar issues arise when
using remaining resource concentrations in the ecosystem as
a proxy since these do not reflect the available, but only the
left-over resource pool.

A third line of differences between RUE approaches captures
the identity of the potentially limiting resources (Table 1),
which reflects different physiological processes and their distinct
resource requirements, as well as system-specific constraints on
availability. For example, contrary to aquatic systems, water
availability is one of the most crucial and limiting factors to
plant growth and photosynthesis in terrestrial systems (Farooq
et al., 2012). Therefore, water use efficiency (WUE) is only
relevant in a terrestrial setting. Several approaches to RUE in
autotroph organisms focus on photosynthesis, i.e., relate to
the efficiency of using light energy and water to transform
atmospheric CO2 into biomass. Thereby, water use efficiency
(WUE) and light use efficiency (LUE) in plants mainly reflect
processes of carbon fixation and thus differ from nitrogen use
efficiency, which is the result of carbon fixation AND protein
synthesis. Heterotrophic organisms, in contrast to autotrophs,
rely on organic carbon as their main energy source and their
growth ismajorly constrained by the nutrient content of their diet
(Hessen et al., 2004). Therefore, the energy and the matter related
aspects of RUE are rather tightly coupled. In heterotrophic
microbes, however, the balance between metabolic processes is
highly regulated and therefore resource use of carbon as well as
nitrogen and other nutrients is rather flexible (Keiblinger et al.,
2010; Mooshammer et al., 2014). Thus, although RUE definitions
for different types of resource or organism might resemble each
other, the observed patterns will likely vary as RUE is regulated
by different mechanisms.

UNIFYING THE CONCEPT OF RUE: A
SUGGESTION

Given the plethora of alternative definitions and proxies for
variables in numerator and denominator of the ratio quantifying
RUE, it might be worthwhile taking a step back to reconsider
what exactly RUE is supposed to represent and under what
circumstances the common assumptions hold. According to
its general definition, RUE is the ratio of the amount of
biomass produced (i.e., productivity) per unit resource. However,
regardless of the difficulties in choosing the most adequate or
representative variables for its quantification, the relationship
between resource availability and productivity is far from trivial
as it involves essentially two processes, the uptake and the
conversion of resources into biomass. This aspect is illustrated
by the “production ecology equation” (Monteith andMoss, 1977;
Binkley et al., 2004, Eqn. 1), where the realized gross productivity
of a system is determined by the amount of resource supplied, the
proportion of resource taken up, and the efficiency of converting
the ingested resource into new biomass.

GPP = resource supply x resource uptake x resource use

efficiency (1)
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Depending on the relative increase or decrease of each of the
three components in the equation and the position along the
resource supply axis, productivity can show correlations of
either direction with RUE. Hence, interpretation of empirical
patterns becomes less straightforward. However, the knowledge
of potential feed-back mechanisms and interactions between
these three components offers the opportunity to understand
diverging patterns across environmental conditions and
systems.

For example, the common assumption originating from
the concept of “diminishing marginal returns” (de Wit, 1992)
describes a decelerating increase of biomass accumulation
with an increasing supply of resource (Figure 1). This implies
decreasing levels of RUE with increasing resource supply (Niu
et al., 2011), but this assumption does not hold in general (Binkley
et al., 2004). An addition of resources can lead to both, enhanced
or reduced, RUE in the resource that was manipulated (Han
et al., 2016, see also sections RUE Under Multiple Resource
Limitation and RUE Across Ecological, Temporal, and Spatial
Scales). Binkley et al. (2004) show that higher water supply
increased the amount of light captured by a clonal eucalyptus
stand, but these increased levels of light capture were lower
than the increase of GPP, which indicates an increase in RUE of
light. Similarly, water uptake increased in response to elevated
water availability, but again the differences were smaller than the
relative changes in GPP, indicating higher levels ofWUE (Binkley
et al., 2004).

FIGURE 1 | Conceptual graph describing the relationship of resource use

efficiency (RUE) and production with increasing levels of resource supply. The

law of “Diminishing marginal returns” predicts decelerating rates of production

with increasing resource supply. RUE on the other hand is usually negative at

very low resource supply rates (yellow) due to resource losses as a

consequence of general maintenance mechanisms (e.g., respiration). With

increasing resource supply RUE increases until limitation by other resources

constrains resource needs (orange). Finally, at very high resource supply levels

saturation sets in (blue) which gradually decreases the amount of a particular

resource that can be incorporated into new biomass.

In fact, the effect of increased resource supply on productivity
depends on the scale of operation (leaf vs. canopy) and the type of
resource (light vs. nutrients) (see section RUE Across Ecological,
Temporal, and Spatial Scales). In terrestrial ecosystems, the
assumption of decreasing RUE as resource supply increases
at least partly holds at the leaf level. Physiological constraints
lead to negative net gains of resource (i.e., higher losses
due to for example respiration than gains in resource) and
accordingly negative RUE values at very low levels of resource
supply. As a consequence, RUE must increase at the lower
end of resource supply until it is increasingly constrained by
limitation from other resources and finally decreases as the
saturation point for a particular resource is reached (Figure 1).
However, the RUE patterns at the leaf scale can vary substantially
from patterns at higher organismal or ecological level (see
section RUE Across Ecological, Temporal, and Spatial Scales).
The difference between these observed patterns arise from
the variable forms of relations between resource uptake and
somatic (or numerical) growth. Growth directly depends on
external resource supply only if there is no storage involved,
otherwise growth depends on the internally available resource
stocks (e.g., cell quotas, i.e., intracellular level of the limiting
nutrient) (Monod, 1950; Droop, 1983). In phytoplankton, the
ratio between minimal cell quota (reflecting demand) and
maximal cell quota (reflecting storage) can give information on
the degree of luxury consumption possible, i.e., to what extent
an organism is able to take up and store surplus resources.
The potential decoupling of supply and production through
luxury uptake and storage differs between resource types and
organisms leading to different relationships between resource-
supply and RUE at the individual scale and above. Moreover,
it allows for preemption effects, where RUE is not driven by
the potentially most productive species but by species able to
monopolize resources through rapid uptake (Schmidtke et al.,
2010; Kardol et al., 2013).

Most established ways of calculating RUE do not consider
uptake explicitly, as in many empirical situations disentangling
uptake and conversion efficiency is not trivial. Still, we
recommend the use of the ecology production equation in order
to explicitly state the assumptions underlying the calculations
(Figure 2). This also implies to acknowledge different roles for
both functional response (i.e., intake rate of a consumer as
a function of resource density) and numerical responses (i.e.,
consumer population density as a function of resource density)
to resource gradients, which has strong implications for altering
the supply to RUE relationship at different levels of organization
(see section RUEAcross Ecological, Temporal and Spatial Scales).

RUE UNDER MULTIPLE RESOURCE
LIMITATION

For decades, primary production in communities was considered
to be limited by the least available nutrient, reflecting the
classical law of the minimum postulated by Sprengel (1826) and
popularized by Liebig (1840). However, more recent evidence
suggests that primary production in multispecies communities is
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FIGURE 2 | Based on the production ecology equation, realized productivity

(Preal) is a product of potential productivity (Ptot), resource uptake (U), and

resource use efficiency (RUE). Rearranging the equation gives the common

definition for RUE as the realized productivity divided by the amount of

assimilated resources, which is influenced by resource availability and uptake.

Thus, several ecological mechanisms have to be taken into account when

quantifying and interpreting RUE patterns.

frequently limited bymultiple nutrients (Arrigo, 2005; Elser et al.,
2007; Harpole et al., 2011). At the organism level, biochemical
processes can be actively and passively co-limited by nutrients
substituting each other, regulating each other’s uptake rate or
being equally essential (Saito et al., 2008; Bonachela et al., 2015;
Sperfeld et al., 2016). At the community level, co-limitation
additionally occurs as the result of individual populations being
limited by different resources (Danger et al., 2008).

The predominance of co-limitation has also direct
consequences for the definition of RUE, which in most
cases is defined as biomass production (realized productivity)
per single, limiting resource reflecting potential productivity.
Until now, co-limitation of resources has been little considered
when using RUE (but see Lehtinen et al., 2017, who include
resource availability and resource ratios in their (phytoplankton)
model; Hirose and Bazzaz, 1998; Tarvainen et al., 2015; Han
et al., 2016). Here, we discuss the importance of acknowledging
resource ratios when addressing RUE (section Stoichiometry and
RUE) and use this discussion to address RUE across multiple
trophic levels (section Multiple Trophic Levels).

Stoichiometry and RUE
Multiple resource limitation can be considered in different
ways when assessing RUE. One way is to explicitly mark the
transition between limitation by one resource to limitation
by another, e.g., by using the concept of threshold elemental
ratio (TER) (Figure 3). Here, one resource is limiting at any
time but the identity of the limiting resource can switch
depending on the supply ratio. TER was introduced in the

FIGURE 3 | Conceptual figure modified after (Mooshammer et al., 2014). The

relation between threshold elemental ratio (TER) and resource use efficiency

(RUE) depending on the available resource ratio. The TER is defined as the

optimal resource elemental ratio for consumer growth (Urabe and Watanabe,

1992). The TER marks the ratio of two resources above which a maximal RUE

for one resource is reached (here resource 2) as this resource becomes

limiting. While the limiting resource is expected to be used for growth, the

resource in excess must be disposed of.

framework of Ecological Stoichiometry (ES) (Sterner and Elser,
2002). ES is used to describe and understand the relation
between organisms and populations and their surrounding
environment based on the availability of and demand for
multiple resources. The TER concept has been developed to
understand the interactions between trophic levels (Urabe and
Watanabe, 1992; Sterner, 1997; Sterner et al., 1997), especially to
distinguish between energy-limited and nutrient-limited growth.
Further, this approach was used to investigate consumer-
resource interactions (Andersen et al., 2004) and fluxes of energy
and materials (Allen and Gillooly, 2009). When consumers
ingest food of different chemical composition, they can be
limited by energy if the C:nutrient ratio in their food is very
low. With increasing C:nutrient ratio, however, the nutrient
becomes so dilute in the ingested particles that growth rate
decreases even if ingestion rates are maximal (Urabe and Sterner,
1996).

The threshold elemental ratio is the food C:nutrient ratio
at which this switch between C- and nutrient limitation
occurs, and can differ between consumer species by an
order of magnitude, depending on nutrient requirements
(Frost et al., 2006). TER thus reflects that organisms require
elements for metabolism in ratios which are often different
from what is available in their environment. While primary
producers mainly obtain the same nutrient ratios as their
environment (Elser and Urabe, 1999; Güsewell, 2004), higher
trophic levels, such as zooplankton consumers or invertebrate
and vertebrate taxa, keep a relatively fixed elemental body
ratio, independent from the available food sources (Andersen
and Hessen, 1991; DeMott et al., 1998; Elser et al., 2000;
Jaenike and Markow, 2003). Therefore, consumers demand
for essential nutrients and the relatively plastic balance of
these nutrients in their prey can create elemental mismatches.
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Keeping such a fixed elemental body ratio and thus facing
a mismatch compared to the ratios mostly manifested by
producers, requires physiological mechanisms (by regulating
their cellular nutrient content via excretion or respiration)
and implies some costs (Elser et al., 2001; Kooijman et al.,
2004; Vrede et al., 2004). Some consumers adjust their food
intake by increasing the individual grazing rate with increasing
mismatch between their own requirements and their food as
demonstrated in a meta-analysis, pointing toward compensatory
feeding responses (Hillebrand et al., 2009). Others select their
food dependent on its nutritional content (Mayntz et al., 2005)
or digest and retain elements in ratios different from that
in the food in order to minimize the imbalances between
the available food and their requirements. Below, we show
that stoichiometry and stoichiometric mismatches are affected
by changing environmental conditions (section RUE in a
Changing Environment) and subject to adaptation onmicro- and
macroevolutionary time scales (section Resource Use Efficiency
Across Temporal and Spatial Scales).

While TER has mainly been used to characterize the
resource need of heterotrophic consumers, the concept also
applies to autotrophs or mixotrophs, where the limitation
between two elements switches at optimal ratios between
these resources (Figure 3). This has been described as a
mechanism to enhance nutrient supply under nutrient-limited
conditions for phytoplankton (Rothhaupt, 1996; Klausmeier
et al., 2004a,b; Hillebrand et al., 2013) as well as terrestrial
plants (Wakefield et al., 2005; Farnsworth and Ellison, 2008).
Recent evidence suggests that mixotrophs (i.e., organisms that
are able to use different sources of energy and carbon) may
buffer stoichiometric constraints for herbivores and thus stabilize
secondary production compared to systems dominated by
phototrophs (Moorthi et al., 2017).

A second approach to consider multiple resource limitation
when assessing RUE (Figure 4) is to distinguish between
balanced and imbalanced resource supply (Cardinale et al.,
2009). Nutrient uptake, and therefore RUE, also depend on the
balance or imbalance of resource ratios, the heterogeneity of
their spatial distribution and the identity of the most limiting
resource. Cardinale et al. (2009) separated between the amount
of resources and the ratios of these resources by standardizing
(rescaling) all resource concentrations and then using Euclidian
geometry for distinguishing between resource balance and
imbalance. Balanced resource supply means that all resources
are equally abundant with all of them equally rare or abundant.
Imbalanced resource supply indicates that some resources are
available in excess while others are limiting. Studies using this
approach showed that more balanced supply of resources leads
to more efficient resource use and thus higher overall RUE
as less resources remain unconsumed (Gross and Cardinale,
2007; Cardinale et al., 2009; Hodapp et al., 2016). This could
reflect the low RUE for the overly abundant resources or the
inability to access resources if uptake of multiple resources is
co-dependent.

Recently, Han et al. (2016) extended a model based on the
production ecology equation considering one resource (Binkley
et al., 2004) to integrate multiple resource use efficiency. A

FIGURE 4 | Relationships between resource ratio and RUE under multiple

resource limitation. Under conditions when one resource is limiting (either high

or low R1:R2 ratio) RUE can be determine based on a single resource (either

R1, green shaded area, or R2, blue shaded area) whereas multiple resource

limitations need to be considered for the determination of RUE if both

resources are in higher supply (more balanced).

test of their algorithm on a water-availability gradient in semi-
arid grasslands showed that water availability affected the
resource absorption rates, resource use efficiencies and resource
availabilities of all three resources in their model, water, light and
nitrogen, and that their interaction jointly regulated ecosystem
productivity.

Multiple Trophic Levels
Approaches considering multiple resources have major appeal
when addressing RUE across more than one trophic transfer. The
community structure of a food web depends on the efficiency
of energy transfer between different trophic levels (Hutchinson,
1959; Hairston et al., 1960). Hessen et al. (2004) argued that
while energy is given in joules, carbon units are more suitable to
describe both energy and matter flows. However, the efficiency of
C transfer depends also on the cell quotas of N and P relative to
C (Hessen et al., 2004). Moreover, the ratios in which consumers
digest and retain elements depend on organism-specific resource
limitations and might differ from that in the food material.
Another example for multiple nutrient interactions across
trophic levels are organisms with an intermediate role in the
food web, that “repack” small food compounds by ingesting and
assimilating them and thus serve as more complex food sources
for higher trophic levels. In general, uptake and utilization
efficiency of nutrients differ among organisms on different
trophic levels and lead to differences in the release of resources,
which is greater for the resource in excess. This leads to the
suggestion to consider not only one but multiple resources when
defining RUE among multiple trophic levels.
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RUE ACROSS ECOLOGICAL, TEMPORAL
AND SPATIAL SCALES

The constraints on resource use efficiency are likely to be different
at different scales of organization from individuals to ecosystems
(section Resource Use Efficiency Across Scales of Organization)
and also when including more environmental heterogeneity
when increasing the temporal and spatial scale of inference
(section Resource Use Efficiency Across Temporal and Spatial
Scales).

Resource Use Efficiency Across Scales of
Organization
The cellular and individual RUE are mainly characterized by
the functional response of resource uptake to resource supply,
reflecting the concentration—dependent on an increase in uptake
as well as luxury consumption and storage. The RUE at
the level of populations, communities or ecosystems involve
resource use in the form of somatic growth or numerical
responses (Figure 5). Moreover, the processes affecting resource
demand and (co)limitation are highly different between these
different scales (Danger et al., 2008; Saito et al., 2008). At
the scales of cells, organs or organisms, limitation is mainly
based on biochemical processes. Co-limitation occurs when the
resource uptake and incorporation of one element depend on
the availability of another. Within populations, genetic, and
phenotypic variation between individuals creates differences
in demand for—and thus limitation by—different resources.
This variability will increase when considering different species
or species interactions (competitive or mutualistic), as the
community-level resource use differs from the one exhibited
by single species (Figure 5). Thus, the role of stoichiometry
of resource supply will also increase with levels of ecological

FIGURE 5 | Resource use and resource demand depending on organizational

levels from single cells to ecosystems. Increasing complexity of resource use

processes and types of resource limitation decrease the predictability of RUE

by up or downscaling across levels of organization.

complexity, especially if it includes interactions between species
(Kay et al., 2005). For example, mycorrhiza-plant associations
can be described as a trade-balance between the abundant access
of plants to carbon and the access of the fungal partner to soil
nutrients (Schwartz and Hoeksema, 1998; Johnson, 2010). Here,
the shared use efficiency for the different resources is higher than
predicted from each partner’s specific RUE. Similar mutualistic
increases in effective RUE can be found in endosymbiont bearing
animals (Fenchel and Finlay, 1991), but also in ecosystem-wide
facultative mutualisms (Bradley and Kenneth, 2001). In any
of these cases, RUE is predicted to change when extending
the scope from single individuals to species to the community
level, where the directionality of change depends on the type
of interaction between organisms. Mutualistic interactions and
complementarity can be predicted to increase shared resource use
efficiency, whereas interference competition or predation might
reduce overall RUE.

Much empirical evidence supports the idea that the
relationship between resource supply and RUE depends on
the scale of organization. Increased precipitation decreases the
efficiency of water use at the level of single leaves, but increases
it at the canopy and ecosystem level (Niu et al., 2011). Likewise,
leaf-scale resource use efficiency for light in trees declines with
increasing irradiance, but increases at the scale of entire forests
(Binkley et al., 2004). In these examples, the efficiency of the
functional response decreases with supply (lower marginal
gains), but the interactions between individuals and species as
well as the inclusion of growth responses can lead to different
relationships at the community scale. This is true beyond
autotrophs. For herbivores, decreasing food quality (increasing
stoichiometric mismatch between consumer and plant) leads to
increased ingestion rates at the level of individuals, but decreased
population or community biomass (Hillebrand et al., 2009). The
latter example reflects that individuals tend to overcome shortage
by compensatory functional responses, whereas poor growth
efficiency leads to reduced resource use efficiency at higher levels
of organization.

Resource Use Efficiency Across Temporal
and Spatial Scales
Examining patterns of RUE at larger spatial and temporal scales
will, in most cases, lead to an increase in the heterogeneity of
resource supply rates and ratios and thereby alter RUE. The
consequences of spatial heterogeneity of resource supply for RUE
have been well developed in models and experiments conducted
in the framework of metacommunity (Leibold and Miller, 2004)
or metaecosystem (Gounand et al., 2018) ecology. In both
theories, resource use in local habitats (patches) is explained
from local community dynamics as well as regional processes
(dispersal, mobility). Regional scale RUE will be affected by
three major factors, (i) the relative difference in the resource
supply between patches, (ii) the spatial connectivity between
patches, and (iii) the spatial arrangement of the heterogeneity in
resource supply. Theory and empirical evidence give predictions
for changes in RUE across all pairwise combination of these
axes (Figure 6). With respect to resource supply, models,
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FIGURE 6 | Conceptual graph describing consequences of scaling up in

space for RUE. If multiple resources are more heterogeneously distributed in

space, RUE will decline unless high spatial connectivity (high rate of dispersal

or active movement of consumer) allows efficient capture of multiple resources

across the resource landscape (Hodapp et al., 2016). Thus, RUE will be

minimal if resources are heterogeneously distributed, but low connectivity

prevents consuming resources in different patches. The positive effect of

dispersal or mobility decreases however, when neighboring patches differ

strongly in their resource supply, reflected by the difference between a more

gradual heterogeneity in the left panel compared to a more patchy difference in

resource supply in the right panel. As detailed in the text, similar arguments

can be made for temporal fluctuations in resource supply.

and experiments converge on the conclusion that a more
heterogeneous landscape of resource supply leads to overall
lower RUE at the landscape scale. On the one hand, the
heterogeneity affects how well resource uptake traits match
the local environment. On the other hand heterogeneity in
multiple resources likely leads to stoichiometric imbalances,
leading to higher amounts of resources left over and lowered
multi-element RUE (Gross and Cardinale, 2007; Hodapp et al.,
2016; Gülzow et al., 2019). Consequently, the RUE at larger
spatial scales becomes more dependent on the variability and
complementarity of resource traits between species (Cardinale
et al., 2004; Hodapp et al., 2016). Regarding spatial connectivity,
spatial connectivity alters the spatial imprint on RUE if diffusive
processes homogenize resource differences (Gülzow et al., 2019)
or organisms are able to move between patches (Marleau et al.,
2015). In both cases, resource supply will be experienced as less
heterogeneous and regional RUEwill not decrease asmuch as in a
low connectivity system (Figure 6). Extending these predictions,
stoichiometric distribution models have been developed to
address how the RUE of a spatially foraging consumer will
eventually lead to spatial patterns in resource stoichiometry
(Leroux et al., 2017).

Both axes will be altered by the spatial distribution of resources
(Hodapp et al., 2016). In a landscape characterized by smooth
resource gradients, neighboring patches are similar in their
resource supply, and a short-distance disperser is likely to find
similar resource conditions as in its original patch, increasing
RUE (Figure 6). By contrast, in a landscape where resources
are much more randomly distributed, a species performing well
in one patch and producing a lot of offspring might disperse
into neighboring patches with highly different resource supply,

where its RUE will be low. Depending on the relative strength
of dispersal compared to local responses of population growth to
resource availability, a very patchy distribution of resources will
be detrimental to overall resource use.

In contrast to the large number of studies examining
RUE in space, there is a much smaller body of literature
on the effect of larger temporal scales on RUE. However,
in principle the same arguments prevail: RUE will decrease
when measured over longer time scales if different resources
are supplied asynchronously, leading to temporal imbalance in
supply stoichiometry, analogous to the spatial supply imbalance
(Figure 6). This effect will be less prominent if long-lived species
can integrate over the fluctuations in supply, analogous to the
effect of connectivity in space. RUE will also be higher if changes
in temporal supply are gradual, whereas pulsed, abrupt changes
will decrease the match between resource use traits and resource
availability (Figure 6). A nice support for this analogy is a
study on Norwegian spruce stands, showing that RUE peaks for
different resources occurred in different seasons (Tarvainen et al.,
2015).

On evolutionary time scales, the stoichiometric match
between resource requirements and supply ultimately determines
the trade-off between the material and energetic costs of
a particular trait or strategy and its fitness benefits (Kay
et al., 2005). For instance, resources that are allocated to
structural components as opposed to fast growth can be valuable
investments if they are beneficial in terms of reproductive success.
Thus, flexibility in elemental ratios and therefore mechanisms
driving RUE are subject to selective pressure.

In general, responses to spatial and temporal gradients of
resource supply might differ (Paruelo et al., 1999), thus, more
research joining both perspectives might be needed to assess the
full scale dependency of RUE.

RUE IN A CHANGING ENVIRONMENT

Given the central role that has been ascribed to RUE in explaining
biodiversity effects on ecosystem processes, it is mandatory to
understand how RUE will directly be affected by anthropogenic
drivers of environmental change. These drivers can be separated
in two categories: those altering RUE through altering resource
supply, and those altering RUE by altering the demand.

Anthropogenic changes in supply include eutrophication (or
in later years also re-oligotrophication), fossil fuel burning
increasing e.g., carbon dioxide availability in the atmosphere,
changes in precipitation or changes in light climate, e.g., through
increased turbidity. The effect of altering the availability of any
of these resources will alter the RUE for this resource, where the
sign depends on the non-linear relationship between supply and
RUE (see section Unifying the Concept of RUE: a Suggestion,
Figure 1). Additionally, changes in the supply of any resource can
indirectly influence RUE for another resource, a phenomenon
often observed in agricultural studies, which aim to increase
productivity and RUE with minimal effort in irrigation and
fertilization. Examples include increasing water use efficiency
over gradients of CO2 availability (Policy et al., 1993; Keenan
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et al., 2013) and light (Aranda et al., 2007). Likewise, enhancing
CO2 increased light and nutrient use efficiency (Hirose and
Bazzaz, 1998).

Global warming is an example for an anthropogenic driver
of global change affecting the demand rather than the supply.
It has only recently been fully accepted that one of the
consequences of global warming is that the inevitable increase
in base metabolic rates and growth rates alters the absolute
and relative demands for nutrients. One of the most elegant
examples is the model by Thomas et al. (2017) that shows
how the minimal requirements for a nutrient increase with
temperature, whereas simultaneously an increase in nutrient
supply allows for a thermal optimum shifted to higher
temperatures. While others have argued that the increase in
demand might be alleviated by higher efficiency in resource
use (Toseland et al., 2013), there is evidence from studies
on phytoplankton showing that half saturation constants for
nutrients increase with temperature (Bestion et al., 2018)
or that internal algal stoichiometry reflects higher relative
nutrient limitation (Yvon-Durocher et al., 2015). A recent
study investigating combined temperature and supply level
effects on phytoplankton community growth (Verbeek et al.,
2018) showed that whereas single treatments of temperature
increase or oligotrophication led to increases in RUE, the
combined treatment resulted in non-linear responses, reflecting
themismatch between increasing demand and decreasing supply.
Similarly, shifts in biochemical composition of zooplankton
species with increasing temperature were shown, where the sign
of the effect was dependent on resource availability (Bullejos et al.,
2014). In addition to effects of increasing mean temperature,
species responses to changes in temperature variance are also
governed by asymmetric thermal performance curves. In most
cases, performance declines faster at superoptimal temperatures
than it increases at suboptimal temperatures. Consequently, the
effect of temperature fluctuations on growth rate (and thus
resource demand) in the short term can be net positive or net
negative depending on the degree of asymmetry in the thermal
performance curve (Bernhardt et al., 2018). On longer time scales
different adaptive response were shown to evolve under different
timescales depending on the frequency of the environmental
fluctuation (Botero et al., 2015). Thus, the changes in demand and
supply of resources that interactively shape responses of RUE are
influenced by the magnitude and fluctuation of environmental
properties.

BIODIVERSITY EFFECTS ON RUE

A common perception among ecologists is that higher levels of
diversity (richness and evenness) generally result in higher levels
of depletion of the supplied resources, i.e., resource use efficiency,
which then leads to an increase in biomass production (Figure 7).
While there is plenty of theoretical and empirical support for this
assumption for mainly terrestrial ecosystems (Cardinale et al.,
2006), the general patterns show quite a variability across systems
(Balvanera et al., 2006). In fact, study outcomes from natural
systems suggest a considerable flexibility of diversity effects on

RUE and production (Filstrup et al., 2014; Gagic et al., 2015;
Hodapp et al., 2015; Fontana et al., 2018).

As illustrated by the production ecology equation, system
productivity is determined by more than just RUE. In fact, the
common diversity effects, such as complementarity, selection,
and facilitation are, strictly speaking, associated with resource
uptake rather than resource use efficiency itself (Nijs and Impens,
2000). As illustrated earlier, resource uptake is intricately related
to and regulated by RUE through resource demand, depending
on environmental conditions, species interactions, andmetabolic
constraints.

However, whether increased species richness yields higher
biomass depends on the resource use efficiency traits of
the species that is added to the system. Given a system
with a certain number of species and the associated RUE,
increasing community richness by just a single species will
result in the re-distribution of resources within the species
community and any resource re-distributed from a species
with high RUE to a new species with lower RUE will result
in a reduction of community productivity (Nijs and Impens,
2000). An appropriate example is phytoplankton communities,
where the potential for complementarity effects is lower due
to the rather homogeneous aquatic environment and the fact
that plankton are floating freely in the water column, i.e.,
they have similar access to nutrients. Schmidtke et al. (2010)
showed experimentally that instead of increasing biomass, all
of their tested algal communities declined in biomass when
adding further functional groups to the species assemblage.
They ascribe this pattern to a trade-off between growth rate
and the ability to build larger amounts of biomass as slow-
growing species produced higher biovolumes in monoculture,
but were outcompeted by fast-growing, less productive species in
the species mixtures. Hence, positive effects of diversity on RUE
and production will only occur in case of a positive correlation
between resource uptake and resource use efficiency traits of the
additional species. This is not contradictory to the huge body
of biodiversity-ecosystem functioning (BEF) literature, which,
in the vast majority, reports positive diversity effects. Classic
BEF experiments tend to influence their outcomes, because in
these highly controlled environments the only reason why species
coexist is usually resource complementarity. In natural systems,
however, coexistence is affected by many more mechanisms, e.g.,
dispersal rate, (selective) grazing pressure, and environmental
fluctuations.

Here, adding more species might not or even negatively
affect total RUE when traits mediating coexistence are not or
are negatively related to traits mediating resource use (Mouquet
et al., 2002).

Additional variability in natural systems originates from the
distribution of resource supply. Resource supply can be more
or less heterogeneous in space, time, and the range of resource
options provided, e.g., variability in nutrient ratios. In this
context, more heterogeneous resource supply requires high trait
diversity in uptake and/or resource use in order to achieve
complementarity and high proportions of realized biomass
production. On the contrary, in uniform resource environments
(i.e., low heterogeneity in resource supply), resources will most
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FIGURE 7 | Conceptual figure of possible relationships between diversity measures and resource use efficiency (RUE) or productivity. Positive, neutral or negative

correlations are possible, depending on the match between resource supply and species assemblage. Shaded areas indicate potential variation around the general

trend.

effectively be turned into new biomass when the local community
consists of one or a few species that are well adapted to the given
resource conditions (Hodapp et al., 2016). However, natural
environments are seldom static or uniform. Therefore, in the
more common case of patchy environments and fluctuating
resource conditions over time, large regional species pools,
and sufficient connectivity between patches will always serve
as insurance for sustaining high levels of RUE, and therefore,
ecosystem functioning through time (Danger et al., 2008). These
considerations also hold with regard to other environmental
factors. For instance, Norberg et al. (2001) use a theoretical
framework to illustrate how the phenotypic diversity effects on
functioning are affected by changing environmental conditions.
Empirically, this can be shown by the effect of temporal or spatial
heterogeneity on BEF relationships (Allan et al., 2011; Isbell et al.,
2011). More species are needed to maintain a certain fraction of
the productivity in systems varying more in space or time, as
the species-specific RUE decreases if there are times or places
where the performance of specific species is not maximal. In
other words, environmental dimensionality has to match the
dimensionality of species traits in the local assemblage in order
to guarantee efficient use of the given resources (Ptacnik et al.,
2010), and consequently, higher productivity.

CONCLUSIONS

As discussed in the previous sections, RUE and its role in
governing BEF relationships does not only vary due to organism-
specific physiological properties, but also between levels of

biological organization and in response to heterogeneity in
environmental conditions. Thus, while the ultimate aim of
studies on RUE should be to relate rates of productivity to
the amount of available resource, it might not be feasible to
define a general concept for the quantification and mechanisms
driving RUE that is valid across types of ecosystem, organism,
and resource. Albeit, any deviation from the original concept
that might be necessary needs to be acknowledged and discussed
when making inferential statements. New insights could be
generated by testing the extension of the concept to more than
one nutrient and investigating how anthropogenic alteration of
environmental conditions will affect long-term changes in RUE.
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