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Plasticity, both within and across generations, can shape sexual traits involved

in mate choice and reproductive success, and thus direct measures of fitness.

Especially, transgenerational plasticity (TGP), where parental environment

influences offspring plasticity in future environments, could compensate for

otherwise negative effects of environmental change on offspring sexual

traits. We conducted a mate choice experiment using stickleback (Gasterosteus
aculeatus) with different thermal histories (ambient 178C or elevated 218C)

within and across generations under simulated ocean warming using outdoor

mesocosms. Parentage analysis of egg clutches revealed that maternal devel-

opmental temperature and reproductive (mesocosm) environment affected

egg size, with females that developed at 178C laying smaller eggs in 218C
mesocosms, likely owing to metabolic costs at elevated temperature. Paternal

developmental temperature interacted with the reproductive environment to

influence mating success, particularly under simulated ocean warming, with

males that developed at 218C showing lower overall mating success compared

with 178C males, but higher mating success in 218C mesocosms. Furthermore,

mating success of males was influenced by the interaction between F1

developmental temperature and F0 parent acclimation temperature, demon-

strating the potential role of both TGP and within-generation plasticity

in shaping traits involved in sexual selection and mate choice, potentially

facilitating rapid responses to environmental change.

This article is part of the theme issue ‘The role of plasticity in phenotypic

adaptation to rapid environmental change’.

provided by Electronic Publication Informati
1. Introduction
The world’s oceans are warming at unprecedented rates [1], and organisms need

to respond to these fast-changing environments. Response mechanisms include

migration (shifting distributions), rapid evolution (genetic tracking) and/or adap-

tive phenotypic plasticity (reviewed in [2]). Plasticity can occur both within a

generation (genotype by environment interaction or G � E) and across gener-

ations (transgenerational plasticity or TGP). For TGP, the environment that

parents experience influences offspring plasticity, manifest as a parent environ-

ment by offspring environment interaction [3]. In the face of rapid climate

change, within-generation plasticity can buffer individuals from negative impacts

of their immediate environment [4]. When parent and offspring environments

match, TGP is likely to play an important role [5] because it is a phenotypic

response that is transferred across generations, priming offspring for future con-

ditions, and potentially buying time for slower genetic change to catch up [6,7].

The number of studies documenting TGP in response to simulated climate
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change scenarios has exploded over the past few years

(reviewed in [8]). In many cases, acclimation of parents to

rapidly changing environmental conditions resulted in com-

pensation of offspring traits to otherwise negative effects. For

example, TGP in response to climate warming, changes to sal-

inity and ocean acidification were shown in numerous taxa

spanning the tree of life [9], with benefits for offspring traits

such as improved survival, development, growth, fecundity

and metabolism [8]. What are currently lacking in the TGP-

climate change literature, however, are studies that not only

measure such proxies for fitness but also examine direct

measures of fitness such as reproductive success (but see

[10]). The importance of within-generation plasticity in shap-

ing traits involved in sexual selection has recently come to

light [11], but the role of TGP in mate choice and reproductive

success is not well known.

Reproductive success is the ultimate measure of fitness [12].

Since reproductive success is determined not solely by the

number of offspring produced, but also by the probable repro-

ductive success of those offspring, mate choice plays an

important part in this success [13]. Mate choice is the process

that occurs whenever the effects of traits expressed in one sex

lead to non-random mating with members of the opposite sex

[14]. The topic of mate choice is broad and has gained substan-

tial attention in the literature (reviewed in [15]). Briefly, in

resource-based mating systems, the choosing sex, typically the

female, selects partners based on direct benefits (i.e. resources

such as food, shelter, parental care or protection). In non-

resource-based systems, genetic components such as ‘good’ or

‘compatible’ genes often constitute an important factor mediat-

ing mate choice [14]. Both empirical and theoretical works

suggest that within-generation plasticity (G � E) can influence

variation in sexually selected traits [16]. Recently, theoretical

models have also drawn attention to how TGP and other non-

genetic inheritance mechanisms such as epigenetic marks can

lead to adaptive (or non-adaptive) traits in offspring that influ-

ence sexual selection and mate choice [17]. Both the expression

of sexual traits (e.g. body size, ornamentation, condition) and

mating preferences for these traits can be altered by G � E

and parental effects [18]. However, empirical studies explicitly

demonstrating the interaction between parental environment,

offspring environment and offspring mate choice are scarce

(but see examples of sexual imprinting [19,20]).

Mate choice is expected to select for traits that reliably

indicate mate quality and/or compatibility [14], but environ-

ments change in space and time, and cues that are indicative

of mate quality in one environment may represent sub-

optimal or maladaptive cues under changed conditions. In

fast-changing environments, mate quality may be highly

environment-dependent, and individuals might choose based

on unreliable cues unless multiple cues or alternative signals

are involved in choice [21,22]. For instance, increased water

turbidity due to eutrophication reduced reliance on visual

cues for mate quality in several fish species, leading to a greater

investment in courtship and reliance on other (e.g. olfactory)

cues [23–25]. Plasticity, and especially TGP, could buffer

some of the negative consequences of rapidly changing

environments on mate quality cues, since individuals that can

quickly adjust their phenotype or are pre-acclimated to specific

environments should have an advantage over naive individuals

or those with fixed phenotypes [17,20]. Consequently, mating

preference for individuals with phenotypic traits (e.g. body

size, condition) optimized for specific environments via
within-generation plasticity or TGP could occur, leading to

mate choice based on phenotype matching (assortative

mating based on similar phenotype [26,27]). Examples of phe-

notype matching are widespread and include mate choice

based on similar body size [28–32], shape [33], symmetry

[34], colour [35], behaviour [36] and complementary MHC gen-

otype (important for parasite resistance [37,38]). Nevertheless,

the potential for phenotype matching based on TGP-optimized

phenotypes under climate change has not yet been investigated.

Threespine stickleback, Gasterosteus aculeatus (Linnaeus,

1758), hereafter referred to simply as stickleback, is an ideal

model organism to study phenotypic plasticity in general

owing to its high phenotypic diversity across environmental

conditions (e.g. temperature, salinity, season length, habitats,

predators) [39,40] and plasticity of mate choice specifically, as

its complex mating behaviour has been extensively studied

for decades [39,41–43]. At the start of the breeding season,

males migrate to shallow water to establish a territory and

build a nest to court females to lay their eggs. The majority of

eggs are fertilized by the nest owner, but alternative reproduc-

tive tactics such as sneaking and egg thievery are common [44].

Females choose among nesting males based on visual and

olfactory cues signalling male quality [45]. Males display an

intense red breeding coloration that has been shown to indi-

cate overall condition, parental ability (males care for eggs

and young offspring) and parasite infection status [46,47].

Olfactory-based mate choice experiments have further demon-

strated that females prefer to mate with males with an MHC

(major histocompatibility complex) genotype that provides

the optimum number of MHC variants (intermediate MHC

diversity) in the offspring [48]. Another important visual cue

is body size. Several studies found that females chose big

males owing to their presumably better condition, and com-

petitive or courting ability [49–51]. Yet, studies of stickleback

species-pairs or ecotypes (e.g. benthic–limnetic, stream–lake

or anadromous–freshwater) found that females preferred

males of similar size, and few interspecific or between-

ecotype matings occurred between fish with conspicuous size

differences [29,36,52,53]. Indeed, size-matching was found to

be a more important choice factor than size itself when body

size was experimentally manipulated to remove confounding

effects [30,32].

Previous studies of the oceanic stickleback population inves-

tigated here found that body size was highly plastic in response

to environmental temperature both within and across gener-

ations. Exposure to a simulated þ48C climate change scenario

during development had negative effects on growth and result-

ing body size [54–59]. But, when mothers were acclimated to

elevated temperature during reproductive conditioning, TGP

resulted in (relatively) larger offspring in theþ48C climate scen-

ario [56,58]. The mechanism underlying better growth at

elevated temperature was more efficient metabolism via the

inheritance of optimized mitochondria from mothers [56].

Optimized mitochondrial function was underlain by changes

to mitochondrial and other gene expression depending on the

maternal and also the grand-maternal thermal environment,

suggesting an epigenetic basis for TGP [60,61]. Nevertheless,

fish with a history of elevated temperature across three gener-

ations were smaller than those with an ambient temperature

history [57], indicating that a continued increase in climate

warming will likely result in progressively smaller adult fish

(see also [62]). However, bigger is not always better when

environmental conditions change [63]. Smaller fish may be
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Figure 1. Experimental design using two generations of stickleback (Gasterosteus aculeatus) to investigate the role of within-generation plasticity and transgener-
ational plasticity in mating success of F1 adults. Schematic depicts (a) F0 acute acclimation temperature, F1 offspring developmental temperature and F1 adult
reproductive environment (mesocosm) temperature at either ambient (178C) or simulated climate change (218C) conditions, and (b) F1 males and females
that developed at both 178C and 218C assigned to mesocosms set to either 178C or 218C (one of six mesocosm pairs is shown).
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favoured under size-selective predation, or when larger size is

associated with higher physiological demands under heat

stress [64]; hence, smaller size might be more attractive under

these conditions [65]. Still, when body size is removed as a

choice factor by size-matching potential mates, other

phenotypic signals indicating mate quality in changed environ-

ments due to within-generation plasticity or TGP benefits may

become important [18,20]. In this case, individuals displaying

phenotypes optimized for a specific environment may be chosen.

Here, we investigated the role of within-generation plas-

ticity and TGP in mate choice and reproductive success of

stickleback under simulated ocean warming in semi-natural

conditions using large, outdoor mesocosms. We predicted

that females should choose males with phenotypic signals

indicating high quality in their specific environment, and

removed body size per se as a choice factor by size-matching

males and females from different thermal histories (ambient

or elevated temperature). Specifically, we predicted that

phenotype matching based on mate quality cues and sexual

traits underlain by within-generation plasticity and/or TGP

benefits should lead to more mating success between males

and females with an ambient temperature history in ambient

temperature conditions, and more mating success between

males and females with an elevated temperature history in

elevated temperature conditions. By estimating the reproduc-

tive success of offspring with parents from different thermal

histories under changing climate conditions, we can also

begin to understand the role of and adaptive significance of

TGP under climate change for fitness in wild populations.
2. Material and methods
(a) Mate choice experiment
Stickleback used in the mate choice experiment originated from an

oceanic population in the Sylt-Rømø Bight, Germany (558050 N,

88390 E). Wild adult fish were caught by trawling in February

2015, brought back to the laboratory and used in a TGP experiment

in spring 2015. Starting on 12 March 2015, wild adult fish (F0)

experienced acclimation at 178C or 218C for between six and

eight weeks during their reproductive conditioning phase (see

[59] for details). F1 offspring from those parents were raised in

the laboratory until adulthood (approx. 1 year) at either 178C or

218C. In the current experiment, these F1 adults were further

assigned to reproductive environments (mesocosms) set to either

178C or 218C (figure 1a). Specifically, in June 2016, 144 adult F1

individuals from a mix of genetic (family) backgrounds that

showed signs of sexual maturity (72 females and 72 males) were
chosen for the mating experiment. For both males and females,

36 developed at 178C and 36 developed at 218C (figure 1b). Of

72 F1 males, 45 (62.5%) also originated from either 178C or 218C
F0 parents. For F1 females, 29/72 (40.3%) also had F0 parents accli-

mated to either 178C or 218C. The remaining F1 males and females

had F0 parents acclimated for six to eight weeks to fluctuating

temperatures, where experimental temperatures either varied

weekly between 178C and 218C or fluctuated stochastically

between 148C and 238C (see [59]). Although fluctuating (unpre-

dictable) environments are not predicted to promote TGP [7], we

took a conservative approach and only used F1 fish whose F0

parents were acclimated at constant 178C and 218C in the analysis

of transgenerational effects. With this set-up, we could investigate

the role of within-generation plasticity (developmental tempera-

ture) and reproductive environment (mesocosm) temperature on

mate choice for the full number of F1 individuals (n ¼ 144),

while still investigating the influence of TGP (F0 acclimation temp-

erature) and reproductive environment temperature on mate

choice for a subset of fish (n ¼ 74).

At the start of the experiment, standard length (+1 mm), sex

and weight were determined for each F1 fish. The first dorsal

spine of each fish was clipped and stored at 2208C for later geno-

typing (see below), and fish were kept individually for 2 days in

2 l aquaria with permanent flow-through of filtered seawater at

their developmental temperature (178C or 218C) to ensure they

were in good condition at the start of the experiment. Twelve

mating groups were then formed, of which six were assigned to

mesocosms set to 178C and six were assigned to mesocosms set

to 218C. Each mating group contained six males (three that devel-

oped at 178C; three that developed at 218C) and six females (three

that developed at 178C; three that developed at 218C; n ¼ 144 F1

males and females in total) from mixed F1 families to ensure that

potential mating partners were not related, and each mating

group contained the same number of F1 families (figure 1b).

A full-factorial three-way experimental design (F0 8C � F1 8C �
mesocosm 8C) was possible for males, with between n ¼ 3 and

n ¼ 8 males per three-way combination, but not for females (e.g.

no females in the 218C � 218C � 178C combination, but with

between n ¼ 2 and n ¼ 6 in all other three-way combinations).

Since body size-matching is known to play a strong role in stickle-

back mate choice [32], our priority was to match sizes within each

mesocosm among the 144 F1 males and females from the two devel-

opmental temperatures. F1 males and females in each mating group

were size-matched within (+5 mm) and between (+2 mm) sexes.

Each mating group was transferred to one of 12 1800 l outdoor

mesocosms (see [66] for mesocosm structural details) that con-

tained a mating arena built with 5 mm mesh on a 97� 97 cm

frame positioned on a platform at 50 cm water depth. Each

mating arena included six plastic trays (25 � 14� 6 cm) filled

with 1.25 kg of washed sand and 1.5 g nesting material (Wenco

Nm 30/3 black sewing thread cut into 5–7 cm lengths conditioned
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for 2 days in seawater), so that each male could potentially build a

nest and establish a territory. The experiment was conducted for

18 days, and nest building activity and adult mortality were

checked daily. Temperature data from each mesocosm were

measured every 30 min using installed multi-sensor probes

(Hydrolab DS5X Probe, OTT Messtechnik GmbH, Kempten,

Germany). At the end of the experiment, all fish were recaptured,

weighed (+1 mg) and photographed (using a Canon Eos 60 D,

Canon EF 100 mm f/2.8L Macro) to determine the standard

length (+1 mm) and sex. Fish were then euthanized in an overdose

of MS222 and stored at 2208C for later genetic analyses.

Trays with active nests were removed every third day to care-

fully detach egg clutches under a dissecting microscope to

minimize disturbance of the nest. After adding 0.2 g of replacement

nest material, trays were put back to the same position in the meso-

cosm. The experiment was stopped when at least six egg clutches

had been collected from each mesocosm. Egg clutches were photo-

graphed under a dissecting microscope for later determination of

egg size and clutch size using imaging software (LEICA QWIN,

Leica Microsystems Imaging Solutions Ltd, Cambridge, UK).

Mean egg size per clutch was determined by measuring the diam-

eter of 10 randomly chosen eggs, where the outer edge of each

measured egg was clearly visible and not distorted by neighbour-

ing eggs. Clutch size was determined by summing the number of

eggs in each clutch. Egg clutches were then transferred into

1000 ml glass beakers containing an air supply and filtered sea-

water heated to the corresponding mesocosm temperature (178C
or 218C). Water in the beakers was changed daily until larvae

began to hatch. Hatching success was estimated as the proportion

of live larvae in relation to total larvae (live and dead) plus dead

eggs/embryos after 2 days of hatching (i.e. unfertilized eggs were

not included). At 5 days post-hatch, 24 larvae from each clutch

were randomly selected, euthanized in MS222 and frozen at

2208C for later determination of larval genotypes.

(b) Genotyping and parentage analysis
All 144 adult F1 fish, as well as 16 F2 larvae from each of 72 ran-

domly chosen clutches (six clutches from each mesocosm; n ¼
1152 larvae in total), were genotyped at five microsatellite loci

(see [48] for loci details). DNA was extracted from spine-clips for

adults and from whole 5-day-old larvae using DNeasy Blood and

Tissue Kits (Qiagen, Hilden, Germany) following the manufac-

turer’s protocol. The 20 ml multiplex polymerase chain reactions

(PCRs) consisted of 10 ml Multiplex Master Mix (Qiagen, Hilden,

Germany), 8 ml primer mix (forward and reverse primer of 5196

HEX, 4170 6_FAM, 1125 6_FAM, 1097 NED and 7033 NED) and

2 ml DNA. Thermal cycling started with an initial denaturation

step at 958C for 5 min followed by 30 cycles of 948C for 1 min,

588C for 1 min and 728C for 1 min, and ended with a final extension

step at 728C for 10 min (as in [55]). Amplified fragments were

diluted with water (1 : 20), and 1 ml of diluted PCR product was

denatured in 15 ml Hi-Di Formamide containing an internal size

standard (ROX500; Applied Biosystems, Foster City, CA, USA).

Fragments were analysed on an ABI 3130xl sequencer. Electropher-

ograms were manually inspected using PeakScanner 1.0 (Applied

Biosystems), and Tandem 1.01 [67] was used to bin final allele sizes.

Parentage analysis was performed using COLONY 2.0 [68], a like-

lihood-based method that uses sibship reconstruction to infer

genealogies using a group-wise approach. The full likelihood

model was used with medium precision allowing for polygamous

mating in both sexes. Each mesocosm was analysed separately,

with males and females (six potential fathers and mothers each)

representing the potential fathers and mothers for the respective

clutches collected in that mesocosm (as in [69]). Only ‘best

maximum-likelihood (ML) configuration’ assignments with the

ML obtained at the end of the computation were used for

subsequent analyses. The COLONY analysis implements a full-

pedigree likelihood approach that considers the likelihood of the
entire pedigree structure, and thus does not provide specific p-

values for each of the pair assignments, and allows the simul-

taneous inference of parentage and sibship. To obtain high

confidence in these assignments, we also investigated the discrimi-

native power of the microsatellite data by conducting an allele

frequency analysis in CERVUS [70]. We calculated the number of

alleles per locus, and the polymorphic information content (PIC),

as well as combined non-exclusion probabilities for parent pairs,

and combined non-exclusion probabilities for an individual iden-

tity for each mesocosm separately using only parental genotypes.

(c) Statistical analyses
Fecundity of females (egg size, clutch size) and reproductive suc-

cess were analysed as generalized linear mixed effect models

using the MCMCglmm package [71] in the R statistical environ-

ment [72]. For all models, we ran Markov chains of 106

iterations. After burn-in removal of 105 iterations, we kept every

1000th estimate after thinning. We fitted proper but uninformative

priors covering half the variance of the trait for each random and

fixed effect (i.e. V ¼ 0.5, nu ¼ 0.002) when fitting Poisson or

Gaussian response variables, but fixed the variance to 1 when fit-

ting binomial response variables. We checked the resulting

Markov chains for autocorrelation and stationary distribution,

and only kept chains with an effective sampling size of greater

than 500 for each estimated parameter. All models contained

mesocosm as a random effect.

Egg size was analysed as a Gaussian response variable using

the mean of 10 measured eggs per clutch, and we fitted female

size, clutch size, female developmental temperature and ovipos-

ition (mesocosm) temperature plus the interactions of female

developmental temperature with clutch size and mesocosm

temperature. Clutch size was modelled as a Poisson distributed

response variable as a function of female size, mean egg size,

female developmental temperature and mesocosm temperature

plus the interactions of female developmental temperature with

mean egg size and mesocosm temperature. Reproductive success

was analysed in two ways: first, we investigated the role of

within-generation plasticity (developmental temperature) on

mate choice and reproductive success and checked whether poten-

tial combinations of F1 males and females within one mesocosm

had any offspring (mating success) in the two reproductive

environment temperatures. Mating success was estimated as the

proportion of clutches sired, determined as the number of realized

matings divided by the number of all potential matings a given

male could have achieved. We analysed this as a binomial response

variable using male and female size as covariates, male and female

developmental temperature and mesocosm temperature plus all

their interactions as fixed effects. Second, we investigated the role

of TGP on F1 male mating success (using only those males

whose F0 parents were acclimated to either 178C or 218C; n ¼ 45)

by analysing the proportion of clutches sired (number of realized

matings divided by all potential matings) as a binomial response

with F1 male size as a covariate, and F0 acclimation temperature,

F1 male developmental temperature and mesocosm temperature

plus all interactions as fixed effects. Note: we could not fit meaning-

ful models for a potential four-way interaction because F0

temperatures differed between males and females in many cases.

Therefore, we decided to fit separate models for each sex,

but could not fit a full model for females owing to one missing

three-way treatment combination.
3. Results
(a) Offspring assignments
Except for one individual, all 144 parental fish were recovered

at the end of the experiment, and all parental genotypes



Table 1. Mean egg size and clutch size of stickleback (Gasterosteus aculeatus) females depending on developmental temperature (female temperature; F8C) and
oviposition temperature (Mesocosm temperature; Mes8C). Female size, clutch size and mean egg size were included as covariates, and mesocosm was modelled
as a random effect. Mean egg size was modelled as a Gaussian distributed response and clutch size was modelled as a Poisson distributed response. Fixed term
estimates with 95% confidence intervals are shown, and significant terms are highlighted in bold.

(A) mean egg size (Gaussian) DIC 5 2124.720

fixed effects estimate 95% CI p-value

female size 0.036 20.026 to 0.092 0.264

clutch size 20.001 20.001 to 0.002 0.811

female temperature (F8C) 0.025 20.140 to 0.169 0.716

mesocosm temperature (Mes88888C) 20.059 20.097 to 20.025 <0.001

clutch size � F8C 20.001 20.002 to 0.001 0.251

F88888C 3 Mes88888C 0.080 0.002 – 0.156 0.038

random effects variance component 95% CI

mesocosm 0.000 0.000 – 0.001

units 0.002 0.001 – 0.003

(B) clutch size (Poisson) DIC 5 340.649

fixed effects estimate 95% CI p-value

female size 0.260 20.258 to 0.731 0.271

mean egg size 20.450 23.545 to 2.750 0.773

female temperature (F8C) 5.505 27.534 to 19.893 0.409

mesocosm temperature (Mes8C) 20.131 20.477 to 0.269 0.442

mean egg size � F8C 23.788 213.212 to 4.620 0.389

F8C � Mes8C 0.325 20.312 to 0.953 0.304

random effects variance component 95% CI

mesocosm 0.003 0.000 – 0.016

units 0.142 0.073 – 0.226
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could be reliably determined. In total, 108 egg clutches were

collected from the 12 mesocosms over the course of the 18

day experiment, and we randomly chose six clutches per

mesocosm for parentage analysis, resulting in 72 clutches

genotyped. Of the 16 larvae per clutch genotyped (total

1152 larvae), 51 larval genotypes (4.4%) could not be deter-

mined owing to PCR failure. The microsatellite makers

were highly informative, with a mean number of alleles per

locus across mesocosms of 11.22 (s.d. ¼ 0.71), an average

PIC of 0.85 (s.d. ¼ 0.02), an average combined non-exclusion

probability per parent pair of 1.1 � 1025, and a combined

non-exclusion probability of identity of 3.05 � 1028. Conse-

quently, the power of our markers to reliably infer

parentage within each mesocosm was very high.
(b) Egg size, clutch size and hatching success
Of the 72 clutches genotyped, 39 contained eggs assigned to

a single female. Only these 39 clutches were used for egg

size and clutch size analyses. Mean egg size was significantly

influenced by mesocosm temperature and the interaction

between female developmental temperature and mesocosm

temperature (table 1). Overall, eggs laid in 218C mesocosms

were smaller than eggs laid in 178C mesocosms, and the

reduction in egg size in 218C mesocosms was driven by females
that developed at 178C (figure 2a). Clutch size, on the other

hand, was not significantly influenced by female size, egg size,

female developmental temperature or mesocosm temperature

(table 1). In general, however, females that developed at 218C
tended to have smaller mean clutch sizes (119.44+28.58) than

females that developed at 178C (154.1+50.89; ANOVA F1,37¼

3.77, p ¼ 0.06), but showed a trend of increased clutch size in

218C mesocosms (figure 2b). Hatching success was nearly

100% for all clutches (mean hatching success 96.7+6%), and

did not differ between mesocosm temperatures (ANOVA

F1,37 ¼ 1.81, p ¼ 0.19). Fertilization success (embryo clearly

visible) ranged from 52.4 to 100%, with a mean fertilization suc-

cess of 89.6+11%.
(c) Mating success of males and females
In total, 41 out of 72 males in the experiment (i.e. both meso-

cosm temperatures) managed to sire some offspring, but

mating success was heavily skewed toward 178C males (28 of

the 41 males developed at 178C; x2
d:f:¼1 ¼ 11:103, p ¼ 0.001;

figure 3). Fifty-six of the 72 clutches (77.8%) were sired by a

single father (nest owner), 12 clutches contained eggs sired

by sneaker males (e.g. father of some larvae within a nest but

not the nest owner), of which 10 sneaking events occurred in

178C mesocosms and two in 218C mesocosms, and three



m
ea

n 
eg

g 
si

ze
 (

m
m

 ±
 s

.e
.)

1.40

1.45

1.50

1.55

1.60

1.65

17°C female 21°C female

m
ea

n 
cl

ut
ch

 s
iz

e 
(±

 s
.e

.)

100

120

140

160

180

200

17°C female 21°C female

17°C
21°C

mesocosm temperature

Figure 2. Fecundity traits ((a) mean egg size+ s.e. and (b) mean clutch size+ s.e.) of stickleback (Gasterosteus aculeatus) females that developed at either 178C
or 218C under different oviposition (mesocosm) temperatures (178C or 218C). Mean egg size for each clutch was estimated from the diameter (mm) of 10 eggs, and
clutch size was estimated as the total number of eggs in a clutch.

male °C × female °C

pr
op

or
tio

n 
of

 c
lu

tc
he

s 
si

re
d

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

17 × 17 17 × 21 21 × 17 21 × 21

17°C
21°C

mesocosm temperature

Figure 3. Within-generation plasticity effects on mating success of stickleback
(Gasterosteus aculeatus) males and females depending on developmental
temperature combinations in either 178C or 218C reproductive environments
(mesocosm temperature). Mating success was estimated as the proportion of
clutches sired (number of realized matings divided by the number of all
potential matings). Bars depict the proportion for each combination of
male – female developmental temperature and mesocosm temperature.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180183

6

clutches contained stolen eggs (two between-male thefts at

218C). Parentage of one clutch was equally split between two

males and a nest owner could not be assigned. Of the 56

single-male clutches, 24 were found in 178C mesocosms and

32 in 218C mesocosms. Sneaking and egg theft events were

equally distributed between male developmental tempera-

tures. The overall distribution of mating success was similar

for females (figure 3). Here, 46 out of 72 females managed to

reproduce, of which 30 females developed at 178C and 16

females developed at 218C (x2
d:f:¼1 ¼ 10:174, p ¼ 0.001).

Females shared nests more frequently than males, because

only 39 out of 72 clutches (54.2%) contained eggs from a
single female (x2
d:f:¼1 ¼ 7:912, p ¼ 0.004). These were, however,

biased towards 178C females which laid eggs alone in 30 nests,

while 218C females had nine single-female nests.

There was a positive relationship between male size

and mating success in general (table 2); however, male size

also varied with the status of the males in relation to their devel-

opmental temperature (electronic supplementary material,

figure S1). Specifically, while nest-owning 178C males were

comparatively larger than non-reproducing males, nest owners

were significantly smaller when they developed at 218C (inter-

action: status (nest owner) �male developmental temperature

(178C) versus status (non-reproducer) �male developmental

temperature (218C); estimate ¼ 20.108, p ¼ 0.043, electronic

supplementary material, table S1). Sneaker males, on the other

hand, were significantly smaller than nest owners but tended

to be larger when they developed at 218C (estimate ¼ 20.152,

p ¼ 0.004, see electronic supplemental material).

(d) Within-generation plasticity and TGP effects
on F1 mating success

Both within-generation plasticity and TGP had significant

effects on mating success. In terms of within-generation

plasticity, mating success was significantly influenced by

male developmental temperature, female developmental

temperature and the interaction between male developmental

temperature and mesocosm temperature (table 2). Males and

females that developed at 178C had more mating success

than those that developed at 218C (figure 3). The difference

was more pronounced for females, as males could partly com-

pensate for their loss in mating success in 218C mesocosms if

they developed at 218C (male 8C �mesocosm 8C interaction;

table 2 and figure 3). This was also reflected in single-male

clutches, where 218C males sired 18% more clutches in 218C
mesocosms than in 178C mesocosms (12/32 clutches at

218C versus 4/20 clutches at 178C), while mesocosm tempera-

ture had no influence on single-female clutches (19 clutches at

178C and 20 clutches at 218C).



Table 2. Mating success of stickleback (Gasterosteus aculeatus) depending on within-generation plasticity of male and female developmental temperature (male
temperature, M8C and female temperature, F8C) and reproductive environment temperature (mesocosm temperature, Mes8C). Male size and female size
(standard length, mm) were included as covariates, and mesocosm was modelled as a random effect. Mating success ( proportion of clutches sired) was
modelled as a binomial response. Fixed term estimates with 95% confidence intervals are shown, and significant terms are highlighted in bold.

mating success (within-generation plasticity) DIC 5 975.237

fixed effects estimate 95% CI p-value

male size 0.895 0.089 – 1.762 0.033

female size 20.019 20.734 – 0.694 0.949

male temperature (M88888C) 21.646 22.460 – 20.815 <0.001

female temperature (F88888C) 21.286 21.998 – 0.066 <0.001

mesocosm temperature (Mes8C) 20.320 20.956 – 0.318 0.300

M8C � F8C 0.637 20.669 – 2.158 0.353

M88888C 3 Mes88888C 1.205 0.097 – 2.162 0.011

F8C � Mes8C 0.250 20.899 – 1.140 0.584

M8C � F8C � Mes8C 21.388 23.297 – 0.563 0.180

random effects variance component 95% CI

mesocosm 0.074 0.001 – 0.269

Table 3. Mating success of male stickleback (Gasterosteus aculeatus) depending on transgenerational plasticity (TGP) of F0 parents acclimation temperature
(F08C), F1 male developmental temperature (F1 male temperature; M8C) and reproductive environment temperature (Mesocosm temperature; Mes8C). Male size
was included as a covariate, and mesocosm was modelled as a random effect. Mating success was modelled as a binomial response for each possible clutch
yielding the proportion of clutches sired. Fixed term estimates with 95% confidence intervals are shown, and significant terms are highlighted in bold.

mating success (TGP) DIC 5 569.658

fixed effects estimate 95% CI p-value

male size 0.897 21.087 to 2.542 0.333

F088888C 22.183 23.690 to 20.401 0.004

F1 male temperature (M88888C) 22.231 23.924 to 20.593 0.007

mesocosm temperature (Mes 8C) 0.018 21.803 – 2.112 0.984

F088888C 3 M88888C 2.825 0.803 – 4.869 0.004

F08C � Mes8C 0.216 21.680 – 2.254 0.824

M8C � Mes8C 20.047 22.080 – 2.230 0.962

F08C � M8C � Mes8C 0.582 22.631 – 3.196 0.711

random effects variance component 95% CI

mesocosm 1.552 0.063 – 3.935
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Male mating success was also influenced by TGP, with sig-

nificant effects of F0 acclimation temperature, F1 male

developmental temperature and their interaction (i.e. parent

environment � offspring environment interaction; table 3).

Overall, males with a 178C thermal history across two gener-

ations had the highest mating success, males with a 17 � 21

F0 � F1 thermal history had the lowest, and males with F0

parents acclimated to 218C were intermediate (figure 4).

In other words, the mismatch between parent and offspring

environments resulted in lower mating success, but only for

males with F0 parents acclimated to 178C, likely driving the

F0 � F1 temperature interaction. That both combinations of

218C F0 � F1 male developmental temperature showed the

same response pattern (i.e. only TGP (21 � 17) or both develop-

mental and TGP (21 � 21); figure 4) suggests that the relatively
higher mating success for these males was due to effects carried

over from F0 parents acclimated to 218C. Although no terms

that included mesocosm temperature were significant in the

model (likely owing to low statistical power), there was a

trend of higher mating success in 218C mesocosms for males

with F0 parents acclimated to 218C (x2
d:f:¼1 ¼ 2:932, p ¼

0.087), while no trend across mesocosm temperatures

was apparent for males with 178C F0 parents (x2
d:f:¼1 ¼ 1:645,

p ¼ 0.200; figure 4).
4. Discussion
The most striking finding of our study is that mate choice and

reproductive success of stickleback may be influenced by not
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only within-generation plasticity but also TGP. Most studies of

TGP conducted to date have investigated isolated proxies of fit-

ness (e.g. growth, body size, fecundity), but the integration of

these components into direct measures of fitness such as repro-

ductive success has not yet been shown. Here, we found that

maternal developmental temperature and oviposition environ-

ment affected egg size plasticity. We also showed within-

generation plasticity of mate choice, in that mating success

was influenced by the interaction between paternal develop-

mental temperature and reproductive environment.

Additionally, F1 male mating success was also influenced by

F0 parent acclimation temperature (parent environment by off-

spring environment interaction). Our study thus demonstrates

the potential role of both within-generation plasticity and

TGP in shaping sexual traits involved in mate choice and result-

ing reproductive success, which may further facilitate rapid

responses of species to environmental change.
(a) Thermal plasticity and fecundity under
climate change

Stickleback females allocated resources to eggs differently

depending on their developmental temperature and immedi-

ate oviposition (mesocosm) temperature within 18 days of

exposure to changed environmental conditions. Females that

developed at 178C laid smaller eggs in 218C mesocosms,

whereas females that developed at 218C laid similar sized

eggs in both ambient and elevated temperature mesocosms.

The reduction in egg size for 178C females at elevated tempera-

ture was not accompanied by an increase in clutch size at 218C,

so likely does not reflect a classic trade-off between egg size

and clutch size or adaptive plasticity [3,73,74], but rather

some kind of physiological cost associated with higher ovipos-

ition temperature. Likewise, females that developed at 218C
did not show a temperature-dependent trade-off between egg

size and clutch size, but tended to produce larger clutches at

elevated temperature, indicative of a possible physiological

benefit (or at least no cost) at higher oviposition temperature.
Previous studies of this population found that adaptive

egg size plasticity occurred when mothers were acclimated

to different temperatures for as few as six weeks during repro-

ductive conditioning [59]; however, the effects of changed

oviposition temperature were not tested. Here, despite

life-long development at a specific temperature, females

adjusted the allocation of resources to eggs within 18 days of

exposure to changed conditions. This demonstrates that

mothers can dynamically modify offspring size in the very

last stages of egg development ( just prior to laying), despite

any base-line egg size allocation due to thermal history

[58,75]. Nevertheless, changes to egg size due to oviposition

temperature probably do not reflect adaptive TGP in this

case (e.g. smaller eggs at higher temperature owing to lower

egg oxygen demands [56,58,59,76,77]), as females that devel-

oped at 218C did not lay (even) smaller eggs in 218C
mesocosms. Rather, females that developed at 178C may

have spent more energy on metabolism in 218C mesocosms,

resulting in less energy available for egg provisioning,

whereas 218C females should have optimized metabolism at

higher temperature [56,60]. Alternatively, 218C females

could not take advantage of 178C oviposition conditions

owing to long-term effects of higher temperature over

multiple generations, i.e. smaller body size and smaller egg

and clutch sizes [57]. Although female size was not a signifi-

cant factor in our egg trait analyses, 218C females were on

average 3.1 mm smaller than 178C females within the single-

female clutches analysed (ANOVA: F1,29 ¼ 7.213, p ¼ 0.012).

Hatching success was much higher here under semi-

natural conditions (nearly 100%) than in previous laboratory

experiments using artificial fertilization [56–58]. While a

large difference in hatching success between experiment

types is likely due to methods issues (e.g. strip-spawning,

high sperm solution concentrations leading to polyspermy

(multiple sperms entering an oocyte) resulting in failed fertili-

zations (see also [78]), and/or calculation bias due to inclusion

of unfertilized eggs), the high fertilization and hatching success

of the current study speaks to the importance of conducting

experiments under semi-natural conditions or in wild popu-

lations. For instance, arguments for selective mortality at

early developmental stages based on low hatching success in

laboratory experiments has led to uncertainty about the impor-

tance of TGP as a response mechanism to rapid environmental

change [79]. However, while selection may indeed be occur-

ring, it can also be that some of these arguments might be

confounded by methodological issues as described above.

Furthermore, by allowing breeding adults to express the behav-

ioural and physical components involved in mate choice in

direct competition with conspecifics under controlled con-

ditions, we remove any effect of selective breeding and gain

an unbiased view of the role of within-generation plasticity

and TGP under climate change for phenotypic characters

potentially signalling mate quality. Since choice is expected to

maximize reproductive success, we reduce the risk of over- or

underestimating the role of TGP in offspring viability.

(b) Sneaking males, male size and reproductive
environment temperature

Males showed differential expression of alternative reproduc-

tive tactics (sneaking and egg theft) depending on the

environmental temperature in which mating occurred. That

22.2% of clutches contained either stolen eggs or eggs fertilized



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180183

9
by sneaking males demonstrates that these ‘parasitic’ male

reproductive tactics are a common strategy in stickleback (see

also [44,80]), with potentially large impacts on mating and

reproductive success. The majority of sneaking events occurred

in 178C mesocosms under ambient, presumably good, environ-

mental conditions, whereas the two instances of egg theft at

218C occurred under more stressful temperature conditions.

For both tactics, male developmental temperature did not

seem to play a role, as males from either thermal history

were equally likely to engage in alternative reproductive strat-

egies. Instead, reproductive environment temperature had a

strong influence on these behaviours, especially on sneaking,

with 83.3% of sneaking events occurring in ambient (178C)

environments. This is in line with another study of stickleback

mating which showed a reduction in sneaking in disturbed,

eutrophied habitats with dense vegetation [81]. In that study,

increased habitat structure reduced the opportunity for

sexual selection by relaxing the competition among males for

nesting sites [81]. Here, conditions in elevated temperature

mesocosms may have been too energetically costly for males

to engage in additional reproductive tactics. For example, a

study of sailfin mollies (Poecilia latipinna) showed that males

exhibited variation in plasticity for mating behaviour (some

genotypes switched between courting and sneaking, whereas

other genotypes were fixed), and that sneaking was associated

with upregulation of genes involved in learning and memory,

suggesting that sneaking is more cognitively demanding and

energetically costly than courtship [82]. These costs will be

exacerbated at high temperature, and male stickleback have

been shown to build fewer nests and incubate them less

actively at elevated temperature [83]. Therefore, accounting

for within-generation plasticity and possibly TGP in mating

tactics under climate change is key to understanding the evol-

utionary potential of these alternative strategies, as TGP could

lead to compensation of sneaking costs at high temperature,

facilitating an adaptive response over time.

Overall, we found a positive relationship between male

size and mating success, but males of smaller size tended to

have higher mating success in 218C mesocosms. Body size is

probably the most important visual mate choice cue in stickle-

back, and numerous studies have shown that females choose

either large males [49–51] or males of similar size to them-

selves [29,30,32,36,52,53]. Here, females chose smaller males

under elevated temperature conditions, regardless of their

own size, suggesting that small size may be advantageous

at high temperature, potentially owing to lower metabolic

demands for males and eggs [49]. Furthermore, the chosen

males were all nest owners, so the pattern of response was

not due to sneaking males. Consequently, our results for

mating success do not fit with the hypothesis of phenotype

matching based on size (at least for small males), but more

likely with female choice based on environment-dependent

male condition [21,84]. Such context- or condition-dependent

validity of sexual cues can lead to environmentally dependent

mate choice preferences with consequences for the strength

and direction of selection [21,85].

(c) Within-generation plasticity and TGP effects on
mating success

Our results suggest that mate choice and resulting reproductive

success of stickleback may be both condition-dependent

and context-dependent according to thermal history within
and across generations, and reproductive environment temp-

erature. In terms of within-generation plasticity, mating

success was highest for 178C males mated with 178C females

at both mesocosm temperatures, whereas 218C males had

higher reproductive success in 218C mesocosms when mated

with 178C females. For this population, 178C is the average

summer water temperature [58], and we have previously

shown 178C to be a low- (or no)-stress environment with no

negative effects on development, growth and parasite resistance

in comparison with 218C [54–56,58,59]. We have further shown

that a thermal history of 218C across three generations led to

smaller fish (males and females) and less fecund females [57].

Here, males that developed at 178C were likely in better con-

dition, and thus more attractive to 178C females, who were

themselves in better condition and had larger body and

clutch sizes, resulting in the condition-dependent choice of

178C males by 178C females. Females that developed at 218C,

on the other hand, did not show a strong preference for males

from a specific temperature (see also [86] for a similar pattern),

and the lower fecundity of 218C females will also lead to lower

reproductive success for both 178C and 218C males mating with

218C females. Females that developed at 218C were also less

choosy because they laid their eggs more often in shared

nests. Most interesting, 178C females chose 218C males more

in 218C mesocosms, possibly reflecting context- (environ-

ment)-dependent choice of within-generation plasticity and/

or TGP-optimized phenotypes under climate warming.

TGP may have played a role in F1 male mating success

under simulated ocean warming. Previous studies indicate

that under these conditions, males with a 218C thermal history

should have an optimized metabolism [56,60], and females

may have chosen these males because they should have more

energy available to spend on courting behaviour, nest con-

struction, competition, etc. Specifically, while males with a

matching 178C parent–offspring environment thermal history

had the highest mating success overall, the mismatch between

F0 acclimation temperature and F1 developmental temperature

led to the lowest mating success for males with a 178C � 218C
thermal history. The same pattern was not observed for males

with F0 parents acclimated to 218C, which had on average

higher mating success than males in the 178C � 218C treatment

group. Indeed, the benefits of 218C F0 parents on mating

success were evident for males that developed at both tempera-

tures, indicating that the increase in mating success for these

males was due to acclimation effects transferred from 218C F0

parents and not developmental temperature. In other words,

the expression of sexual traits and mate quality cues (e.g. con-

dition-dependent metabolism), and possibly also a mating

preference for these traits, may have been altered by TGP

[17,18,20]. Interestingly, there was also a pattern of higher

mating success in 218C mesocosms for males with 218C F0

parents, but no such trend across mesocosm temperatures for

males with F0 parents acclimated to 178C, suggesting that any

potential transgenerational compensation between F0 parent

environment and F1 offspring reproductive environment was

only apparent under simulated climate change.

Mate choice is an important evolutionary process that

contributes to the selection for a vast array of traits, but how

non-genetic inheritance mechanisms influence sexual selection

and resulting mate choice and reproductive success has been

little investigated. In their recent review, Head et al. [20] outline

how a number of different mechanisms of non-genetic

inheritance might contribute to sexual selection. These include
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maternal provisioning of eggs which can influence expression

of condition-dependent traits in offspring which can then

become targets of mate choice, maternal transfer of somatic fac-

tors like hormones which can influence the expression of sexual

traits, and the transmission of epigenetic state (e.g. DNA

methylation) which has the potential to supply a source of

renewable phenotypic variation in condition, thus maintaining

benefits of choice (the same is true for paternal transfer of eja-

culate-borne substances; [20]). Here, mate choice was likely

influenced by maternal provisioning of eggs in the previous

generation [59] leading to differences in growth and condition

of F1 offspring breeders depending on thermal history, and

possibly to epigenetic state underlying TGP at elevated temp-

erature [60]. Intriguingly, models for different modes of

female preference for male condition found that female

choice is most probable when male condition is environmen-

tally induced and transmitted over one generation [17], and

that environmentally mediated modification of the sperm

epigenome via e.g. DNA methylation is one possible mechan-

ism to transmit environmentally induced male condition to

offspring [20]. In our study, males displaying high quality

mating cues owing to TGP benefits under climate change

may have been more attractive to females owing to a greater

reproductive effort at elevated temperature, resulting in

higher reproductive success, not only for themselves, but

potentially also for their offspring owing to attractiveness

and/or survival [87,88]. Whether the quality of these mating

cues is based on epigenetic modifications to the stickleback

sperm epigenome deserves further investigation, as studies

of zebrafish sperm methylomes indicate an important role for

paternal transgenerational epigenetic effects for offspring

traits [89].
5. Conclusion
While we observed both within-generation plasticity and TGP,

especially the modification of mate choice and reproductive
success by TGP may facilitate faster responses of species to

environmental change. Whether these effects are adaptive

will depend on the match between parent and offspring

environments, as well as the specific environmental conditions

under which mating occurs. Transgenerational effects on off-

spring mate choice cues may be underlain by maternal

provisioning of resources and somatic factors, but also parental

(maternal and paternal) variation in epigenetic state. If parents

transmit their condition to offspring via transgenerational

epigenetic inheritance, then non-genetic inheritance of fitness

provides an alternative to genetic variation in fitness as a

potential mechanism for the maintenance of costly mate prefer-

ence [17]. As such, transgenerational effects on reproductive

phenotypes may have implications for individual fitness and

population dynamics under climate change.
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