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Hybrid Kalman-Nonlinear Ensemble Transform Filter

Overview

Ø Linear and nonlinear filters

Ø Nonlinear Ensemble Transform Filter – NETF (Tödter & 

Ahrens, MWR, 2015) 

Ø Hybrid LETKF-NETF method 

for improved assimilation with small ensembles
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Kalman and Nonlinear Filters 



Hybrid Kalman-Nonlinear Ensemble Transform Filter

• represent state and its error by ensemble      of states

• Forecast:
• Integrate ensemble with numerical model

• Analysis:
• update ensemble mean

• update ensemble perturbations

(both can be combined in a single step)

• Ensemble Kalman filters & NETF: Different definitions of

• weight vector     

• Transform matrix  

Ensemble filters – ensemble Kalman filters & NETF
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Hybrid Kalman-Nonlinear Ensemble Transform Filter

• Ensemble Transform Kalman filter: 
• Transform matrix

• Mean update weight vector 

(depends on R and y)

• Transformation of ensemble perturbations

(depends only on R, not y)

ETKF (Bishop et al., 2001)
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Hybrid Kalman-Nonlinear Ensemble Transform Filter

• Avoid changing ensemble members (‘particles’)
• Instead: give particles a weight at change it at the analysis step

• Initial weight: 1/N for all particles
• Weights are given by statistical likelihood of an observation
• Example: With Gaussian observation errors (for each particle i):

• Ensemble mean state computed with weights

• This update does not assume any distribution of the state errors
(and is not limited to Gaussian distributions)

Particle filters – fully nonlinear ensemble filters
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Hybrid Kalman-Nonlinear Ensemble Transform Filter

• Ensemble Kalman: 
• Transformation according to KF equations

• NETF (Tödter & Ahrens, MWR, 2015)
Ø Mean update from Particle Filter weights: for all particles i

Nonlinear Ensemble Transform Filter - NETF

Ø Ensemble update 
• Transform ensemble to fulfill analysis covariance

(like KF, but not assuming Gaussianity)
• Derivation gives

(     : mean-preserving random matrix; useful for stability)⇤
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Tödter, J. and Ahrens, B. 2015. A second-order exact ensemble square root
filter for nonlinear data assimilation. Mon. Wea. Rev. 143,1347–1367
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• Mean state update

• Analysis covariance matrix

with 

Derivation of NETF

xa = xf +X0f w̃ = Xf w̃
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Hybrid Kalman-Nonlinear Ensemble Transform Filter

• ETKF parameterizes ensemble distribution by a Gaussian 
distribution

• NETF uses particle filter weights to ensure correct update of 
ensemble mean and covariance

• Filter update:
• in ETKF is linear in observations

• in NETF is nonlinear in observations

Difference of ETKF and NETF
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Hybrid Kalman-Nonlinear Ensemble Transform Filter

• Smoother: Update past ensemble with future observations
• Rewrite ensemble update as

• Filter:

Ensemble Smoothers – ETKS & NETS

Xa
k|k = Xf

k|k�1Ŵk

analysis time Observations 
used up to time

• Smoother at time

Ø works likewise for ETKS and NETS
Ø also possible for localized filters

Xa
i|k = Xf

i|k�1Ŵk

i < k

See, e.g., Nerger, Schulte & Bunse-Gerstner, QJRMS 140 (2014) 2249–2259
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Filter performance of NETF
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NETF 

with small Lorenz-96 model



Hybrid Kalman-Nonlinear Ensemble Transform Filter

Configuration of Lorenz-96 model experiments

Lorenz-96:
• 1-dimensional period wave
• Chaotic dynamics

Configuration for assimilation experiments
• State dimension: 80
• Observed: 40 grid points
• Time steps between analysis steps: 8
• Double-exponential observation errors (stronger nonlinearity)
• Experiment length: 5000 time steps
• Observation error standard deviation: 1.0
� this is a difficult case for the assimilation
(and more realistic than typical 1-step forecast configuration)

www.data-assimilation.net
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• Double-exponential observation errors
• Run all experiments 10x with different initial ensemble

• NETF beats ETKF for ensemble size > 30

Performance of NETF – Lorenz-96
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Hybrid Kalman-Nonlinear Ensemble Transform Filter

• Performance for small model (Lorenz-96)

• Blue: Smoother

• NETS beats ETKS for ensemble size 40 and larger

• Smoother slightly stronger for ETKS

• NETF better than ETKF smoother for N=70

Performance of NETF – Lorenz-96

20 30 40 50 60 70
ensemble size

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

M
R

M
SE

EKTF filter
ETKS smoother
NETF filter
NETS smoother

Kirchgessner, Toedter, Ahrens, Nerger. (2017) Tellus A 69:1, 1327766



Hybrid Kalman-Nonlinear Ensemble Transform Filter

Parameter stability of NETF

RMS error varying
• inflation (forgetting factor)
• localization radius

For N=50 and Laplace observation errors
• Smaller error for NETF
• Smaller parameter region for low errors
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NETF with Gaussian observation errors

For Gaussian observation errors

• Need N=90 for comparable RMS errors

• NETF needs much smaller localization radius

4 5 6 7 8 9 10 12 14 16
support radius

0.7 

0.75

0.8 

0.85

0.9 

0.95

1   

fo
rg

et
tin

g 
fa

ct
or

RMSE: LETKF Ne=90 - Obs. error=Gauss

min=1.305

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2 3 4 5 6 7 8 9 10 12 14 16
support radius

0.75

0.8 

0.85

0.9 

0.95

1   

fo
rg

et
tin

g 
fa

ct
or

RMSE: LNETF Ne=90 - Obs. error=Gauss

min=1.336

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9



Hybrid Kalman-Nonlinear Ensemble Transform Filter

NETF

with 
high-dimensional ocean model
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Assimilation into NEMO

European ocean circulation model

Model configuration

• box-configuration “SEABASS”

• ¼o resolution 

• 121x81 grid points, 11 layers
(state vector ~300,000)

• wind-driven double gyre
(a nonlinear jet and eddies)

• medium size SANGOMA 
benchmark

True sea surface height at 1st analysis time
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PDAF: A tool for data assimilation

PDAF - Parallel Data Assimilation Framework

§ a program library for ensemble data assimilation

§ provide support for parallel ensemble forecasts

§ provide fully-implemented & parallelized filters and smoothers 

(EnKF, LETKF, NETF, EWPF … easy to add more)

§ easily useable with (probably) any numerical model

(applied with NEMO, MITgcm, FESOM, HBM, TerrSysMP, …)

§ run from laptops to supercomputers (Fortran, MPI & OpenMP)

§ first public release in 2004; continued development

§ ~280 registered users; community contributions

Open source: 

Code, documentation & tutorials at 

http://pdaf.awi.de

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118
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Extending a Model for Data Assimilation

Extension for 
data assimilation

revised parallelization enables 
ensemble forecast

plus:
Possible 

model-specific 
adaption: 

for NEMO: 
handle 

leapfrog time 
stepping

Start

Stop

Do i=1, nsteps

Initialize Model
Initialize coupler

Initialize grid & fields

Time stepper
in-compartment step

coupling

Post-processing

Model

single or multiple 
executables

coupler might be 
separate program

Initialize parallel. Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Stop

Initialize Model
Initialize coupler

Initialize grid & fields

Time stepper
in-compartment step

coupling

Post-processing

Init_parallel_PDAF

Do i=1, nsteps

Init_PDAF

Assimilate_PDAF

Start

Initialize parallel.
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Features of online-coupled DA program

• minimal changes to model code when 

combining model with filter algorithm 

• model not required to be a subroutine

• no change to model numerics!

• model-sided control of assimilation program

(user-supplied routines in model context)

• observation handling in model-context

• filter method encapsulated in subroutine

• complete parallelism in model, filter, and 

ensemble integrations

Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Start

Stop

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing

init_parallel_pdaf

Do i=1, nsteps

init_pdaf

assimilate_pdaf
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Observations and Assimilation Configuration

Observations

• Simulated satellite sea surface 
height SSH (Envisat & Jason-1 
tracks), 5cm error

• Temperature profiles on 3ox3o grid, 
surface to 2000m, 0.3oC error

Data Assimilation

• Ensemble size: 120

• LETKF, LNETF

• Localization: weights on matrix R-1

(Gaspari/Cohn’99 function, 2.5o radius)
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FIG. 3. Observation characteristics on day 8: (a) The horizontal domain is shown, together with the Argo

profiler locations (crosses) and the synthetic SSH observations (colored) on the Envisat tracks (thin lines). (b)

The vertical grid of 11 layers is visualized, and embedded are the artificial Argo temperature profiles along the

� = �50� longitude line. Note that at � = 44�, the true temperature field is zero due to the lateral boundary

conditions.
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The vertical grid of 11 layers is visualized, and embedded are the artificial Argo temperature profiles (46 values
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Dimensions of the problem

State vector dimension ~300,000

Dimension of dynamics (error space):

From eigenvalue decompositions (EOFs)

~180 modes for 90% of variability
~400 modes for 99.9% of variability

5. p. 6, line 113: ”It allows to conveniently write”. This sentence is grammatically
incorrect, and should be fixed.

6. p. 6, lines 119-120: The authors seem to suggest that the likelihood is required to
be Gaussian. Is it necessary to restrict this to Gaussian, or are other observation PDFs
possible? There are certainly PDFs more appropriate for positive definite quantities...
From my read of Todter and Ahrens (2015), it does not look like the likelihood should
necessarily be restricted to be Gaussian.

7. p. 19, section 5a: There is a di↵erence between a ”free run” and a ”free ensemble”.
”Free run implies you are running a control simulation that is not a↵ected by data as-
similation, while you are in fact referring to the ensemble mean of a set of simulations
initialized from random IC. Is this realistic? Would it be a better test to initialize an
ensemble from perturbations around truth and see how the errors grow?

8. p. 21, line 439: The word ”monotonously” should be replaced with ”monotonically”.

9. p. 22, lines 451-452: The sentence that begins with ”Nevertheless, a minimal relative
error” does not make sense. Are you plotting all temperatures or just the surface? Same
with u and v. Please clarify. If only the surface, what do the errors at depth look like?
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Figure 1: Eigensprectrum of a 4-Year model run, with a sample state each second day.
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Application of LETKF
True sea surface height at 1st analysis time
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Application of LETKF (2)

Estimated SSH at last analysis time
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• RMS errors reduced to 10% (velocities to 20%) of initial error
• Slower convergence for NETF, but to same error level as LETKF
• CRPS (Continuous Rank Probability Score) shows similar behavior

Filter performances in NEMO
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FIG. 9. Comparison of NETF and LETKF in terms of RMSE (black/gray) and CRPS (red/orange). The lines

represent the field-averaged relative RMSE and CRPS, respectively, for all prognostic variables, i.e., (a) SSH ,

(b) T , (c) U and (d) V , which are defined in Sec. 5.b. The legend in (b) is valid for all panels.

841

842

843

49

Tödter, Kirchgessner, Nerger & Ahrens, MWR 144 (2016) 409 – 427

SSH: Relative error reduction T: Relative error reduction



Hybrid Kalman-Nonlinear Ensemble Transform Filter

Hybrid LETKF-NETF



Hybrid Kalman-Nonlinear Ensemble Transform Filter

Motivation

NETF 
• can perform better than LETKF with nonlinear model
• needs rather large ensemble

LEKTF 
• larger parameter region with convergence 
• very stable

Hybrid filter
• Can we combine the strengths of LETKF and NETF? 

www.data-assimilation.net
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Hybrid variants

1-step update (HSync)

• is assimilation increment of a filter
• ! is hybrid weight (between 0 and 1; 1 for fully LETKF)

Xa

HSync
= X

f

+ (1� �)�XNETF + ��XETKF

�X

2-step updates
Variant 1 (HNK): NETF followed by LETKF

• Both steps computed with increased R according to !

Variant 2 (HKN): LETKF followed by NETF

X̃a

HNK
= Xa

NETF
[Xf , (1� �)R�1]

Xa

HNK
= Xa

ETKF
[X̃a

HNK
, �R�1]
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Choosing hybrid weight !

• Hybrid weight shifts filter behavior
• How to choose it?

Some possibilities:
• Fixed value
• Adaptive

• According to which condition?
• For hybrid particle-EnKF, Frei & Kuensch (2013) suggested 

using effective sample size 
• Choose " so that is as small as possible but above 

minimum limit
• Alternative used here

(close to 1 if           small)

�adap = 1�Neff/Ne

Neff =
X

i

1/(wi)2

Neff

Neff
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Test with Lorenz-96 model (n=80 as before)

Ensemble size N=50
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• All hybrid variants improve estimates 
compared to LETKF & NETF

• Similar stability as LETKF
• Dependence on forgetting factor & 

localization radius like LETKF
• Similar optimal localization radius
• Largest improvement for variant HNK

(NETF before LETKF)
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N=50 – adaptive and fixed hybrid weight !
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Consider only version HNK

• Fixed ! also successful, 
smaller errors than hybrid

• Has to be close to 1.0 
(small NETF fraction)

• Smaller ! reduced stability

22% improvement
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• More interesting case; we always have small ensembles
• Larger estimation errors that N=50
• NETF increasingly worse 

and very small stability region
• (N=10 would also work, but higher risk of model crashes)

Small Ensemble N=15
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• Hybrid still positive influence
• Smaller improvement than for N=50
• Optimal parameters for HSync & HNK 

different from HKN
• HSync and HNK more similar
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Small Ensemble N=15

8% improvement

11% improvement 9% improvement
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2.4 Fixed !
• reduces error compared to adaptive !
• Can increase stability region
• Needs to be even closer to 1 than for 

N=50 
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Summary

Ø Nonlinear ensemble transform filter (NETF)
§ Update state estimate as particle filter

Transform ensemble using covariance matrix
Ø Hybrid LETKF-NETF

§ Combine analysis updates controlled by hybrid weight
§ Smaller errors than LETKF and NETF
§ Variant NETF-before-LETKF yield best results
§ Fixed hybrid height showed lower errors compared to 

simple adaptive weight
§ Next steps

Ø reconsider adaptive weight
Ø assess with more realistic model

Thank you!


