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Abbreviations 
 
AMS-automatic milking system 

CIP-Competitive and innovation frame work programme 

CO2-eq-carbon dioxide equivalence 

de novo- “from the new” 

DIM-days in milk 

DM-dry matter 

DMI-dry matter intake 

EL-extruded linseed 

FA-fatty acid 

FFA-free fatty acids 

FPCM-fat and protein corrected milk 

FTIR-Fourier Transform Infra-red analyse. Analyse distributed by Agrosom via 
Eurofins Steins laboratory. 

FATtot- fat concentration in milk for cows in testgroup. Analyse from FTIR 

FApr- protein concentration in milk for cows in testgroup. Analyse from FTIR 

ECM-Energy corrected milk 

GC-Gas Chromatography 

GHG-greenhouse gas 

GLM-General linear model 

in vitro-experiment done in laboratory 

in vivo-experiment done inside the body 

LCFA-long-chain fatty acids 

LMD-laser methane detector 

MF-milk fat content from official Swedish milking recording scheme distributed via 
VäxaSverige 

MP-milk protein content 

MY-milk yield 

MUFA-monounsaturated fatty acid 

NDF-Neutral detergent fibre 
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Per-period 

PUFA-poly unsaturated fatty acids 

PMR-partly mixed ration 

SFA-saturated fatty acids 

TMR-total mixed ration 

UFA-unsaturated fatty acids 

VFA-volatile fatty acids 

VLDL-very-low density lipoprotein 

 



 

3 
 

Abstract 
The agriculture sector is one of the major sources to produce greenhouse 
gases of today. One big contributor is methane (CH4) generated during 
rumen digestion of the feed carbohydrates. One approach to lower CH4 
output from the agriculture sector, is to change the diet for the cows. Diets 
with extruded linseed (EL) have in earlier studies showed to have a 
lowering effect on CH4 output from cows. Previous studies have shown 
correlations between CH4 output and fatty acid (FA) profile of milkfat. EL 
has also shown in previous studies to influence the FA profile in milkfat. 
The objects of this study were to evaluate if CH4 output can be reduced if 
diets are supplemented with extruded linseed, if CH4 increases the 
concentration of unsaturated FA in milk fat, and the effect of EL on milk 
yield. 

In this study a total of 177 cows from five herds were individually scanned 
for CH4 output, milk fatty acid profile and milk yield. Cows were studied 
while fed a control diet, during the treatment diet with EL and when going 
back to the control diet again. EL diets had no effect on milk yield but 
increased the unsaturated FA in the milk. EL also decreased the CH4 
output from the cows with 22% from the first control period to the treatment 
diet, however there was no increase of CH4 output between treatment 
period and second control period. Conclusion of this master thesis is that 
Extruded linseed did not affect the milk yield. EL had an effect on milk fat 
composition. Due to the unreliable measuring method of methane this 
study could not point out an obvious decrease of CH4 due to EL. 

Key words: extruded linseed, methane output, fatty acid, milk yield. 

Sammanfattning 
Lantbruket är en betydande källa till dagens globala utsläpp av 
växthusgaser. Växthusgasen metan produceras i kons våm när fodret 
smälts. Ett sätt att minska dessa utsläpp från lantbrukssektorn är att 
förändra foderstaten för boskapen. Att inkludera extruderat linfrö (EL) i 
foderstaten har i tidigare försök visat sig minska metanutsläppet. Tidigare 
försök har även visat att det finns en korrelation mellan metanutsläpp och 
mjölkfettets fettsyreprofil samt att EL påverkar mjölkfettets fettsyreprofil. I 
denna studie har totalt 177 kor från 5 gårdar medverkat för att undersöka 
ELs effekt på mjölkavkastning, fettsyrasamansättningen i mjölken och 
metanutsläpp från kor. Kornas metanutsläpp mättes totalt tre gånger 
under testperioden. Första gången under en kontrollfoderstat andra 
gången under behandlingsfoderstat med EL och slutligen under 
ytterligare en kontrollfoderstat. Denna studie visar att EL inte hade någon 
effekt på mjölkavkastningen. EL ökade de omättade fettsyrorna och 
minskade de mättade fettsyrorna i mjölken. EL minskade metan utsläppen 
per kg ECM med 22 % mellan första kontrollperioden och den följande 
perioden med behandlingsfoderstaten. Dock erhölls ingen förändring i 
metanutsläpp då korna åter fick kontrollfoderstaten. Slutsatsen av denna 
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studie är att EL hade en effekt på mjölkfettsyraprofilen. På grund av 
mätmetoden kunde inte studien visa på ett tydligt minskat metanutsläpp 
beroende på EL. 

1. Introduction and background 
Global warming is a big threat for the world today. The underlying reason 
is the increasing concentration of greenhouse gases (GHG) in the 
atmosphere. These GHG are among others carbon oxide (CO2), CH4 and 
nitrous oxide (NO2) that “traps” the heat in the atmosphere and results in 
global warming (Lovett et al., 2005; IPCC, 2007 (Climate Change 2007: 
Synthesis Report). An increased global temperature has already resulted 
in increased melting of ice and rising of average sea levels (IPCC 2007). 
Output of GHG have a natural or an anthropogenic origin (Bousquet 
2006). Example of natural GHG output is volcanic eruptions and wetlands 
(IPCC Arturo 2007 chapter 2). Leading anthropogenic GHG output is 
energy supply, 25.9 %, industry, 19.4 %, forestry and deforestation, 17.4 
% and on fourth place agriculture sector with 13.5 % (IPCC 2007). The 
global dairy sector alone stands for of 4 % of the total GHG emissions 
however large differences exists between different parts of the world 
(FAO, 2010). 

There are many potential ways to decrease GHG emissions from the 
agricultural sectors. They involve further intensifications of livestock 
production by breeding, feeding and management that results in using 
less animals (FAO, 2006). 

Feeding strategies aiming at lowering CH4 include the use of fat 
supplements (as reviewed by Toprak (2015) and Knapp et. al (2013). The 
effects on CH4 output vary depending on fat source (Chilliard et al, 2009). 

Unsaturated fats of linseeds have shown to decrease ruminal CH4 output 
depending on how the linseeds are processed (Martin et al, 2008). Fat 
supplements have further shown to affect the milk fat composition, and a 
positive correlation between a differed milk fat composition and a 
decreased CH4 output (Chillard et al. 2009). 

The objects of this study were to evaluate if linseed supplemented to feed 
could; decrease CH4 output, increase unsaturated FA in milk fat and 
increase the milk yield. 

Hypotheses: 
1) Extruded linseed increases the proportion of unsaturated fat in milk fat 
and decreases the saturated fat. 

2) Extruded linseed increases the milk yield. 

3) Extruded linseed supplementation reduces CH4 emissions per unit milk. 
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2. Literature review 
2.1 Why is methane production a problem? 

CH4 is a smell and colourless gas which is produced during breakdown of 
organic material (Nationalencyklopedien, 2016). The production is done 
by microorganisms only in anaerobic environments like soil, swamps and 
sediment and in the rumen of cattle (Sjaastad, 2010). CH4 is one of the 
major greenhouse gases and have the warming effect of 28 (±40%) 
(IPCC, 2013) times the warming effect of CO2 on a 100-year time horizon 
(FAO, 2010: IPCC2013). Different greenhouse gases are often expressed 
as CO2-equivalents (-eq), were the GHG is multiplied with its warming 
potential (IPCC, 2007). 

There are many ways to express GHG in literature. One way, which is 
used by FAO, is to calculate GHG emissions per product or unit. This is 
also called the carbon footprint (FAO, 2010). 

The average carbon footprint of global milk yield is calculated to 2.4 kg 
CO2-eq per kg of fat and protein corrected milk (FPCM) (FAO 2010). 
However, this figure differs due to differences in production 
circumstances. Regions as Sub-Saharan Africa have a carbon footprint of 
7.5 kg CO2-eq per kg FPCM compared to 1-2 kg CO2-eq per kg FPCM in 
industrialised regions like Sweden (FAO, 2010). The biggest contribution, 
40 %, of GHG from cattle is the enteric gases (Greber et al. 2013 cited in 
Danielsson, 2016). 

2.2 Why is methane produced in rumen? 

2.2.1 Methane production from cows 

Every day the rumen produces approximately 2000-4000 litres of different 
gases. These gases are in order of quantity: 40 % (CO2), 30-40 % of CH4, 
5 % hydrogen (H2) and small amounts of oxygen and nitrogen (Sjaastad 
et al., 2010: Mc Donald, 2011). Gases in the rumen are produced by 
microbes that ferments the plant carbohydrates. The gases are emitted 
from the cow through belching, also called eructation. A large portion of 
the gas is inhaled into the lungs and are then exhaled throughout the nose 
and mouth (Sjaastad, 2010). Not all gas produced in the rumen exits 
through eructation. Around 20 % of CH4 leaves the body through feces 
(Sjaastad et al, 2010). Enteric emissions are however unavoidable in the 
process of turning grass and grains into food for humans (Sjaastad, 2010). 
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2.2.2 Methanogenesis 

There are three classes of microbes in the rumen; bacteria, protozoa and 
fungi. These microbes, and their enzymes, break down dietary 
carbohydrates to volatile fatty acids (VFA) mainly propionate, acetate and 
butyrate (Figure 1). 

Figure 1. fermentation of glucose to VFA (Boadi et al., 2004; Moss et al., 
2000) 

The produced VFA is used by the cow as energy and for milk synthesis. 
The H2 is accumulating in the rumen and limits further fermentation of 
feed. However, the methanogenic bacteria use H2 for CH4 production 
(figure 2) and the excessive H2 is removed from rumen through eructation 
(McAllister & Newbold, 2008). 

Figure 2. Methanogenesis (Boadi et al., 2004) 

There are several types of methanogens that uses other substrate than 
H2 for the methanogenesis. The substrate used besides H2 is example 
formate and methanol (Liu & Whitman, 2008; Lang et al., 2015). Earlier 
trial show that type of rumen methanogens can be a reason of variations 
in CH4 output. Danielsson (2012) has shown that there might be 
differences in CH4 output between individual cows. 

Although CH4 production is an efficient way to reduce H2 in rumen the 
process is energy demanding. An alternate way of H2 could bring, besides 
reducing CH4 output, an improved feed efficiency. Acetate and butyrate 
production produce H2, however propionate production uses H2 (Figure1). 
This dietary arrangement altering the VFA toward a higher production of 
propionate is one way to decrease CH4 output (Johnsson & Johnsson 
1995). 

2.3 Possibilities to reduce methane output through feed ratio 

There are a few feed factors that have a significant effect on enteric CH4 
output. One is the positive relationship between DMI and CH4 output is 
generally accepted. This is due to the increased amount of substrate in 
rumen that is fermented (Moss et al., 1995; review by Ramin & Huhtanen, 
2013). However, cows with high milk yield generally also have a high DMI 

Glucose (C6H12O6) → 2 pyruvate + 4H 
 
C6H12O6 + 2H2O → 2C2H4O2 (acetate)+ 2CO2 + 8H 
C6H12O6 + 4H → 2C3H6 O2 (propionate) + 2H2O 
C6H12O6 → C4H8 O2 (butyrate)+ 2CO2 + 4H 
 

Methanogenesis: CH4+2 H2O ↔CO2+8 H2 
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and thus CH4 output is diluted per unit of product. A high digestibility is 
correlated with a lowered CH4 output. Also, here is an increased 
digestibility connected to high producing cows and gives therefore a lower 
CH4 output per unit. 

Type of feed affects the CH4 output. Feed ratios with a high proportion of 
starch rich concentrate is found to be correlated to a lower CH4 output and 
high milk yield (Johnson & Johnson 1995). Starch rich diets have shown 
to increase propionic acid in rumen (Penner et al., 2009). Production of 
propionic acid works as a H2 sink compared to acetic and butyrate acid 
production as mentioned above. Other factor effecting CH4 output is how 
the forage is processed. Silage compared to hay decreases the enteric 
CH4. The fermentation process of silage was found to give a variation in 
acids in the silage. Silage high in total acids or high in acetate will lower 
the CH4 production from cows (Ramin & Huhtanen, 2014). 

Feed supplements in form of lipids is reviewed as one of the leading 
strategies to reduce CH4 output (Beuchemin et al,.2008; Ramin & 
Huhtanen, 2013). 

2.3.1 Dietary fat effect on methane output in general 

Fats in different forms and volumes have shown to influence and decrease 
enteric CH4 output. Beauchemin et al (2008), gathered data from 17 
studies and found that for each supplemented percentage of fat comes a 
decrease of CH4 by 5.6 %. However, diets containing higher amount that 
5% fat affects the cow by a reduced appetite, decreased fermentation of 
feed and diminished the motility of the fore stomachs (Sjaastad, 2010). 
Comparing the supplemented fats, unsaturated fats had a bigger 
supressing effect on CH4 output compared to other FA (Patra 2013). The 
C18:3 had marked inhibitory effect, compared to other FA, on CH4 
production (Patra 2013). The background for the supressing effect is 
explained by that unsaturated fats are saturated in rumen and act thus as 
a H2 sink. However, the bio hydration does not lower the accumulated H2 
as efficient as the production of CH4 (Czwerkawski et al, 1986 quoted in 
Johnsson & Johnsson 1995). Van Zjiderverld (2011) concludes that 
saturation of dietary fat of 20 % result in a CH4 decrease of 1.6 % output 
(Van Zjiderveld et al., 2011). Bacterial type in cow’s rumen can influence 
the fats depressing effects. Gram positive methanogens was shown to be 
affected by fat supplementation, although no gram-negative methanogens 
were affected (Galbraith at al., 1971). 

The underlying mechanism of lipids decreasing effects on CH4 output is 
versatile and not yet fully understood. Main reasons found in literature are 
CH4 inhibition through enhanced propionic acid production (Machmyller 
2013; Patra 2013), bio hydration of unsaturated FA as an alternative H2 
sink (Czerkawski et. al, 1966), inhibition of protozoal production (Johnson 
& Johnson 1995), reduced fibre digestion, and fat to be toxic to 
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methanogens (Harfoot et al, 1974; review by Topak 2016). It is through 
the attachment of fat on the fibre and the methanogens that disfavour the 
methanogens (Machmüller et al., 2003). This is due to that the fat on the 
membrane of the methanogenic bacteria prevents nutrients to enter. 
However fat fed in form of free fatty acids (FFA) instead of triacyl glycol 
have shown to be important for the fat to be able to attach to bacteria 
(Harfoot et al., 1974) 

2.3.2 Linseeds 

Linseed Linum usitatissimum contains a high part of unsaturated FA (table 
1) were 18:3n-3 represents more than 50% of total FA (Chilliard et. al, 
2007; table 1). The ratio between omega 3 and omega 6 in linseed fat is 
approximately 3.6:1 (table 1). Linseed used in experiments differ in form; 
whole linseed, crushed linseed, linseed oil or extruded linseed (EL). 
General process of extrusion of linseed are done through short period of 
cooking followed by crushing of seeds under heat and pressure and 
quickly heating the crushed linseeds. In this way the content of cyanide is 
lowered (Martin et al., 2008). 

A feeding in vivo study where linseed was supplemented to the feed 
showed a decreased CH4 output/day. Depending on how the linseeds was 
processed a reduction of CH4 output was observed varying from -12 % 
with crude linseed, -38 % with extruded linseed and -64 % with linseed oil 
(Martin et. al, 2008). Data expressed as CH4 per fat corrected milk (FCM) 
showed a decrease of 23 % due to EL. However, a decrease in DMI (-
3.1kg/day) and NDF intake (-6.8 % on average) due to EL was also found 
in that study (Martin et al. 2008). 

In a study from 2011, methane output was determined in 40 cows kept in 
respiration chamber for five days. No effects of extruded linseed were 
found compared to control diet. Also, no effect was found in energy 
balance, digestibility of fibre (NDF) compared to control diet. It was 
concluded that the importance of confirmation of in vitro data with in vivo 
data (Van Zijderveld et al, 2011). In other studies, dietary fat (sunflower 
oil) was found to decrease digestion of NDF (McGinn et al., 2004). 

Table1. Fatty acid composition (g/100g fatty acids) of some common fats and 
oils. Fatty acid composition of experimental feed Easylin 100/30 (Modified table 
from McDonald, 2011; Agrosom, 2015). 

Fatty 
acid 

Rapeseed Soya 
bean 

Red 
clover 

Ryegrass Linseed Butterfat Easylin 
100/30 

16:0 4 10 15.4 12 6 31 4 

18:0 1 4 2.3 2 3 10 3.7 

20:0 1 Tr - - - - - 

22:0 Tr Tr - - - - - 
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16:1 2 Tr 0.1 2 - 2 - 

18:1n-
9 

54 25 - 15 17 23 18 

18:2n-
6 

23 54 20.8 68 13 2 16 

18:3n-
3 

10 7 59.5 - 55 <1 58 

 
2.4. Effects of linseed feed ration on milk yield and fat composition 

2.4.1 Milk yield 

There are conflicting results in literature of the effect of linseeds on milk 
yield. Supplementary fat was found to increase milk yield (Patra 2013), 
linseed oil and extruded linseeds (EL) have been found to increase kg 
milk yield per day (Bu et al. 2007; Zaucht et. al, 2010). Other results show 
a decrease in the milk yield (Chilliard et al 2009; Gunthier et al 2005) Other 
studies show no effect on milk yield (Beuchermin 2009). 

In an analysis where many studies with different fat supplements were 
used, an increase of milk yield was found with increasing fat supplement. 
However, a decrease of milk yield was found with fat supplements over 
3.9-6 % (Amlan K. Patra, 2013). In a study where 5.7 % fat of dietary DM 
was used a drop of 20 % was found for cows feed EL compared to control 
group (Martin et al. 2008). 

2.5 Milk fat composition 

2.5.1 Lipids 

Lipids have a crucial role in the body of animals. Lipids are components 
in the cell membrane, absorber of some vitamins, energy storage and are 
high in energy and contribute with energy for the animal. Lipids are divided 
into 4 main groups: FA, glycerides, nonglyceride lipids and complex lipids 
(Denniston et. al, 2010). 

Main constituents of the milk fat fraction are triacyl glycols (figure 3), 
where glycerol bind three FA (McDonald et al 2011). There are more than 
500 different FA in milk (Patton & Jensen 1975). 

 
Figure 3. Modified picture from Harvey et al., 2011. A triacyl glycol with single 
and one double bound. 
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Short-chain FA consist of a carbon chain of 4 to 8 carbons, medium-chain 
FA consist of 10 to 14 carbons and long-chain FA contains 16 or more 
carbons (Bauman & Griinari, 2003). The length and saturation have an 
impact on the melting point of the FA. It increases with increased number 
of carbon as well as with saturation level (Deniston et al,). Milk contains 
mainly medium-chain FA with parts of 16 carbons and the milk FA are 
foremost saturated. Part of C18:3 in cowmilk is 0.2 % (Lindmark & 
Mårtensson, 2012). 

Linoleic acid, C 18:2, and α-linolenic acid, C 18:3, are essential since they 
cannot be synthesized by the animal itself (Harvey & Ferrier, 2011). 
Instead these FA need to be ingested with the feed the feed. Linseed 
based feed consists of a high part of essential FA as well as grass (table 
1). 

2.5.2 Dietary fat effect on milk fat composition 

Lipids consumed by the cow differ in structure depending of feed source. 
Lipids in plants often consist of glycolipids where fat in grass have high 
amounts of polyunsaturated FA (PUFA) (Dewhurst et al 2003). Fat in cell 
membrane consists of phospholipids and fat stored in the seed consists 
of triglycerides. The fats in oil seed plants also consists of PUFA. 
Lipids in dietary fat are degraded by ruminal microbes in rumen through 
hydrolysis. Freed FA high in PUFA in rumen are bio hydrogenated by 
ruminal microorganisms where hydrogen is added to the PUFA in a 
saturation process (McDonald et al, 2011). Almost all linoleic acid (C18:2) 
and linolenic acid (C18:3) are saturated and converted into stearic acid 
(C18:0) in rumen (rewired by Doreau & Ferlay 1994). However not all FA 
is completely saturated but intermediates in form of mono unsaturated FA 
(MUFA) and PUFA are created. The saturated and unsaturated FA are 
passed on to duodenum where it is extracted to the blood. The fat is 
transported in chylomicrons and very-low-density lipoproteins (VLDL) 
(Chilliard et. al, 2007) in the blood to the udder where it is used for milk fat 
synthesis (Gonthier et al, 2005). 

The main part of VFA is absorbed across the ruminal epithelium and 
released into the portal blood. Propionate is then converted to glucose in 
the liver. The main fraction of butyrate is metabolised to the ketone body 
β-hydroxybutyrate in the ruminal epithelium and released into the portal 
blood (Sjaastad et al, 2010). Acetate and β-hydroxybutyrate are 
precursors for de novo synthesis of milk fat in the mammary gland. 
Roughly half of milk FA are produced de novo and acetate and β-
hydroxybutyrate are the principal precursors. However, the relative 
contribution from the de novo synthesis is generally lower in the early 
stage of lactation when the cow mobilises long FA from the adipose tissue. 
The other 50 % of milk fat is produced from preformed FA. Mobilised FA 
also contributes to the preformed FA. The FA are, in the alveolar cell, 
esterified into triacyl glycol and transported into the milk by fat globuli 
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(Sjaastad et al, 2010). Short and medium-chain FA originates from de 
novo synthesis and long chain FA originates from preformed FA. FA with 
C 16 derives from both de novo and preformed FA (Bauman & Griinari, 
2003; Lindmark Månsson et al. 2006). 

Linseed has, in earlier studies, shown to have an impact on milk fat 
composition. A diet with linseed increases the unsaturated FA (UFA), 
C18:3, in the milk fat and decreases the saturated FA (SFA), C16:0, acids 
in the milk (Zachut et al 2010; Chilliard et al., 2009). At the same time 
negative correlations (r=-0.86 to -0.90) have been found between 
increased CH4 output and elevated levels of unsaturated FA in milk fat 
(Chilliard et. al, 2009). The elevation of UFA in milk fat is explained by 
literature as an increased amount of FA passing to the small intestine. The 
underlying mechanism is the higher uptake of UFA from linseeds in the 
small intestine (Chilliard et al., 2009). Supporting results was found in a 
study were EL in diet resulted in decreased levels of medium chain FA 
and increased levels of long chain FA in plasma (Gonthier et al 2005). 
However, the milk fat increase of C18:3 was found to be negatively 
correlated with milk fat percentage and milk yield (Zachut et al., 2010). A 
risk with diets supplemented with PUFA is a low milkfat syndrome where 
a heavy decrease of milk fat can be seen. Highest drop in milk fat 
depression is seen with diets low in fibre and with supplemented PUFA 
(Griinari et al., 1997). 

2.6 How is methane measured from cows? 

2.6.1 Methane measurements 

CH4 output is represented as a mass of gas that is released by the cow 
per unit of time. The released amount of gas varies in time depending on 
the cows belching. This means that the measuring device should be able 
to measure both factors (Larios et al., 2016). 

CH4 output from cows can be measured in different ways, both in vivo and 
in vitro. The most accurate in vivo technique for CH4 output “the golden 
standard” is the respiration chamber. The animal is placed in a closed 
chamber where exhaust air with its gas is sampled with a decided time 
cycle (Changunda et al., 2013: Ramin & Huhtanen, 2014: Hristov et al., 
2015). This method is often used for evaluation of other CH4 measuring 
methods (Johnsson & Johnsson 1995; Danielsson et al., 2017). 

A widely used technique for measuring methane is the tracer gas 
technique with sulphur hexafluoride. A permeation tube with sulphur 
hexafluoride is placed in cows rumen releasing the gas successively with 
a known releasing rate. Greenhouse gases and sulphur hexafluoride 
exhaled from the cow is sucked into hoses and transported into a 
stainless-steel collection sphere. The ratio between sulphur hexabromide 
and CH4 is determined by a gas chromatograph. Before the 
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measurements begins the animals need to be trained to wear the 
sampling equipment on the head. The technique enables measurement 
on a large number of animals on farm as well as many times/day/animal 
(Hristov et al., 2015; Boadi et al., 2001). 

Other in vivo measuring techniques are the GreenFeed-system which is 
based on an automatic head-chamber system measuring the exhaust air 
from the cow’s muzzle. Here the individual cow is sampled for CH4 and 
CO2, during feeding in a portal feed trough. Measurements are done by 
infra-red sensor and optionally with tracer gas CH4 ratio. The sampling is 
done during a period of days or weeks resulting in a calculation of CH4 
output per day. Due to many measurements per day this method catches 
the fluctuations of methane production over the day as well as numerous 
animals can be measured measurement compared to the respiration 
camber technique. Measurement of background greenhouse gas can also 
be made. Tag reader register the animal and data of that specific animal, 
ex. milk yield, are transferred to the analysing station. Before the 
measuring begins the animals need to be trained to eat from the portal 
feed trought (Hristov et al., 2015; Zimmerman et al., 2012). 

There is also In vitro methods were CH4 is measured from containers of 
feed during oxygen fee environment. Indirect estimations of CH4 exist 
were correlations with DMI is used for calculations of CH4 output (Ramin 
&Huhtanen, 2012 & 2013 ). 

CH4 output can also be estimated by laser methane detection technique 
(LMD) which is used in this study. The technique was developed for 
measurement of CH4 leaks from gas pipes and started to be used in trials 
of CH4 measurements of cows by Changunda et al. in 2009. The LMD 
measures the CH4 in the exhaust air from the cow with its laser diode. The 
method relies on the fact that CH4 absorbs a specific wavelength of 
infrared rays. The LMD measures the diffused light back and measures 
the absorption of the light. The LMD measures the average CH4 gas 
density between the detector and the target. One measurement is made 
every 0.5 second over a duration of a few minutes. 

CH4 output is reported as the product of concentration of CH4 cloud 
(measured in parts per million) and path length (measured in meters). 
Best application is outdoors in strong sunshine. The LMD calibrates itself 
automatically each time it is turned on (Crowcon production voucher, 
2013). With this type of measurement it is possible to measure many cows 
on farm. The accuracy is however lower compared to respiration chamber 
which was found in a study of Ricci et al., 2014. In the study, 
measurements were done on 72 steers, after feeding, with one 4-minute 
measurement/ animal /day repeated over 3 days. The week after the CH4 
output was measured in a respiration chamber. The CH4 sample/cow was 
corrected for background CH4 measurement where data lower than the 
lowest measurement was subtracted from then deleted. There was a 
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strong linear relationship (R2=0.86) between LDM measurement and the 
respiration chamber (Ricci et al., 2014) and the relationship of r=0.47 
(p=0.001) for dairy cows was found by Changunda et al., 2013. 

2.6.2 Influencing factors of methane measuring 

CH4 output was found to be affected by lactation status (lactating or dry 
cows) and the cow’s activity. Depending on the activity of the cow, the 
pattern of eructation differs. Cows have the highest CH4 output during 
rumination, lower CH4 output during feeding and lowest while staying idle. 
These facts can influence the results of CH4 measurements if not 
corrected for in the experiment (Changunda, 2009). 

Time for inurement of cows on the new diet can affect the measurements. 
In an earlier study an 8 days’ time of inurement of linolenic acid in diet 
appears to be required for the CH4 measurements to stabilise. A 12 day 
of re-establish initial CH4 values was needed for the cows after finished 
test diet (Zwerkawski, 1966). 

3. Materials and Methods 
This study was initiated by the feed company Agrosom and was executed 
as part of an EU-project named “Rolling out of an innovative enteric 
methane emissions measurement method for cattle” (ECO-methane). The 
project was performed within the EU-programme “Competitive and 
innovation frame work programme” (CIP). The design of this project is 
almost similar to that of the ECO-methane project (ECO-methane, 2014) 
however there were some modifications of the material and method of this 
work. These are mentioned under measurements and sampling. 

3.1 Experimental design and herds 

The study was executed on five conventional dairy herds in Sweden. 
Three of the participating herds were located in Kalmar län, one in Halland 
and one in Uppland. Descriptive data of participating herds are presented 
in table 2. 

The study was divided into three periods (Per) where Per 1 was control, 
Per 2 was treatment, and Per 3 was control. This is also called a switch-
back design. During Per 1 all cows were fed control diets, equal to the 
feeding strategy on the farm. During Per 2 the diets were supplemented 
with the test feed EL. The EL was fed as an ingredient of commercial 
compound feed in the ration (table 2 and 3). The goal was to feed each 
cow 1000 grams of EL per day. Per 3 was a second control period were 
EL was excluded from the feed ratios and cows returned to their normal 
feed ratios. 
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Table 2. Descriptive data of participating herds. PMR=partly mixed ration. TMR= 
total mixed ration. 

 
3.1.1 Treatment feed 

The treatment feed containing linseed, Easylin 100/30, was produced in 
Bremen, Germany. Easylin 100/30 contained proximately 60 % extruded 
linseeds and 40% rape seed meal. Amount of crude fat in Easylin was 
277 g per kg dm. Total fatty acids in Easylin 100/30 was 887 g/kg crude 
fat. The amount of linolenic acid was 53.2 g/100g (Agrosom, 2016; 
NorFor, 2018). 

The feed rations at the herds were not corrected for different DMI, 
solubility of feed, parts of carbohydrate, silage process or amount of fat 
intake. 

3.1.2 Selected cows 

A test group of 20 cows was created for each herd and period. Criteria for 
selection for the cows were; days in milk (DIM) within 30-180 days, a 
health record for at least 2 months back, 25% of the cows was primiparous 
and 75% were multiparous. These criteria were in accordance with the 
ECO-methane project (2014). The final selection of the 20 individuals was 
done at the farms. A list of all potential cows from the herd within the 
qualifications was created. The first 20 cows from the list that we found in 
the feeding area was selected to be measured for CH4 and included in the 
test group. 

 

Herd: Breed Milkin
g 
syste
m 

Feeding system Feeding system 
for Extruded 
Linseed 

 

1 Holstein AMS PMR, 
-feeding wagon 

Concentrate in 
AMS 

2 SRB and 
Holstein 

AMS -PMR, transport 
band.  
-Feeding stations. 

Concentrate in 
feeding stations 

3 SRB Milking 
parlour 

TMR 
two different mixes 

 Concentrate in 
mixing wagon 

4 SRB, Holstein 
and crossbreed 

AMS PMR 
-feeding wagon 

Non pelleted in 
Mixing wagon 

5 Holstein AMS -PMR 
-feeding wagon. 
-feeding stations 

Concentrate in 
feeding station  
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3.2 Measurements and sampling 

The measurements started in December 2014 and ended in May 2015. 
None of the cows were on pasture during the trial. The following 
measurements were done once in every period at every herd as in ECO-
project; one direct CH4 measurement of LMD on the selected cows, one 
questionnaire per herd directed to the farmer, collection of data from milk 
sampling and of information of sick and treated cows. 

Additional measurements outside the ECO-project sampling, only for this 
master thesis, were; one-day feeding control per herd and period. For that 
I collected data on feed consumption and milk yield of all lactating cows 
for the day we visited the herd and the number of cows in the lactating 
group. The amount of consumed feed took into account the amount of 
roughage and concentrate fed and leftover feed from feeding bunker. The 
leftovers were weighed or estimated by the farmer. Roughage feed 
sample were taken at the herds the same day as I visited the herd 
roughage for dry matter measurements. Other analyses on nutrient 
composition of the feeds were collected from the farmers’ own feed 
analyses. The one-day feeding control was calculated in the computer tool 
IndividRAM (Växa Sverige, Eskilstuna, Sweden) which is based on the 
feed evaluation system NorFor (Volden, 2011). 

3.2.1 Analyses on feed and milk 

Roughage feed samples were analysed for DM (at 60 ºC) at the SLU feed 
laboratory (Uppsala, Sweden). This sample was used for the one-day 
feeding control on herd level. The milk samples, collected monthly 
according to the official Swedish milking recording scheme, were also 
used for analyses for FA composition. The farmer performed the milk 
recording for the herd during normal procedures and labelled the sample 
tubes with cow number for the selected cows (same cows that was 
measured for CH4). The labelled tubes were singled out at the Eurofins 
Steins laboratory (Jönköping, Sweden) and milk samples were analysed 
on FA with a Fourier Transform Infra-red (FTIR) instrument. Individual milk 
samples were analysed for the FA: C16:0, C18:0, C18:1, MUFA, PUFA, 
sum of SFA and sum of UFA, sum of all FA (FAtot) and protein (FApr). 
Deviation for the FTIR method vary for SFA from -0.07 % to + 0.07 % and 
for UFA from -0.14 % to +0.12 % (Kaylegian et al., 2009). 

Data on milk yield (MY), energy corrected milk (ECM), fat content (MF) 
and protein content (MP) was collected both on individual cows and on 
herd level in each period. These data were provided by Växa Sverige 
through the Swedish milking recording scheme (Eskilstuna Sverige). 

The milk fat and protein were analysed by the CombiFoss 6000 equipment 
(Eurofins Steins, Jönköping, Sweden). According to Nils-Erik Larsson 
(personal communication), corrections was done for milk fat and protein 
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content using standard procedures. The corrections were done for herds 
with milk sampling once per day for the variables; breed, parity, DIM and 
ratio between the milk recording for the sampling and the milk recording 
of the complete day. For herds where milk recording, and sampling was 
done twice per day no corrections were done. 

3.2.2 Methane measurement 

Direct CH4 measurement was done with LMD from the trademark 
Crowcon, production name TGE laser methane mini-Green (LMm-G) 
(Crowcon production voucher, 2013). The LMD green laser point was 
focused on the cow’s nose during the measurement. Each individual 
measurement lasted between 3 and 4 minutes resulting in a minimum of 
360 individual measurements per cow where one new measurement was 
done every 0.5 second (figure 3). The LMD measurements was performed 
by a well-trained person from France. 

  
Figure 3. An example of a CH4 measurement from one individual cow. The x-
axis shows the total of 499 measuring points during 250 seconds. The y-axis 
shows CH4 output in ppm, when a laser methane detector is pointed towards a 
cow’s nostrils. 

The person was standing on the feeding bunker at approximately two 
meters distance from the cow while he directed the LMD device towards 
the cow´s nostrils. CH4 output was measured while the cow was eating. 
Methane measurements of concentration was specified as parts per 
million. Each methane measurement lasted for 180 seconds and a total 
of 360 methane measurements was mace under this time for each cow. 
A mean of these 360 measurements was calculated for each cow. The 
individual measured values were then divided by the individual ECM, from 
milk recording, creating an individual momentary methane output ppm per 
kg ECM. 
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3.2.3. Indirect methane estimations with Visiolait 

Indirect CH4 estimation was done on herd level by a feeding ratio tool 
called Visiolait which estimated the daily CH4 output in grams per litre of 
milk of each herd. A patented equation (Chesneau, 2008) was used for 
the estimate. The equation included information of FA profile, amount of 
milk yield from tank milk kg per cow and day and DIM of herd. The CH4 
values were used for comparison through correlations with the direct CH4 
measurement. 

3.2.4 Indirect methane estimations by NorFor 

Indirect CH4 estimations on herd level were done by NorFor based one-
day feeding control calculations. The CH4 value was estimated on herd 
level by grams per cow and day. The intention was to create correlations 
between NorFor estimations and mean of direct CH4 LMD measurement 
per kg ECM and CH4 estimation of Visiolait. 

𝐶𝐶𝐶𝐶4 =
1.39 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷 − 0.091 ∗ 𝐹𝐹𝐹𝐹

55.65
∗ 1000 

Figure 4. Estimation of CH4 for dairy cows where CH4=methane g per day, 
DMI=total feed intake kg DM per day, FA=fatty acid in the diet grams per kg DM, 
number 55.65 converts CH4 energy MJ to gram (Nielsen et al. 2013). 

3.3 Statistical calculations 

An average of DIM was calculated for selected cows in the test groups on 
each farm and period. Collected data for these cows was used in 
statistical calculations in Minitab 17.0. Corrections for DIM, parity, and 
health and activity were included in the experimental design. For 
correction of data see statistical calculations further down. 

The statistical model ANOVA: General Linear model (GLM) was used to 
calculate the statistical difference between herds (Herd) and between 
periods (Per) for the variables DIM, ECM, MY, MF, MP, FATtot, FApr, 
C16:0, and C18:0, C18:1, MUFA, PUFA, SFA, UFA, CH4 of LMD, Ch4 of 
LMD per kg ECM and amount of EL (table 6). Variables that potentially 
could have a significant effect was included in the calculation. If there was 
no significant effect, the variable was withdrawn from the calculation, such 
a variable was Herd. Herd and Per were fixed in the model. A pairwise 
comparison with a confidential level of 95% was used to locate the 
significant difference between specific periods (table 6). Means of 
variables were also generated through the pairwise comparisons with 
confidential level of 95%. The mean values were then used to create bar 
graphs, in Excel, for each variable. Descriptive charts for DIM, EL and 
number of cows was done in Minitab or excel. No correlations lower than 
0.5 are reported in this paper unless required for special reasons. 
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For the non-significant Herd values, a new GLM was done where Herd 
was erased from the model. 

Correlation between LMD measurements and CH4 from Visiolait and CH4 
from NorFor was done. 

4. Results 
4.1 Descriptive data 

Number of cows in the testgroups (figure 5), DIM, daily DMI did not differ 
significantly between periods (p=0.34) or between herds (exception of 
herd 5 with lower daily DMI compared to the other herds) (table 6; table 
3). 

 
Figure 5. Number of cows at each herd and for every period in the final test 
group. 

Ingestion of extruded linseed differed between herds. However, no 
statistic calculation of this was made (table 3). Results from one day 
feeding control are shown in tables 3 and 4. 

Table 3. Average daily feed intake per cow on herd level and chemical 
composition of diets in the five herds. Amounts of feed and composition were 
provided from the herdsmen. Amount of linseed was calculated from the amount 
of Easylin 100/30 supplied in the diets during period 2. 
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 Period 1 Period 2 Period 3 
Herd 1    
No. of cows in test group 13 18 12 
No. of lactating cows 517 519 522 
Total dry matter intake, kg 
DM 

22.4 23.0 21.4 

Roughage intake, kg DM 13.5 13.4 12.7 
Concentrate intake, kg DM 8.9 9.6 8.7 
Extruded linseed g feed 0 867 0 
NDF, g/kg DM 350 351 357 
Crude protein, g/kg DM 171 160 180 
Crude fat, g/kg DM 46 47 49 
Herd 2    
No. of cows in test group 16 14 16 
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Table 4. Milk yield and milk composition of all lactating cows of the five herds. 
Data was provided by Växa Sverige 

 Period 1 Period 2 Period 3 
Herd 1    
No. of cows 597 613 615 
Days in milk 150 206 234 
Day of sampling from previous 
period 

- 35 14 

Milk yield, kg 25.3 24.5 24.7 
Energy corrected milk, kg 25 24.3 24.3 

No. of lactating cows 138 137 136 
Total dry matter intake, kg 
DM 

23.6 20.8 18.8 

Roughage intake, kg DM 12.6 11.3 8.8 
Concentrate intake, kg DM 11.0 9.5 10.0 
Expelled linseed, g feed 0 1065 0 
NDF, g/kg DM 353 340 332 
Crude protein, g/kg DM 172 177 189 
Crude fat, g/kg DM 46 39 48 
Herd 3    
No. of cows in test group 19 11 5 
No. of lactationg cows 188 185 191 
Total dry matter intake, kg 
DM 

27.4 29.6 27.8 

Roughage intake, kg DM 12.1 13.6 11.5 
Concentrate intake, kg DM 15.3 16.0 16.3 
Expelled linseed, g feed 0 924 0 
NDF, g/kg DM 389 328 360 
Crude protein, g/kg DM 197 185 182 
Crude fat, g/kg DM 58 55 53 
Herd 4    
No. of cows in test group 18 11 - 
No. of lactating cows 138 135 - 
Total dry matter intake, kg 
DM 

21.5 25.3  

Roughage intake, kg DM 14.1 11.4  
Concentrate intake, kg DM 7.4 13.9  
Expelled linseed, g feed 0 1000 0 
NDF, g/kg DM 286 315  
Crude protein, g/kg DM 195 184  
Crude fat, g/kg DM 47 52  
Herd 5    
No. of cows in test group  13 11 
    
No. of lactating cows - 375 375 
Total dry matter intake, kg 
DM 

 23.8 28.1 

Roughage intake, kg DM  13.9 18.6 
Concentrate intake, kg DM  9.9 9.6 
Expelled linseed, g feed  0 1126 0 
NDF, g/kg DM  347 343 
Crude protein, g/kg DM  190 188 
Crude fat, g/kg DM  44 42 
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Milk fat, % 3.8 3.9 3.9 
Milk protein, %  3.5 3.5 3.4 
Herd 2    
No. of cows 138 138 137 
Days in milk 127 223 244 
Day of sampling from previous 
period 

- 70 3 

Milk yield, kg 29.9 29.6 31.2 
Energy corrected milk, kg 30.5 31.0 32.1 
Milk fat, % 4.1 4.2 4.1 
Milk protein, %  3.6 3.7 3.6 
Herd 3    
No. of cows 194 185 187 
Days in milk 186 249 222 
Day of sampling from previous 
period 

- 49 7 

Milk yield, kg 26.1 27.2 (26.0) 
Energy corrected milk, kg 27.8 28.6 (27.7) 
Milk fat, % 4.3 4.3 (4.1) 
Milk protein, %  3.7 3.6 (3.6) 
Herd 4    
No. of cows  135 130 - 
Days in milk 228 255 - 
Day of sampling from previous 
period 

- 24 - 

Milk yield, kg 30.7 32.0 - 
Energy corrected milk, kg 30.8 31.7 - 
Milk fat, % 4.0 4.0 - 
Milk protein, %  3.4 3.4 - 
Herd 5    
No. of cows - 375 413 
Days in milk - 208 248 
Day of sampling from previous 
period 

- 28 24 

Milk yield, kg - 31.5 29.4 
Energy corrected milk, kg - 32.3 30.6 
Milk fat, % - 4.1 4.3 
Milk protein, %  - 3.6 3.5 

 
4.2 Milk yield and milk composition 

4.2.1 Milk yield 

Calculations based on data from cows in test groups showed that Milk 
Yield (P=0.55) and ECM (P=0.24) did not differ significantly between 
treatment period and control periods (table 6). 

4.2.2 Protein 

Protein content in milk, MP, increased significantly (P=0.006) from 3.4 in 
Per 1 to 3.5 in Per 2. Protein, FApr, did not increase significantly. 

4.2.3 Unsaturated fatty acids in milk 
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PUFA, increased significantly (P<0.0001) from period 1, 0.13g per 100g, 
to period 2, 0.15g per 100g, and decreased mean numerically from period 
2 to period 3, 0.13g per 100g (Figure 6; table 6). 

 
Figure 6. Mean and their SE of PUFA for period1, 2 and 3. 

Herd 1 had significantly (P=0.008), higher mean of unsaturated acids 
compared to herd 3 and 4. There was a significant (P=0.005) decrease of 
mean of UFA from period 2, 1.15 g per 100g, to period 3, 1.03 g per 100g. 
There was a numerical increase of unsaturated acids from Per 1 to Per 2, 
however not significant (Figure 7; table 6). 

 
Figure 7. Mean and SE Mean of UFA for period. 

Oleic acid, C 18:1 (P=0.36) and MUFA (P=0.83) did not differ significantly 
between periods. 

4.2.4 Saturated milk fatty acids 

Saturated FA did not differ significantly between periods (P=0.64) or 
between herds (P=0.28) (table 6). Palmitic acid, C16:0, tended to 
decrease (P=0.055) from period 1 to period 2. A small numerically 
increase was seen in period 3 (figure 8; table 3). 
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Figure 8. Mean and SE Mean for palmitic acid (C16:0) in periods. 

4.3 Methane output 

 
Figure 9. Boxplot of CH4 measurements by LMD on individual cows (ppm per 
kg ECM) for all herds (Bes) and periods (Per). * and ** indicate significance level 
on Per within Bes (* P<0.05; ** P<0.01) 

Mean of momentary CH4 ppm per daily ECM yield differed significantly 
(P< 0.0001) between period 1 and 2, between period 1 and 3. Mean of 
CH4 per ECM decreased significantly (p<0.001) from Period 1, 4.9, to 
period 2, 3.8 which corresponds to a reduction of 22 %. Mean of CH4 per 
ECM increased, however only numerically, from Per 2 to Per 3, 3.8. 
(Figure 10). 

 
Figure 10. Mean and SE Mean of CH4 ppm per kg ECM for periods. 

1.13

1.05
1.07

0,9

1

1,1

1,2

Per 1 Per 2 Per 3

gr
am

/ 1
00

 g
ra

m

C:16:0

Bes
Per

54321
321321321321321

18

16

14

12

10

8

6

4

2

0

M
et

h 
pe

r E
CM

Boxplot of Meth per ECM

4.90

3.78 3.80

0

1

2

3

4

5

6

Per1 Per1 Per3

pp
m

Mean of Methane/ECM ± SE 
mean 



 

23 
 

4.3.1 Estimated methane value through fatty acid analyses, Visiolait 

There was no significant (p=0.16) relationship (r= 0.46) between LMD 
measured CH4 ppm production and Visiolait estimated CH4 production g 
per litre milk. Data from Per 1 and Per 2 was used (table 5). 

4.3.2 Estimated methane value through NorFor  

There was no significant (p= 0.53) correlation (r= 0.53) between measured 
CH4 by LMD and the estimated CH4, production gram per kg ECM, done 
by NorFor one-day feed control. Data from Per 1 and Per 2 was used 
(Table 5). 

Table 5. CH4 data for the five herds. CH4 measurement of laser methane 
detector (LMD) and CH4 estimation by Visiolait (estimated through fatty acid 
composition) are based on cows in the test group, while CH4 estimation by 
NorFor (calculated in a one-day feeding control) is based on all lactating cows.* 
shows missing values 

 Per1 Per2 

Herd 1   

CH4 LMD, ppm per ECM 3.80 3.70 

Visiolait, g per litre milk * 15.0 

NorFor g per kg ECM 505 520 

Herd 2   

CH4 ppm per ECM 7.17 3.41 

Visiolait, g per litre milk  16.3 16.0 

NorFor g per kg ECM  535 476 

Herd3   

CH4 ppm per ECM 4.82 3.99 

Visiolait g per litre milk 18.3 16.1 

NorFor g per kg ECM 613 674 

Herd 4   

CH4 ppm per ECM 3.69 3.30 

Visiolait g per litre milk * 15.3 

NorFor g per kg ECM 487 568 

Herd 5   

CH4 ppm per ECM * 4.53 
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Table 6. Effects of EL on milk yield, milk composition and CH4 output for herd 
and Period (Per). Mean from Basic statistics. LSmean for Per 1, 2 and 3 is 
created from individual data from the same period. When no p-value under herd, 
the variable herd was not used in the statistical calculation due to that it was not 
significant. 

Variable Periods P-value Significance level 

 1 2 3 Herd Per Per 
1-2 

Per 
2-3 

Per 
1-3 

DIM days 103 99 100 0.000 0.993    
MY1 kg per day 37 39 39 0.001 0.553    
MF1, % 3.9 3.9 3.9 0.001 0.657    
MP1, % 3.4 3.5 3.4 0.000 0.006 sig   
ECM1 kg/d 36 39 39 0.018 0.237    
FAtot2 g per 100g 3.7 3.8 3.6 - 0.363    
FApr2 g per 100g 3.3 3.4 3.3 - 0.098    
C16:02 g per 
100g 

1.1 1.0 1.0 - 0.055    

C18:02 g per 
100g 

0.37 0.40 0.35 - 0.003 sig sig  

C18:12 g per 
100g 

0.65 0.67 0.63 0.026 0.356    

MUFA2 g per 
100g 

0.96 0.98 0.96 - 0.833    

PUFA2 g per 
100g 

0.13 0.15 0.13 0.004 0.000 sig   

SFA2 g per 100g 2.5  2.4 2.4  - 0.641    
UFA2 g per 100g 1.0 1.2 1.0 0.008 0.005  sig  
LMD, ppm 170 140 140 0.000 0.001 sig  Sig 
LMD, ppm per kg 
ECM 

4.9 3.8  3.8 0.001 0.000 sig  Sig 

Sig= significant. DIM=days in milk. MY= milk yield. MF= milk fat. MP= milk protein. ECM= 
energy corrected milk. FATtot= Total fatty acids in milk. C16_0= palmitic acid. C18_0= 
saturated fatty acid with 18 carbons. C18_1=unsaturated fatty acid with one double 
bound. MUFA= monounsaturated acids. PUFA= long chain polyunsaturated fatty acids. 
SFA=saturated fatty acids. UFA= unsaturated fatty acids. LMD= Laser Methane 
Detector. Measurements of methane output of concentration measured in parts of 
million. LMD/ECM= Mean CH4 output per ECM. 3 Minutes= CH4 measurement, 
duration of 3 minutes. 1=data from official Swedish milking recording scheme was 
distributed via VäxaSverige. 2= data from FTIR was distributed via Agrosom. 

 

 

 

 

Visiolait g per litre milk * 16 

NorFor g per kg ECM * 549 
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5. Discussion 
5.1 Effect of Extruded linseed 

A lowered DMI due to an intake of EL (Martin et al., 2008) was not found 
in this study. Due to that the quantity of EL used in this study, from 2.4 to 
4.1 % of DMI per herd, to previous studies where a quantity of 7.9 % 
(Zachut, 2010), 12.6% (Gonthier, 2005) 15% (Chilliard, 2009) 16.6 % 
(Akrim, 2007) was used, the percentage of EL in this study can be 
considered low. The unchanged DMI in this study concludes that a 
quantity of EL up to 4.1 % will not affect the DMI. 

5.1.1 Milk Yield 

EL did not increase MY or ECM in the present study. This is in accordance 
with other studies Chilliard et al, 2009; Martin et al, 2008; Petit Côrtes 
2010.The hypothesis that EL increases MY could not be confirmed. 

Chilliard et al. (2009) observed a decrease in MY due to a high amount of 
EL. 
The amount of fed EL in the present experiment was lower than other 
studies, thus comparisons with other studies must be taken with caution. 

5.1.2 Milk fat 

In this study EL had no significant effect on milk fat yield between periods 
(table 6). The result corresponds with former studies with feed linseeds 
(Gonthier et al, 2005: Beuchemin et al 2009). However other studies with 
EL in feed, showed a decreased fat yield in milk. This was thought to be 
a result of a high fat supplement of 5% of DMI that resulted in a lower 
digestibility of feed (Martin et al, 2008). This concludes that a quantity of 
up to 4.1 % of EL will not effect milk fat yield. 

EL did increase content of PUFA in milk between Per 1 and per 2 (table 
6). Due to the high deviation of measurement of UFA (Kaylegian et al., 
2009), it must be emphasised that the FTIR method is not accurate to 
predict FA or groups of such acids with low concentrations. The 
concentration of PUFA in milk fat is generally less than 5%. Never the less 
the present result is in accordance with other studies (Petit & Côrtes, 
2010; Gonthier et al, 2005; Zaucht et al., 2010) where infrared analyse 
was used for fat samples (Gonthier et al., 2005; Zaucht et al., 2010). Due 
to that both period and herd had a significant effect on PUFA, the 
treatment effect that is seen between periods can be due to the farm 
effect. EL also tended (P=0.055) to decrease saturated FA in form of C 
16:0 from Per 1 to Per 2 and increased numerically from Per 2 to Per 3 
(figure 8). This is not in accordance with other studies were the decrease 
during EL-feed ratio have been significant. Also, the increase after 
finished treatment of C 16:0 has been significant in other studies. The fact 
that sampling was done close after transition from Per 2 to per 3 with the 
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result that the cows only consumed the control feed for a few days is 
probably the reason for the results. 

5.1.3 Methane output 

The result of the present study showing a decreased CH4 output from Per 
1 to Per 2 indicates that EL might have a lowering effect on CH4 
production. The result is in accordance with results of other studies of 
Martin et al. (2008) and Beauchemin et al. (2009). The reduction is difficult 
to compare with other studies of CH4 output since the CH4 measurements 
in this trial were only performed during a single activity. However, methane 
measurements of cows during feeding was made by Changunda 2013 
with a result of 284 ppm. Also, a respiration camber measurement of 
methane was done with the result of a mean of 356.3 ppm. Measurements 
of this study, 140 and 170 ppm, is comparatively low to Changundas 
measurements. Due to the big divergent levels in this study the data 
measurements cannot be considered to be accurate or be trustworthy. 
The reason for this difference could be environmental factors at the 
measuring occasion such as low light, wind draught or differences in 
measuring device. The small numeric increase of CH4 from Per 2 to per 3 
was not expected result and is not in accordance with other studies. The 
short time between the end of Per 2 and sampling in Per 3 (table 4 and 6) 
could explain a lingering treatment effect in Per 3. This is also in 
accordance with a study were the adaptation time for cows on new feed 
was 21 days (Gonthier, 2005). The reason for the short adaptation time in 
Per 3 was the upcoming grazing season. CH4 level of LMD for farm two, 
period one is high, compared to the other farms and periods (table 5). The 
reason for this high value could be miss calculations or cows muzels to 
close to each other during measurements. 

The non-significant relationship between CH4 measurement by LMD and 
Visiolait estimations, CH4 and NorFor estimations could depend on 
different factors. The mean value of the CH4 measurements, LMD, done 
in this study represents a “snapshot” of CH4 output for the cows in the test 
group during the specific activity of eating and should not be mistaken for 
a value of CH4 production per day. Visiolait is however an estimation of 
CH4 g per litres of milk and NorFor is an estimation expressed in gram per 
kg ECM. These both estimations are made on herdlevel. Therefore, the 
CH4 estimations are not directly comparable. Although despite the 
differences in units the CH4 values should have a similar variation 
between the periods due to the treatment feed. The lack of a significant 
correlation could be the result of a non-correct CH4 measurements or CH4 
estimations or both. 

5.2 Deviations from experimental design 

5.2.1 Herds and experimental design 
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Originally 7 herds had accepted to participate in the study however two 
herds decided to leave the project at an early stage. 

5.2.2 Number of cows 

The number of cows in the test groups (figure 5) was reduced due to 
mastitis and other illnesses. Individual cows were also excluded from the 
group since EL- feed was stopped for individual cows before 
measurement, incomplete FA analysis with some exceptions under 
divergent data. 

The goal was to achieve similar average stage of lactation among cows 
representing the different herds, thus cows with too high or too low DIM 
was extracted from the test group. This resulted in smaller test groups 
than the 20 that was originally planned for. The results of this study should 
thus be considered with caution. 

5.2.3 Sampling 

Due to the specific release pattern of CH4 from cows it is likely that the 
LMD- technique, with its frequent sampling every 0.5 second, can capture 
the levels of CH4 output from cows. 

The LMD is not the most accurate way of measuring CH4 but is 
comparably cheap and is a user-friendly way to measure many cows in a 
herd. Due to that CH4 measured with LMD is done once per individual cow 
in each period, could be considered less accurate than the Greenfeed 
method and tracer gas method which makes several measurements per 
cow and day. Also due to that LMD measurement are done in open air 
close to other individual cows and not within an enclosed space as with 
the Greenfeed method, it is likely that CH4 output from other individual 
could affect the measurement. The calculated accuracies for LMD differ 
in studies. The risk of report wrong CH4 measurement the individual cow 
is likely to be increased due to that the LMD had no ear tag number 
detector, compared to the Greenfeed method.  

A correlation of r= 0.93 between LMD and respiration chamber was found 
of Ricci et al 2014 which is likely to give trustworthy results with LMD. 
Changunda 2013 calculated a correlation to r= 0.47. Ricci 2014 deleted 
background data which could be the reason for the difference between 
the two results. Another potential difference between the studies could be 
the animal used were steers and not dairy cows. In this study no 
background data was deleted, and dairy cows was used similar to the 
study of Changunda 2013. Therefore, the data and design of data of this 
study is more alike the study of Changunda 2013. 

The fact that not all CH4 measurements (Herd 1 Per 2) took place in high 
light can also have affected the result. According to the producer of the 
LDM measurements should preferable be made in strong sunshine and 
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outside (Crowcon production voucher 2013). None of the measurements 
was done outside and therefore this should be taken in consideration 
when reading the result. 

Sampling of CH4 and milk was supposed to be done within the duration of 
approximate one week according to CIP project. In this project, time varied 
between milk recording and LMD measurements from 0 to 40 days. This 
extra time gap could have been accompanied with a differentiated 
environment like changed feed ratio. 

Deviation from the experimental design in form of cows not eating during 
the LDM measurements was a fact in this experiment. Although the 
number of cows that was eating was predominant, the number of cows 
not eating varied between periods and between herds. This is a factor of 
uncertainty according to Changunda et al. (2009). 

CH4 measurements was supposed to be 4 minutes long but deviations 
from this happened and some measurements were only 3 minutes long. 
However, a measurement of 3 minutes is in accordance with other 
scientific CH4 measurements (Changunda et al.,2009; Changunda 2013). 
Therefore, this deviation did probably not affect the reliability of the data. 

5.2.4 Feed 

The level of feed EL for individuals in the herds could be affected by the 
feeding strategy of the farm. Herd 1, 2, 5 fed EL in feeding stations, the 
given amount of EL can be understood as consumed of the correct 
individual. However, no protection gates were integrated on the feeding 
stations and thus cows could have been disturbed and or backed out from 
the feeding station after given ration. Due to the human interference when 
EL feed are scooped into the mixer wagon it is likely that feeding stations 
are more accurate when distributing the EL feed/cow. Also, for herds with 
TMR (table 2) it is possible that some cows consumed more EL-feed 
compared to others due to hierarchy between cows at the feeding table. 

Forage differed between the test periods at the farms. There effect of a 
changed forage on CH4 and FA profile in this study is unknown. 

5.3 Future 

Future questions to be answered is: 

If and how much EL decreases the NDF degradation in rumen. 

If and how a payment for reduced CH4 output in relation to milk yield could 
be introduced, and what effect it could have on a lowered CH4 output from 
herds. Today the payment for milk is based on milk yield, milk fat and 
protein (Arla, 2018). 

If EL have a long-term effect of CH4 output. 
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6. Conclusion 
The results suggested that EL increases unsaturated fats in the milk and 
decreases the saturated fat. Results further suggest that EL does not 
increase the milk yield. The results do not show that EL decreases 
methane output. However, the method to measure methane emissions 
might have a limited accuracy. 
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