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Abstract 
The purpose of this thesis was to study the effects of uncertainty in the pixel level estimates 
concerning the potential benefits of dynamic, pixel-based treatment units compared to 
traditional stand-based treatment allocation. Because of automatic stand delineation having 
benefits resulting in the possibility to be more commonly used in forest industry. In thesis 
assumption is made that the original ALS-dataset exactly represents the “Ground truth”. 

The study area is a part of the Östad foundation (Östad “stiftelse”) located in Southern Sweden. 
The property is owned by Östad foundation and is mainly used for industrial and education 
purpose. The analysis area is comprised of 1 848 ha. The forest is managed in the traditional 
Scandinavian clearcutting regimes.    

The results shows that uncertainty effects potential incomes in all cases, especially on the stands 
where traditional stand delineation was used. Target harvest volume (share of harvested pixels) 
also has an impact on the potential losses. When the target volume goes from 60 000 m3 to 
80 000 m3 the financial trend is changing and the potential losses per m3 is decreasing. Due to 
this phenomenon the biggest potential loss in SEK per m3 is reached at the target volume of 
60 000 m3. In terms of dynamic treatment units (DTU) the difference per m3 between the 
“Ground truth” and created rasters are relatively low, in some cases less than -1 SEK/m3. The 
results concerning the average difference between DTU and “Original borders” variants with 
simulated dNPV in all cases favor the DTU’s. In all tested cases DTU had an economical 
advantage over the planning within existing boundaries. Even with target volume of 20 000 m3 
results improve by -3.2 SEK/m3 in average between DTU and “Original borders”. The largest 
difference between simulated dNPV data of DTU and “Original borders” is - 5.9 SEK/m3, this 
result is achieved by 60 000 m3 as the target harvest volume.  The conclusion is drawn that 
DTU planning is more efficient than forest management planning based on “Original stand” 
borders even when the effect of volume data errors is considered. The data errors have larger 
effect on the planning results within the framework of original borders that within the DTU 
framework. Highest difference was achieved in case of minimum segment size 0.5 ha and target 
harvesting volume 60 000 m3 where, the difference was -6.9 SEK/m3. 

 

Key words: DTU, dynamic treatment units, ALS, Airborne laser scanning, tactical planning, 
final felling, RMSE, relative mean square error, segmentation 
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Abbreviations 
 

ALS - airborne-laser scanning, 

AVCC - avoided value change plus costs, 

CHM – canopy/crown height model, 

CIR - color-infrared  

DBH - diameter at breast height, 

dNPV - change of NPV, 

DTM - digital terrain model, 

DTU - dynamic treatment units, 

GT - Ground truth, 

H - Mean tree height, 

MINS - minimum segment size, 

NOK - Norwegian krone, 

NPV - net present value, 

RMSE - root mean square error, relative mean square error, 

SCD - spectral detail, 

SEK – Swedish krone, 

SI - site index, 

SPD - spatial detail. 
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1. Introduction 
To maintain sustainable flow of forest resources, management is a vital process. To provide 
high and even flow of forest products for the forest owners, information about forest stands are 
important. The conventional way of collecting data for the forest management proposes is based 
on field inventories. Of course, thru the decades the method of how field inventories are 
performed has changed to become increasingly efficient, but they are still mainly man driven 
by manual measuring in the field. However, manual forest field inventories as well as 
subsequent stand delineation is time consuming and requires professional knowledge with 
manual labor. Nevertheless, the inventory is done professionally the forest owner cannot avoid 
that stand delineation are partially subjective. Consequently, several studies concerning 
automatic stand delineation methods based on the aerial images, remote sensing such as 
clustering methods with digital terrain or crown high model are developing. 

Since Holmgren and Thuresson (1997) presented their article about using satellite imaginary in 
forest management. Remote sensing has developed rapidly. Because of errors in the data of 
airobe-laser scanning inventory, the economical aspect of decision based on remote sensing is 
still questionable. Inaccurate airborne-laser scanning data (with high level percentage of error) 
may lead to incorrect decisions which ultimately leads to financial loses for the forest owners. 
Forest inventories based on the ALS data might change the understanding of forest stands due 
to the boundaries changing depending on the used criteria. 

1.1. The stand concept 
In the traditional way stands are delineated subjectively, to represent the area with common 
attributes, for example yield, and wood density, age distribution, site fertility (index), tree 
species composition, in other words, conditions that distinguish the area from the surrounding 
forest. According to Gunnarsson et al., (1998) there is no indication that the stand delineation 
may change far in the future (Packalén et al., 2011). Stands as discrete treatment units were 
described long time ago. For example, Ström (1829) described the idea to delineate subjects 
into units based on homogeneity with respect to variables such as age distribution, standing 
volume etc.  

All forest data are collected and recorded as values per defined unit and organized during the 
planning process. This approach of processing spatial data is still the major method used to 
administrate forest (Gunnarsson et al., 1998). Information about the surface of study area is 
obtained from forest inventories which is more than simple forest data collection. Because of 
the forest inventory is possible to extract a lot of information, collected data helps distinguished 
stands and make responsible forest management decisions. Since one of the main criteria to 
delineate stands is homogeneity, understanding of traditional stands concept is both an 
inventory unit and a treatment unit. As previously mentioned, a forest stand is described by 
many variables, this information is used to create a dataset for forest management operation 
units in forest area. 
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1.2. Methods of stand delineation 
For forest management planning purposes division of areas into more uniform treatment units 
are necessary. In the process of creating stands only minor deviation in age and species 
composition is accepted. In general, within bigger sections or land circuit greater deviations is 
allowed. The preciseness of division of forest into forest stand can be achieved in a variety of 
ways.  

However, since inventories is time consuming assumptions about the homogeneity of stand 
conditions and stand boundaries are constant over the time potentially the information about 
stands are misleading due to generalizations. For example, Ståhl (1992) research shows that 
young stands from the beginning may seem homogenous but over the time the structure most 
likely will change. Such permanence is more present in the near-natural growth forest than in 
managed stands. Nevertheless, manual forest stand delineation is subjective those 
simplifications which helps the forester to manage data combining and scheduling treatments 
in the simplest possible way to reduce labor costs as well as working hours (Holmgren and 
Thuresson, 1997). According to Heinonen, et al. (2007), the main advantage for using dynamic 
treatment units (DTU) is that forest owners might be more efficient at utilization of forest 
resources than by using the fixed compartments. 

Automatic stand delineation have the potential to become more commonly used in forestry. 
Meanwhile, ALS is gaining popularity as the realization that the inventory and treatment unit 
does not necessarily need to be connected. So, the inventory units would be in pixels while the 
treatment units would be constructed from aggregated pixels. In this case the treatment units 
are not more stable because the layout is determined by certain criteria, Net-preset value of 
future harvest for instance (NPV). There exist several studies that compare new delineation 
methods with traditional human-interpreted stand borders, two of the main stand delineation 
methods occurs in the studies of Wu et al. (2013), Pekkarinen (2001), Packalén et al. (2011), 
Mustonen, et al. (2008) and other similar studies. The methods are: 

1. Human-interpreted stand delineation 
2. Automatic stand delineation 

1.2.1. Human-interpreted stand delineation 

The conservative way to interpreted stand delineation is based on previous treatments, merge 
the stands with similar growth conditions, tree species composition, size, tree age etc. Manual 
stand delineation method is also by using color-infrared orthophotography (CIR). It can be done 
on paper or on a computer screen in office or using a mobile device on field. For this approach 
of delineation not only colour-infrared orthophotography is used, but also any other type of 
orthophotography. The approach has been developed in several commercial research projects 
(Pekkarinen 2001, Sell 2002, Leckie et al., 2003). Human-interpreted approaches main 
disadvantage is lack of information about the specific canopy height, but the strength is the data 
concerning the visual tree species variation, especially comprehending differences between 
hardwood and conifers (Wu et al., 2013, Mustonen et al., 2008). 

1.2.2. Automatic stand delineation 

Automatic stand delineation uses different types of remote sensing data such as CIR 
orthophotography, ALS, satellite images or combinations of them. Stand automatic delineation 
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are created by applying a segmentation algorithm on the relevant data. Different types of data 
have different capacity to capture a variety of properties concerning the tree cover. Due to this, 
the choice of data will affect the method applied. Before the introduction of ALS, the infrared 
orthophotographs with simple algorithm were the most common type of data. Distinguishing 
deciduous tree species from conifers is the strength of this method. For that reason, infrared 
orthophotographs data gives the opportunity to casually follow the forest dynamics from a 
distance, including species variation. This method main disadvantage is lack of specific 
information about the tree height. (Wu et al., 2013, Leppänen, et al., 2008) 

Leppänen, et al. (2008) presented approaches for stand delineation using automatically 
interpreted stand delineation, with a segmentation algorithm based on a Digital Terrain Model 
and using a Crown Height Model (CHM). Mustonen, et al. (2008) compared two methods, the 
traditional stand delineation and segmentation method, where the second method is less 
subjective to generalize the treatment units. In the article authors conclude - automatic 
segmentation method using the CHM for creating treatment units is less expensive and less 
time-consuming compared to traditional forest stand delineation. For segmentation 
Mustonen, et al. (2008) use algorithms introduced by Baatz and Schäpe (2000). Mustonen 
(2008) presented a segmentation method using ALS-derived vegetation height. Diedershagen 
et al. (2004) showed an approach to stand delineation using commercial (“FOGIS”) software 
and high-resolution ALS data combined with multispectral data. The main advantage of this 
approach is to use high-resolution digitized vegetation height model and high-resolution data 
into the segmentation algorithm as an input (Wu et al., 2013). 

Hybrid segmentation approach introduced by (Wu et al., 2013) is based on three-band image 
containing tree height, density and information of composition, from raw ALS data in the study 
two popular image segmentation methods is combined, mean shift and spectral clustering 
algorithm. Mean shift algorithm is used to segment an image to create raw stands, which are 
refined by spectral clustering (Wu et al., 2013). 

1.3. Towards dynamic treatment units  
Treatment unit is a geographically confined forest area that is according to the tactical plan 
scheduled for a forest management operation. It could be thinning, final felling, planting etc. 
Usually, the stands boundaries have been fixed a long time ago based on physical and measured 
conditions. Peter Holmgren and Tomas Thuresson in 1997 introduce the concept of “Dynamic 
treatment units” (DTU) (Holmgren and Thuresson, 1997). The authors suggest to take into 
account, not only internal factors, such as spatial variation of volumes, soil condition, tree 
species growth, but also the external factors, such as timber price in the market. The concept of 
DTU is capable to consider all preparatory logistical costs for the operation. To start working 
with DTU’s is not an easy task because this approach does not consider stands as stable forest 
inventory units over time. The treatment units are formed to prescribe treatments, after which 
they are not used any more. Since different authors Holmgren and Thuresson, (1997), 
Packalén, et al., (2011) Öhman (2001) and others use different criteria to organize the segments, 
it seems that the biggest challenge is to define common criteria and implement it in an 
algorithm. As a principle of forming DTU more specific, treatment related criteria, can be set 
including economic aspects, in contrast to the general homogeneity and size criteria used for 
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defining stands in traditional forest inventory (Holmgren and Thuresson, 1997, 
Packalén, et al., 2011). 

Traditionally, delineating stands has been a part of the forest inventory process. From the 
human-interpreted stand delineation point of view it made sense not to have more inventory 
units than the treatment units which are necessary for planning, as it would keep the inventory 
costs low. Remote sensing-based forest inventory allows the most essential forest resource data 
such as mean height, basal area, and stand volume to be collected. The forest variable estimates 
can be obtained for smaller inventory units at no extra costs using ALS data (e.g., Næsset 1997, 
Packalén and Maltamo 2007). In recent years, ALS has become the most commonly used 
remote sensing technique for forest inventory purposes. Considering the inventory possibilities 
offered by remote sensing the use of DTU in forest management become more possible, because 
the inventory provides wall-to-wall coverage of growing stock estimates with resolution equal 
to the smallest unit used in calculations (raster cells, hexagons, and microsegments). High 
resolution also enables the possibility to use remote sensing data for the traditional stand and 
micro-stand delineation (van Aardt et al. 2006, Mustonen, et al., 2008, Pascual et al. 2008, 
Packalén, et al., 2011). 

 

 

Figure 1. Potential relationships between forest inventory units and treatment units.  

 

The complexity of the DTU forming is affected by the number of the input spatial units. It is 
possible to simplify the problem by preparing intermediate size units as it is presented by 
Pukkala et al. (2014) segmentation approach – called diffusion method to aggregate cutting 
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operations referred as “micro-segments”. The main idea is aggregating pixels based on general 
homogeneity criteria and size. Figure 1 illustrates possible relationships between forest 
inventory units and treatment units. Traditional way of management assumes that before the 
targeted treatment takes place the owners need to have an information about the stand. 
Restrictions and criteria about the treatments are set by the tactical plan and legislation. In this 
management approach inventory and treatment units are highly related to each other. Since 
inventory provide with field information within the stand borders and based on this information 
owners make their decisions about the treatments. Alternative approach is to use remote sensing 
as an inventory unit in that case inventory units are pixels provided by ALS data. To increase 
efficiency of forest operation it is necessary to combine pixels together in segments - DTU. 
Pixel based inventory also has opportunity to implement some specific related treatment criteria 
such as NVP of future harvest. In case of forest management being done by pixel segmentation 
inventory and treatment units are not related. Pixels fulfill the inventory unit purpose, but pixel 
segments are treatment units. Pukkala et al. (2014) has another approach to inventory units, 
where they instead of using pixels uses pixel segments. They also states that DTU are created 
by combining pixel inventory segment units in this case inventory unit is represent with more 
than one pixel. With increased data availability the options for improving stand delineation 
increases.  

A commonly used method to create a treatment unit is spatial optimization. The greatest 
challenge for the spatial optimization is to define a way in which adjacent raster cells or micro 
stands are similar in terms of features or management requirements and summarize it. Spatial 
optimization is used as a treatment unit delineation method in forestry mainly for creating a 
larger treatment unit out of small inventory units (Lu and Eriksson 2000; Heinonen et al. 2007, 
Pukkala et al. 2014). Spatial optimization as a possibility is used to improve the relative 
locations of forest management operations or forest resources through the small inventory units 
(Kurttila 2001; Baskent and Keles 2005). 

Dynamic treatment unit (DTU) formation is based on the spatial optimization of standing 
volume which agglomerates small inventory units. The idea behind forming DTU in the study 
by Packalen, et al. (2011) is to increase total volume and improve the efficiency of forest use. 
From the conclusions of Packalen, et al. (2011) using the DTU in Eucalyptus spp. plantations 
the total volume production is always increasing. Islam, et al. (2011) show that spatial 
optimization through the clustering, is possible to define the micro-stands where the treatment 
with certain criteria (DBH, age, basal area, height etc.,) is currently more important. Islam, et 
al. (2011) applied optimization method from Heinonen et al. (2007). This method considers for 
individual spatial objectives (Islam et al., 2011). 

According to Pukkala et al. (2014) UPM Kymmene in Finland, has developed segmentation 
approach based on the concept of micro-segmentation, a forest is divided into the small 
homogeneous growth conditions which they call micro-stands by applying an automated 
segmentation algorithm to digital aerial photography. Micro-stands give an opportunity to 
interpreted forest variables individually for each unit. In this way, the “micro stand” serve only 
as inventory unit, therefore it does not full the function of treatment unit. An algorithm 
calculates a harvest index for each of micro-stand segment separately, which are depended on 
urgency or possibility of harvesting. The algorithm may use stand age, stand density, tree size, 
etc, (Pukkala et al., 2014). 
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Öhman (2001) used mixed integer programming (MIP) model for clustering the harvest 
activities and areas selected for nature reserves. Karin Öhman´s clustering model requirements 
are incorporated into a net present value (NPV) of future harvest restricted by certain harvested 
yield which is harvested through the first period. The results show that the model is suitable for 
clustering selected pixels. According to the author these results are promising because of entry 
costs per ha decrease when the treatment units become larger. In the study captured size of 
pixels by using MIP model is no larger than 8.5 ha but some designed clusters could be too 
small for harvesting purposes (Öhman, 2001). 

One of the methods such as optical satellite imagery presented by Holmgren and Thuresson 
(1997) are also suited for producing pixel level estimates. The reason why this method is not 
commonly used in forest inventories to support management planning is due to unsatisfactory 
data quality. Nevertheless, the article by Holmgren and Thuresson (1997) shows how forest 
management planning based on satellite imagery can increase economic profit for forest 
owners.  

1.4. The economic consequences of erroneous data  
Day by day Airborne Laser Scanning (ALS) in forestry has become more commonly used for 
inventories. The raw ALS data is usually a set of point clouds based on irregularly distributed 
x, y, z coordinates. Nevertheless, on a fully automated inventory system, the features extracted 
from ALS point clouds can affect the quality of forest stand delineation in multiple ways. As it 
was mentioned before, modern forest inventory methods allow for forest data to be interpreted 
as raster cells or small spatial units – micro-segments as an alternative to traditional forest 
compartments. To improve the efficiency of the forest management operations it is important 
to cluster existing raster cells into larger units. However, the result of the optimization is 
affected by errors from the forest inventory that was collected previously (Islam et al., 2011, 
Wu et al., 2013). 

Two modeling methods were used by Maltamo et al, (2009), first Most Similar Neighbors is a 
non-parametric method based on correlation analysis to create a weighting matrix used for the 
selection of Most Similar Neighbors from reference data. Second method is simultaneously 
modeled by means of Seemingly Unrelated Regression. According to Maltamo et al, (2009) 
inaccuracy of inventory data using remote sensing for stem volume and crown height obtained 
by Most Similar Neighbors and Seemingly Unrelated Regression method is in the range of 7 % 
and up to 24 %.  

Eid (2000) show that the effect of error of the age and height on expected losses is greater in 
the stands which are closer to the final felling stage. 

There are expected losses occurring due to in optimal choices based on inaccurate information, 
this can be estimated thru cost-plus-loss analysis where also the costs of forest inventory are 
taken in to consideration. Traditional mean square errors cannot achieve this, it is used to 
estimate how implementable information is for the decision making in forest management 
(Hamilton 1978, Burkhart et al. 1978, Ståhl 1994; Eid 2000, Holmström et al. 2003, Eid et al. 
2004, Juntunen 2006, Holopainen and Talvitie 2006, Barth et al. 2006, Duvemo et al. 2007). 
Based on the presented data by Kangas, (2009), different variables have different values in 
forest management table 1.  
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Table 1. The expected losses (NOK/ha) in final felling decisions due to random errors in 
different forest variables (Eid., 2000) 

 Expected losses in NOK ha-1 in final felling 
RMSE, % Basal area Mean height Site quality Age 
10 0 28 131 105 
15 1 63 210 240 
20 3 147 277 497 

 

 

Studies by Juntunen (2006), Holopainen and Talvitie (2006) show higher expected losses than 
other authors Eid (2000), Holmström et al. (2003) and Eid et al. 2004. In the study by 
Holopainen and Talvitie (2006) mean losses varied from lowest 375 to highest 1 014 Euro/ha 
with 3 % interest rate. Other study done by Juntunen (2006) expected losses ranges from 64 to 
130 Euro/ha with 4 % interest rate, generally the losses in other studies varied from 7 to 
51 Euro/ha. For the calculations of expected losses in the Holopainen and Talvitie (2006) study 
RMSE varied from 15 % to 23 %. 
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2. Material and methods 
The aims of this work is to investigate the effects of uncertainty in the pixel level estimates 
concerning the potential benefits of the dynamic, pixel-based treatment units compared to the 
traditional stand-based treatment allocation. An assumption is that the original airborne laser 
scanning, ALS, gives standing volume data that represents the “Ground truth” standing volume. 

Work sequence: 

1. Define the study area, 
2. Introduce random errors to the “Ground truth” data of standing volume, creating 10 

replicas (variants),  
3. Form DTU’s and allocate clearcutting treatments based on the original data and on the 

simulated data. Allocate clearcutting treatments using the existing stand borders, 
4. Compare the outcomes. 

The study area is part of the Östad foundation property located in Southern Sweden. Forest is 
managed in the traditional Scandinavian clearcutting regimes. The analysis area comprised of 
1 848 ha. Airborne laser scanning (ALS) of the territory was carried out in year 2012.  

The main tree species group in the estate is conifers with a share of 86 % (Norway spruce 58 % 
and Scots pine 28 %). Forest land in Östad is fertile and the majority of the land have site index 
ranging from 24 to 32. The age class distribution is not evenly distributed in the area and the 
majority of the forest is relatively young.  

The data for thesis were extracted from the open data source provided by the Swedish National 
Forest Agency “Skogliga Grunddata”. The pixel size is 12.5 m by 12.5 m which is smaller than 
an average pixel size used in traditional forest planning. 

Figure 2. Flowchart 
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2.1. Simulation of standing volume variants 
Standing wood volume data from the national ALS was assumed to represent the “Ground 
truth”. Ten datasets with simulated errors were created using a model built in ArcGIS Model 
Builder. The errors were simulated according to the expression: 

𝑉𝑉∗ = 𝑉𝑉(1 + 𝑒𝑒), 

where 𝑉𝑉∗ is the simulated volume value including error, 𝑉𝑉 is the “Ground truth” volume for the 
given pixel, 𝑒𝑒 is a random normally distributed number with mean µ = 0 and variance σ2.  

Variance was set to 0.20 corresponding to a Root Mean Squared Error (RMSE) of 20%. This 
level of RMSE for total volume is slightly below the 24 % reported by Maltamo et al. (2009) 
for the plot (pixel) level. In the study by Holmgren (2004) is concluded that RSME may 
fluctuate depending on the stand density. Based on Holmgren (2004) results RMSE 11% for 
31 m3 ha-1 in average per stem volume is presented, for 55 m3 ha-1 inaccuracy is presented as 
20% in average per stem volume. 

Restriction for raster  variant simulation were set according to Eid (2000), RMSE affects the 
plots differently depending on volume, where the younger stands will show a higher value 
compare to the “Ground truth” while older stands will suffer a decrease in volume. The 
simulated raster values were therefore restricted to the minimum and maxim values from the 
“Ground truth” dataset. Which means that the imposed restriction keeps the simulated values 
from exceeding the range of existing values in “Ground truth”. This model for random raster 
creation model was used ten times. 

2.2. Segmentation based on economic aspects 
This phase focused on DTU’s specifically for final felling. DTU’s were formed and evaluated 
using economic criteria. A planning period of 5 years was considered. The economic criteria 
were the projected change of NPV (dNPV) of the cut and of the un-cut pixels and the entry 
costs connected to starting harvest operations at a new location. NPV express net incomes that 
would be obtained if pixels is harvested now (NPV1) or in five year period (NPV2). dNPV was 
calculated on pixel level as the arithmetic difference between NPV1 at the start of the planning 
period and NPV2 at the end of the period. NPV2 and NPV1 were calculated using regression 
functions and coefficients from Trubins (2018). Eleven raster layers of dNPV were created: one 
from the “Ground truth” volume and ten from the volume datasets with simulated errors. 

NPV2 and NPV1 were calculated using regression functions and coefficients from 
Trubins (2018): 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑒𝑒𝑒𝑒 𝑝𝑝(𝐾𝐾1 + 𝐾𝐾2 ∗ 𝐻𝐻 + 𝐾𝐾3 ∗ 𝑆𝑆𝑆𝑆 + 𝐾𝐾4 ∗ 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐾𝐾5 ∗ 𝐻𝐻2 − 𝐾𝐾6 ∗ 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡2 + 𝐾𝐾7 ∗ 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡3 − 𝐾𝐾8 ∗ 𝑝𝑝𝑝𝑝
− 𝐾𝐾9 ∗ 𝑝𝑝𝑝𝑝 − 𝐾𝐾10 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐾𝐾11 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐾𝐾12 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝) − 20 000, 

where 𝐻𝐻 is mean height, 𝑆𝑆𝑆𝑆 is site index, 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 is total standing volume per ha, 𝑝𝑝𝑝𝑝 is proportion 
of conifers in volume, 𝑝𝑝𝑝𝑝  is proportion of spruce in volume, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is proportion of other 
broadleaves and aspen in volume, 𝑝𝑝𝑝𝑝𝑝𝑝 is proportion of birch in volume and 𝑝𝑝𝑝𝑝𝑝𝑝 is proportion 
of beech in volume. The coefficients for NPV1 and NPV2 functions are shown in table 2. For 𝐻𝐻 
and 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 (“Ground truth”) data from national ALS was used (Trubins, 2018). 
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Table 2. Coefficients of the regression functions for NPV1 and NPV2 (Trubins, 2018). 

 variable NPV1 NPV2 
K1 Mean height 8.66 8.97 
K2 Mean height 0.146 0.121 
K3 Site index 0.0191 0.0225 
K4 Volume ha-1 0.00496 0.00538 
K5 Mean height2 -0.00242 -0.00210 
K6 (Volume ha-1)2 -5.89 E-06 -7.66 E-6 
K7 (Volume ha-1)3 2.98E-09 4.62 E-9 
K8 Proportion of conifers, volume -0.692 -0.754 
K9 Proportion of spruce, volume -0.0850 -0.0321 
K10 Proportion of other broadleaves, 

volume 
-1.05 -1.12 

K11 Proportion of birch in volume -0.896 -0.989 
K12 Proportion of beech in volume -1.07 -1.11 

 

Entry costs were calculated using the function from Thuresson and Holmgren (1997) with a 
modified coefficient to account for inflation since the publication of the article. 

𝐸𝐸𝐸𝐸 =
2000

(𝐴𝐴 + 0.2)
 

where 𝐴𝐴 is the area of the treatment unit in ha. 𝐴𝐴 was limited to the interval (0:2]. 

 

For the segmentation operation the standard Mean Shift segmentation algorithm in ArcMap was 
used. The three main parameters for the algorithm are spatial detail (SPD), spectral detail (SCD) 
and minimum segment size (MINS). Multiple segmentation variants were created in order to 
find the best-performing combinations of segmentation parameters. These initial segmentations 
were carried out on the dNPV raster based on “Ground truth” volume. Based on a pre-study, 
which was done before segmentation based on dNPV, it was expected that better segmentation 
variants would be those with SPD and SCD above 10. Therefore, and in order to minimize the 
computation load, combinations of SPD and SCD from 10 to 20 with the step of 1, were used 
for the 32, 68, 128 and 192 MINS. In total this gave 400 segmentation variants. Different 
harvest target volumes (80 000, 60 000, 40 000, 20 000 m3) were used to evaluate combinations 
of SPD, SCD and MINS for each target harvest volume separately. Target harvest volume is 
important because it determines how large proportion of the total forest area (share of pixels) 
to be harvested. This, in turn, will affects which segmentation variant is to be preferred. For 
example, if forest owner has a plan to harvest 100 % of the forest then no selection for areas to 
harvest and consequently no segmentation is needed. 

Segmentation results were evaluated based on dNPV and entry costs. The economically correct 
choice is harvesting stands with the lowest possible sum of dNPV and entry costs, in order to 
maximize the dNPV (i.e. value growth) of all the remaining pixels. Harvesting a pixel with 
positive dNPV, means potential value growth is lost. Harvesting a pixel with negative dNPV, 
means potential value loss is avoided. For convenience, we denote this sum as Avoided Value 
Change plus Costs (AVCC). In mathematical terms: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑚𝑚𝑚𝑚𝑚𝑚�(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+  𝐸𝐸𝐸𝐸𝑖𝑖), 

where 𝑖𝑖 …𝑚𝑚 are the segments selected for harvesting.  

The selection was done by ranking the segments according to the sums of dNPV and EC per ha 
in ascending order. Cumulative sums of standing volume were calculated for the thus ordered 
records. The m-th segment was defined as the last one before the cumulative volume sum 
exceeded the harvest target. 

In an additional step the same economic evaluation was done for existing stand borders and 
each harvest target volume.  

Table 3 shows combinations of the data and segmentation variants that were compared for each 
harvest volume. Cases 2.1 to 2.10 and 3.1 to 3.10 represent the real world alternatives: using 
data with errors with the optimized segmentation (DTU) or with existing stand borders 
(Original borders). Case 1 served as the ultimate reference as it combines the optimal 
segmentation (DTU) and the correct ranking of segments for harvest allocation. In Case 3 the 
existing stand borders were used with the error free - “Ground truth” data. This case represents 
what can be achieved using existing stand borders. All cases were evaluated Avoided Value 
Change plus Costs (AVCC calculation) using the “Ground truth” based dNPV data. 

Table 3. Combinations of the data and segmentation variants. 

Case Border basis Basis for segment ranking 
and selection for harvest 

Basis for AVCC 
calculation 

1. Dynamic treatment 
units “Ground truth” “Ground truth” 

2.1 – 2.10 Dynamic treatment 
units 

data with errors (respective 
10 variants) “Ground truth” 

3 Existing stand borders “Ground truth” “Ground truth” 

3.1 – 3.10 Existing stand borders data with errors (10 variants) “Ground truth” 

 

For comparisons of the cases following formulas were used: 

Difference in Avoided Value Change plus Costs, SEK: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐,  

where 𝐶𝐶𝑖𝑖 is case 𝑖𝑖 and 𝐶𝐶𝑗𝑗 is case 𝑗𝑗 . 

 

Difference in Avoided Value Change plus Costs per m3 of harvest, SEK/m3: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐
𝑉𝑉ℎ𝑡𝑡

 ,  

where 𝑉𝑉ℎ𝑡𝑡 is the harvest target.  
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3. Results 

3.1. Segmentation based on economic aspects  
Raster randomization provides a chance to simulate similar data to ALS data from “Skogliga 
Grunddata” database. Figure 3 present standing volume according to “Ground truth” and 
“Simulated raster variant No 4” containing random errors as previously shown in table 3. 
“Simulate raster variant No 4” is one out of ten real world alternatives with errors which was 
produce by using ArcGIS Model Builder. The average standing volume per ha over the whole 
study area in the created rasters differs only by 0.1 m3 to 0.5 m3. Visually it is possible to see a 
difference in raster cells (figure 3) because of the effects on individual cells are greater than in 
average per raster. Impact on the individual cells can be noticed in the dNVP rasters (figure 4) 
with some adjustments of the color scales on the maps.  

The differences are possible to see, most likely because of the restrictions that make younger 
forest pixels more influenced by errors compared to the older ones. The error distribution differs 
depending on volume. In figure 3 it is possible to see slim differences of volumes in the 
“Ground truth” and the simulated dataset. Average, maximal and minimal volume per cell is 
similar in all created rasters (163, 906 and 0 m3/ha). At the same time, the simulated rasters 
have more even volume distribution than “Ground truth” raster with fewer extreme values.  

dNPV for the following five years planning period was introduced in new rasters. Figure 4 show 
the “Ground truth” and one of the simulated datasets. dNPV was calculated only for the areas 
where the stand mean age, according to the stand register data is above 30 years. dNPV in the 
“Ground truth” raster varies from -35 648 to 39 781 SEK/ha and for large share of cells dNPV 
is in the range of -8 492 to 5 086 SEK/ha. As shown in the example, raster “Variant No 4” 
dNPV value range is from -32 496 to 42 320 SEK/ha and large share of cells are in the range 
of -12 318 to 7 860 SEK/ha.  

 

Table 4. Summary of optimal segmentation by target harvest volume 

 

In Table 4 optimal segmentations for AVCC per ha are summarized for each harvest target. 
Actual harvest volumes can be slightly under the target. The results are sorted by AVCC per ha 
in ascending order. Table 4 shows that the minimum segment size of 32 pixels (0.5 ha) 

Minimum 
segment 
size in 
pixels 

Entry 
Cost dNPV Harvest 

Volume 
Area 
(ha) 

Entry 
Cost 
per ha 

dNPV 
per ha AVCC AVCC 

per ha 

32 72557 -417895 19671 45 1618 -9319 -345338 -7701 

32 161538 -674922 39895 104 1558 -6510 -513384 -4952 

32 263135 -812220 59922 167 1578 -4871 -549084 -3293 

32 360087 -829212 79504 242 1485 -3420 -469125 -1935 
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performed best for all target harvest volumes. This means that the cost for small segment size 
by higher entry cost does not outweigh the gain in dNPV through smaller and more uniform 
segments. At least not in the tested range of Minimum segment size, MINS. Target harvest 
volume of 20 000 m3 is associated with the lowest AVCC per ha in all cases of tested MINS. 
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3.2 Evaluation of the errors effect 
Since previous studies such as Packalen, et al. (2011), Holmgren and Thuresson (1997) showed 
that dynamic treatment units have benefits over the traditional stand delineation, the ultimate 
reference for comparisons, in other words “zero point” was the dynamic treatment units based 
on ground truth data. All other values (Cases) are compared to this reference. Figure 5 illustrates 
differences between the tested cases. Figure 5 is based on Table 5, which compares, firstly, 
created DTU variants (Case 2.1 – 2.10) and “Original border” variants (Case 3.1 – 3.10) to the 
“Ground truth” (GT) based segmentation variant (Case 1), secondly, the DTU variants 
(Case 2.1 – 2.10) and “Original border” variants based stand selection (Case 3.1 -3.10) and 
thirdly DTU “Ground truth” variant (Case 1) and “Original border” “Ground truth” variant 
(Case 3) to each other. All results in Table 5 and figure 5 are presented in average except the 
comparison between Case 1 and Case 3. 

 

 

Figure 5. Comparisons of harvest allocation variants 
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Table 5. Comparisons of harvest allocation variants: Based on “Ground truth” (GT) dNPV 
(Case 1 and Case 3), DTU variants based on simulated dNPV (Case 2.1 – 2.10), original stand 
borders with simulated dNPV (Case 3.1 – 3.10). 

 

As is shown in Table 5 the errors in dNPV influence the potential incomes in all cases, 
especially in cases where traditional stand delineation was used. The difference in Avoided 
Value Change plus Costs (AVCC) per m3 between the DTU “Ground truth” and “Original 
border” GT is - 2.3 SEK/m3 for harvest volume 20 000 m3 target. Average difference in AVCC 
per m3 between the DTU “Ground truth” and “Original border” for target volume 20 000 m3 as 
simulated variants is -4.7 SEK/m3 in other harvest volume which were tested in thesis 
uncertainty effect on potential losses is not that significant. So, when the target for harvested 
volume increases the average difference in AVCC per m3 is decreasing as seen in table below 
for the cases previously mentioned.  

The highest difference in AVCC per m3 of all was in the case of target harvesting volume 
60 000 m3 between the DTU “Ground truth” (Case 1) which was put in to relation with 
“Original border” variants (Case 3.1 – 3.10) as well as “Original borders” GT (Case 3) and they 
bot resulted in a difference of -6.9 SEK/m3.  

According to the calculations the highest average difference in absolute AVCC between Case 
2.1 – 2.10 and Case 3.1 – 3.10 is -464 601 SEK m3 with the conditions of segment size minimum 
64 pixels (1 ha) and target harvest volume 80 000 m3 presented in expanded table in appendix. 
The table below shows a more detailed explanation of the effect harvest volume has on the 
different errors within the cases in the form of AVCC. The peak for financial losses is reached 
at the target harvest volume 60 000 m3, thereafter it starts to decrease.  

3.3. The errors effects on the individual raster 
To explain better effect of uncertainty on the individual raster variants and potential incomes 
tables 12 to 15 are presented - maximal and minimal economical differences between DTU 
based on “Ground truth” variant (Case 1), DTU variants based on simulated dNPV data (Case 
2.1 – 2.10) and “Original stand” border variants with simulated dNPV data (Case 3.1 – 3.10). 
Variants of raster with larger fluctuation between values for each target harvest volume variant 
were selected from Table 4. 

Minimum 
segment 
size in ha 

Target 
harvest 
volume 

Average 
difference in 
AVCC per m3 
between DTU 
GT (Case 1) and 
DTU (Case 2.1 
– 2.10), SEK/m3 

Average 
difference in 
AVCC per m3 
between DTU GT 
(Case 1) and 
Original borders 
(Case 3.1. – 3.10), 
SEK/m3 

Difference 
between DTU 
GT (Case 1) and 
Original borders 
GT (Case 3) in 
AVCC per m3, 
SEK/m3 

Average difference 
between DTU 
(Case 2.1 – 2.10) 
and Original 
borders 
(Case 3.1. – 3.10) 
in AVCC per m3, 
SEK/m3 

0.5 20 000 -1.4 -4.7 -2.3 -3.2 
0.5 40 000 -1.1 -5.5 -5.4 -4.4 
0.5 60 000 -0.9 -6.9 -6.9 -5.9 
0.5 80 000 -0.6 -6.1 -6.1 -5.5 
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Tables 12 and 13 shows relation between DTU segmentation based on GT (Case 1) and DTU 
variants based on simulated dNPV (Case 2.1 – 2.10) to each other. -2 SEK/m3 is the highest 
difference between the “Variant No 2” and “Variant GT” with target harvest volume 20 000 m3 
and the smallest difference -0.4 SEK/m3 is measured by compering “Variant No 4” to “Variant 
GT” for 80 000 m3 target harvest volume in tables 12 and 13.  

 

Table 6. Maximal difference between DTU based on “Ground truth” dNPV (Case 1) and DTU 
variants based on simulated dNPV (Case 2.1 – 2.10) 

Target 
harvest 
volume 

Name of variant 

Max. difference in AVCC 
between DTU GT (Case 1) 
and Variants (Case 2.1 – 
2.10), SEK 

Max. difference in AVCC 
per m3 between GT (Case 1) 
and Variant 
(Case 2.1 – 2.10), SEK/m3 

20 000 Variant No2 -40 165 -2.0 
40 000 Variant No5 -51 322 -1.3 
60 000 Variant No10 -66 871 -1.1 
80 000 Variant No2 -65 772 -0.8 

 

Table 7 Minimal difference between DTU based on “Ground truth” dNPV (Case 1) and DTU 
variants based on simulated dNPV (Case 2.1 – 2.10) 

Target 
harvest 
volume 

Name of variant 

Min. difference in AVCC 
between DTU GT (Case 1) 
and Variants (Case 2.1 – 
2.10), SEK 

Min. difference in AVCC per 
m3 between GT (Case 1) and 
Variant (Case 2.1 – 2.10), 
SEK/m3 

20 000 Variant No7 -19 344 -1.0 

40 000 Variant No4 -28 497 -0.7 

60 000 Variant No7 -39 802 -0.7 

80 000 Variant No4 -31 370 -0.4 
 

Table 8. Maximal difference between DTU based on “Ground truth” dNPV (Case 1) and 
original stand borders with simulated dNPV (Case 3.1 – 3.10). 

Target 
harvest 
volume 

Name of variant 

Max. difference in AVCC 
between DTU (Case 2.1 – 
2.10) and Original borders 
(Case 3.1 – 3.10), SEK 

Max. difference between 
DTU (Case 2.1 – 2.10) and 
Original borders 
(Case 3.1. – 3.10) in AVCC 
per m3, SEK/m3 

20 000 Variant No4 -151 276 -7.6 
40 000 Variant No4 -193 014 -4.8 
60 000 Variant No7 -376 505 -6.3 
80 000 Variant No10 -466 553 -5.8 
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Greater max. difference between the Case 1 and Case 3.1 – 3.10 is represented by the raster 
“Variant No 4” with target harvest volume 20 000 m3 potential loses in this case reached -7.6 
SEK/m3 presented in table 8. Smallest min. difference -1.7 SEK/m3 between the Case 1 and the 
Case 3.1 – 3.10 is represented by the raster “Variant No 3” with target harvest volume 
20 000 m3 in table 9. 

 

Table 9 Minimal difference between DTU based on “Ground truth” dNPV (Case 1) and original 
stand borders with simulated dNPV (Case 3.1 – 3.10). 

Target 
harvest 
volume 

Name of variant 

Min. difference in AVCC 
between DTU (Case 2.1 – 
2.10) and Original borders 
(Case 3.1 – 3.10), SEK 

Min. difference between 
DTU (Case 2.1 – 2.10) and 
Original borders 
(Case 3.1. – 3.10) in 
AVCC per m3, SEK/m3 

20 000 Variant No3 -33 982 -1.7 
40 000 Variant No5 -165 429 -4.1 
60 000 Variant No2 -356 241 -5.9 
80 000 Variant No3 -416 398 -5.2 

 

In the following maps, outcomes of the comparison between the cases with the greatest negative 
results are selected from tables 12 and 15. Generated differences of dynamic treatment units 
illustrate slim differences on the locations changes over the lowest dNPV pixel values, the 
differences are presented by figures 5 - 13. The figures show stand delineation of Case 1, Case 
2.1 – 2.10 and Case 3.1 – 3.10. To highlight visual changes of stand delineation under the stand 
boundaries layer, dNPV raster based on “Ground truth” data is presented in illustrations as well 
as with the red line some changes are marked. 
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4. Discussion 
One of the limitations for this thesis is the basis used for creating errors. To create the errors 
data non-forest lands was extracted. There was restriction set for threshold values for a single 
pixel to not pass 906 m3 ha-1. This restriction derives from Eid (2000) who proclaims that errors 
has larger effect on the stands which are closer to the final felling stage. However, there are a 
variety of error sources concerning the ALS data such as global navigation satellite system, 
internal navigation system, object characteristics, scanning angle, footprint size, flight altitude 
and processing, human errors, stand density etc., (Sterenczak et al., 2013, Holmgren, 2004). 
This is something that may have a noticeable influence on the data which is not at all taken in 
to consideration in the thesis. In thesis inaccuracy of 20 % was used statically over all raster.  

The results show that tactical planning based on ALS data with 20 % inaccuracy in average has 
the economic impact which is presented in Table 5. With the included conditions simulations 
show some potential losses per m3 compared to the “Ground truth” data. In some cases, the 
impact is insignificant. Difference per m3 in average between Case 1 and Case 2.1 – 2.10 with 
the target harvest volume of 20 000 m3 losses reach -1.4 SEK/m3. Target harvest volume in 
study has an impact on the potential losses. When the target volume goes from 60 000 m3 to 
80 000 m3 the trend of financials is changing and the potential losses per m3 is minor decrease. 
Based on this outcome it could be assumed that it might be related to the total number of pixels 
which can be extracted. Since 80 000 m3 covers majority of the standing volume pixels which 
is considered at stage of final felling. Due to this phenomenon the biggest potential loss in SEK 
per m3 is reached at the target volume of 60 000 m3.  

The results concerning the average difference between dynamic treatment units, DTU, and 
“Original borders” in all cases favor the DTU. The largest difference between Case 2.1 - 2.10 
and Case 3.1 - 3.10 is -5.9 SEK/m3. This result is achieved at 60 000m3 target harvest volume. 
At the same time the difference between Case 1 and Case 3 is -6.9 SEK/m3, also at 60 000 m3. 
In all tested variants the difference between Case 1 and Case 3 was by approximately 1 SEK/m3 
larger the difference between the averages of Cases 2.1 – 2.10 and Cases 3.1 – 3.10.  

Minimum segment size has an effect the potential losses as well, for example 3 ha large 
minimum segment has smaller difference per SEK/m3 than any other size-based segmentation 
variant when comparing specific target volume among themselves. In authors opinion those 
differences are related to the homogeneity, because more homogeneous stand delineation gives 
less opportunity for variations within the stand locations and takes away the opportunity to 
select the less profitable cells in the raster for cutting. Smaller segments also open an 
opportunity to combine the units afterwards which give more flexibility for the forest manager 
to make more self-depended choices than by using already set restrictions in ArcMap software. 
The question is how small the minimum segment size could be and still be efficient, in this 
work the smallest tested minimum segment size was 0.5 ha. 

In practice, tactical planning can be improved by applying the dynamic treatment units as a 
method to improve the economic output for the forest management and it can also improve the 
land use by extracting the microsegments with the lowest value growth and replacing them with 
new segments with positive value growth. In addition, it can give the opportunity for forest 
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managers to, instead of planning for final felling in the whole stand with negative dNPV, have 
the choice to extract the part which starts to produce economic losses.  

The finding in this work is similar to studies such as presented by Packalen, et al. (2011), 
Holmgren and Thuresson (1997) where the authors presents that dynamic treatment units such 
as an alternative to traditional stand delineation with higher efficiency. In other articles the 
authors did not consider the potential errors in the data therefore the main difference is that in 
this thesis uncertainty is taken into a count. Potential errors according to the results from thesis 
tactical planning based on dynamic treatment units have economic advantage over the planning 
based on “Original stand” borders. 

The results indicate that applying dynamic treatment units to the tactical planning based on 
ALS data with 20 % inaccuracy will increase the land use even with a smaller final harvest 
volume.  

For the future study one possibility could be to try to determine ALS data accuracy of an 
economic break-even point with the traditional forest inventory when ALS is used in a DTU 
framework.  
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5. Conclusions 
Dynamic treatment units are more efficient than original stand borders. Even if the effect of 
volume data errors is considered dynamic treatment units have economic advantage over the 
original stand borders. 

1. The efficiency gain of dynamic treatment units is affected by the share of harvested 
pixels; 

2. Average difference between dynamic treatment unit variants and original stand border 
variants in all cases favor the dynamic treatment unit variants with economical aspect: 
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Appendix 
 

Expanded Table 5. Comparisons of harvest allocation variants: DTU based on GT dNPV (Case 
1), DTU variants based on simulated dNPV (Case 2.1 – 2.10), original stand borders with 
simulated dNPV (Case 3.1 – 3.10). 

Minimum 
segment 
size in 
pixels 

Target 
harvest 
volume 

Average 
difference in 
AVCC per m3 
between DTU 
GT (Case 1) 
and DTU 
variants (Case 
2.1 – 2.10), 
SEK/m3 

Average 
difference 
in AVCC 
per m3 
between 
DTU GT 
(Case 1) and 
Original 
border 
variants 
(Case 3.1. – 
3.10), 
SEK/m3 

Average 
difference in 
AVCC 
between 
DTU (Case 
2.1 – 2.10) 
and Original 
borders 
(Case 3.1 – 
3.10), SEK 

Average 
difference 
between 
DTU (Case 
2.1 – 2.10) 
and Original 
borders 
(Case 3.1. – 
3.10) in 
AVCC per 
m3, SEK/m3 

Difference 
in AVCC 
between 
DTU GT 
(Case 1) and 
Original 
borders GT 
(Case 3), 
SEK 

Difference 
in AVCC  
per m3 
between 
DTU GT 
(Case 1) and 
Original 
borders GT 
(Case 3), 
SEK/m3 

32 20000 -1.4 -4.7 -66261 -3.2 -46245 -2.3 

64 20000 -2.0 -4.8 -55582 -2.8 -48670 -2.4 

128 20000 -2.1 -2.8 -14155 -0.7 -8894 -0.4 

194 20000 -2.1 -1.6 10556 0.5 15844 0.8 

32 40000 -1.1 -5.5 -175041 -4.4 -215139 -5.4 

64 40000 -1.2 -5.4 -167276 -4.2 -211860 -5.3 

128 40000 -1.2 -3.3 -85245 -2.1 -127471 -3.2 

194 40000 -0.9 -2.2 -51056 -1.3 -84975 -2.1 

32 60000 -0.9 -6.9 -359124 -6.0 -411066 -6.9 

64 60000 -0.8 -6.8 -364995 -6.1 -410349 -6.8 

128 60000 -1.0 -5.2 -250181 -4.2 -312741 -5.2 

194 60000 -1.0 -4.3 -200277 -3.3 -260497 -4.3 

32 80000 -0.6 -6.1 -443432 -5.5 -485402 -6.1 

64 80000 -0.5 -6.3 -464601 -5.8 -495088 -6.2 

128 80000 -0.6 -5.1 -360288 -4.5 -400226 -5.0 

194 80000 -0.9 -4.2 -266956 -3.3 -333223 -4.2 
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Expanded Table 4. Summary of optimal segmentation parameters. 

Segment 
size in 
pixels 

Para-
meters 

Entry 
Cost dNPV 

Harvest 
Volume 
m3 

Area 
(ha) 

Entry 
Cost 
per ha 

dNPV 
per ha AVCC AVCC 

per ha 

32 SPD14 
SCD14 72557 -

417895 19671 45 1618 -9319 -345338 -7701 

64 SPD19 
SCD12 54273 -

402037 19857 49 1104 -8176 -347763 -7072 

128 SPD11 
SCD11 52279 -

360267 19755 50 1044 -7194 -307988 -6150 

192 SPD20 
SCD12 50991 -

334240 19502 52 976 -6397 -283249 -5421 

32 SPD19 
SCD10 

16153
8 

-
674922 39895 104 1558 -6510 -513384 -4952 

64 SPD11 
SCD19 

11215
4 

-
622258 39819 106 1057 -5866 -510104 -4809 

128 SPD15 
SCD13 

10495
1 

-
530666 40000 112 935 -4727 -425715 -3792 

192 SPD12 
SCD18 

10997
9 

-
493199 38790 114 963 -4317 -383220 -3354 

32 SPD11 
SCD19 

26313
5 

-
812220 59922 167 1578 -4871 -549084 -3293 

64 SPD12 
SCD18 

18996
7 

-
738333 59947 174 1094 -4251 -548366 -3157 

128 SPD17 
SCD17 

16942
7 

-
620187 59039 178 951 -3481 -450759 -2530 

192 SPD12 
SCD18 

17859
5 

-
577110 59091 186 960 -3101 -398515 -2141 

32 SPD17 
SCD16 

36008
7 

-
829212 79504 242 1485 -3420 -469125 -1935 

64 SPD10 
SCD19 

26523
5 

-
744046 79895 249 1066 -2991 -478811 -1925 

128 SPD14 
SCD20 

24896
2 

-
632911 79571 262 950 -2415 -383948 -1465 

192 SPD12 
SCD18 

25711
5 

-
574061 77983 266 965 -2154 -316946 -1189 
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