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Abstract 
The objective of this thesis was to investigate the effects of altered body weight and body 

condition score on physiological response to exercise in terms of performance, recovery and 

locomotion asymmetry in Icelandic horses. Obesity is a commonly rising problem in modern horse 

management. Related health disorders include laminitis and even impaired locomotion. The 

Icelandic horse is considered an easy keeper, with low energy requirements. It is therefore prone 

to obesity. 

The study was in a change-over arrangement, where nine horses were submitted to two different 

forage-only feeding strategies, a high energy allowance (HA, 64 MJ ME/day) and a restricted 

energy allowance (RA, 32 MJ ME/day), for a 28-day adaptation period followed by a week of data 

collection. The horses were trained five times a week. For data collection, the horses performed a 

standardized exercise test (SET) and a simulated breed evaluation field test (BEFT) together with 

locomotion asymmetry analysis. Blood samples were collected together with measurements of 

rectal temperature, respiratory rate and heart rate. 

The main results were that horses adapted to the high energy allowance had significantly higher 

body weight, body condition score and fat percentage. Altered body weight and body condition 

score affected the physiological response to exercise. Horses adapted to HA had lower judges´ 

scores in a BEFT for total score, gallop and for form under rider. Horses adapted to RA had higher 

plasma lactate. The RA horses moreover had higher mean speed and maximum speed during a 

BEFT, thus able to perform under higher exercise intensity. In the SET and BEFT, RA horses had 

higher haematocrit. 

In both exercise test, the recovery pattern of respiratory rate and rectal temperature was altered, 

indicating a decreased capacity to cope with exercise for the HA horses. The horses adapted to HA 

had higher front limb asymmetry compared to RA horses. With all the results combined, it is 

concluded that horses with higher body weight and body condition score have a decreased 

performance capacity at high exercise intensities. 

 

Keywords: Body weight, body condition score, breed evaluation field test, Icelandic horse, 

performance, recovery, locomotion asymmetry. 



 

 

 Ágrip 
Markmið þessa verkefnis var að rannsaka áhrif mismunandi holdastigs á frammistöðu, 

endurheimt og hreyfifræðilegt jafnvægi í íslenskum hestum. Offita hrossa er stórt vandamál og er 

tengd háu holdastigi og hefur í för með sér heilsufarsvandamál, svo sem efnaskiptavandamál, 

hófsperru og jafnvel hamlaða hreyfigetu. Íslenski hesturinn er talinn vera “easy keeper”, með lágar 

orkuþarfir til viðhalds og hefur því tilhneigingu til offituvandamála. 

Tilraun var framkvæmd á skipti formi, þar sem níu í tveimur hópum voru fóðruð á tvo 

mismuandi vegu, há-orku fóðrun (64 MJ ME/dag) og lág-orku fóðrun (32 MJ ME/dag), til að ná 

fram breytileika í holdastigi hópanna. Hrossin voru fóðruð í 28 dag í senn samhliða einni viku af 

gagnasöfnun. Hrossin voru þjálfuð fimm sinnum í viku. Fyrir söfnun gagna voru hrossin sett í 

tvenns konar frammistöðupróf, á hlaupabretti annars vegar og í eftirlíktri kynbótasýningu hins 

vegar. Einnig var hreyfifræðilegt jafnvægi mælt. Blóðsýni voru tekin, en einnig voru öndunartíðni 

og líkamshiti í endaþarmi mæld. 

Hross á há-orku fóðrun voru þyngri og í hærra holdastigi samanborið við hross á lág-orku 

fóðrun. Hross í hærra holdastigi hlutu marktækt lægri einkunnir fyrir stökk, fegurð í reið og í 

aðaleinkunn hæfileika í kynbótadómi samanborið við hross í lægra holdastigi. Hrossin  í lægri 

holdastigi höfðu hærri mjólkursýru í blóðui eftir kynbótasýningu, en höfðu hærri meðalhraða og 

hámarkshraða í sýningunni. Þau gátu því unnið undir meira álagi en hross í hærra holdastigi. 

Ennfremur höfðu hross á lág-orku fóðrun hærra hlutfall rauðra blóðkorna í blóði. Í báðum 

hlaupaprófum var mynstur endurheimtar breytt milli mismunandi meðferða. Hestar í hærra 

holdastigi höfðu hærri öndunartíðni, en hærri líkamshita í kynbótasýningu, vegna aukins álags. 

Þetta bendir til þess að hross í hærra holdastigi gætu verið lengur að ná fullri endurheimt eftir 

þjálfun. 

Jafnframt höfðu hross í hærra holdastigi minna jafnvægi í hreyfingu, mælda í framfótum. Þegar 

niðurstöður eru dregnar saman er það ályktað að umfram líkamsþyngd og holdastig skerðir 

frammistöðu, breytir endurheimtarmynstri og minnkar jafnvægi í hreyfingum og þar sem getu til 

að framvæma vinnu undir hærra álagi, þ.e. skerðir möguleika hestsins að sýna sanna 

reiðhestshæfileika sína. 
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1 Introduction 

The Icelandic horse is a popular riding horse, in its native country as well as worldwide. Today 

roughly 75.000 horses populate Iceland. Over 260.000 Icelandic horses are registered worldwide 

in 21 countries (FEIF, 2017a). 

The Icelandic horse breed is considered pure-bred, due to its isolation for centuries 

(Aðalsteinsson, 1981). The closest relatives are thought to be the Norwegian Fjord horse and the 

Shetland pony, originating from Scandinavia and Great Britain (Hreiðarsdóttir and Hallsson, 2010) 

and the Swedish Gotlandsruss (Vilá et al., 2001). The Icelandic horse is strictly speaking a pony, 

since the average height on withers is under 147 cm. The breed has long been considered strong, 

robust and healthy with a great working mentality (Björnsson and Sveinsson, 2006). Since the 

settlement of Iceland, the Icelandic horse was mainly used as a working animal and as a food 

source. After the industrialization of Icelandic agriculture, the horses’ utility changed to a riding 

and leisure horse and the breed has been rapidly changing through selective breeding. The first 

regional breeding evaluation of the Icelandic horse was held in the year 1906 and its breeding has 

been progressing ever since (Björnsson and Sveinsson, 2006). 

In contrast to the most common horse breeds of the world, the Icelandic horse is a five-gaited 

horse, able to perform in gaits of lateral locomotion pattern, namely tölt and pace in addition to 

walk, trot and canter. This is a result of a single base mutation on the DMRT3 gene (Andersson et 

al., 2012). The breeding goal of the Icelandic horse, first presented in 1950 is to breed the light 

body type of the Icelandic horse, with emphasis on strength, flexibility and muscular body (FEIF, 

2015). The breeding goal is a multi-trait goal and therefore emphasis in training is more versatile 

compared to race horse breeds such as Standardbreds and Thoroughbreds where speed and 

endurance is a key component (Khadka, 2010; ASVT, 2015). The scientific knowledge on training 

effects and training response on the Icelandic horse is scarce. The study by Stefánsdóttir et al. 

(2014) is the first study documenting the physiological response to exercise in the Icelandic horse, 

clearing the path for future research regarding their exercise physiology and training response. 

Training of the Icelandic horse can be divided into leisure riding and to improve gait qualities 

according to either BEFT- or competition standards. The traits measured in BEFT and the 

competitions have shown to be genetically correlated (Albertsdóttir et al., 2008) and contain similar 
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attributes, thus training is expected to be of similar content, although physiological response 

between various disciplines is different (Stefánsdóttir, 2015).  

In recent years, numerous related disorders have become more common in domesticated horses, 

such as obesity (Thatcher et al., 2008; Geor, 2008; Wyse et al., 2008; Robin et al., 2015). Obesity 

in horses can be a cause for several related symptoms, such as equine metabolic syndrome (EMS), 

laminitis and indications of impaired locomotion (Treiber et al., 2006; Frank et al., 2010). On the 

other hand, malnourishment has been connected to the prevalence of gastric ulcers in Standardbred 

trotters (Dionne et al., 2003). 

The physical state of Icelandic horses has been recorded in recent studies (Ragnarsson and 

Jansson, 2011, Stefánsdóttir et al., 2014; Jensen et al., 2015). The Icelandic horse is considered to 

be an “easy keeper” relating to their low energy maintenance requirements, i.e. compared to 

Standardbred trotters (Ragnarsson and Jansson, 2011). A study by Jensen et al. (2015) showed that 

24% of Icelandic horses in Denmark are overweight or obese (10.2%). Furthermore, they found 

that owners tend to underestimate the BCS of their horse compared to an experienced evaluator. 

The effects of body condition on metabolism and physiological response during and after exercise 

is yet to be determined in the Icelandic horse.  In recent decades, the effects of body condition and 

body composition on performance have been shown in Arabian horses during endurance racing 

(Garlinghouse and Burrill, 1999), in Standardbred trotters (Kearns et al., 2002a; Kearns et al., 

2002b: Leleu and Cotrel, 2006) and in Thoroughbred racehorses (Fonseca et al., 2013). 
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2 Literature review 

2.1 Adipose tissue 
When the amount of energy that enters the body exceeds the amount of energy expended, the excess 

energy is mainly stored in the form of triglyceride, or fat, forming adipose tissue, a subcutaneous 

fat layer and around internal organs. This process occurs when the body is in a positive energy 

balance as the animal builds up nutritional and energy reserves in the form of adipose tissue 

(Lafontan and Langin, 1995; Gray and Vidal-Puig, 2007). Distribution of body fat is inherited, an 

individual has no control over where the fat is allocated (Berry et al., 2013).  When the energy 

expenditure exceeds the intake, the animal can use the reserve energy, due to exercise, poor feed 

availability or environmental conditions. Each fat molecule contains roughly twice as much energy 

compared to protein and carbohydrates, and is therefore a desirable energy storage unit (Sjaastad 

et al., 2016).  Increased adiposity is obtained by adipocyte recruitment- and enlargement (Gray and 

Vidal-Puig, 2007). The triglycerides are hydrolysed into glycerol and free fatty acids, that are 

utilized for energy. There are two types of adipose tissue, namely white and brown, with white 

being predominant in larger mammals. Adipose tissue is distributed all over the body with 

prominent depots in the mesenteric, retroperitoneal, perigonadal, inguinal and scapular regions, 

described as either visceral or subcutaneous depots. Subcutaneous fat layer acts as an insulator, 

preventing rapid fluctuation in body core temperature.   

The adipocyte distribution is genetically controlled through expression of peroxisome 

proliferator-activated receptor gamma (PPARγ), a hormone receptor in the nucleus of adipocytes. 

PPARγ plays a vital role in the genes controlling glucose sensing, lipid synthesis and lipid storage 

(Berry et al., 2013). In a positive energy balance, adipose tissue is deposited in intermuscular, 

intramuscular, visceral and subcutaneous regions (Zhou et al., 2014; Sjaastad et al., 2016). Dugdale 

et al. (2011b) showed equal distribution between visceral and subcutaneous fat deposition in 

ponies, meaning that only a proportion of the changes in fat mass are detected by palpation. A 

relationship between white adipose tissue deposition and BCS (r2 = 0.96) has been shown in Welsh 

mountain ponies (Dugdale et al., 2011b). 

2.2 Body condition scoring 

Various methods have been applied to assess the subcutaneous fat reserves in horses, most often 

referred to as body condition score (BCS).  The method can be used to evaluate health and as tool 
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for feed ration calculations as an index of energy balance. Currently in Iceland, the body condition 

of the Icelandic horse is evaluated by a five-degree scale described by Stefánsdóttir and 

Björnsdóttir, (2001). This method involves palpation of the caudal rib area and scoring the fat 

deposition, together with subjectively evaluating the horse’s general health, muscle mass, eye 

expression and coat condition. 

Henneke et al. (1983) developed a nine-degree scale for subjective evaluation of subcutaneous 

fat deposition in horses. It involves physical palpation of six different body areas, namely neck, 

withers, shoulders, ribs, loins and tail head, along with visual assessment of overall picture. The 

scale was developed on mature Quarter Horse broodmares. It is the most widely spread BCS system 

for horses, but has also been validated for fat accretion description for other horse breeds such as 

Thoroughbred (Suagee et al., 2008) and Standardbred racehorses (Leleu and Cotrel, 2006). The 

Henneke scale positively correlates with body fat percentage, weight, height/weight ratio, girth 

circumference, but not to height (Henneke et al., 1983). 

Westervelt et al. (1976) reported a method to evaluate actual body fat content of horses, using 

ultrasonic measurements on several sites of the body. The measurement of rump fat was most 

highly correlated to actual rump fat thickness and they showed a linear relationship between 

subcutaneous rump fat thickness and body extractable fat content. Ultrasonic measurements of the 

shoulders and ribs did not correlate to total body fat to the same extent and therefore the rump fat 

measurement has become the standardised measuring site. This method has been used widely 

(Henneke et al., 1983; Kearns et al., 2002a; 2002b; Dugdale et al., 2011a; Fonseca et al., 2013; 

Ringmark et al., 2013) as an assessment for total body fat content, as for comparison in scientific 

research. Furthermore, the study showed that adipose deposition does not degenerate at the same 

rate, where shoulder fat and rump fat decreased after 30 days, but rib fat and BW remained constant, 

for ponies subjected to two different treatments, fed ad libitum and a restricted allowance.  This 

implies the importance of evaluating multiple body parts when assessing equine body condition.  

However, Dugdale et al. (2011a) showed an exponential relationship between percentage body 

fat (fat%) and BCS in ponies. Moreover, the sensitivity of the correlation between fat% and BCS 

decreases with increased fat deposition, implying that small changes in BCS in moderately obese 

to obese horses, (BCS over 6 on the Henneke scale) is unreliable.  

Morphological measurements such as girth circumference and neck circumference have been 

used as indicators of BW (Matthíasdóttir, 2012) and BCS (Dugdale et al., 2010). Carter et al. 2009, 
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developed a method for evaluating neck adiposity, that correlated highly to plasma insulin 

concentration. Frank et al., 2006 found neck circumference to correlate highly to metabolic profiles 

of glucose and insulin concentration, relating to risk of insulin resistance. 

Excessive body condition, or obesity, has been linked to various metabolic complications such 

as plasma lipoprotein concentration, glucose intolerance, hyperinsulinemia possibly due to 

hormone production of leptin and adiponectin by the adipocytes, diabetes, hypertension and several 

cardiovascular diseases in horses (Després et al., 1987), as well as cancer and heart diseases in 

humans (Friedman, 2009).  Precise evaluation of body condition is beneficial when striving to 

maximize health and welfare of the horse.  

2.2.1 BCS and performance 

In humans, there has been various reports of correlation between lean body mass and aerobic 

exercise performance (Hetland et al., 1998; Cosgrove et al., 1999), as well as in horses.  

BCS is affected by sex in Standardbreds, Thoroughbred and Icelandic horses (Kearns et al., 2002a; 

Christie et al., 2006; Fonseca et al., 2013; Stefánsdóttir et al., 2014). They all reported lower BCS 

in male horses and the lower BCS in stallions is contemplated as a possible explanation for their 

superior performance in a field exercise test compared to mares. Furthermore, several studies have 

showed the effects of fat mass and body composition on performance, connected to lower fat% 

(Leleu and Cotrel, 2006), increased fat-free mass (Kearns et al., 2002b; Fonseca et al., 2013) and 

power/weight ratio (McMiken, 1983). These studies included either Standardbred (Kearns et al., 

2002b; Leleu and Cotrel, 2006) or Thoroughbred horses (Fonseca et al., 2013) with body fat 

content ranging from 5-14%. Garlinghouse and Burrill (1999) showed that BCS affected 

completion rate of Arabian horses in a 160-km race, where depleted BCS had detrimental effects 

on the completion rate.  

The reasons for these effects are yet to be explained, whether they are due to altered metabolism, 

increased weight-bearing or both.  Studies examining increased weight-bearing of horses have 

found increased load carried is proportionate to its oxygen consumption, implying higher exercise 

intensity (Taylor et al., 1980; Pagan and Hintz, 1986; Thornton et al., 1987). Compared with a 

heavier horse, a horse of less mass is expected to expend proportionally less energy to move the 

same distance at the same speed. From the available publications, it can be implemented that BCS 
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affect the aerobic respiration and performance capacity, and a proper body condition is essential 

when striving for maximum health and performance in equine athletes. 

2.3 Exercise energy metabolism 

The athletic ability of an individual is determined by genetics, environmental factors and finally 

it´s training (Hodgson and Foreman, 2014). The environmental variables include aerobic 

respiration capacity, subcutaneous and intramuscular energy stores of fat and glycogen, respiratory 

capacity of the skeletal muscle, splenic contraction, gait efficiency and thermoregulation.  

Locomotion is the result of muscle contractions. When muscle sarcomeres contract and alter the 

cross-bridge orientation, energy is needed (Valberg, 2014). This energy is derived from the 

cleavage of adenosine triphosphate (ATP), at the head of every myosin filament. The reaction is 

catalysed by the enzyme ATP-ase, and produces adenosine diphosphate (ADP), a free phosphate 

molecule and energy (Sjaastad et al., 2016). This energy drives the muscle contraction. This 

process is either performed by aerobic or anaerobic pathways, depending mainly on oxygen 

availability to the cell, and ATP/ADP ratio. The energy substrates used for muscle contraction are 

blood glucose, glycogen derived from the liver or skeletal muscle, fat and protein to a limited 

extent. Glycogen has proven to be the most important energy substrate for the athletic horse, 

especially at high exercise intensity, although fat can be a preferred energy substrate for low 

intensity exercise or endurance racing (Essén‐Gustavsson et al., 1984), and a fat deposition to some 

extent can be beneficial and a preferred energy substrate for long distances (Garlinghouse and 

Burrill, 1999). The horse has a slower glycogen repletion post exercise compared to humans, 

around 72 hours in the horse (Lacombe et al., 2001) compared to 24 hours in humans (Snow et al., 

1987). 

2.3.1 Aerobic and anaerobic pathways 
In the inner membrane of the mitochondria, β-oxidation of free fatty acids, the tricarboxylic 

acid (TCA) cycle and oxidative phosphorylation via the electron transport chain are the aerobic 

production paths of ATP. Aerobic exercise of the body is determined by its capacity of uptake, 

transport and utilization of oxygen from the alveoli to the skeletal muscle cells. The process 

produces high amounts of energy but at a low rate (Hodgson, 2014; Sjaastad et al., 2016).  

When there is insufficient oxygen available, the body performs anaerobic respiration, at the 

initial moment of exercise as well under intense exercise. The pathways occur in the muscle cell 
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cytoplasm. The most important pathway for anaerobic energy metabolism is via the glycolytic 

pathway, producing ATP along with the by-products lactate and H+, that causes a drop in cellular 

pH. This pathway produces fast available energy, but fewer ATP molecules per energy unit are 

produced, the residues resulting in the by-products and heat.  Furthermore, to the aerobic capacity 

of the athletic horse, it has astonishing capabilities of respiratory compensation for metabolic 

acidosis due to lactate accumulation and a free hydrogen ion (H+). 

2.4 Exercise testing 

To evaluate the physiological fitness of a horse it must be submitted to exercise. This can be done 

on a treadmill or in actual situations in the field. In this study, physiological responses were 

assessed in both a simulated breed evaluation field test and a treadmill test. Common protocols 

include standardised, incremental exercise test or a single step, high speed test. The only 

publication on Icelandic horses involving a field test is the study by Stefánsdóttir et al. (2014), 

which will be used as a reference comparison in this thesis. 

2.4.1 Standardised exercise test 

Standardised exercise tests (SET) are often performed on a treadmill, in controlled conditions. By 

performing a standardised treadmill test, numerous variables are closely controlled, such as 

exercise intensity with speed and incline. Environmental factors such as weather conditions are 

more carefully controlled and there is increased repeatability of the SET and it enhances the 

possibilities of parameters to be measured, most importantly blood sampling and measurements 

during exercise. 

Several biological parameters have been linked to higher performance during a standardised 

exercise test on a treadmill, such as the lactate threshold (VLa4) and haematocrit (Hct) concentration 

(Persson, 1967; Persson and Ullberg, 1974; Seeherman and Morris, 1990). Heart rate and lactate 

response has been shown to be lower on an uninclined treadmill compared to a field test (Persson, 

1983), possibly due to air resistance in field and the driving force of the treadmill. It has been 

estimated that roughly 25% of the horses’ energy is expended at high speeds to overcome air 

resistance (Hodgson and Foreman, 2014). Nostell et al. (2006) found no differences in HR, plasma 

protein concentration, Hct in an inclined treadmill test simulating racing conditions compared to a 

simulated race on a field track, but difference in blood plasma lactate response.  
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The field test is most representative of actual competition- and training conditions, and are more 

easily interpreted for the industry and applicable to training and competition, but much more 

challenging to standardise, in terms of exercise intensity. To the author’s knowledge, a study on 

the physiological response of the Icelandic horse to a standardised, incremental exercise test 

performed on a treadmill has not been done before. The treadmill exercise test designed and used 

in this study was a standardised, incremental exercise test, gradually increasing speed in four 

different steps. 

2.4.2 Breed evaluation field test  

A breed evaluation field test (BEFT) is a field exercise test, designed to determine which horses 

are best fitted for breeding. The breeding goal of the Icelandic horse (FEIF, 2015) describes the 

optimal riding horse. As previously described by Stefánsdóttir et al. (2014), the BEFT consists of 

three parts; objective body measurements, conformational evaluation and judging of riding 

abilities. Horses are evaluated and scored on a half-point scale from 5-10. For assessment of riding 

abilities, the horse is ridden on a straight track, 4-6 meters wide and 250-300 meters long, for six 

to ten rounds, where the horse is subjectively evaluated for gait quality on all gaits in addition to 

slow tölt and canter, along with spirit and form under rider. In an actual BEFT, horses are evaluated 

two times, the second assessment designed to highlight the horses´ quality or to improve faults 

from the initial assessment. In this study the horses were only evaluated in the first time. According 

to the evaluation scale for all gates except for walk, high speed is vital for reaching scores from 9 

to 10. Speed has been correlated with higher heart rate, plasma lactate concentration and rectal 

temperature in the Icelandic horse (Stefánsdóttir et al., 2014) and therefore, both high aerobic as 

well as anaerobic metabolic capacity are important for reaching the highest scores.  BEFT is a field 

exercise test, with no limits or goals regarding exact distance or speed. There is even variation in 

how many gaits are shown, depending on the capacity to pace and how often each gait is ridden. 

Therefore, it is difficult to standardise the test precisely between individual horses and experimental 

periods. 
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2.5 Physiological parameters of importance to exercise 

2.5.1 Heart rate and oxygen uptake 

The athletic horse has an extraordinary capacity to perform aerobic work. The equine 

cardiovascular system has a unique O2 transport capacity from the lungs to the body tissues. The 

secret lies in the horse´s ability to release an extra amount of red blood cells into the bloodstream 

via splenic contraction, that is hormonally regulated through external stimuli and via the 

sympathetic nerve system. During maximal exercise, O2 uptake can exceed resting values up to 50 

times (McGowan and Hodgson, 2014). Oxygen uptake is commonly referred to as the limiting 

factor to a race horses’ performance. 

Oxygen is transported throughout the body via the bloodstream. During exercise, blood 

transport or cardiac output depends on the heart rate (HR) and the stroke volume of the heart. The 

heart´s stroke volume is an important contributor to blood transport capacity. The heart muscle has 

been shown to increase in size with training, increasing the volume of blood pumped out in each 

stroke (Evans and Polglaze, 1994; McGowan and Hodgson, 2014). Correlation between heart score 

and race performance has been documented (Young and Wood, 2001) in national hunt horses and 

its´ oxygen uptake capacity is affected by heart size in conditioned Thoroughbreds (Young et al., 

2002). Heart rate has not been adapted as performance parameter, but it is widely used as an 

indication of exercise intensity. General heart rate measurements can however accurately control 

exercise intensity during exercise. Normal resting HR ranges between 20-30 b.p.m. in fit horses 

(McGowan and Hodgson, 2014). Maximum heart rate (Hrmax) has been measured at level up to 

240-250 b.p.m. in Thoroughbred racehorses (Evans and Rose, 1988), compared to around 200 

b.p.m. in athletic humans (Noakes, 1992). Lower HR during submaximal exercise is positively 

correlated to racing performance (Marsland, 1968). Maximum HR will not be altered by training, 

but the maximum speed under any given HR will be affected by training. The speed when the horse 

reaches their maximal oxygen uptake (VO2max), has been shown multiple times to improve with 

training (Art and Lekeux, 1993; 1988; Tyler et al., 1996). This improvement is related to the cardiac 

output, O2 extraction or both. Thoroughbred racehorses have values of VO2max of around 140 mL 

O2/kg/min, roughly twice the human capacity per kg bodyweight (Noakes, 1992; Rose et al., 1988). 

Fonseca et al. 2010 investigated the effects of body composition on physiological parameters in 
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trained Thoroughbred race horses, ranging from 4.5-4.7 ± 0.2% in estimated total body fat content. 

No relationship was found between speed, heart rate or lactate concentration and body composition. 

Icelandic horses performing at BEFT could be at their maximum heart rate level with a mean 

HR of 184 ± 13 b.p.m. during BEFT and HRpeak of 224 ± 9 b.p.m., indicating even supramaximal 

exercise (Stefánsdóttir et al., 2014).  Oxygen uptake remains high post exercise due to the body’s 

demand for O2 for phosphocreatine resynthesis, catabolism and anabolism of lactate, high body 

temperature and hormonal restoration, referred altogether as oxygen dept. The rate of restoration 

to these parameters to resting state reflects upon the fitness of a horse to cope with exercise. This 

high demand is met by high HR and respiratory rate (Lekeux et al., 2014). Recovery heart rate 

decreases in a bi-exponential manner (Bitschnau et al., 2010), and its rate can indicate aerobic 

capacity. Post exercise recovery heart rate is correlated with exercise intensity and plasma lactate 

accumulation in Icelandic horses following a BEFT (Stefánsdóttir et al., 2014). 

2.5.2 Lactate and lactate threshold 
Lactate is a by-product metabolite of anaerobic respiration in the process of anaerobic glycolysis 

(McMiken, 1983). Lactate is produced in the working muscle during all exercise intensities and 

increases exponentially with higher exercise intensity (Lindholm and Saltin, 1974; Judson et al., 

1983; Harris et al., 1991). When there is insufficient O2 to oxidize pyruvate in the mitochondria, 

lactate is produced.  

Blood plasma lactate concentration is commonly used as a parameter to evaluate exercise 

intensity and the extent of anaerobic respiration. High levels of lactate (20 mmol/L) can indicate 

onset of fatigue (Schuback et al., 1999). Lactate accumulation increases exponentially with speed 

during an incremental SET (Davie et al., 2002) and can therefore accumulate at high rates during 

high intensity exercises. The production of lactate is although beneficial, as it regenerates NAD+, 

which is used in oxidation of glyceraldehyde 3-phosphate during production of pyruvate from 

glucose in aerobic conditions.  The lactate ensures continuous energy utilization via the glycolytic 

pathway, also being used directly as an energy source for liver and heart muscle during exercise 

(Pösö et al., 2008). 

 However, during high intensity exercise, the respiratory chain cannot keep up with the amount 

of hydrogen atoms that join to form NADH, and cannot regenerate NAD+ at a sufficient rate. The 

lactate threshold represents the speed at which the athlete reaches lactate plasma concentration of 

4 mmol/L (VLa4), referred to as the anaerobic threshold. This corresponds to the level of exercise 

https://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide
https://en.wikipedia.org/wiki/Glyceraldehyde_3-phosphate
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when the production of lactate is greater than its efflux from muscle fibres to the bloodstream and 

it accumulates in the skeletal muscle and plasma (Valberg, 2014). Increased VLa4 is reported as 

increased aerobic fitness (Hodgson and McGowan, 2014). VLa4 has been correlated to performance 

in actual races for pacing Standardbreds (Davie et al., 2002). Resting values are generally around 

0.3-1.0 mmol/L (Keenan, 1979; Judson et al, 1983; Snow et al., 1983; Bayly et al., 2006, 

Stefánsdóttir et al., 2014). Maximum values often rise to 20-40 mmol/L after high intensity 

exercise, such as Standardbred and Thoroughbred racing or breed evaluation field test in Icelandic 

horses (Keenan 1979; Snow et al., 1983; Evans et al., 2002; Stefánsdóttir et al., 2014). Numerous 

studies have shown that plasma lactate concentration after maximal exercise are higher in better 

performing horses (Persson and Ullberg, 1974; Räsänen et al., 1995; Stefánsdóttir et al., 2014), 

underlining the importance of anaerobic metabolism at higher exercise intensities. The enzymatic 

activity related to lactate has been shown to alter by training and detraining, namely lactate 

dehydrogenase, the enzyme that catalyses the conversion to lactate to pyruvic acid and back. Thus, 

the cell controls the lactate production (Karlsson et al., 1974). Mykkänen et al. 2010 found breed 

differences in lactate transporters expression, being highest in Thoroughbred racehorses. The rate 

of removal of lactate from the bloodstream depends upon the metabolic state of the horse. Light 

exercise increases oxygen uptake and thus oxidation of lactic acid. The half-life of lactate can be 

decreased by 50% after a treadmill test compared to stationary horses (Marlin et al., 1987). 

Blood lactate concentration is either measured by laboratory enzymatic methods or by portable 

devices in the field. Values derived from portable devices from blood are lower, 20-50% compared 

to plasma laboratory values, being inaccurate in high concentration of lactate (Räsänen et al., 1995; 

Stefánsdóttir et al., 2012). 

2.5.3 Haematocrit 

Red blood cells (RBC) are essential in the O2 transporter units from the lungs alveoli to utilization 

in the skeletal muscle, and to transport CO2 back out of the system (Alberts et al., 2008; Weibel et 

al., 1991). They are produced in the bone marrow of mature animals, containing hemopoietic stem 

cells (Alberts et al., 2008; Akers and Denbow, 2008). The possible oxygen concentration in arterial 

blood depends upon red blood cell ratio to the total blood volume, namely haematocrit (Hct) and 

red cell haemoglobin content. The haemoglobin subunit carries O2 molecules using iron ions (Fe3+) 

(Akers and Denbow, 2008; Kingston, 2008). Hct has been shown to increase with training and to 
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be correlated with performance in racing- and riding horses (Persson 1968; 1983a; Stewart and 

Steel, 1975; Stefánsdóttir et al., 2014). The horse can release large amounts of red blood cells via 

splenic contraction into the bloodstream, from values of 32% to 46% and up to 60% to 70% 

(McGowan and Hodgson, 2014), regulated by hormonal release of mainly noradrenalin (McGowan 

and Hodgson, 2014). Persson et al. (1973) reported that a horse can withhold up to 50% of its red 

blood cells in the spleen, that can be released, greatly influencing blood volume and haematocrit 

during exercise and therefore the horse´s oxygen uptake capacity, thus withholding natural blood 

doping mechanism. Red blood cells also act as a repository for lactate during exercise (Bayly et 

al., 2006) and serve to keep intramuscular levels of lactate lower at bayan lowering pH, possibly 

delaying the onset of fatigue. Changes in Hct during exercise can also be a result of fluids shifts 

due to changes in heart rate and blood pressure (Snow et al., 1983). Resting values of Hct for 

Standardbreds and Thoroughbreds and Icelandic horses vary from 30 to 40 % (McGowan and 

Hogdson, 2014; Stefánsdóttir et al., 2014). Resting Hct has not been correlated to performance, but 

endurance horses have lower resting Hct indices than Thoroughbred race horses (McGowan and 

Hodgson, 2014). There may be a reduction in Hct with training in endurance horses because of an 

expansion of plasma volume (McGowan and Hodgson, 2014). A linear relationship between Hct 

and exercise intensity has been reported, reaching maximum concentration when approaching 

VO2max (Rose and Allen, 1985). Maximum Hct in Standardbreds and Thoroughbreds racehorses 

reach 60-68% after high intensity exercise (Persson, 1983; Snow et al. 1983; Evans et al., 1993). 

The Icelandic horse has reported values of 45 ± 3 % sampled within 5 min post- BEFT exercise, 

ranging from 36-55% (Stefánsdóttir et al., 2014). This is a substantially lower concentration, 

implying lower aerobic capacity of the Icelandic horse, possibly due to breeding, training practices 

and other environmental factors (Stefánsdóttir, 2015). 

2.5.4 Total plasma protein 

Total plasma protein (TPP) is widely used as an indicator of hydration status in horses (McGowan 

and Hodgson, 2014). TPP increases during exercise due to decreased plasma volume as hydrostatic 

pressure pushes fluids out of vessels and arteries, increasing with duration and intensity of exercise. 

(Carlson, 1983; Judson et al., 1983; Seeherman and Morris, 1990; McKeever et al., 1993; 

Danielsen et al., 1995; Hargreaves et al., 1999). TPP has shown to be significantly elevated in 

dehydrated animals (Kingston, 2008; McGowan and Hodgson, 2014). In mature performing horses, 
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normal resting levels are 55-75 g/L (McGowan and Hodgson, 2014). Due to the variation in resting 

values, it can be difficult to detect changes in fluid balance, especially in horses with lower resting 

values. The plasma concentration of albumin is affected by changes in plasma water content and 

intravascular water volume (Kingston, 2008). Dehydration can increase plasma fibrinogen 

concentration. Globulin changes indicate clinical signs such as inflammation. Increases in plasma 

protein associated with short-duration exercise return to pre-exercise values within 15–30 min of 

exercise, if not dehydrated (Hargreaves et al., 1999; Judson et al., 1983).  

2.5.5 Respiratory rate 

After exercise, physiological parameters return to resting values. The return rate depends upon the 

exercise intensity, duration, the state of fitness and the environmental conditions (Lekeux et al., 

2014). Oxygen uptake remains elevated post-exercise due to the body’s demand for O2 for 

phosphocreatine resynthesis, catabolism and anabolism of lactate, high body temperature and 

hormonal restoration, referred altogether as oxygen dept. The rate of restoration to these parameters 

to resting state reflects upon the horses’ fitness to cope with exercise. This high demand is met by 

high respiratory rate (RR), while tidal volume remains constant (Lekeux et al., 2014).  The high 

respiratory rate is vital for post exercise thermoregulation, losing heat by evaporative cooling as 

moisture, taking part in returning the body in its normal, resting metabolic state. RR has been shown 

to be significantly higher in ponies after the same treadmill exercise in hot and humid conditions 

compared to dry and cold climate (Art and Lekeux, 1988). 

RR is usually measured by counting by hand each breath manually or by listening. This can 

only be done accurately in a stationary position. RR can be measured during exercise with a 

capnograph analyser (Evans et al., 2011).  In this study, RR was measured by feeling air flow by 

hand manually from the nostrils and by listening to lung activity with a stethoscope. During 

exercise, respiratory rate is in close correlation with stride frequency, increasing in breaths/stride 

with increased exercise intensity at trot. During gallop, the RR couples to the locomotion keeping 

a constant 1:1 stride/breath ratio (Ainsworth, 2008; Franklin et al., 2012). Normal equine 

respiratory rate varies from 8-19 breaths/min, and can exceed to levels of 120-130 breaths/min 

following a high intensity treadmill exercise (Butler et al., 1993; Ainsworth and Cheetham, 2010; 

Lekeux et al., 2014). Stefánsdóttir et al. (2014) reported resting RR of 30 ± 11 breaths/min and 

within 5 min post BEFT a RR of 101 ± 30 breaths/min. A decrease in RR with age was also seen. 



 

14 
 

RR was affected by speed, increasing by 5 breaths/min for every 1 km/hour in increase of speed. 

Values as high as 133 breaths/min have been reported in Standardbred horses running on a treadmill 

(Dahl et al., 1987; Franklin et al., 2012). RR increased by 3 breaths/min for every increase in body 

weight ratio (BWR) of the rider to the horse (Stefánsdóttir, 2015). Horses had longer recovery rate 

of RR after tölt compared to trot (Stefánsdóttir et al., 2015). Horses did not reach resting values of 

RR after 100m pace race 30 min post-exercise. 

2.5.6 Rectal temperature 

Exercise produces high heat loads in an exercising horse (Hodgson et al., 1993). Low surface area 

to mass ratio puts great demands on thermoregulation through respiration. It has been suggested 

that a combination of elevated body temperature, lowered pH and oxygen transport all contribute 

to limiting exercise capacity in horses (Hodgson et al., 1990). Rectal temperature differs from core 

temperature due to the time it takes the circulatory system to dissipate throughout the whole body. 

In a study by Hodgson et al. (1993), horses were exercised on a treadmill at different intensities to 

the onset of fatigue. RT continued to rise 3 min post high intensity exercise, and had similar 

maximum values after various exercise intensities, as well as showing lower temperature values in 

the rectum compared to venous blood- and muscle temperature, illustrating that RT could deviate 

from actual core temperature due to the time it takes the circulatory system to dissipate throughout 

the whole body. In this study, rectal temperature was measured. 

Normal rectal temperature ranges from 37.5-38.5 °C (Hodgson et al., 1993; Stefánsdóttir et al., 

2014; Hodgson, 2014). The greatest challenge to the healthy equine athlete regarding 

thermoregulation is generally exercise and its intensity is closely related to post-exercise body 

temperature. RT can rise from resting values of 37.2 °C to 40.3 °C post high intensity treadmill 

exercise of around 5 min (Hodgson et al., 1993), and from 37.8 ± 0.3 °C up to 39.5 ± 0.5 °C within 

5 min post BEFT (Stefánsdóttir et al., 2014). Peak values were recorded up to 40.4 °C in BEFT 

and are similar for Standardbred trotters following high intensity treadmill exercise (Lindholm and 

Saltin, 1974). 

2.5.7 Aspartate amino transferase 

Aspartate amino transferase (AST), is a muscle enzyme commonly used to indicate muscle 

damage. AST is a cytoplasmic and mitochondrial enzyme that catalyses the deamination of 

aspartate to form oxaloacetate, which can enter the citric acid cycle. In humans, elevations in AST 
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has been connected to decreased locomotion coordination and fatigue associated to overtraining, 

increasing the risk of injury (Fry et al., 1991). Elevations in AST concentration are found in horses 

with rhabdomyolysis, and have been connected to hepatocyte damage, muscle damage, or in vitro 

haemolysis (McGowan and Hodgson, 2014). The enzyme enters the bloodstream due to changes 

in membrane permeability changes after strenuous exercise (Snow et al., 1983; Stefánsdóttir et al., 

2014; Tyler-McGowan et al., 1999) and in over trained horses (Hamlin et al., 2002). Normal values 

have been reported from 150-400 Units/L (McGowan and Hodgson, 2014). After severe damage, 

AST levels rise in 6 to 10 hours and remain high for about 4 days in humans, and has a reported half-

life of 7-8 days in horses (Kingston, 2008). Stefánsdóttir et al. 2014 reported a significant elevation in 

AST after performing a BEFT, ranging from 353 ± 98 U/L up to 382 ± 106 U/L. In this thesis, AST 

concentration will be presented in two units, U/L but also ukat/L, the replacing SI-unit. 

2.6 Locomotion asymmetry 

When a horse trots, the head moves up and down twice during one complete stride, following the 

diagonal stride pattern. In a sound horse, there is high symmetry between left and right limb load 

distribution. In horses with unilateral forelimb lameness, this movement becomes asymmetric 

(Merkens and Schamhardt, 1988; Keegan et al., 2001). Furthermore, the movement of the pelvis 

during each step can be asymmetric. Abnormalities in the muscoskeletal system such as difference 

in strength or flexibility between the left and right side of the horse, stiffness or fatigue can emerge 

as locomotion asymmetry. The quantity of this asymmetry has been used to evaluate the degree of 

lameness. However, various degrees of asymmetry can occur without clinical signs of lameness 

nevertheless affecting performance. When a horse becomes tired, the locomotion pattern and joint 

load are altered (Johnston et al., 1999) and the risk of mistakes such as mistepping and cross firing 

may increase substantially, along with cumulative and acute overloading of limbs. These loads are 

a known lameness cause.  

When the locomotion of a horse is evaluated, parameters and methods of kinetics and kinematics 

are used. Abnormalities in movements along with symmetry between left and right side can be 

measured. A subjective, visual evaluation by trained personnel, especially veterinarians has been 

the standard, most frequent diagnostic method (McCracken et al., 2012). However, it has been 

shown unreliable and even biased, especially in mild lameness cases (Arkell et al., 2006, Fuller et 

al., 2006, Keegan et al., 2010). Force plate measuring the kinetics of the running horse, stance and 
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swing phases of every stride and the ground reaction forces hitting the ground is highly accurate 

and gives a clear description of load distribution (Merkens and Schamhargt, 1988). Poor mobility 

of the heavy equipment and the fact that only one stride at a time can be recorded. Along with high 

costs of the equipment limits it use to a research facility (Weishaupt et al., 2004b; Keegan, 2007; 

Keegan et al., 2012). 

In the present study, a wireless, accelerometer sensor system was used to evaluate locomotion 

symmetry (Lameness Locator, Equinosis LLC). The software uses three accelerometers, placed on 

the top of the head between the ears, on top of the pelvis and one on the distal right front pastern 

to measure symmetry between the left and the right side in trot. The head- and pelvic sensors are a 

uni-axial accelerometer. The right front sensor is a uni-axial gyroscope. The difference in 

movement of both the head and the pelvis are described as minimum difference (min diff) and 

maximum difference (max diff). By calculating a vector sum, cumulative quantity of vectors from 

each stride, the degree of asymmetry or even lameness can be detected (Figure 1). A sensor placed 

on the distal right front pastern tells where in in stride cycle each vector originates and thus 

indicates the source of each vector, thus pointing out the possible origin of the asymmetry. That 

can although be challenging to detect, due to compensatory load distribution (Weishaupt et al., 

2004a), especially during multi-limb lameness. However, the software assumes the possibility of 

these effects. The system has been validated in comparison to video-based evaluations (Keegan et 

al., 2004), to force plate analysis (Keegan et al., 2012) and to subjective, visual evaluations 

(McCracken et al., 2012).  
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Figure 1. Locomotion analysis produced by the Lameness Locator software. The figure to the left illustrates 
vectors that represent head movements in terms of direction and magnitude of each stride (mm). The red 
line marks the vector sum that is used for interpretation of the analysis. The figure to the right illustrates the 
vertical locomotion of the pelvis and the difference between the left and right side (mm). Red lines represent 
max-diff and the green vectors represent min-diff of each stride that are used to calculate the vector sum. 
2.6.1 Locomotion symmetry and performance 

The effects of locomotion asymmetry on health and performance has been evaluated in several 

studies, though with different methods. Clinical, subjective examinations have been used as 

scientific as well as practical evaluations of health status in Swedish Warmblood horses (Jönsson 

et al., 2013). Locomotion was evaluated on a straight line on walk and trot by hand, and in trot 

after a 60 second full limb flexion test on all limbs. Health scores in the 4-year-old Warmblood 

horses tested affected overall lifetime performance as well as longevity (Jönsson et al., 2014). It 

has been shown by Ringmark (2014) that locomotion asymmetry increases after introduction of 

new speed training. Furthermore, lower asymmetry was associated with early qualification for 

races, indicating greater athletic abilities. The type of training to which racehorses are submitted is 

associated with alterations in locomotive tissues (Firth, 2006). Mild induced lameness can reduce 

VO2max and increase lactate accumulation rate during exercise (Parente et al., 2002). Hindquarter 

asymmetry has had negative effect on lifetime earnings, race number, racing records (min/km) and 

difficulties performing at higher speeds (Dalin et al., 1985). 
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3 Aim of the thesis 

The aim of the study in whole was to submit the horses to two kinds of exercise tests, namely a 

standardised incremental exercise test and a simulated breed evaluation field test and evaluate the 

effects of altered body fat content on the physiological response and performance and recovery 

response. Furthermore, the aim was to evaluate effects of altered body weight and body fat content 

on locomotion asymmetry in Icelandic horses.  

 

Specific aims were to: 

 Determine if altered body condition affects the physiological response to exercise in the 

Icelandic horse. 

 Study the recovery response of Icelandic horses in different body condition, following a 

standardised incremental exercise test and a simulated breed evaluation field test. 

 Evaluate the effects of two different body condition states on locomotion asymmetry, 

before and after a breed evaluation field test. 

The hypothesis tested were: 

 Higher body fat content impairs performance in a breed evaluation field test. 

 Horses with higher body fat content have a lower recovery rate following exercise 

compared to horses in lower body fat content and thus decreased ability to cope with 

exercise. 

 Horses with higher body fat content have higher locomotion asymmetry and are therefore 

less balanced compared to horses with lower body fat content. 

 The performance of a breed evaluation field tests increases locomotion asymmetry in 

Icelandic horses. 
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4 Materials & methods 

4.1  Experimental design 

The study was approved by the National Animal Research Committee of Iceland. It was conducted 

at Hólar University College in Iceland. The study was initiated at 20th of March and ended on the 

second of June 2016. The study was a change-over design, where horses were fed a high energy 

allowance (HA) and restricted energy allowance (RA) for 36 days to create a desired body 

condition. Horses were subjected to both treatments, thus eliminating the effect of individual. Each 

period consisted of a 28-day adaptation- and training period, followed by a week involving the two 

exercise tests and locomotion asymmetry evaluation. Prior to the study, horses were assigned to 

groups so they would have similar means of body weight, body condition and age. 

4.2 Horses 

Ten geldings from Hólar University College were recruited for the study. They were six to eight 

years old, all in similar training stage. All horses have had the same type of training that winter up 

until the study. At initiation of the study horses weighed 401 ± 16 kg (mean ± SD). The horses 

were divided into two groups that were aimed for the closest mean of BCS, BW, girth 

circumference, Vla4 and peak Hct. Variation between groups before initiation of the study can be 

Figure 2. The coat of the horses was clipped in the presented manner, as an attempt to eliminate the effects 
of variations in coat loss during the experiment (experiment performed in the spring). 
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seen in Table 1. At the onset of the study, the horses were clipped where the winter coat was partly 

removed to eliminate the possible effect of different coat coverage on thermoregulation (Figure 2).  

Table 1. Mean body condition score (Henneke et al. 1983, BCS), score for overall picture, body weight 
(BW), girth circumference (cm), Lactate threshold (VLa4) and peak haematocrit (Hct) (LSM ± SE) prior to 
the study in the two groups of horses. 

 BCSmean 
Overall 
picture 

Body weight 
(kg) Girth circ.(cm) VLa4 Peak Hct (%) 

Group 1  6.4 ± 0.2 6.9 ± 0.7 398 ± 22 176.2 ± 4.5 5.3 ± 0.7 47.4 ± 2.4 
Group 2  6.4 ± 0.2 6.7 ± 0.7 401 ± 17 175.6 ± 4.2 5.4 ± 0.5 46.8 ± 1.9 

4.3. Body condition scoring 

The horses were weighed and scored for body condition every week according to the nine-degree 

scale by Henneke et al. (1983). Two mean scores were calculated, one including back score and 

one without the score for back. Icelandic horses tend to accumulate fat in that area to a less extent 

than other horse breeds. The challenges of scoring the back for fat accumulation has also been 

reported for Thoroughbred geldings (Suagee et al., 2008). By including the score for back there is 

a risk of underestimating the actual BCS of the horse. Therefore, the mean score excluding the back 

score was used and will be referred to as BCSmean. Cresty neck score was evaluated according to 

the scoring system presented by Carter et al. (2009). 

4.3.1 Rump fat 

Estimation of body fat content was done using ultrasonic measurements as described by Westervelt 

et al. (1976), using the same ultrasound machine (VET E Magic 2200, 5.0 MHz, with maximum 

depth set on 6.47) and probe (5.0 MHz linear rectal probe, 80 elements, 4-step multi-frequency 

3.5/5.0/6.0/7.0 MHz, Eickemeyer, Tuttlingen, Germany), measuring subcutaneous fat thickness 

over the rump, 5 cm lateral from the midline at the centre of the pelvic bone (Figure 3). The 

measurement site was shaved prior to every recording. Measurements were performed by the same 

personnel every time. Initial rump fat measurements indicated that the horses had roughly 15 % 

body fat, around 1.5 cm, corresponding to approximately 60 kg body fat (Westervelt et al., 1976). 

Athletic horses in body condition around 5 have roughly 7-10 % body fat (0.9 cm) corresponding 

to 28-40 kg body fat (Ringmark et al., 2013), both using the following equation: 

Y = 8.64 + 4.70x 
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with Y as fat percentage and x the rump fat measurement in cm. Therefore, 30 kg were deducted 

from the BW and a target body weight was calculated and used for feed ration calculations. 

 

Figure 3. Measurement of rump fat thickness using ultrasound. The distance measured ranges from the 
dermis above, to the fascia of the underlying muscle below. 

4.4 Feeding & management  

The horses were housed separately from other horses in individual 2.4x3 m (7.2 m2) boxes.  Outside 

the horses were kept in two separate groups, for 1-5 hours every day, depending on training and 

weather situations. Water was available ad libitum from water bowls (flow rate 7 L/min) in the 

boxes. The horses were fed three times per day, at 07:00-08:00, 13:00-14:00 and 21:00-22:00. The 

horses were fed on a forage only diet complemented with a commercial mineral and vitamin 

supplement to fulfil nutrient requirements in accordance to NRC (2007) (Racing mineral, Trouw 

nutrition, Netherlands), together with 40 g of NaCl/day. 50 g/day of commercial muesli (Besterly 

Herbic, Besterly Horse Feed, Netherlands) was added and mixed with the minerals to increase 

palatability and ensure full uptake of the minerals. Mineral allowance was adjusted according to 

NRC (2007), using preliminary feed analysis and the PC-horse software (PC-horse, Hove Software 

LTD, Norway). Feed samples were gathered every other day and at opening of every new bale, 

pooled together weekly and stored at -18°C. The haylage samples were analysed for metabolizable 

energy, digestibility, crude protein and ash, all at the Department of animal nutrition and 

management at SLU, Sweden. 

Big bale haylage batches used in the study, grown at Hólar were chosen with emphasis on energy 

and crude protein content. The haylage had a mean content of 10.7 ± 0.3 MJ ME (range 9.9-11.2 

MJ ME) and a mean CP content of 163 ± 9 g/kg (range 14.0-17.8 g/kg). Mean nutrient values for 

each period can be seen in Table 3. Diets were designed in cooperation with researchers and trainers 
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at Hólar University College. The allowance was 0.8 kg DM/100kg BW as restricted allowance, 

corresponding to 8.5 MJ ME/100 kg BW or 32 MJ ME/day and 1.6 kg DM/100 kg BW as high 

allowance, corresponding 17 MJ ME/100kg BW or 64 MJ ME/day, respectively (Table 2). The 

Icelandic horse is considered an easy keeper, with high capability to maintain body mass 

(Ragnarsson and Jansson 2011) and therefore this amount of restricted allowance was decided. 

Table 2. Daily nutritional allowance in terms of energy (MJ ME), crude protein (CP), ash and minerals 
(Ca, P, Mg, Na and K) for horses adapted to a high energy allowance and a restricted energy allowance, 
respectively. 

  High allowance Restricted allowance 

Kg DM  5.9 ± 0.3 3.0 ± 0.1 
MJ ME/100 kg BW/day  17 ± 0 8.5 ± 0.2 
MJ ME/day 64 ± 0.3 32 ± 0.3 
Ash g/day  390.0 ± 19.0 194.0 ± 9.0 
CP g/day 970.0 ± 45.0 483.0 ± 22.0 
Ca g/day 34.0 ± 2.0 27.0 ± 1.0 
P g/day 26.0 ± 14.0 13.0 ± 1.0 
Mg g/day 18.0 ± 1.0 10.0 ± 0.4 
Na g/day  27.0 ± 1.0 24.0 ± 0.4 
K g/day  61.0 ± 3.0 30.0 ± 1.0 

Table 3. Mean nutritional values of haylages from period one and two, presented as means ± SD. 

  DM (g/kg DM) Ash (g/kg DM) CP (g/kg DM) VOS (%) ME (MJ/kg DM) 

Period 1 641 ± 36 64 ± 5 160 ± 8 81.3 ± 0.6 10.5 ± 0.1 
Period 2 616 ± 25 67 ± 4 166 ± 12 83.9 ± 1.3 10.9 ± 0.3 

4.5 Training and training response 

The horses were trained five times per week, on weekdays. The training program was designed 

together with a professional trainer and riding instructors employed at Hólar University College. 

Three types of training intensities were developed, namely training I, II and III. The mean HR, 

duration over 180 b.p.m., duration under 180 b.p.m., velocity and distance of the training types can 

be seen in Table 4. Variation of training intensities between training periods is presented in Table 

5. Training was either conducted inside a riding hall or outside on a packed dirt road. To be 

representative of Icelandic horse population, the horses were trained as is considered a conventional 
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preparation for a breeding evaluation field test. All horses were shod according to regulations of 

the International Federation of Icelandic Horse Associations (FEIF, 2015) for breeding evaluations. 

The horses were trained by students together with two professional trainers employed at Hólar 

University College. 

Training I was regarded as light training, where HR did not exceed 180 b.p.m. Training II was 

regarded as a normal training day, where horses would reach 180 b.p.m. for a short duration. 

Training III was conducted one time per week which involved gallop intervals, designed to reach 

peak HR, involving 3x200 m gallop sprints.  The variation in HR over and under 180 b.p.m. as 

well as training duration for each intensity between treatments is presented in Table 4, and between 

period 1 and 2 in Table 5. every training session was logged by the rider. In the second period, an 

attempt was made to repeat every individual training session in order. Average training HR was 

significantly different between training intensities (P<.0001) and there was a significant difference 

of duration over-and under 180 b.p.m. between training intensities (P<.0001). Training HR or 

training duration did not differ between treatments (P>0.05, Table 4). Training HR did not differ 

between periods (Table 5). However, duration of training in training intensity 2 was significantly 

higher in period 2 compared to period 1. 

Table 4. Mean heart rate, duration under and above HR 180 b.p.m. and duration in training between 
different training intensity steps. The same training intensity steps did not show a significant difference 
between treatments (values are presented as LSM ± SE) 

 Training intensity 1 Training intensity 2 Training intensity 3 
  Restricted High  Restricted High  Restricted High   
Mean HR b.p.m. 101 ± 2 104 ± 2 125 ± 1 127 ± 1 133 ± 2 133 ± 2 
< 180 b.p.m. (min) 23.1 ± 1.0 23.3 ± 1.0 26.2 ± 0.5 26.9 ± 0.5  23.5 ± 1.0 24.9 ± 1.0 
> 180 b.p.m. (min) 0.1 ± 0.3 0.0 ± 0.3 1.8 ± 0.2 2.0 ± 0.2 3.4 ± 0.3 2.9 ± 0.3 
Duration (min) 23.2 ± 0.8 23.3 ± 0.8 27.7 ± 0.5 28.5 ± 0.5 27.0 ± 1.0 27.1 ± 1.0 

Table 5. Differences in mean heart rate, duration under and over 180 b.p.m. and duration in training of 
each training intensity 1, 2 and 3 between Period 1 and Period 2 (values presented as LSM ± SE). * marks 
significant difference between periods (P<0.05). 

 Period 1  Period 2  
  Training 1 Training 2  Training 3 Training 1 Training 2 Training 3  
Mean HR b.p.m. 100 ± 2 125 ± 1 135 ± 2 105 ± 2 127 ± 1 131 ± 2 
< 180 b.p.m. (min) 23.0 ± 1.0 25.4 ± 0.5 24.3 ± 1.0 23.4 ± 1.0 27.7 ± 0.5 24.2 ± 1.0 
> 180 b.p.m. (min) 0.1 ± 0.3 2.1 ± 0.2 3.5 ± 0.3 0.0 ± 0.3 1.7 ± 0.2 2.8 ± 0.3 
Duration (min) 23.1 ± 0.8 27.3 ± 0.5* 27.3 ± 1.0 23.4 ± 0.8 29.0 ± 0.5* 26.7 ± 1.0 
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4.6 Exercise testing 

Two types of standardised tests were performed in each period, namely a standardised VLa4 

treadmill test and a Breed evaluation field test (BEFT).  

4.6.1 Standardised exercise tests 

Before the study, the peak velocity for every individual horse was determined by a preliminary 

VLa4 test, using a portable lactate blood analyser (Lactate Pro™ 2 LT-1730, Arkray Inc., Japan). 

The standardised exercise test (SET) consisted of a 4-minute warm-up walk at 1.2 m/s with 0% 

incline followed by four, two-minute-long incremental steps with 6.25% incline, ending with the 

peak velocity determined beforehand for every individual, ending with two-minute walk uninclined 

cool down. Mean speed at each step is presented in Table 6. Blood samples were drawn on the last 

seconds of every incremental step, as well as 15 and 30 min after the test. HR, RR and BF were 

also recorded as recovery parameters right after the exercise and after 15 and 30 min post-exercise. 

Table 5.  Mean speed (LS means ± SE) for each step during the SET. 

Step  Speed (m/s) 
1 3.5 ± 0.05 
2 4.3 ± 0.05 
3 5.0 ± 0.05 
4 6.0 ± 0.05 

 

4.6.2 Breed evaluation filed test 

A simulated breed evaluation field test (BEFT) was performed at Hólar, Iceland, according to FIZO 

regulations (FEIF, 2015) and as previously described by Stefánsdóttir et al. (2014). In an actual 

BEFT, horses are evaluated two times. In this study the horses were only evaluated the first time. 

The horses are scored for riding abilities on a half-point scale from 5-10. The horses were ridden 

by the studies´ head trainer that is an experienced BEFT rider.  The structure of the BEFT for every 

horse was fixed between treatments. The rider chose the order and the speed in which the gaits 

were ridden in the first BEFT. That structure was then repeated in the second BEFT. Same two 

certified BEFT judges evaluated the horses both times and were blinded to the treatment of the 

horses. A blood sample was drawn before the BEFT, two min after exiting the track, 15 and 30 min 

post-exercise. HR, RR and BF were also recorded as recovery parameters after 15 and 30 min. 



 

25 
 

4.7 Locomotion asymmetry 

Locomotion asymmetry of each individual was assessed in the horses using the wireless sensor 

system Lameness locator (EQUINOSIS®, Columbia and St. Louis, MO; www.equinosis.com). 

The horses were equipped with the sensors according to McCracken et al. (2012). Recordings were 

conducted three times in each period, one day before BEFT (BF), one day after BEFT (DA) and 

two days after BEFT (2-DA), in the same order of horses from 08:00-12:00. Two types of surface 

were used, a packed dirt road outside and loose sand inside a 20x60m riding hall. The horses were 

run for at least 50 m in each direction. Records were considered for analysis if a minimum of 25 

strides were included. 

Recordings were done on a straight line and on the diagonal in the riding hall. Horses that had 

trouble trotting easily were equipped with 240 g heel weight riding boots to assist the keeping the 

gait for more accurate measurements. Two handlers ran the horses by hand with a halter. One 

outside and the other handled the horses inside. By calculating vector sum, if a horse is lame it can 

indicate on which leg it is lame. The mean vector sum for front and hind limbs respectively gives 

an indication of locomotion asymmetry. It is derived from maximum and minimum height 

difference off the head and pelvic sensors (max diff and min diff) separately using the following 

equation: 

𝑉𝑉𝑉𝑉 =  �(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)2 + (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)2 

Vector sum for both front limbs (VSF) and hind limbs (VSH) were derived from the equation. The 

effects of locomotion asymmetry on the physiological response to exercise was studied using the 

simulated BEFT. Multiple recordings were performed until a desirable, consistent measurement 

was obtained. From those recordings, data was selected by two different selection criteria. Firstly, 

data was selected by the lowest standard deviation. Secondly, data was selected by the number of 

strides in each measurement. 

4.8 Data collection 

4.8.1 Heart rate, respiratory recording and rectal temperature recording 

Heart rate, velocity and distance during all training sessions and exercise tests were recorded using 

heart rate monitor (Polar Pro Trainer 5 Equine Edition, Polar Electro, Kempele, Finland) and 
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equine H1 heart rate sensor electrode based set used with Polar equine T56H transmitter W.I.N.D. 

(Kempele, Finland), synchronized with a GPS (Polar G3, GPS sensor, Polar Electro, Kempele, 

Finland). From HR recordings, warm up HR, duration of HR>180 b.p.m., duration of HR<180 

b.p.m., total distance with HR >180 b.p.m. and average velocity when HR was >180 b.p.m. was 

calculated. Recovery HR and peak HR, namely the highest recorded HR for each horse and period 

were also determined from the HR curves. Resting HR was recorded using a stethoscope. 

Respiratory rate was counted by placing the hand in front of the nostrils for 15 seconds. Breaths 

per minute was evaluated by multiplying the value by four. Rectal temperature was recorded at 

rest, at the offset of exercise and 15- and 30 min post-exercise, using a digital thermometer (Disney, 

Hartman, Heidenheim, Germany). 

4.8.2 Blood sampling and analysis 

Blood samples were collected for the two exercise tests. All blood drawing was performed by 

certified personnel. For the SET, blood samples were drawn from vena jugularis, using a jugular 

vein catheter inserted under local anaesthesia (5ml Xylocain 20 mg/mL (Astra Zenecaa)). 

 Blood samples were drawn before the VLa4 test, on the last seconds of every incremental step as 

well as 15 and 30 min after the exercise, seven samples in total. Resting samples were taken at the 

same time for all horses, in the stall box, after morning feeding of 1 kg DM.  

For the BEFT, blood samples were drawn by jugular venipuncture. A blood sample was drawn 

before the BEFT, two min after exiting the track, 15 and 30 min post-exercise, four samples in 

total. Samples were collected in chilled lithium heparin tubes (9 ml, Vacuette ®; Greine-Bio-One, 

Kremsmuenster, Austria) and stored on ice until analysed.  

From each blood sample, blood was collected into non-heparinised capillary glass tubes and 

centrifuged for 8 minutes, using (Cellocrit 2, AB Lars Ljungberg and Co, Stockholm, Sweden) for 

haematocrit analysis. Each sample was run in triplicate and the mean value used for statistical 

analysis. Plasma was then separated as all samples were centrifuged in the heparin tubes for 15 

minutes (520 x G, EPA 12, Hettich zentrifugen, Tuttlingen, Germany). The separated plasma was 

frozen and stored at -18°C. 

The muscle enzyme AST was analysed by enzymatic method on a fully automated, open-system 

clinical chemistry/immunoassay analyser (spectrophotometer, Architect c4000, Abbott Park, IL, 

USA). Total plasma protein was analysed using a refractometer (Atago, Tokyo, Japan). Blood 
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plasma lactate concentration was analysed by an enzymatic method (Boehringer&Mannheims, 

lactat/r-biopharmkit, kit no 10139084035, Skandinavien Diagnostiska, Göteborg, Sweden). 

4.9 Statistical analysis and calculations 

Statistical analysis was performed using SAS (Statistical Analysis System package, Inst. Inc. Cary, 

NC, USA, version 9.4). ANOVA was performed using a general linear model (procedure GLM). 

The effect of treatment was analysed using the model Y=µ+ ai+bl+ ck + dj + eilkj, where Yijkr is the 

observation, µ is the mean value, ai is the fixed effect of treatment, bl is the fixed effect of period, 

ck the fixed effect of sample, dj is the random effect of horse and eiljkl is the residuals. Results are 

expressed as least squares means ± standard error, and as mean ± standard deviation, where stated. 

Tukey test was used for comparison. The significance level was set at P<0.05. Correlations 

calculations were performed using Pearson correlations test. 
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5 Results 

5.1 General 

Five weeks into the study, one horse was withdrawn due to abnormal behaviour and loss of appetite, 

and therefore excluded from all analysis. Two other horses registered days lost in training, 3 days 

due to a lost shoe resulting in mild hoof injury, and one day for the other horse due to mud fever. 

Prior to the study, all horses passed a thorough health examination performed by a certified 

veterinarian. The horses that participated in the study, finished completed without clinical signs of 

injury, fatigue or metabolic syndromes, examined by a veterinarian. 

5.2 Body condition and body weight 

Horses adapted to high energy allowance were significantly heavier compared to horses adapted to 

restricted energy allowance (P<.0001, Figure 4). The weight difference was significant already at 

second week of treatment. The horses weighed on average 405.6 ± 1.2 kg for HA compared to 

388.8 ± 1.2 kg for RA respectively, varying by 16.8 kg on average. 

 

Figure 4. Weekly changes in total body weight between treatments.  Δ and dotted line represent RA, ○ and 
filled line represent HA. Filled labels are significantly different from the initial value. ** marks significance 
of P<0.05. *** Marks significance between treatments of P<.0001.  

385

390

395

400

405

410

0 1 2 3 4 5 6

Bo
dy

 w
ei

gh
t (

kg
)

Sample

**

***

***
***



 

29 
 

All parameters of the body condition scoring showed significant difference between treatments 

with increased body weight and BCS on high allowance, apart from the score for back (Table 7). 

Fat% differed between treatments (P<0.05) being on average 0.55% higher for HA compared to 

RA. Mean BCS was 6.5 ± 0.02 in HA and 6.2 ± 0.02 in RA (P<.0001) varying by 0.3 points on 

average. The morphological measurement of girth circumference was significantly different 

between treatments, higher for HA compared to RA. Neck circumference did not differ between 

treatments. Cresty neck score tended to be higher for RA compared to HA (P<0.1). 

Table 6. Mean values of body weight and individual parameters of the BCS between treatment groups 
(LSM ± SE), and the level of significance between treatment groups (n=9). 

Variable High allowance Restricted allowance   Effect of treatment 
Body weight (kg) 405.6 ± 1.2 388.8 ± 1.2 P<.0001 
Fat (%)  14.6 ± 0.13 14.05 ± 0.13 P<0.05 
Neck 6 ± 0.05 5.7 ± 0.05 P<0.005 
Back 4.7 ± 0.02 4.6 ± 0.02 0.06 
Rump  5.2 ± 0.02 5.1 ± 0.02 P<0.05 
Tail head  5.7 ± 0.04 5.4 ± 0.04 P<0.005 
Ribs  6.9 ± 0.06 6.5 ± 0.06 P<0.005 
Shoulder blade  7.5 ± 0.06 7.1 ± 0.06 P<0.005 
BCSmean + back 6 ± 0.02 5.7 ± 0.02 P<.0001 
BCSmean - back 6.5 ± 0.03 6.2 ± 0.03 P<.0001 
Overall picture 7.1 ± 0.1 6.5 ± 0.1 P<0.05 
Cresty neck score 2.25 ± 0.03 2.34 ± 0.03 P= 0.07 
Girth circ. (cm) 174.1 ± 0.1 171.7 ± 0.1 P<.0001 
Neck circ. (cm)  103.4 ± 0.8 102.2 ± 0.8 0.35 

All evaluated parameters correlated highly with BW and BCS (Table 8), apart from CNS and 

neck circumference. Girth circumference had the highest correlation to BW. Rib score correlated 

the highest to BCSmean.  
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Table 7. Correlations between weekly changes in body weight, body condition score and changes in 
individual parameters of the total BCS. 

 
Body 

Weight P-value BCSmean P-value 
Body weight  . . 0.904 <.0001 
Neck  0.758 0.0003 0.846 0.0003 
Back 0.632 0.0049 0.576 0.0124 
Tail head  0.822 <.0001 0.831 <.0001 
Rump  0.598 0.0088 0.521 0.0265 
Ribs  0.801 <.0001 0.917 <.0001 
Elbow area  0.801 <.0001 0.875 <.0001 
Girth circ. (cm) 0.851 <.0001 0.758 0.0003 
Overall picture 0.898 <.0001 0.778 0.0001 
     

 

5.3 Performance 

5.3.1 A breed evaluation field test 

All horses completed the BEFT without injury and considered healthy by a veterinarian. Duration 

of warm up was 9.0 ± 1.0 min. Mean duration of BEFT was 10.9 ± 1.3 min. Distance of warm up 

was 2,010 ± 180 m. Distance ridden in the BEFT was 2617 ± 302 m. Mean velocity during BEFT 

was 4.2 ± 0.2 m/s and maximum velocity was 10.9 ± 0.6 m/s.  Judges scores for total score for 

riding abilities, form under rider and gallop were significantly lower for HA compared to RA 

(P<0.05, Table 9). All scores for riding abilities were numerically lower for horses on HA 

compared to RA except for walk and the same mean score for canter. 

Weather conditions 

Mean wind speed at BEFT was 3.2 ± 0.2 m/s. Wind speed was significantly lower for the HA 

compared to RA (3.0 ± 0.1 m/s vs. 3.4 ±0.1 m/s respectively) (P<0.05). Mean ambient temperature 

during BEFT was 6.8 ± 0.2 °C. No difference in ambient temperature between treatment groups 

during the BEFT. 
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Table 8. Scores from an experimental breed evaluation field test (LSM ± SE) on horses subjected to a high 
allowance (HA) and restricted allowance (RA) treatment. The judges were blinded to treatments. 

  HA RA SE P-value 
Tölt 7.09 7.41 0.139 0.146 
Slow tölt 6.92 7.14 0.2 0.456 
Trot 7.11 7.28 0.108 0.328 
Pace 5.1 5.29 0.074 0.118 
Gallop 7.62 7.83 0.062 0.047 
Canter 7.44 7.44 0.109 1 
Spirit 7.43 7.62 0.132 0.351 
Form under rider 7.44 7.67 0.056 0.018 
Walk 7.65 7.57 0.126 0.639 
Total 6.95 7.16 0.0618 0.048 

5.4 Physiological response  

5.4.1 Standardised incremental exercise test  

Exercise intensity 

Mean HR tended to be higher for HA (118 ± 2 b.p.m.)  compared to RA (116 ± 2 b.p.m.), 

respectively, (P<0.1). HR increased linearly with speed during SET. Furthermore, lactate response 

differed between treatments (Figure 5). 

Rectal temperature and respiratory rate 

Rectal temperature was higher in HA compared to RA (P<0.05) in the SET. There was a significant 

difference between groups in resting rectal temperature (37.6 ± 0.1 °C for HA vs. 37.3 ± 0.1 °C for 

RA, respectively), (P<0.05). In both treatment states, rectal temperature had not lowered to resting 

values 30 min post-exercise. RT 15 min post BEFT was higher in HA (38.5 ± 0.1 °C) compared to 

RA (38.2 ± 0.1 °C) (P<0.05). The indoor temperature was significantly higher for HA compared 

to RA (12.4 ± 0.08 °C for HA, vs. 11.8 ± 0.08 °C for RA, respectively). However, the ambient 

temperature did not have significant on the rectal temperature.  

Mean respiratory rate was significantly higher for HA compared to RA (P<0.05). Clearest 

variation was detected at 2 min post-exercise (97 ± 5 breaths/min vs. 71 ± 5 breaths/min 

respectively, P<.0001). Horses had reached resting RR 15 min post-exercise in both treatments. 
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Haematocrit and plasma protein concentration 

There was a significant difference in haematocrit between treatments (39.9 ± 0.2 % vs. 40.9 ± 0.2 

%, P<0.01) (Figure 5). There was a significant difference already in resting Hct, 35.4 ± 0.5 % for 

HA vs. 37.0 ± 0.5 % for RA, respectively (P<0.05).  Peak Hct did not differ between treatments 

(45.8 ± 0.5% for HA vs. 46.7 ± 0.5% for RA, respectively, P>0.05). Horses in both treatments had 

reached resting values for Hct 15 min post-exercise. There was no effect of treatment on TPP during 

the SET (Figure 5). TPP elevated in relation to speed during the SET. Horses had reached their 

resting values already 15 min post-exercise. 
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Figure 5. Physiological response to a standardised, incremental exercise test in terms of heart rate, rectal 
temperature, respiratory rate, plasma lactate concentration, total plasma protein concentration and 
haematocrit (LSM ± SE. Samples were taken Before (BF), at the end of each step (S1), (S2), (S3) and 
(S4) of the exercise test, at the end of two-minute cooldown in walk (W), right after stop (S), and 15 
and 30 min post exercise (15m) and (30m). Δ and dotted line represent RA, ○ and filled line represent 
HA. Filled labels are significantly different from before value. * marks a statistical tendency between 
treatments in each sample (P<0.1). ** marks significant difference of individual samples between 
treatments (P<0.05). *** marks significance level of (P<.0001) between treatments of individual 
samples 
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5.4.2 BEFT 

Exercise intensity 

Mean HR of warm up was 149 ± 6 b.p.m. Mean HR of BEFT was 168 ± 6 b.p.m. Mean HRpeak was 

217 ± 7 b.p.m. There was a significant effect of treatment on mean HR during BEFT, with a mean 

of 167 ± 1 b.p.m. in HAs vs. 170 ± 1 b.p.m. in RA. Peak HR did not differ between treatments. 

Plasma lactate concentration was significantly higher for RA (Figure 6). Peak plasma lactate 

concentration, 2 min post-exercise was significantly lower in HA, 3.4 ± 0.8 mmol/L vs. 5.4 ± 0.8 

mmol/L in RA, respectively (P<0.05, Figure 6). 

There was no difference of sampling days on aspartate amino transferase (AST) concentration, 

before BEFT and two days after BEFT (p>0.05), nor between treatments, 5.4 ± 0.2 ukat/L in HA 

vs. 5.2 ± 0.2 ukat/L in RA, or 325.3 ± 12 U/L vs. 313.3 ± 12 U/L, respectively.  

Rectal temperature and respirator rate 

Rectal temperature (RT) differed between treatments (P<0.05), with higher mean RT in RA 

compared to HA (38.5 ± 0.05 °C vs. 38.3 ± 0.05 °C. respectively, P<0.05). Peak RT did not differ 

between treatments (P>0.05). The horses had not reached resting RT 30 min post-exercise in both 

treatments (Figure 6) . 

There was significant difference in mean respiratory rate (RR) between treatments (P<0.05) 

being higher in HA compared to RA. The respiratory rate 2 min-post BEFT was higher in HA 

compared to RA (107 ± 6 breaths/min vs. 88 ± 6 breaths/min, respectively) and 15 min post-BEFT 

(47 ± 6 breaths/min vs. 29 ± 6 breaths/min, respectively), P<0.05. Horses in both treatments had 

reached resting respiratory rate 30 min post-exercise. Following the BEFT, the HA had reached 

resting HR values 30 min’ post-exercise, while the RA had not (Figure 6). 

Haematocrit and plasma protein 

There was significant difference in mean Hct concentration between treatments (P<0.05) (Figure 

6). Hct had diminished to resting values 30 min post exercise (Figure 6). There was a tendency of 

effect of treatment on mean total plasma protein concentration (TPP) (P<0.1), being higher in RA. 
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compared to HA with mean values of (60.12 ± 0.6 g/L in RA and 58.5 ± 0.6 g/L respectively). TPP 

levels did not significantly exceed resting values (Figure 6). 
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Figure 6. Physiological response to a breed evaluation field test in terms of heart rate, rectal temperature, 
respiratory rate, plasma lactate concentration, haematocrit (%) and total plasma protein concentration (LSM ± 
SE). Before sample (BF), 2 minutes post-exercise (2 m), 15 minutes post-exercise (15 m) and 30 minutes- post-
exercise (30 m). Δ and dotted line represent RA, ○ and filled line represent HA. Filled labels are significantly 
different from before value. * marks a statistical tendency between treatments in each sample (P<0.1). ** marks 
significant difference of individual samples between treatments (P<0.05). *** marks significance level of 
(P<.0001) 
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5.5 Locomotion asymmetry 
For analysis of locomotion asymmetry, the effects of stride rate, stride length and surface were not 

significant and were therefore excluded from the final statistical model. In general, there was a 

significant difference between treatments, with higher front limb asymmetry, reported as vector 

sum front (VSF) for horses adapted to high energy allowance (HA) compared to horses adapted to 

restricted energy allowance (Figure 7). Hind limb asymmetry did generally not differ between 

treatments, though variation could be detected prior to the BEFT. Participation in BEFT had 

lowering effects on locomotion asymmetry after the field test.  

With selection criteria of lower standard deviation there was significant effect of treatment for 

VSF (P<0.05). Mean VSF for HA was 11.0 ± 0.6 mm vs. 8.7 ± 0.6 mm in RA, respectively. Horses 

tended to have greater front limb asymmetry the day before BEFT compared to two days after 

BEFT (P<0.1), regardless of treatment. Horses in HA had greater hind limb asymmetry day before 

BEFT (P<0.05). Different treatments did not affect overall VSH (Figure 7).  

When data was selected from stride quantity of the measurement, there was a tendency of 

treatment effect for VSF (P<0.1), 11.2 ± 0.7 mm in HA vs. 9.5 ± 0.6 mm in RA, respectively. VSH 

tended to be higher for HA, 5.8 ± 0.4 mm in HA vs. 4.8 ± 0.4 mm in RA (P<0.1). No differences 

between groups on individual sampling days. For horses adapted to restricted energy allowance, 

VSF was significantly lower day after BEFT and as well as 2 days after BEFT (Figure 7). 

Regardless of treatment, VSF day before BEFT tended to be higher than the day after (P<0.1), and 

were significantly higher than 2 days after BEFT (P<0.05). 
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Figure 7.  Locomotion asymmetry (vector sum front and hind, VSF and VSH) of front legs (top) and hind 
legs (bottom) in nine horses subjected to two treatments: high energy allowance (○) and restricted energy 
allowance (Δ). Left figures respresent a data selection based on lowest standard deviation and right figures 
a data selection based on a minimum of 25 strides (LSM ± SE). Measurements were performed a day before 
a breed evaluation filed test (BEFT) (BF), a day after BEFT (DA) and two days after BEFT (2-DA). Filled 
labels are significantly different from BF sample. * marks statistical tendency of effects of treatment 
(P<0.1). ** marks significant difference between treatments (P<0.05). 

5.5.1 Locomotion asymmetry post-exercise 

For a better demonstration of the effect of treatments on the symmetry response to BEFT, a 

statistical analysis was performed, excluding the measurements from the day before the BEFT 

(Figure 8). With selection criteria of lower standard deviation, front limb asymmetry was higher 

for HA compared to RA with VSF = 10.4 ± 0.7 mm in HA vs. 8.2 ± 0.7 mm for RA, respectively 

(P<0.05). VSF tended to be lower for RA compared to HA two days after BEFT (P<0.1). No 

difference in VSH was found between sampling days or between treatments.  

When selected for stride quantity, front limb asymmetry (VSF) was also higher for HA 

compared to RA, 11.1 ± 0.7 mm in HA vs. 8.1 ± 0.7 mm in RA (P<0.05). Moreover, VSF tended 

to be higher for HA compared to RA the day after BEFT as well as two days after BEFT (P<0.1). 

VSH did not differ between treatments or sampling days. 
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5.5.2 Locomotion asymmetry and performance 

Front limb asymmetry (VSF) was strongly correlated between sampling days, VSF day after BEFT 

(r=0.62. P<0.05) and two days after BEFT (r=0.74. P<0.05), meaning that horses with high 

asymmetry before the BEFT also had high asymmetry the days after it as well. In general, the 

horses had lower locomotion asymmetry in the days after the BEFT compared to the day before. 

VSF the day after BEFT (DA) correlated to scores for gallop (r=0.50. p=0.0328) and canter (r=0.47. 

P<0.05) from BEFT.  

* * * 

Figure 8.  Locomotion asymmetry of front legs and hind legs between treatments in two different 
strategies of data selection (LSM ± SE). Measurements from a day after BEFT (DA) and two days after 
BEFT (2-DA) are included in ths analysis. First for lowest standard deviation and secondly for stride 
count of the measurement. Asymmetry is reported as vector sum front, VSF (mm) and vector sum 
hind,VSH(mm). Striped columns represent RA; dotted columns represent HA. Filled labels are 
significantly different from before value. * marks statistical tendency between treatment (P<0.1). 
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Hind limb asymmetry (VSH) day before BEFT tended to be negatively correlated with scores 

for slow tölt (r = -0.41. P=0.08), meaning that higher hind limb asymmetry may result in lower 

scores for slow tölt. Mean VSH tended to be negatively correlated to canter (r=-0.44. p=0.07). No 

direct correlations were found between locomotion asymmetry and BCS or BW. 
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6 Discussion 

6.1 General 

The most clear and present findings in this thesis are that altered body condition does affect 

physiological response to exercise and performance in Icelandic horses (Figures 5 and 6). 

Specifically, horses adapted to high allowance diet and therefore had higher BCS had lower judges´ 

scores from a breed evaluation field test, lower aerobic capacity and altered recovery pattern. 

Moreover, horses in higher body condition had greater locomotion asymmetry in front limbs 

(Figures 7 and 8). Participation in a BEFT had lowering effects on locomotion asymmetry to some 

extent. 

6.2 Body condition 

The Henneke scale has proven to be a successful tool in evaluating fat accretion in Icelandic horses. 

In general, the study was successful in altering the BCS, BW and fat content of the horses with the 

given feeding, management and training practice to a statistically significant extent, with merely a 

28-day adaptation period. Quite interestingly, there was a significant difference between treatments 

even though the mean variation of BCSmean was 0.3 points, with a mean variation in BW of 16.8 

kg (Figure 4, Table 7). As seen in Figure 4, the horses lost weight more rapidly than they gained 

weight. All horses were subjected to the same training program, resulting in that alterations in BW 

and BCS were due to the treatment and not training.  

Since 2001, the body condition of Icelandic horses has been evaluated according to Stefánsdóttir 

and Björnsdóttir, (2001), in their native country. This is a half-point scale ranging from 0-5. Apart 

from visually assessing the horses’ general health status, the only palpation required to give score 

is the area covering the caudal ribs. From the results of this study, we can see that rib score 

correlates the highest to mean BCS (r = 0.92, Table 8). Therefore, if only to palpate one body part 

of the horse, the rib area is the appropriate approach. However, our results correlate to Westervelt 

et al. (1976), that fat deposition between areas of the body variates within every horse, as between 

individuals. To gain an accurate assessment of a horse’s body condition, detecting slight changes 

and reducing risk of underestimating body fat deposition, the Henneke scale is a more precise 

method, clearly being beneficial for the horse. 
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At the beginning of each adaptation period, it was observed that the horses in the HA were close 

to maximum levels of their feed intake capabilities. After a few days, they ate at a higher rate and 

the horses´ feed intake could have been increased. With a longer adaptation period and higher feed 

allowance for the HA, the result would probably have been even more pronounced, with higher 

exercise intensity in relation to increased body weight and body fat content. 

6.2.1 Morphology and cresty neck score 

Morphological measurements of girth circumference correlated highly to BW due to possibly 

changes in fat deposition, but also in gut fill. These findings correlate with previous findings on 

Icelandic horses (Matthíasdóttir, 2012) as well as in other breeds (Carroll and Huntington, 1988; 

Dugdale et al., 2011b). No differences were seen in neck circumference. That can be because of 

the high measurement error of the parameter or higher heterogeneity of the measured horses. Even 

though placements sites of measurement tape were marked in the horses´ coat, only a slight posture 

change of the horse altered the measurement of several cm, and is therefore highly challenging to 

standardise the procedure of measuring this parameter. Frank et al. 2006 concluded that neck 

circumference is a good indicator of the horse´s physical state. That study compared obese horses 

(BCS≥7/9) to normal horses ranging from 4-6 out of 9, thus a much more heterogenous group of 

horses, the obese group possibly containing much more prominent fat deposition in the neck. The 

horses were also restrained during every measurement, which is likely to be necessary for 

standardization of the measurement. 

Cresty neck score (CNS), applied at the end of each period was not different between treatments. 

No correlations between CNS and BCS, nor to neck circumference were found. To detect a 

significant change in the fat deposition of the neck, it is likely that more time is needed for the 

horse to build up the fat reserve to a higher extent. Our findings concur with Dugdale et al. 2011b, 

that girth measurements have a higher correlation to BCS than neck circumference. The relatively 

low change in CNS between treatments compared to other parameters of the total BCS, it is possible 

to speculate that fat deposits sooner in other areas, and longer adaptation time is needed to see a 

substantial fat deposition in the neck. 

6.2.2 Fat deposition and weight gain 

No correlations between fat percentage and BCS were found in this study, in contrast to older 

findings (Henneke et al., 1983; Leleu and Cotrel, 2006; Ragnarsson and Jansson, 2011). The 
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number of measurements (n=18) and the relatively high homogeneity compared to the range in 

BCS of 2-4 (Leleu and Cotrel, 2006) and 4.5 – 7.5 (Ragnarsson and Jansson, 2011) in both mean 

BCS and the fat% could be the explanation. Ringmark et al. (2013) assessed horses in BCS around 

5 with 7-10% fat%, carrying 28-40 kg of fat. The calculated fat content of the horses in this study 

according to Westervelt et al. (1976), the horses were carrying roughly 57 kg of total fat reserves, 

compared to roughly 67 kg using the exponential relationship presented by Dugdale et al. (2011). 

It is though vital to address the conclusion of Dugdale et al. (2011b) that when evaluating BCS of 

6 and higher, the correlation becomes much more insensitive and therefore not a useful indicator 

of actual body fat content. By increase of one or two points in BCS, actual body fat can double and 

thus, small errors of measurement in BCS can result in larger error in body fat content. BCS systems 

are based on detecting changes in subcutaneous fat deposition, leaving blanks in visceral adiposity 

(Dugdale et al., 2010; Dugdale et al., 2012). 

By calculating the estimated body fat, according Westervelt et al. (1976), we can see that 1% of 

body fat corresponds to 4 kg of actual body fat. The average difference between treatment groups 

of 0.55% corresponds to 2.2 kg of extractable body fat, or 80 grams of weight gain per day. The 

equation used was derived from a study using eight horses of unknown breed, ranging in BW from 

336-559 kg. Out of mean difference in BW of 16.8 kg, the value is low and unrealistic. However, 

assuming an exponential relationship between fat% and BCS that Dugdale et al. (2011a) described 

using obese Welsh mountain ponies in BW = 219 ± 21 kg of BCS 6.8-9 out of 9, average fat 

accumulation between treatments is 7.5 kg or 270 grams/day, and the residues are expected to be 

gut fill and possible increased balance retention, although Dugdale et al. (2011a) states that weight 

gain is generally attributed through accumulation of body fat. Many horses in this study fell within 

the lower limits of obesity used by Dugdale et al. (2011b). Average difference between treatments 

on forage allowance was 4.7 kg/day. From organic matter digestibility of the haylage, we can see 

that roughly 0.5 kg/day of indigestible material was eaten. Whether it is all released with faeces or 

is resided for some time is not known. 

 If all excessive energy intake would be stored in the form of adipose tissue, the horses adapted 

to high energy allowance would have deposited roughly 20 kg of fat, which is clearly unrealistic, 

given that the mean BW difference was less than 17 kg. Every kg of fat withholds roughly 38 MJ 

ME (Alberts et al., 2008; Sjaastad et al., 2016) By calculating the difference in total energy intake 

between treatments, it is estimated that around 35% of the energy is stored in adipose tissue, 
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assuming 74%  energy efficiency of lipid synthesis (MSU, 2017). The residual energy is most 

likely utilized for increased workload due to greater weight-bearing, more heat production due to 

increased microbial activity and chewing activity and due to maintenance cost of the increased 

adipose tissue. 

Water uptake has been shown to correlate with forage intake (Lewis, 1995), and that water 

intake increases with forage only diet vs. concentrate diet (Jansson and Lindberg, 2012).  As more 

water can be bound to the increased fibre content in the hind gut, it could contribute partly to the 

weight gain for the horses adapted to high energy allowance.  
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6.3 Physiological response 

6.3.1 Standardised exercise test 

The exercise intensity for the horses adapted to high energy allowance was clearly higher compared 

to horses adapted to restricted energy allowance. They tended to have higher heart rate, had higher 

lactate accumulation, higher rectal temperature and higher respiratory rate. Furthermore, 

unpublished results from this study show that horse in HA had higher plasma lactate concentration 

and lower VLa4 compared to horses in RA, implying lower aerobic capacity for horses with higher 

body condition and body fat content. This corresponds to the findings of Kearns et al. 2002a, where 

horses with higher fat% had lower VO2max. Other publications referred to in this thesis included 

field exercise tests. 

6.3.2 BEFT 

In summary, judges´ scores for gallop, form under rider and total score for riding abilities were 

significantly higher for RA compared to HA. Furthermore, mean heart rate during BEFT, rectal 

temperature and haematocrit were as well higher for RA compared to HA. Respiratory rate and 

plasma lactate concentration were though significantly higher for HA compared to RA. 

In comparison to Stefánsdóttir et al. (2014), this study had lower mean HR and peak HR, Hct 

and distance covered. The rider weight including tack was 72 kg in this study compared to average 

of 83 ± 11 kg (Stefánsdóttir et al., 2014). When only observations are included with riders of 

comparable weight to this study, the horses still had lower plasma lactate concentration. Moreover, 

horses in this study had limited abilities to show pace. By that it can be concluded that the exercise 

intensity of this field test was somewhat lower than an actual breed evaluation field test. The quality 

of the horses used in the study could be lower than in Stefánsdóttir et al. (2014) (7.69 vs. 7.06). 

For the horses with a rider of comparable weight, the mean total score was 7.50 compared to 7.06 

points in this study.  For an actual BEFT, there is a high selection intensity. From 1990-2001, 12% 

of horses born attended at a BEFT (Albertsdóttir et al., 2011). The horses used in the study were 

all geldings, that already have been through a certain selection of potential performance quality. 

Although no correlations were found in this study between the body weight ratio between the rider 

and the horse (BWR) and physiological response, as only one rider performed the BEFT, we can 

conclude that the riders weight did not have incremental effects on lactate accumulation. 
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Nevertheless, increased weight bearing as adipose tissue or as gut fill could contribute to increased 

exercise intensity. 

The body weight of the horses was also different is this study compared to Stefánsdóttir et al. 

(2014), that reported mean BW of 339 ± 14 kg. This study had mean BW of 397 ± 1.2 kg, relating 

to the additional weight carried as fat or gut fill. Training state of the horses between studies could 

vary. The horses used in the study were all property of Hólar University College, possibly lacking 

the pressure and demands of the owners and trainers of horses preparing for an actual BEFT. In 

addition, the mean Hct of 42.8 ± 0.6% vs. 45.0 ± 3% indicates lower oxygen transport capacity of 

the horses in this study. This difference can partly be explained by higher Hct in stallions, which 

this study did not include. In real situations, most of the horses in this study would most likely not 

been considered fit to perform in a BEFT.  

Stefánsdóttir et al.  (2017) investigated the effects of added rider weight on the physiological 

response of the horse, running at 5.3 m/s. In that study (BWR) > 25% resulted in lactate 

accumulation. In this study, the mean BWR was 18% and the mean velocity was 4.2 m/s. Based 

on this information, it is not surprising that lactate could be lower in the present study.  

6.3.3 Effects of treatment 

There was a significant difference in exercise intensity between treatment groups during BEFT. 

There was higher wind speed for RA compared to HA during the BEFT, with a variation of 0.4 m/s 

on average which could have increased work load and rectal temperature 2 min post-BEFT. This 

difference is probably coincidental, as the horses were ridden in a random order, in addition to a 

variable wind direction, making it difficult to speculate on the true effects of wind speed on exercise 

intensity.  

However, there was a significant effect between treatments on maximum speed (Vmax) (10.8 ± 

0.1m/s vs. 11.1 ± 0.1 m/s), mean speed (Vmean) (4.1 ± 0.03 m/s in HA vs. 4.2 ± 0.1 m/s in RA), and 

HRmean during BEFT, confirming the higher exercise intensity in the RA, in accordance to the 

lactate response between treatment groups. Exercise intensity and speed have been closely 

correlated (Evans and Rose, 1988). It is therefore difficult to conclude on the effects of wind on 

the physiological response, and is more logical to point out the speed, gaits and movements as the 

reason for difference in exercise intensity of the RA during the BEFT. The RA horses worked at 

higher intensity and to a greater extent, utilized anaerobic pathways.  
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Unpublished data from this study also show that horses on RA had greater suppleness, speed 

and self-carriage according to the rider. Moreover, there was a tendency of difference in 

willingness, gaits and movements. Therefore, the results indicate strongly that increased body 

condition score negatively affect ridden abilities of the Icelandic horse.  

6.3.4 Correlation to performance 

Higher BCS had direct, detrimental effects on riding abilities during BEFT, seen by the difference 

between treatment on scores for total core, gallop and form under rider, but also by the negative 

correlations between mean BCS and score for tölt (r=-0.61, P<0,05) and mean speed during BEFT 

(r=-0.51, P<0,05). This indicates decreased performance with increased fat deposition. Kearns 

(2002c) explains the inverse relationship to the relative energy expenditure required to perform 

submaximal or even maximal exercise. Adipose tissue is a non- working tissue and a low-fat mass 

improve the power to-weight ratio of the whole body. This handicap of excessive weight bearing 

may be a substantial factor during high intensity exercises. There was a tendency of correlation 

between VLa4 and total score in BEFT (r=0.43, P=0.07). Strong correlation between VLa4 and gallop 

was found (r=0.61, P=0.007), as well as moderate correlation to form under rider (r=0.56, 

P=0.015).  

Therefore, as reported for other breeds (McMiken et al., 1983; Kearns et al., 2002a; Kearns et 

al., 2002b; Leleu and Cotrel, 2006), there is a relationship between aerobic capacity and 

performance in the Icelandic horse and most importantly, a relationship between BCS and aerobic 

capacity and performance. Whether the reason for these effects are solely due to altered metabolic 

pattern, increased added weight or both, remains to be known. However, as Stefánsdóttir et al. 

2014 reported positive correlation between scores and plasma lactate response as well as velocity, 

marking the importance of anaerobic capacity at the highest intensities during a BEFT. This is also 

seen in this study by the treatment effect on lactate and total score for riding abilities. Interestingly, 

VLa4 correlated to peak Hct (2 min post BEFT, r=0.58, P<0.05), pointing out the relationship 

between oxygen transport and aerobic respiration capacity, is in accordance to previous report on 

aerobic capacity (Persson 1968; 1983a; Stewart and Steel, 1975; Stefánsdóttir et al., 2014). 

In addition, plasma lactate concentration correlated significantly both to total score for riding 

abilities and to score for pace (Stefánsdóttir, 2015). Neither relationship was found in this study. 

The horses in this study, in only three out of 18 observations, a score for pace was given, never 

higher than 6.5. As 7.5 is an average score (FEIF, 2015), the horses were not considered as decent 
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pacers. This is a possible reason for the variation between studies in correlations to lactate, and in 

total score average. In addition, there is a slight variation in sampling time of the first blood sample 

post-exercise. In this study, blood was sampled precisely 2 min post BEFT. Stefánsdóttir et al. 

2014 sampled within 5 min post-exercise. Although these correlations were not observed in this 

study, there was a significant overall effect of treatment on both total score for riding abilities and 

plasma lactate concentration. 

6.3.5 Muscle enzyme 

The lack of variation on AST concentration before and after the BEFT contrasts with Stefánsdóttir 

et al. (2014), Snow et al. (1983), Tyler-McGowan et al. (1999) and Hamlin et al. (2002), raising 

AST following submaximal or even maximal exercise. This could be explained by lower exercise 

intensity of the field test, in terms of lower speed and a lighter rider than in previous studies. 

6.4 Recovery 

A different pattern of recovery parameters was detected between different treatments, indicating a 

possible lower capacity to cope with strenuous exercise in higher body condition. Furthermore, 

an altered pattern of recovery was seen between the two exercise tests. 

6.4.1 Standardised incremental exercise test 

Under controlled situations of the SET, recovery parameters showed slightly altered pattern 

compared to following a BEFT. Despite the tendency of higher HR for HA, both groups reached 

their resting HR 30 min post exercise, showing the same pattern of recovery HR. There was a 

tendency of higher mean HR in HA and significant difference between treatments regarding RR 

and RT in the SET. There was a significant difference in resting RT between treatments, being 

lower in RA, nevertheless both ranging within normal values (Hodgson, 2014). RT differed 

between treatments 15 min’ post-exercise. The groups had reached similar levels of RT after 30 

min post exercise. 

The peak RR in this study (71 – 97 ± 5) corresponds to RR of Standardbred trotters working at 

7-10 m/s during an incremental exercise test. Thoroughbreds performing a SET, galloping at 10 

m/s at 2-4° incline reach RR of 120 breaths/min and up to 133 breaths/min (Franklin et al., 2012). 

Moreover, levels remain at that level 10 m. post-exercise (Ainsworth, 2008; Lekeux et al., 2014). 

Butler et al. (1993) reported Thoroughbred horses not reaching resting levels of oxygen 
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consumption 30 m. post-exercise. These studies present similar resting RR (16-19 breaths/min). 

The reason for this variance is clearly explained by higher exercise intensities for the race horse 

breeds. 

The results indicate that excessive body condition could affect body temperature, possibly by 

limiting heat dissipation to some extent. Heat production could also be greater in the HA, due to 

increased microbial activity from increased forage intake and chewing activity, as seen by Pagan 

and Hintz (1986). There was a difference in RR at the end of SET, corresponding to higher loads, 

increasing oxygen demand. 

There was a higher measured lactate accumulation in the SET compared to the BEFT. That is 

likely the result of sampling at maximum speed during the exercise test, while sampling was done 

2 min post exercise in the BEFT and maximum speed could be reached anywhere in the ten rounds 

ridden, not necessarily in the end. Resting RR was reached by both groups 15 min post-exercise 

following a SET, but 30 min post-exercise after the BEFT. 

Adaptation to the treadmill can vary. The gait adaptations occur fast, after about three times 

exercising in a treadmill (Buchner et al., 1994), but it might take much longer for horses to adapt 

mentally. Until complete adaptation occurs, nervousness is likely to cause a higher workload 

compared to fully adapted horses (Scheffer and van Oldruitenborgh‐Oosterbaan, 1996). 

There was a difference in RR and RT between exercise tests. As in the study by Nostell et al. 

(2006), RT and RR were higher after a treadmill test compared to field test was hypothesized to be 

because of diminished heat loss due to reduced heat convection. In the present study, higher RR 

and RT were documented after BEFT than after the treadmill test, corresponding to the extent of 

exercising intensity, anaerobic metabolism, and distance covered.    

6.4.2 BEFT 

To this date, this is the first study that measures recovery parameters of Icelandic horses following 

a simulated or real breed evaluation field test, exceeding observations 5 min post-exercise. There 

was a difference between treatments in recovery heart rate. HA had reached resting HR values 30 

min post exercise, while the RA did not reach resting values 30 min post-exercise, relating to the 

greater exercise intensity of the treatment group followed by the lactate accumulation, lowered pH 

and oxygen dept of the skeletal muscle. 

Respiratory rate differed between the two treatments, in total as well as significant difference 

between treatments in peak RR at 2 min post BEFT as well as 15 min post-exercise, with lower 
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RR in the RA compared to HA. Both treatments had reached resting values 30 min post exercise. 

The peak RR falls within boundaries of the peak RR in Stefánsdóttir et al. (2014), where RR within 

5 min post-exercise was 101 ± 30 breaths/min. Higher resting RR in Stefánsdóttir et al. (2014) than 

in this study (30 ± 11 breaths/min vs. 13 ± 6 breaths/min) could be explained by location effects is 

that this study was performed at home, while Stefánsdóttir et al. (2014) was performed at a regional 

breeding evaluation, where horses needed to be transported over variable distances. With traffic, 

people and unfamiliar sightings, that could induce stress related behaviour, such as increased 

breathing frequency (Leadon and Hodgson, 2014). 

On the contrary, rectal temperature was higher in RA compared to HA after the BEFT, being 

the opposite in the SET, most likely because they performed at higher intensity. Both groups did 

not reach their resting levels 30 min post exercise following BEFT and SET. After BEFT, plasma 

lactate concentration had reached insignificance from resting value 30 min post-exercise in the HA, 

not implying a faster lactate metabolism, but merely lower lactate values and therefore lower extent 

of anaerobic metabolism during BEFT. Interestingly, even though plasma lactate and RT were 

lower in HA, the HA seemed to need longer recovery post breed evaluation field test. The results 

indicate the significant effect of treatment on the pattern of recovery parameters, possibly lowering 

the horses´ capacity to cope with exercise. 

6.5 Haematological responses 

6.5.1 Haematocrit 

The significant rise in Hct in relation to exercise intensity, both in BEFT and SET is in accordance 

to previous findings (Seeherman and Morris, 1990; McKeever et al., 1993; Danielsen et al., 1995; 

Stefánsdóttir et al., 2014), as there was a strong correlation between velocity and Hct during SET. 

Variation in Hct between treatment groups is significant though being numerically low, varying on 

average by 1.7% after BEFT and 0.9% after SET. Interestingly, the difference in Hct can be seen 

already at resting state. 

A possible reason for the increased Hct on the restricted allowance is that they have had a period 

of increased growth hormone (GH) levels to maintain plasma glucose concentration. GH secretion 

increases with lowered blood glucose, but unpublished results from this study indicate that blood 

glucose concentration is maintained or even slightly elevated. However, glucose measurement was 

only during a 90-minute feeding period and during SET, leaving a gap of undetected fluctuations 
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in blood glucose. Growth hormone (GH), also called somatotropin, or recombinant equine 

somatotropin in horses (eST), stimulates growth of body mass and elongation of bones. GH-

producing cells are dominant in the anterior pituitary gland (Sjaastad et al., 2016). GH also 

stimulates the production of red blood cells, through the stimulation of IGF-1 release that plays a 

vital role in the process of erythropoiesis in the bone marrow (Akers and Denbow, 2008; Alberts 

et al., 2008). Furthermore, temporary feed-deprivation and overnight fasting (18-20 hours) has 

shown to elevate eST levels (Sticker et al., 1995; Christiensen et al., 1997). Horses differ from 

ruminants and do not respond with decreased GH after feeding. Due to the episodic nature of GH 

secretion, increases can be of various reasons. eST infusion has not been found to affect the exercise 

capacity of horses, their indices or fitness of young Standardbreds in training (Gerard et al., 2002), 

or in unfit, geriatric mares (McKeever et al., 1998). However, there are several ways GH could 

affect exercise capacity, one being an increase in Hct (Christ et al., 1997). 

Hct had reached resting values after 15 min of recovery time, both after BEFT and SET, showing 

a rather quick return of red blood cells to the spleen. The relative low concentration of Hct found 

in this study and by Stefánsdóttir et al. 2014 compared to other breeds (McGowan and Hodgson, 

2014) seems to be consistent. The reason for this breed effects remains to be explained. It could be 

due to the versatile breeding goal of the Icelandic horse (FEIF, 2015), being much broader than to 

breed solely for speed, as is Thoroughbred and Standardbred racehorses (ASVT, 2015; Khadka, 

2010). Moreover, it could be due to the prolonged conditioning to exercise compared to racing 

breeds, as it is tradition to start training of Icelandic horses at the age of three or older. 

6.5.2 Total plasma protein 

There was a tendency of treatment effect, with higher mean TPP for horses adapted to restricted 

energy allowance following a BEFT, but not in the SET (P<0.1). Therefore, the possible loss of 

fluids from the vascular compartment does not explain Hct variation between treatments entirely. 

The rise in TPP following BEFT and SET is in accordance to previous findings (Carlson, 1983; 

Judson et al., 1983 Seeherman and Morris, 1990; McKeever et al., 1993; Danielsen et al., 1995; 

Hargreaves et al., 1999), that plasma protein increases with exercise intensity. However, these 

publications report peak TPP level at maximum exercise intensity, where the peak value is reached 

at step three out of four during the SET.  

No significant different difference was found between sampling times during BEFT. Horses had 

recovered to resting values 15 min post-exercise after SET.  The significant difference between 
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resting value and during exercise-values in SET for all horses (P<0.05) is therefore likely to be 

explained by the fact that elevated exercise intensity results in temporary increase in heart rate and 

blood pressure, forcing a portion the plasma fluid through the capillary walls, that returns to a 

normal state as blood pressure decreases, followed by increased seating due to elevated body 

temperature (Hodgson and McGowan, 2014; Kingston, 2008). The horses had reached the resting 

values after 15 min after BEFT and SET. 

Another possible contributor could be that horses adapted to a forage-only diet have higher 

values of extracellular fluids, possibly explained by greater fluid reservoir in the hindgut. Higher 

forage allowance increases water intake (Pagan and Harris, 1999; Jansson and Lindberg, 2012). 

Jansson and Lindberg, (2012) also found lower TPP in forage vs. concentrates diets. The results 

show the same pattern as Danielsen et al. (1995), with higher TPP during exercise and lower TPP 

in horses in high allowance diet compared to low allowance diet in Thoroughbred horses during an 

endurance type treadmill exercise test. The absence of variance between treatments in this study 

could be due to that the exercise intensity of the SET was not great enough to express responses in 

TPP.  Changes in TPP values post-exercise reflect redistribution of circulating fluid volume, as 

previously found by Seeherman and Morris (1990), loosing fluid from the vascular compartment. 
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6.6 Locomotion asymmetry 

To the authors knowledge, this is the first time that an objective evaluation of locomotion 

asymmetry on gaited horses is performed for scientific purposes. Therefore, to keep an open door 

for future research, two kinds of data selection were performed.  

In general, results from statistical analysis of both datasets shown similar trends. Locomotion 

front limb symmetry was affected by treatment for both selection criteria, with higher asymmetry 

for horses adapted to high energy allowance. For hind limb symmetry, a tendency for treatment 

effect with higher asymmetry for HA compared to RA was found when selecting for strides, not 

for standard deviation. Ringmark et al. (2013) reported higher asymmetry for early race-qualifying 

horses, only in front limbs. A possible explanation is that horses carry naturally more weight on 

their front legs (Dutto et al., 2004) and are thus prone to show effects of added weight in front. The 

effects of compensatory weight shifting cannot be excluded, as locomotion asymmetry originating 

in the hind limbs can show as front limb asymmetry due to weight shifting with the head and trunk 

(Weishaupt et al., 2004a).  

Interestingly, locomotion asymmetry was generally lower the days after the BEFT, more 

specifically for front limbs in the stride selection dataset. During the week before the BEFT, the 

only exercise the horses were submitted to was the SET. Therefore, the horses could have been 

stiff in the measurement the day before. Examining the analysis for the two days after BEFT (Figure 

8), the same pattern can be seen, with higher front limb asymmetry in horses adapted to high energy 

allowance and no difference between treatments for hind limb asymmetry. 

VSF day after BEFT correlated to judges scores for gallop in the BEFT. Gallop is shown at 

maximum speed capacity of the horse, with high loads on the dominant front limb in every stride.  

During gallop, high amounts of strain and stress have been recorded in horses during the weight-

bearing phase on speeds up to 7.4 m/s (Biewner, 1998; Wilson et al., 2001). Several studies have 

shown the relationship between speed and ground reaction forces and strain, increasing risk of 

injury (Rubin and Lanyon, 1982; Nunamaker et al., 1990; Dutto et al., 2004). Horses in this study 

performed on Vmax ≈ 11 m/s. Icelandic horses have been recorded in up to 14 m/s during a 100m 

pace race (FEIF, 2017b) and can therefore be subjected to these high loads during BEFT and other 

disciplines, resulting in possible soreness, swelling or microdamage in front limbs following the 

BEFT, after showing gaits at higher performance levels.  
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VSH had negative correlations to canter and slow tölt. Both are shown at slow speeds, but 

require the most amount of collection, balance and suppleness during a BEFT. These results 

indicate that high asymmetry of hind legs could negatively affect balance and collection capacity 

of the Icelandic speed at slower speeds. 

Prior to the study, the horses were adapted to run in hand on both surfaces. Icelandic horses are 

five-gaited horses, varying in the capacity to trot in a precise and secure manner, often changing 

from the diagonal locomotion pattern of trot to the lateral locomotion pattern of either tölt or pace. 

Therefore, some horses had substantial challenges running in even trot needed for a consistent 

recording and therefore we used boots for assistance. For these horses, it took a higher number of 

evaluations to get an acceptable measurement. It would have interesting to count those incidences 

and correlate to the extent of locomotion asymmetry. For future researchers, it is essential to be 

fully assured that the gaited horse is capable of trotting in hand without assistance and without 

additional footwear, that possibly needs some level of training and adaptation to be adequate. 

There is no clinical equipment available for locomotion- or lameness evaluation available in 

Iceland, merely subjective evaluation by trained personnel and veterinarians. The portable device 

used in this study makes it possible to perform studies on site producing objective measurements 

and for veterinarians and other evaluators to compare results and data due to greatly increased 

standardization. 

6.7 Strengths, challenges and limitations 

The results from this thesis, are an important addition of information to the physiological response 

to exercise in the Icelandic horse. This study is the first attempt to implement a standardised training 

protocol where all individuals are introduced to precisely the same training in two separated 

treatments. Thus, we gain knowledge on the metabolic and physiological response towards feeding 

and exercise in the Icelandic horse, when its body composition is altered and how it affects its 

health, performance capacity and durability as an athlete.  As this was the first attempt to do so, the 

training protocol was an experimental procedure. Although the two training periods were 

performed in a very similar manner, they were not identical. 

There were in total five riders that participated, the three students performing the study along 

with two trainers employed by Hólar University College. To ensure the highest level of training 
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standardization between individual horses, it is preferable that fewer riders handle the training, 

decreasing the chance of differentiation in duration and intensity.  

The second assessment of an actual BEFT was not included in the study. That is ridden from 

one to three days after the first round, to attempt to raise marks for something that went wrong in 

the first assessment or simply to emphasize and advertise the horse´s quality. For an evaluation of 

full scale effects of a BEFT, a study with the both assessments are needed. 

At the onset of the study, the horses were all in the target BCS following the high allowance 

treatment. The change between treatments was significant but not dramatic, and thus the horses did 

not reach moderate BCS of around 5, and the study only involved moderately obese horses (BCS 

> 6). 

Moreover, this is the first time that locomotion asymmetry is evaluated in the Icelandic horse, 

clearing the path for further research in the field. Some of the horses had troubles trotting on a 

straight line in hand, but got better as the study progressed. Therefore, it is essential that the horses 

would have been fully accustomed to the procedure, to be able to exclude the effects of gait 

changes, though the software already accounts for those effects.  
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7 Conclusions 

The overall conclusion from the results presented in the thesis is that higher body condition score 

and fat content impairs performance, increases locomotion asymmetry and alters recovery pattern 

in the Icelandic horse. Detailed conclusions were that: 

 

 Altered body condition score and fat content affects the physiological response to exercise 

in the Icelandic horse. 

 

 Horses with lower body condition score and fat content had higher judges scores for riding 

abilities in a simulated breed evaluation field test, namely for total score, gallop and form 

under rider. 

 

 Horses with lower body condition score and fat content were able to perform at higher 

intensity in a simulated breed evaluation field test, utilizing anaerobic pathways to a greater 

extent. 

 

 Altered body condition and fat content affects the pattern of recovery parameters following 

a BEFT and a SET, implying decreased capacity to cope with exercise in higher body 

condition score. 

 

 Locomotion symmetry of front limbs was negatively affected by higher body condition 

score and body fat content. 

 

 The participation in a breed evaluation field test did not increase locomotion asymmetry. 
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8 Future research 

This study involved horses with only slight variation in BCS. Effects of BCS with greater 

variation in BCS and weight, obtained by longer adaptation periods and more excessive energy 

allowance would show us the physiological response of obese horses (BCS≥7.5) and horse in 

moderate BCS (4-5), being reported the optimum in other breeds. To study the true effects of 

altered BCS, a study on the physiological response to different weight-bearing, during both a field 

test but most importantly a standardised exercise test under controlled conditions, and hopefully 

answer the questions if the effects from this study are solely due to increased weight bearing and 

not due to altered metabolic profile. Long term effects of excessive BCS needs to be evaluated. 

Effects of chronic overweight on health, metabolic profile, joints and muscoskeletal system will be 

beneficial to the breed, hopefully helpful in increasing knowledge for increased health and 

performance capacity even more. 

To study the full effects of the exercise intensity of a BEFT, a measurement of the energy 

expenditure during the test is optimal. Muscle glycogen measurements can be done to reach further 

understanding of the intensity and moreover, recovery following a BEFT, assessing when the 

horses have fully recovered and if they are fit to perform at the second assessment, performed one 

to three days later. Furthermore, it would be very interesting to gain knowledge on the responses 

on altered BCS on 100-250 m pace races and sport competitions, closing the circle on official 

competition disciplines for the Icelandic horse.  

Furthermore, this is the first time the physiological response to a standardised, incremental 

exercise test performed on a treadmill is studied in the Icelandic horse. This makes way for future 

research on the Icelandic horse, able to use these results as comparison for methodology and 

physiological response. There are numerous effects that are yet to be evaluated in the Icelandic 

horse using a standardised exercise test, such as training state, age, sex, gait capacity and more. 

The mystery of the low Hct concentration in Icelandic horses needs to be explained. Therefore, 

a long-term training study, conditioning young horses from 18 months of age, including a control 

group that is subjected to the traditional training methods, and then compare the groups using 

standardised exercise test and a breed evaluation field test. 

A study on locomotion asymmetry study in top class competitions and BEFT at the highest 

levels in needed, as the horse quality and exercise intensity is most likely at a higher level, possibly 
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with a different pattern of locomotion asymmetry.  For a greater understanding of recovery pattern 

in the Icelandic horse, a study including exercise to the onset of fatigue, and measure at shorter 

intervals RR and RT.  

This study included forage-only feeding. The effects of feeding forage vs. concentrate and 

high quality forage vs. lower quality on performance will be beneficial, as those are all possible 

feed allowances that Icelandic horses are subjected to in the real world. 
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