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SAMMANFATTNING 

För att uppnå de av FN uppsatta milleniummålen, att halvera det antal människor som saknar 

fullgod sanitet, måste alternativ till vattenburen sanitet utvecklas och implementeras. Fekalier 

och urin måste därvid ses som en resurs och en väg att sluta näringskretsloppet och därmed 

minimera miljöpåverkan. För att säkerställa mänsklig hälsa när fekalier och urin används för 

jordbruksproduktion krävs behandling som förhindrar spridning av sjukdomsalstrande 

mikroorganismer. Kvävebaserade behandlingar med ammoniumhydroxid och urea och har 

visat sig effektiva att reducera bakteriella patogener, nematodägg och protozoer i fekalier och 

gödsel. Det är oladdad ammoniak, NH3, som påverkar mikrobiell inaktivering. Då ammoniak 

är en svag bas påverkas jämvikten mellan oladdad och laddad ammoniak av pH. Därmed kan 

andelen ammoniak som förekommer som NH3 styras med tillsatser av alkaliska substanser, 

såsom kalk. Ett pH över 8 är nödvändigt för att uppnå betydande koncentration av NH3. 

Syftet med denna studie var att undersöka potentialen hos kvävebaserade behandlingar för 

reduktion av bakteriella och parasitiska patogener i källsorterade fekalier. Fekalier från ett 

torrsorterande system behandlades vid 14°C med ammoniak (1%), urea (0,5, 1 och 2%) 

och/eller kalk och lagring. Enterococcus faecalis, Salmonella Typhimurium, Escherichia coli 

O157:H7 and Ascaris suum ägg tillsattes före behandling. Den bakteriella reduktionen 

studerades med plattmetoder och överlevnaden hos ascaris ägg observerades i mikroskop. 

Innehållet av ammoniak destillerades och titrerades för koncentrationsbestämmning och 

andelen NH3 beräknades utifrån pH. 

Alla behandlingar förutom lagring resulterade i en ökning av pH från det initiala 7,14. 

Behandling med 1% ammoniak med samma molara tillsats av total ammoniak som 

behandling med 2% urea gav ett högre pH jämfört med 2% urea, 10,2 respektive 9,2. 

Behandling med urea gav ett pH som var stabilare över tid jämfört med pH från behandlingar 

med kalk. I alla behandlingarna minskade pH över tid vilket således påverkade 

koncentrationen av NH3. Dag 21 var det bara behandlingarna med 1% ammoniak och 2% urea 

som höll ett tillräckligt högt pH för att ge någon betydande andel NH3. Dock följde den 

bakteriella reduktionen en exponentiell avdödning även i de behandlingar som efter dag 21 

höll låg NH3(aq) koncentration. Inga levande A. suum ägg kunde observeras efter 41 dagar i de 

studerade behandlingarna: urea 0,5% och 2% och lagring. Dag 12 kunde man se en trend med 

lägre överlevnad med ökad ureatillsats, dock inte statistiskt signifikant. Av de studerade 

bakterierna visade sig E. faecalis minst känslig för de olika behandlingarna. E. coli var 

generellt känsligare för behandlingarna än S. Typhimurium, dock var resultaten för dessa två 

patogena bakterier mer lika vad gäller känslighet och reduktionstid jämfört med E. faecalis. 

Behandling med 1% ammoniak eller 2% urea visade sig vara mest effektiv för bakteriell 

avdödning med decimalreduktionstid 0,13-5 dagar för 1% ammoniak och 0,2-41 dagar för 2% 

urea. Regressionsanalys av reduktionskoefficienter k mot koncentrationen NH3 visade ett 

linjärt samband för alla studerade bakterier. Bara E. faecalis gav ett signifikant samband 

mellan k och pH, dock svagare än för NH3. Det linjära sambandet gav en förändring av k med 

0,022 enheter per mM NH3 för E. coli och 0,014 for S. Typhimurium. E. faecalis som var 

mindre känslig för behandlingarna hade en förändring av koefficienten med 0,00054 enheter 

per mM NH3. E. faecalis visade sig mycket mer tålig än de patogena bakterierna som 



 

 

 

 

studerades och en högre tröskelkoncentration av oladdad ammoniak verkar krävas för effektiv 

reduktion. Eftersom reduktionstiden för E. faecalis i vissa fall överskred reduktionstiden för 

de patogena bakterierna mångfalt verkar inte E. faecalis vara ett passande val av 

indikatororganism för reduktion av bakteriella patogener med denna metod.  

Slutsatsen är att behandling med 1% ammoniak, 2% urea eller 1% urea med kalktillsats 

verkar vara goda behandlingsalternativ för källsorterade fekalier då dessa behandlingar gav en 

6 log10 reduktion av de patogena bakterierna inom tre veckor. A.suum verkar även ha 

påverkats av andra faktorer än NH3 koncentration då även lagring gav en snabb reduktion av 

överlevnaden. 



 

 

 

 

ABSTRACT 

To fulfil the UN millennium goals for sustainable development, there is an urgent need for 

alternatives to conventional water based sanitation. Faeces and urine contain valuable plant 

nutrients and should be considered as resources rather than wastes. Collection with efficient 

water usage enables faeces and urine to be reused and environmental pollution may be better 

prevented. When using human excreta as plant fertilisers, it is important to prevent disease 

transmission by reducing the content of gastrointestinal pathogens. Nitrogen based treatment 

of faeces and manure with ammonium hydroxide and urea has been shown to be an efficient 

method for inactivating bacterial pathogens, nematode eggs and protozoan cysts. The 

substance responsible for microbial inactivation is uncharged ammonia, NH3 (aq). As ammonia 

is a weak base, the ammonia equilibrium can be controlled by additions of alkaline agents 

such as lime. A pH above 8 is needed to produce substantial amounts of ammonia in the form 

of NH3. 

The objective of this study was to examine the potential of nitrogen based treatment for 

reduction of human bacterial and parasitic pathogens in faeces collected separately from a dry 

sanitation system. The faeces samples were inoculated with Enterococcus faecalis, 

Salmonella Typhimurium, Escherichia coli O157:H7 and Ascaris suum eggs prior to 

treatment. Treatments were performed at 14°C and consisted of ammonia (1% w/w), urea 

(0.5, 1 and 2% w/w) and/or slaked lime and storage. Inactivation of bacteria was monitored 

by plate count methods and viability of ascaris eggs by microscopy. Ammonia content was 

determined by distillation and titration and NH3 concentration calculations based on pH. 

Addition of ammonia, urea and/or lime resulted in an increase in pH from the initial 7.14, 

whereas the pH in the storage treatment decreased. The 1% ammonia treatment with 

equimolar addition of total ammonia as 2% urea resulted in a higher pH (10.2) than 2% urea 

(9.2). Addition of urea gave a more stable pH over time compared to addition of lime, 

although pH declined with time in all treatments, thus affecting NH3 concentration. On day 

21, 1% ammonia and 2% urea were the only treatments with sufficiently high pH to produce a 

substantial amount of NH3, although reductions in bacteria fitted well to an exponential 

function even after day 21. No viable A. suum eggs were observed after 41 days in the 0.5% 

urea, 2% urea and storage treatments. On day 12, no significant differences in viability could 

be observed between the different treatments. However a tendency for reduced A. suum 

viability according to the urea gradient could be observed. E. faecalis was less sensitive to the 

treatments than any of the pathogenic bacteria studied and E. coli was more sensitive than S. 

Typhimurium, although the differences were small. The 1% ammonia and 2% urea treatments 

were the most efficient at reducing bacteria, resulting in a decimal reduction time of 0.13-5 

days for 1% ammonia treatment and 0.2-41 days for 2% urea treatment. Regression analysis 

of the coefficients k for the bacterial reduction function and the concentrations of NH3 in the 

treatments revealed a significant linear correlation for all bacteria studied. However, pH was 

only significantly correlated to k for E. faecalis, though weaker than to NH3. The relationship 

between NH3 concentration and reduction coefficient gave a change in k of 0.022 units per 

mM NH3 for E. coli and 0.014 units for S. Typhimurium. The pathogenic bacteria were more 

sensitive to NH3 concentration than E. faecalis, with a change in k of 0.00054 units per mM 



 

 

 

 

NH3. As E. faecalis seemed to have a higher threshold concentration for inactivation by 

ammonia based treatments and its reduction time exceeded that of the pathogenic bacteria 

studied, E. faecalis might not be a suitable indicator organism for this method.  

In conclusion, treatment with 1% ammonia, 2% urea or 1% urea with lime addition was 

sufficient to give a 6 log10 reduction of the pathogenic bacteria studied, within 3 weeks of 

treatment. A. suum had a rapid inactivation but seemed to be affected by other environmental 

parameters in addition to ammonia concentration. 

 

Keywords: ammonia, Ascaris suum, chemical disinfection, Enterococcus faecalis, 

Escherichia coli H7:O157, faeces, Salmonella Typhimurium, sanitation, urea. 
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INTRODUCTION 

On a global scale, 2.6 billion people do not have access to adequate sanitation. Poor water 

quality, sanitation and hygiene account for some 1.7 million deaths a year worldwide, mainly 

through infectious diarrhoea (Ashbolt 2004). One of the UN millennium development goals is 

to halve the number of people lacking basic sanitation by the year 2015. To fulfil this goal, 

approximately 100 000 toilets per day need to be constructed. According to Agenda 21, 

environmentally sound waste management must go beyond mere safe disposal and reuse and 

recycling must be maximised. Furthermore, improved water use efficiency is encouraged as 

an action to fulfil protection of the quality and supply of freshwater resources (UN www). 

Considering these visions, there is an urgent need for sustainable sanitation systems. Flush 

produce large wastewater flows and more than 90% of wastewater and excreta worldwide are 

either only poorly treated or not treated at all before being discharged to water recipients (Fall 

et al. 2003). Nutrients accumulated in wastewater result in eutrophication and contamination 

of major water bodies. This contamination may place demands on purification and artificial 

infiltration to ensure the availability and quality of drinking water. The utilisation of nutrients 

and carbon from wastewater to arable land is often prevented by contaminants from other 

waste flows such as heavy metals from stormwater and chemicals of industrial origin 

(Jönsson et al. 2004). 

To accomplish the above objectives of sustainable development, human faeces and urine must 

be considered as resources to restore nutrients to arable land so that soil fertility can be 

preserved and food security assured (WSSCC www, Esrey et al. 1998). Human excreta reflect 

the nutrients consumed and offer a full-value fertiliser in terms of plant macro- and 

micronutrients (Jönsson et al. 2004, Kirchman & Pettersson 1995). Implementation of robust, 

affordable sanitation systems that enable clean, safe nutrients to be retrieved could provide 

great potential for the global population to increase crop productivity.  

When human excreta are used as fertilisers, the health criteria must be upheld and it is 

important to prevent disease-causing microorganisms being circulated along with the 

nutrients. Urine is a fraction with a low microbial content, with any microbes present mainly 

originating from faecal contamination (Höglund 2001). Faeces carry the potential risk of 

containing substantial amounts of enteric pathogens when individuals are infected. As the 

pathogen load in human excreta is mainly concentrated in the faecal fraction, which 

constitutes only 10% of the total mass, the excreta are most often better handled and treated 

when urine and faeces are collected separately (Jönsson et al. 2004, Schönning & Stenström 

2004). 

Early treatment to inactivate pathogens in faeces minimises the risks involved during further 

handling of the material and its use as a fertiliser. Several treatments can be used to sanitise 

biologically contaminated matter, resulting in various degrees of sanitation and fertiliser value 

of the biowaste. It has long been recognised that ammonia (NH3) is capable of inhibiting and 

killing microorganisms, and its importance in the inactivation of food-borne pathogens has 

been investigated (Jenkins et al. 1998, Himathongkham & Riemann 1999, Park & Diez-

Gonzales 2003, Vinnerås 2004). Addition of ammonia nitrogen also enhances the fertiliser 

value of the treated product. As urea is widely used as a nitrogen fertiliser and easily handled, 
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it can be used to increase the concentration of free ammonia in solution (Park & Diez-

Gonzales 2003, Vinnerås 2004). 

 

OBJECTIVES 

The main objective of this study was to evaluate addition of urea, ammonia and lime 

compared to storage as secondary treatments for inactivation of bacteria and parasites in 

source separated faeces. 

 

BACKGROUND 

Faecal disease transmission 

Enteric infections can be caused by viruses, bacteria and parasites such as protozoa and 

helminths. High concentrations of enteric pathogens are excreted in the faeces when 

individuals are infected (Acha & Szyfres 2003). All microorganisms that infect the intestinal 

tract are shed in the faeces, while organisms shed into the bile, such as hepatitis A and 

typhoid bacilli, also appear in the faeces (Mims et al. 2001). Viruses and parasites are unable 

to multiply outside their hosts and thereby do not increase in numbers after excretion but 

these groups of organisms are normally more stable in the environment compared to non 

spore-forming gastrointestinal bacteria (Schönning & Stenström 2004). 

Pathogenic organisms cause disease to varying degrees. To susceptible people such as 

children and elderly or immuno-compromised individuals an infection may be lethal, although 

it does not cause clinical symptoms in healthy adults. The most common symptoms of enteric 

infections are diarrhoea with abdominal pain, often accompanied by fever, and as the disease 

becomes severe it can develop into dysentery. Even if the infection is self-limiting, the 

diarrhoea may result in dehydration and malnutrition if prolonged. Helminths may also result 

in nutrient depletion if the burden is great and may cause abdominal pain due to mechanical 

obstruction. Even if not clinically symptomatic, infections may increase the susceptibility to 

other disease-causing agents and create a cumulative burden. As many of the symptoms are 

non-specific, the disease often passes without detection (Feachem et al. 1983, Acha & Szyfres 

2003). 

The pathogenic microorganisms in the faeces are mainly spread through the faecal-oral route. 

Where open defecation or inadequate sanitation is practised, transmission through runoff 

water and mechanical and biological vectors exposes individuals to faecal pathogens mainly 

through food and water (Figure 1). 
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Figure 1. Transmission routes for pathogenic organisms from human excreta and restriction barriers 

for prevention of disease transmission. Illustration Annika Nordin. 

 

The helminths differ from the other groups of pathogenic organisms by having a more 

complex life cycle that may require an intermediate host. They do not infect just by the faecal-

oral route but also via skin penetration by free-living larvae or by consumption of infected 

intermediate hosts. Animal exposure to untreated faeces enables helminths that may require 

an intermediate host to complete their life cycle. Furthermore, as many of the pathogenic 

bacteria and some parasites and viruses are zoonotic, transmission to animals might result in 

disease or the animal functioning as a reservoir and transmitter of the pathogen. 

By establishing barriers in the transmission route, the spread of pathogenic organisms can be 

minimised. Adequate collection of faeces and treatment performed at an early stage reduces 

the need for later precautions as regards food handling and water status (Figure 1). Personal 

hygiene is of great importance for restricting disease transmission and should always be 

considered, as it never can be substituted for by other preventive actions.  

 

Prevalence of faecal pathogens 

The prevalence of enteric diseases depends on environmental factors such as climate, 

sanitation status and control programmes. Globalisation of trade and travel enhances the 

distribution of pathogenic organisms. For many of the gastrointestinal pathogens, infection 

and disease are more prevalent in children of a young age, probably as a result of poor 

hygiene and immature immune system (Bitton 1999) 

Bacteria have traditionally been considered to be the major agent causing gastrointestinal 

illness but today viruses are considered to cause the majority of gastrointestinal infections in 

industrialised regions (Svensson 2000). Epidemic viral diarrhoea is caused primarily by the 

genus Caliciviridae, especially the group of noroviruses, which contribute significantly to 
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viral gastroenteritis in adults, particularly in Europe and Australia (Vasickova et al. 2005). 

Caliciviruses are often transmitted by faecally contaminated food or water and tremendous 

antigenic diversity and short-lived immunity to infection permit repeated episodes throughout 

life (Ashbolt 2004). Rotaviruses are by far the largest cause of diarrhoea in children and 

largely contribute to child mortality in developing countries (Bitton 1999). Hepatitis A is 

currently recognised as one of the most important food-borne pathogens in Europe with 

regard to number of outbreaks and people affected (Vasickova et al. 2005).  

Most species of pathogenic bacteria causing enteritis and diarrhoea in man, such as 

Salmonella, Campylobacter and enterohaemorrhagic E. coli, are distributed worldwide, in 

both industrialised and developing countries. In developing countries where sanitation is poor, 

Salmonella typhi, Vibrio cholerae and Shigella are common causes of diarrhoea (Schönning 

& Stenström 2004). 

Parasites are of greater concern in developing countries than in the industrialised regions. 

Protozoa are responsible for the majority of enteric diseases, with Entamoeba histolytica 

being an important cause of morbidity and mortality (DPD www). Cyclospora cayetanesis is 

suggested to be the cause of many cases of "traveller's diarrhoea" (DPD www). Helminth 

infections are a major concern, especially in rural regions with poor sanitation practices. On a 

worldwide basis, Ascaris lumbricoides is the most common helminth infection, infecting 

more than 25% of all humans (OSU www). Another helminthosis of importance is 

Scistosomiasis, which is endemic in 74 developing countries and considered very important to 

public health because of its debilitating effect on people throughout large areas of the world 

(Acha & Szyfres 2003). 

 

Environmental persistence of faecal pathogens 

Viral pathogens 

Numerous viruses can be found in the human gut, but only a few are frequently recognised as 

common food-borne pathogens spread by the faecal-oral route. The common viral pathogen 

genera causing gastroenteritis and their stability in the environment are listed in Table 1 

(Bitton 1999, Ashbolt 2004, Schönning & Stenström 2004).  

Most of the viruses are not zoonotic but recent studies suggest that a reservoir for hepatitis E 

may exist in domestic animals, including swine. Hepatitis A infects other non-human primates 

even though the infection seldom is spread by this means (PHA Canada www). For most 

viruses the infective dose (ID) is unknown with the exception of the coxsackie and hepatitis A 

viruses, with an ID of less than 20 and 10-100 viral particles, respectively.  
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Table 1. Characteristics of enteric viruses (University of Florida www, PHA Canada www, virology-

online www). All viral agents mentioned have an icosahedral structure and have linear genomes 

(University of Florida www). 

Viral genera and groups Genome Stability in environment and physical inactivation 

Epidemic viral disease   

 HEV-like viruses 

    Hepatitis E 

ssRNA Survives in water and sewage for long periods. 

Inactivated by heat (56°C for 30 min, 70° C for 4 min) 
and radiation. 

 Caliciviruses 

    Noroviruses 

ssRNA Stability unknown, found in contaminated water supplies 
and lakes. Survives 60°C for 30 min. Resistant to pH 5-
10, ether, acid. 

Endemic viral disease 

 Adenoviruses 

 

dsDNA Stable for some time in the environment. Inactivated by 
heat (56°C for 30 min); infectivity sensitive to ionizing 
radiation; stable to lipid solvents. 

 Enteroviruses 

    Coxsackie 
A&B 

ssRNA Survives in stool for weeks at room temperature. 
Relatively stable: pH 2.3-9.4 for 1 day. Inactivated by 
heat (56-60°C for 30 min). 

     Echoviruses  Survives at room temperature up to 3 weeks; stable for 
many weeks in liquid environments, water, body fluids 
and sewage. Inactivated by heat (50°C for 2 hrs); stable at 
acidic pH 3–5. 

     Polioviruses  No data available 

     Enteroviruses 

    (types 68-71) 

 No data available 

 Hepatoviruses 

    Hepatitis A 

ssRNA Survives in water and sewage for long periods, at 4°C 
infectivity is reduced 0.5 log10 after 6 weeks survival. 
Partially resistant to heat, still infectious after 10-12 hrs at 
60°C, stable under extremes of pH (pH 1). 

 Reoviruses 

    Rotaviruses 

dsRNA Rather durable and resistant to disinfection processes. 

 Astroviruses 

    3 serogroups 

ssRNA No data available 

 

Pathogenic viruses are of concern when applying faeces on agricultural land due to the low 

infective dose, potential stability in the environment and ease of transport by water due to 

their small size. In effluents with temperatures below 5°C in particular, the persistence 

increases and survival in groundwater is assumed to be longer than that in surface water 

(Schönning & Stenström 2004). The general survival time in faeces, nightsoil and sludge at a 

temperature of 20-30°C is less than 100 days. For enteroviruses, the survival time is usually 
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less than 20 days (Feachem et al. 1983). Inactivation studies on enteroviruses and rotaviruses 

have shown that inactivation is more rapid under aerobic than anaerobic conditions and at 

higher temperatures (Turner & Burton 1997). 

 

Bacteria 

Table 2 lists important bacterial pathogens and some properties affecting their survival in the 

environment and disease transmission. The infective dose (ID) does not give a precise number 

and attention must be given to the fact that the doses are determined in healthy adults. 

However, ID provides the potential to compare the risk of exposure between the pathogen 

organisms. 

Table 2. Characteristics of pathogenic bacteria transmitted via faeces (PHA Canada www, IFST 

www, arrowscientific www, textbook of bacteriology www) 

Bacterium Principal reservoir IDa Survival in environment and 
physical inactivation 

Campylobacter 

 jejuni; coli 

Domestic animals, 
poultry, rodents, 
birds 

≤500 Faeces 9 days, water 2-5 days. 

Inactivated by 48°C. Sensitive to 
drying, environmental stresses. 

Escherichia coli 

1) enterohaemorrhagic  

    enteropathogenic 

Cattle 10-1010 Faeces and soil: small reduction over 
2 months. Dust 4 -27 days. Survives 
well at low temperatures, heat-
sensitive. 

2) enteroinvasive,   

    enterotoxigenic 

Humans 10-1010 Survives well in contaminated 
faeces, food, soil or water, dust 4 -27 
days, faeces and soil 84 days. 

Salmonella 

1) enteridis;   

    Typhimurium 

Humans, domestic 
and wild animals, 
poultry 

102-103 Survives for long periods in the 
environment. 

2) typhi; paratyphi  

 

Humans 103-105 Faeces 62 days, ashes 130 days, dust 
30 days. Some strains can survive in 
the environment for years  

Shigella 

 flexneri; dysenteriae; 

boydii; sonnei  

Humans  10-200 Faeces 11 days, flies 12 days, water 
2-3 days.  

Vibrio cholerae 

  

Humans, waters 
associated with 
zooplankton  

106-1011 Faeces 50 days, soil 16 days, dust 3-
16 days. Survives well in waters. 
Very sensitive to cold temperatures 
and acids. Simple growth 
requirements. 

a) ID-Infective dose 
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Most of the pathogenic enteric bacteria are gramnegative and facultative anaerobes or 

aerobes. Campylobacter spp. are microaerophilic and thus directly affected by the oxygen 

level. Gramnegative bacteria seem to be more persistent in nature and to overcome the 

immune defence of their hosts due to their more complex cell structure (Mims et al. 2001). As 

the pathogenic bacteria infect humans, they are mesophiles with an optimum of growth 

between 30 and 40°C. Despite a lower temperature pathogenic bacteria may multiply outside 

the host and thus increase the risk of exposure. 

Mitscherlich and Marth (1983) reviewed microbial survival in various environments including 

faeces (human, poultry and cow). Their results indicate that bacterial (S. Typhimurium, S. 

Dysenteriae, S. Flexneri) survival time is longer in pulpy samples compared to liquid and that 

survival time is shorter at higher temperatures for several salmonella species analysed in 

poultry. 

 

Parasites 

The parasitic microorganisms conclude helminths and protozoa. Protozoa are a heterogenic 

group of single-celled, eukaryote organisms within the Protista kingdom. Protozoa that might 

be spread through faeces are parasites of the intestinal tract. They are excreted through the 

faeces most commonly in cyst form, the infectious state, where the cells is very resistant to 

environmental factors. Table 3 lists some of the parasitic protozoan that may be spread by 

faeces.  

Table 3. Characteristics of protozoan parasites potentially spread through faeces (Esrey et al. 1998, 

Ashbolt 2004, Schönning & Stenström 2004, DPD www) 

Protozoa Survival in environment 

Giardia 

duodenalis 

Sensitive to desiccation, sunlight, high and low temperature. Survives 
several months in cold water. Resistant to a wide range of pH and osmotic 

pressure. Die-off rates at 1 and 23°C, are 0.015 and 0.28 log10 units per 
day, respectively  

Entamoeba 

histolytica 

Sensitive to desiccation, in moist environment inactivation mainly 
dependent on temperature and time. Survival in environment from days to 
weeks. 

Cryptosporidium 

parvum 

Highly resistant to disinfectants, high temperatures and freezing. Reported 
sensitive to dehydration. Lime treatment for water softening can partially 
inactivate the cysts. Ammonia at alkaline pH has proven efficient for 

inactivation. Viable 178 days in faeces of 4°C. Survives 18 months in cool 
wet or damp environment. Die-off rate in natural waters is 0.005-0.037 
log10 units per day. 

Cyclospora 

cayetanesis 
Survival 2 months at 4°C, likely to survive longer at lower temperatures 
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Whereas many of the protozoan cysts are infective upon excretion or shortly thereafter, the 

cysts of Cyclospora cayetanesis become infective after excretion sporulation, which occurs 

after days to weeks at temperatures between 22-32°C. Many of the protozoa mentioned are 

zoonotic, even though humans in most cases are the main reservoir of the organisms (Bitton 

1999, Acha & Szyfres 2003, Ashbolt 2004). The minimum infective dose is as low as 10 cysts 

for several of the protozoa (Bitton 1999). 

Table 4 presents helminths of concern when using faeces for agricultural purposes. Helminths 

with a direct life cycle, without an intermediate host, are more likely to infect humans as the 

life cycle is less extended. The infectious state for the direct life cycle can be eggs or larvae, 

where the eggs infect by the oral route and the larvae by skin penetration.  

For all the helminths with an indirect life cycle (except Schistosoma spp.), human exposure is 

due to ingestion of the infected intermediate host. The risk is thus mainly due to inadequate 

food processing or accidental ingestion through contaminated food.  

Helminth larvae and eggs excreted with the faeces can be infective immediately or may need 

an incubation time to become infective. The incubation time is affected by environmental 

conditions such as temperature and moisture (DPD www, Acha & Szyfres 2003). 

 

Table 4. Helminths of concern when using faeces as a fertiliser (Gaspard et al. 1995; 1997, Bitton 

1999, Schwartzbrod & Banas 2003, Schönning & Stenström 2004, DPD www)  

Helminths  

Direct life cycle  

Ascaris lumbricoides NE eggb
→human 

Trichuris spp. NE eggb
→human 

 

a
Hymenolepis nana CE 

eggc
→human 

 Hookworms: Necator americanus, 

Ancylostoma duodenale NE 

eggb
→larvaeb

→human 

Indirect life cycle 

 Taenia solium/saginata CE eggc
→pig/cattle→human 

 Paragonimus westermani TR eggb
→larvaec

→snail→crustacean→human 

 Clonorchis sinensis TR eggc
→snail→fish→human 

 a
Hymenolepis nana CE eggc

→arthropod→human  

 Schistosoma mansoni TR eggc
→larvaec

→snail→larvae→human 

 S. japonicum TR eggc
→snail→larvae→human 

a) Have both direct and indirect life cycle 
b) Incubation time for egg or larvae to become infective 
c) Directly infective eggs or larvae 
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Hygienisation of faeces 

One commonly used method for sanitation of faeces is storage for a specific time. Time is a 

factor that reduces pathogenic organisms, in faeces as well as other environments. The main 

influence is due to alteration of environmental factors such as moisture, temperature, carbon 

content and nutrient availability. However, any shift in the external environment, e.g. seasonal 

shifts in temperature and humidity, can result in an increased number of pathogenic bacteria. 

As many of the environmental parameters affecting pathogen reduction are difficult to 

control, storage is an uncertain method to ensure sufficient sanitation.  

Composting is a treatment promoted for sanitation of collected solid toilet waste but the level 

of sanitation is uncertain, since achieving constant and high temperatures during the 

composting demands skilful management. Some studies have identified insulation and low 

energy content as key factors for unsuccessful small-scale composting of faeces (Björklund 

2004, Karlsson & Larsson 2000). Temperatures above 50°C have been reached when 

composting of faeces was performed in insulated boxes (Vinnerås et al. 2003). Even when 

high temperatures are reached in parts of the compost, there may be uneven heat distribution 

in the material, allowing re-growth of bacteria. When faecal composting treatments do not 

reach temperatures high enough for sanitation, they are comparable to faecal storage as 

regards pathogen reduction.  

Anaerobic digestion is a treatment that also allows biogas production but the process requires 

external heating to ensure sufficient microbial inactivation. 

Liming can be used for sanitation and stabilisation of sewage sludge by altering the pH into 

the alkaline range. As pH affects ionisation of other substances, e.g. by increasing the amount 

of uncharged ammonia in solution, pH often works synergistically with other inactivating 

factors (Mendez et al. 2002).  

 

Alkaline treatment for microbial inactivation 

Most organisms thrive in a neutral pH of 6-8, and may be inactivated by more acidic or 

alkaline environments (Prescott et al. 1996). The pH affects the activity of microbial enzymes 

and the ionisation of chemicals and thus plays a role in the transport of nutrients and toxic 

chemicals into the cell (Bitton 1999).  

Lime has been suggested for stabilisation and sanitation of sewage sludge. Treatment of 

contaminated manure with slaked lime for inactivation of viruses and bacteria, except 

mycobacteria, has been recommended by Swedish governmental institutions concerning 

foodproduction and animal health (Jordbruksverket 1997). 

Addition of lime increases the pH. The lime can be added in various forms: limestone 

(CaCO3), quick lime (CaO) and slaked lime (Ca(OH)2) are varieties of lime with different 

alkaline properties. Potassium hydroxide (KOH) also functions as an alkaline agent, while at 

the same time enriching the material with potassium. Alkaline inactivation of microorganisms 

seems to be synergistic with temperature. 
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Wood ash can be used as an alkaline agent. It is commonly used in dry toilets as a continuous 

amendment to cover the fresh faeces and create a physical barrier to flies and other disease 

spreading vectors. The ash addition also lowers the moisture content and thus inactivates 

faecal pathogens (Esrey et al. 1998, Schönning & Stenström 2004). Calcium is the most 

abundant element in wood ash and gives the ash properties that are similar to agricultural lime 

(CaCO3). The liming ability of wood ash can be expressed as calcium carbonate equivalents 

(CCE), that for most ash forms range between 25 and 60%, depending on wood type and 

combustion process (Risse www). 

Many studies on reduction of food-borne pathogens by alkaline treatment have been 

performed on sewage sludge. For example, the pH sensitivity for several organisms inserted 

into sewage sludge has been studied after treatment with lime and ash (Boost & Poon 1998). 

E. coli and S. Typhimurium appeared more resistant to the alkaline treatment than Salmonella 

Typhi, Shigella sonnei, Vibrio parahaemolytica and Campylobacter jejuni. E. coli and S. 

Typhimurium had a maximum pH tolerance at 10.5, whereas the latter group of bacteria had a 

maximum pH tolerance at 9.5, when organisms were detected after 24h.  

Other studies with alkaline treatment of sludge also indicate that salmonella are tolerant to 

high pH. A pH above 12 for 2-3 months seems to be necessary to affect salmonella and 

nematode eggs (Gaspard et al. 1995, Gantzer et al. 2001). Among pathogens of 

epidemiological relevance, Ascaris eggs seem to be the most resistant to liming (Gaspard et 

al. 1995, Capizzi-Banas et al. 2004).  

 

Ammonia treatment for microbial inactivation 

Unlike other common disinfectants, ammonia is a natural product that occurs in the 

environment as a product of degradation of urea, proteins and other nitrogen-containing 

compounds (Jenkins et al. 1998). For human urine, storage has been proven to be a sufficient 

treatment to inactivate pathogens due to degradation of urea and other nitrous material 

(Höglund 2001). Aqueous and gaseous ammonia has been used to control microbial growth in 

stored fruits, hay and grain, and has proven more effective against fungal than against 

bacterial spoilage of food (Inchem www).  

Ammonia is considered very toxic for all types of organisms but the mechanism of 

inactivation is not yet fully understood. It is the uncharged ammonia, NH3, that is responsible 

for the microbial inactivation. One hypothesis is that NH3 causes a rapid alkalinisation of the 

bacterial cytoplasm, as it easily penetrates the cell membrane by simple diffusion and reduces 

the proton concentration as NH4
+ is formed (Park & Diez-Gonzales 2003). For virus 

inactivation, there are studies indicating that the inactivation is achieved by rupture of the 

RNA chain (Burge et al. 1983). 

When urea is used as an ammonia-forming additive, the degradation of urea, catalysed by 

urease in the faeces, results in hydroxide ions and ammonia: 

CO(NH2)2 + 3 H2O → 2 NH4
+ + OH- + HCO3

-   equation 1 
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Furthermore, an analytic reaction between the strongest acid (NH4
+) and the strongest base 

(OH-) takes place, leading to the production of new protolytes. The equilibrium between the 

final main protolytes, HCO3
- and NH3, determines the pH and the speciation of the reactants 

and products. 

The amount of the uncharged species (NH3) is dependent on the acidic properties of charged 

ammonium:  

NH4
+ + H2O ↔ NH3 + H3O

+    equation 2 

The acid constant (Ka) for the ammonia/ammonium equilibrium can be calculated for any 

temperature between 0 and 50 °C using equation 3, where T is the temperature in Kelvin: 

Ka= [NH3] ∗ [H3O
+] / [NH4+] = 10-(2729,92/T+0,09018)  equation 3 

[NH3] + [NH4
+] = [NHtot]    equation 4 

From equation 3 and 4 the following can be derived.  

[NH3] = Ka ∗ [NHtot] / ([H3O
+] + Ka)   equation 5 

Equation 5 gives the speciation into NH3 from pH, total ammonia and the acid constant. The 

concentration of non-ionised ammonia is lowered with increasing ionic strengths.  

At temperatures from 4°C, the fraction of NH3 at equilibrium shows that a pH above 8 is 

needed to get ammonia in the uncharged form and that at pH 11, almost all ammonia is in the 

uncharged form (Figure 2). 
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Figure 2. The percentage of uncharged species in the total dissolved ammonia depending on pH at 

temperatures 4, 14 and 24°C.  
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When treating with ammonia or ammonia-forming substances, closed containers must be used 

to reduce losses of volatile ammonia. If this is fulfilled the ammonia will work as a 

disinfectant until the material is spread, as the ammonia is not consumed during the treatment, 

compared to e.g. oxidising agents. 

There is wide variation between the resistance of various microbial pathogens to chemical 

inactivation. Generally spore-forming bacteria are more resistant to disinfectants than are 

vegetative bacteria, as has been proven by inactivation with urea (Vinnerås 2004), where 

Clostridia spp. seem to be resistant to ammonia. Although resistant to various sanitation 

methods, spore-forming bacteria such as Clostridia spp. and Bacillus spp. are not considered 

gastrointestinal pathogens. 

Resistance to disinfectants also varies among vegetative bacteria and among strains belonging 

to the same species. Physical interference from particulate matter is also reported to affect 

disinfectant inactivation, and clumping or aggregation of microorganisms generally reduces 

the disinfectant efficiency. Laboratory-grown pathogenic bacteria are generally more sensitive 

to disinfectants than those that occur in natural environments (Bitton 1999). 

When Park & Diez-Gonzales (2003) evaluated the threshold inhibitory concentration for free 

ammonia with respect to E. coli O157:H7 and S. Typhimurium, 5mM was the concentration 

where reduction could be observed in pure broth cultivation. To achieve reduction in cattle 

manure they reported a concentration of 30 mM NH3(aq). In the same study E. coli was 

reportedly more resistant than S. Typhimurium to urea treatment. When urea was added to 

cattle manure and the manure incubated at room temperature, resulting in a pH above 8.5 and 

NH3(aq) concentration of 40, 125 and 245 mM, respectively, S. Typhimurium, E. coli 

O157:H7 and total coliforms were reduced more than 7 log10 in 7 days for all urea treatments. 

When urea addition resulted in pH 9 and NH3(aq) concentration of 245 mM, a total reduction 

(8 log10) was achieved in four days for both bacteria. Furthermore, Park and Diez-Gonzales 

(2003) concluded that carbonate produced by urea degradation was responsible for the 

bacterial reduction. 

Faecal material (DM 10%) was treated with 6% urea at 20°C, resulting in 8000 ppm (470 

mM) of NH3(aq) (Vinnerås et al. 2004). The decimal reduction time (Dr) was less than 0.7 

days for both Salmonella and E. coli and less than 3 days for Enterococcus spp. No viable A. 

suum eggs were found after 50 days, corresponding to <0.1% viability. For S. Typhimurium 

phage 28 B, the Dr time was 7.5 days. Clostridia spp. did not show any reduction within 50 

days. 

A study of survival of A. suum eggs in wastewater sludge treated with ammonium hydroxide, 

(NH4OH 0.5-4% ww), at 22°C resulted in no viability after 40 days for 1.5% NH4OH and 

after 21 days for concentrations above 1.5% NH4OH (Ghiglietti et al. 1997). The percentage 

of viable eggs decreased progressively with incubation time and ammonia concentrations. The 

1.5% treatment resulted in 146 mM NH3(aq). 

In a study by Jenkins et al. (1998), wild-type cryptosporidium oocysts were treated at 24°C 

with ammonium solution at concentrations of 7-148 mM NH3(aq) with exposure time 10 
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minutes to 24 hours. Exposure to 148 mM for 24 hours reduced the viable oocysts to 20% and 

5.8 days were estimated to be required for 99.999% inactivation. 

Reovirus has been reported to be relatively resistant to inactivation by ammonia, explained by 

the double stranded RNA. The single stranded viruses polio, coxsackie, and echovirus 11 

were reported to be more sensitive to ammonia treatments (Burge et al. 1983). 

 

Indicator organisms 

An indicator organism is an organism used to indicate the potential presence of other, usually 

pathogenic, organisms. Indicator organisms are usually associated with the other organisms, 

but are usually more easily sampled and measured. When pathogen-containing material such 

as faeces and sludge are treated, the hygienic characteristics of the biosolids and process 

efficiency can be indirectly evaluated. The ideal faecal indicator organism should be 

(Feachem et al. 1983, Bitton 1999): 

• A normal member of the intestinal flora of healthy people. 

• Exclusively intestinal in its habitat and hence exclusively faecal in origin when found 
in the environment. 

• Absent from non-human animals (a requirement not met by any of the bacteria 
currently used). 

• Present in higher numbers than the faecal pathogens. 

• Unable to grow outside the intestine, with a die-off rate slightly less than that of faecal 
pathogens. 

• Resistant to natural antagonistic factors and to waste and wastewater treatment 
processes to a degree equal to or greater than faecal pathogens. 

• Easy to detect and count by affordable methods 

• Non-pathogenic. 

 

Model organisms used in this study 

Enterococcus faecalis  

E. faecalis, which fulfils many of the criteria for a indicator organism listed above, was used 

in this study to evaluate its possibilities to functioning as indicator organism for the 

pathogenic model organisms studied . E. faecalis is a gram positive coccus, occurring in pairs 

or short chains mostly found in the intestines of warm-blooded animals. It is less prone to re-

growth and generally survives somewhat longer than faecal coliforms and has been suggested 

as an indicator for the presence of viruses, particularly in biosolids and seawater (Feachem et 

al. 1983, Bitton 1999). E. faecalis is often found in numbers of 105-108 cells per gram of fresh 

faeces (Feachem et al. 1983). 

E. faecalis grows in the temperature range 0 to 44°C, with optimum temperature at 37°C 

(Prescott et al. 1996). It is extremely hardy and halotolerant and can survive for weeks on 
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environmental surfaces; in soil up to 77 days, on soiled linen up to 90 days (PHA Canada 

www). Enterococcus spp. appear to be more resistant to lime treatment than salmonella and 

faecal coliforms (Allievi et al. 1994) and can grow at pH 9.6 (Prescott et al. 1996). Treatment 

at pH 10.5 with KOH or NH4OH reveals the impact of ammonia on Enterococcus spp. The 

KOH treatment did not affect viability but for the ammonia treatment a 4-log reduction was 

achieved in 2 weeks. Treatment with H2PO4 resulting in pH 4 gave a faster reduction than pH 

8.5-10.5 (Allievi et al. 1994). In the same study, the viability of Enterococcus spp. was found 

to be similar when stored in a temperature range from 10 to 20°C, whereas the reduction was 

very limited at 5°C. 

 

Escherichia coli O157:H7  

E. coli is one of the coliforms commonly used as faecal indicator organism in drinking water. 

Currently, there are four recognised classes of enterovirulent E. coli that cause gastroenteritis 

in humans. E. coli serotype O157:H7 is an unusual variety of E. coli that has been recognised 

since 1982 as a human pathogen causing food-borne disease with worldwide distribution (U.S 

Food & Drug administration www). Recent studies have indicated long survival times in soil 

for E. coli O157:H7 (Berggren et al. 2005). This finding, together with the zoonotic character, 

indicates the epidemiological importance of the organism. E. coli is of the genera facultative 

anaerobic, gram-negative, oxidase negative rods belonging to the family Enterobacteriace. E. 

coli is acid tolerant and a maximum pH tolerance at 10.5 is reported (Boost & Poon 1998). 

 

Salmonella Typhimurium 

As Salmonella spp. can resist dehydration and freezing for a long time and have proven to 

survive (4-14 months) and grow in the environment, salmonella is of epidemiological 

importance (Mitscherlich & Marth 1983). Salmonella is of the same genus as Escherichia, 

facultative anaerobic gram-negative rods that are oxidase negative. S. Typhimurium is acid 

tolerant (pH 4-8) and Salmonella spp. multiply in the temperature range 8-45°C (Acha & 

Szyfres 2003). Studies on lime treated sludge indicate that salmonella is one of the more 

resistant bacteria to alkaline treatment and that S. Typhimurium might be more resistant than 

S. typhi, with a maximum pH tolerance limit at pH 10.5 (Boost & Poon 1998). Allievi et al. 

(1994) report contradictory findings where various species of Salmonella spp. inoculated into 

lime treated sludge were no longer viable after 6 days, even in sludge with pH 9. 

 

Ascaris suum 

A. suum is a nematode mainly infecting swine and shows only slight morphological and 

physiological differences to A. lumbricoides, which infects man (Acha & Szyfres, 2003). A. 

suum has been used as an indicator organism for Ascaris spp. and as a model for other 

intestinal parasites. Eggs of the nematodes Ascaris and Taenia are very persistent in the 
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environment and to several sanitation methods and are therefore regarded as a good standard 

for parasitic survival (Feachem et al. 1983, Johnson et al. 1997). Gaspard et al. (1995) found 

26±14% viable nematode eggs (Ascaris, Toxocara, Trichuris and Capillaria) in 6-year old 

lagoon sediment, showing the great persistence of these nematode eggs. The survival time for 

Ascaris spp. in faeces, sludge and soil at 20-30°C is estimated to be several months (Feachem 

et al. 1983). 

The outstanding resistant properties of A. suum eggs are due to an outer layer made up of 

dense sticky material secreted by the uterine cells (Schwartsbrod 2001, Capizzi-Banas et al. 

2004). An in vitro test of A. suum eggs exposed to various sewage treatment processes 

revealed that eggs inserted in embryonated form showed a greater viability than eggs inserted 

un-embryonated (Johnson et al. 1997). Embryonation occurs at 15 to 20 days under ideal 

conditions of humidity, temperature, shade and oxygen, but under adverse conditions the 

process can take much longer (Acha & Szyfres 2003). Anaerobic conditions prevent gas 

exchange necessary for egg metabolism and prolong the maturation of Ascaris eggs (Gaspard 

et al. 1995). An evaluation of methods with eggs in permeable bags showed a higher viability 

of A. suum eggs contained in bags compared to free eggs, indicating that reduction in egg 

viability might be underestimated when treated within bags (Eriksen et al. 1995). 

 

Functions for bacterial inactivation  

Ideally, inactivation of pathogens with disinfectants should follow first-order kinetics (Bitton 

1999). The inactivation is assumed not to be affected by the concentration of microorganisms 

and thus the rate of inactivation should be constant over time. The number of organisms Nt at 

time t can be expressed as the logarithmic function Nt = N0 * e
-kt, where N0 is the number of 

organisms at time 0 and k is the decay constant. 

 

MATERIALS AND METHODS 

Experimental set-up 

Approximately 300 g of faeces were weighed into 500 ml screw-capped plastic bottles 

(Figure 3). Bacteria suspended in horse serum broth were added to reach 107-108 cfu g-1 

faeces (ww) for each bacterium studied. A. suum were inserted to the faeces in nylon bags (60 

x 60 mm), permeable to surrounding fluid, containing approximately104 eggs each (Figure 3). 
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Figure 3. Nylon bags containing eggs of A. suum during incubation in sulphuric acid (left) and the 

plastic bottles in which the infected faeces were treated (right). 

 

After the addition of model organisms, the faeces were treated with urea and/or lime and 

ammonia, with each treatment made in duplicate. Urea was added at 0.5, 1 and 2% according 

to wet weight. The ammonia treatment was designed to give the same molar addition of total 

ammonia as 2% urea (Table 5). The lime, CO(OH)2, was added to give a final pH of 9.2, i.e. 

the same as in the 2% urea treatment. This was done both for the lime treatment and the urea-

lime treatment. The final dry matter content was adjusted to 20% in all treatments with 

ionised water. 

Table 5. Treatments performed and organisms studied in the treatments 

Treatment  Urea Ammonia Lime S. Typhimurium E.faecalis A.suum E.coli 

0.5% urea  0.5%   x x x x 
1% urea  1%   x x   
2% urea 2% 680±17 mMa  x x x x 

Ammonia  690±13 mM  x x  x 

Urea-lime   pH 9.2b x x   
Lime   pH 9.2b x x   
Storage    x x x x 
a) Calculated from the amount of urea added. 
b) Added to a final pH of 9.2 
 

In a first experiment, the reduction in S. Typhimurium, E. faecalis and A. suum was monitored 

over 86 days. In a following complementary experiment, the reduction in S. Typhimurium in 

the ammonia treatment was monitored for 42 days. In addition, E. coli O157 was studied in 

some of the treatments in the 42-day experiment. All treatments in the main study were set up 

in duplicate, including the complementary treatment for S. Typhimurium. The reduction in 

E.coli O157 was studied in single treatments. The bottles were incubated at 14°C during the 

treatments and shaken on every sampling or measuring occasion. 
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Faecal material 

The faecal material was collected from a single household of 5 persons, consisting of both 

children and adults, using a urine-diverting, dry toilet. The material consisted of faeces and 

some toilet paper and had been collected continuously during approximately three months. 

The moisture content of the material was determined by drying at 105°C for 20 hours. 

 

Organisms 

Bacteria 

The strains of bacteria used were S. Typhimurium (CCUG 3169), E. faecalis (ATCC 29212) 

and a non verotoxin producing strain of E. coli O157:H7 (CCUG 42744), all obtained from 

the strain collection at SVA. Enrichment was performed in horse serum broth (SVA art no. 

311060) (37°C, 18-24 h). After enrichment a serial dilution with 0.9% physiological saline 

solution was performed and samples spread on selective agar plates for enumeration and 

confirmation of viability. S. Typhimurium was detected on xylose lysin desoxycholate agar 

with 0.15% natrium-novobiocin (37°C, 18-24 h), E. faecalis on Slanetz-Bartley agar (44°C, 

36-48 h) and E. coli O157:H7 on sorbitol MacConkey agar with cefixine and kalimtellarite 

(37°C, 18-24 h) (SVA production). 

At sampling, two 10 gram samples of faecal material from each duplicate were collected and 

separately diluted up to 100 ml in phosphate buffer M 15 pH 7.2 (SVA), to neutralise the 

effect of ammonia. After this a tenfold serial dilution was performed in 0.9% physiological 

saline solution. The serial dilutions were plated on the selective agar media and incubated 

according to temperature and time mentioned above, to give 30-300 cfu per plate, i.e. suitable 

for concentration count (Bitton 1999). 

 

Ascaris suum 

A. suum eggs were collected from the ovaries of mature helminths obtained from slaughtered 

pigs and inserted into 60 x 60 mm permeable nylon bags. 

At sampling, the bags were removed and incubated for 21 days at 22°C in 0.1 N sulphuric 
acid (Figure 3) before a viability count was performed for approximately 100-300 eggs per 
bag. Eggs containing larvae were counted as viable. The initial viability of the A. suum eggs 
was 75%. 

 

Chemical analyses 

Buffer capacity and pH 

The pH was measured without dilution, at water content of approximately 80%, using an 

inoLab 720 pH meter (Wissenschaftlich-Technische Werkstätten, Hamburg, Germany.) 

The buffer capacity of the faeces was calculated from the amount of lime added and the pH 

increase achieved in the lime treatment. 
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Ammonia measurement 

The total ammonia in solution was analysed with a distillation-titration method. For the 

distillation, 0.3–2 g of the samples was dissolved in 250 ml deionised water with 25 ml borate 

buffer added to increase the pH. The distillate containing the ammonia from the samples was 

collected in Erlenmeyer flasks with 50 ml boric acid (2%). The distillate was titrated with 

sulphuric acid 0.02 M and a Misch indicator 5 (pH 4.4) was used for detection of the titre 

point. Concentrations of total ammonia in the samples were calculated from the titrate 

volume. There was no interference from the material on concentrations of ammonia. 

 

Statistical analyses 

Microsoft Excel 2000 was used for descriptive statistics calculations. Bacterial numbers, cfu 

g-1, were plotted against time and linear regression for a function following the first order 

kinetics was tested. The least square method was used to estimate the suitability of the 

regression and from the functions the decimal reduction time (Dr) for the different treatments 

was derived. Means of unadjusted variables were compared using Excel Student’s t-test. 

Confidence levels are reported in the results. Regression analysis was performed between 

decay coefficient k and disinfectant concentration, [NH3] or [H3O
+], using SigmaStat (SPSS; 

Chicago, IL, USA). 

 

RESULTS 

Buffer capacity and pH 

The pH of the faecal material in the 86-day experiment was 7.14 ±0.11 before treatment. The 

initial pH of the 42-day experiment was 0.2 units lower and the difference was consistent for 

all the treatments throughout the study period. As the pH trends for both experiments were 

similar, only the pH from the 86-day experiment is presented in Figure 4. Tables are 

presented in Appendix 1. 
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Figure 4. The pH of the different treatments during the 86 days of study.  

 

The alkaline agents increased the pH by main proteolytic reactions. All additions resulted in a 

pH significantly higher (p<0.01) than that of storage and the difference was persistent during 

the study. Only the 1% urea, 0.5% urea and lime treatments showed less significant values 

(p<0.05) and only at the end of the study. Treatment with 1% ammonia gave the highest 

initial pH (10.2), while 2% urea, which supplied the same amount of total ammonia, increased 

the pH to 9.2. For the lime and urea-lime treatments, Ca(OH)2 was added to give the same pH 

as for 2% urea (9.2). However, the pH attained in the lime treatment was 0.2 units lower than 

that of the 2% urea and urea-lime treatment (Table 5). 

During the study period, the pH decreased somewhat in all the treatments, more rapidly in the 

beginning. Between days 72 and 86, the pH increased slightly for all treatments except 

ammonia and 2% urea. 

On day 1, the pH in the storage treatment after addition of bacterial solution was 6.6 and it 

thereafter fluctuated some and finally decreased by 0.2 pH units during the 86 days of study. 

The ammonia treatment gave the most stable pH during the study, with a total drop of only 

0.3 units. The largest decrease in pH was seen in the lime and urea-lime treatments, with a 

decrease of 2.3 and 1.6 pH units, respectively. On day 13, the pH in the lime and 0.5% urea 

treatments had reached pH values almost as low as or lower pre-treatment, 7.14±0.11. 

The buffer capacity was 96.3 cmole kg-1 dry faeces. 
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Ammonia measurement 

The concentrations of ammonia nitrogen measured day 86, showed values that roughly 

followed the additions of urea and ammonia (Table 7). The ammonia treatment had a lower 

concentration of total ammonia than 2% urea, 11.1 and 13.6 g respectively.  

Table 7. Concentrations of total ammonia in solution from ammonia distillation-titration method 

compared to concentrations from ammonia addition 

 NHtot-N 
(g kg-1) 

Treatment From distillation From addition 

Ammonia 11.1 ±0.50 9.5 ±0.23 
2% urea 13.6 ±0.18 9.6 ±0.19 
1% urea  10.3 ±0.12 4.7 ±0.00 
0.5% urea  7.3 ±0.48 2.3 ±0.00 
Urea-lime 10.4 ±0.02 4.6 ±0.00 
Lime 5.4 ±0.06 -  

Storage 4.1 ±0.36 -  

 

The urea-lime and the 1% urea treatments, both with an addition of 1% urea, gave figures of 

total ammonia in the same range, 10.3-10.4 g kg-1. Lime and storage treatment where no 

ammonia was added gave concentrations ranging from 4.1-5.4 g kg-1 faeces, where the 

concentration of total ammonia was greater in the lime treatment than the storage. A standard 

was used to calculate the uncertainty within the method, which was at most 5%. 

 

Bacterial inactivation 

Data from bacterial counts are presented in the Appendix, Tables A2 to A5. 

 

Inactivation of Enterococcus faecalis 

The start concentration, day 0, of E.faecalis, was calculated from the inoculum, enumerated 

prior to addition. The enumeration of bacteria was performed with double dilution series and 

the standard deviation was ±20.4%. The bacterial enumeration was affected by outer 

performing the 10, but the results were linear for later measurements and further used for the 

reduction kinetics (Figure 5).  
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Figure 5. Bacterial inactivation of E. faecalis in faeces by different nitrogen treatments and storage at 

14°C. The starting concentration was calculated from inoculum, prior to addition. 

 

E. faecalis proved more resistant to treatments compared to other model organisms and 

ammonia was the only treatment where no viable organisms were detectable after 86 days of 

study (detection limit 100 cfu g-1). The reduction in bacterial concentration between sampling 

occasions was significant (p<0.01) in the ammonia treatment.  

For the treatments where viable organisms were still detected on day 86, only 2% urea gave 

more than a 2 log10 reduction (2.4). The log10 reduction was 1.7 for lime-urea and 1.6 for 

0.5% urea, whereas 1% urea gave a 1.3 log10 reduction during the 86 days of study. Lime and 

storage gave less than 1 log10 reduction, 0.9 and 0.4, respectively. 

All the treatments except ammonia showed initial fluctuations as shown by significant 

(p<0.05-0.001) increases in bacterial concentration in the 2% urea, 1% urea, lime and storage 

treatments. Lime and 0.5% urea gave no significant reduction in bacterial concentration 

between sampling occasions until day 20. However, there was still an overall trend for 

decreasing bacterial concentrations and after day 20 significant reductions were observed for 

all treatments except storage, where there was a significant reduction (p<0.01) from day 6. 

However no significant reduction was measured in storage between the two last occasions, 

days 42 and 86.  

 

Inactivation of Salmonella Typhimurium 

The start concentration, day 0, of S. Typhimurium, was calculated from the inoculum, 

enumerated prior to addition. The enumeration of bacteria was performed with a single 
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dilution series and the standard deviation for the start concentration was calculated from the 

bacterial additions in the duplicates of treatments. As S. Typhimurium was not detectable in 

the ammonia treatment at the first measurement (day 2), a second experiment was performed 

though with pH values 0.2 units lower. For the second trial, the standard deviation for the 

bacterial concentration in solution was ±16% (Figure 6). 
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Figure 6. Bacterial inactivation of Salmonella Typhimurium in faeces by different nitrogen treatments 

and storage 14°C. The starting concentration was calculated from bacterial inoculum. 

 

Ammonia and 2% urea were the most effective treatments for reduction of Salmonella 

Typhimurium, where no viable organisms were detectable after 5 and 12 days, respectively. 

After the 86 days of study, no viable organisms were detectable in any of the treatments 

except storage. The storage treatment gave a 2.2 log10 reduction during the whole period. 

The 1% urea treatment gave a significant reduction in bacterial concentration (p<0.05) 

between measuring occasions, whereas 0.5% urea gave a significant reduction only after day 

6. The lime treatment gave a significant (p<0.01) increase in bacterial concentration from 

days 2 to day 6, after which there was a significant reduction in bacterial concentration. The 

storage treatment showed significant fluctuations (p<0.05) until day 20 and then a significant 

(p<0.001) reduction during the remaining days of study. In the 36-day study, the storage 

treatment showed a significant reduction (p<0.05) from day 0.5 until day 20.  

Where the significance of the reduction could not be determined, e.g. for the urea-lime and 

ammonia treatments where the data were insufficient to perform a t-test, the bacterial 

concentrations still showed a trend for a constant decrease. 
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Inactivation of Escherichia coli O157:H7 

The start concentration, day 0, of E. coli, was calculated from the inoculum, enumerated prior 

to addition. The enumeration of bacteria was performed with double dilution series and the 

standard deviation was ±46% (Figure 7). 
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Figure 7. Inactivation of Escherichia coli O157 in faeces by different nitrogen treatments and storage 

at 14°C. The starting concentration is calculated from bacterial inoculum. 

 

The ammonia and 2% urea treatments gave the fastest reduction of E.coli and no viable 

organisms were detectable on day 0.75 and 5, respectively (Figure 7). With 0.5% urea, no 

viable organisms were detectable by day 36. After 36 days of treatment, the lime and the 

storage treatments had bacterial concentrations corresponding to 2.9 and 1.4 log10 reduction, 

respectively.  

The 0.5% urea treatment showed a significant (p<0.05) increase in bacterial concentration 

between 0.5 and 0.75 days, after which a significant (p<0.01) reduction was observed 

between sampling occasions. The storage treatment gave a significant (p<0.001) increase in 

bacterial concentration between 0.5 and 0.75 days and not until day 36 was the concentration 

significantly (p<0.05) lower compared to 0.5 days, although there was a trend for decreasing 

bacterial concentrations during the study. Where the significance of the reduction could not be 

determined, e.g. for the ammonia and 2% urea treatments where the data were insufficient to 

perform a t-test, the bacterial concentrations still showed a trend for a constant decrease. 
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Viable count of Ascaris suum eggs 

The A. suum eggs were studied in treatments with 0.5% and 2% urea and in storage. By day 

12 the viability had decreased from the initial 75% to between 40 and 70% for the treatments 

(Table 8). For all these treatments no viable eggs were observed after 41 days, corresponding 

to <0.04% viability. The viability of A. suum eggs did not differ significantly between 

treatments, even though the figures showed a tendency for lower viability for the urea 

treatments. 

Table 8. Viability of Ascaris suum eggs after12 and 41 days treatment with urea or storage at 14°C 

Treatment Day 12  Day 41 
 No. eggs 

counted 
Viability 

(%) 
 No. eggs 

counted 
Viability 

(%) 

2% urea 468 45±3.1  518 <0.04 
0.5% urea  379 47±10  631 <0.04 
Storage 409 62±10  376 <0.04 

 

DISCUSSION 

Buffer capacity and pH 

The initial drop in pH observed for all treatments (Figure 4) may have been caused by 

increased bacterial activity, as high numbers of organisms were added to the faecal matter by 

the bacterial inoculum. The increased moisture content in combination with repeated mixing 

of the material may further have enhanced the bacterial activity. Bacterial activity produces 

acids and carbon dioxide, and further carbon dioxide from the air can dissolve in the solution 

and thus neutralise hydroxide ions by forming hydrogen carbonate. The ammonia and 2% 

urea treatments, where bacterial reduction was achieved much faster than for the other 

treatments, showed a more stable pH. The impact of bacterial activity on pH was 

demonstrated by a study of bacterial reduction in sewage sludge, where the decline in pH was 

smaller at 5°C than at 28°C as a result of bacterial activity (Allievi et al. 1994). 

While exceeding the buffer range of the faecal material, the pH values achieved by the 

alkaline treatments were probably much more sensitive to the acidic effects than pH in the 

storage treatment (Figure 4). The ammonia treatment, which had a high and stable pH, was 

probably less sensitive to neutralisation as a result of high concentrations of hydroxide ions 

compared to neutralising agents. 

Comparing the 2% urea and lime treatments, which both had an initial pH of around 9.2, the 

decrease in pH was less for the 2% urea treatment (Figure 4). This implies that the alkaline 

pH achieved from urea treatment was less sensitive to neutralisation as the urea produces a 

more complex system with several equilibriums. The alkalinity achieved in lime and 0.5% 

urea treatment was neutralised by day 13, as the pH of these both treatments was then 

stabilised at around 7.0. 

As the pH affects the concentration of uncharged ammonia, a stable pH is necessary in order 

to predict the microbial inactivation. The results of the present study show that lime could be 
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used to increase the pH and thus the NH3 concentration. However, the alkalinity created by 

lime is more sensitive to neutralising influenses than that created by urea, as the alkalinity is 

achieved by simpler mechanisms and not buffered against pH changes.  

The peak pH was reached on day 1, indicating a rapid degradation of urea at 14°C. Other 

studies performed at room temperature also report a fast degradation of urea, as rapidly as 75 

minutes (Park & Diez-Gonzales 2003, Vinnerås 2004). 

The high buffering capacity, resembling the capacity in peat soils, is probably due to 

recalcitrant carbonic material consisting of a variety of weak acids and organic complexes that 

produce acidity through hydrolysis (McBride 1994). In a material with lower dry matter 

content, the buffer capacity per kg wet weight would be less and the same percentage of urea 

would probably result in higher pH and a higher amount of NH3. 

 

Concentration of ammonia in solution 

The concentration of total soluble ammonia in the storage treatment was lower than in the 

lime treatment, 290 and 390 mM respectively. This may have been due to assimilation of 

nitrogen into microorganisms, as the survival was higher in the storage treatment than in the 

lime treatment. For a comparison of data the intrinsic ammonia was estimated to correspond 

to the concentration from distillation of lime (390 ±5 mM), as treatment factors were assumed 

to resemble those in the lime treatment more than those in the storage treatment when having 

alkaline additions (Table 9). 

Table 9. Concentrations of soluble ammonia in the treatments and calculations of NH3 concentrations 

on days 1 and 42. Calculations were based on addition of ammonia-forming substances plus intrinsic 

ammonia from distillation. For concentrations on day 86 and treatments without ammonia addition, 

the calculations were based on distillation concentrations 

 NHtot  
(mM) 

pH NH3 

(mM) 
 Distillation Addition Add+intr d 1  d 42   d 86 d 1 d 42 d 86 

Ammonia 800 ±36 680  ±17 1070 10.2 9.9 9.9 850 720 540 

2% urea 970 ±13 690  ±13 1080 9.2 8.4 8.2 280 63 35 

1% urea  730 ±9 340  ±0.0 730 8.8 7.3 7.5 107 3.6 5.5 

0.5% urea 520 ±34 170  ±0.0 560 8.3 7.0 7.2 29 1.5 1.9 
Urea-lime 740 ±2 330  ±0.0 720 9.2a 7.5a 

7.6 210 6.7 6.7 
Lime 390 ±5 -   9.0 6.7 6.7 80 0.51 0.52

Storage1 290 ±25 -   6.6 6.3 6.4 0.30 0.15 0.20

a) For urea-lime treatment, the pH is from days 0 and 41 

 

For ammonia and 2% urea, the distillation gave concentrations of total ammonia nitrogen 

lower than expected from the additions and the intrinsic concentration in the faeces. This may 

be explained by losses of volatile ammonia during the repeated samplings. These losses could 

be assumed to be greater for the ammonia treatment with higher pH. The 0.5% urea, 1% urea 

and urea-lime treatments held concentrations that corresponded to the added amounts plus 
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calculation of intrinsic ammonia even slightly higher for urea-lime than expected from 

additions (Table 9).  

Calculation of free ammonia was based on three pH values; the highest achieved in the study 

(day 1), that on day 42 when the pH had stabilised after the initial decline, and that at the end 

of the study (day 86). Furthermore the two first calculations were based on additions and 

intrinsic concentration, to avoid overestimation of the reducing effects as the distillation 

measurement was performed on day 86, with mostly lower concentrations than expected 

(Table 9). For the lime and storage treatments, concentrations of total ammonia from 

distillation were used. 

The treatment with ammonia gave much higher pH and thus much higher concentration of 

NH3 than the 2% urea treatment (Table 9). Thus the treatments were not comparable for 

evaluation of effects from other substances originating from urea, e.g. carbonate. 

When comparing the concentration of NH3 estimated from pH on days 0 and 42 (Figure 8), 

the influence of pH was obvious as the concentrations decreased by one or two orders of 

magnitude when the pH reached neutral, 6.3-7.3. In the storage and lime treatments, where no 

ammonia was added, the difference in pH gave a great response in NH3 concentration, 0.29 

and 82 mM respectively. Park and Diez-Gonzales (2003) reported a threshold limit of 30 mM 

free ammonia to achieve bacterial reduction in cattle manure and this concentration was 

initially (day 1) achieved by all the treatments except storage and 0.5% urea, which held an 

initial NH3 concentration of 0.30 and 29 mM, respectively. By day 42, only the ammonia and 

2% urea treatments held concentrations above 30 mM NH3.  
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Figure 8. NH3 concentrations in the treated faeces at days 0 and 42. The concentrations are 

calculated values based on nitrogen additions and pH. 
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Bacterial reduction 

Reduction kinetics 

Even though ammonia concentrations declined during the study period, most treatments 

showed a reduction in bacteria following first order kinetics. Table 10 shows the decay 

coefficients k and the r2 values. The r2 values were around or above 0.90 except for the 

reduction of E. faecalis in storage treatment, where no significant reduction was observed. E. 

faecalis proved quite resistant to all treatments, although storage was the only treatment 

where the reduction not could be explained by an exponential function (Table 10). 

Table 10. Decay coefficients (k) and r2 values for the bacterial reduction, Nt(t) = N0·e-kt 

 E. faecalis S. Typhimurium E. coli 

Treatment1 k r2 k r2 K r2  

Ammonia -0.4638 0.91 -11.92 0.89 -18.239 1.00 
2% urea -0.0564 0.93 -1.5089 0.98 -11.576 0.91 
Urea-lime -0.0407 0.96 -1.0628 0.99 np np 
1% urea  -0.0315 0.97 -0.2509 0.99 np np 
0.5% urea  -0.0278 0.92 -0.192 0.95 -0.3709 0.98 
Lime  -0.0208 0.90 -0.2554 0.98 -0.1656 0.90 
Storage - 0.15 -0.0507 0.87   
   -0.0852 0.99 -0.0722 0.69 
np) For E. coli, treatments with 1% urea and urea-lime were not performed. 

 

Ammonia effects on bacterial reduction 

Regression analysis gave a linear relationship between the decay coefficient k and 

concentration of free ammonia that was significant (<0.05) for all the bacteria studied, even 

though fewer observations were available for E. coli and thus the test was weaker (Table 11). 

The linear correlation gives a model with change in k per mM uncharged ammonia, revealing 

E. coli as most sensitive to the treatments with the largest effect on the reduction rate per mM 

uncharged ammonia (Table 11).  

Table 11. NH3 dependent change in decay coefficients derived from regression analysis  

 Change in k mM-1 NH3 p r2 Observations 

E. faecalis 0.000539  <0.001 0.93 7 
S. Typhimurium 0.0140  <0.001 0.94 8 
E. coli 0.0224  <0.05 0.90 5 

 

When Park and Diez-Gonzales (2003) investigated the inactivation of E. coli and S. 

Typhimurium by ammonia in broth solutions at room temperature the bacteria decreased at a 

rate of 0.14 log and 0.03 log cell reduction per mM free ammonia, respectively, when studied 

during 6 days. In the present study no such relation between cell reduction and ammonia was 

obtained during the first 6 days, neither for the whole study and calculations revealed less 

reduction per mM than reported by Park & Diez-Gonzales (2003). This may depend on the 
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different media in which the reduction was studied, as particulate matter may reduce 

disinfectant efficiency. 

When testing the correlation between reduction coefficient k and pH, only E. faecalis had a 

significant (p<0.05) but weak linear relationship (r2=0.69). S. Typhimurium and E. coli did 

not show a significant (p>0.05) relation between pH and reduction, with R2 values of 0.37 and 

0.58, respectively. As E. faecalis was resistant to the ammonia based treatment, other 

parameters can be assumed to also be involved in the inactivation process. 

Of the organisms studied, E. coli was the bacterium that was most sensitive overall to the 

treatments, even though other studies (Himathongkham & Riemann 1999, Park & Diez-

Gonzales 2003) found E. coli O157:H7 to be more resistant than S. Typhimurium to ammonia 

treatment. 

 

Efficiency of the treatments 

Ammonia was the most efficient treatment in reducing the bacteria studied and in the case of 

E. faecalis the ammonia treatment showed a much faster reduction than the other treatments, 

resulting in a Dr time one or two orders of magnitude less (Table 12). For the other bacteria 

studied, the difference in reduction time was less between treatments and affected by the 

whole urea gradient. Note however that E.coli was not as thoroughly studied. 

Table 12. Decimal reduction time (Dr) and time to achieve 6 log10 reduction for the bacteria in the 

various treatments. Treatments arranged according to ammonia gradient 

Dr (days)/ 6 log10 reduction 
Treatmenta 

E. faecalis S. Typhimurium E. coli 

Ammonia 5 30 0.2 1.2 0.13 0.78 
2% urea 41 246 1.5 9 0.2 1.2 
Urea-lime 57 342 2.2 13.2 -  
1% urea  73 438 9.2 55 -  
Lime 111 666 9.0 54 14 84 
0.5% urea  83 498 12 72 6.2 37 
Storage 1   45 270 32 192 
             2   27 162   
a) Highest concentration from ammonia addition +intrinsic distillation values calculated with pH on day 0. 

Lowest concentration from distillation values and pH on day 86. 

 

Urea-lime treatment with the same level of urea addition as 1% urea had a faster reduction 

than 1% urea for the bacteria studied, E. faecalis and S. Typhimurium. This indicates that 

lime addition can be used to get a more rapid reduction from the same ammonia addition as 

the NH3 concentration increased (Figure 8). 

S. Typhimurium was equally sensitive to the 1% urea and urea-lime treatments, with a Dr 

time around 9 days, implying effect from both ammonia and pH at those levels. Both E. 

faecalis and E. coli were more sensitive to 0.5% urea treatment than to lime treatment, even 

though there was initially a higher pH and ammonia concentration in the lime treatment. 
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However, the 0.5% urea maintained a more stable pH, resulting in higher ammonia 

concentration in the latter part of the study (from day 42), and ammonia seemed to be the 

factor affecting the reduction even at that low concentration. Lime was the only treatment 

where E. coli proved to be more resistant than S. Typhimurium, indicating that E. coli is more 

resistant to pH than S. Typhimurium but more sensitive towards ammonia. 

For S. Typhimurium and E. coli, the storage treatment also fitted an exponential reduction, 

indicating that those pathogenic bacteria are more sensitive to environmental factors than E. 

faecalis and that storage as a treatment does reduce bacterial numbers over time. However, for 

storage to produce a 6 log10 reduction treatment for 300 and 200 days are needed for S. 

Typhimurium and E. coli, respectively. The results from the repeated trial for S. Typhimurium 

indicated that the reduction in storage treatment is affected by many parameters that will be 

difficult to control and that the bacterial reduction may be unpredictable (Table 15). 

Of the bacteria studied, E. faecalis was most resistant to the treatments and, using a 6 log10 

reduction as a value for hygienisation, one month of ammonia treatment was needed. Thus E. 

faecalis may not be a good indicator of pathogen removal, although if E. faecalis is not found, 

it is likely that also pathogenic bacteria are absent. 

 

Viable count of Ascaris 

For the Ascaris suum no viable eggs were found (<0.03%) after 41 days in all treatments, 

including the storage. There was a tendency for lower viability with the urea treatments after 

12 days, although this was not significant. It was not possible to correlate the inactivation rate 

to differences in concentration, as too few dates of sampling were available. The low 

concentration of free ammonia in the storage, 0.22mM, was assumed to be too low to affect 

the viability (Ghiglietti et al. 1997). This inactivation in the storage treatment was rapid 

compared to inactivation in animal faeces, where A. suum and other nematodes have been 

recorded as highly persistent (Helle et al. 1989, Caballero-Hernandez et al. 2004). However, 

the results were consistent with Vinnerås et al. (2003), who achieved very low viability 

(0.005%) in 50 days of storage, using comparable to storage method to this study. Eggs from 

the same batch, as in this experiment, were used in treatment of blackwater. In those trials 

with a DM of less than 1%, the viability of the A. suum was high (over 50%) throughout the 

100 days of storage at a temperature similar to the temperature in this experiment (Vinnerås 

2005). This might imply that some characteristics in the faecal material or some 

environmental parameters enhanced the inactivation of A. suum eggs. 

 

How to sanitise faecal matter for safe fertiliser production 

A person infected with e.g. Salmonella may excrete the pathogenic bacteria in concentrations 

of 106 g-1 faeces (Feachem et al. 1983). As dilution will take place, by healthy users and over 

time by the recovered person, a 6log10 reduction can be set as a standard for suitable 

hygienisation (Table 12).  
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If faeces are to be used as soil conditioner, the treatment time must be adjusted to seasonal use 

and to the available potential to store the faecal matter. The concentration of the treatment 

amendment can thus be adjusted according to time limitations. Ammonia, 2% urea and urea-

lime appear to be treatments capable of achieving a rapid reduction, as these treatments could 

sanitise faeces within one month considering the faecal pathogens studied (Table 12). For 

treatment with 1% urea, two months were needed to achieve sufficient reduction of the 

pathogenic bacteria studied. A. suum is considered very persistent in the environment and is 

resistant to sanitation methods, thus affecting the total treatment time needed. As the nitrogen 

based treatment proved to be efficient, it gives good possibilities to shorten treatment time of 

faeces compared to other methods, e.g. liming. 

As ammonia buffers at a higher pH than urea, it has a higher reduction efficiency per gram 

nitrogen added and will thus be cheaper to use than urea if nitrogen costs are equal. As the 

most common form of ammonia is a solution, it may be very suitable for a mechanised system 

where the mixing may be performed within closed containers and the emissions minimised.  

In a rural small-scale context, urea may be the most available form of ammonia nitrogen. As 

the urea needs some time to degrade into ammonia, the emissions during initial blending will 

be minimised and urea may thus be suitable for blending by hand. Closed containers can be 

constructed by simple means even in rural areas in developing countries. Compared with 

liming, urea treatment is more user-friendly since it is manufactured in granular form and 

stabilise at lower pH.  

When considering fertiliser value, the additions of ammonia nitrogen can be adjusted to meet 

the fertiliser requirements and the NH3 concentration can be increased by other alkaline 

additions such as lime, which also counteracts soil acidification. 

A limitation may be the initial mixing of urea and faeces to get a homogeneous ammonia 

concentration. Treatment at higher water content may enhance the mixing efficiency and 

distribution of ammonia in the faecal material, but demands larger storage capacity. 

 

CONCLUSIONS 

A pH higher than neutral is necessary to achieve uncharged ammonia. At this temperature, 

14°C, a pH of at least 9 is preferable but also a stable pH is important for giving a constant 

concentration of free ammonia. Ammonia and urea treatments gave a more stable pH than 

lime addition. Closed treatment is also of importance to get treatment at constant NH3(aq) 

concentration. However, the volatile losses in this study cannot be considered representative, 

as small volumes were treated and the containers were opened on every sampling occasion.  

Even though losses of ammonia occurred, this study showed that treatments with 1% 

ammonia and 2% urea, which gave the same addition of total ammonia, resulted in a fast 

reduction of the bacterial pathogens studied. The different chemical constitution and buffer 

interval resulted in a higher pH in the ammonia treatment than the 2% urea treatment and thus 

higher concentrations of NH3. Addition of lime to the 1% urea treatment gave a faster 

reduction than urea alone by increasing the pH and concentration of NH3. A 6 log10  reduction 



41 

 

 

 

of the pathogenic bacteria studied was achieved within three weeks in the ammonia, 2% urea 

and urea-lime treatments, with a good margin of error.  

Comparing the patterns of bacterial reduction in the study, it seems as though E. faecalis has a 

higher threshold concentration at which it is affected by ammonia. If E. faecalis is to be used 

as a indicator of sufficient hygienisation, its presence only will not be a good parameter, as E. 

faecalis will exceed the hygienisation time of the pathogens studied by as much as several 

months. 

For the Ascaris suum eggs, there seemed to be a tendency for urea treatments to give lower 

viability. However, after 41 days of storage no viable eggs were to be found either, indicating 

that other factors affected the viability. 

When human faeces are to be used as a soil conditioner, the seasonal use and storage 

possibilities will set the limits for the treatment time and the concentrations of ammonia 

nitrogen used should be adjusted to the available treatment time. As nitrogen based sanitation 

gives a product with enhanced fertiliser value, the costs for fertilisers can be allocated to the 

treatment instead, with the same total expense. 

 

FURTHER STUDIES 

For the future adoption of the nitrogen based sanitation methods, it would be of interest to 

study other model organisms and correlate their reduction to endemic and emerging 

pathogenic microorganisms. It would also be of interest to include viral models that are 

persistent in the environment. As a reduction in A. suum occurred in storage, it would be of 

interest both to determine the factors other than NH3 that affect viability and to study how 

NH3 affects the egg cell. 
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APPENDIX 

Table A1. The pH values for the treatments during 86 days of study. The standard deviation was consistently 

small; the greatest deviation was ±0.13 pH units 

Time (d) Ammonia 2% urea 1% urea 0.5% urea Urea-lime Lime Storage 

- 7.0 7.2 7.2 7.2 7.2 7.2 6.9 
0     9.2   
1 10.2 9.2 8.8 8.3  9.0 6.6 
12     8.4   
13 10.1 8.8 7.7 7.1  7.0 6.3 
20     7.9   
21 10.0 8.6 7.5 6.9  6.8 6.3 
41     7.6   
42 9.9 8.4 7.3 7.0  6.7 6.3 
53     7.5   
54 10.0 8.3 7.3 7.1  6.7 6.3 
71     7.5   
72 10.0 8.2 7.3 7.0  6.6 6.3 
85     7.6   
86 9.9 8.2 7.5 7.2  6.7 6.4 

 

Table A2. Concentrations of E. faecalis (cfu g-1 faeces, wet weight ± s.d.%). Start concentration was 

calculated from bacterial inoculum. All treatments were performed at 14°C 

Day Ammonia 2% Urea 1% Urea  0.5% Urea Urea-lime Lime Storage 

0 7.4×107(±5) 8.5×107(±11) 7.9×107(±5) 6.9×107(±9) 8.0×107(±5) 8.0×107(±1) 7.0×107(±8) 

1     4.8×107(±34)  3.6×107(±22) 

2 1.0×107(±24) 3.5×107(±30) 5.1×107(±31) 4.7×107(±33)  3.8×107(±24) 2.9×107(±17) 

5     3.4×107(±34)   

6 5.4×105(±6) 1.8×107(±27) 4.3×107(±10) 4.1×107(±14)  5.2×107(±3) 4.4×107(±8) 

11     3.4×107(±12)   

12 2.3×104(±34) 3.0×107(±17) 5.4×107(±3) 3.9×107(±17)  4.4×107(±17) 2.9×107(±10) 

19     3.7×107(±21)   

20 6.6×103(±53) 2.1×107(±18) 3.7×107(±9) 3.5×107(±17)  4.2×107(±21) 5.3×107(±17) 

41     1.2×107(±37)   

42 ND 9.1×106(±36) 1.8×107(±50) 1.7×107(±59)  2.2×107(±39 3.1×107(±24) 

85     1.7×106(±28)   

86  3.1×105(±47) 4.2×106(±10)   9.8×106(±21) 3.0×107(±15) 
ND) not detected (detection limit 102 cfu g-1 faeces) 
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Table A3. Concentrations of Salmonella Typhimurium (cfu g-1 faeces, wet weight ± s.d.%) from the 86-day 

study. Start concentration was calculated from bacterial inoculum. All treatments were performed at 14°C 

Day 2% urea 1% urea 0.5% urea Urea-lime Lime Storage 

0 1.1×107(±12) 1.1×107(±5) 9.7×106(±9) 1.1×107(±5) 1.1×107(±1) 9.8×106(±8) 

1    8.6×105
±23  4.4×106(±20) 

2 1.5×105(±47) 4.1×106(±22) 9.2×106(±29)  2.9×106(±7) 3.3×106(±71) 

5    1.8×104(±29)   

6 <1×103 1.5×106(±64) 1.1×107(±4)  3.5×106(±2) 3.0×106(±13) 

11    1×102   

12 ND 1.9×105(±55) 5.2×106(±6)  9.8×105(±26) 4.8×106(±21) 

20  3.3×104(±21) 6.3×105(±13) ND 4.4×104(±86) 6.5×106(±13) 

42  2.3×102(±98) 4.2×103(±52)  2.2×102(±24) 1.3×106(±21) 

86  ND ND  ND 5.8×104
(±28) 

ND) not detected (detection limit 102 cfu g-1 faeces) 

 

Table A4. Concentrations of Salmonella Typhimurium (cfu g-1 faeces, wet weight ± s.d.%) from the 36-day 

study. Start concentration was calculated from bacterial inoculum. All treatments were performed at 14°C 

Day Ammonia Storage 

0 1.4×108(±16) 1.4×108(±16) 

0.5 4.4×106(±11) 1.4×108(±3) 

0.75 <1×104 1.1×108(±8) 

5 ND 7.9×107(±2) 

20  2.1×107(±56) 

36  6.5×106(±35) 
ND) not detected (detection limit 102 cfu g-1 faeces) 

 

Table A5. Concentrations of E. coli (cfu g-1 faeces, wet weight ± s.d.%). Start concentration was calculated 

from bacterial inoculum. All treatments were performed at 14°C 

Day Ammonia 2% urea Urea 0.5% Lime Storage 

0 4.1×107(±46) 5.0×107(±46) 4.3×107(±46) 4.1×107(±46) 4.0×107(±46) 

0.5 4.5×103(±79) 1.3×106(±13) 3.8×106(±52) 4.9×106(±42) 1.2×107(±24) 

0.75 ND 1×104 1.5×107(±3) 1.0×107(±15) 4.5×107(±23) 

5  ND 2.8×106(±12) 3.7×106(±3) 3.3×107(±16) 

12   3.9×105(±3) 9.7×105(±3) 2.9×107(±2) 

20   2.0×104(±30) 2.0×105(±32) 1.8×107(±64) 

36   ND 4.8×104(±152) 1.6×106(±29) 
ND) not detected (detection limit 102 cfu g-1 faeces) 

 


