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ABSTRACT

Most energy requirements of modern life can be fulfilled by renewable energy
sources, but it is impossible in the near future to provide an alternative energy
source to combustion for airplanes. That being said, combustion in aviation can be
mademore sustainable by using alternative jet fuels, which aremade from renewable
sources like agricultural wastes, solid wastes, oils, and sugars. These alternative
fuels can be used in commercial flights only after a long certification process by
the Federal Aviation Agency (FAA) and ASTM International. Unfortunately, in
over 50 years of fuel research, only five fuels have been certified. This research
project aims to speed up the certification process with quicker testing of alternative
fuels. Engine testing and even laboratory testing require large amounts of time
and fuel. Simulations can make the process much more efficient, but accurately
simulating highly turbulent flames in such complex geometries would need large
amounts of computational resources. The goal of this thesis is to create an efficient
computational framework, that can replicate different engine-like turbulent flow
conditions in simple geometries with numerical tractability.

The central idea is to decompose the flow field into ensemble mean and fluctuating
quantities. The simulations then resolve only the fluctuations using simple com-
putational domains, while emulating the effect of the mean flow using "forcing"
terms. These forcing terms are calculated first for incompressible turbulence, and
this method is later extended to turbulent reacting flows. In incompressible turbu-
lence, Direct Numerical Simulations (DNS) performed on simple triply periodic
cubic domains reasonably capture the statistically stationary shear turbulence, that
is observed in free shear flows. The simulations are also performed in cuboidal
domains, that are longer in one direction and with an inflow/outflow along it. Both
changes are observed to not have a significant impact on the turbulence statistics. Fi-
nally, shear convection is applied to the turbulence simulations with inflow/outflow,
which has a significant impact on the turbulence. These simulations accurately
capture the turbulence anisotropy in free-shear flows.

The study is extended to DNS of highly turbulent n-heptane-air flames performed
under different flow conditions. Turbulent flames involve two-way coupling be-
tween fluid mechanics and combustion. The effects of the flame on the turbulence
and the impact of the turbulent flow conditions on the flame behavior are analyzed.
The focus is placed on the effects of turbulence production, shear convection, and
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pressure gradients. The anisotropy produced in the turbulence due to the different
flow conditions and the flame are also compared and contrasted. While the global
behavior and flow anisotropy were affected by these conditions, the local chemistry
effects were unaffected, and depend only on the laminar flame properties and turbu-
lence intensity. These findings can help predict turbulent flame behavior, and can
expedite the search and testing of sustainable alternatives to conventional jet fuels.
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C h a p t e r 1

INTRODUCTION

1.1 Background
Humanity as a whole has beenmoving away from fossil-fuels and towards renewable
energy sources such as solar, wind, and water energy. These renewable sources of
energy can be used for power generation, land transport, heating etc. Electric cars
and trains are already in commercial use and electricity generation has been relying
less on fossil fuels. In fact, most energy requirements of modern life can be fulfilled
by clean energy sources, but not all of them. The high energy density required for
air transport can only be met by combustion. In other words, we are “stuck with
combustion” for airplanes. The question then becomes can we make combustion in
airplanes more sustainable?

Commercial airplanes use petroleum-based jet fuel for combustion, which leads to
high CO2 emissions. Aviation industry accounts for 12% of CO2 emissions from
transportation. As Fig. 1.1 shows, if left unchecked, CO2 emissions from aviation
will be doubled by 2050. Reductions in CO2 emissions could be made by changes in
technology, operation and infrastructure, but that still will not be enough to decrease
emissions. The only way to reduce CO2 emissions to the point of carbon-neutral
growth, or even further reduction by 50% of today’s quantity is through a change in
aviation fuel. Various organizations have recommended alternative jet fuels, that are
not only sourced from renewable sources, but also produce lower CO2 emissions.
These alternative fuels could reduce the carbon-footprint of aviation by up to 80%
over the full lifecycle (production, refining, transportation and combustion).

Fuels like hydrogen and Compressed Natural Gas (CNG) could be used as alterna-
tives, but these would involve drastic changes in the propulsion system, including
new engines, fuel tanks, etc. and raise concerns about cost, safety, operations, effi-
ciency, etc. The shift to alternative fuels would be more economically feasible and
impactful if the fuels could be used as “drop-in” fuels, i.e. in the same propulsion
system as for conventional jet fuels. Viable alternative jet fuels are ones that behave
similar to Aviation Turbine Fuel (ATF) under turbulent combustion in jet engines.
Any alternative fuel, regardless of its origin, needs to be certified by the Federal
Aviation Administration (FAA) and ASTM International before commercial use. So
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Figure 1.1: CO2 emissions reduction roadmap of International Air Transport As-
sociation (IATA). Major contribution to CO2 reduction is from alternative fuel
technology, and more effective than improvement in Operations, Infrastructure and
Technology. Source : International Air Transport Association (IATA)

far, five alternative jet fuels have been approved by the FAA:

1. Alcohol to Jet Synthetic Paraffinic Kerosene (ATJ-SPK) synthesized from
alcohols obtained from fermentation of biomass,

2. Synthesized Iso-Paraffins (SIP) produced from sugars,

3. Hydro-processedEsters andFattyAcids Synthetic ParaffinicKerosene (HEFA-
SPK) made from hydrotreating virgin or waste oils,

4. Fischer-Tropsch Synthetic Paraffinic Kerosene (FT-SPK), and

5. Fischer-Tropsch Synthetic Kerosene with Aromatics (FT-SKA). FT-SPK and
FT-SKA are obtained by pyrolysis/gasification and processing of biological
wastes.

Alternative jet fuels have been studied since the 1970s. Yet, in almost half a century,
only five have been approved. This is a direct result of the long and strenuous
certification procedure. The process consists of multiple steps including rig testing
and full engine testing, all of which takes a lot of time, effort, fuel, and resources.
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The procedure involves testing fuels in engine-scale tests, completely oblivious to
the dependence or independence of turbulent combustion on fuel-specific properties.
The certification process fails to utilize existing knowledge of turbulent combustion,
and the inherent connections between turbulent and laminar flames.

Combustion in engines depends on engine-specific physics and engine-independent
characteristics that are common to all turbulent flames. In turn, turbulent flame
properties can be further classified into fuel-specific chemistry and fuel-independent
properties. Of these fuel-specific properties, engine combustion would only depend
on a small subset of laminar flame parameters of the fuel [48]. The goal is to identify
these laminar flame properties that significantly affect turbulent flame behavior, and
test new fuels for only this small set of parameters to make sure that the alternative
fuel behaves like ATF in engines.

Figure 1.2: Combustion chamber of a turbojet engine

1.2 From engine experiments to direct numerical simulations
Full engine tests: Commercial aircraft engines are either turbojet, turboprop, or
turbofan engines, which all contain a compressor stage, a combustion chamber, and
a turbine stage in that sequence. The fuel is premixed with compressed air and
introduced into the chamber in jets and ignited (see Fig. 1.2). Engine combustion
occurs in strongly turbulent conditions, which enhance both mixing and combustion
and improve the energy efficiency. These highly turbulent flows can be easily
replicated in engine tests, but the tests would consume large amounts of fuel (0.5 to
3 kg/s). Acquiring or processing such large amounts of fuel might not be feasible
for alternative jet fuels at the testing/certification stage.

Lab-scale turbulent flame experiments: Multiple researchers have scaled down
the turbulent combustion problem and designed experimental setups that mimic
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the high shear turbulent combustion found in jet engines (see Fig. 1.3a). These
laboratory setups include reacting jets [55, 54, 5, 61], nozzle type burners [46],
reacting shear layers [56], turbulent V-flames, swirl burners [6], backwards facing
step, jets in cross flow [43], and bluff-body stabilized flames [4]. These experiments
use smaller amounts of fuel (0.1 to 1.5 g/s) and are ideal for testing commonly
available fuels. Researchers have studied such turbulent flames, with different fuels,
over a wide range of equivalence ratios and turbulence intensities. But the fuel
requirement may still be too high for potential alternative jet fuels which are not in
the phase of mass-production.

Laminar combustion experiments: Aviation turbine fuel and sustainable alter-
natives to it are all long chain carbon fuels, the combustion of which involves tens
of different species and hundreds of elementary chemical reactions. The exact
chemical composition and the laminar combustion behavior of the fuel can be easily
measured with very small amounts of fuel in simple laboratory settings [33, 39, 42,
83, 91].

Full geometry direct numerical simulations (DNS): Several studies have fo-
cused on capturing the entire spatially developing domain of experimental setups.
Unfortunately, DNS of the entire domain of a jet engine or an experimental setup are
prohibitively expensive. For instance, Yoo et al. use around 900 million grid points
to simulate a hydrogen-air jet flame (9 species, 21 elementary reactions), at a turbu-
lent Reynolds number of 340 (ReJ = 11000) [92, 24]. Hawkes et al. [37] performed
DNS of temporally evolving plane CO/H2 jet flames up to ReJ = 9000 using 500
million grid points, while Karami et al. [44] used 250 million grid points to simulate
turbulent lifted slot-jet flame at a Reynolds number of 5280. These are extremely
expensive simulations which require a lot of computational resources, and simulat-
ing long chain fuels with these methods is not feasible. That is why, researchers have
tried to reduce the computational cost by performing flame simulations at lower tur-
bulence intensities [84, 25, 30]. For example, Bell et al. use 16 million grid points
to study a methane V-flame at a low Reynolds number (Ret ' 40) [7], and Sankaran
et al. use only 93,000 grid points to simulate a methane-air bunsen flame at an even
lower Reynolds number (Ret ' 26) [74]. Unfortunately, these simulations do not
accurately capture the physics of turbulent flame behavior in engines, as turbulent
combustion is strongly dependent on Reynolds number.
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LES and RANS: Computational costs can also be reduced by performing large
eddy simulations (LES)which use coarse grids to capture large scale flow effects [82,
8], and use sub-grid scale models for the unresolved small scales [63, 26, 62].
While these simulations can capture the large scale behavior of the reacting flow
with reasonable accuracy, fuel-specific chemical reactions and their interactionswith
turbulence occur at small scales, that are not fully captured by these simulations [11].
Reynolds Averaged Navier Stokes (RANS)methods work in a similar fashion, where
the ensemble mean velocity field is solved for, while the Reynolds stress and scalar
flux terms are estimated using different RANS models [12, 87]. Despite recent
developments [47, 85], there is still a need for extensive research and higher fidelity
in closure models for reacting flows for both LES and RANS.

Small region DNS: Some computational studies cut down on computational do-
mains by performing fully resolved DNS of turbulent flames in simple geometries.
However, most of these simulations are not statistically stationary, which is not ideal
for steady state observations. For instance, Rutland and Trouve performed simu-
lations of outward propagating flames in triply periodic cubic domains, containing
decaying isotropic turbulence [73]. Gruber et al. observed turbulent flame-wall
interactions in decaying channel flow turbulence [34]. Hamlington et al. performed
turbulent flame simulations using isotropic turbulence, with the turbulence sustained
by introducing random perturbations in the largest scale of the flow. Multiple stud-
ies from TheFORCE lab at Caltech have simulated statistically stationary turbulent
flames, using linear isotropic forcing to sustain turbulence [75, 76, 49, 9, 48, 79,
78]. The velocity fields in these simulations either contain decaying turbulence, or
maintain constant turbulence using artificial numerical methods. This status quo
comes from the fact that the large scale flow effects observed in larger domains are
missing in such simulations, and one of the effects of the large scale flow is main-
taining constant turbulence statistics over time. Ideally, one would like statistically
stationary simulations which can accurately reflect the turbulence and can capture
the large scale flow effects observed in different experimental setups for turbulent
reacting flows.

These observations underline a need for a new framework for simulating turbulent
flames which satisfies all the requirements mentioned above. Such method should
focus on a small portion of the spatially evolving turbulent reacting flows, and fully
resolve all turbulent and chemical scales. While LES/RANS solves for the large-
scale/mean flow and introduces models for the small-scales/fluctuations that are not
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captured, the targeted method should do the opposite. The small-scales/fluctuations
are fully resolved in the simulations, while "forcing" terms are introduced to emulate
the impact of the large-scale/mean flow.

These frameworks need to be tested for both incompressible turbulence and turbulent
flame simulations.

1.3 Incompressible turbulence
Turbulent free shear flows are found in a multitude of industrial applications and
in nature, and their analysis gives a lot of insight into turbulence and its structure.
However, owing to the range of scales and the stochastic and unsteady nature
of turbulence, even simulating such incompressible flows has proven to be quite
challenging. Various configurations have been used to simulate turbulent flows using
DNS, that are resolved down to the smallest turbulent length scales. The different
DNS methodologies can be broadly classified into three major configurations.

The most obvious configuration is to use the entire domain to solve the spatially
evolving flow [86, 10, 88]. In this configuration, the turbulence statistics reach a sta-
tionary state after a transient period, and hence the results are ultimately independent
from the initial conditions. Unfortunately, the overall flow field depends strongly
on the boundary conditions. These simulations typically include a near-field region
where the turbulence is not fully developed, and so this configuration is not compu-
tationally efficient. Since the entire flow field needs to be solved, these simulations
are usually performed at lower Reynolds numbers to reduce the computational costs.

Another configuration is to perform temporally evolving turbulent flow simulations.
A perfect example is the mixing layer simulation by Rogers and Moser [70], which
introduces homogeneity in the streamwise direction. The extra periodic direction
increases the computational efficiency, but does so at the expense of physics. It also
aids in calculating the energy spectra, which can be used to observe the different
scales of turbulence. Unfortunately, the statistics never reach a stationary state, and
hence the results still depend heavily on the initial conditions.

The third configuration is that of a triply periodic domain where the turbulence
statistics are homogeneous and there are no boundary conditions to implement
because of the triple periodicity. A good example is the numerical simulation of
isotropic turbulence by Orszag and Patterson [57]. The computational efficiency
is much higher as the flow is fully turbulent throughout. However, in the absence
of mean shear, the turbulent kinetic energy in the domain decays over time due to
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viscous dissipation [38]. Hence, to keep the turbulent kinetic energy stationary over
time, the missing mean shear needs to be emulated through a method of forcing
the turbulence. Turbulence in the past has been forced by different techniques,
including spectral forcing [28, 32, 17, 23] and linear forcing [53, 72, 20]. While
these techniques are required to generate turbulence in the domain, these numerical
forcing techniques have been mostly arbitrary, and do not capture the physics of the
large scale flows accurately.

Recently, Rah et al. [67] combined the numerical tractability of the third config-
uration with the physical accuracy of the first configuration. They used a triply
periodic computational domain, with the forcing calculated from the flow physics
at a small region at the centerline of a turbulent round jet, and forced turbulence in
a mathematically consistent way. The current study extends this work by consider-
ing a small region in the self-similar shear layer of multiple statistically stationary
free-shear flows and using a triply periodic computational domain to simulate this
shear-dominated flow.

Several homogeneous shear turbulence (HST) simulations have been performed in
the literature using similar techniques [69, 31, 50, 14, 41, 45, 80]. While a shear
production term was included in each study, considering an idealized homogeneous
shear flow, the forcing terms were not derived for practical turbulent flows, and
ultimately lacked the mathematical background to be compared to realistic turbu-
lent flows. Most of these simulations used shear periodic boundary conditions, but
simulate idealized homogeneous shear flow, and the turbulence statistics grow ex-
ponentially in time [31, 50, 14, 41, 45]. Other simulations include a wall boundary
in the cross-stream direction, and are not homogeneous [80].

It is also important to remember that these simulations aim to capture the velocity
fluctuations observed in statistically stationary free-shear flows. As a consequence,
these simulations need to have stationary statistics, and be stable enough for simu-
lations over long periods of time.

1.4 From incompressible to flame simulations
Incompressible turbulence simulations can be performed in triply periodic cubic
domains, but stationary simulations of turbulent flames cannot be performed in
such a configuration. In turbulent flames, the fuel and oxidizer are consumed
and combustion products are created constantly. In order to maintain stationary
statistics, one needs to constantly introduce more reactants and remove products
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from the domain at a steady rate. This can accomplished by foregoing periodic
boundary conditions in the flame normal direction, and introducing an inflow on the
reactants side and a convective outflow on the side of the products. These boundary
conditions create non-homogeneity in the flame-normal direction, and can also have
an impact on the flow near the inflow/outflow.

In addition, when introducing an inflow/outflow, the domainwidth needs to be higher
in the direction of the inflow/outflow, so that the boundary conditions do not affect
the turbulence statistics in the domain, away from the inlet/outlet. Furthermore, it
is desirable for the turbulence to be fully developed before reaching the flame front.
Hence, the computational domains for these simulations need to be much longer
along one direction. Changing the aspect ratio of the computational domain may
affect the simulation results, and these effects need to be studied in detail. As an
added benefit, the non-homogeneous direction in the simulation with inflow/outflow
allows for studying the effects of shear convection, which is present in free-shear
flows of both incompressible and reacting turbulence.

All these impacts need to studied using incompressible flows, before chemistry can
be included in the simulations. Once these large scale effects are accurately under-
stood and quantified in incompressible simulations, turbulent flame simulations can
be performed using a similar methodology.

Figure 1.3: a) Experimental setup of a turbulent reacting jet at the CFRL in USC b)
LES results of a turbulent reacting jet – Temperature Contours c) DNS results of a
turbulent flame – Temperature contours.
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1.5 Turbulent flames
One should be careful in extending these turbulence simulation techniques to react-
ing flames, as turbulent flames involve the complex interaction between two non-
linear processes: turbulence and combustion. The mean flow is affected both by the
flow geometry and the chemical reactions. Despite these difficulties, turbulent flame
simulations focusing on velocity fluctuations can be found in the literature. Several
studies have reduced the computational cost by considering a small region of the
turbulent flame and performing DNS with the same turbulence parameters [3, 76,
49, 36]. These simulations consider canonical three-dimensional domains that are
often periodic in two directions with the flame progressing along the non-periodic
direction, as seen in Fig. 1.3c. This approach offers high-fidelity simulations at
low computational costs, and the periodic boundaries help in eliminating boundary
condition effects on the simulations.

The disadvantage to these simulations is that the large scale flow effects are not
captured. One of the missing effects is the mean shear that generates turbulence,
and hence the turbulent kinetic energy decays over time due to viscous dissipa-
tion [18, 19]. This is tackled by implementing numerical turbulence forcing in the
simulation [36, 2], to keep the turbulent kinetic energy statistically stationary over
time.

Several forcing methodologies have been used [36, 2, 64, 75, 49, 76, 72] in past
studies. Some turbulence forcing techniques are applied only to low wavenumbers
and some are implemented over all scales. Some studies use forcing techniques that
are in correlation with the velocity and some forcing methods are not correlated
with the velocity field. The forcing term can be applied in spectral space or in
physical space, linear with velocity. However, one common factor across all all
these numerical forcing schemes is that they have been mostly arbitrary. Most
forcing methods generate isotropic turbulence and they do not reflect the flow
physics observed in turbulent reacting flows.

The current study aims at mathematically deriving the exact turbulence forcing
technique that is physically consistent and compatible with the large scale flow
physics and reflects the turbulence observed in turbulent flames. The forcing term
comes directly from the turbulence production, that is calculated from the gradients
of the large scale velocity. This turbulence production technique will be compared
against the isotropic forcing scheme suggested by Lundgren [53].

As mentioned earlier, one main drawback to the small region DNS is that the large
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scale flow effects are missing. The turbulence production term is often the source
of inspiration for the forcing terms, while the other impacts of the large scale flow
can be emulated in the DNS using such similar forcing terms calculated from the
large scale flow. The large scale effects like the impact of a mean pressure gradient
and shear convection on the turbulent flame behavior are also studied.

Researchers in the past have studied turbulent behavior and their dependence on
different factors: fuel type [48], equivalence ratio [48], differential diffusion [49],
thermal diffusion [78], turbulence intensity [76, 51], combustion models [79], etc,
and most of these studies have been performed with isotropic simulations, with no
other large scale effects reflected in the simulations. The impact of the anisotropy
of the turbulence and the different flow conditions on the turbulent flame behavior
needs to be observed, so one can know if it is reasonable to compare experiments
of turbulent flames with different configurations against each other, and against
idealized isotropic turbulence simulations.

1.6 Outline
The goal of this thesis is to study the effects of different turbulent flow conditions on
the velocity and scalar statistics of turbulent flames. This is achieved by following
the research plan given below:

1. Develop amathematical framework to simulate portions of the incompressible
turbulent flow field by using a RANS-inspired velocity decomposition and
simulating only the fluctuating quantities.

2. Recreate the statistically stationary shear turbulence observed in free shear
flows in homogeneous domains.

3. Extend the simulations to other computational domains to study the impact
of aspect ratio, non-homogeneity, and boundary conditions on isotropic and
shear turbulence

4. Analyze the effects of shear convection on shear turbulence and its anisotropy.

5. Extend the mathematical framework to variable density flows with chemistry
effects and scalar transport.

6. Analyze the impact of the turbulence production term on the global and local
flame properties and turbulence statistics.
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7. Analyze the impact of favorable pressure gradients and shear convection on
the turbulent flames.

The mathematical framework for incompressible turbulence and the simulations in
homogeneous cubic domains are presented in Chapter 2. The impact of aspect ratio,
non-homogeneity, boundary conditions, and shear convection on incompressible
turbulence is analyzed in Chapter 3. Chapter 4 extends the mathematical framework
to turbulent flames with variable density. The effects of the turbulence production,
favorable pressure gradients, and shear convection on turbulent flames are discussed
in Chapter 5. Chapter 6 makes concluding remarks and gives potential directions
for future work.
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C h a p t e r 2

EFFECTIVE FORCING FOR DIRECT NUMERICAL
SIMULATIONS OF THE SHEAR LAYER OF TURBULENT

FREE SHEAR FLOWS

[1] C. Dhandapani, K. J. Rah, and G. Blanquart. “Effective forcing for direct
numerical simulations of the shear layer of turbulent free shear flows”. In:
Physical review fluids (accepted for publication) (2019).

2.1 Introduction
A numerically efficient configuration to simulate turbulent flows is to use triply
periodic domains, with numerical forcing techniques to sustain turbulence. Previous
homogeneous shear turbulence simulations considered only idealized homogeneous
shear flows, and not the statistically stationary shear turbulence observed in practical
free shear flows. In contrast, the current study mathematically derives the complete
forcing technique from the large scales of the turbulent free shear flows. Different
statistically stationary free shear flows are considered in this study, namely a nearly
homogeneous shear turbulent flow, turbulent mixing layer, a turbulent planar jet, and
a turbulent round jet. The simulations are performed on triply periodic, statistically
homogeneous cubic domains in the vicinity of the shear layer in the self-similar
region. An a priori analysis is performed to calculate the effects of the different
forcing terms and to predict the expected turbulence quantities. The tailored forcing
technique is then used to perform direct numerical simulations at different Reynolds
numbers. Numerical results for the different cases are discussed, and compared with
results from experiments and other simulations of free shear turbulent flows.

In section 2.2, the forcing technique will be mathematically derived, and then
calculated, from locations in the shear layers of four different turbulent flows shown
in Fig. 2.1. An a priori analysis will be performed for the forcing technique
in section 2.3 to observe the effects of the different forcing terms. Section 2.4
describes the simulations, and contains a discussion of the numerical results and
comparison with experiments and other simulations. Section 2.5 includes additional
simulations including linear diagonal terms, non-linear terms, and mean advection
terms. Section 2.6 makes concluding remarks about the observations from the study.
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2.2 Mathematical derivation
We start by reviewing Lundgren’s mathematical approach, which uses a Reynolds
decomposition to identify the effects of the large turbulent scales on the small scales.
Then, four canonical flows are considered (see Fig. 2.1), and the forcing matrix is
calculated for each of them. A forcing technique, common to the self-similar shear
layer of these four flows, is discussed after.

2.2.1 Methodology : Review of Lundgren’s approach
First, we consider the Navier-Stokes (NS) equations for the velocity field u for a
fluid flow with constant density ρ, where p is the pressure and ν is the kinematic
viscosity,

∂u

∂t
+ u · ∇u = −1

ρ
∇p + ν∇2u. (2.1)

For any turbulent flow phenomenon, the instantaneous velocity field can be de-
composed into mean and fluctuating velocity fields (i.e., Reynolds decomposition),
u = u + u′, where · represents the ensemble average. Transport equations for the
fluctuations are obtained by calculating the difference between the NS equations for
the full velocity field and the transport equations for the mean velocity field, namely

NS (u + u′) − NS (u + u′). (2.2)

This leads to

∂u′

∂t
+ (u + u′) · ∇u′ = −1

ρ
∇p′ + ν∇2u′ + ∇ · u′u′ − u′ · ∇u. (2.3)

The extra terms in the transport equations for the fluctuating velocity, when compared
with Eq. (2.1), are the mean-flow advection term (u · ∇u′), the divergence of the
Reynolds stress term (∇ · u′u′), and the production term (−u′ · ∇u). Lundgren
focused on the production term as the only contributor to turbulent kinetic energy
production [53], but this is not the case as will be seen later in section C. The major
contribution to the turbulent kinetic energy comes from the production term, which
is rewritten as a forcing term A · u′,

∂u′

∂t
+ u′ · ∇u′ = −1

ρ
∇p′ + ν∇2u′ + A · u′, (2.4)

where A is the forcing matrix, given by A = −∇u. The source term is linear in
u′, forces velocity along all scales, and keeps the turbulent kinetic energy from
decaying due to viscous dissipation.
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(a) NHST (b) ML

(c) PJ (d) RJ

Figure 2.1: Different turbulent free shear flows considered for the current study
with the computational domain chosen (red cube): a) nearly homogeneous shear
turbulence (NHST) b) mixing layer (ML) c) planar jet (PJ) d) round jet (RJ).

Lundgren [53] further assumed that the forcing matrix, A is a diagonal matrix that
generates isotropic turbulence,

ALundgren =



A 0 0

0 A 0

0 0 A


. (2.5)

This isotropic forcing term was implemented as Au′, where A is an arbitrary forcing
constant, calculated based on the required turbulent Reynolds number [20]. In
practice, the forcing matrix depends on the gradients of the mean velocity.

2.2.2 Mean velocity gradients
Different free shear flows are considered in this study, namely a nearly homogeneous
shear turbulence (NHST) flow, a turbulent mixing layer (ML), a turbulent planar jet
(PJ), and a turbulent round jet (RJ). The mean velocity gradients can be calculated
from the mean velocity profiles obtained from experiments, for each free shear
flow. Once again, the intent is to perform simulations on triply periodic, statistically
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homogeneous cubic domains in the vicinity of the shear layer in their respective
self-similar region as shown in Fig. 2.1.

2.2.2.1 Nearly Homogeneous Shear Turbulence

For a homogeneous shear turbulence flow, the mean flow is in the streamwise
direction (x). The free-stream velocity is constant along x and varies linearly in y,
away from thewalls located at y = −h/2 and y = h/2. Themean streamwise velocity
at the center of the wind tunnel, y = 0 is UC . Far downstream, the quantities are
self-similar and are homogeneous in the y direction away from the walls. However,
the integral length scale ` increases linearly with x [21], and consequently, the
Reynolds stresses and the velocity fluctuation magnitudes increase with x, hence
the name “nearly" homogeneous shear turbulence. Equation (2.3) for the HST flow
in the center of the wind tunnel becomes,

∂u′

∂t
+ u′ · ∇u′ = −1

ρ
∇p′ + ν∇2u′ − ∂ux

∂y
u′yex

− ux
∂u′

∂x
+
∂u′xu′x
∂x

ex +
∂u′xu′y
∂x

ey . (2.6)

Most simulations of homogeneous shear turbulence use periodic boundary condi-
tions in the x direction without rescaling the velocity, and choose to neglect the
divergence of the Reynolds stress terms. The forcing matrix for NHST at y = 0 is

ANHST = −



0 ∂ux

∂y 0

0 0 0

0 0 0


= BNHST



0 1 0

0 0 0

0 0 0


. (2.7)

The only element of the forcing matrix is due to the shear strain rate ∂ux

∂y , and the
matrix is normalized by that quantity.

2.2.2.2 Mixing Layer

For a spatial mixing layer, the mean flow is primarily in the streamwise direction
(x). The freestream velocity is constant along x, and is 0 for y → +∞ and US

for y → −∞. The center of the shear layer is at y1/2, where the mean streamwise
velocity isUS/2. Far downstream, themixing layer quantities are self-similar and are
only a function of the similarity variable, η ≡ (y − y1/2(x))/δ(x). The mixing layer
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thickness δ increases linearly with x, and y1/2 is linear in x [22]. There is no mean
flow in the spanwise direction (uz = 0) and the flow is statistically homogeneous in
the spanwise direction ( ∂ux

∂z = 0 and ∂uy
∂z = 0).

Equation (2.3) at the center of the mixing layer becomes,

∂u′

∂t
+ u′ · ∇u′ = −1

ρ
∇p′ + ν∇2u′ − ∂ux

∂x
u′xex

− ∂ux

∂y
u′yex −

∂uy

∂x
u′xey −

∂uy

∂y
u′yey − ux

∂u′

∂x
− uy

∂u′

∂y

+
∂u′xu′x
∂x

ex +
∂u′xu′y
∂x

ey . (2.8)

The forcing matrix for the spatial mixing layer at y = y1/2 is

AML = −



∂ux

∂x
∂ux

∂y 0

∂uy
∂x

∂uy
∂y 0

0 0 0


= BML



−0.035 1 0

−0.001 0.035 0

0 0 0


, (2.9)

calculated from the mean velocity profile given by Lumley [52]. The largest element
of the forcing matrix is due to the shear strain rate ∂ux

∂y , and the matrix is normalized
by BML = − ∂ux

∂y (y1/2) = 1.022US

δ .

2.2.2.3 Planar Jet

In a planar jet, the mean flow is primarily in the streamwise direction (x), and the
centerline mean velocity at the jet axis, Uo(x), decays along x as 1/

√
x [13, 35, 65,

86]. The mean velocities are self-similar far from the jet exit, and when normalized
by the centerline velocity, are only functions of the similarity variable, η ≡ y/y1/2(x),
where y1/2 is the half-width of the jet defined by ux(x, y1/2(x)) = Uo(x)/2.

The jet has no mean flow in the spanwise coordinate (z), and no mean gradients
along z. The forcing matrix for the planar jet in the middle of the shear layer at
y = y1/2 is calculated from mean velocity profiles given by Bradbury [13],

APJ = −



∂ux

∂x
∂ux

∂y 0

∂uy
∂x

∂uy
∂y 0

0 0 0


= BPJ



−0.071 1 0

−0.007 0.071 0

0 0 0


, (2.10)
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where BPJ = 0.730 Uo

y1/2
. Once again, the largest contribution to the forcing matrix

comes from the off-diagonal shear strain term. The forcing matrix is comparable to
the mixing layer forcing matrix in Eq. (2.9).

2.2.2.4 Round Jet

For a round jet, Eq. (2.3) is rewritten in cylindrical coordinates for simplicity. The
mean flow is primarily in the streamwise direction (x), and the mean centerline
velocity Uo(x) has a 1/x dependence [15, 59, 1, 10, 40]. We recall the flow is
self-similar and the jet quantities, when normalized by the centerline velocity, are
only functions of the similarity variable η ≡ r/r1/2(x), where r1/2 is the half-width
of the jet.

There is no mean flow in the azimuthal direction (θ), and no mean gradients along
θ. Hence, the forcing matrix for the round jet in the middle of the shear layer at
r = r1/2 as shown in Fig. 2.1d is calculated from mean velocity profiles taken from
Schlichting [77],

ARJ = −



∂ux

∂x
∂ux

∂r 0

∂ur
∂x

∂ur
∂r 0

0 0 ur
r


= BRJ



−0.014 1 0

−0.001 0.037 0

0 0 −0.023


, (2.11)

where BRJ = 0.586 Uo

ro1/2
. Once again, the largest element in the matrix is the off-

diagonal shear strain ∂ux

∂r . The matrix is comparable to the velocity gradient matrix
for planar jets from Eq. (2.10).

2.2.3 Additional source terms
In addition to the mean velocity gradients, there are source terms that arise from
enforcing periodic boundary conditions in the simulation domain [67]. The ve-
locity fluctuations are appropriately normalized to ensure that their second order
statistics are homogeneous, so periodic boundary conditions can be used, and these
normalizations result in additional source terms. Although these source terms can
be calculated for any of the canonical flows mentioned before, the turbulent round
jet case is considered for the following calculations, as it has been researched in
literature in greater detail.
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2.2.3.1 Periodicity in x

As mentioned earlier, in a round jet, the centerline velocity Uo(x) decreases with x

as 1/x. Since the velocity fluctuations are proportional to the centerline velocity,
they also decay along x as 1/x. Under these conditions, the flow is not statistically
homogeneous in the x direction, and it would be inappropriate to assume periodic
boundaries. To lift this limitation, the velocity fluctuations are rescaled by the 1/x
dependence as

u′x = u(x)x
xo

x
u′y = u(x)y

xo

x
u′z = u(x)z

xo

x
,

(2.12)

where u(x) is the velocity fluctuation that is statistically homogeneous along x in
the vicinity of x = xo. This rescaling produces extra elements in the forcing matrix
from theu ·∇u′ term. At x = xo, the forcing matrix due to the periodicity correction
in x is given by

Ax =



ux

xo
0 0

0 ux

xo
0

0 0 ux

xo


. (2.13)

2.2.3.2 Periodicity in r

The simulation assumes periodicity along r as well, but the velocity fluctuations
depend on the radial distance. In order to maintain statistical homogeneity along r ,
the velocity fluctuations are rescaled by their individual r dependences.

u(x)x = u(r)x f (η)
u(x)r = u(r)r g(η)
u(x)θ = u(r)θ h(η),

(2.14)

where u(r) is the velocity fluctuation that is statistically homogeneous along r in
the vicinity of r = ro

1/2 = r1/2(xo). The forcing matrix due to u · ∇u′ applied on
Eq. (2.14) is then



19

Ar =
ur − Sux

ro
1/2



C1 0 0

0 C2 0

0 0 C3


, (2.15)

where S = dr1/2/dx is the spreading rate, C1 = − df
dη (1), C2 = − dg

dη (1) and C3 =

− dh
dη (1). From the velocity fluctuations profiles from Hussein et al. [40], we have at

r = r1/2,

ux = 0.5Uo

ur = 0.014Uo

S = 0.0935

C1 = 0.517

C2 = 0.398

C3 = 0.345.

(2.16)

2.2.3.3 Continuity

The original continuity equation for u′ is

∂u′x
∂x
+

1
r
∂ (ru′r)
∂r

+
1
r
∂u′θ
∂θ
= 0. (2.17)

After the normalization in x and r for periodicity (Eqs. (2.12) and (2.14)), the
continuity equation for u(r) becomes:

∂u(r)x

∂x
+

1
r
∂(ru(r)r )
∂r

+
1
r

∂u(r)θ
∂θ
= (1 − C1)

u(r)x

xo
+ C2

u(r)r

r1/2
. (2.18)

The continuity equation for u(r) has two extra terms. While it is possible to solve
the NS equations with additional terms in the continuity equation, it is preferable
to have no source terms. That is why u(r) is rewritten in terms of u′′, under the
conditions that u′′ = u(r) at {xo, r1/2} and u′′ is divergence free:

u(r)x = u′′x exp [(1 − C1)(x/xo − 1)]
u(r)r = u′′r exp [C2(r/ro

1/2 − 1)]

u(r)θ = u′′θ .

(2.19)
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The forcing matrix due to the continuity correction is

AC =



−ux

xo
(1 − C1) 0 0

0 Sux−ur
ro1/2

C2 0

0 0 0


. (2.20)

The complete transformation from the original velocity fluctuation u′ to the statis-
tically homogeneous, divergence-free velocity fluctuation u′′ is given by

u′x = u′′x
xo

x
f (η) exp [(1 − C1)(x/xo − 1)]

u′r = u′′r
xo

x
g(η) exp [C2(r/ro

1/2 − 1)]

u′θ = u′′θ
xo

x
h(η),

(2.21)

and the transport equation for u′′ at {xo, r1/2} is calculated as

∂u′′

∂t
+ u′′ · ∇u′′ = −1

ρ
∇p′ + ν∇2u′′ + ARJ · u′′ − u · ∇u′′

+ ∇ · u′′u′′ +
[
C1ur

ro
1/2

u′′x +
C1
ro

1/2

(
u′′x u′′r − u′′x u′′r

)]
ex

+

[
ux

xo
u′′x +

1
xo

(
u′′x u′′r − u′′x u′′r

)]
er

+

[
ux(1 − C3)

xo
u′′x +

1 − C3
xo

(
u′′x u′′θ − u′′x u′′θ

)]
eθ

+

[
ur

ro
1/2

u′′x +
C3
ro

1/2

(
u′′r u′′θ − u′′r u′′θ

)]
eθ + visc, (2.22)

with the gradients of the normal stress in ∇ · u′′u′′ being exactly zero, as u′′

is homogeneous in magnitude. Theoretically, the gradient of the Reynolds shear
stress would still exist. However, at r = r1/2, the correlation coefficient, ρxr =

u′xu′r/
(
u′xu′x u′ru′r

)1/2
is near constant [66], and its gradient is near zero. The addi-

tional viscous terms are negligibly small for highly turbulent flows.

The final forcing matrix is calculated as a sum of all of the contributions from
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Eqs. (2.11), (2.13), (2.15) and (2.20), and is given by

AF = ARJ + Ax + Ar + AC ' BRJ



−0.039 1 0

−0.001 0.117 0

0 0 0.038


. (2.23)

It is clear that the final forcing matrix is very close to the matrix from Eq. (2.11),
with less than 6% difference compared to the largest element. The periodicity in
x and r , and the continuity correction do not have significant contributions in the
shear layer of a round jet, whereas it had significant effects at the jet axis [67].

2.2.3.4 Non-linear terms

All the source terms in Eq. (2.23) are linear in u′′; but the transformation from u′

to the statistically homogeneous and divergence-free u′′ in Eq. (2.21) gives rise to
some non-linear source terms owing to the term u′ · ∇u′, as seen in Eq. (2.22).
These non-linear source terms can be written as AN L ·u′′− AN L · u′′, where AN L is
given by

AN L =



C1
ro1/2

u′′r 0 0

0 1−C2
x0

u′′x 0

0 0 1−C3
x0

u′′x +
C3
ro1/2

u′′r


. (2.24)

These terms have similar magnitudes to the linear source terms from Eqs. (2.13)

and (2.15), as
√

u′′x
2/ux ' 0.48 and

√
u′′r

2/ux ' 0.36.

2.2.4 Summary
The simulation considers the forcing matrix calculated at {x, r, θ} = {xo, ro

1/2, 0},
and hence the r-θ direction in the jet coordinates can be replaced by y and z

in the Cartesian coordinate system of the DNS. The velocity solved for in the
simulation correspond to values at the half-width of the jet, {u′x, u′r, u′θ}(xo, ro

1/2, θ) =
{u′′x, u′′y, u′′z }. For simplicity, u′′ would be represented as u′ henceforth.

Some key aspects of this derived forcing must be emphasized. First, the forcing is a
direct result of the physics of the free shear turbulent flows considered; the forcing
term is not arbitrary, and is derived mathematically from the large scales of the mean
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flow. Second, the forcing is not isotropic, which is consistent with results from
experiments of free shear flows, where 〈u′2x 〉 > 〈u′2y 〉 [40, 13]. Third, the forcing in
this case is not purely from the diagonal terms as suggested by Lundgren’s isotropic
turbulence, but rather dominated by an off-diagonal shear term.

Comparing with other Homogeneous Shear Turbulence (HST) simulations, where
the only production term is Bu′yêx, there are additional linear forcing terms on
the diagonal due to mean velocity gradients, renormalizations in order to maintain
periodicity in the x and y/r directions, and continuity corrections. In addition to the
linear diagonal forcing terms, there are also additional forcing terms that are non-
linear in u′. Finally, the mean advection term is calculated as −u · ∇u′ = By ∂u

′

∂x ,
which has been included in past simulations. To avoid confusion with the shear
strain (i.e. energy production) term, this term is referred to as shear convection.

2.3 A priori analysis
Multiple source terms have been computed in the previous section. Their effect
on the turbulence quantities can be estimated using an a priori analysis. Once the
most dominant source terms have been selected, the relationship between the source
terms and other turbulence quantities can be established.

2.3.1 Contribution of source terms
The effect of all the source terms on the turbulence can be observed from the effects
on the turbulent kinetic energy, k = 1

2 〈u′2x + u′2y + u′2z 〉 (〈 · 〉 represents ensemble
average). The transport equation for the turbulent kinetic energy can be obtained
from the velocity fluctuations transport equation as

dk
dt
=

〈
u′i
∂u′i
∂t

〉
. (2.25)

The turbulent kinetic energy equation for the simulation including all the additional
linear and non-linear terms and mean advection terms, is given by

dk
dt
= −ε + P + Pdiag + PN L + Pconv, (2.26)

where ε = 2ν〈si j si j〉 is the energy dissipation rate. All other terms vanish under
statistical homogeneity. The contribution by each of the terms to turbulent kinetic
energy production can be calculated and compared with the most dominant shear
term P = B〈u′xu′y〉. The contribution from the diagonal terms is calculated as,

Pdiag

P =
−0.039B〈u′xu′x〉 + 0.089B〈u′yu′y〉 + 0.038B〈u′zu′z〉

B〈u′xu′y〉
. (2.27)
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Using Reynolds stress values from the round jet results from Hussein et al. [40],
Pdiag
P = 0.117. The contribution from the non-linear terms can also be calculated

as,

PN L

P =
0.82B〈u′xu′xu′y〉 + 0.10B〈u′xu′yu

′
y〉

B〈u′xu′y〉Uo

+
0.10B〈u′xu′zu

′
z〉 + 0.59B〈u′yu′zu′z〉

B〈u′xu′y〉Uo
. (2.28)

Using velocity triple correlation values from the round jet results from Hussein et
al. [40], PNL

P = 0.209. The contribution from the shear convection term is computed
as

Pconv

P =
B

〈
y
∂u′x
∂x u′x + y

∂u′y
∂x u′y + y

∂u′z
∂x u′z

〉
B〈u′xu′y〉

=
By ∂k

∂x

B〈u′xu′y〉
. (2.29)

Because of statistical homogeneity in the x direction, PconvP = 0. In other words,
the advection by the mean term does not contribute to kinetic energy production, as
mentioned earlier. Hence, the shear convection terms are not included in the current
simulation. Further analyses and justifications are provided in Sections 2.3.3 and
2.5.2.

In summary, the shear strain is the most dominant term, contributing to 75% of
the production of turbulent kinetic energy. The linear terms in the diagonal of the
forcing matrix and the non-linear terms contribute to 9% and 16% of the production,
respectively. Similar results are obtained for mixing layers and planar jets. The off-
diagonal shear strain element is at least one order of magnitude larger than the other
elements in the matrix and is the major driving force for turbulence production in
these aptly named free shear flows, accounting for at least 75% of the turbulent
kinetic energy production.

In the current study, for a triply periodic simulation ofHST, it is a good approximation
to use the off-diagonal shear strain, B, as the only forcing term, with the forcing
matrix given by

AHST =



0 B 0

0 0 0

0 0 0


, (2.30)

where B can be chosen based on the simulation parameters and the desired turbulent
Reynolds number. While this term does not inject any external energy, it represents
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Figure 2.2: a) Integral length scale normalized by the domain width, b) Reynolds
shear stress 〈u′xu′y〉 normalized by turbulent kinetic energy, for the four DNS, and c)
comparison of Reynolds number dependence of Reynolds shear stress 〈u′xu′y〉 with
other studies. Dashed lines corresponds to the averaged value obtained from all
simulations in the current study.

the injection of energy into the velocity fluctuations by the mean flow, hence it is
an “effective forcing term" in the spirit of Lundgren’s approach, and is henceforth
referred to as a forcing term for simplicity. This is similar to conventional simulations
ofHST,where the off-diagonal shear strain term is the onlymechanism for turbulence
production [45, 14]. Those studies do not include any of the linear diagonal and
non-linear forcing terms; but they include the shear convection term that does not
contribute to turbulent kinetic energy.

2.3.2 Stationary state analysis
The entire mathematical framework presented in the previous section relies on the
assumption that the velocity field can be decomposed into mean and fluctuating
quantities. Then, the simulations in the current study solve for the velocity fluctua-



25

tions. By construction, these velocity fluctuations represent the fluctuations of the
flow field in a small region of a statistically stationary turbulent flow. Hence, the
fluctuating quantities and their related statistics must reach a statistically stationary
state. This applies to turbulent kinetic energy, dissipation rate, Reynolds stress, and
so on.

Before performing the HST simulations, the target Reynolds number of the sim-
ulation needs to be decided, so that the required grid resolution can be evaluated
in order to fully resolve down to the smallest turbulent scales. The relationship
between the forcing constant B and the Reynolds number needs to be established, in
order to calculate the required shear strain, B. The expected eddy turnover time is
also calculated from the turbulent kinetic energy and the energy dissipation rate, in
order to determine the total simulation time. These expected turbulence quantities
are estimated from the stationary state of these simulations.

The turbulent kinetic energy equation for this HST forcing, assuming spatial homo-
geneity, is

dk
dt
= −ε + B〈u′xu′y〉. (2.31)

At statistically stationary state, the energy dissipation rate is

ε = B〈u′xu′y〉. (2.32)

This should be compared to the stationary state with the isotropic forcing [20],

ε = 2Ak (2.33)

The cross correlation in Eq. (2.32) can be written in terms of the turbulent kinetic
energy, 〈u′xu′y〉 = βk, where β is a non-dimensional parameter.

The integral length scale, `, is defined as,

` =
u3

rms

ε
=

2urms

3βB
, (2.34)

with

urms =

√
2k
3
=

3
2
βB`. (2.35)

The Taylor micro-scale, λ, is calculated as

λ =

√
15
ν

ε
urms . (2.36)
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The expected Taylor micro-scale Reynolds number for HST is calculated as

Reo
λ =

√
45βB`2

2ν
. (2.37)

For isotropic turbulence simulations, it was given by Carroll and Blanquart [20],

Reo
λ =

√
45A`2

ν
'

√
9AL2

5ν
, (2.38)

as `/L ' 0.2 for isotropic turbulence in a triply periodic box domain [72, 20], where
L is the domain width. As will be shown from numerical results in Fig. 2.2a and
2.2b, β ' 0.4 and `/L ' 0.28 for HST. So, given the same domain width and
viscosity, DNS of HST can be performed with the same Reynolds number as DNS
of homogeneous isotropic turbulence, using the forcing constant B ' 3.2A.

The expected values for turbulent kinetic energy, ko, and energy dissipation rate, εo,
can be calculated as

ko =
3
2

u2
rms =

27
8
β2B2`2, (2.39)

and
εo =

u3
rms

`
=

27
8
β3B3`2. (2.40)

The expected eddy turnover time τo is given by

τo =
ko

εo
=

1
βB
' 25

32A
, (2.41)

which is slightly higher than for the isotropic case, where τo =
1

2A [20].

2.3.3 Shear convection
The proposed HST simulation has a key difference from most simulations of shear
turbulence [14, 45, 41, 50]; it does not include the shear convection term By ∂u

′

∂x .
The shear convection term requires either a remeshing scheme after every few
iterations [68] or implementing shear periodicity along the y direction to avoid
boundary discontinuities [14, 41, 45]. It is often accomplished by using operator
splitting [45, 31], which may introduce further errors in the computational solution.

As mentioned earlier, the shear convection term does not contribute to turbulent
kinetic energy production (see section 2.3.1), as Pconv = 〈By ∂u

′

∂x · u′〉 = 0 due to
spatial homogeneity. That being said, it may still impact the turbulent flow. To
quantify this impact, we evaluate the shear strain produced by the advection term
and compare it to the existing shear strain due to the turbulence. The shear strain
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Table 2.1: Simulation parameters of the different cases of shear turbulence simula-
tions

No Reo
λ N3 L ν B Forcing Matrix Reλ

1 36 643 2π 0.159 7.33 AHST 32 ± 6
2 54 1283 2π 0.159 16.5 AHST 52 ± 9
3 80 1923 2π 0.159 37.1 AHST 80 ± 13
3a 80 1923 2π 0.159 37.1 AF 80 ± 15
3b 80 1923 2π 0.159 37.1 AF + AN L 80 ± 13

3c 80 1923 2π 1) 0.159
2) -0.0159 37.1 AHST 121 ± 20

3d 80 1923 2π 0.1431 37.1 AHST 85 ± 10
4 128 3843 0.126 1.5e−5 2.77 AHST 135 ± 23

due to the convection term can be calculated as ∂ux

∂y = B and compared against the

existing shear strain due to the turbulence, ∂u′x
∂y . Since

〈
∂u′x
∂y

〉
= 0, the second order

statistics are compared as,

B2〈(
∂u′x
∂y

)2
〉 = 15ν

2 B2

15ν
2

〈(
∂u′x
∂y

)2
〉 ' 15νB2

2ε
=

50
β2Re2

λ

, (2.42)

with the isotropic assumption that ε ' 15ν
2

〈(
∂u′x
∂y

)2
〉
. For Reλ = 100, the ratio

is 0.031. Hence, the impact of the shear convection term is small, and decreases
with increasing Reynolds number. Thus, the shear convection term is omitted for
true spatial homogeneity and numerical efficiency. Its impact will be discussed in
Section 2.5.2.

2.4 Numerical results
2.4.1 Simulation
Direct numerical simulations of homogeneous shear turbulence are performed in a
triply periodic box domain that is statistically homogeneous in all three directions.
Simulations are performed with a domain width of L = 2π, and various Reynolds
numbers Reλ.

The simulations are performed using NGA [27], a semi-implicit velocity solver
with an energy-conserving finite difference scheme on a standard staggered grid.
The code solves the Navier-Stokes equations with the derived source term from
Eq. (2.30) for constant density, temperature, and viscosity.
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Figure 2.3: a) Turbulent kinetic energy normalized by its expected value (Eq. 2.39).
b) Energy dissipation rate normalized by its expected value (Eq. 2.40). c) Taylor
microscaleReynolds number, Reλ, forDNS3. Dashed line corresponds to Reo

λ = 80.

The initial velocity fields are generated randomly, using the method suggested by
Eswaran and Pope [28]. These velocity fields conform to a specified Passot-Pouquet
energy spectrum [60] and are divergence free, as is required for constant density
flows.

Multiple simulations are performed at different expected values of Reλ. The simu-
lation parameters for the four different cases are tabulated in Table 2.1. Cases 1 and
2 were performed to investigate low Reynolds number effects, if any. Cases 3 and 4
are chosen so the Reynolds number is comparable to simulations and experiments,
published in literature (See Table 2.3 for a full list of experimental and full domain
DNS studies). More precisely, case 3 has a similar Reynolds number to cases 1 [70],
4 [86] and 8 [10] from Table 2.3; case 4 has a Reynolds number close to cases 5 [35]
and 9 [88] in Table 2.3.

The simulations were performed for a total of 50 eddy turnover times, during which
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Table 2.2: Results from shear turbulence simulations in triply periodic cubic simu-
lations

No Reo
λ Reλ u′x/urms u′y/urms u′z/urms 〈u′xu′y〉/k `/L

1 36 32 ± 6 1.26 0.90 0.77 0.42 0.24
2 54 52 ± 9 1.23 0.93 0.78 0.41 0.27
3 80 80 ± 13 1.23 0.92 0.78 0.39 0.28
3a 80 80 ± 15 1.21 0.94 0.79 0.39 0.27
3b 80 80 ± 13 1.20 0.95 0.80 0.38 0.26
3c 80 121 ± 20 1.23 0.93 0.79 0.37 -
3d 80 85 ± 10 1.23 0.94 0.78 0.39 0.29
4 128 135 ± 23 1.22 0.93 0.80 0.38 0.31

the simulations were stable. The average values for the numerical results were
calculated in the range, 10τo to 50τo.

2.4.2 Temporal evolution
Since the configuration is periodic in all three directions, and spatially homogeneous,
ensemble averaged mean quantities are calculated as spatial averages (〈 · 〉). These
spatial averages are plotted as a function of time.

The time evolution of the integral length scale is plotted in Fig. 2.2a, and after an
initial transient period of at most 10τo gives a mean value of about 0.28L, which
is slightly higher than the 0.2L for isotropic turbulence observed by Rosales and
Meneveau [72]. The integral length scale reaching a statistically stationary value
of the order of the domain width is consistent with past simulations of statistically
stationary homogeneous shear turbulence [81].

Since the largest gradient of the mean flow is the shear strain ∂ux

∂y , the only significant
Reynolds stress term is 〈u′xu′y〉. This is reflected by the simulation, as the forcing
term is in the equation for the axial velocity (u′x), proportional to the cross-stream
velocity (u′y). So, it is expected that u′x and u′y have a significant positive correlation.
This is one of the major differences between HIT and HST, as there is no correlation
among the velocities in different directions for the isotropic case. Figure 2.2b shows
the 〈u′xu′y〉 values normalized by k at different Reλ. It can be seen that after 5τo, the
values fluctuate around 0.4 for all cases, in good agreement with each other.

The average value of Reynolds shear stress from all simulations of the current study
is also plotted in Fig. 2.2c and compared with values from various simulations
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Table 2.3: Anisotropy results from various experiments and simulations of different
free shear turbulent flows. Average values of u′i/urms and 〈u′xu′y〉/k in the middle of
shear layers of ML (mixing layers), PJ (planar jets), and RJ (round jets). S corre-
sponds to simulations, E corresponds to experiments, C corresponds to calculations.

No Case Reλ u′x/urms u′y/urms u′z/urms 〈u′xu′y〉/k

1 MLS [70] 60–69 1.10 0.88 1.01 0.33

2 MLE [58] 155 1.15 0.93 0.91 0.32

3 MLE [89] 186 1.13 0.88 0.97 0.25

4 PJS [86] 89–92 1.05 1.02 0.92 0.26

5 PJE [35] 122 1.33 0.75 0.81 0.28

6 PJE [13] 148–154 1.15 0.93 0.90 0.34

7 PJC [65] −1 1.28 0.85 0.81 0.42

8 RJS [10] 80 1.21 0.84 0.92 0.29

9 RJS [88] 113 1.21 0.90 0.85 0.27

10 RJE [59] 172 1.23 0.86 0.86 0.33

11 RJE [29] 232 1.21 0.88 0.88 −

12 RJE [16] 309 1.29 0.82 0.82 0.33

13 RJE [40] 508 1.17 0.88 0.92 0.28
1.20 0.84 0.92 0.37

14 RJE [90] 520 1.22 0.86 0.88 0.23
1 Planar jet calculations were performed by Pope using a Monte Carlo method to
solve the joint pdf equation. These results correspond to the high Reynolds number
limit, and are plotted at Reλ = 1000 in Fig. 2.2c and 2.4b. These values agree very

well with results from the current study.
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Figure 2.4: a) Rms velocity components along x, y, and z, normalized by urms, for
DNS 3. (Reo

λ = 80) b) Mean values for velocity fluctuations normalized by urms
from other studies plotted versus Reλ. Dashed lines correspond to the averaged
values from the current simulations (1.24, 0.92, and 0.78 respectively). c) Average
values of rms vorticity components along different directions normalized by ωrms
plotted versus Reλ. Dashed line corresponds to isotropic turbulence.

and experiments plotted as a function of Reynolds number. The current study
overpredicts the Reynolds shear stress, by about 1.5σ compared to values from
other studies, and there seems to be no clear dependence on Reλ.

The turbulent kinetic energy and energy dissipation rate, normalized by their re-
spective expected values calculated from Eq. (2.39) and (2.40), are plotted versus
time for the different cases in Fig. 2.3. The values fluctuate around the expected
values, so the estimation of ko and εo are accurate. The fluctuations increase in
magnitude with increasing Reynolds number. This is expected, as linear forcing
becomes more unstable with higher Reynolds number, as observed by Carroll and
Blanquart [20], who used a modification to the linear forcing term to improve sta-
bility. In contrast, the current forcing term uses constant mean shear, as opposed to
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the constant production forcing used by Carroll and Blanquart [20].

Figure 2.3c shows the Reynolds number, based on Taylor micro-scale, versus time
for case 3, and it can be observed that Reλ fluctuates around the expected value (80,
in this case) after a transient period of about 5τo.

2.4.3 Directional anisotropy
Second-order statistics can be analyzed to gather information about the velocity
fluctuations and consequently about the turbulence. The magnitudes of the velocity
fluctuation components (|u′x |, |u′y |, and |u′z |) are calculated from the root mean square

(rms) of the fluctuating velocity components (e.g., |u′i | =
√
〈u′2i 〉). Because of the

anisotropic nature of free shear flows, it is expected that the velocity fluctuations
will be larger in magnitude along the axial direction. This is corroborated by other
simulations and experiments in Table 2.3, and is reflected in the forcing. Although
the forcing is only along the axial direction, turbulence redistributes some of the
fluctuations to the other directions, while maintaining higher fluctuations in the axial
direction.

Figure 2.4a plots the velocity fluctuation components along the x, y, and z directions
normalized by urms for Reo

λ = 80. For isotropic turbulence, velocity fluctuations
are expected to be similar along all directions, and hence |u′i |/urms ' 1. For HST,
as expected, the axial direction has the largest fluctuations, and the cross-stream
direction and spanwise direction have smaller fluctuations. The results follow
the same trend for all Reynolds numbers considered. The average values from
the four cases of our current study are |u′x |/urms ' 1.25, |u′y |/urms ' 0.91 and
|u′z |/urms ' 0.78.

The average values of rms velocity components are plotted in Fig. 2.4b, along with
data from multiple simulations and experiments of mixing layers, planar jets, and
round jets, plotted versus Reynolds number. The current simulation solves for u′′,
and from Eq. (2.21), u′′ = u′ at xo, ro

1/2. Therefore, the spatially-averaged results of
the current study can be compared against temporally-averaged values in the middle
of shear layers. All of the free shear flows seem to agree well with each other. The
results from the current study agree reasonably well with the values from literature
within 1σ, except for |u′z |/urms, where the current study underpredicts the values, by
2σ. Also, there seem to be no Reynolds number effects on the velocity fluctuation
magnitudes, as the values remain constant across a large range of Reλ.

The anisotropy in the smallest turbulent length scales can be observed using the
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root mean square of the vorticity components (|ωx | =
√
〈ω2

x〉, etc), normalized by
the rms vorticity, ωrms =

√
〈ω · ω〉/3. Kolmogorov suggested that at very high

Reynolds number, the turbulence is isotropic at the smallest turbulent length scales
and hence, the vorticity would be statistically isotropic with |ωi | ' ωrms. As shown
in Fig. 2.4c and as expected, the averaged vorticitymagnitudes reach isotropic values
with increasing Reynolds numbers.

2.4.4 Energy spectrum
The one dimensional energy spectra for the velocity are calculated from the sim-
ulation results of DNS 1-4. Leveraging the flow homogeneity, energy spectra are
calculated using one-dimensional Fourier transforms in the x direction, (F1(u)) in
space at different times during the simulations, E(κ1) = F1(u) · (F1(u))∗ versus the
wavenumber in the x direction, κ1, where ·∗ represents the complex conjugate. The
final spectrum plotted in Fig. 2.6a is calculated as the mean of the spectra from
all data files from 10τo to 50τo, at time intervals of 0.5τo for data independence.
Figure 2.6a shows the energy spectra of all the four simulations. The spectra are
normalized by the Kolmogorov length and velocity scales and show a collapse at
all wavenumbers. The four spectra follow well the κ−5/3

1 spectrum expected from
turbulence simulations.

As mentioned earlier, the conditions of DNS 4 were selected to match the DNS of
Rogers and Moser [70]. Rogers and Moser performed a simulation of a temporally-
evolving mixing layer using a Galerkin spectral method with 512×210×192 Fourier
modes. They reported one-dimensional energy spectra in x1 (streamwise) and x3

(spanwise) calculated at a Reynolds number of Rem ' 2000. The one-dimensional
spectra, E(κ1) and E(κ3), are calculated for DNS 4 and plotted in Fig. 2.5, where
E(κ3) = F3(u) · (F3(u))∗, where F3(u) is the one dimensional Fourier transform
of the velocity in the z direction. The one-dimensional spectra, E(κ1) and E(κ3),
follow that

∫
E(κi)dκi = 〈u′2x + u′2y + u′2z 〉 = 2k, i = 1, 3 and are plotted versus

wavenumber in the two directions κ1 and κ3. It is seen that E(κ1) and E(κ3) are
nearly indistinguishable, and these plots agree well with the spectra from Rogers
and Moser [70]. Note that the ranges of wavenumbers are different between the
two simulations, because of different domain sizes and resolutions. This spectral
analysis shows that the simulations reproduce shear-driven turbulence in the spectral
sense as well.
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Figure 2.5: Comparison of one-dimensional energy spectra along x and z directions.
R & M refers to the energy spectra published by Rogers and Moser [70].
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Figure 2.6: a) Energy spectra normalized by ε and ν. b) Shear stress spectra
normalized by ε and ν. The dashed line corresponds to turbulence scaling from
literature, κ−5/3 in a) and κ−7/3 in b).

2.4.5 Production spectrum
Finally, the one-dimensional spectra for the turbulent kinetic energy production
are calculated from the shear stress spectra. The shear stress spectrum, E12(κ1) is
calculated from the same data files as the energy spectrum, as

E12(κ1) = 0.5
[
F1(ux) ·

(
F1(uy)

)∗
+ F1(uy) · (F1(ux))∗

]
such that

∫
E12(κ1)dκ1 = 〈u′xu′y〉. The production spectra are plotted versus

wavenumber in Fig. 2.6b. The wavenumber and the spectra are normalized with B
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and Kolmogorov length and velocity scales, uη = (νε)1/4, and the spectra show a
collapse at all wavenumbers.

It is seen that the production spectra scale as κ−7/3
1 as suggested by Lumley [52].

The production spectra decay faster than the energy spectra, which scale like κ−5/3
1 .

Hence the production to energy ratio is higher in the large scales, and gets smaller
approaching the small scales. In contrast, linear isotropic turbulence forces velocity
proportional to the energy among all scales [53, 20] and most spectral techniques
only force velocity over a low wavenumber bandwidth [28, 32, 17, 23].

2.5 Additional considerations
As mentioned earlier, all of these simulations were performed with a single off-
diagonal forcing term. However, the additional diagonal terms from the velocity
gradients and the diagonal and non-linear terms from the periodicity and continuity
corrections can also be included in the simulation as forcing terms. The impact of
these additional forcing terms are analyzed by comparing the simulations with and
without them.

2.5.1 Linear diagonal and non-linear source terms
Simulation 3 was repeated as DNS 3a with all the linear diagonal terms from
Eq. (2.23) and as DNS 3b with all linear and non-linear terms from Eq. (2.24). This
second simulation is the closest representation to the half-width of the turbulent
round jet.

2.5.1.1 Anisotropy and energy production

DNS 3a gives an average value of 〈u′xu′y〉 = 0.39 and DNS 3b gives an average value
of 〈u′xu′y〉 = 0.38, which are both very close to the results fromDNS 3. The diagonal
terms only contribute to about 7% of the turbulent kinetic energy production, and
the non-linear terms are responsible for 12% of it in DNS 3b. These results are
slightly less than our a priori estimate of the contributions (see section 2.3.1). The
off-diagonal term is the major contributor to the production, accounting for 93%
and 81% of the kinetic energy production in DNS 3a and 3b respectively.

2.5.1.2 Turbulent kinetic energy budget

The various terms in the budget of the turbulent kinetic energy, namely the produc-
tion, advection, turbulent diffusion, and the dissipation, are calculated and compared
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against the turbulent kinetic energy budget for the turbulent round jet. The current
simulations correspond to the location of the half-width of the round jet, and should
be compared against the experimental values at r = r1/2.

The budget values are plotted in Fig. 2.7 and comparedwith the experiment results of
Panchapakesan and Lumley [59]. The forcingmatrix from the velocity gradients cor-
responds to production, Prod = 〈u′ ·∇u ·u′〉 = 〈u′ ·AG ·u′〉; the diagonal elements
of the forcing matrix from the renormalization matrices Ax and Ar correspond to ad-
vection, Adv = u·∇k = 〈u′ ·Ax ·u′〉+〈u′ ·Ar ·u′〉; and the turbulent diffusion can be
calculated from the triple correlation, Di f f = ∇ · 〈u′k〉 = 〈ku′y〉/r1/2 + 3〈ku′x〉/xo.
The dissipation rate is calculated as Diss = −ε. These quantities are calculated
from the three simulations, regardless of what the forcing matrix is. All the values
are normalized by U3

o/r1/2, where Uo is calculated as Uo =
√

k/0.062 [40] and r1/2

is calculated as r1/2 = 0.586Uo/B [77].
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Figure 2.7: Normalized turbulent kinetic energy budget. The lines correspond to
experimental results from Panchapakesan and Lumley [59]. Symbols correspond to
different simulations: DNS3 - circles, DNS 3a - triangles, DNS 3b - squares.

As expected, the major contributions to the budget are from production and dissipa-
tion, and the advection and diffusion are closer to zero. The advection by the mean is
accurately represented by the simulation, whereas the production and dissipation are
slightly over-predicted. This result is consistent with the over-prediction of the shear
Reynolds stress 〈u′xu′y〉 (see Fig. 2.2c), and the dissipation increasing to match the
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turbulent kinetic energy production. The diffusion value of case 3b matches fairly
well with the experimental results, as they include non-linear source terms which
appear as diffusion terms (triple correlations) in the kinetic energy budget, while
case 3 and 3a show zero diffusion. Apart from this, there are very small differences
between the simulations without the diagonal terms (case 3), with the diagonal terms
(case 3a), and with the non-linear terms (case 3b). In fact, the dissipation values
from DNS 3 are closer to the experimental results. Hence, adding the additional
source terms do not make any improvement in the turbulent kinetic energy budget,
except in the turbulent diffusion.

The simulations involve a balance between the two major contributors, production
and dissipation. As seen in Fig. 2.8, the ratio of production to dissipation of kinetic
energy fluctuates around a value of 1.0 (for our DNS), after an initial increase.
The current simulation method focuses only on the velocity fluctuations and by
definition has to be statistically stationary in the long term. This is in fact true as the
simulation is stable in the long term, and reaches a stationary state where production
and dissipation balance each other. The simulations by Kasbaoui et al. however had
to be stopped at Bt = 20, because of the exponential growth of the kinetic energy,
where P/ε ratio is much higher than 1 for all the simulations [45]. While being
higher than 1, the ratio of P/ε in all three cases have the general same evolution and
seem to tend towards unity.
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Figure 2.8: Ratio of production to dissipation of kinetic energy. The blue line
corresponds to simulations in the current study and the three lines correspond to
three simulations by Kasbaoui et al., with different initial conditions.
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2.5.1.3 Velocity correlations

The velocity correlation between u′x and u′y is analyzed by plotting their joint pdf.
Contour plots of the probability density function at different velocity fluctuation
values are shown in Fig. 2.9. High probability is found near small values of the
velocity fluctuations, and a positive correlation is observed from the positive tilt of
the contours. There seems to be few discernible differences between the simulations
with only the off-diagonal term (case 3), and with additional diagonal and non-linear
terms (case 3b). The key difference is in the skewness of the velocity component
towards the negative values, and the maximum being away from the origin for case
3b.
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Figure 2.9: Joint pdf of the normalized velocity fluctuations in the x and y directions
from simulationwith a) just the off-diagonal term, and b) linear and non-linear terms.

The marginal pdf of the velocity fluctuations in the x and y directions are plotted
in Fig. 2.10. It was verified that the mean of the velocity fluctuations are zero,
despite the high skewness observed in the results of DNS 3b. The velocity fluctu-
ations in the x direction (u′x) show larger differences between the two simulations.
The normalized skewness and flatness for DNS 3 are 〈u′′3〉/〈u′′2〉1.5 = −0.03 and
〈u′′4〉/〈u′′2〉2 = 2.83 respectively, while for DNS 3b gives 0.41 and 3.06 respec-
tively. The differences are less prominent in velocity fluctuations in the y direction
(u′y). The skewness and flatness values are −0.01 and 3.02 for DNS 3 and 0.26 and
3.14 for DNS 3b respectively. The skewness values from DNS 3b are comparable
to those calculated from the experiments of Hussein et al [40], 0.37 for u′x and
0.45 for u′y, and Panchapakesan and Lumley [59], 0.44 for u′x and 0.39 for u′y. The
flatness values for both simulations are near 3.0, which is the flatness for normal
distributions.
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directions from simulation with just the off-diagonal term, and linear and non-linear
terms.

2.5.2 Advection by the mean
As mentioned in section 2.3, homogeneous shear turbulence has been simulated in
the past using the off-diagonal production term (Bu′y), and the advection by the mean
term (By ∂u′

∂x ). The production term has been included in all the simulations in the
current study. The mean advection is represented by the renormalization matrices,
Ax and Ar as forcing terms, and captured correctly in the turbulent kinetic energy
budget (see section 2.5.1.2). The only effect missing is the straining induced by the
mean flow [45, 50, 14, 41].

Multiple studies have performed sheared turbulence simulations by including the
shear convection term, but do not reach long term stability and as a result, usually
run only until Bt = 28 or lower [45, 50, 14, 41, 71]. Kasbaouiet al.’s [45] study
represents one of the best cases of the past studies, reaching Bt = 20, which
corresponds to t/τo = 8 in our case. Their simulations of sheared turbulence also
include the shear convection term, which was implemented using operator splitting.
Only a brief description of the multi-step procedure is given here. The reader is
referred to Ref. [45] for more details. Step 1 starts with the velocity vector un,
and the momentum equation is solved with the production term included, resulting
in u, referred to as u1 henceforth. Then, step 2 is to apply the shear-remapping,
by ǔ(x) = u1(x − By∆t) and apply a pressure correction, to get un+1 which is
divergence free, referred to as u2. The boundary conditions in the y direction are
shear periodic, such that f (x, Ly, z) = f (x − BtLy, 0, z).

The simulations in our current study solve for the momentum equation with the
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production term, hence the velocity field corresponds to u1. To quantify the effect
of step 2, the shear convection term is applied a posteriori. Specifically, the velocity
field is convected in the x direction proportional to the distance in the y direction
from the bottom of the domain. The time step ∆T is chosen such that the difference
in displacement at y = 0 and y = Ly is exactly one grid point, that is BLy∆T = ∆x.
This time step was of similar magnitude and slightly higher than the time step per
iteration, ∆t, in the current study. The pressure correction is then applied to obtain
the divergence-free velocity field, u2.

Table 2.4: Turbulence quantities before and after shear remapping.

Reo
λ k/ko

u1
〈u′xu′y〉/k ε/εo k/ko

u2
〈u′xu′y〉/k ε/εo

Drop
in ε

36 0.842 0.430 1.018 0.842 0.432 0.876 13.9%
54 0.972 0.415 1.139 0.972 0.415 0.984 13.5%
80 0.918 0.394 0.955 0.918 0.394 0.865 9.4%

128 1.019 0.381 0.997 1.019 0.381 0.910 8.7%

The turbulence quantities are calculated from the original data files (corresponding
to the velocity field after step 1, u1) and from the shifted data files (corresponding
to the velocity field after step 2, u2 using appropriate boundary conditions). The
average quantities are summarized in Table 2.4. As expected (see section 2.3.1),
the turbulent kinetic energy and the Reynolds shear stress are not affected at all.
The only change observed is a reduction in the viscous dissipation rate, ε, by about
8 − 14%. The drop in ε decreases with increase in Reynolds number, which is
consistent with the a priori analysis of shear convection (see Section 2.3.3).

The effect of shear convection on the turbulent kinetic energy can be emulated
by decreasing the viscous dissipation rate in two different ways. First and to be
consistent with the splitting procedure of Kasbaoui et al. [45], a new simulation
DNS 3c is performed, where step 1 is to solve the momentum equation with the
production term (ν1 = ν) and step 2 is to solve the equation,

∂u′′

∂t
= ν2∇2u′′, (2.43)

with ν2 = −0.10ν. This emulates the shear convection term with the operator
splitting aspect, where solving the momentum equation and the shear convection
are executed as different steps. While these methods likely do not capture all the
physical effects of the shear convection, it aims to emulate the biggest effect of shear
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Figure 2.11: Evolution of turbulent kinetic energy normalized by the expected value
(Eq. 2.39) for different treatment of the shear convection term.

convection on the turbulence statistics.

Alternatively, if there were no operator splitting and all the operations were to be
performed in one step, it would correspond to solving the momentum equation with
the production term, and an effective viscosity, νe f f = ν1 + ν2 = 0.90ν. DNS 3d
is performed under these conditions, which correspond to the same parameters as
DNS 3 with ν = 0.1431 instead of 0.159. Figure 2.11 shows the evolution of kinetic
energy from the three simulations, DNS 3, DNS 3c, and DNS 3d. Unsurprisingly,
DNS 3 and 3d are very similar. Effectively, DNS 3d is a simulation with the pure
shear and only a different viscosity, i.e. a different Reynolds number. However, when
shear convection is emulated with operator splitting, the evolution of the turbulent
kinetic energy is completely different. It is striking that such a small reduction in
ε (about 10%) has such a large effect on k (about 500%). From this comparison,
proper care must be taken while using operator splitting, considering the numerical
implications and errors associated with it.

In the current simulations, the time step per iteration, ∆t is approximately equal
to ∆T , the time taken for a shift by one grid point. As the actual time step, ∆t

is reduced, the shear convection term would be applied only every Ns = ∆T/∆t

iterations, and its contribution would decrease linearly with decrease in ∆t. This
first order error (in ∆t) is consistent with Godunov-style splitting schemes.
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2.6 Conclusions
The velocity field was decomposed into the mean and fluctuating component, and
the additional terms in the fluctuating velocity transport equation. The production
term was calculated from the mean velocity gradients, as linear forcing terms in
the momentum equation. Additional linear and non-linear source terms arise from
rescaling the velocity field for periodicity and continuity.

An a priori analysis was performed to calculate the expected kinetic energy, dissipa-
tion rate and their scaling dependence on the forcing constant and the domain width
at a statistically stationary state. The effect of shear convection was also calculated
a priori, and was negligible al large Reynolds numbers.

DNS of shear turbulence was performed in triply periodic cubic domain at different
Reynolds numbers. Anisotropy is observed both in the components of velocity and
vorticity, with stronger Reynolds number dependence in the anisotropy of vorticity.
Energy spectra obtained from the present homogeneous shear turbulence agree well
with the spectra from temporally evolving shear layers. The results also highlight
the effects of the additional forcing terms that were neglected in previous studies
and the role of shear convection and the associated splitting errors in the unbounded
evolution of previous numerical simulations.
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C h a p t e r 3

INCOMPRESSIBLE TURBULENCE SIMULATIONS IN
NON-CUBIC AND NON-HOMOGENEOUS COMPUTATIONAL

DOMAINS

3.1 Introduction
The simulations in the previous chapter were performed in cubic and periodic do-
mains. However, performing turbulent flame simulations with similar linear forcing
techniques requires cuboidal domains with non-periodic boundary conditions. The
domain needs an inflow to introduce more reactants into the domain and an outflow
to remove the combustion products, as the flame constantly consumes the reactants
and creates products. Furthermore, the domain length needs to be longer in the
direction perpendicular to the average flame front, so that the boundary conditions
do not affect the flame behavior. An analysis of the turbulent behavior at high as-
pect ratio and with non-periodic boundary conditions needs to be completed before
performing simulations of turbulent flames.

The numerical approach for investigating the effects of aspect ratio is presented in
Section 3.2 and the results are discussed in Section 3.4. The numerical approach
for performing turbulence simulations with inflow and outflow is detailed in Section
3.5 and the results are provided in Section 3.6.

3.2 Numerical setup
The momentum equation solved in the isotropic simulations is given by

∂u

∂t
+ ∇ · (u ⊗ u) = −∇p

ρ
+ ν∇2u + Au′, (3.1)

where A is the isotropic forcing constant, using Lundgren’s [53] isotropic forcing
technique. The momentum equation solved in the shear simulations is given by

∂u

∂t
+ ∇ · (u ⊗ u) = −∇p

ρ
+ ν∇2u + Bu′xey, (3.2)

where B is the shear forcing constant. Note that in the following simulations, the
forcing is applied in the y direction, and is proportional to the velocity fluctuations
in the x direction.
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All simulations in the current section rely on periodic boundary conditions and hence
they result in statistical homogeneity in all three directions. Therefore, ensemble
averages can be replaced by volume averages, calculated as

〈a〉(t) = 1
V

∫
x

∫
y

∫
z

a(x, y, z, t) dx dy dz. (3.3)

The simulation parameters for the different simulations are presented in Table 3.1.
We consider two domains with very different aspect ratios. The first one is identical
to the one in Chapter 2, where the domain is cubic with a domain width of L in each
direction. The second one is elongated in the x direction by a factor of eight.

Table 3.1: Simulation parameters of the triply periodic domain simulations.

Cubic Cuboidal
Isotropic Shear Isotropic Shear

Domain size L × L × L 8L × L × L
Grid 128 × 128 × 128 1024 × 128 × 128
f Au′ Bu′xey Au′ Bu′xey

Ret 160 220 130 200
Reλ 50 60 45 55
`/L 0.18 0.26 0.16 0.25

The domain width, viscosity, and the forcing constant are kept constant between the
simulations, so the effects of the aspect ratio on the turbulent flow can be isolated
and analyzed. The simulations are performed using NGA [27], a semi-implicit
velocity solver with an energy-conserving finite difference scheme on a standard
staggered grid. The code solves the Navier-Stokes equations for constant density,
temperature, and viscosity. The simulations are initialized with velocity fields from
the results of simulations from DNS 2 of the previous chapter, at similar turbulence
parameters. The velocity fields are rescaled, and copied over eight times for the
initial conditions of the cuboidal simulations, and random small perturbations (of
1% magnitude compared to urms) in velocity are included to break symmetry. The
two forcing constants are related by B = 3.2 A, as calculated from Chapter 2.

3.3 Stationary state analysis
By construction (see chapter 2), the velocity field represents the fluctuations of the
flow field in a small region of a statistically stationary turbulent flow. Hence, the
fluctuating quantities and their related statistics must reach a statistically stationary
state. This applies to turbulent kinetic energy, dissipation rate, Reynolds stress,
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etc. We briefly review the scaling found in Carroll and Blanquart’s study [20], and
Chapter 2.

The turbulent kinetic energy equation for the isotropic turbulence forcing, assuming
spatial homogeneity, is

dk
dt
= −ε + 2Ak . (3.4)

At statistically stationary state, the energy dissipation rate is

ε = 2Ak . (3.5)

The integral length scale, `, is defined as,

` =
u3

rms

ε
=

urms

3A
, (3.6)

with

urms =

√
2k
3
= 3A`. (3.7)

The expected turbulent Reynolds number is calculated as,

Reo
t,i =

urms`

ν
=

3A`2

ν
, (3.8)

The Taylor micro-scale, λ, is calculated as

λ = urms

√
15
ν

ε
. (3.9)

The expected Taylor micro-scale Reynolds number is given by

Reo
λ,i =

√
45A`2

ν
, (3.10)

and the expected values for turbulent kinetic energy, ko,i, and energy dissipation
rate, εo,i, can be calculated as

ko,i =
3
2

u2
rms =

27
2

A2`2, (3.11)

and
εo,i =

u3
rms

`
= 27A3`2. (3.12)

The expected eddy turnover time τo, i is given by

τo,i =
ko,i

εo,i
=

1
2A

. (3.13)
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`/L ' 0.18 for isotropic turbulence in a triply periodic box domain [72, 20], where
L is the domain width. It was shown in Chapter 2 that for HST, urms = 3Bβ`/2.
The expected values for turbulent kinetic energy, ko,s, and energy dissipation rate,
εo,s, can be calculated as

ko,s =
3
2

u2
rms =

27
8
β2B2`2, (3.14)

and
εo,s =

u3
rms

`
=

27
8
β3B3`2. (3.15)

The expected turbulent Reynolds number is calculated as,

Reo
t,s =

urms`

ν
=

3Bβ`2

2ν
, (3.16)

and the expected eddy turnover time, τo, is given by

τo,s =
ko,s

εo,s
=

1
βB

. (3.17)

Table 3.2: Scaling parameters of the incompressible turbulence simulations.

Isotropic Shear Advection
Cubic Cuboidal In/Outflow(I/O) Cubic Cuboidal I/O I/O

ko 27A2`2/2 27β2B2`2/8
εo 27A3`2 27β3B3`2/8

Reo
t 3A`2/ν 3Bβ`2/2ν

V 0 0 0 0 0 0 Vey
`/L 0.18 0.16 0.16 0.26 0.25 0.23 0.33
β 0 0 0 0.40 0.38 0.41 0.31

3.4 Impact of aspect ratio
All four simulations are performed for 100 eddy turnover times, τ, and averages
are calculated after a transient period of 10τ. The effects of the aspect ratio on
the turbulence and flow anisotropy are discussed in the following subsections. The
effects of the aspect ratio on the turbulence quantities are analyzed by observing the
differences between the cubic and cuboidal simulations for both isotropic and shear
turbulence.

3.4.1 Isotropic turbulence
The turbulent Reynolds number and the normalized integral length scale are shown
in Fig. 3.1. The two simulations have similar initial profile, but the cuboidal case
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Figure 3.1: Isotropic turbulence simulation results. Time evolution of the turbulent
Reynolds number (a), integral length scale normalized by the domain width L
(b), turbulent kinetic energy normalized by the expected values, ko,i, (c) energy
dissipation rate normalized by the expected values, εo,i (d) for cubic (dashed lines)
and cuboidal domains (solid lines). Dotted lines and dash-dotted lines in a) and b)
represent the average values from the cubic and cuboidal simulations respectively.

has lower turbulent Reynolds number. The volume averages from the long domain
simulation have much smaller oscillations owing to the larger number of data points.
The oscillations in the cubic simulation results are well known and can theoretically
be reduced by using a modification proposed by Carroll and Blanquart [20], but the
current study does not use the modification for a cleaner comparison between cases.
It can be seen that while the cubic simulation has an average integral length scale
value of about ` ' 0.18 L, the cuboidal case shows a smaller integral length scale
of about ` ' 0.16 L. The integral length scale in the cuboidal case appears to be
controlled by the smallest dimension length, L, (and not 8 L), and its reduced integral
length scale is consistent with the turbulent reacting flow simulations performed by
Brock et al. [9] This difference explains the lower Reynolds number, as it is directly
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proportional to the square of the integral length scale. The time evolution of
kinetic energy and energy dissipation rate are also plotted for the cubic and cuboidal
isotropic cases in Fig. 3.1, normalized by their respective expected values calculated
using their respective integral length scale values, and they fluctuate around a value
of 1.

3.4.2 Shear turbulence
The turbulent Reynolds number and the normalized integral length scale are shown
in Fig. 3.2. Once again, it can be seen that while the cubic simulation has an average
integral length scale value of about ` ' 0.26 L, the cuboidal case shows a slightly
smaller integral length scale of about ` ' 0.25 L. The drop in integral length scale
in longer domains for shear turbulence is not as severe as for isotropic turbulence.
This difference once again explains the slightly lower Reynolds number, as it is
directly proportional to the square of the integral length scale (Eq. (3.16)). The time
evolution of kinetic energy and energy dissipation rate are plotted over the domain
for the cubic and cuboidal shear cases in Fig. 3.2, normalized by their expected
values. The two simulations have similar initial profile, but the cuboidal case has
much smaller oscillations owing (once again) to the larger number of data points,
and the results from both cases fluctuate around the expected values.

The time evolution of the Reynolds shear stress normalized by the turbulent kinetic
energy is plotted in Fig. 3.3. The average value of β is 0.4 for the cubic simulation,
0.38 for the cuboidal simulation. The Reynolds shear stress is not strongly affected
by the aspect ratio of the computational domain.

When discussing shear turbulence, the effect of shear convection on the turbulence
statistics should also be analyzed. This requires including an imposed mean velocity
in the simulation, which has a gradient of −B in the cross-stream direction. This
is not possible with a triply periodic computational domain, as the imposed mean
velocity is not periodic. Hence, a new computational domain is required in order to
include shear convection in these simulations.

3.5 Turbulence with inflow and outflow - Numerical approach
The computational domain is doubly periodic in the y and z directions, and has an
inflow/outflow in the x direction. Three different simulations are performed: one
with isotropic turbulence, one with shear turbulence, and one where shear forcing
is applied along with shear convection.
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Figure 3.2: Shear turbulence simulation results. Time evolution of the turbulent
Reynolds number (a), integral length scale normalized by the domain width L
(b), turbulent kinetic energy normalized by the expected values, ko,i, (c) energy
dissipation rate normalized by the expected values, εo,i (d) for cubic (dashed lines)
and cuboidal domains (solid lines). Dotted lines and dash-dotted lines in a) and b)
represent the average values from the cubic and cuboidal simulations respectively.

The momentum equation solved in these simulations is given by

∂u

∂t
+ ∇ · (u ⊗ u) = −∇p

ρ
+ ν∇2u + f − V · ∇u , (3.18)

where f is the forcing vector, which is Au′ for the isotropic case and Bu′xey for the
shear case.

The effect of shear convection was investigated a priori in the previous chapter.
Leveraging the long domain and the inflow/outflow boundary conditions in the x

direction, shear convection is now applied in a portion of the computational domain.
More specifically, we introduce a convection velocity, V = Vey, which has a
gradient of −B in a portion of the domain between 3.5 L and 7.5 L and V is constant
in the rest of the domain. A profile of the convection velocity as a function of x,
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Figure 3.3: Time evolution of Reynolds shear stress normalized by the turbulent
kinetic energy.

normalized by the domain width and shear forcing constant is shown in Fig. 3.4.
The portion with a mean velocity gradient of −B corresponds to homogeneous
shear turbulence with shear convection, whereas the portion with constant V just
corresponds to the shear simulation with no shear convection. The simulation
parameters for the three different simulations are presented in Table 3.3.

Table 3.3: Simulation parameters of the three different cases of incompressible
turbulence with inflow/outflow

Isotropic Shear Advection
Domain size 11L × L × L

Grid 1408 × 128 × 128
f Au′ Bu′xey Bu′xey
V 0 0 Vey
Ret 130 130 210
Reλ 45 45 55

The simulations utilize the sameflowconfiguration used in previouswork to simulate
turbulent flames [9, 48, 75, 76, 49]. Specifically, the domain is periodic in the y and
z direction, which results in statistical homogeneity along these directions. Hence
ensemble averages can be replaced by planar averages, calculated as

a(x, t) = 1
L2

∫
y

∫
z

a(x, y, z, t) dy dz. (3.19)

Based on mass balance, the mean velocity in the x direction, ux is constant. The
mean velocity in the parallel directions are set to be zero, uy = uz = 0.
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The domain has an inflow and an outflow in the x direction, and the mean velocity
of the inflow is chosen to be constant in time, and small enough so that the flow from
the inlet reaches a statistically stationary state before x = 0.5 L, but large enough
to not create any stability issues at the inlet/outlet. Superimposed on the mean
velocity at the inflow are fields of fluctuating velocities computed from simulations
of homogeneous isotropic turbulence at a lower turbulent Reynolds number. The
chosenmean velocity is slightly larger than the rms velocity at the inlet, u ∼ 1.15urms,
and the time taken for any Lagrangian particles to travel a distance of L in the x

direction is 20 τo. Convective outflow boundary condition is applied at the outlet at
x = 11 L. The velocity fields are subjected to the forcing term, f , between 0.5 L

and 10 L, and the turbulent kinetic energy is expected to be constant through these
parts.

Again, the domain width, viscosity, and the forcing constant are kept constant
between the three simulations that are compared, so that the effects of the type
of forcing and advection by the mean on the turbulent flow can be isolated and
analyzed, from the effects of these other parameters. It is ideal for the isotropic
and shear simulations to have similar turbulent Reynolds number. The relationship
between the two forcing constants can be calculated by equating the two expected
turbulent Reynolds numbers,

Reo
t,i =

3A`2
i

ν
=

3Bβ`2
s

2ν
= Reo

t,s, (3.20)

B =
2A
β

(
ì

`s

)2
. (3.21)

From initial simulations, the integral length scales were calculated as ì ' 0.16 L

and `s ' 0.23 L. The isotropic and shear forcing constants are hence related by
B = 2.4 A.

3.6 Turbulence with inflow and outflow
The effects of the forcing technique and mean advection on the turbulence and flow
anisotropy are discussed in the following subsections.

3.6.1 Effects of forcing
The effects of the forcing matrix on the turbulence quantities are analyzed by
observing the differences between the isotropic simulation and the shear simulation.
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Figure 3.4: Advection velocity profile normalized by the shear forcing constant and
domain width.

3.6.1.1 Global quantities

The turbulent Reynolds number is plotted in Fig. 3.5a. The Reynolds number is
constant in the portion where the forcing is applied, and much lower near the inlet
and outlet. The Reynolds number for the shear case reaches a high value at a
transient region near the inlet, and stabilizes to a constant value of around 130,
comparable to that of the isotropic case. The time averaged integral length scale
is plotted for the two cases in Fig. 3.5b. The integral length scale is ` ' 0.16 L

for the isotropic forcing and is the same value from the triply periodic cuboidal
domain. The value is ` ' 0.23 L for the shear forcing, which is about 1.5 times
the integral length scale for the isotropic case. This was observed in triply periodic
simulations as well. These values are used in the calculation of the expected values
of the turbulent kinetic energy and the dissipation rate. The time-averaged kinetic
energy and energy dissipation rate are plotted over the domain for the two cases in
Fig. 3.5, normalized by their respective expected values. The two simulations have
similar kinetic energy and energy dissipation rate profiles as seen in Fig. 3.5, and
have small fluctuations around the expected values for most of the domain.

3.6.1.2 Effects on flow anisotropy

As shown in section 3.6.1.1, the turbulence intensity is comparable between the
different forcing techniques, but large differences are expected in the turbulence
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Figure 3.5: a) Turbulent Reynolds number profile, b) Integral length scale normal-
ized by the domain width, c) Turbulent kinetic energy profile normalized by the
expected value ko, d) Energy dissipation rate normalized by the expected value εo,
for isotropic (blue) and shear forcing (red) cases. Dashed lines in b) correspond to
average values.

anisotropy. This anisotropy can be characterized by examining the components of
the velocity and vorticity vectors.

The magnitudes of the fluctuating velocity components are plotted as a function of
space, normalized by |urms | in Fig. 3.6a for the isotropic forcing and Fig. 3.6b for
the shear forcing. For the isotropic forcing, the velocity fluctuations are statistically
isotropic throughout. With shear forcing, the velocity components are significantly
anisotropic throughout the domain. It is important to note that for the shear forcing
case, the shear forcing is applied in the y direction, proportional to the velocity
fluctuations in the x direction. The velocity components are the strongest in mag-
nitude in the forced direction (y), which is consistent with simulations from the
previous chapter. The average values of the velocity anisotropy are calculated as
|u′x |/|urms | = 0.93, |u′y |/|urms | = 1.23, and |u′z |/|urms | = 0.79.
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Figure 3.6: Velocity fluctuation magnitudes for the isotropic forcing (a) and shear
forcing (b), normalized by the root mean square velocity, urms. Vorticity fluctuation
magnitudes normalized by the root mean square velocity, ωrms, for the isotropic
forcing c) and shear forcing d). Dashed lines in (b) correspond to average values.

The anisotropy in the small scales can be studied by evaluating the rms vortic-
ity components along the different directions, |ω′i | = (ω′iω′i)

1/2. They are shown,
normalized by |ωrms | = ((ω′xω′x + ω′yω′y + ω′zω′z)/3)1/2 for the isotropic forcing in
Fig. 3.6c and for the shear forcing in Fig. 3.6d. The isotropic forcing technique pro-
duces isotropic vorticity fields |ω′i |/|ωrms | ' 1 throughout the domain. In contrast
and as mentioned previously, in the shear forcing case, the vorticity is somewhat
anisotropic. The vorticity component magnitudes are given by |ω′x |/|ωrms | = 1.00,
|ω′y |/|ωrms | = 1.07, and |ω′z |/|ωrms | = 0.92 and are consistent with the anisotropy
in vorticity from Chapter 2.

Another significant measure of the anisotropy on the flow is the Reynolds shear
stress. Figure 3.7 shows the Reynolds shear stress profile normalized by the turbulent
kinetic energy for the isotropic and shear case. As expected, there is zero Reynolds
shear stress in the isotropic case, as there is no cross-correlation of the velocity
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components. For the shear case, however the Reynolds shear stress is positive, and
has a value of β = 0.41, which agrees well with results fromChapter 2 and Table 3.2.

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

x/L

〈u
′ x
u
′ y
〉/
k

 

 

Isotropic
Shear

Figure 3.7: Reynolds shear stress profile normalized by the turbulent kinetic energy.

3.6.2 Effects of advection
The effects of the mean advection on the turbulence quantities are analyzed by
observing the differences between the shear simulation and the advection simulation.
Once again, the mean advection velocity in the advection simulation, V , is in the y
direction, and has a gradient of −B from x = 3.5 L to x = 7.5 L, in the middle of
the domain. This portion is used to compare and contrast the turbulence statistics
between simulations with just shear turbulence production, and simulations with
shear turbulence production and shear convection.

3.6.2.1 Global quantities

The turbulent Reynolds number is shown in Fig. 3.8a. As expected, the Reynolds
number is similar for all three simulations except for the region where shear convec-
tion is applied. The increase in turbulent Reynolds number in the shear convection
region can be explained by the increase in integral length scale as observed in
Fig. 3.8b. The average integral length scale is calculated between x = 4 L to
x = 7 L for the two cases, and ` ' 0.23 L for the shear case and ` ' 0.33 L when
shear convection is included. In other words, the integral length scale is larger when
shear convection is included, by about 50%. The time-averaged kinetic energy and
energy dissipation rate are plotted over the domain for the three cases in Fig. 3.8,
normalized by their respective expected values. The three simulations have similar
kinetic energy and energy dissipation rate as seen in Fig. 3.8 outside the convection
region, but the turbulent kinetic energy is once again much higher in the region with
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shear convection for the advection simulation, and the dissipation rate is slightly
lower.

As shown from the results, when shear convection is included, `/L ' 0.33 and
β ' 0.31. So, the expected turbulence quantities with convection can be calculated
as

ko,a = ko,s

(
βa

βs

)2 (
`a

`s

)2
' 1.21 ko,s, (3.22)

εo,a = εo,s

(
βa

βs

)3 (
`a

`s

)2
' 0.92 εo,s, (3.23)

and

Reo
t,a = Reo

t,s

(
βa

βs

) (
`a

`s

)2
' 1.60 Reo

t,s . (3.24)

This explains the higher Reynolds number and turbulent kinetic energy and slightly
lower dissipation observed where shear convection is included.

3.6.2.2 Effects on flow anisotropy

The effect of the mean convection on the turbulence anisotropy can be studied
by comparing the results from the shear simulation and the advection simulation,
specifically in the region between 3.5 L and 7.5 L. The anisotropy is once again
characterized by examining the components of the velocity and vorticity vectors.

The magnitudes of the fluctuating velocity components are plotted, normalized by
|urms | in Fig. 3.9a for the shear case and Fig. 3.9b for the advection case. With shear
forcing, the velocity components are anisotropic throughout the domain, and their
values are given by |u′x |/|urms | = 0.93, |u′y |/|urms | = 1.23, and |u′z |/|urms | = 0.79.
In the portion where shear convection is included in the advection case, the velocity
components are still anisotropic, but the values are slightly different, and now |u′x |
is the weakest, with the values given by |u′x |/|urms | = 0.83, |u′y |/|urms | = 1.24, and
|u′z |/|urms | = 0.88. These values agree better with experiments and simulations
of shear-dominated flows like mixing layers and jets, as seen in Fig. 3.11a. It is
important to note that since the forcing is applied in the y direction proportional to
the fluctuations in the x directions, u′y should be compared to the streamwise velocity
fluctuations and u′x should be compared to the cross-stream velocity fluctuations.

The rms vorticity components along the different directions, |ω′i |, normalized by
|ωrms | are plotted for the shear simulation in Fig. 3.9c and for the advection forcing
in Fig. 3.9d. The shear simulation vorticity component magnitudes are given by
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Figure 3.8: a) Turbulent Reynolds number profile, b) Integral length scale normal-
ized by the domain width, c) Turbulent kinetic energy profile normalized by the
expected value, ko, d) Energy dissipation rate normalized by the expected value, εo,
for isotropic (blue), shear (red), and advection (black) cases.

|ω′x |/|ωrms | = 1.00, |ω′y |/|ωrms | = 0.92, and |ω′z |/|ωrms | = 1.07. When shear
convection is included, however, theω′y becomes the dominant vorticity component,
and the average values are given by |ω′x |/|ωrms | = 0.99, |ω′y |/|ωrms | = 1.07, and
|ω′z |/|ωrms | = 0.94.

Another significant impact of the shear convection on the flow is on the Reynolds
shear stress. Fig. 3.10 shows the Reynolds shear stress profile normalized by the
turbulent kinetic energy for the shear and advection case. As mentioned earlier, for
the shear case, the Reynolds shear stress has a value of β '≈ 0.41, and the portion
with shear convection shows a value of β ' 0.31, which agrees better with results
from the literature of shear-dominated turbulent flows such as mixing layers, planar
jets, and round jets, as seen in Fig. 3.11b.

The turbulent kinetic energy budget values are calculated using the same method
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Figure 3.9: Velocity fluctuation magnitudes for the shear simulation (a) and advec-
tion simulation (b), normalized by the root mean square velocity, urms. Vorticity
fluctuation magnitudes normalized by the root mean square vorticity, ωrms, for the
shear simulation (c) and advection simulation (d). Dotted lines in these plots corre-
spond to the part of the domain where shear convection is included. Dashed lines
correspond to average values calculated between 4 L and 7 L.

as in Section 2.5.1.2 and plotted in Fig. 3.12 with results from Section 2.5.1.2
and the experiment results of Panchapakesan and Lumley [59]. All the values are
normalized by U3

o/r1/2, where Uo is calculated as Uo =
√

k/0.052 [59] and r1/2

is calculated as r1/2 = 0.586Uo/B [77]. As expected, the shear convection term
had zero contribution to the turbulent kinetic energy budget and is not included in
the budget plot. It can be seen that the production, advection and dissipation are
accurately captured, compared to the simulations without advection.

3.7 Conclusions
The impact of the aspect ratio of the computational domain on both isotropic and
shear turbulence characteristics was studied. The integral length scale was reduced
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Figure 3.10: Reynolds shear stress profile normalized by the turbulent kinetic energy.
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Figure 3.11: a) Anisotropy in velocity from other studies of free shear flows as a
function of Reynolds number for u′x (red), u′y (blue), and u′z (black) b) Reynolds
shear stress values as a function of Reynolds number. Dashed lines correspond to
the portion with the shear convection included from the advection case.

for the case of isotropic turbulence. Introducing an inflow/outflow in one direction
had very small effects on both isotropic turbulence and shear turbulence. The veloc-
ity and vorticity components remained isotropic for the isotropic turbulence forcing
scheme as expected, and anisotropic for the shear turbulence. Shear convection was
introduced in a region of the domain along with shear turbulence forcing. This
resulted in statistically stationary shear turbulence, with larger integral length scale,
and anisotropy values that agree much better with those of free shear flows.
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Figure 3.12: Normalized turbulent kinetic energy budget. The lines correspond to
experimental results from Panchapakesan and Lumley [59]. Symbols correspond to
different simulations: Incompressible with shear convection - diamonds, Chapter 2
results: DNS 3 - circles, DNS 3a - triangles, DNS 3b - squares.



61

C h a p t e r 4

MATHEMATICAL DERIVATION OF THE TURBULENCE
FORCING TECHNIQUE FOR TURBULENT FLAMES

4.1 Introduction
The flows considered in the current study are highly turbulent reacting flows and a
cuboidal Cartesian domain is considered in the vicinity of the flame front, at xF ,
as seen in Fig. 4.1, with the unburnt side of the flow on the left of the flame front
in the domain. The final goal is to perform statistically stationary simulations of
turbulent flames in this canonical cuboidal computational domain, that represent
turbulent flame behavior observed in more complex geometries. A list of assump-
tions is mentioned in Section 4.2 and the governing equations for the turbulent flame
simulations are described in Section 4.3. The Favre velocity decomposition of the
velocity field is explained in Section 4.4 and the average velocity is decomposed
further in Section 4.5. The velocity field is rescaled to correct for periodicity and
continuity in Section 4.6, the impact of each of the source terms are discussed in
Section 4.7, and finally the forcing matrix is calculated in Section 5.1.1.

4.2 Assumptions
A list of assumptions is needed to simulate the spatially-evolving reacting flows
using simple computational domains.

1. The reacting flows considered are statistically stationary, which means the
ensemble averages are independent of time.

2. The computational domain is small, and is in the vicinity of the target flame
location, xF .

3. The turbulence is fully developed in the vicinity of xF .

4. The curvature of the mean flame front is small in comparison to the compu-
tational domain.

5. The turbulent Mach number is low in the vicinity of xF .

The gradient of the mean density is calculated in the target flows and using assump-
tion 1, it is only a function of space. The average flame front is located by tracking the
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(a) Instantaneous flame location (b) Mean flame location

Figure 4.1: Reacting jet schematic, with unburnt mixture represented in blue, flame
location in yellow, and burnt mixture in red. The black cuboid marks the simulation
domain, with the Cartesian directions of the domain indicated.

locations where the gradient reaches its maximum value, when traversing along the
gradient. The longer direction of the cuboidal computational domain, e⊥, is chosen
perpendicular to the average flame front, i.e., e⊥ = −∇ρ/|∇ρ|. The domain has an
inflow/outflow configuration in the direction perpendicular to the flame (ex = e⊥),
with periodic boundary conditions in the parallel directions (ey = e‖, ez = e|).

4.3 Governing equations
The governing equations considered for the current turbulent flame simulations are
low Mach number Navier-Stokes equations. The conservation of mass is given by

∂ρ

∂t
+ ∇ · (ρu) = 0 . (4.1)

The conservation of linear momentum equation is

∂

∂t
(ρu) + ∇ · (ρu ⊗ u) + ∇p − ∇ · τ = 0 , (4.2)

where p is the hydrodynamic pressure field and τ is the viscous stress tensor. The
species transport equation is expressed as

∂

∂t
(ρYi) + ∇ · (ρuYi) + ∇ · ji − Ûωi = 0 , (4.3)

where Yi, Ûωi, and ji are the mass fraction, production rate, and diffusion flux,
respectively, of species i. The diffusion flux is calculated as

ji = −ρDi
Yi

Xi
∇Xi − ρYiuc , (4.4)
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where Di is the species diffusivity, calculated as Di = α/Lei, where α = λ/(ρcp)
is the thermal diffusivity of the mixture, where λ is the thermal conductivity of
the mixture, and Lei is the Lewis number of species i. Constant non-unity Lewis
numbers calculated from corresponding laminar flames are used. Xi is the mole
fraction of species i, and uc is the correction velocity to ensure zero net diffusion
flux,

∑
i
ji = 0 [5]. The conservation of energy is implemented as a transport

equation for temperature, T , using the form

∂

∂t
(ρT) + ∇ · (ρuT) − 1

cp
∇ · (λ∇T) − ÛωT +

1
cp

∑
i

cp,iji · ∇T = 0 , (4.5)

where cp,i is the heat capacity of species i, cp =
∑

i Yicp,i is the heat capacity of the
mixture, and ÛωT = −1/cp

∑
i hi Ûωi is the heat source term, where hi is the specific

enthalpy of species, i. The equation of state used to bring closure to this system of
equations is given by

p0 = ρRT
∑

i

Yi

Wi
(4.6)

where p0 is the thermodynamic pressure, R is the universal gas constant, and Wi is
the molecular weight of species i. Using the low turbulentMach number assumption
(5), the fluctuations in the hydrodynamic pressure field, p, are small compared to
the constant thermodynamic pressure, p0, used in the equation of state.

4.4 Limits of Favre velocity decomposition
Lundgren’s analysis [14] decomposed the velocity field into mean and fluctuating
quantities. More specifically, Lundgren’s method considered constant density flows
and the velocity is split using Reynolds decomposition, u = u + u′, where ·
represents the ensemble average. For turbulent flame simulations involving variable
density flows, a Favre decomposition is more appropriate, u = ũ + u′′, where ·̃
is the Favre-average defined by ã = ρa/ρ. Applying ensemble averaging on the
continuity equation gives

∂ρ

∂t
+ ∇ · (ρu) = ∇ · (ρũ) = 0 , (4.7)

where ∂ρ
∂t = 0 because of the statistical stationarity. The continuity equation for the

fluctuating velocity is hence given by,

∂ρ

∂t
+ ∇ · (ρu′′) = −ũ · ∇ρ − ρ∇ · ũ , (4.8)

with the additional terms representing advection by the mean flow and dilatation, re-
spectively. Applying ensemble averaging on the conservation of linear momentum,
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we arrive at the Favre-averaged Navier-Stokes equation,

∂

∂t
(ρũ) + ∇ · (ρũ ⊗ ũ) = −∇p + ∇ · τ − ∇ ·

(
ρu′′ ⊗ u′′

)
. (4.9)

The transport equation for ρu′′ = ρ (u − ũ), calculated from the difference between
Eq. (4.2) and Eq. (4.9), is given by

∂

∂t
(ρu′′) + ∇ · (ρu′′ ⊗ u′′) = −∇p′ + ∇ · τ ′ − ∂

∂t
(ρ′ũ) − ∇ · (ρ′ũ ⊗ ũ)

− ∇ · (ρũ ⊗ u′′) − ∇ · (ρu′′ ⊗ ũ) + ∇ ·
(
ρu′′ ⊗ u′′

)
, (4.10)

where a′ = a − a is the fluctuating part of a. Some of the additional terms can be
expanded as

− ∂
∂t
(ρ′ũ) = −ũ∂ρ

′

∂t
= −ũ∂ρ

∂t
−∇ · (ρ′ũ ⊗ ũ) = −ũ∇ · (ρ′ũ) − ρ′ũ · ∇ũ

−∇ · (ρũ ⊗ u′′) = −ũ∇ · (ρu′′) − ρu′′ · ∇ũ

−∇ · (ρu′′ ⊗ ũ) = −ρu′′(∇ · ũ) − ũ · ∇(ρu′′)

ρu′′ + ρ′ũ = ρu′′ + ρũ − ρũ = ρu − ρũ

−ρ′ũ · ∇ũ − ρu′′ · ∇ũ = − (ρu − ρũ) · ∇ũ

Using continuity (Eqs. (4.1) and (4.7)),

−ũ
(
∂ρ

∂t
+ ∇ · (ρ′ũ) + ∇ · (ρu′′)

)
= −ũ

(
∂ρ

∂t
+ ∇ · (ρu) − ∇ · (ρũ)

)
= 0

After applying the above-mentioned expansions and simplifications, Eq. (4.10) be-
comes

∂

∂t
(ρu′′) + ∇ · (ρu′′ ⊗ u′′) = −∇p′ + ∇ · τ ′ − (ρu − ρũ) · ∇ũ

− ũ · ∇(ρu′′) − ρu′′ (∇ · ũ) + ∇ ·
(
ρu′′ ⊗ u′′

)
, (4.11)

where − (ρu − ρũ) · ∇ũ corresponds to the production of turbulent kinetic energy,
−ũ · ∇ (ρu′′) is the advection by the mean flow, −ρu′′ (∇ · ũ) corresponds to dilata-

tion, and ∇ ·
(
ρu′′ ⊗ u′′

)
is the divergence of the Reynolds stress. Using the same

analysis as Lundgren [14], most of the contribution to turbulent kinetic energy is
expected to come from the production term and the dilatation term. The goal would
be to solve Eqs. (4.8) and (4.11) for the fluctuating velocity, u′′, and the full density
field, ρ. This, however, presents subtle challenges.
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From Eq. (4.7), the dilatation term (i.e. the divergence of the Favre-averaged
velocity) can be calculated as ∇ · ũ = −ũ · ∇ρ/ρ, from the mean density field.
However, the continuity equation needs to be solved in order to calculate the mean
density field, for which one needs the dilatation term. This dilatation causes a
closure problem, as it implies a two-way coupling between the density and velocity
field. Hence, the Favre-averaged velocity should be decomposed further, so that the
dilatational part can be resolved in the simulation, and not added as a source term.
This velocity decomposition is described in the consequent section.

4.5 Helmholtz decomposition of mean velocity
The Favre-averaged velocity, ũ, is split using a Helmholtz decomposition into its
solenoidal part, ũs, and its dilatational part, ũd , i.e., ũ = ũs+ũd , such that∇·ũs = 0
and ∇ × ũd = 0. Helmholtz decomposition offers an infinite number of choices
for the two velocity fields shifted by a constant. As will be discussed later, the
solenoidal velocity at the averaged flame location, ũs(xF ) will be chosen based on
simulation requirements.

The instantaneous velocity field is decomposed asu = ui+ur, whereur = u′′+ũd

is the resolved part of the velocity field, and ui = ũs is the imposed part of the
velocity field, which is divergence-free.

Figure 4.2: Velocity decomposition of the instantaneous velocity field, u, into the
imposed scales, ui, and the resolved scales, ur.

The continuity equation (Eq. (4.1)) then becomes

∂ρ

∂t
+ ∇ · (ρur) = −∇ · (ρui) = −ui · ∇ρ (4.12)
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where the term, −ui · ∇ρ, corresponds to the advection by the imposed flow. The
ensemble average of this equation gives,

∂ρ

∂t
+ ∇ · (ρur) = −ui · ∇ρ, (4.13)

where, by definition, the gradient of the mean density is identically zero in the
unburnt and burnt regions. It is only non-zero in the perpendicular direction through
the flame. At the flame front (xF ), the perpendicular component of the imposed
velocity is chosen to be zero, ui

⊥(xF ) = 0, which implies at the flame location, the
right hand side of Eq. 4.13 is zero and ũr⊥(xF ) = ũ⊥(xF ). Since ui is dilatation-
free by definition, ui

⊥ = 0 applies through the flame. In summary, the additional
term on the right hand side is zero in the unburnt, burnt, and through the flame,
which implies it is zero everywhere, and Eq. (4.13) becomes

∇ · (ρur) = 0. (4.14)

The momentum equation (Eq. (4.2)) becomes,

∂

∂t
(ρur) + ∇ · (ρur ⊗ ur) = −∇p + ∇ · τ r − ∂

∂t
(ρui) − ∇ · (ρui ⊗ ui)

− ∇ · (ρui ⊗ ur) − ∇ · (ρur ⊗ ui) + ∇ · τ i . (4.15)

Some of the additional terms can be expanded using the fact that the imposed
velocity is time-independent and divergence-free,

− ∂
∂t
(ρui) = −ui ∂ρ

∂t

−∇ · (ρui ⊗ ui) = −ui∇ · (ρui) − ρui · ∇ui

−∇ · (ρui ⊗ ur) = −ui∇ · (ρur) − ρur · ∇ui

−∇ · (ρur ⊗ ui) = −ρur(∇ · ui) − ui · ∇(ρur) = −ui · ∇(ρur)

−ui ∂ρ
∂t
− ui∇ · (ρui) − ui∇ · (ρur) = −ui

(
∂ρ

∂t
+ ∇ · (ρu)

)
= 0

After simplifying using Eq. (4.12), Eq. (4.15) becomes

∂

∂t
(ρur)+∇·(ρur⊗ur) = −∇p+∇·τ r−ρur ·∇ui−ui·∇(ρur)−ρui·∇ui+∇·τ i .

(4.16)

The ensemble average of this equation gives,

∇·(ρur ⊗ ur) = −∇p+∇·τ r−ρur ·∇ui−ui ·∇
(
ρur

)
−ρui ·∇ui+∇·τ i . (4.17)
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The pressure field is decomposed into its mean and its fluctuations, (∇pi = ∇p

and ∇pr = ∇p′) as in Section 4.4. The mean pressure gradient can be removed
by subtracting the mean momentum equation (Eq. (4.17)) from Eq. (4.16), which
further changes the momentum equation to

∂

∂t
(ρur)+∇·(ρur⊗ur) = −∇pr+∇·τ r−

(
ρur − ρur

)
·∇ui−ui ·∇

(
ρur − ρur

)
− ρ′ui · ∇ui + ∇ ·

(
τ i − τ

)
+ ∇ ·

(
ρur ⊗ ur

)
, (4.18)

where−
(
ρur − ρur

)
·∇ui is the turbulence production termand−ui·∇

(
ρur − ρur

)
is the advection by the imposed flow. Note that the average ρur is zero in the di-
rection parallel to the mean flame front. ∇ ·

(
ρur ⊗ ur

)
is the divergence of the

Reynolds stress, ∇ ·
(
τ i − τ

)
is the difference between the viscous stress of the

imposed flow and the mean stress, and −ρ′ui · ∇ui is present only near the flame,
where density fluctuates. The magnitude of ui · ∇ui depends on the reacting flow
configuration. After the velocity decomposition, Eq. (4.3) and Eq. (4.5) become

∂

∂t
(ρYi) + ∇ · (ρurYi) + ∇ · ji − Ûωi = −ui · ∇(ρYi) , (4.19)

and

∂

∂t
(ρT)+∇ · (ρurT)− 1

cp
∇ · (λ∇T)− ÛωT +

1
cp

∑
i

cp,iji · ∇T = −ui · ∇(ρT) , (4.20)

with the additional terms corresponding to advection by the imposed flow.

4.6 Periodicity and continuity correction
For the resolved part of the velocity field, the Cartesian directions, x, y, and z

are chosen along the perpendicular direction, ⊥, and the parallel directions, ‖ and
|, respectively. The velocity components along the three directions are given by
u = u⊥, v = u‖ , and w = u|. The intent is to use periodic boundary conditions along
y and z, parallel to the average flame front. But in reality, the velocity field is not
periodic parallel to the flame. A necessary (but not sufficient) condition for using
periodic boundary conditions is that the mean and root mean square (rms) of the
velocity field are invariant in the periodic directions.

As mentioned previously, the parallel components of the mean velocity is zero at the
flame location, and using the small domain assumption, it is zero throughout. For the
perpendicular component, it can be calculated from Eq. (4.14), that ∂

(
ρur

)
/∂x =
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0. Hence, the mean momentum in the x direction does not vary along x, and this
implies that the mass flux per unit area along x, J(x) = (1/A)

∫
y

∫
z u(x, y, z) dy dz

is constant throughout, and can be calculated as J = const = ρ(xF ) ũ(xF ). The
transport equation for the fuel mass fraction is given by,

∂

∂t
(ρYF) + ∇ · (ρurYF) + ∇ · jF − ÛωF = 0 , (4.21)

and integrating this equation over a finite volume around the flame location in
statistically stationary reacting flows gives∫

y

∫
z
ρ ur(xF )YF,u dy dz = −

∫
x

∫
y

∫
z
ÛωF dx dy dz,

Based on mass balance of the fuel mass fraction at the flame location in statistically
stationary reacting flows, the mass flux per unit area perpendicular to the flame front,
ρur = ρ(xF ) ũ(xF ), balances the mean turbulent flame speed, ρu ST (xF ), where ST

is the turbulent flame speed defined by ST =
1

ρuYF,u A

∫
x

∫
y

∫
z dotωF dx dy dz, .

The root mean square of the velocity field is usually not constant in reacting flows,
but the rms of the resolved velocity needs to be invariant in the parallel directions, so
that periodic boundary conditions can be used. Hence, the velocity components are
normalized to ensure that their second order statistics are constant along the parallel
directions, just like in Rah et al. [17] and in Section 2.2.3.

The three components of the velocity, u, v, and w are decomposed using their spatial
dependence in the two parallel directions,

ur = u∗ fu(y) gu(z) , vr = v∗ fv(y) gv(z) , wr = w∗ fw(y) gw(z) , (4.22)

where fv and gv are the time-independent spatial dependences of the magnitudes of

v, fv(y) =
√

ṽr 2(y)
/
ṽr 2(yF) and gv(z) =

√
ṽr 2(z)

/
ṽr 2(zF) , and so on for fu, gu,

fw, and gw. At the flame location, xF , fi = gi = 1, and ur and u∗ have the same
magnitudes.

Rescaling the velocity field for periodicity generates additional terms in both conti-
nuity and momentum equations. The only change in the continuity equation comes
from the convective term, ∇ · (ρur). At the flame location, this term becomes
∇ · (ρur) = ∇ · (ρu∗) + ρv∗ f ′v (yF) + ρw∗g′w(zF). Ideally, there should be no ad-
ditional terms in the continuity equation due to the rescaling. Hence, a continuity
correction, exp

[
− f ′v (yF) (y − yF)

]
, is included for vr and a similar correction is
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added for wr . The final rescaling after periodicity and continuity correction is given
by,

ur = u∗ fu(y) gu(z) ,

vr = v∗ fv(y) gv(z) exp
[
− f ′v (yF) (y − yF)

]
,

wr = w∗ fw(y) gw(z) exp
[
−g′w(zF) (z − zF)

]
.

From the transformation, the gradients of the y component of the velocity, v, are
given by ∂vr/∂y = ∂v∗/∂y, ∂vr/∂x = ∂v∗/∂x, and ∂vr/∂z = ∂v∗/∂z + v∗ g′v(zF).
The gradients of the other components of the velocity field can be calculated in a
similar fashion.

Rescaling the velocity field for periodicity and continuity results in additional terms
in the momentum equation. The terms in Eq. (4.18) that are affected by the trans-
formation are the convective term, ∇ · (ρur ⊗ ur) = ur∇ · (ρur) + ρur · ∇ur,

the advection by the imposed flow, −ui · ∇
(
ρur − ρur

)
, and the divergence of the

Reynolds stress terms, ∇ · (ρur ⊗ ur). Considering just the rescaling of vr , the
terms affected by the rescaling become,

ur∇ · (ρur) = u∗∇ · (ρu∗) ,

ρur · ∇ur = ρu∗ · ∇u∗ + g′v(zF) ρw∗v∗ ey ,

− ui · ∇
(
ρur − ρur

)
= −ui · ∇

(
ρu∗ − ρu∗

)
− g′v(zF)wi

(
ρv∗ − ρv∗

)
ey ,

∇ · (ρur ⊗ ur) = ∇ · (ρu∗ ⊗ u∗) + g′v(zF) ρw∗v∗ ey .

All the additional terms in the momentum equation due to the rescaling are either
linear or quadratic in velocity. These terms are combined and can be organized into
linear terms of the form −

(
ρu∗ − ρu∗

)
· AL(ui) and quadratic terms of the form

−ρu∗ · AQ(u∗) − ρu∗ · AQ(u∗). By construction, u∗ is homogeneous along the

two parallel directions, and ∇ · (ρu∗ ⊗ u∗) = d(ρu∗u∗)/dx +
(
u∗ ⊗ u∗

)
‖,|
· ∇ρ =

d(ρu∗u∗)/dx. The momentum equation from Eq. (4.18) after rescaling, transforms
into
∂

∂t
(ρu∗) + ∇ · (ρu∗ ⊗ u∗) = −∇pr + ∇ · τ ∗ −

(
ρu∗ − ρu∗

)
· ∇ui

− ui · ∇
(
ρu∗ − ρu∗

)
− ρ′ui · ∇ui + ∇ ·

(
τ i − τ

)
+d(ρu∗u∗)/dx

−
(
ρu∗ − ρu∗

)
· AL(ui) −

(
ρu∗ · AQ(u∗) − ρu∗ · AQ(u∗)

)
. (4.23)
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4.7 Source terms
After the velocity decomposition and rescaling, the transport equations that u∗

verify are the same as the original Navier-Stokes equation with additional source
terms. The additional terms in themomentum equation after the final transformation
are

1. −
(
ρu∗ − ρu∗

)
· ∇ui, which is the linear production term, that produces

turbulent kinetic energy,

2. −ui · ∇
(
ρu∗ − ρu∗

)
, which represents convection by the imposed velocity

in the direction parallel to the mean flame front,

3. −ρ′ui · ∇ui, which influences the turbulent kinetic energy near the flame,
where the density fluctuates and ρ′u∗ is not zero. ui · ∇ui is expected to be
large in reacting flows with strong mean gradients of pressure perpendicular
to the flame, for instance, in swirling jet flames. Henceforth, this term is
referred to as the "pressure" term.

4. ∇ ·
(
τ i − τ

)
, the difference between the gradient of the viscous stress of the

imposed scales, τ i(µ,ui), and the mean stress, τ (µ,u). This is the difference
between two terms that are very close to each other, and is negligible.

5. d(ρu∗u∗)/dx is constant in time, and only present near the flame. This
term only contributes to mean pressure gradients and does not contribute
to turbulent kinetic energy. Hence this term can be lumped with the mean
pressure gradients and omitted in the simulation.

6. −
(
ρu∗ − ρu∗

)
· AL(ui) is a linear forcing term, resulting from the rescaling.

This can be combined with the production term, to make a final linear forcing
term,

(
ρu∗ − ρu∗

)
·Ac, whereAc = −∇ui − AL .

7. −
(
ρu∗ · AQ(u∗) − ρu∗ · AQ(u∗)

)
, which is a non-linear term due to the

rescaling. These terms generate turbulence proportional to triple correlations
of velocity, which are generally small and have limited effects on the turbulence
statistics as seen in DNS 3b in Section 2.5.1. Hence these terms are neglected.
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The final momentum equation for the resolved quantities is given by

∂

∂t
(ρu∗) + ∇ · (ρu∗ ⊗ u∗) = −∇pr + ∇ · τ ∗ +

(
ρu∗ − ρu∗

)
· Ac(ui)

− ui · ∇
(
ρu∗ − ρu∗

)
− ρ′ui · ∇ui , (4.24)

where the additional terms can be calculated from the imposed mean velocity, ui.

4.8 Conclusions
The turbulence forcing techniques developed for incompressible turbulence have
been extended to reacting flows. Reynolds decomposition of the velocity field
used in the previous chapters is initially replaced by a Favre decomposition. The
dilatation due to the flame poses a problem, which is resolved by performing an
additional Helmholtz decomposition on the Favre-averaged velocity field. The
velocity field is rescaled for periodicity and continuity, which results in additional
linear and quadratic source terms. Once again, the final transport equations are
like the Navier-Stokes equation with additional source terms. The additional source
terms in the momentum equation are discussed and the terms that significantly affect
turbulent reacting flows are the production term, advection term, and the pressure
term.
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C h a p t e r 5

DIRECT NUMERICAL SIMULATIONS OF TURBULENT
FLAMES UNDER DIFFERENT TURBULENT CONDITIONS

The final momentum equation for the resolved quantities from Chapter 4 is given by

∂

∂t
(ρu∗) + ∇ · (ρu∗ ⊗ u∗) = −∇pr + ∇ · τ ∗ +

(
ρu∗ − ρu∗

)
· Ac(ui)

− ui · ∇
(
ρu∗ − ρu∗

)
− ρ′ui · ∇ui , (5.1)

where
(
ρu∗ − ρu∗

)
· Ac(ui) is the production term, Ac is the forcing matrix,

−ui · ∇
(
ρu∗ − ρu∗

)
is the advection by the imposed velocity, and −ρ′ui · ∇ui is

the pressure term. The impact of each of these terms can be analyzed by including
extreme versions of each of these terms in the turbulent flame simulations.

Different turbulent flame simulations are performed to observe the impact of the
different terms in Eq. 4.24. Section 5.1 discusses the numerical approach. Then,
results from two simulations of turbulent flames using shear forcing and isotropic
turbulence forcing are compared in Section 5.2. The effects of the shear convection
are observed in Section 5.3 and the impact of the pressure term is analyzed in Section
5.4. Finally, Section 5.5 details the conclusions drawn about the effects of the large
scale flow on the turbulent flames.

5.1 Numerical approach
5.1.1 Forcing matrix
Previous DNS of turbulent flames with linear forcing assumed the proportionality
matrix, Ac to be a diagonal matrix [2, 10, 18, 19, 11] just like Lundgren sug-
gested [14]. The forcing term for this isotropic case is given by [10, 18, 19, 11]

fiso = A
ko

k
(ρu − ρu) , (5.2)

where A is the isotropic forcing constant, k = �u′′ · u′′/2 is the Favre-averaged
turbulent kinetic energy, and ko is the expected turbulent kinetic energy. The factor
ko
k is added to help with the stability of the simulations [3]. This factor maintains
constant production of turbulent kinetic energy throughout the domain, P = 2Ako,
where forcing is applied. ko/k is often close to 1 for the isotropic case.
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The proportionality matrix Ac could in fact be calculated from experiments of
turbulent flames. Unfortunately, this would require access to 3D velocity data.
Instead, the proportionality matrix is calculated at the flame location from recent
results of large eddy simulations (LES) of a reacting jet [22]. The mean velocity
gradients are calculated at the flame location 30 diameters from the jet inlet, where
the flame normal is close to the radial direction (6o) as,

Ac = ∇ui = −



∂uiZ
∂Z

∂uiZ
∂R 0

∂uiR
∂Z

∂uiR
∂R 0

0 0 uiR
R


= BC



−0.023 1 0

−0.006 0.012 0

0 0 0.011


. (5.3)

The calculations reveal that the off-diagonal shear strain rate element ∂ui
Z/∂R is the

largest element of the matrix Ac by two orders of magnitude. In comparison, the
other elements of the matrix are negligible, and the shear turbulence forcing vector
may be approximated by

fshear = B
ko

k
(ρu⊥ − ρu⊥) e‖, (5.4)

where B = ∂ũX/∂R is the shear forcing constant. The forcing is only in the y(‖)
direction, linear with the momentum fluctuations in the x(⊥) direction. The ko

k is
included in the shear simulations as well, and is very close to 1.

In most cases, the proportionality matrix would be a combination of small diagonal
elements and a dominant off-diagonal shear strain rate element. Hence, the forcing
matrix containing only the off-diagonal element and the forcing matrix with only
diagonal elements can be seen as the two extreme cases of turbulence forcing. The
diagonal forcing matrix has been used extensively already in previous studies [18,
19, 11, 10, 2] and the present study focuses on the off-diagonal forcing matrix and
the comparison between the two.

5.1.2 Advection
The most dominant part of the advection by the imposed velocity is the shear
convection, while the other parts correspond to bulkmotion in the parallel directions,
and those have no effects on the flow due to the periodic boundary conditions. Recall
that ui⊥ = 0 at the flame location, so there is no bulk velocity in the perpendicular
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direction. The effects of the shear convection on incompressible turbulence has
already been analyzed in Section 3.6.2. The imposed mean velocity for shear
convection is given by ui = V = Vey, which is plotted in Fig. 5.1. To be consistent
with the shear production term, the imposed velocity has a gradient of −B between
3.5 L and 7.5 L. The maximum imposed speed, Vmax = 2BL is much larger than the
rms velocity, u′ = 3/2βB` ∼ 0.12BL, therefore it controls the CFL condition and
consequently reduces the time step for a stable simulation. This is the reason shear
convection is limited to a portion of width 4 L at the center, and not over the whole
domain, which would result in Vmax = 5.5BL.

0 2 4 6 8 10

−2

−1

0

1

2

x/L

V
/
B
L

Figure 5.1: Advection velocity profile normalized by the shear forcing constant and
domain width.

5.1.3 Pressure term
−ρ′ui · ∇ui = ρ′P is the pressure term (or the inertial term of the imposed
velocity), which is most significant in flames with strong mean pressure gradients.
For instance, in swirling jet flames,

P = −ui · ∇ui ' ũ2
θ/RF eR ,

where RF is the radial location of the flame from the axis. The flame normal is
in the radial direction, hence e⊥ = eR. The mean azimuthal velocity is given by,
ũθ = SUo, where S is the swirl number, and Uo is the centerline velocity. Hence,
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the pressure term is calculated as ρ′P = ρ′S2U2
o/RFe⊥. An extreme value of

the pressure term is chosen for this simulation, corresponding to a maximum swirl
number of 0.5. The ratio of the centerline velocity to the flame location can be
calculated from the shear forcing constant, B, using the relation, B = 0.586Uo/RF ,
and the centerline velocity can be calculated from the expected kinetic energy for
the isotropic case, using the relation, ko = 0.052 U2

o . These are estimates from
the half-width of a round jet, as these values are not easily available for a swirling
reacting jet.

5.1.4 Governing equations
The low Mach number Navier-Stokes equations solved in the simulations of the
current study are given by

∂ρ

∂t
+ ∇ · (ρu) = −V · ∇ρ, (5.5)

∂

∂t
(ρu) + ∇ · (ρu ⊗ u) = −∇p + ∇ · τ + f − V · ∇(ρu) + ρ′P, (5.6)

where f is the forcing vector, calculated in Eq. (5.2) and (5.4) for the two turbulence
forcing techniques.

∂

∂t
(ρYi) + ∇ · (ρuYi) = −∇ · ji + Ûωi − V · ∇(ρYi), (5.7)

∂

∂t
(ρT)+∇· (ρuT) = ∇· (ρα∇T)+ ÛωT −

1
cp

∑
i

cp,iji ·∇T +
ρα

cp
∇cp ·∇T −V ·∇(ρT).

(5.8)
The dynamic viscosities of the species, µi, are calculated using standard kinetic
theory [9], and the viscosity of the mixture is calculated using a modified form of
Wilke’s formula [10]. The thermal conductivities of the species, λi, are calculated
by using a modified form of Eucken’s formula [7], and the thermal conductivity
of the mixture is computed with the method suggested by Mathur et al. [15] The
equation of state used to bring closure to this system of equations is given by

p0 = ρRT
∑

i

Yi

Wi
(5.9)

where p0 is the thermodynamic pressure, R is the universal gas constant, and Wi is
the molecular weight of species i.

The production rates of the species and enthalpy are calculated using a reduced
n−C7H16 combustion model with 35 species and 217 elementary reactions (which
counts for forward and backward reactions separately) [1].
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Equations (5.5) - (4.6) are solved using NGA [6], a finite difference solver with
an energy-conserving scheme on a staggered grid, designed to simulate variable
density low Mach number turbulent flows. The scheme is second order accurate
in space, and a semi-implicit second order Crank-Nicolson scheme is used for time
integration [16]. The scalar transport scheme used is the third order BQUICK [8]
scheme, that ensures that scalars stay within bounds. For the advection simulation,
the shear convection is applied using central difference in the momentum equation
and continuity equation, and using an upwind scheme for scalar transport, with
implicit corrections for time integration of the momentum and scalar transport
equations.

5.1.5 Computational domain

Figure 5.2: Schematic of the computational domain for the turbulent flame simula-
tions, adapted from Savard et al. [19]

The simulation utilizes the sameflowconfiguration used in previouswork to simulate
turbulent flames [2, 10, 18, 19, 11], see Fig. 5.2. The computational domain is
meshed with a uniform grid, with equal spacing in the three directions, ∆x =

∆y = ∆z ' 1.6 ηu, where ηu =
(
ν3

u/ε3)1/4 is the Kolomogorov length scale in the
unburnt side. Due to the increased turbulence intensity, the pressure simulations
are performed in a finer grid (by a factor of 1.5 in each direction) to capture the
turbulent small scales. The domain is periodic in the y and z direction, which results
in statistical homogeneity along these directions. Hence ensemble averages can be
replaced by planar averages, calculated as

a(x, t) = 1
L2

∫
y

∫
z

a(x, y, z, t) dy dz. (5.10)

The domain has an inflow and an outflow in the x direction. When the mean
velocity of the inflow is matched with the turbulent flame speed, the simulation
can be performed for long time periods at the statistically stationary state. The
average turbulent flame speed is estimated from previously performed similar sim-
ulations [10], and is used as the mean velocity for the inflow. Superimposed on
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the mean velocity are fields of fluctuating velocities computed from simulations of
homogeneous isotropic turbulence at a lower turbulent Reynolds number, so there
is no negative velocity at the inflow. The velocity fields are subjected to the forcing
scheme between 0.5 L and 10 L, such that the turbulent kinetic energy production
is fixed through the flame.

The inflow consists of a premixed unburnt mixture of n−C7H16 with air at an
equivalence ratio of φ = 0.9 at standard temperature (Tu = 298 K) and pressure
(p0 = 1 atm) conditions. The simulation parameters for the four different simulations
are presented in Table 5.1.

Table 5.1: Simulation parameters of the different cases of turbulent flame simula-
tions

Isotropic Shear Advection Pressure
Domain size 11L × L × L

Grid 1408 × 128 × 128 1920 × 192 × 192
f fiso fshear fshear fiso

Forcing constant (s−1) A = 5280 B = 22700 B = 22700 A = 5280
V 0 0 Vey 0
P 0 0 0 S2U2

o/RF ex
u′/SL 16 17 17 25
`/lF 0.95 1.15 1.15 1.00
Ret,u 140 180 180 150
Kau 1950 1850 1850 1850

The significant non-dimensional parameters are u′/SL , `/lF , Ret , and Kau. u′ is
the root mean square velocity in the unburnt region and is about 17 times larger
than the laminar flame speed, SL . The laminar flame thickness, lF is nearly equal
to the integral length scale in the unburnt side, defined as ` = u′3/ε = (2k/3)3/2 /ε,
where ε = ∇ · τ ′ · u′′/ρ is the energy dissipation rate. Ret = u′`/νu is the turbulent
Reynolds number in the unburnt region, where νu is the kinematic viscosity of the
unburnt mixture. The unburnt Karlovitz number is defined as Kau = (lF/ηu)2 =
l2
F

(
ε/ν3

u
)1/2, and the current study simulates turbulent flames at high Kau ' 1900,

which means the Kolmogorov length scale is much smaller than the flame thickness.
It is important to note that only two of the four non-dimensional parameters are
independent.

Turbulent flames are impacted by these non-dimensional parameters [11, 10, 2].
Among them, the unburnt Karlovitz number has been identified in previous studies
as the controlling parameter for the impact of turbulence on the chemistry. [10].



78

Hence, the Karlovitz numbers need to be equal between the simulations that are
compared, so the effects of the flow conditions alone can be isolated and analyzed.
The expected Karlovitz number for the isotropic and shear simulations can be
calculated as,

Kao,i =
l2
Fε

1/2

ν3/2 =
l2
F

√
27A3/2

ì

ν3/2 , (5.11)

Kao,s =
l2
Fε

1/2

ν3/2 =
l2
F

√
27B3/2β3/2`s
√

8ν3/2
. (5.12)

Equating the two Karlovitz numbers gives the relation, B = 2A/β( ì/`s)2/3 ' 4.3A,
using the integral length scale values calculated for incompressible simulations in
Section 3.6.1.1 ( ì ' 0.16 L and `s ' 0.23 L). Using these values, the expected
turbulent kinetic energy values, k0,i = 27A2`2

i /2 and k0,s = 27β2B2`2
s /8 can be

calculated. The expected energy dissipation rates are the same for the two cases,
ε0,i = 27A3`2

i = 27β3B3`2
s /8 = ε0,s [3]. These forcing terms calculated here are

used between x = 0.5 L and x = 10 L in the simulations. The simulations are
initialized with the same velocity and scalar fields from DNS of turbulent flames
performed by Lapointe and Blanquart [11], at similar turbulence parameters, corre-
sponding to flame B, and the same inflow field is used between the simulations. The
different simulation results are compared and contrasted in the following sections.

5.2 Results - Forcing type
Turbulent flame simulations are performed using isotropic forcing (Eq. (5.2)) and
shear forcing (Eq. (5.4)). The simulations are performed for 50 eddy turnover
times, τ, and averages are calculated after a transient period of 10τ. The effects
of the different forcing techniques on chemistry and turbulence are discussed in the
following subsections.

5.2.1 Global quantities
2D contours of temperature in the x-y plane are shown in Fig. 5.3 for the two different
forcing techniques. In both cases, the turbulent flame structure can be observed near
the middle of the domain, around 5.5 L. The turbulent flame brush thickness, lt ,
is calculated by computing from the peak value of the mean temperature and the
temperature difference across the flame, lt = (Tb − Tu)/|∇T |max . The flame brush
thickness for the isotropic case is with lt = 1.44 L and slightly smaller for the shear
case with lt = 1.25 L.

The time-averaged planar-averaged kinetic energy and energy dissipation rate are
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Figure 5.3: Instantaneous temperature contours in the x-y plane for isotropic forcing
(top) and shear forcing (bottom). The black curves locate the edges of the reaction
zone, corresponding to Tpeak − 30 K and Tpeak + 30 K , where Tpeak is the maximum
fuel consumption temperature.

plotted over the domain for the two cases in Fig. 5.4, normalized by their expected
values. The two simulations have similar kinetic energy and energy dissipation rate
in the unburnt region as seen in Fig. 5.4. The average integral length scale is plotted
for the two cases in 5.4c, and ` ' 0.16L for the isotropic forcing throughout and for
the shear forcing, ` ' 0.20L in the unburnt side and ` ' 0.13L in the burnt side.
The integral length scale for shear turbulence decreases with the drop in Reynolds
number, which is consistent with results from Chapter 2 (see DNS 1-4 in Table 2.2).

The turbulent Reynolds number is shown in Fig. 5.5a. The Reynolds number is
higher for the shear turbulence case, far away from the flame location. The Reynolds
number drops significantly through the flame, due to the increased viscosity, and is
comparable to the isotropic case on the burnt side. The Karlovitz number profiles
are plotted in Fig. 5.5b. The profiles are very similar for the two simulations, and
the Karlovitz number has been successfully matched across the two simulations.

The turbulent flame speed ST is computed from the fuel consumption rate, ÛωF as

ST =
1

ρuYF,uL2

∭
− ÛωF dV, (5.13)

and it is plotted in Fig. 5.6 for the two cases. The speeds remain close to each
other up to t = 3τ, due to the same initial conditions, but ultimately diverge from
each other. The average turbulent flame speed is computed from values between
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Figure 5.4: a) Turbulent kinetic energy profile normalized by the expected value
ko, b) Energy dissipation rate normalized by the expected value εo, and c) Integral
length scale normalized by the domain width for isotropic (blue) and shear forcing
(red) cases.

10τ to 50τ. For isotropic forcing, ST/SL ' 2.3 and for shear forcing, ST/SL ' 2.0.
The shear forcing technique generates lower turbulent flame speeds, by about 12%.
A similar trend is observed in the turbulent flame surface area, with averages of
AT/A ' 3.0 and AT/A ' 2.6 for isotropic and shear simulations respectively. The
flame surface area is calculated as the area of the isotherm, using a marching cube
algorithm [13]. The ST/SL values of 2.3 and 2.0 and the AT/A values of 3.0 and 2.6
agree very well with results from Lapointe and Blanquart. [10]

5.2.2 Effects on chemistry
The effects of the forcing on the chemistry and the flame structure are studied by
observing the statistical relations between species and temperature. First, the means
of the mass fractions of the fuel and hydrogen, conditioned on the temperature are
normalized by their maximum values and plotted in Fig. 5.7a. The mean of the
fuel consumption rate ÛωF , conditioned on the temperature, is plotted in Fig. 5.7b,
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Figure 5.5: a) Turbulent Reynolds number profile and b) Karlovitz number profile
for isotropic (blue) and shear forcing (red) cases.
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Figure 5.6: Time evolution of the turbulent flame speed normalized by the laminar
flame speed (a) and the flame surface area normalized by the cross section area (b).
Dotted lines correspond to the average values.

normalized by the peak fuel consumption rate for a corresponding laminar flame and
compared with results from laminar flames using non-unity Lewis numbers. Finally,
the probability density function (pdf) of ÛωF at peak fuel consumption temperature
Tpeak is plotted in Fig. 5.7c.

In Fig. 5.7a, the two sets of curves agree perfectly with each other, and there are no
observed differences between the forcing techniques. In Fig. 5.7b, the maximum
fuel consumption, ÛωF,peak is observed at Tpeak = 1230 K. Once again, there is
no discernible difference between the results using the different forcing techniques.
The fuel consumption rate for both turbulent flames is less than that for a laminar
flame, which is consistent with previous studies [10]. Finally, the pdfs have similar
shapes for the two cases, with only slight differences in the fuel consumption rate
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Figure 5.7: a) Conditional mean of fuel and hydrogen mass fractions versus temper-
ature, b) Conditional mean of fuel consumption rate versus temperature, c) Prob-
ability density function of fuel consumption rate at maximum fuel consumption
temperature, Tpeak .

distribution.

As discussed previously, the turbulent flame structure is controlled by the non-
dimensional parameters (Re, Ka, u′/SL , and `/lF) [10], which are comparable
between the two simulations. Hence, the results show that the forcing technique has
no effect on the flame chemistry, as long as the turbulence intensity is similar.

5.2.3 Effects on flow anisotropy
As shown in section 5.2.1, the turbulence intensity is comparable between the
different forcing techniques, and the only differences are expected to be in the
turbulence anisotropy. This anisotropy can be characterized by examining the
components of the velocity and vorticity vectors.

The magnitudes of the fluctuating velocity components are calculated from the root
mean square (rms) of the fluctuating velocity field i.e., |u′i | = (�u′′i u′′i )

1/2. They are
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Figure 5.8: Velocity fluctuation magnitudes for the isotropic forcing (a) and shear
forcing (b), normalized by the root mean square velocity, urms. Vorticity fluctuation
magnitudes normalized by the root mean square vorticity, ωrms, for the isotropic
forcing (c) and shear forcing (d). The gray dashed lines correspond to the edges of
the flame brush, xs and xe, where dρ/dx reaches its minimum value at 0.5(xs + xe),
and xe − xs = (ρb − ρu)/(dρ/dx)min

plotted, normalized by |urms | = ((�u′′x u′′x +�u′′yu′′y +�u′′z u′′z )/3)1/2 in Fig. 5.8a for the
isotropic forcing and in Fig. 5.8b for the shear forcing. For the isotropic forcing, the
velocity fluctuations are statistically isotropic in the unburnt region. The velocity
components are anisotropic in the burnt region, since the flame stretches the flow,
creating anisotropy [2]. The u′x component has the least energy in the burnt region,
and it is important to note that the velocity components along the periodic directions
(y and z) are similar for the isotropic case. For the shear forcing case, the velocity
fluctuations start out anisotropic in the unburnt region because of the forcing, and the
anisotropy increases slightly as the flow proceeds through the flame. The velocity
components are different along all three directions.

The anisotropy in the turbulent small scales can be studied by evaluating the rms
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Figure 5.9: Reynolds shear stress normalized by the turbulent kinetic energy for
isotropic (blue) and shear (red) cases.

vorticity components along the different directions, |ω′i | = (ω′iω′i)
1/2. They are

shown, normalized by |ωrms | = ((ω′xω′x+ω′yω′y+ω′zω′z)/3)1/2 for the isotropic forcing
in Fig. 5.8c and for the shear forcing in Fig. 5.8d. The isotropic forcing technique
produces isotropic vorticity fields |ω′i |/|ωrms | ' 1 in the unburnt region, and the
vorticity components shift away from isotropic values as the flow progresses through
the flame. ω′x becomes the dominant component. In contrast, and as mentioned
previously, in the shear forcing case, the unburnt region is already anisotropic due
to the anisotropic turbulence forcing. The vorticity magnitudes shift away from
isotropic values as the flow passes through the flame, and ω′y becomes the least
dominant component. The vorticity components along y and z are similar for the
isotropic technique, and are different for the shear forcing technique.

The impact of the flame alone on the flow anisotropy can be observed in the burnt
region of the isotropic case (Fig. 5.8a and 5.8c); and the isolated effect of the shear
forcing can be seen in the unburnt side of the shear case (Fig. 5.8b and 5.8d). It is
clear that the shear forcing has a slightly bigger impact on the velocity anisotropy
and the flame has a bigger impact on the vorticity anisotropy.

Finally, the Reynolds shear stress normalized by the kinetic energy is plotted as a
function of space in Fig. 5.9. For the isotropic case, the Reynolds shear stress is zero
throughout, within statistical uncertainty. For the shear case, the Reynolds shear
stress value is around 0.45 in the unburnt region, with a very slight increase in the
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burnt region due to the lower Reynolds number (see Table 2.2).

5.3 Results - Advection
Turbulent flame simulations are performed using shear forcing (Eq. (5.4)) with shear
convection applied. The simulation is initialized with the same initial conditions,
and the same inflow field is used from the other simulations.

5.3.1 Time step
As explained earlier in Section 5.1.2, the maximum magnitude of the imposed
velocity is given byVmax = 2BL and it is about 15 times larger than the rms velocity,
u′ ∼ 0.12BL. Hence, the CFL condition for this imposed mean velocity gives,

Vmax
∆t
∆y

< 1. (5.14)

Therefore ∆t < ∆y
2BL . It is clear that the turbulent flame simulations with shear

convection must be performed with a smaller time step. It is observed that the
chosen time step has an effect on the results, hence it is reduced until the results are
independent of time step, which is observed for dt = 2×10−8 and lower. Hence, the
time step chosen for the advection simulation is 2× 10−8, which is 20 times smaller
than that of the shear simulation. Hence, a simulation is performed starting from
the velocity and scalar field at 30τ from the shear simulation, and shear forcing and
shear convection are applied to the turbulent flame simulations for 10τ.

The effects of shear convection on chemistry and turbulence are discussed in the
following subsections.

5.3.2 Global quantities
2D contours of temperature in the x-y plane are plotted in Fig. 5.10 for shear
turbulence with and without shear convection. In both cases, the turbulent flame
position can be observed near the middle of the domain, 5.5L. Qualitatively, there
is no distinct difference between the two simulations. The flame brush thickness is
the same for the two cases.

The time-averaged kinetic energy and energy dissipation rate are plotted over the
domain for the two cases along with isotropic turbulence in Fig. 5.11, normalized
by their expected values. The shear and advection simulations have similar kinetic
energy and energy dissipation rate outside the shear convection region seen in
Fig. 5.11, however the values where shear convection is applied are different between
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Figure 5.10: Instantaneous temperature contours in the x-y plane for shear simula-
tion (top) and advection simulation (bottom). The black curves locate the edges of
the reaction zone, corresponding to Tpeak − 30 K and Tpeak + 30 K , where Tpeak is the
maximum fuel consumption temperature.

the advection simulation and the other two cases. The results from the advection
simulation also fluctuates more due to the smaller sample size.
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Figure 5.11: a) Turbulent kinetic energy profile normalized by the expected value
ko, b) Energy dissipation rate normalized by the expected value εo, and c) Karlovitz
number profile for isotropic (blue), shear (red), and advection (black) cases.

The turbulent flame speed ST is plotted in Fig. 5.12a for the shear and advection cases
starting from t = 30τ. It can be seen that the speeds diverge from each other soon
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after the start of the simulation. The average turbulent flame speeds are calculated
between 30τ and 40τ for the two cases and the average values are very close to
each other, ST/SL ' 1.70 for the shear case and ST/SL ' 1.65 for the advection
case. The flame surface area evolution is shown in Fig. 5.12b. They have different
instantaneous values, but the average values are once again close, AT/A ' 2.3 for
the shear case and AT/A ' 2.1.
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Figure 5.12: Time evolution of the turbulent flame speed normalized by the laminar
flame speed (a) and turbulent flame surface area normalized by the cross-section
area (b) for shear (red) and advection (black) simulations.

5.3.3 Effects on chemistry
The conditional means of the mass fractions of the fuel and hydrogen normalized by
their maximum values are plotted versus temperature in Fig. 5.13a. The conditional
mean of the fuel consumption rate ÛωF is plotted in Fig. 5.13b, normalized by the
laminar flame peak value and compared with results from a corresponding laminar
flame. Finally, the probability density function (pdf) of ÛωF at peak fuel consumption
temperature Tpeak is plotted in Fig. 5.13c.

In Fig. 5.13a, all the curves agree well with each other, and there are no observed
differences between the forcing techniques. In Fig. 5.13b, the maximum fuel con-
sumption, ÛωF,peak is observed at Tpeak = 1230 K for all three cases. The fuel
consumption rates agree perfectly well with each other. Finally, the pdf from the
advection case agrees well with that of the shear case and isotropic case, and there
are only slight differences in the fuel consumption rate distribution. Despite the
small sample size, local chemistry quantities are fully converged, and do not exhibit
large fluctuations.
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Figure 5.13: a) Conditional mean of fuel and hydrogen mass fractions versus
temperature, b) Conditional mean of fuel consumption rate versus temperature, c)
Probability density function of fuel consumption rate at maximum fuel consumption
temperature, Tpeak .

5.3.4 Effects on flow anisotropy
The anisotropy values of the velocity components, |u′i |/|urms |, are plotted in Fig. 5.14a
for the shear turbulence case and Fig. 5.14b for the advection case. Unlike the shear
forcing case, where u′x and u′z have different magnitudes throughout the domain,
the burnt side of the advection simulation has similar magnitudes for u′x and u′z,
especially in the region with shear convection. Most of the differences between the
shear and advection cases are in the region between 3.5 L and 7.5 L.

The anisotropy in the vorticity components along the different directions, |ω′i |/|ωrms |,
is plotted as a function of x for the shear forcing in Fig. 5.14c and for the shear forc-
ing with shear convection in Fig. 5.14d. The vorticity magnitude in the y direction
is much smaller on the burnt side, while ω′x and ω′z have similar magnitudes greater
than 1 for the shear case. In the advection case, however, ω′x is the only strongest
component in the burnt side with convection applied, and the magnitude ofω′y drops
further where there is no shear convection.



89

0 2 4 6 8 10
0

0.5

1

1.5

2

x/L

u
′ i/
u
′ rm

s

 

 

u′

x
u′

y

u′

z

(a) u′(shear)

0 2 4 6 8 10
0

0.5

1

1.5

2

x/L

u
′ i/
u
′ rm

s

 

 

u′

x
u′

y

u′

z

(b) u′(advection)

0 2 4 6 8 10
0

0.5

1

1.5

2

x/L

ω
′ i/
ω
′ rm

s

 

 

ω′

x
ω′

y

ω′

z

(c) ω′(shear)

0 2 4 6 8 10
0

0.5

1

1.5

2

x/L

ω
′ i/
ω
′ rm

s

 

 

ω′

x
ω′

y

ω′

z

(d) ω′(advection)

Figure 5.14: Velocity fluctuation magnitudes for the isotropic forcing (a) and shear
forcing (b), normalized by the root mean square velocity, urms. Vorticity fluctuation
magnitudes normalized by the root mean square vorticity, ωrms, for the isotropic
forcing (c) and shear forcing (d). Gray dashed lines in these plots correspond to
the edges of the turbulent flame brush and dotted lines are the edges of the shear
convection region.

5.4 Results - Pressure
A fourth turbulent flame simulation is performed using isotropic forcing (Eq. (5.2)),
with the pressure term added. The simulation uses the same initial conditions and
inflow velocity fields. The simulation is performed for 50 eddy turnover times, τ,
and averages are calculated after a transient period of 10τ. The isolated effects of
the mean pressure gradient term on chemistry and turbulence can be observed based
on comparisons between the results from the isotropic and pressure simulations, and
the results are discussed in the following subsections.
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5.4.1 Global quantities
2D contours of temperature in the x-y plane are plotted in Fig. 5.15 for the two
different forcing techniques. In both cases, the turbulent flame structure can be
observed near the middle of the domain, 5.5L. The flame brush thickness is much
larger for the pressure case, with lt = 2.4 L which is much larger than the flame
brush thickness of the isotropic case (1.44 L).
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Figure 5.15: Instantaneous temperature contours in the x-y plane for the isotropic
case (top) and pressure case (bottom). The black curves locate the edges of the
reaction zone, corresponding to Tpeak − 30 K and Tpeak + 30 K , where Tpeak is the
maximum fuel consumption temperature.

The planar-averaged kinetic energy and energy dissipation rate are plotted over the
domain for the four cases in Fig. 5.16, normalized by the expected values for the
isotropic case. The pressure simulations have a largely different kinetic energy and
energy dissipation rate profile as seen in Fig. 5.16. The initial values are comparable
to the other cases, whereas around the flame, the values are much higher. This
is because the density fluctuates near the flame, and the pressure term generates
turbulence.

The turbulent kinetic energy equation for the pressure case is given by

ũx
dk
dx
+

d
dx

(�u′′xu′′2) = −1
ρ

d
dx

(
p′u′′x

)
− ε + 2Ako + P

ρ′u′′

ρ
, (5.15)

where ũx
dk
dx is the advection, d

dx

(�u′′xu′′2) and − 1
ρ

d
dx

(
p′u′′x

)
are the diffusion due to

the turbulence and pressure respectively, ε is the viscous dissipation, 2Ako is the
production from the isotropic forcing, and the contribution from the pressure term
is Pρ′u′′/ρ. The turbulent kinetic energy budget profile is plotted in Fig. 5.17a,
normalized by the expected dissipation rate for the isotropic case. The production
(blue) is constant at a value of 1 throughout the domain, owing to the factor ko/k
added to the forcing term. This results in the production being constant at a value of
2Ako throughout the domain, instead of 2Ak, which is not constant for the pressure
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Figure 5.16: a) Turbulent kinetic energy profile normalized by the expected value,
ko, b) Energy dissipation rate normalized by the expected value, εo, for isotropic
(blue), shear (red), advection (black), and pressure (magenta) cases. The gray
dashed lines correspond to the edges of the turbulent flame brush.

case. The contribution from the pressure term (red) is stronger than the production
within the flame brush, though it has some small contribution outside the flame
brush. The viscous dissipation (magenta) balances the sum of the production and
the pressure term, and the advection (green) is near zero. The sum of all these
contributions, corresponding to turbulent diffusion and pressure diffusion, is near
zero throughout with some fluctuations within the flame brush.

The Karlovitz number is plotted in Fig. 5.17b, and all four simulations have similar
Karlovitz number on the unburnt side. The Ka of the pressure simulation drops
more quickly across the flame, compared to the other simulations.
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Figure 5.17: a) Turbulent kinetic energy budget profile - Production (blue), pressure
term (blue), advection (green), dissipation (magenta), and sum (black). b) Karlovitz
number profile for isotropic (blue), shear (red), advection (black), and pressure
(magenta) cases.
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The turbulent flame speed, ST , is plotted in Fig. 5.18a for the four cases. The turbulent
flame speed is much higher for the case with pressure. The average flame speeds
are ST/SL ' 4.8 for pressure, ST/SL ' 2.3 for isotropic forcing, and ST/SL ' 2.0
for shear forcing. The turbulent flame surface areas are plotted in Fig. 5.18b for all
three cases. The flame surface area is also much higher for the pressure case, with
the average value given by AT/A ' 6.2, with AT/A ' 3.0 for isotropic forcing, and
AT/A ' 2.6 for shear forcing. Both metrics for the pressure case are larger by the
same factor when compared to the other simulations. The burning efficiency, I0,
defined as I0 = (ST/SL)/(AT/A), is plotted versus time in Fig. 5.18c for all three
cases. The burning efficiency factors for all four cases fluctuate around 0.77. Hence,
it is evident that the increase in the flame speed is a result of the increased flame
surface area. The burning efficiency value of 0.77 matches well with simulation
results of flame B from Lapointe and Blanquart. [10]
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Figure 5.18: Time evolution of the turbulent flame speed normalized by the laminar
flame speed (a), flame surface area normalized by the cross section area (b), and
burning efficiency factor (c). Dotted lines correspond to the average values.
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Figure 5.19: a) Conditional mean of fuel and hydrogen mass fractions versus
temperature, b) Conditional mean of fuel consumption rate versus temperature, c)
Probability density function of fuel consumption rate at maximum fuel consumption
temperature, Tpeak .

5.4.2 Effects on chemistry
The conditional means of the mass fractions of the fuel and hydrogen with tempera-
ture are plotted in Fig. 5.19a, normalized by their maximum values. The mean of the
fuel consumption rate ÛωF , conditioned on the temperature, is plotted in Fig. 5.19b,
normalized by the peak laminar fuel consumption rate. Finally, the probability
density function (pdf) of ÛωF at peak fuel consumption temperature Tpeak is plotted
in Fig. 5.19c.

In Fig. 5.19a, the four sets of curves agree very well with each other, and there are
only very small differences in the hydrogen mass fraction for the pressure case. In
Fig. 5.19b, the maximum fuel consumption, ÛωF,peak is observed at Tpeak = 1230 K.
Once again, there is no discernible difference between the pressure case and the
isotropic case. Finally, the pdf for the pressure case has a higher peak and variance
than the other three cases, but the mean value of fuel consumption rate is similar
for all four cases. The Karlovitz number profile is slightly different for the pressure
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Figure 5.20: Velocity fluctuation magnitudes for the isotropic simulation (a) and
pressure simulation (b), normalized by the root mean square velocity, urms. Vorticity
fluctuation magnitudes normalized by the root mean square vorticity, ωrms, for the
isotropic case (c) and pressure case (d). The gray dashed lines correspond to the
two edges of the turbulent flame brush.

case, and this could be the cause of the difference in the probability distribution.

5.4.3 Effects on flow anisotropy
The anisotropy due to the pressure term can be characterized by examining the
components of the velocity and vorticity vectors, and comparing the results between
the isotropic simulation and the pressure simulation.

The magnitudes of the fluctuating velocities, |u′i |, are plotted, normalized by |urms |
in Fig. 5.20a for the isotropic case and Fig. 5.20b for the pressure case. The
pressure gradient term is added only in the x direction, and consequently increases
the magnitude of the x component of the velocity fluctuations. The impact of the
pressure term on the velocity components are observed near the flame brush, and
to a smaller extent throughout the domain. The flame however, starts affecting the
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velocity anisotropy only after the end of the flame brush as observed in Fig. 5.20a.
In the pressure case, the magnitude of u′x starts decreasing in the burnt region due
to the flame, as it does in the isotropic case. In both cases, the components along
the two homogeneous directions have similar magnitudes.

The anisotropy in the vorticity components along the different directions, |ω′i |/|ωrms |,
are presented in Fig. 5.20c for the isotropic case and in Fig. 5.20d for the pressure
simulation. The vorticity magnitudes in the x direction decreases around the flame,
due to the pressure term, and the flame increases itsmagnitude, just as in the isotropic
case. The vorticity components along y and z are similar for both the cases.

It is clear that the pressure term has a bigger impact on the velocity anisotropy than
the flame, and a small impact on the vorticity. The pressure term has the opposite
effect of the flame, in both velocity and vorticity components. The Reynolds shear
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Figure 5.21: Reynolds shear stress normalized by the turbulent kinetic energy for
isotropic (blue), shear (red), advection (black), and pressure (magenta) cases.

stress normalized by the kinetic energy is plotted as a function of space in Fig. 5.21.
For the pressure case, just like in the isotropic case, the Reynolds shear stress is near
zero throughout the domain, with small fluctuations in the burnt region.

5.5 Conclusions
The effects of the forcing matrix, mean pressure gradients, and shear convection
term on the turbulent flame simulations are observed. All four simulations have
similar Karlovitz numbers in the unburnt side and turbulence intensities.
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The turbulent kinetic energy and viscous dissipation profiles are constant throughout
the domain for the isotropic, shear, and advection cases, whereas the pressure case
creates higher turbulence values around the flame brush.

The turbulent flame speed and the turbulent flame surface area are compared between
the four simulations. The average values of the isotropic, shear, and advection cases
are similar, while the pressure case exhibits much higher flame speed and area, by
a factor of about 2. The burning efficiency of all four cases are very close.

The local chemistry is unaltered by any of these terms. The conditional means on
temperature reveal similar turbulent flame structure for all the four cases. The only
small difference is in the probability density function of the fuel consumption rate.

The significant differences between the four cases are the anisotropy of the velocity
and vorticity vectors. The flame creates anisotropy in both velocity and vorticity,
whereas the shear forcing induces high anisotropy in velocity alone. The shear
convection creates high anisotropy in velocity and vorticity, especially in the burnt
region. The pressure term creates anisotropy in both velocity and vorticity through-
out the domain, and has the opposite impact as the flame.
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C h a p t e r 6

CONCLUSIONS

The search for alternative fuels for use in aircraft can use up a lot of time and re-
sources. This thesis tackled the problem with efficient computational frameworks to
study highly turbulent flames using simple computational domains. The techniques
were developed and simulations were performed for both incompressible turbulence
and turbulent flames.

6.1 Incompressible turbulence
To provide a physical and mathematical foundation to realistic turbulent flows,
the turbulence forcing technique for shear flows was directly computed from the
large scales of these flows. Different statistically stationary free shear flows were
considered for the calculations of the forcing matrix. The forcing terms did not
just arise from the shear strain or the velocity gradients, but also from periodicity
corrections in x, y/r , and continuity corrections, which generated both linear and
non-linear forcing terms. The additional source terms were calculated by leveraging
the self-similarity of velocity fluctuations and their moments.

An a priori analysis was performed in order to estimate the effect of the multiple
source terms to the turbulence, including the linear diagonal forcing terms, non-
linear forcing terms, and the mean advection term. The relation between the forcing
constant and the Taylor micro-scale Reynolds number was established, so that tur-
bulence quantities can be predicted prior to selecting the grid resolution for any
simulation.

The turbulence generated was anisotropic in nature, consistent with that observed
in the middle of shear layers. The Reynolds shear stress values are over predicted,
compared to experimental and simulation results. For the same Reynolds number,
the anisotropic turbulence has higher integral length scale compared to the domain
size, lower turbulent kinetic energy and dissipation rate, and higher eddy turnover
time than isotropic turbulence.

Anisotropy was observed both in the components of velocity and vorticity. The
anisotropy in the fluctuating velocity agrees reasonably well with results from sim-
ulations and experiments of free shear flows. The anisotropy in the fluctuating



98

velocity showed no clear Reλ dependence, while the vorticity components become
more isotropic with increasing Reynolds number. The spectra for the energy and
production agree with the scalings suggested by turbulence theory and past simula-
tions.

Simulations were performed with the additional linear and non-linear source terms,
and compared with the pure shear simulations, with a special attention to Reynolds
shear stress, turbulent kinetic energy budget, and velocity correlations. There was
no significant difference between the two simulations with linear source terms.
The simulation with all the linear and non-linear terms showed non-zero turbulent
diffusion and skewness in velocity fluctuation distributions, which were not present
in the simulation with just the linear terms. In either case, the additional forcing
terms did not significantly improve upon the simulation results.

The shear convection due to the mean advection term was applied a posteriori,
and simulations were performed emulating its effect. It was observed that the
effect of this term is not significant and would be negligible especially at high
Reynolds number. The results also pointed out the potential role of splitting errors
in previously published temporally unbounded numerical simulations.

The impact of aspect ratio of the computational domain on both isotropic and shear
turbulence characteristicswas studied. The integral length scalewas slightly reduced
for both cases, however the effect was weaker in the case of shear turbulence. The
anisotropy values were unaffected by the change in aspect ratio.

Introducing an inflow/outflow in one direction did not significantly affect the statis-
tics of either isotropic turbulence or shear turbulence. The velocity and vorticity
components were isotropic for the isotropic turbulence forcing scheme as expected,
and were anisotropic for the shear turbulence, and the shear turbulence anisotropy
values were consistent with results from shear turbulence simulations in triply peri-
odic cubic domains.

Finally, shear convection was introduced in a portion of the domain in the shear
turbulence simulation. This resulted in statistically stationary shear turbulence,
with larger integral length scale, and anisotropy values that match perfectly with
that of free shear flows.

6.2 Turbulent flames
A mathematically rigorous numerical turbulence forcing technique was derived for
turbulent flame simulations. The turbulence production, advection by the imposed
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flow, and pressure gradients were identified to be significant and were chosen to
study their impact on the turbulent flame statistics.

Four different turbulent flame simulations were performed in a doubly periodic
inflow/outflow configuration: one with isotropic forcing which had been used by
other researchers in the past [18, 19, 11, 2, 10], one with shear forcing, one with
shear forcing and shear convection, and the fourth with isotropic forcing with the
pressure term. Forcing constants were chosen such that the simulations had similar
Karlovitz numbers in the unburnt region.

The isotropic and shear simulations were compared to observe the effects of the
forcing on global and local quantities in chemistry and turbulence. The turbulent
kinetic energy, energy dissipation rate, and the turbulent Reynolds number were
comparable between the two cases. It was seen that the turbulent flame speed and
the flame brush thickness are comparable between the two cases. Local chemistry
quantities were observed by plotting the mass fraction and consumption rate of the
fuel as functions of temperature. The local chemistry quantities were indistinguish-
able for the two different forcing techniques. The pdfs of the fuel consumption rate
at Tpeak also seemed very similar between the two different cases.

Anisotropy in the velocity and vorticity components was observed for the two
different forcing methods. For the isotropic forcing method, the flow was isotropic
in the unburnt region and was anisotropic in the burnt region both in velocity and
vorticity. For the shear forcing method, the flow was already anisotropic in the
unburnt side both in the velocity and vorticity, and the flame added slightly to the
anisotropy in velocity and significantly to the anisotropy in vorticity. The shear
forcing generated more velocity anisotropy than the flame, and the flame generates
more vorticity anisotropy.

The effect of shear convection was observed by comparing the advection simulation
and the shear simulation. The chemistry properties were mostly unaffected, while
the anisotropy valueswere different where shear convectionwas applied. The impact
of shear convection was much higher in the burnt region, due to the lower Reynolds
number.

The effect of mean pressure gradient across the flame was analyzed by comparing
the isotropic and pressure simulations. For the pressure simulation, the turbulent
kinetic energy and dissipation rate were much higher around the flame, whereas the
Reynolds number and Karlovitz number were comparable to the other simulations.
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The local chemistry was unaffected, while increased flame surface area caused an
increase in flame speed. Anisotropy was produced by the mean pressure gradient
throughout the flame and counteracted the anisotropy created by the flame on both
velocity and vorticity components.

From these results, if one is interested in the effects of the chemistry on the flow
field, the appropriate forcing technique and large scale effects needs to be used,
as vorticity and velocity components are affected greatly by the forcing terms.
However, if the effects of turbulence on the flame be of interest, then any forcing
method and configuration is appropriate for simulating the turbulent flame. As the
global chemistry quantities are of interest for engine combustion, one can conclude
that the turbulence intensity (u′, `), and the pressure term (ui · ∇ui) are the only
relevant turbulence terms that have a profound impact on the global flame behavior.
This is illustrated in Fig. 6.1.

Figure 6.1: Plan of attack for bio-fuel testing.

Lapointe and Blanquart analyzed the impact of various parameters related to the
chemistry of the turbulent flame [10] and concluded that the laminar flame speed,
flame thickness, and the fuel Lewis number are the most relevant parameters (see
Fig. 6.1). A similar study is conducted on the different turbulent flow conditions in
this thesis, and the most relevant parameters are the the turbulence intensity and the
pressure term. Using this, one needs to only test new fuels for their laminar flame
properties, and this can be accomplished using very small amounts of fuel. The
turbulence intensity and pressure term are fuel independent and can be measured
from engine-probes. These values can then be used to estimate global quantities
like the turbulent flame speed.

6.3 Future Work
The forcing matrix calculated from the mean velocity gradients can help create
the correct fluctuation magnitudes. So far, simulations of single locations at the
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(a) Velocity fluctuation magnitude profile (b) Turbulent kinetic energy budget

Figure 6.2: a) Velocity fluctuation magnitude profiles and b) Turbulent kinetic
energy budget as a function of the radial distance, r .

centerline and shear layer of a round jet were captured. One can extend this to
recreate whole cross-section of jets. This can be done for both incompressible and
reacting jets.

6.3.1 Cross-section of round jet
A new framework for simulating turbulent jets is proposed, wherein a portion of
the jet is emulated with a “disk" of finite thickness, that is periodic in the axial
direction. The analysis uses the self-similarity of turbulence in jets, and implements
corresponding normalizations for velocity components and spatial coordinates.

The resolved velocity is given by ur = {u′x, ur, uθ}, and the imposed velocity is
given by ui = {ux, 0, 0}. The governing equations for the imposed velocity is given
by,

∂u′x
∂x
+

1
r
∂

∂r
(rur) +

∂uθ
∂θ
= −∂ux

∂x
+

u′x
xo
, (6.1)

∂u′x
∂t
+ (u′.∇) u′x = −

1
ρ

∂p′

∂x
+ (∇.τ′) .ex −

∂ux

∂x
u′x +

ux

xo
u′x −

∂ux

∂r
u′r + u′r

∂u′x
∂r

, (6.2)

∂ur

∂t
+ (u′.∇) ur = −

1
ρ

∂p
∂r
+ (∇.τ) .er +

ux

xo
ur, (6.3)

∂uθ
∂t
+ (u′.∇) uθ = −

1
ρr
∂p
∂θ
+ (∇.τ) .eθ +

ux

xo
uθ −

uθ
τ

(6.4)

So, in theory, one could recreate the velocity fluctuation profiles and turbulent kinetic
energy budget, just from the mean velocity gradients. Initial results are plotted in
Fig. 6.2.



102

6.3.2 Cross-section of reacting jet
A new framework for simulating turbulent flames using cylindrical domains is
proposed, with the average flame front positioned at a certain radial location. The
analysis would leverage some information about the self-similarity of turbulence and
chemistry in reacting jets, and implement corresponding normalizations for velocity
components and spatial coordinates, and include radially dependent forcing terms in
the momentum and chemistry equations. Mean flame curvature effects are included
in the current study, as opposed to the statistically flat flames in previous simulations.
Previous simulations with inflow/outflow used constant turbulent intensity for the
entire domain. In contrast, in the current study, the turbulent intensity would
change with radial distance, which more closely represents experimental setups. As
mentioned earlier, the numerical framework should allow for the choice of flame
location with respect to the location of the shear layer, and both premixed and non-
premixed flames could be simulated with this technique. The effects of the mean
flame curvature can be observed by comparing the results to statistically flat flames.

Preliminary results are plotted in Fig. 6.3.

(a) Progress variable contours (b) Enstrophy contours

Figure 6.3: a) Progress variable contours and b) Enstrophy (ω2) contours.

One does not have to perform simulations over the whole domain, to capture the
large scale flow effects. These effects can be emulated by including these forcing
terms in the governing equations, and can be used in multiple applications.
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A p p e n d i x A

NGA

All simulations in this study are performed using NGA [6], a finite difference solver
with an energy-conserving scheme on a staggered grid, designed to simulate variable
density turbulent flows, using the low Mach number Navier-Stokes equations. A
detailed description of NGA and the numerical methods are provided by Desjardins
et al. [6] and by Savard et al. [20]. An overview of NGA and its numerical methods
were provided in the theses of Phares Carroll [4] and Jason Schlup [21]. Only a
brief summary of NGA is given here, for the sake of completion.

A.1 Governing equations
The low Mach number approximation decouples the energy and momentum equa-
tions, and as a consequence, the acoustic waves need not be resolved in the simu-
lation. All the flow quantities are perturbed using a small value of M2, where M

is the Mach number. Assuming low Mach number flows, the leading order term
for pressure should be constant in space. This leading order term, po, is called the
thermodynamic pressure and is not present in the momentum equation, as the mo-
mentum equation contains only the gradient of pressure. The second largest term,
p, of order M2, appears in the momentum equation, and is called the hydrodynamic
pressure. This term is small under the low Mach number approximation, compared
to the thermodynamic pressure, and hence neglected in the equation of state. Under
this approximation, the conservation equations are given below.

The conservation of mass is given by

∂ρ

∂t
+ ∇ · (ρu) = 0 , (A.1)

where ρ is the density, and u = {u, v,w} is the velocity field. The conservation of
linear momentum equation is

∂

∂t
(ρu) + ∇ · (ρu ⊗ u) + ∇p − ∇ · τ = 0 , (A.2)

where p is the hydrodynamic pressure field and τ is the viscous stress tensor, given
by

τ = µ
(
∇u + (∇u)T

)
− 2

3
µ(∇ · u)I,
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where µ is the dynamic viscosity of the mixture and I is the identity tensor. The
species transport equation is expressed as

∂

∂t
(ρYi) + ∇ · (ρuYi) + ∇ · ji − Ûωi = 0 , (A.3)

where Yi, Ûωi, and ji are the mass fraction, production rate, and diffusion flux,
respectively, of species i. The diffusion flux is calculated as

ji = −ρDi
Yi

Xi
∇Xi − ρYiuc , (A.4)

where Di is the species diffusivity, calculated as Di = α/Lei, α = λ/(ρcp) is the
thermal diffusivity of the mixture, λ is the thermal conductivity of the mixture, and
Lei is the Lewis number of species i. Xi is the mole fraction of species i, and
uc is the correction velocity to ensure zero net diffusion flux,

∑
i
ji = 0 [5]. The

conservation of energy is implemented as a transport equation for temperature, T ,
using the form

∂

∂t
(ρT) + ∇ · (ρuT) − 1

cp
∇ · (λ∇T) − ÛωT +

1
cp

∑
i

cp,iji · ∇T = 0 , (A.5)

where cp,i is the heat capacity of species i, cp =
∑

i Yicp,i is the heat capacity of the
mixture, and ÛωT = −1/cp

∑
i hi Ûωi is the heat source term, where hi is the specific

enthalpy of species, i. The equation of state used to bring closure to this system of
equations is given by

p0 = ρRT
∑

i

Yi

Wi
(A.6)

where p0 is the thermodynamic pressure, R is the universal gas constant, and Wi

is the molecular weight of species i. Using the low Mach number assumption,
the fluctuations in the hydrodynamic pressure field, p, are small compared to the
constant thermodynamic pressure, p0, used in the equation of state.

These equations are solved to obtain the unknown variables - (ρ, u, v,w,T,Yi, p,W),
while the thermodynamic pressure is taken as an input parameter. The hydrody-
namic pressure field is calculated using a Poisson solver, to satisfy conservation of
mass, whereas the thermodynamic pressure is known at every time instant. The in-
compressible simulations use constant density, temperature, viscosity, and a uniform
medium, with no chemical reactions.

A.2 Numerical methods
NGA is a finite difference solver with a discretely energy-conserving scheme on
a staggered grid, designed to simulate variable density low Mach number turbu-
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lent flows. A brief summary of the time integration scheme, chemistry, velocity
discretization, and scalar transport method used by NGA is included below.

Time integration: The time advancing of the simulation variables is performed
using a second order in time, semi-implicit Crank-Nicolson scheme [16]. The time
stepping of the scalars and velocity field is staggered, the scalars are advanced
from tn+1/2 = t + ∆t/2 to tn+3/2, and the velocity fields are integrated from tn to
tn+1. At each time step, 4 subiterations are used. At each subiteration, a sequence
of operations are performed in a certain order: The scalar field is advanced, the
density field is calculated, the velocity field is calculated (without satisfying mass
conservation), a pressure Poisson equation is solved to correct the velocity field so
that continuity is satisfied, and finally the solution is updated. A detailed description
of this time integration scheme is provided by Savard et al. [20]

Semi-implicit time integration for chemistry: The chemical source terms in
the reacting flow simulations are preconditioned using a semi-implicit treatment of
the chemical source terms [20]. The method treats the scalar transport equation
with a simple preconditioner, which is a close approximation of the diagonal of the
chemical Jacobian matrix. This helps in increasing the time step of the simulations,
while keeping the computational cost for chemistry similar to that of an explicit time
integration scheme.

Finite rate chemistry: The production rates of the species and enthalpy are calcu-
lated using a reduced n−C7H16 combustion model with 35 species and 217 elemen-
tary reactions (which counts for forward and backward reactions separately) [1].

Velocity discretization: The velocity fields are calculated at the cell faces in the
respective directions, and second order centered finite difference schemes are used
for both the continuity and momentum equations. The density is calculated at the
cell centers, and the scalar and velocity fields are interpolated using second-order
schemes, when needed, to calculate the convective and diffusive terms. Refer to
Fig. A.1 for a two-dimensional representation of the staggered grid. This method
discretely conserves mass, momentum, and kinetic energy [6].

Scalar transport: The scalar transport for the species mass fraction and tem-
perature is performed using the bounded quadratic upwind biased interpolative
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Figure A.1: Two-dimensional representation of the discretization of the computa-
tional domain. From Jason Schlup’s thesis. [21].

convective scheme (BQUICK) [8]. This method extends the finite volume QUICK
scheme [12], by adding a flux correction to ensure that the scalars are within physical
bounds. The BQUICK scheme uses QUICK’s third order upwind interpolation, to
predict the scalar values at an intermediate time step, t∗. At cell locations where the
predicted scalar value is out of its physical bounds, a first-order upwind scheme is
used instead.
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