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ABSTRACT

This dissertation contains three chapters exploring the nature of political communi-
cation and public opinion formation by analyzing social media data. Each chapter
uses original sets of Twitter data to examine the public’s response to major shifts
in public policy (Chapter Two), the differences between partisan networks (Chapter
Three), and how citizens engage with gun policy after mass shootings (Chapter
Four).

Chapter Two examines how public opinion towards gay marriage changed before
and after the legalization of same-sex marriage as a result of the 2016 Obergefell v.
Hodges Supreme Court decision. Exploiting the variation in state law prior to the
Court’s decision, I use a difference-in-difference approach to find causal evidence
that citizens residing in states where the Supreme Court overturns state laws are
more likely to have a negative opinion of the federal decision.

In Chapter Three, I collect an original dataset of Twitter conversations about the
American political parties to develop a supervised learning algorithm that classifies
users as liberal or conservative, using these labels to then map out separate ideo-
logical network structures. Analyzing these networks, I find significant differences
in how conservative and liberal citizens form online networks, leading to important
consequences for information diffusion and action coordination.

In Chapter Four, I examine how messages from the political and media elite con-
cerning gun control impact citizen engagement with gun policy issues in the wake
of high-profile mass shootings. I analyze the impact of elite messaging with a panel
data set of sixty thousand partisan Twitter users, data that includes each user’s full
Twitter history as well as information on which accounts they follow. By building
this Twitter panel, I am able to better determine which elite messages each user
receives and whether the recipient chooses to engage with gun policy. I find that
elite messages increase the likelihood a user will engage with gun policy issues,
but further determine that we must broaden the notion of elite to include users only
considered influential on the Twitter platform.



v

TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Chapter I: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter II: Policy Change and Public Opinion: Measuring Shifting Political

Sentiment with Social Media Data . . . . . . . . . . . . . . . . . . . . . 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The Supreme Court and Public Opinion . . . . . . . . . . . . . . . . 4
2.3 Twitter Data and Sentiment Scoring . . . . . . . . . . . . . . . . . . 8
2.4 Aggregate Shift in Public Opinion . . . . . . . . . . . . . . . . . . . 14
2.5 Impact of Policy Change . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.A Preprocessing Text Data . . . . . . . . . . . . . . . . . . . . . . . . 25
2.B Additional Descriptive Statistics . . . . . . . . . . . . . . . . . . . . 26
2.C Checking for Bot Accounts . . . . . . . . . . . . . . . . . . . . . . 28
2.D Validating the Supervised Scoring Method . . . . . . . . . . . . . . 29
2.E Artificially Balanced Training Data . . . . . . . . . . . . . . . . . . 32

Chapter III: The Party Structure: Examining Heterogeneous Party Networks . 42
3.1 Twitter Data and Networks in Political Science . . . . . . . . . . . . 43
3.2 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Polarization in Networks . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Differences Between Democratic and Republican Networks . . . . . 57
3.5 Elite and Non-Elite Party Networks . . . . . . . . . . . . . . . . . . 61
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.A Deep Neural Network Classifier Details . . . . . . . . . . . . . . . . 66
3.B Network Visualizations . . . . . . . . . . . . . . . . . . . . . . . . 68
3.C Additional Validation: Confirming Republican Party Networks are

Denser than Democratic Party Networks . . . . . . . . . . . . . . . 69
Chapter IV: Words andWeapons: Analyzing Reactions to Gun Violence with

a Social Media Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Theories of Mass Opinion Formation and Activation . . . . . . . . . 81
4.3 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Testing The RAS Model . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5 Expanding the Notion of Elite . . . . . . . . . . . . . . . . . . . . . 96
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.A Difference Between Active and Inactive Users in Twitter Panel . . . . 100



vi

4.B Elite Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.C Partisan Conversation Trends Post Shooting . . . . . . . . . . . . . . 102

Chapter V: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



vii

LIST OF ILLUSTRATIONS

Number Page
2.1 Time Trends in Sentiment Across Treated and Untreated States . . . . 20
2.2 Tweet Frequencies: May 27, 2015 to July 31, 2015 . . . . . . . . . . 26
2.3 Distribution of Tweets Across Untreated and Treated States . . . . . . 27
2.4 Frequency of Tweets by State per Capita . . . . . . . . . . . . . . . . 27
2.5 Histogram of Twitter Bot Likelihood . . . . . . . . . . . . . . . . . 29
2.6 Sample of Mechanical Turk Task . . . . . . . . . . . . . . . . . . . 30
3.1 Full Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Mention Network Structure . . . . . . . . . . . . . . . . . . . . . . 69
3.3 Retweet Network Structure . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Network Edge Density . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Network Transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.6 K-Core Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1 The Impact of Elite Messages on the Probability of Tweeting About

Gun Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2 72 Hours Post Parkland Shooting . . . . . . . . . . . . . . . . . . . 95
4.3 Differences between Active and Inactive Populations . . . . . . . . . 100
4.4 Elite Panel Tweet Frequencies After Mass Shootings . . . . . . . . . 102
4.5 Elite Panel Compared with User Panel . . . . . . . . . . . . . . . . . 103
4.6 Gun Policy Twitter Conversation Trends: Message Level . . . . . . . 104
4.7 Gun Policy Twitter Conversation Trends: User Level . . . . . . . . . 105



viii

LIST OF TABLES

Number Page
2.1 Top Positive and Negative Hashtags To Create Training Set . . . . . . 12
2.2 Structural Response Hypothesis Results . . . . . . . . . . . . . . . . 15
2.3 Difference-In-Difference Analysis Results . . . . . . . . . . . . . . . 18
2.4 Border States Only: Difference-In-Difference Analysis Results . . . . 22
2.5 Removing Neutral Tweets . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Number of Tweets from each State . . . . . . . . . . . . . . . . . . . 28
2.7 Error Matrix: Support Vector Machine Predictions of Top-3000 Val-

idation Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 Unsupervised Error Matrices . . . . . . . . . . . . . . . . . . . . . . 32
2.9 Error Matrix with Rebalancing . . . . . . . . . . . . . . . . . . . . . 33

2.10 Balanced SVM Score– Difference-In-Difference Analysis Results . . 34
2.11 Balanced SVM Score– Border States Only: Difference-In-Difference

Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Full Network Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Full Network Homophily . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Partisan Network Statistics with Isolates . . . . . . . . . . . . . . . . 57
3.4 Partisan Network Statistics removing Isolates . . . . . . . . . . . . . 58
3.5 Top 10 Hashtags . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6 Distribution of Top Hashtags . . . . . . . . . . . . . . . . . . . . . . 61
3.7 Network Statistics: All Verified User . . . . . . . . . . . . . . . . . 61
3.8 Network Statistics: No Verified User . . . . . . . . . . . . . . . . . 62
3.9 Neural Network Layers . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1 The Effect of Elite Messaging On Tweeting About Gun Control . . . 91
4.2 Accepting and Rejecting Elite Partisan Messages . . . . . . . . . . . 94
4.3 Granger Causality - P Values . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Expanding the Definition of Poltical Elites . . . . . . . . . . . . . . 97
4.5 Six Major Accounts of Partisan Elite . . . . . . . . . . . . . . . . . 101



1

C h a p t e r 1

INTRODUCTION

The medium of political communication has changed dramatically in recent years.
Social media websites are the modern Political Forum, offering new ways for politi-
cians to directly engage with voters, expanding citizens’ abilities to interact with one
another, and increasing the speed with which opinions change as breaking events
unfold. In the following chapters, I examine the consequences of this new political
landscape on voter behavior.

In each chapter, I examine how citizens behave in a political landscape where a large
portion of political communication occurs on social media platforms. Substantively,
I test how major Supreme Court cases impact public opinion and discussions about
policy issues (Chapter Two), the differences between partisan social networks and
their consequences for information diffusion and coordination (Chapter Three), and
how elite message streams impact discussions of gun policy (Chapter Four).

To examine these substantive topics in each chapter, I rely on data I collect on
the Twitter social media platform. Twitter data is particularly useful for tracking
public opinion because of the platform’s emphasis on sharing immediate reactions
to breaking events, and because all major media outlets and politicians have adopted
the platform as a medium of communication. Furthermore, Twitter has an open
Application Programming Interface (API) that allows developers to fine tune which
data to pull from the platform.

In each chapter, I use a different form of Twitter data to better address the specific
substantive question I analyze. In Chapter Two, I use the Twitter Streaming API,
which pulls a sample of all messages in real-time that contain a set of key words.
While the Streaming API grants access to a large set of data, it is limited to data
generated in real-time and cannot be used to pull historic information. In Chapter
Three, I continue to analyze data collected from the Streaming API, but focus on the
patterns of interactions between users to build out social network structures rather
than analyzing the content of specific messages. In Chapter Four, I use the Search
API, which pulls a specific Twitter user’s full Twitter history of messages. Using
the Search API, I build a large panel dataset of thousands of partisan Twitter users.

Turning to each chapter in more detail, in Chapter 2, “Policy Change and Public
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Opinion: Measuring Shifting Political Sentiment with Social Media Data,” I inves-
tigate the public’s response to a major policy shifts. Specifically, I analyze public
opinion before and afterObergefell v. Hodge, a landmark Supreme Court case legal-
izing same-sex marriage federally in the United States. In this study, I analyze social
media data and develop sentiment analysis algorithms to measure public sentiment,
finding evidence that citizens residing in states where the Supreme Court overturns
state laws are more likely to have negative opinions of the federal decision.

In Chapter 3, “The Party Structure: NewPerspectives on Party Networks,” I examine
partisan network structures on Twitter, focusing on the consequences these structures
have for information dissemination and coordination. While previous work on party
networks focused primarily on the network connections between party elites, social
media data allow me to observe the connections between non-elite partisan actors.
I find that Republican networks are denser, with more connections, shorter distance
between nodes, and fewer components. Democratic networks, on the other hand,
are larger but more diffuse. I find evidence that these network structures have
significant consequences for partisan behavior, with Republicans better able to
coordinate behavior and spread information.

In Chapter 4, “Words and Weapons: Analyzing Reactions to Gun Violence with a
Social Media Panel,” I create and analyze a novel dataset, building a large panel
of partisan Twitter users. In this panel, I combine each user’s full Twitter histories
with an enumeration of the accounts they follow, which allows me to track both
the source of their incoming messages and whether they subsequently engage with
a particular issue topic. I use this unique data to directly test classic theories of
mass opinion formation, analyzing changes in public opinion toward gun control
after episodes of mass violence. I find evidence that elite messaging has a strong
influence on citizen views and behavior, and the more elite messages individuals
read, the more likely they are to engage with the issue topic. Furthermore, I find that
Twitter influencers, actors that are not considered famous outside the platform, hold
as much power over public opinion as traditional political elites. These findings
suggest that, while politicians and traditional media organizations still maintain a
lot of power in guiding public opinion on social media, we need to consider a new
class of elite citizen actors in traditional models of opinion formation and issue
activation.
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C h a p t e r 2

POLICY CHANGE AND PUBLIC OPINION: MEASURING
SHIFTING POLITICAL SENTIMENT WITH SOCIAL

MEDIA DATA

2.1 Introduction
Researchers are divided over how the Supreme Court impacts American public
opinion. One group of scholars argue that the publicmoveswith the Justices’ rulings,
garnering consensus through strength of argument and the legitimacy of the courts
(Lerner, 1967). Another camp argues that the public becomes further polarized after
ruling on a divisive issue, with those inclined to agree with the Justices becoming
more adamant in their support and those predisposed to disagreement becoming
further entrenched in their opposition (Franklin and Kosaki, 1989). While these
studies consider the ways in which public opinion changes temporally in the wake of
a Supreme Court decision, few analyze the state-by-state reactions to federal rulings,
critical if a decision aligns with one state’s existing legal framework but overturns
another’s. This paper extends previous research into Supreme Court rulings and
public opinion by incorporating a state-level analysis in studying the Obergefell v.
Hodges decision and the federal legalization of same-sex marriage in the United
States.

In June of 2015 in a 5-4 ruling, the Supreme Court held that the right to marry was
a “fundamental right” under the Due Process Clause of the Fourteenth Amendment,
instantaneously overturning same-sex marriage bans in thirteen states.1 This de-
cision represents the most recent in a long-line of monumental cases in which the
Court made a ruling on a divisive social issue. Exploiting this variation in state
laws regarding the legality of same-sex marriage, I use a difference-in-difference
estimator to identify the causal impact of a policy change on the expression of sen-
timent towards same-sex marriage.2 I find this impact to be negative, indicating

1This group of 13 states are: Arkansas, Georgia, Kentucky, Louisiana, Mississippi, Missouri,
Montana, Nebraska, North Dakota, Ohio, South Dakota, Tennessee, and Texas.

2Sentiment, broadly defined, is an expression of an individual’s “opinions, sentiments, evalua-
tions, appraisals, attitudes, and emotions” towards a particular event, topic, or object (Liu, 2012).
Public opinion refers to a citizen’s feelings regarding an important political issue (Norrander and
Wilcox, 2001). As the terms are closely linked, political sentiment and public opinion are used
interchangeably in this work.
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a less positive response by those in the affected states, even when controlling for
potentially relevant demographic variables and party identification.

While many studies use polling or survey data to measure the shift in public opinion
before and after landmark decisions (e.g. Franklin and Kosaki, 1989; Johnson and
Martin, 1998; Hanley, Salamone, and M. Wright, 2012; Christenson and Glick,
2015), this paper uniquely investigates these issues by using a subset of Twitter
messages regarding same-sex marriage and gay rights issues. By implementing ma-
chine learning algorithms to extract measures of sentiment from a large collection
of tweets before and after the Supreme Court decision, I analyze a finely-grained
dataset that allows for new insights into the short-term dynamics between Supreme
Court decisions and public opinion. Studying this relationship is critical to discov-
ering whether or not the Judiciary is able to guide public opinion in the direction of
their opinion, or rather acts as a catalyst to further divide the public.

The paper proceeds as follows. First, I outline the relevant literature discussing the
Supreme Court’s impact on public opinion. Then, I describe the methodology I
employ in this paper, including details on how I collect and analyze Twitter data,
and a description of why, in this context, social media data is a useful alternative
to traditional survey data. I then look at the aggregate change in opinion following
that the Court’s ruling and then turn my analysis to a detailed investigation of the
the heterogeneous state reaction. I analyze my data with a difference-in-difference
estimation technique, finding that the Supreme Court’s decision engendered an
increased negative reaction in those states where the ruling represented a change in
state policy. A number of robustness checks confirm this finding.

2.2 The Supreme Court and Public Opinion
What constitutes the proper role of the Supreme Court in the United States is a
long-standing question. In the opinion of Alexander Hamilton and the Federalists,
the “independence of the judges may be an essential safeguard against the effects
of occasional ill humors in the society” protecting against the “serious oppressions”
of minority parties (Hamilton, Madison, and Jay, [2009] 1787-1788, p. 395-396).
However, to counter the Anti-Federalists’ arguments that an independent judiciary
could wholly override the democratic process (Storing, 1981, p. 437-442), Hamilton
further emphasized that the judiciary would be the “weakest” of the three branches
of the Federal Government, without the “force nor will” to enforce its judgments (p.
392).
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Without the ability to enforce its rulings, a number of scholars have argued that public
opinion constrains the Supreme Court (Hall, 2014). However, the Supreme Court’s
record demonstrates a number of instances where the court’s rulings went against
popular opinion, leading others to conclude the institution is counter-majoritarian
in nature (Mishler and Sheehan, 1993). When decisions run counter to a majori-
tarian preference, scholars have argued the Court consciously recognized its role as
“Republican Schoolmaster,” using their judicial power to educate citizens and guide
public opinion (Lerner, 1967).

Behind these arguments is the notion that, viewed as a popular and revered institu-
tion, the Supreme Court directly influences public opinion in the direction of their
decisions (Dahl, 1957; Casey, 1974; Mondak, 1994; Gibson and Caldeira, 2009).3
The theory that the court lends legitimacy to their rulings in a way that moves public
opinion in the direction of their decisions is termed thePositive Response Hypothesis
(Franklin and Kosaki, 1989).

While there is a great deal of support for the Positive Response Hypothesis in
experimental work (Clawson, Kegler, andWaltenburg, 2001; Mondak, 1994; Bartels
and Mutz, 2009; Hoekstra, 2003), the theory does a poor job explaining empirical
findings in a number of observational studies (Franklin and Kosaki, 1989; Nicholson
and Hansford, 2014). Roe v. Wade represents a particularly important case study
that refutes the Positive Response Hypothesis, as public opinion data show that
before and after the ruling, aggregate support for abortion remained unchanged.

To address this empirical discrepancy, there have been a number of alternative
theories describing how the public will respond to Supreme Court decisions. The
Structural Response Hypothesis posits that, even if Supreme Court decisions fail to
move aggregate public opinion in one direction, court decisions can still alter the
“structure of opinion”– that is, the amount to which different groups “support and
oppose a position and how intensely” (Franklin and Kosaki, 1989, p.753). Thus,
a Supreme Court decision might cause ex-ante supporters of a position to become
more favorable, while simultaneously causing ex-ante opponents to become more
negative. In the aggregate, this would appear as no movement in overall public
opinion, although in actuality the court was responsible in further polarizing public
opinion.

3 While the popularity of the Supreme Court ebbs and flows over time (Caldeira, 1986), it is
often shown to be perceived as more favorable than either the Legislative or Executive Branch (Cox,
1976; Marshall, 1989, p.g. 139-141).
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Another alternative is the backlash model, predicting that Supreme Court rulings
that change policy will move aggregate public opinion away from the Justice’s
decision (Haider-Markel, 2007; Haider-Markel, 2010). In this model, Supreme
Court decisions act as focusing events that lead to a “large, negative, and enduring
shift in opinion against a policy or group” (Bishen et al., 2016, p.626). We observe
this backlash most acutely in the short-term, and it can eventually lead to long-term
aggregate support to the Justice’s decision (Ura, 2014).

Heterogeneous State Reactions
While there is extensive research and debate analyzing the impact of Supreme Court
decisions on aggregate public opinion, much of the previous work does not explicitly
test whether a shift in opinion is the same in the group of states where a ruling
leads to a policy change, occurring whenever state and local policies contradict
a Federal decision by the Supremacy Clause of the United States Constitution
(U.S. Constitution Article VI, n.d., §2). My work addresses this gap in the literature
by considering the consequences of Supreme Court decisions that nullify some state
polices while leaving the policies of other states unchanged.

The reason most earlier work does not consider the heterogeneous state-level re-
actions to Supreme Court rulings is likely limitations in available data– with few
comparable state-by-state surveys, researchers often often rely on national survey
data (e.g. Marshall, 1989; Franklin and Kosaki, 1989; Johnson and Martin, 1998).4
However, given citizens in different parts of the country experience different policy
consequences as a result of Supreme Court decisions, it seems natural to assume
that different groups of states might have divergent reactions to the Justices’ rulings.

To hypothesize how public opinion will move in states where the Supreme Court
overturns policy, I consider the literature on public opinion towards Federalism.
Survey data over the course of many years demonstrates that citizens consistently
view their state governments more favorably than the Federal government (Kincaid
and Cole, 2011; Kincaid and Cole, 2008; Kincaid and Cole, 2000). These “attitudes
are sensitive to respondents’ affiliation with the party in power nationally” (p. 66),

4In response to the difficulty in finding comparable state-level surveys, scholars developed various
techniques to obtain state-level estimates from national opinion surveys, including disaggregation
(Erikson, G. C. Wright, and McIver, 1993) and mulitivelel regression and poststratification (MRP)
(Lax and Phillips, 2009a; Lax and Phillips, 2009b). While both useful techniques, an additional
issue when studying public opinion change in response to Supreme Court decisions is the need find
similar surveys before and after the Justices’ ruling. This makes using disaggregation and MRP
techniques difficult when the hope is to study short-term reactions to Supreme Court decisions.
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withmembers outside the standing President’s partymore likely to believe the federal
government has too much power (2011). These opinions also vary by region, with
citizens in southern states more likely to believe their state/province does not receive
“the respect it deserves in the federal system of government” (2008, p.g. 479).

Given that the public tends to view state governments more favorably than the
federal government, these studies suggest that when a Supreme Court decision goes
against state-level policy, public opinion is prone to move away from the Justice’s
decision. This is most likely true when a Supreme Court decision overturns policies
in southern states, as was the case in Obergefell v. Hodges. Furthermore, the
Obergefell v. Hodges decision came during the Democratic President Obama’s
tenure, a period of time when Republican-leaning states were more likely to view
the Federal government with distrust.

Of course, it is important to note that a number of the thirty-seven states that
legalized same-sex marriage prior to the Obergefell v. Hodges decision did so only
as the result of a state or district court ruling. While possible to assume citizens in
these states would have the same reaction as the citizens in the thirteen states where
Obergefell v. Hodges lead to a policy change, the backlash model theorizes citizens
with direct exposure to focusing events are more likely to have a negative reaction to
a policy (Hopkins, 2010). Therefore, even within this group of states, it is plausible
that citizens in states where Obergefell v. Hodges lead to a policy change would
have an increased negative reaction towards the ruling.

Court Rulings and Opinion Towards Gay Rights
Prior to Obergefell v. Hodges, the Supreme Court ruled on a number of cases
concerned with gay rights. While scholars have analyzed the public response to
these earlier cases, the empirical evidence across studies is mixed. Analyzing four
separate gay rights cases, Stountengborough, Haider-Markel and Allen (2006) find
public support moved in the direction of the court decision in one case, against the
court decision in a separate case, and remained unchanged for the remaining two
cases.5

More recently, research analyzing the public’s reaction to two prominent Supreme
Court cases expanding gay rights in 2013 found little evidence that liberal decisions
lead to a backlash against gay rights (Bishin_2016; Flores and Barclay, 2016).6

5The four cases studies were Bowers v. Hardwick (1986), Romer v. Evans (1996), Boy Scouts of
America v. Dale (2000), and Lawrence v. Texas (2003).

6These cases includeUnited States v. Windsor (2013), which invalidated sections of the Defense
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Flores and Barclay (2016) further find that residents of states where the Court intro-
duced same-sex marriage policy led to the greatest reduction in anti-gay attitudes.
One potential reason these studies find little evidence of backlash is they utilize
survey data, which can lag behind behind the date of a Supreme Court decision. In
those states experiencing a policy change, this work may miss an initial, short-term
backlash (Ura, 2014).

Predicting the Public Response to Obergefell v. Hodges
Reviewing previous research allows me to come up with a number of predictions
concerning the public’s response to the Supreme Court’s Obergefell v. Hodges
ruling. Given the empirical support for the Structural Response Hypothesis, I
predict that, in the aggregate, the Supreme Court will polarize public opinion. In
addition, given the literature on public attitudes towards Federalism, I believe in
those states where the Supreme Court’s decision resulted in a change in policy, there
will be a less positive reaction towards the ruling as compared to other states in the
short-term.

These predictions allow me to develop two testable hypotheses:

H1. In the aggregate, the Supreme Court’s ruling in the case of Obergefell v.
Hodges will lead to further polarization towards attitudes on same-sex mar-
riage and gay rights.

H2. In those states where theObergefell v. Hodges ruling lead to a change in state-
level policy, there will be an less positive reaction towards same-sex marriage
and gay rights issues as compared to states where there was no change in
policy.

While my data confirm Hypothesis One, given earlier studies that verify the Struc-
tural Response Hypothesis, I spend the majority of the paper testing and providing
robustness checks to confirm Hypothesis Two.

2.3 Twitter Data and Sentiment Scoring
Though I address the oft-discussed question of how Supreme Court decisions impact
public opinion, I do sowith a differentmethodology compared to past studies. Rather
than relying on survey data, this paper utilizes sentiment analysis methodologies

of Marriage Act, and Hollingsworth v. Perry (2013), which effectively legalized same-sex marriage
in California.
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developed in the field of machine learning to obtain a measure of public opinion
from Twitter messages. This section briefly describes this social media data, how I
obtained and processed it, and the strategies I used to quantify sentiment from raw
text.

Advantages of Twitter Data
While survey data has been far and away the most popular source of data in studying
public opinion, these data have a number of potential issues. First and foremost,
surveys are expensive to conduct, as they require calling, mailing, or otherwise
contacting a large randomized sample of the population. As there is no way to
force individuals to participate in a researcher’s poll, there is also the problem of
non-response rates, a bias that is difficult to correct (e.g. Leeuw and Heer, 2002;
Groves, 2006; Groves and Peytcheva, 2008; Desilver and Keeter, 2015). The
problem of non-response bias seems to be getting worse, with polls failing to predict
many recent events, such as the Columbia-FARC peace referendum (Moffett, 2016),
United Kingdom’s decision to exit the European Union (Morgan, 2016), and the
election of President Donald Trump (Bialik and Enten, 2016).

Furthermore, and critical to the present research, few national surveys that draw on
state samples conduct polling at fine enough time periods to test for heterogeneous
state reactions to a Supreme Court decision. Many national surveys fail to report
state-by-state results, likely because the margin-of-error for smaller states would
prove problematic for inference (Silver, 2016).7 Moreover, testing changes in pub-
lic opinion with surveys requires comparable data before and after major Supreme
Court cases, a “limiting factor for all studies of Supreme Court influence on pub-
lic opinion” (Brickman and Peterson, 2006, p.98). While researchers developed
several techniques to estimate state samples from national survey data, including
disaggregation (Erikson, G. C.Wright, andMcIver, 1993) andmulitivelel regression
and poststratification (MRP) (Lax and Phillips, 2009a; Lax and Phillips, 2009b),
the additional necessity in finding comparable national surveys immediately before
and after a ruling makes it difficult to use these techniques to study the short-term
reactions to Supreme Court decisions.

Collecting messages on a site like Twitter is a potential way to circumvent these
issues. With cheaper computing power and easier storage options, social media data

7A good example of this limitation can be found when observing the Pew Research Center’s
(2016) report on changing attitudes towards gay marriage. While age, religion, party identification,
race, and gender are among the reported covariates, state data are not provided.
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are inexpensive to collect and archive (O’Connor, Balasubramanyan, and Routledge,
2010). Users send tweets in real-time, allowing for much finer-grained estimates
of public opinion in comparison to with monthly (or even weekly) polls. Finally,
Twitter data are ‘always-on,’ making it possible to continuously collect information
without needing to specify where and when to conduct a particular survey (Salganik,
2018, p. 21). These features theoretically allow a researcher to study a wide range
of unexpected events that alter might public sentiment and discourse.

Of course, we should in no way consider Twitter data as a full replacement for survey
data in studying public opinion. The population of American Twitter users is not a
representative sample of the adult population in the United States, and research into
the demographic makeup of Twitter users shows that populous American counties
tend to be over represented (Mislove et al., 2011), users are more likely to be
younger and richer (Barberà and Rivero, 2015), and overall there is a liberal and
pro-Democratic bias compared with the country as a whole (Mitchell and Hitlin,
2013). Still, the advantages of utilizing social media data for my current study
outweigh these potential costs. Critical to the present research, having a broad
sample differentiated by state over the short time-frame around the Obergefell v.
Hodges decision is necessary in conducting a difference-in-difference analysis.

Gathering Twitter Data
In order to utilize Twitter data to study changes in opinion concerning same-sex
marriage, it is first necessary to filter through the vast quantity of Twitter data
and obtain only the subset of messages where users discuss topics relating to gay
marriage and rights. I accomplish this by utilizing the Twitter Streaming API, a
tool that pulls any tweet that fits certain criteria in real-time.8 To obtain all relevant
tweets, I tracked the following set of words: gay marriage, gay marriages, same-
sex marriage, same-sex marriages, same sex marriage, same sex marriages,
same-sex union, same-sex unions, same sex union, same sex unions, marriage
equality, equal marriage.9 I pulled tweets containing one of these keywords from
the Twitter Streaming API and placed into a MySQL data base with a Python script.
This monitor ran from May 27, 2015 to July 31, 2015, collecting 4,379,492 total

8 A potential issue in utilizing data from Twitter’s Streaming API is you do not get access to the
full universe of messages. However, as there is no systemic pattern to which data are unavailable
from the API, the bias this introduces is small when collecting a large dataset.

9 While I specified these keywords to follow a single issue over time, in relying on a static list
of keywords, I risk missing important phrases that developed dynamically during the data collection
period (King, Lam, and Roberts, 2017). However, one advantage in using a static list of terms is I
use the same criteria to select tweets during the entirety of my data collection period.
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tweets.

For each I tweet collected, I captured several other pieces of relevant meta-data,
including the time-stamp and the user’s number of followers. When available, I also
collect user profile data, such as the user’s full name and location.10

As the goal of this project is to analyze sentiment within the United States, I can only
utilize the subset of tweets with location data that I can map to a specific US state.
There are two primary sources of location data users provide: GPS coordinates
(geotags) users can elect to post with their tweets and self-reported locations users
can share on their profile (Steinert-Threkeld, 2018, p.g. 7).11 Given only 2-3% of all
tweets contain geotags (Leetaru et al., 2013), I rely on self-reported locations to map
users into US states. Specifically, I employ a large series of regular expressions with
state names and themost populousAmerican cities tomap self-reported location data
into a standardized state-coding scheme. In total, the algorithm mapped 962,422
messages, or 23% of the data, to a specific state.12 The fact that the algorithm could
not accurately map a large portion of the users to a state based on self-reported
location data is consistent previous findings (Hecht et al., 2011).

In addition to analyzing location data, I examine the subset of users that choose to
share their full name to predict demographic characteristics. Specifically, I use the
gender package (Mullen, 2015) to link first names to gender and the wru package
(Khanna and Imai, 2015) to link surnames with race. While it is impossible to
perfectly predict gender and race based on names, these packages are commonly
employed in the literature, utilizing census data to predict these variables with high
levels of accuracy.

Finally, I classify a subset of users as either Republicans or Democrats. These labels
10A primary concern when collecting Twitter data is the potential incidence of “bot” accounts–

automated programs that perform a variety of actions on Twitter including sending messages, fol-
lowing other users, or retweeting messages (Jajodia et al., 2012). While potentially problematic, an
examination of the users in my data reveals little evidence that a large number of users are likely
bots (see 2.C Checking for Bot Accounts for details). Based on this analysis, I do not believe bots
heavily bias my results. I do attempt to avoid bot accounts by filtering out any user with less than 25
followers, an approach used in Barberà (2013). I remove 293,244 tweets with this approach.

11Researchers have proposed using other sources of data to infer a user’s location, including the
message context of the tweets themselves (Ikawa, Enoki, and Tatsubori, 2012; Li and Sun, 2014) the
user’s social networks (McGee, Caverlee, and Z. Cheng, 2013; Jurgens, 2013). While useful, these
techniques lie outside the scope of the current paper.

12In order to get a sense of howwell my location coding algorithm performs, I analyzed the subset
of messages (1,990 in total) that are geotagged. For each of these messages, my location scheme
mapped the user into the correct state 91.1% of the time, providing a good robustness check for the
mapping scheme.
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come from a method Barberà developed (2013). Very briefly, Barberà’s method
takes advantage of follower networks to predict the likelihood an individual is a
Republican or Democrat, with the estimation strategy relying on the logic that a
Republican is more likely to follow other Republicans and Democrats are more
likely to follow other Democrats. I was able to merge roughly 18% my own Twitter
data with users in Barberà’s data, creating a subset of accounts with estimated party
labels.

Sentiment Scoring
After collecting a large set of Twitter data, I preprocess the raw text data in a way
that made it possible to utilize various supervised sentiment scoring algorithms to
measure.13 Supervised training methods require a training set – a collection of
messages annotated with true labels. As the goal of this project is to classify tweets
based on sentiment, this involves building a training set of tweets labeled as positive
or negative.14 While hand-annotators often build training sets, this project uses
hashtags, meta-data provided by users that ‘tag’ a tweet with a specific phrase or
message, in order to build a large training set.15 In order to choose these positive
and negative hashtags, I extract the top-hundred hashtags appearing throughout the
dataset. Two individuals coded each hashtags as positive, negative, or neutral, with
a third individual breaking any ties. In the end, I identify fifteen positive and six
negative hashtags, listed in Table 2.1.

Table 2.1: Top Positive and Negative Hashtags To Create Training Set

Positive
#lovewins, #uniteblue, #p2, #loveislove, #pride, #noh8,
#toasttomarriage, #equalityforall, #noh8worldwide, #stoprush, #lov,
#pridemonth, #proudtolove, #tlot, #lovecantwait

Negative #tcot, #ccot, #pjnet, #wakeupamerica, #rednationrising, #culturalrot

I then loop over the entire set of collected tweets, placing each message containing
one ormore positive hashtags into a positive training set and eachmessage containing
one or more negative hashtags into a corresponding negative training set. If a
message contains both a positive and negative hashtag, I remove it from the training
set. In total, 79,887 unique messages contained one or more positive hashtags and
5,944 unique messages contained one or more negative hashtags. The fact that there

13Details of the preprocessing scheme can be found in 2.A Preprocessing Text Data.
14It is important to note that there is a third category of tweets in the data: neutral messages.

How this project deals with neutral messages is described in the Neutral Tweets section below.
15 This methodology is borrowed from Kouloumpis et al. (2011).
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are more tweets in the positive training set may be indicative of the overall liberal
bias present on Twitter (Mitchell and Hitlin, 2013).

It is potentially problematic that my training data is unbalanced in the relative
frequency of positive and negative tweets, with several machine learning papers
exploring the ramifications of unbalanced training data and describing potential
fixes (e.g. Bischl, Kühn, and Szepannek, 2014; Wallace et al., 2011). Most of
these re-balancing schemes involve over-sampling the underrepresented class or
under-sampling the over-represented class. However, if the underlying population
distribution of the two classes is itself skewed, this sort of balancing could make
the situation worse, biasing the results (Matloff, 2017, p.g.142-145). Given the
much higher incidence of positive/liberal skewing hashtags in my dataset, I find
preliminary evidence that the underlying data is itself unbalanced. Thus, with no
way to guarantee a re-balancing scheme will prevent me from biasing my results, I
choose not to artificially balance my training data.16

With this labeled set of training data, I run a large number of classifiers. Of the
methods tested, the most accurate classifier was a Support Vector Machine (SVM),
which is consistent with the machine learning literature concerning sentiment anal-
ysis (Pang, Lee, and Vaithyanathan, 2002).17 Of the 962,422 tweets mapped to a
U.S. state, the algorithm classified 134,225 as negative and 828,197 as positive.

To validate the accuracy of my SVM classifier, I use a set of 3,000 hand-annotated
tweets, crowd-sourced from Amazon Mechanical Turk. Each tweet was labeled by
three human coders, with the final label being the majority category. In order to
test the largest number of messages in the shortest amount of time, the validation
set corresponds with the top-3,000 most re-tweeted messages, a set that represents
39.6% of the data. The SVM classifier accurately predicts 82.7% of this annotated
data, which performed better than any of the tested unsupervised, dictionary-based
classifiers.18

On acquiring this well-performing estimate of sentiment in a carefully selected
subset of tweets, I use these data as a measure of sentiment towards gay-rights issues

16As a robustness check, I attempt to artificially balance the training data in 2.E Artificially
Balanced Training Data. The substantive results are strengthened in this scheme, so my main
analysis might represent a more conservative estimate of the causal effect.

17To prevent over fitting, the SVM model parameters were tuned with the e1071 package in R
(Meyer et al., 2015). This package runs 10-fold cross validation, choosing parameters that maximize
accuracy with the held out set in each iteration.

18More information concerning how I validate these classifiers is found in 2.D Validating the
Supervised Scoring Method.
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before and after the Supreme Court’s federal legalization of same-sex marriage.

2.4 Aggregate Shift in Public Opinion
I begin by testing the Structural Response Hypothesis by replicating the analysis
outlined in Franklin and Kosaki (1989). This model takes the form:

Yi = α1 + α2 A f teri + (β11 + β21 A f teri)X1 + · · · + (β1k + β2k A f teri)Xk + ε

Where i indexes messages, Y is a “positive” or “negative” classifier, A f ter is an
indicator variable specifying whether the message was from before or after the
Supreme Court ruling, X represents covariates, and ε represents unobservables. To
measure Y , I use the SVM classifier described in the previous section to label each
message in my dataset as positive or negative, replacing SVM scores with hand-
labeled Mechanical Turk results when available, as hand-annotated labels are closer
to the ground truth. I code positive message as a one and negative message as a
zero. I estimate the above equation with a probit model.

To test the Structural Response Hypothesis, I run two models: a constrained model
in which β2k is set to zero for all K covariates, and an unconstrained model where
these values are allowed to vary. If I reject the constrained model in favor of
the unconstrained model, it demonstrates that the Supreme Court decision alters
the structure of opinion. I run two pairs of models: a pair that only includes
demographic variables and a pair that includes demographic variables and party
labels. Table 2.2 contains the results of these tests.19

In both pairs of models, I reject the constrained model in favor of the unconstrained
model at high levels of significance, which confirms my first hypothesis (H1). Of
note is the fact that this level of significance is much higher when including party
fixed effects, as demonstrated by the much larger Chi-Squared value across models
three and four. This pattern demonstrates that the polarizing impact of Obergefell v.
Hodges was especially pronounced across party lines.

Overall, these results provide further evidence for the Structural Response Hypoth-
esis, demonstrating that the Supreme Court polarizes aggregate public opinion.
Confirming the core result of Franklin and Kosaki (1989) represents a good initial
validation of the accuracy of my sentiment classifier. However, this initial analysis

19All regression tables are made with stargazer for R (Hlavac, 2015).
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Table 2.2: Structural Response Hypothesis Results

Dependent variable:
Positive Sentiment

No Partisan Labels With Partisan Labels
(1) (2) (3) (4)

Unconstrained Constrained Unconstrained Constrained

After 0.157∗∗∗ 0.140∗∗∗ 0.088∗∗∗ 0.073∗∗∗
(0.012) (0.007) (0.025) (0.013)

Male −0.178∗∗∗ −0.207∗∗∗ −0.042∗ 0.045∗∗∗
(0.013) (0.005) (0.025) (0.011)

Male*After −0.034∗∗ 0.107∗∗∗
(0.014) (0.027)

Black −0.042 0.029∗∗ −0.024 0.050
(0.039) (0.015) (0.076) (0.031)

Black*After 0.083∗∗ 0.086
(0.042) (0.083)

Hisp. 0.145∗∗∗ 0.211∗∗∗ 0.124∗∗ 0.033
(0.027) (0.010) (0.058) (0.025)

Hisp.*After 0.077∗∗∗ −0.111∗
(0.029) (0.064)

Asian 0.259∗∗∗ 0.249∗∗∗ 0.335∗∗∗ 0.213∗∗∗
(0.045) (0.015) (0.091) (0.039)

Asian*After −0.011 −0.150
(0.047) (0.101)

Other −0.054 −0.128∗ −0.514 0.018
(0.197) (0.066) (0.351) (0.227)

Other*After −0.084 0.867∗
(0.209) (0.475)

GOP −0.916∗∗∗ −1.061∗∗∗
(0.023) (0.010)

GOP*After −0.180∗∗∗
(0.025)

Constant 1.098∗∗∗ 1.112∗∗∗ 1.152∗∗∗ 1.160∗∗∗
(0.011) (0.007) (0.022) (0.014)

Chi-Sq. − 16.40 − 68.36
Significant − 0.002 − p<0.001
N 480,311 480,311 88,374 88,374
Log L. -184,750 -184,759 -42,011 -42,045
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does not consider the heterogeneous impact a Supreme Court decision has in states
where the Justices overturn policy.

2.5 Impact of Policy Change
To test how the Supreme Court’s ruling in Obergefell v. Hodges may have affected
the expression of sentiment towards gay marriage for citizens in regions where
the Supreme Court overturned state-level policy, I use a difference-in-difference
estimator to identify a treatment effect. The difference-in-difference estimator works
by differencing across the treated and untreated observations, as well as across
time. This effectively differences out both the time-variant and time-invariant
unobservables, allowing for a causal interpretation of the difference-in-difference
coefficient.

However, this estimation technique is only useful if what occurred in the untreated
set is a reasonable counter-factual for what might have happened in the treated set.
Thus, in this setting, I assume the treated states would have had a similar reaction
as their untreated counterparts if the Supreme Court decision did not lead to a top-
down shift in state policy. Importantly, the level of sentiment can still differ greatly
between the two sets of states: only the general time-trend must be the same, an
assumption explored below.

When these assumptions hold, there is no need for a difference-in-difference esti-
mation to include other covariates. However, as the parallel trends assumption is
very difficult to test, I include a number of covariates that could reasonably explain
the heterogeneous response to the Supreme Court ruling across each set of states.

The difference-in-difference regression takes the form:

Yi = β0 + β1Di + β2 A f teri + β3(Di ∗ A f teri) + Xi + ε

Where i indexes messages, Y is a “positive” or “negative” classifier (defined in
the way described in the previous section), D is an treatment indicator that takes
the value of 1 if the Supreme Court decision lead to a change in state policy,
and After is an indicator variable that takes on the value 1 if the user sent the
tweet after the Supreme Court’s decision on June 26, 2015. X represents a set of
potential control variables and ε represents unobservables. I run this regression
with a linear probability model, as the assumptions of the difference-in-difference
estimator require linearity in order to interpret the results causally.
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The coefficient of interest in the above equation is β3, which corresponds with the
average change in the expression of positive sentiment in the treatment group before
and after the Supreme Court decision, minus the change in sentiment over the same
period of time in the untreated group. This difference-in-difference represents the
change in sentiment caused by the treatment, in this case the change in sentiment
that results from the Supreme Court overturning state-level policy.

In total, I consider five models, the results of which are found in Table 2.3. The
first two models are the baseline difference-in-difference models, with no added
controls. The next three models include partisan labels, with models four and five
additionally including gender and race fixed effects.

Models two and five remove all tweets sent on June 26, the day of the Supreme
Court decision. I estimate these models because a large number of individuals only
tweeted on June 26 and no other point in the dataset.20 As I aim to measure the shift
in sentiment towards gay-rights and not simply an opinion towards the Supreme
Court itself, these models are of interest. Model two is the baseline difference-in-
differencemodel with the day-of-decision tweets removed, whilemodel five includes
all covariates.

In Table 2.3, I find a negative and statistically significant Treated×After coefficient
across all model specifications. This indicates the Supreme Court’s decision lead to
a more negative reaction in those states where the decision caused a policy change.
Thus, I find evidence for my second hypothesis (H2): the Supreme Court’s decision
caused relatively less support for gaymarriage and gay rights in those affected states.

That is not to say these results demonstrate an overall backlash against same-sex
rights in the treated states, which would require one to compare the separate con-
stituent elements of the regression table. In fact, the large, statistically significant
After coefficient in most model specifications demonstrates a large increase in
support for gay rights overall, even in affected states. However, the significant and
negativeTreated×After coefficient shows that, across all model specifications, there
is relatively less positive support in the treated states after the Court decision. Thus,
these models demonstrate that, when the Supreme Court overturns state policy, there
is less relative support for the decision in affected states.21

20Of the 4,379,492 total tweets in my dataset, 1,310,721 were sent on June 26, 2015. 58% of the
users who tweeted on June 26 did not send a message at any other point in the dataset.

21Though these results seem to contradict the conclusions in Flores and Barclay (2016), this may
be due to the short time frame of my current study. Flores and Barclay use survey data that lags
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Table 2.3: Difference-In-Difference Analysis Results

Dependent variable:
Positive Sentiment

(1) (2) (3) (4) (5)

After 0.038∗∗∗ 0.002∗ 0.018∗∗∗ 0.022∗∗∗ 0.001
(0.001) (0.001) (0.003) (0.004) (0.004)

Treated −0.010∗∗∗ −0.009∗∗∗ 0.007 0.011 0.012
(0.002) (0.002) (0.005) (0.007) (0.007)

Treated*After −0.008∗∗∗ −0.014∗∗∗ −0.012∗∗ −0.015∗ −0.014∗
(0.002) (0.003) (0.006) (0.008) (0.008)

GOP −0.320∗∗∗ −0.318∗∗∗ −0.328∗∗∗
(0.002) (0.003) (0.003)

Constant 0.847∗∗∗ 0.846∗∗∗ 0.883∗∗∗ 0.866∗∗∗ 0.869∗∗∗
(0.001) (0.001) (0.003) (0.004) (0.004)

Drop June 26? No Yes No No Yes
Race No No No Yes Yes
Gender No No No Yes Yes

N 962,422 666,813 173,979 85,585 71,371
R2 0.002 0.001 0.139 0.135 0.137

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Turning to each model in detail, models one and two represent baseline models,
with and without tweets from the day of the Supreme Court decision. In both
models, I find a negative and significantTreated×After coefficient. When dropping
observations from June 26, 2015, this result is even stronger. In models three, four
and five, I maintain a negative coefficient for Treated×After coefficient, even when
including user fixed effects. While these models are of interest, it is important
to realize I drop over 90% of the data when including all fixed effects, making
cross-model comparisons difficult. That said, each model with demographic fixed
effects maintains a negative Treated×After coefficient, although I lose a degree of

behind and ahead of a Supreme Court case, while I analyze data in the short time interval immediately
preceding and following Obergefell v. Hodges. By looking at this shorter time interval, I provide
evidence for Ura’s (2014) claim that backlash is most acutely felt in the short-term.
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statistical significance. This loss is most likely the result of dropping a large number
of observations, resulting in a diminishment of statistical power.

It is important to observe that those users I can link to a party likely represent a group
of extreme partisans. This is a result of Barberà’s estimation technique, as citizens
with strong partisan preferences are the easiest to identify with his methodology.
As I would expect a sub-population of extreme partisans to have similar reactions to
the Supreme Court decision, regardless of what state they reside in, the fact that the
Treated×After coefficient remains negative in this set of models represents strong
evidence that the Supreme Court decision had an impact on the treated group’s
expression of sentiment.

Turning to the other variables in the model, I find that the After variable is positive
across allmodel specifications, although this effect nearly disappearswhen removing
tweets from the day of the decision itself. This indicates that an immediate reaction
to the Supreme Court decision generates a large portion of the positive impact; in
turn it is likely that a the large number of individuals who only tweet on this day drive
the phenomena. The Treated coefficient is negative and significant in the baseline
models, which I expect given the treated states contain more conservative citizens.
Once I control for partisanship, the Treated coefficient is no longer significant.
The large, negative, and highly significant Republican coefficient in models two,
three and five provides a good robustness check in analyzing these results. This
result is not surprising, as conservative groups (consisting of mostly Republicans)
consistently respond negatively to policies that advance a gay-rights agenda.

Parallel Trends Assumption
While these results do not definitively prove causality, they demonstrate the correla-
tion between the Supreme Court overturning state policy and less positive sentiment
towards gay marriage and gay rights issues. If one believes the untreated states are
a good counter-factual to the treated states, I can interpret this correlation causally.

This interpretation requires the belief that the untreated states are a good counter-
factual to what might have occurred in the treated states. Unfortunately, I can not
directly test this assumption. That said, if I can demonstrate that the treated and
untreated states had a parallel trend in expressed sentiment prior to June 26, I can
argue that the untreated set is a good control group for the treated set. To explore
this parallel trend assumption, I graph the daily mean sentiment score for treated
and untreated states over time. As these daily sentiment scores are volatile, I chart
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the five-day moving average to better visualize the data. This visualization is found
in Figure 2.1.

Figure 2.1: Time Trends in Sentiment Across Treated and Untreated States
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In Figure 2.1, I find that, overall, the parallel trends assumption seems to hold,
as both the treated and untreated states have the same overall trend in expressed
sentiment prior to June 26. For the most part, treated states have lower sentiment
scores than their untreated counterparts, though there are periods of time where the
scores overlap. After the court decision there was a general widening in the gap
between sentiment scores across the two sets of states, a gap driving the difference-
in-difference results. This gap is especially pronounced around July 1 to July 15.
Exploring messages from these days might elucidate why there was an increase in
negative sentiment during these time-periods, although this investigation is beyond
the scope of the present paper. For several days after July 15, the treated and untreated
states once again converge, indicating a possible mean-reversion. However, this gap
in sentiment reemerges in the final days of my dataset.

Border State Analysis
As the parallel trend assumption in the difference-in-difference estimator posits that
the untreated group is a good counter-factual to the treatment group, a potential
criticism of my work is that I do not restrict the group of untreated states. That is, I
analyze data from all fifty states, when perhaps states like California and New York
do not make good counterfactuals to the states in the treatment group.

While a matching methodology represents the most rigorous way to find valid
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counterfactuals for users in my treated set, I do not have a rich enough set of
independent variables to allow for an accurate matching procedure. However, it is
possible to use the geography of the treated states to find a set of users that might
represent a more valid counterfactual. Thus, I re-run my analysis with a smaller
set of untreated states, restricting the untreated group to only those states that share
a border with one or more treated states.22 By restricting the untreated states in
this way, I am more likely to select states with similar demographic characteristics,
allowing me to further test and validate my results. The result of this robustness
check is found in Table 2.4, which replicates the five model specifications in the
previous section.

In models one and two, the baseline models, I find a negative and statistically
significant Treated×After coefficient. Thus, even when restricting the untreated
group to smaller set of states more likely to share characteristics with the treated
set, I continue to find evidence of a causal impact. In models three, four, and
five, where I include user-level fixed effects, I find the Treated×After coefficient
remains negative, although I lose statistical significance in models four and five.
This is likely the result of losing statistical power, as model four and five contain a
tiny fraction of the total observations.

Neutral Tweets
One issue potentially biasingmy results is the presence of a third sentiment category:
neutral messages. While theoretically possible to build a third training set of neutral
tweets and training a three-way classifier, binary classifiers produce more accurate
labels. Though failing to include a neutral category may bias my results, if I can
reasonably sign the direction of the bias, I can still interpret the results causally.

I test how neutral tweets bias my results by rerunning the models with an unsuper-
vised classifier. Unsupervised sentiment classifiers, which simply count the number
of words in a message that appear in a ‘positive’ or ‘negative’ dictionary, have the
benefit of labeling messages as neutral if the text contains no or equal numbers of
positive and negative words. While labeling neutral messages is beneficial, the fact
that sentiment dictionaries exist across general domains means they do not perform
as well as supervised classifiers in specific issue settings, which is why I do not use

22The bordering states include: Oklahoma, Kansas, NewMexico, Colorado, Wyoming, Montana,
Minnesota, Iowa, Wisconsin, Illinois, Indiana, Alabama, Florida, South Carolina, North Carolina,
Virginia, West Virginia, Pennsylvania.
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Table 2.4: Border States Only: Difference-In-Difference Analysis Results

Dependent variable:
Positive Sentiment

(1) (2) (3) (4) (5)

After 0.041∗∗∗ 0.002 0.019∗∗∗ 0.021∗∗∗ −0.003
(0.002) (0.002) (0.004) (0.007) (0.007)

Treated 0.013∗∗∗ 0.014∗∗∗ 0.021∗∗∗ 0.034∗∗∗ 0.034∗∗∗
(0.003) (0.003) (0.006) (0.009) (0.009)

Treated*After −0.012∗∗∗ −0.014∗∗∗ −0.011∗ −0.013 −0.010
(0.003) (0.003) (0.007) (0.010) (0.010)

GOP −0.333∗∗∗ −0.330∗∗∗ −0.339∗∗∗
(0.003) (0.004) (0.004)

Constant 0.824∗∗∗ 0.823∗∗∗ 0.874∗∗∗ 0.849∗∗∗ 0.853∗∗∗
(0.002) (0.002) (0.004) (0.006) (0.007)

Drop June 26? No Yes No No Yes
Race No No No Yes Yes
Gender No No No Yes Yes

N 557,149 385,357 99,342 48,228 40,731
R2 0.001 0.0001 0.144 0.138 0.140

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

these unsupervised labels as the dependent variable in the bulk of my analysis.23

Despite the limitations of an unsupervised sentiment classification scheme, the fact
that it is possible to classify neutral tweets allows me to check if the difference-and-
difference results are altered with the removal of neutral tweets. The result of this
validation test is found in Table 2.5. Each model represents the baseline difference-
in-difference model, with no added fixed effects. Models one and two use Liu’s
Opinion Lexicon (Liu, Hu, and J. Cheng, 2005), while models three and four use the
AFFIN Sentiment Lexicon (Nielsen, 2011). Models one and three include the full
untreated set, while models two and four restrict the untreated set to border states as
described in the section above.

232.D Validating the Supervised Scoring Method contains additional information on how I create
and test the unsupervised classifiers.
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Table 2.5: Removing Neutral Tweets

Dependent variable:
Positive Sentiment

Bing Lexicon AFFIN Lexicon
(1) (2) (3) (4)

After 0.046∗∗∗ 0.035∗∗∗ 0.085∗∗∗ 0.078∗∗∗
(0.003) (0.004) (0.002) (0.004)

Treated −0.016∗∗∗ 0.002 0.001 0.016∗∗∗
(0.005) (0.006) (0.004) (0.005)

Treated*After −0.038∗∗∗ −0.027∗∗∗ −0.036∗∗∗ −0.029∗∗∗
(0.005) (0.006) (0.004) (0.005)

Constant 0.529∗∗∗ 0.511∗∗∗ 0.563∗∗∗ 0.548∗∗∗
(0.002) (0.004) (0.002) (0.003)

Border States No Yes No Yes

Observations 517,854 300,109 619,421 357,423
R2 0.003 0.001 0.003 0.002

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In Table 2.5, I note that across each model specification, the Treated×After coef-
ficient is negative and highly statistically significant. The fact that all these values
are larger in magnitude than the main results in Table 2.3 provides evidence that the
inclusion of neutral tweets biases my core results upwards. This allows me to more
definitively interpret the core results in a causal manner.

2.6 Conclusion
In this project, I bring a new perspective to the long-standing debate on how the
Supreme Court impacts public opinion. In the landmark case Obergefell v. Hodges,
the Supreme Court definitively ruled that same-sex marriage was a “fundamen-
tal right,” conferring the right to marry for same-sex couples across the United
States. As same-sex marriage is a divisive social issue, previous studies theorize
this Supreme Court decision would cause opinion to be further polarized across the
American public.

However, few earlier studies explicitly consider Supreme Court decisions’ heteroge-
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neous impact on different groups of states – with varying pre-existing legal condi-
tions, a court ruling might overturn certain state policies while leaving other policies
unchanged. Such was the case in Obergefell v. Hodges, with only thirteen of the
fifty states having policy overturned in the wake of the Justice’s decision. I study
this event in a causal inference framework with a difference-in-difference estimator,
finding that overturning state-level policy led to a relatively more negative reaction
towards the decision by citizens in those affected states.

I engage in this analysis with a novel dataset: rather than conducting my study with
public opinion polling data, I utilize machine learning tools to classify a large set of
political tweets as positive or negative with a high degree of accuracy. These data
allow me to track the expressed sentiment of gay rights issues in a short time frame,
making it possible to detect shifts in sentiment immediately before and after the
Supreme Court’s decision. While social media data have their own set of potential
issues, relying on Twitter allowsme to overcomemany of the problems present when
utilizing survey data. Critical to the present study, I construct a large dataset with
coverage across the entire United States over the short period of time before and after
the Court ruling, a necessary precondition in conducting a difference-in-difference
analysis and interpreting my results causally.

This work represents a theoretical and methodological contribution to the literature
on the Supreme Court’s impact on public opinion. On the theory side, my work
demonstrates that analyzing national-survey data without considering state samples
is insufficient in understanding the impact of Supreme Court decisions on public
sentiment when those decisions have varied regional consequences. This work
suggests that, when the Supreme Court overturns state policy, it leads to a relatively
more negative sentiment towards the Justice’s decision. Future work might look at
new court cases in different issue areas to establish this as a general finding.

On the methodological side, I demonstrate that combining sentiment analysis tech-
niques with social media data grants a new perspective in analyzing public opinion.
These data allow me to isolate the state-by-state reactions immediately following
and preceding the Obergefell v. Hodges Supreme Court ruling, making it possible
to analyze reactions to policy change in a causal inference framework, a unique
contribution to this literature. In the future, gaining a better understanding of the de-
mographic population on Twitter and improving the machine learning classification
techniques will only improve this methodology.
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2.A Preprocessing Text Data
Before running supervised training methods to estimate sentiment, I use several
preprocessing scripts to manipulate and simplify the Twitter text data. First, I
remove all textual information that does not inform the substance of the message,
including punctuation, all forms of capitalization, and words that fail to contribute
towards a sentence’s meaning.24

Next, I tokenize the text, a process that splits “a string into its desired constituent
parts” (Potts, 2011). My tokenizing strategy utilizes white-space to break apart a
sentence into separate words. This transfers the content of a tweet into a list of
individual words, ignoring the original order these words appear in the sentence.
While the order of words in a sentence can absolutely contribute to the content of
a message, treating each document as coming from a “bag-of-words” is a common
(though at times contentious) assumption that is necessary to apply many machine
learning techniques (Grimmer and Stewart, 2013). In many situations, it is pos-
sible to glean enough information from the choice of unique words to justify this
assumption.

Finally, I transform the entire dataset into a document-frequency matrix (DFM). A
DFM is an N × J matrix, where N is the number of documents (in this case, tweets)
and J is the number of unique features (in this case, individual words) found across
all documents. Thus, if tweet n contains two instances of word j, the nj th entry
of the DFM is 2. With Twitter data, this represents a very sparse matrix, as the
entire set of unique words J across the entire dataset can be quite large, although
an individual tweet being capped at 140-characters contains a small number of
individual words.25 Thus, rather than utilizing each of the J unique features in the
entire dataset, I analyze a subset of features based on how frequently the feature
appears. Tuning this parameteris possible, but for the baseline analysis I kept a
feature if it appeared at least three times throughout the dataset.26

24Words such as “the, of, or.” In the parlance of Computer Science, these terms are referred to as
“stop words.”

25Twitter recently increased this cap to 280-characters, though this change occurred after I
collected the data in the present study.

26In order to implement the preprocessing steps described above, this project utilized thequanteda
R package (Benoit and Nulty, 2016). The quanteda package provides tools to organize and analyze
string data in order to implement sentiment analysis methodologies.
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2.B Additional Descriptive Statistics
I collected the tweets analyzed in my project over a two-month time span, fromMay
27, 2015 to July 31, 2015. To obtain this data, I use a series of python scripts that
continuously interacted with the Twitter Streaming API, using regular expressions
to archive any tweet that contained one of the following issue words: gay marriage,
gay marriages, same-sex marriage, same-sex marriages, same sex marriage,
same sex marriages, same-sex union, same-sex unions, same sex union, same
sex unions, marriage equality, equal marriage. During this time, I collected a
total of 4,379,492 tweets. After filtering for location in the process described in the
Gathering Twitter Data section above, I end up with 962,422 total tweets. In Figure
2.2, I plot the number of tweets I collected each day. The top half of Figure 2.2 plots
the raw frequency of daily tweets, and it is immediately apparent that a very large
number of tweets were sent on June 26, 2015, the day the Supreme Court announced
their decision. This drops off quickly, although I collect a large number of tweets
until early July. The bottom half of Figure 2.2 plots the logged frequencies in order
to better visualize the entire time series.

Figure 2.2: Tweet Frequencies: May 27, 2015 to July 31, 2015
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Of the 962,422 tweets in the dataset, 279,976 tweets are from treated states (those
states were the law changed as a result of the Supreme Court Decision) and 682,446
are fromuntreated states. Of these 682,446 tweets, 277,173 are from states bordering
the treated. Figure 2.3 visualizes this distribution.

Figure 2.3: Distribution of Tweets Across Untreated and Treated States
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Mydataset contains tweets from each state, with the number of tweets sent from each
state enumerated in Table 2.6. One can also get a general sense of the distribution
of users by looking at the heat map in Figure 2.4, which maps the number of tweets
sent per capita using state populations recorded in the 2010 census.

Figure 2.4: Frequency of Tweets by State per Capita
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Table 2.6: Number of Tweets from each State

State Number of Tweets
California 133,666
Texas 108,044
New York 96,329
Florida 55,463
Illinois 41,910
Ohio 35,038
Pennsylvania 31,190
Georgia 30,985
Washington D.C. 28,589
Michigan 27,060
Washington 24,312
Massachusetts 23,593
North Carolina 23,022
Tennessee 21,228
New Jersey 18,846
Arizona 18,745
Louisiana 18,524
Virginia 18,000
Colorado 16,450
Missouri 15,439
Indiana 15,137
Maryland 14,217
Wisconsin 13,940
Oregon 13,518
Alabama 13,436
Minnesota 13,051

State Number of Users
Kentucky 11,326
Nevada 11,194
South Carolina 11,048
Oklahoma 8,997
Kansas 8,352
Arkansas 7,516
Utah 7,123
Connecticut 6,802
Iowa 6,547
Nebraska 6,115
Mississippi 6,114
West Virginia 5,579
New Mexico 3,943
Maine 3,861
Hawaii 3,758
Idaho 3,386
Rhode Island 3,195
Delaware 3,138
New Hampshire 2,800
Alaska 2,358
Vermont 1,917
Montana 1,845
South Dakota 1,798
North Dakota 1,559
Wyoming 1,327

2.C Checking for Bot Accounts
Detecting so-called “bot” accounts is the subject of many machine learning papers,
with researchers focusing on different techniques to determine whether messages
are sent by humans or automated programs (e.g. Wang, 2010; Jajodia et al., 2012;
Ferrara et al., 2016). Given the discussions in the wake of the 2016 U.S. election
regarding automated systems disseminating “fake news” on social media platforms,
it is important to consider whether or not my dataset is filled with bot accounts
biasing my results.

To get a sense of how many likely bot accounts are present in my dataset, I pull
a sample of 30,000 random users. To figure out how likely these 30,000 users
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are bot accounts, I utilize the Botometer publicly available API.27 The Botometer
API interacts with the Twitter API, pulling over one thousand features from the
user’s Twitter profile to compare against a collection of 15,000 manually verified bot
accounts and 16,000 verified human accounts (Varol et al., 2017). The classifier then
runs an ensemble method using Random Forests, AdaBoost, Logistic Regression,
and Decision Trees to determine the likelihood a given user is human or a bot. The
classifier outputs a likelihood from zero to one; the closer the bot score is to one, the
more likely the account is run by an automated program. I present the distribution
of classification scores from the 30,000 users in Figure 2.5.

Figure 2.5: Histogram of Twitter Bot Likelihood
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Figure 2.5 demonstrates that the majority of users are likely human, with a mean
bot score of 0.29 with a standard deviation of 0.14 across the sample. Only a small
number of users are likely bots, with only 9.2% of users with a bot score greater
than 0.5 and 1.3% of users with a bot score greater than 0.75. While important to
note Botometer represents only one approach to detecting bots, this preliminary
analysis shows little evidence that bots drive my results.

2.D Validating the Supervised Scoring Method
In order to measure the performance of my supervised classifier, I create a separate
validation set of hand-annotated tweets. In a desire to validate the largest number
of messages in the shortest amount of time, the set of annotated tweets corresponds
with the top-3,000 most repeated messages in the dataset. In total, these 3,000

27https://botometer.iuni.iu.edu
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tweets represent 1,569,840 total messages, and thus consists of 39.62% of all col-
lected tweets. After stripping these 3,000 messages of usernames, hyperlinks, and
punctuation, there were 2,954 unique messages in the validation set.

In order to build this hand-annotated validation set, I utilized Amazon Mechanical
Turk, a crowdsourcing platform that allows a researcher to pay individuals to com-
plete small tasks. I created a set of tasks that required Mechanical Turk users to
score the sentiment of ten tweets in my validation set. I present a screen shot of the
task in Figure 2.6.

Figure 2.6: Sample of Mechanical Turk Task

Each task was performed by three separate Mechanical Turk users in order to get a
sentiment score as close to the ground truth as possible. While the Mechanical Turk
interface allowed the users to select ‘neutral,’ given I only train a ‘positive/negative’
binary classifier, I recode all neutral labels as positive. I argue in the body of the
paper that neutral messages are more likely classified positive, biasing my results
upwards and justifying this coding scheme in the context of my analysis. To create
a final score for each of the 2,954 unique messages, I took the majority score across
the three annotations. In total, 485 tweets were coded “negative” and 2,469 tweets
were coded “positive.”

Comparing the scores ofmy SVMmodel with these annotated scores, I find the SVM
classifier accurately predicts 82.7% of the annotated data, with 86.12% precision
and 94.53% recall. Table 2.7 visualizes these results in an error matrix.

The error matrix reveals that one issue my classifier exhibits is over-predicting
the positive class. While part of this issue may stem from the fact I have an
unbalanced training set, visually inspecting the false-positive tweets reveals that
many misclassified messages are highly sarcastic in tone. While this is easy for a
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Table 2.7: Error Matrix: Support Vector Machine Predictions of Top-3000 Valida-
tion Set

Predicted Predicted Total
Negative Positive

True Negative 109 376 485

True Positive 135 2,334 2,469

Total 244 2,710

human reader to recognize, sarcasm is very difficult to detect in sentiment scoring
algorithms.28 In order to minimize false positives, I rerun my analysis with a SVM
classifier that balances the training set in 2.E Artificially Balanced Training Data
below.

Comparing Supervised and Dictionary-Based Sentiment Scoring Methods
To further measure the performance of my supervised training algorithm, I also run
a number of unsupervised, dictionary-based sentiment scoring algorithms. These
methodologies involve finding pre-specified dictionaries of positive and negative
words, counting the number of times these words appear in a given text, and clas-
sifying the text as positive or negative based on these counts. The lexicon-scoring
method yields integer scores for each tweet, depending on the number of positive
or negative matches in a particular message. To transform this score into a binary
classifier, if the score was less than zero the message was set to “negative,” while
any score greater than or equal to one was set to “positive.”

While unsupervised methodologies have the advantage of simplicity, they tend to
have worse performance than supervised scoring methodologies, as sentiment dic-
tionaries are not domain specific. I run an unsupervised scoring approach with
two popular sentiment dictionaries: Liu’s Opinion Lexicon (2005) and the AF-
FIN Lexicon (Nielsen, 2011). Each each of these dictionaries correctly predicted
roughly 72% of the validation data, demonstrating the improved performance of my

28See (Maynard and Greenwood, 2014) as an example of one attempt to address sarcasm detection
in tweets.
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Table 2.8: Unsupervised Error Matrices

(a) Bing Liu Opinion Lexicon

Predicted Predicted Total
Negative Positive

True Negative 207 278 485

True Positive 540 1,929 2,469

Total 747 2,207
(b) AFFIN Dictionary

Predicted Predicted Total
Negative Positive

True Negative 213 272 485

True Positive 509 2,232 2,741

Total 722 2,504

supervised classifier. See Table 2.8 for the unsupervised error matrices.

2.E Artificially Balanced Training Data
As mentioned in the Sentiment Scoring section in the body of the paper, it is po-
tentially problematic that with 5,944 negative and 79,887 positive examples, my
training data is unbalanced. One way to address this imbalance is using the class
weights parameter in the e1071 package when training an SVMmodel. This param-
eter increases the penalty for misclassifying the underrepresented class, allowing
me to artificially balance the training set (see Meyer et al. (2015) for details). Unfor-
tunately, there is no way to properly set the values of these weights without knowing
the underlying population distribution of positive and negative tweets in my dataset,
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and aggressively rebalancing can lead to bias (Matloff, 2017, p.g.142-145).

However, to address the potential concerns that false positives are impacting my
substantive results, I rerun my main analysis with an artificially balanced SVM
classifier. The parameters of the SVM classifier are identical, with the exception
of a class weight parameter that doubles the penalty of misclassifying a negative
example. This classifier output 424,938 negative and 3,954,554 positive tweets
(9.7% and 90.3%) compared to the 292,751 negative and 4,086,741 tweets (6.68%
and 93.31%) output by the unbalanced classifier used in my core analysis.

To examine how the artificially balanced scores compare to the validation data, I
present the error matrix in Table 2.9. Compared to Table 2.7, which presents these
results from the unbalanced training set, I find that the artificially balanced classifier
correctly predicts more negative tweets. This classifier decreases the false positive
rate, but at the expense of a higher false negative rate. The balanced classier has
81.92% accuracy, 86.94% precision, and 92.22% recall, compared with the 82.7%
accuracy, 86.12% precision, and 94.53% recall of the unbalanced classifier. Overall,
these values reveal that the balanced classier does about as well (and certainly not
substantially worse) than the unbalanced classifier.

Table 2.9: Error Matrix with Rebalancing

Predicted Predicted Total
Negative Positive

True Negative 143 342 485

True Positive 192 2,277 2,469

Total 335 2,619

I rerun the main analyses with the balanced classifier, replicating the procedure
described in the Difference-In-Difference Analysis section of the paper. Table 2.10
replicates the main results of my analysis, while Table 2.11 restricts the set of un-
treated states to bordering states. Across allmodel specifications, theTreated*After
coefficient remains negative. In each of the baseline difference-in-differencemodels,
the coefficient is negative and statistically significant. In these models, the nega-
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tive coefficient is larger in magnitude than the equivalent models with unbalanced
sentiment scores.

The Treated*After remains negative and significant in models including user-level
fixed effects, though statistical significance is lost in the fifth model specification
when including all covariates and dropping tweets from June 26, 2015. As was
true in the main analysis, this is likely the result of dropping a large percentage of
observations, weakening statistical power considerably.

Overall, these results confirm, if not strengthen, the claims I make in the body of
the paper. As such, if balancing the training data leads to more accurate sentiment
scores, I consider mymain results a more conservative estimate of the causal impact.

Table 2.10: Balanced SVM Score– Difference-In-Difference Analysis Results

Dependent variable:
Positive Sentiment

(1) (2) (3) (4) (5)

After 0.065∗∗∗ 0.020∗∗∗ 0.031∗∗∗ 0.032∗∗∗ 0.005
(0.001) (0.002) (0.003) (0.004) (0.005)

Treated −0.008∗∗∗ −0.008∗∗∗ 0.012∗∗ 0.013∗ 0.013
(0.002) (0.003) (0.006) (0.008) (0.008)

Treated*After −0.011∗∗∗ −0.018∗∗∗ −0.016∗∗∗ −0.015∗ −0.013
(0.003) (0.003) (0.006) (0.009) (0.009)

GOP −0.348∗∗∗ −0.344∗∗∗ −0.350∗∗∗
(0.002) (0.003) (0.003)

Constant 0.786∗∗∗ 0.785∗∗∗ 0.818∗∗∗ 0.801∗∗∗ 0.803∗∗∗
(0.001) (0.001) (0.003) (0.004) (0.005)

Drop June 26? No Yes No No Yes
Race No No No Yes Yes
Gender No No No Yes Yes

N 962,422 666,813 173,979 85,585 71,371
R2 0.003 0.001 0.139 0.135 0.135

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.11: Balanced SVM Score– Border States Only: Difference-In-Difference
Analysis Results

Dependent variable:
Positive Sentiment

(1) (2) (3) (4) (5)

After 0.068∗∗∗ 0.019∗∗∗ 0.035∗∗∗ 0.037∗∗∗ 0.009
(0.002) (0.002) (0.005) (0.007) (0.007)

Treated 0.016∗∗∗ 0.016∗∗∗ 0.028∗∗∗ 0.042∗∗∗ 0.042∗∗∗
(0.003) (0.003) (0.006) (0.009) (0.010)

Treated*After −0.014∗∗∗ −0.017∗∗∗ −0.019∗∗∗ −0.020∗ −0.016
(0.003) (0.004) (0.007) (0.010) (0.011)

GOP −0.359∗∗∗ −0.352∗∗∗ −0.355∗∗∗
(0.003) (0.004) (0.005)

Constant 0.762∗∗∗ 0.761∗∗∗ 0.807∗∗∗ 0.776∗∗∗ 0.778∗∗∗
(0.002) (0.002) (0.004) (0.007) (0.007)

Drop June 26? No Yes No No Yes
Race No No No Yes Yes
Gender No No No Yes Yes

Observations 557,149 385,357 99,342 48,228 40,731
R2 0.003 0.0002 0.146 0.138 0.136

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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C h a p t e r 3

THE PARTY STRUCTURE: EXAMINING HETEROGENEOUS
PARTY NETWORKS

Political parties are subjects of considerable interests in American politics. While
in the past, party officials and candidates represented the main subjects of study in
understanding the party structure, a recent body of work re-examined this approach
and models parties as larger organizations of both formal and informal partisan
groups (Noel, 2012; Bawn et al., 2012). This framework, known as the ‘parties-
as-networks’ model, focuses attention on the importance of previously unstudied
informal partisan groups, connected to but not a part of the official party apparatus
(Bernstein, 2004).

This work has consistently demonstrated the importance of peripheral actors, in-
cluding as campaign staffers, political consultants, and interest groups, in explaining
party behavior and electoral outcomes (Monroe, 2001; Doherty, 2005; Grossmann,
2009). However, due to data availability issues, there are limits to the types of
informal groups that researchers study; much of this work relies on observation,
interviews, and surveys, which often necessitate the study of smaller local party
networks (Schwartz, 1990; Masket, 2004).

While the ‘parties-as-networks’ model emphasizes the importance of peripheral
partisan groups, researchers have thus far not focused attention on a new type of
informal partisan actor: online party activists. Operating within the realm of social
media, partisan users have the potential to encourage others in their network to vote,
disseminate political information, and advocate their interests.

A new source of information in the form of Twitter data has made it possible to study
this group in the context of party networks. I gather Twitter data from politically
active users from July 2016-March 2017 and study their networks in an extended
party framework in order to answer two fundamental questions: to what degree are
these partisan networks polarized and in what ways do the network structure differ
betweenRepublicans andDemocrats? In the presentwork, I find strong evidence that
these party networks are highly polarized. Further, I demonstrate that Republicans
and Democrats exhibit heterogeneous network structures. While the Republican
network represents a denser, more close-knit network arrangement, Democratic
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networks are more diffuse, with a larger number of separate communities and fewer
interactions.

This second finding, that the Republican party demonstrates a more connected
network structure than Democrats, contradicts previous findings in the ‘parties-as-
networks’ literature, which found the opposite (Grossmann, 2009). However, my
work is not a criticism of the previous methodology, but rather an expansion of the
analysis. It provides new evidence that including larger groups of partisans in the
mass electorate has important consequences on the party network structure.

The fact that the Republican network is denser could have important political ram-
ifications. A tighter-knit group with a large number of connections between users
is evidence of fewer intra-party divisions, and users in a denser network have a
better chance of both spreading information and coordinating action. While the
present work does not offer evidence that this is the reason Republicans were more
successful in the 2016 presidential election, it is at least consistent with observations
that, as a candidate, Donald Trump had a dedicated and highly mobilized online
following compared to his opponents (Martin, 2017; Lufkens, 2016).

This paper proceeds as follows. In Section Two, I outline the ‘parties-as-networks’
literature, demonstrating how the present work expands upon previous work. In
Section Three, I describe my methodology, focusing on how I collect my data,
transform this raw data into network data, and analyze these networks. Section Four
through Six represent the main body of my analysis. In Section Four, I demonstrate
that the party networks are highly polarized, with few connections across party lines.
Section Five compares the structure of Republican and Democratic party networks,
finding Republican networks are far denser, concluding with an exploration the
consequences of this denser network structure in terms of information diffusion and
coordination. Section Six further examines the differences between party networks,
but separates out “elite” from “non-elite” users, finding that the Democratic network
of conventional party elites is slightly denser than the corresponding Republican
network. Section Seven concludes.

3.1 Twitter Data and Networks in Political Science
Parties-As-Networks
There is a long tradition in political science of using America’s two-party system
as a lens to understand candidate and voter behavior (Schattschneider, 1942; Cot-
ter, 1989; Aldrich, 1995). One of the primary theories that guides the study of
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political parties is V.O. Key’s (1952) conception of parties as a tripartite: “party-in-
government,” “party-in-the-electorate,” and “party-as-organization.” Key’s theory
allows one to conceptualize a political party not as a single, monolithic organiza-
tion run by solitary actors, but rather as a collection of individuals, including party
officials and candidates, that work together to form policies and win office.

Scholars emphasize different aspects of Key’s tripariate as the primary reason why
parties exist. John Aldrich (1995) models a candidate-centric view of parties,
arguing parties are instruments of politicians who use them to solve collective choice
problems, in terms forming majority coalitions in passing legislation (party-in-
government), and a collective action problems, in terms of organizing the electorate
through aggregating interests (party-in-the-electorate). Cox and McCubbins (1993;
2005) emphasize the important role of party leadership in keeping long-term party
coalitions together (party-as-organization), with these party leaders promoting a
legislative agenda that benefits the majority of the party members while minimizing
divisive policies.

While this work stresses candidates as the central actors in a party organization, a
group of scholars have argued for an alternative theory of parties that focus on outside
groups as the pivotal actors in a party (Masket, 2007; Bawn et al., 2012). This body
of work argues that Key’s original conception of parties omits certain important,
though informal, partisan actors, groups including citizens who donate to parties
(Cohen et al., 2008), organized interest groups (Strolovitch, 2007; Grossmann,
2009), and the partisan media (Koger, Masket, and Noel, 2009). These factions are
often more difficult to place in a conventional party framework, as it is difficult to
pinpoint primary actors in charge of these coalitions. Understanding parties as more
encompassing, though looser, collections of formal and informal actors has led to a
model of ‘parties-as-networks.’1

Earlywork in the ‘parties-as-networks’ literature involved constructing local partisan
networks through interviews and observations. In one of the first studies on political
networks, Schwartz (1990) constructs the network ofRepublican actors in the Illinois
GOP, observing that we can best understand the party as a coalition between formal
(i.e. elected officials and party chairs) and informal (i.e. advisors and financial
contributors) actors. Schwartz finds that members of the official party apparatus
were not necessarily central to the party network, and that informal actors play

1 This framework is also refereed to as "Expanded Party Networks" (Koger, Masket, and Noel,
2010) and “Extended Party Networks”(Desmarais, Raja, and Kowal, 2015)
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a pivotal role in the party structure. A number of scholars used a comparable
methodology to construct local party networks in California to similar effect, finding
that progressive era reforms have lead to an overall shift in the importance of informal
networks of campaign staffers (Monroe, 2001), that networks of endorsements are
pivotal in understanding which candidates win primaries (Masket, 2004), and the
emerging significance of a network of partisan consultants as central actors in the
party network (Doherty, 2005). Each of these studies, in shedding light on previously
unstudied, peripheral partisan groups, revealed these informal actors impacted the
party’s behavior and success in important ways. I expand on this work by bringing
attention to another previously unstudied informal group: partisan Twitter users,
which represent a broader section of the partisan electorate.

Studying Political Parties with Social Network Analysis
Much of the early work modeling ‘parties-as-networks’ focuses on constructing and
qualitatively describing the interactions and connections between various formal
and informal political actors. However, a growing body of work in this litera-
ture uses the methodological tools from Social Network Analysis (SNA) to more
formally describe party networks.2 This work uses global network statistics such
as density (Grossmann, 2009) and centrality (Koger, Masket, and Noel, 2009) to
describe precise network qualities with the purpose of understanding the relative
importance of specific political actors. These network statistics can lead to impor-
tant consequences, both in terms of information diffusion (Banerjee et al., 2014)
and coordination (Jackson and Watts, 2002).

Some immediate questions emerge when thinking about political party networks
from a social analysis standpoint: 1) to what extent are the political networks
polarized and 2) in what way do the Republican and Democratic network structures
differ?

A large body ofwork in political science attempts to explain the extent of polarization
in American Politics. A number of scholars demonstrate increased levels of polar-
ization between Democratic and Republican elected officials (McCarty, Poole, and
Rosenthal, 2006; Theriault, 2008; Druckman, Peterson, and Slothuus, 2013). Re-
searchers often assess this increased polarization in terms of elected officials’ ideal
points, formally measured with roll call vote records (Shor and McCarty, 2011;
McGhee et al., 2013). Counting roll call votes is, in some sense, a limited measure

2See Jackson (2008) for a primer on SNA methodologies and Sinclair (2012) for an overview of
network research in the political science literature.
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of overall polarization, as it only points to the revealed behavior of legislators and
not necessarily the underlying preferences of the American electorate.

Given the ‘party-as-networks’ literature includes both formal and informal actors in
the party structure, its less immediate how polarized the Democrats and Republicans
are when including these non-elite actors. Koger, Masket, and Noel (2009) find large
amounts of polarizationwithin networks of donor groups, easily separating the donor
network into two distinct partisan subgraphs. Often, studies measuring polarization
amongst broader groups of the electorate have yielded mixed results, with some
research finding little to no evidence of a polarized mass citizenship (S. J. A. Fiorina
M. P. and Pope, 2004; M. P. Fiorina and Abrams, 2008) while others find the most
active voters are highly polarized (Hetherington, 2001; Abramowitz and Saunders,
2008). Given that the Twitter data I collect consists almost entirely of non-elite
actors, I will be able to add to this debate by measuring the degree of homophily in
the political conversations amongst the broad electorate.

If Democratic and Republican networks are polarized, a natural second question is
the extent to which these partisan networks differ. While a number of scholars note
that the Democratic Party represents as a looser coalition of minorities (Bernstein,
2004; Dominguez, 2007), Grossman and Dominguez (2009) use SNA tools to
formally test this observation. These authors use interest group endorsements and
financial contributions to legislators and compute statistics on a series of Republican
and Democratic networks. The authors find, contrary to popular belief, that the
Democratic network is denser than the Republican network, with labor organizations
playing a central role in the network tying together separate coalitions. These authors
define density as a network structure where users have a higher average chance of
being connected with one another, and I utilize a similar definition of density in
comparing partisan networks.

Social Media Data
The SNA strain of the ‘parties-as-networks’ focuses on subsets of political actors for
which it is possible to obtain individual-level data, including campaign consultants
(Doherty, 2005), groups that donate to candidates (Dominguez, 2005), and interest
groups (Grossmann, 2009). While these are all examples of important political
groups, data limitations have prevented researchers from considering larger networks
of politically active citizens.

One way to potentially gather a large set of political interactions is by using social
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media data. Social media, and Twitter in particular, have become important arenas
for political discussion, debate, and coordination. The increasingly prevalent use
of Twitter by elite partisan actors allows one to analyze the connections between
politicians and major interest groups, but furthermore allows a researcher to gather
data on previously undetectable actors in the mass partisan electorate. As Twitter
data involves users commenting on and rebroadcasting the messages of fellow users,
it is natural think of conversations on Twitter as belonging to a network. A chain of
users can rebroadcast the same message by ‘retweeting’ it, allowing the information
to travel to many nodes in a connected network.

There are, of course, several difficulties and potential pitfalls in utilizing Twitter
data in a ‘parties-as-networks’ framework. Bernstein (2004) and Noel (2012) warn
against the dangers of loosening the boundary that defines the party. Bernstein cau-
tions against an all-encompassing approach to defining party actors (25) while Noel
points to the differences between political networks, which are “purposive,” and
social networks, which are “natural” (5). However, I argue that Twitter data offers
many advantages which warrant its use in party network analysis. For instance,
Twitter data allows one to include previously undetectable members of a partisan
electorate in the party structure. As politicians enter into the digital arena, online
activists that promote articles and information that support or harm a candidate are
increasingly important informal actors that excite and turn out a party’s base. Fur-
thermore, the connections modeled from Twitter data represent actual, observable
interactions between users. This has some advantages over surveys asking individ-
uals to name other people they interact with, as it is possible to forget a long history
of interactions.

While there have not been many studies that utilize Twitter data in a ‘parties-as-
networks’ context, several studies examine the general network structure on Twitter.
This work has generally found that Twitter is highly polarized, with few interactions
between conservative and liberal groups (Conover, Ratkiewicz, et al., 2011; Smith
et al., 2014; Halberstam and Knight, 2014), similar to the network structure of
political blogs (Adamic and Glance, 2005; Hargittai, Gallo, and Kane, 2007).

Hypothesis and Contribution
My current work engages with the questions the ‘parties-as-networks’ literature
poses. Are networks of formal and informal Democratic and Republican actors
highly polarized? Towhat extent areDemocratic andRepublican networks different?
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Which party network has a denser, more hierarchical structure, which could lead to
important consequences for information diffusion and coordination?

While these questions are familiar, I investigate them in a unique way: using Twitter
data to construct conversation networks between partisan actors. Though this is a
broader definition of party networks than earlier work, constructing party networks
with these data allowsme tomodel connections between elite political actors engaged
with social media and a broader ‘party-as-electorate.’

Previous studies allow me to make two testable hypotheses I attempt to answer in
the present work. First, I test whether or not the partisan networks in my Twitter
data are polarized. Previous studies lead me to believe these networks will indeed
exhibit a large degree of homophily, as previous work as shown Twitter networks
demonstrate large amounts of ideological polarization (Conover, Ratkiewicz, et al.,
2011; Smith et al., 2014; Halberstam and Knight, 2014). Furthermore, individuals
tweeting about politics are more likely to be amongst the most active members of
the partisan electorate, a group shown to be more polarized than the the general
public (Hetherington, 2001; Abramowitz and Saunders, 2008). Thus, I predict my
networks will exhibit a polarized network structure.

H1. The aggregate network structure, including connections between Democratic
andRepublican party actors, will exhibit a polarized structure, withDemocrats
more likely to engage with other Democrats and Republicans more likely to
engage with other Republicans.

Second, I test whether Democrats and Republicans have heterogeneous network
structures onTwitter. While there aremany informal observations that theDemocrats
represent a looser coalition of minorities (Bernstein, 2004; Dominguez, 2007),
when Grossman and Dominguez (2009) formally examine the differences between
Democratic and Republican party structures, they found Democrats exhibit a denser
network structure. Therefore, I predict I will find the same overall trend in the data.

H2. The Democratic network will exhibit a denser network structure, with a larger
number of shared connections between Democratic users than between Re-
publican users.
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3.2 Data and Methods
Twitter Data
In order to utilize Twitter data in an analysis Republican and Democratic networks,
it is first necessary to filter through the vast amount of Twitter data and obtain
the subset of users that are engaged in political conversation. I accomplish this
by utilizing the Twitter Streaming API, a tool that pulls any tweet that fits certain
criteria.3

Rather than granting access to the entirety of messages in the Twitterverse, the
Streaming API requires developers to specify a set of criteria to pull only a subset
of data. This usually involves specifying a set of keywords, with a script pulling
any message that uses one of these keywords. This is a challenging process, as
it is incredibly difficult to specify a set of keywords specific enough represent a
single topic but wide enough to avoid missing messages and introducing bias into
the results.

My present project, however, does not analyze tweets about specific issue areas, but
rather is an attempt to analyze the network characteristics of partisan Twitter users.
Thus, I choose to gather tweets based on two very general keywords: Democrat and
Republican.4 While not every politically-minded Twitter sends tweets mentioning
the names of one of the two major American political parties, given I collect data
before, after, and during the 2016 Presidential Election, politically-minded users
were more likely to send or share a message containing one of these keywords.

This monitor ran from July 30, 2016 to March 7, 2017, collecting a total of
24,310,721 tweets from 2,524,725 unique users.

Methodology
Network analysis involves simplifying data into a set of nodes and connections,
allowing one to discover which users are link with each other. Formally, this
involves defining:

G = (V, E)
3While the Streaming API runs in real-time, the number of messages you can grab is subject to

certain rate-limits. However, this wasn’t a problem when collecting data for the current study.
4Choosing two keywords a priori represents static keyword selection. While in some instances

a dynamic algorithm for keyword selection can better capture evolving political events of interest
(King, Lam, and Roberts, 2017), as the current work examines general conversations about the
political parties and not a rapidly changing political event, static keyword selection represents an
acceptable approach.
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where G, the graph, contains V vertices (in this case, Twitter users) and E edges (in
this case, connections between users). While the structure of Twitter makes defining
edges a relatively straightforward process, getting partisan labels for the vertices is
a challenging procedure. Twitter does not collect nor provide any information about
a user’s political leaning, which requires me to classify users as a Democrat or
Republican based on the content of their tweets.5

Thus, my methodology consists of three steps: 1) defining the edges of my graph,
2) labeling each node as a Democrat or Republican, and 3) measuring the network
statistics of the resulting graph.

Defining Edges

I define edges in two ways: retweets and mentions. I form a mention edge if User A
mentions User B in a tweet and a retweet edge if User A resends User B’s message
verbatim. Finding these edges involves using regular expressions that look for “@”
followed by username or “rt @” followed by a username respectively.6 With a list
of vertices and edges, I used iGraph to create and analyze networks in R (Csardi
and Nepusz, 2006).

In addition to defining each node based on their party affiliation, I also label nodes
based on whether they are “verified” users or not. Verified users are individuals
Twitter determines are people “of public interest,” most often users in “music,
acting, fashion, government, politics, religion, journalism, media, sports, business,
and other key interest areas.”7 Importantly, most elected official in Congress have
verified accounts, as do major news organization and interest groups.8

Classifying Users

In order to sort users as Democrats and Republicans, I use a supervised learning
algorithm to classify users based on the content of their tweets. This technique

5There are a number of papers that have come up with accurate predictions of partisanship
leaning based on the network of a user’s followers, labeling an individual Republican if they follow
a large number of known Republican Twitter accounts and a Democrat if they follow a large number
Democratic accounts (Barberà, 2013; Golbeck and Hansen, 2014). However, as I want to analyze
the network characteristics of the labeled partisan nodes, I cannot rely on a method of classification
that utilizes these very same network characteristics.

6Another way to define edges might be the follower networks in Twitter– that is observing which
users choose to follow other users. Unfortunately, this network structure is incredibly difficult to
gather data for, as getting lists of a user’s followers is subject to very high rate-limits.

7From https://support.twitter.com/articles/119135
8See https://twitter.com/verified/lists/ for a selection of verified users on Twitter.
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broadly involves locating a subset of users I can easily identify as Democrats or
Republicans (a training set), finding patterns in the content of their tweets to figure
out which set of words and phrases best sort and define the two groups, and using
these patterns to classify the rest of the users as Democrats or Republicans.9

Finding good training sets is the first, and often most difficult, step in training
a supervised classifier. To gather a training set, I utilize the user’s description,
a short profile users optionally provide on their Twitter homepage, to search for
keywords that indicate their political affiliation. Specifically, I searched for the
terms Republican/Conservative and Democrat/Liberal.10

I also use hashtags, phrases or words Twitter users use to tag their messages, to
find another set of Republicans and Democrats. Scraping each user’s description,
I use a regular expression that extracted any words or phrases preceded by “#,”
gathering the top-25 most used hashtags in across each description. Nearly each
of these top-25 hashtags were political in nature, unsurprising given each tweet
mentioned the words Democrat or Republican. Overall, I find eight hashtags
that indicate Democratic users and eight hashtags that indicate Republican users.11
With keywords and hashtags, I was able to sort 128,920 users as Republicans or
Democrats, representing 70,758 Democratic users and 58,162 Republican users.

After obtaining a training set, I reprocessed the text data in a way that made it
possible to utilize a variety of machine learning algorithms. This involved first

9A similar methodology is used in Conover et. al (2011).
10 One immediate issue with this approach is the fact that a user mentioning Republican or

Democrat might not be doing so in a positive light. That is, a subset of Republican’s might in
their description use phrases like “Democrats stay away!” and visa versa Democrats. In order
to avoid this issue, I wrote a context-based unsupervised sentiment detection script. This script
uses patterns in punctuation to extract the specific part of the user’s description using the phrase
Republican/Conservative or Democrat/Liberal, then relies on a dictionary of positive/negative
words to detect sentiment (see (Liu, 2012) for details on context-based sentiment scoring). The
specific lexicon I used for this task was from Hu and Liu (2004) with a few modifications to the
“negative” lexicon to avoid certain terms that, in the context of party affiliation, are positive terms.
These words include deplorable (used as a term of pride by Trump supporters in the 2016 election)
and resistance (used to describe liberal groups opposing Trump ) among others. In total, 8, 423 users
mentioned one of my keywords in conjunction with negative words, and these users were removed
from the training data.

11 Hashtags were coded by presenting the top-25 hashtags to three human coders, asking them
to define each hashtag as “Democrat," “Republican", or “Don’t Know." The final tags were chosen
based on the whether a two of the three coders chose the same party labels. This process led to the
following hashtags for the two parties:

Democrat: #theresistance, #resist, #notmypresident, #resistance, #nevertrump, #imwithher,
#uniteblue, #stillwithher

Republican: #maga, #2a, #tcot, #trump2016, #makeamericagreatagain, #prolife, #ameri-
cafirst, #trumptrain
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aggregating each user’s history of tweets into a single document, and removing all
features that failed to add to the meaning of the text, including punctuation and
capitalization.12

Next, I tokenized the text, breaking apart each tweet into a sequence of individual
words. This transformed each user’s tweets into a list of discrete words, ignoring
the original order of the words in the sentence. While the order of words absolutely
contributes to the meaning of sentences, regarding each document as coming from
a “bag of words” is a common simplification used in machine learning text analysis
algorithms (Grimmer and Stewart, 2013). Often, enough information is present in
the choice of, words independent of their order, to justify this simplification.

I convert the tokenized text into a document-frequency matrix (DFM), an N × J

matrix where N is the number of documents (in this case, unique user’s aggregated
tweets) and J is the number of unique features (individual words) found across all
documents. As there are huge number of unique words across the entire dataset,
I chose to only keep a feature if it appeared at least 1,000 times across the whole
dataset, leading to 4,364 unique features. With the full set of users, this lead to a
2, 524, 725 × 4, 364 matrix.

I split the DFM into two sections, a training set consisting of the users with Demo-
cratic or Republican labels, and the remaining set of users. The classification
algorithm I use is a deep neural network, an algorithm developed in the deep-
learning subfield of the machine learning literature, which is capable of training
highly accurate classifiers (Simonyan and Zisserman, 2014; Kim, 2014; LeCun,
Bengio, and Hinton, 2015). At a high-level, a neural networks allows one to train a
complex non-linear functions by breaking apart a classification task into a number
of linear layers. The advantage of neural networks is their ability to train classifiers
with many layers, which allow the algorithm to learn complicated patterns between
features. At the same time, the algorithm structures these layers to allow weights to
be quickly optimized with a stochastic gradient descent approach (LeCun, Bottou,
et al., 1998).

To train my neural net, I usedKeras (Chollet et al., 2015), a Python wrapper built on
top of TensorFlow (Abadi et al., 2015), open-source software developed by Google
that quickly builds and trains deep learning models. An advantage of the Keras

12I also removed the words Democrat and Republican, as every tweet contained one of these
two words.
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environment is the ability to easily change the structure of the neural net, altering the
number and composition of layers, and quickly validating how the classifier works.

The specific layers I used in my neural net were dense layers, which are series
of linear weights, rectified linear layers, which add non-linearity to the classifier,
and drop-out layers, which randomly drop out parameters, preventing the classifier
from over-fitting to the training data. The final layer is a soft-max function, which
outputs an array of two numbers summing to one, corresponding to the probability
of being a Democrat/Republican. Keras models also allow one to change the loss
function the neural-net optimizes and the adaptive learning rate technique. For my
final model, I optimized a binary-cross entropy loss function (Shore and Johnson,
1980) with the Adam optimizer (Kingma and Ba, 2014).13

I tested and trained a number of neural nets by altering the number, size, and type
of layers. To prevent over-fitting my training data, I used a 10-cross-fold validation
technique to asses which classifier most accurately sorted users as Democrats and
Republicans without over-fitting the training data. I also created a separate vali-
dation set consisting of known partisan media organizations and elected officials,
consisting of 330 Democratic accounts and 322 Republicans. My final classifier led
to 86.35% (sd 0.71) test accuracy from the cross-validation and 82.08% accuracy in
the validation set.14

One issue with my classification strategy is I categorize every user in my dataset as
Democratic or Republican, when there are almost certainly a number of Indepen-
dents or non-partisans in my dataset. To account for this fact, I changed the decision
criteria for labeling Democrats and Republicans. That is, rather than labeling a user
a Democrat if my classifier output a greater than 50% of them being a Democrat,
I raise this threshold. Of course, the more I raise the classification threshold, the
more data I drop.

In the end, the greatest increase in accuracy with least amount of drop-out was a
classifier that labeled a user a Democrat if there was greater than an 85% chance
of them being a Democrat and a Republican if there was a less than 15% chance
of them being a Democrat, increasing validation-accuracy to 89.07%.15 This final
model labels 1,810,658 of the 2,524,725 users, representing 1,337,897 Democrats

13SeeAppendix A for additional details on how neural networks and these specific layers function,
14To see the final form of my neueral net classifier, see Table 3.9 in Appendix A.
15I repeated all the analysis below for the full set of users classified on a 50-50 split. None of the

substantive results of the anlysis change.
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and 472,761 Republicans.16

Network Statistics

With this set of edges and vertices, I create a series of party networks. To test my first
hypothesis, whether or not users in my data are polarized, I examine the aggregate
network containing both Republicans and Democratic nodes. In this aggregate
network, I measure the level of homophily, the tendency to connect to like-nodes,
amongst Democrats andRepublicans. The specificmeasure of homophily I use is the
External-Internal (E-I) coefficient developed by Krackhardt and Stern (1988). This
measure compares the number of edges formed across groups (external-edges) with
the number of edges formed within groups (internal-edges). Formally, I compute
this statistic as:

p =
I − E
I + E

If members of the same group form every edge with one another (maximimum
homophily), the index results in +1. If members in different groups form ever edge
(minimum homophily), the index reulsts in -1. In this conception of homophily, one
ignores the direction of ties. The closer the E-I coefficient is to +1, the more the
network is polarized.

Next, to testmy second hypothesis, I separatemynetworks intoRepublican/Democratic
party networks, removing all edges connecting users across party lines. In order
to compare two networks of different sizes, I focus on global network properties,
following the structure of Newman (2003). I focus on statistics that allow me to
differentiate whether Democrats or Republicans have a denser network structure. A
denser network structure would mean that, for a random User A and User B, A has
a higher chance of being connected to B. Furthermore, if User A and User B do not
directly form an edge, a denser network structure leads to a shorter average path in
the network connecting A to B. Thus, I focus on global network properties such as
degree distribution (Amaral et al., 2000), the level of clustering (M. E. J. Newman
and Park, 2003), and an analysis of subnetworks (Milo et al., 2004).

The specific network statistics I measure include degree, the number of connections
node has, and distance, the number of connections in the shortest path to or from a

16It is not concerning that far more users are classified as a Democrat rather than as a Republican,
as this confirms the overall liberal biases on Twitter as a platform, as noted in previous work (Mitchell
and Hitlin, 2013).
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pair of nodes in the network. I normalize both these statistics, presenting average
degree (normalizing degree the number of nodes in the network) and average
distance (normalizing distance by the all possible pairs of nodes). I also refer to
components, a subgraph of the network where any two nodes can be reached by a
path. The more components in a network, the more separate communities. If a user
forms no edge, the user is an isolate.

3.3 Polarization in Networks
I begin with an examination of the aggregate network structure. According to previ-
ous studies, I expect there to be a large amount of polarization between Republican
and Democratic users, with few connections between the two groups.

Before turning to explicit measures of homophily, I present the overall network
statistics for both the retweet and mention networks in Table 3.1. Two facts are
immediate: Democrats far outnumber Republicans across all network specifications
and the retweet network is much larger than the mention network, with over twice
as many nodes.

The former statistic is unsurprising given the results of the scoring algorithm, which
classified more users as Democrats than Republicans. The fact that the retweet
network is far larger than the mention network also makes sense given how Twitter
functions as a platform: constructing a tweet wherein you mention another user
takes a certain amount of work, as its necessary to craft an original written response
to another user’s message. Retweeting, on the other hand, is effortless – one pushes
a single button to rebroadcast another user’s message.17

Nodes Dem Rep Edges Avg Deg. Components
Both 1,727K 1,277K 450K 12,350K 14.30 9K
Mentions 706K 456K 250K 3,347K 9.47 11K
Retweets 1,609K 1,206K 403K 9,003K 11.19 11K

Table 3.1: Full Network Statistics

As the aggregate networks are very large, with nearly two million nodes and over 12
million connections between all users, visualizing results is infeasible.18 However,
it is still possible to capture the level of polarization by examining measures of

17Domenico et. al (2013) also find that retweet networks contain more edges than mention
networks, pointing to a general trend in the Twitter network structure.

18 In Appendix B I attempt to visualize these networks by aggregating groups of users by detected
communities. While these network visualizations are revealing, they given the unit of analysis is on
the community level, they do not correspond with the statistics presented in the body of this work.
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homophily – the tendency of nodes to connect with other nodes of the same type. In
my analysis, homophily captures the likelihood a user labeled Democrat/Republican
will interact with other users labeled Democrat/Republican.

Nodes Edges Int. Edges Ext. Edges Homoph. Random
Both 1,727K 12,350K 10,495K 1,855K 0.69 0.07
Mentions 707K 3,347K 2,189K 1,158K 0.31 0.01
RTs 1,609K 9,003K 8,306K 697K 0.84 0.10

Table 3.2: Full Network Homophily

I present the homophily statistics in Table 3.2. I divide edges into two categories:
internal edges and external edges. An internal edge represents an edge formed of
two vertices of the same type: a Republican-Republican or Democrat-Republican
edge. External edges represent an edge formed by two vertices of different types:
a Republican-Democratic edge.19. Across all three networks, there are far more
internal edges than external edges, demonstrating that there is a higher tendency for
partisans to retweet and mention each other in Tweets.

I also present a formal homophily statistic: the I-E coefficient. The I-E coefficient is
bound from -1 to +1, with a -1 corresponding with a network where every edge is an
external connection and +1 a network where every edge is an internal connection.
Across all three graphs, the I-E coefficient is positive, indicating a tendency to form
connections within party lines. In the final column, I present the level of homophily
if edges form randomly, giving a baseline to compare the I-E coefficient against.20

Table 3.2 also reveals a higher degree of polarization in the retweet network as
compared to the mention network. Greater polarization in the retweet network
makes intuitive sense, as Twitter users are far more likely to retweet the message
of a user they agree with. Mentions, on the other hand, can arise either from a
friendly conversation between two like-minded partisan users or a debate between
political opponents. Thus, its possible a subset of connections in the mention
network correspondwith users arguing with users on the other side of the ideological
spectrum. To understand if this truly is the case requires an examination of individual
messages, which is beyond the scope of the present work.

19As I analyze the undirected network, aRepublican-Democratic edge is the same as aDemocratic-
Republican edge

20To create this random baseline, I simulate random networks. To create this random network, I
take each edge in the network and randomly pair the nodes with partners based on the frequency of
Republicans and Democrats in my dataset. I then measure the homophily of this simulated random
network.
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Overall, Table 3.2 confirms my first hypothesis: networks of partisan Twitter users
exhibit large degrees of homophily. This increased polarization seems to indicate
that these partisan networks have an ‘echo’ chamber quality, wherein information is
only shared and discussed within party lines.

3.4 Differences Between Democratic and Republican Networks
With highly polarized partisan networks on Twitter, it makes sense to analyze the
individual Republican and Democratic subnetworks. I compute a series of global
network statistics that allow me to capture overall trends in the network structure.
These statistics allow me to test my second hypothesis: is the Democratic network
denser than the Republican network?

Given the Republican and Democratic networks have different numbers of nodes, I
normalize statistics by the number of users in the network. I compute these statistics
in two ways: including and removing isolates. Isolates represent users in my data
set that are not a part of the network; these users tweeted about a political party
without retweeting or mentioning other users in my dataset.

Type Nodes Edges Avg Deg. Isolates % Isolates

Mentions Left 1,338K 1,117K 1.67 978K 73.12
Right 473K 1,073K 4.54 264K 55.87

Retweets Left 1,338K 5,121K 7.66 169K 12.63
Right 473K 3,184K 13.47 98K 20.68

Table 3.3: Partisan Network Statistics with Isolates

Table 3.3 presents the network statistics including isolates. It is oncemore immediate
that there are many more Democrats than Republicans in both networks. However,
in considering the mention-network, while there are nearly three times more Demo-
cratic nodes than Republican nodes, the number of edges between Democrats is
nearly the same as the number of edges between Republicans. That is, though
there are over 850,000 more nodes in the Democratic mention network, there are
only 44,000 more Democratic edges. This pattern is also found in the retweet
network– with 2.8 times as many Democratic nodes, there are only 1.5 times as
many connections between Democrats.

The fact that there are more edges per node in the Republican networks demon-
strates that, even though there are fewer Republican users, they have relatively more
connections per user. This is formalized with the average degree statistic, which



58

sums the number of connections each user has and divides by the number of users
in the component. For both the mention and retweet networks, Republican users
have, on average, more connections with other Republican users.

Finally, I consider the number of isolates. The second to last column in Table 3.3
reveals there are far more isolates in the Democratic networks than in the Republican
networks, unsurprising given the larger number of Democrats overall. Looking at
the proportion of users who are isolates, its clear overall more users participate in
the retweet network than the mention network. As noted earlier, this is likely due
to the relative ease in retweeting a message as compared to mentioning someone in
an original tweet. In the mention network, a larger proportion of the Democrats are
isolates, while this statistic is reversed in the retweet network.

Table 3.3 provides evidence that the Republicans, not the Democrats, have a denser
network structure. In both the retweet and mention networks, Republicans have a
higher average degree statistic. Furthermore, in themention network, there are nearly
20 percent more Democrats isolated from the network. While this goes against my
second hypothesis, to validate this result I reexamine the network structure removing
isolates.

Avg. Avg. % L.
Type Nodes Edges Deg. Dist. Comp. Comp.

Mentions Left 360K 1,117K 6.21 8.12 11K 93.40
Right 209K 1,073K 10.28 6.60 2K 98.37

Retweets Left 1,169K 5,121K 8.76 6.19 9K 98.13
Right 375K 3,184K 16.98 5.26 3K 97.46

Table 3.4: Partisan Network Statistics removing Isolates

Table 3.4 presents the statistics for networks without isolates. These smaller graphs
represent the network of individuals that have at least one interaction with another
user in the dataset. As Table 3.4 simply recreates networks by removing isolate
nodes, the number of edges across in Table 3.3 and 3.4 are identical. However,
removing the isolates alters the other statistics.

In Table 3.4 across both the mention and retweet networks, Republicans had a
higher average degree, again indicating Republicans made more connections with
other Republicans than Democrats made with other Democrats. Additionally, the
Republican networks contain shorter average distances. This statistic is important
for information diffusion – if an important news story is shared in one part of
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the Republican network, it takes, on average, a shorter chain of users sharing or
communicating the event to reach another node in the network.

The final columns in Table 3.4 reveal the component structure across the networks.
For both retweets and mentions, there are substantially more components in the
Democratic network. This disparity is surprising even when controlling for the fact
there are more Democrats overall– with only 1.7 times more Democratic nodes in
the mention network, there are 7 times as many components. Moreover, in the
mention network relatively fewer Democrats are a part of the largest components.
Overall, it appears there are a large number of separate conversation networks in the
Democratic mention network.

This components structure does not carry over to the retweet networks. While
there are more components in the Democratic retweet network, the discrepancy is
easily explained by the larger number of Democratic nodes. Furthermore, both the
Republican and Democratic networks have nearly 98% of their users in the largest
components.

Overall, the statistics presented inTable 3.3 andTable 3.4 clearly demonstrate that the
Republican network structure is denser, with users having higher average degrees,
shorter average distances between nodes, fewer isolates, and fewer components. This
result is inconsistentwithmy second hypothesis: theDemocratic party network is not
denser than the Republican party network, contradicting Grossman’s claim. Rather,
it seems that, as previously theorized, the Democrats are the party of coalitions,
with a more diffuse network structure.21

Consequences
The close-knit structure amongst Republicans could have important consequences
for information diffusion and coordination. If one user shares an influential post
or makes an important comment, the mention and retweet networks can allow this
message to reach a large number of people through a series of connections. A denser
structure is also evidence of fewer intra-party factions.

While difficult to parse out the consequences of a denser Republican party network
structure, one piece of evidence that could point towards both greater coordination
and fewer factions would be finding large number of users who constantly use a
small set of consistent hashtags. If all users in a group coordinate their messaging
on Twitter and use a small number of hashtags, they are better able to repeat a

21To further validate these result, I engage in further analysis in Appendix C
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message or idea as loudly and consistently as possible. If a large number partisans
coordinate on using same unique hashtag to represent a shared idea, this hashtag
can ‘trend’ on Twitter, finding a wider audience.

One way to figure out which group better coordinates in repeating the same set of
consistent hashtags is by extracting all hashtags used throughout my dataset and
viewing their frequency. Table 3.5 lists these hashtags.22

Hashtag Occurrences
#trump 245K
#democrat 233K
#maga 233K
#republican 226K
#gop 89K
#tcot 80K
#trumptrain 61K
#makeamericagreatagain 59K
#corruption 59K
#nevertrump 58K

Table 3.5: Top 10 Hashtags

Eight of these hashtags are most likely used by right-leaning users, specifically
#trump, #maga, #republican, #gop, #tcot, #trumptrain, #makeamericagreata-
gain, and #corruption.23 Two hashtags, #democrat and #nevertrump are more
likely to be used by Democrats. Better coordination amongst Republicans to use the
same set of hashtags to consistently mark similar messages may explain this higher
incidence of Republican hashtags.

However, one problem with looking at raw counts of hashtags is it is not possible
to view in what context users employ the hashtag. For instance, a Democrat could
write a negative message about the outcome of the election, and tag their tweet with
#trump. Thus, in addition to looking at raw incidences of hashtags throughout the
dataset, I also consider the distribution of hashtag occurrences. If the top hashtags
amongst Republican or Democratic users represent a large portion of the overall
messages sent, it indicates better coordination in using the same set of hashtags. I

22Whilemost of these hashtags are self-explantory, the acronymsmaga stands for “MakeAmerica
Great Again,” a tagline of the Trump campaign, and tcot stands for “Top Conservatives on Twitter.”

23While after Trump’s inauguration, the #corruptionmight refer to the various scandals involving
the Trump campaign’s alleged ties with Russia, during the period of time I analyze #corruption more
likely refers to Trump’s campaign message of “Drain The Swamp,” in which Trump framed Clinton
and other career politicians as corrupt influences in Washington.
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can find this statistic by summing the occurrences of the top X hashtags and dividing
by the total number of hashtags. Table 3.6 presents these results.

Left Right
Top 100 46.16% 52.00%
Top 50 37.40% 43.51%
Top 25 28.70% 35.52%
Top 10 20.87% 24.72%
Top 5 13.37% 18.21%

Table 3.6: Distribution of Top Hashtags

In Table 3.6, it is evident that the top hashtags used by Republican Twitter users con-
sistently represent a larger percentage of the overall number of hashtags used. This
once again seems to demonstrate that Republicans are better able to coordinate and
use a smaller number of similar hashtags, perhaps evidence of easier coordination
or information diffusion as allowed by the network structure.

3.5 Elite and Non-Elite Party Networks
To better parse out why the Republican party network is denser than the Democratic
network, I re-run the analyses in Section 5, splitting the data into verified and non-
verified users. Verified users represent the “elite” actors in my network, consisting
of politicians, media organizations, and individuals in the “public eye.”

Avg. Avg. % L.
Type Nodes Edges Deg. Dist. Comp. Comp.

Mentions Left 6K 10K 3.47 8.25 199 92.15
Right 2K 4K 4.07 6.54 62 91.35

Retweets Left 11K 36K 6.91 5.29 182 96.14
Right 2K 5K 4.57 5.75 149 81.58

Table 3.7: Network Statistics: All Verified User

The global network statistics for verified users are found in Table 3.7. In the mention
networks, once again the Republicans appear to have a denser network structure,
with higher average degrees, shorter average distance between nodes, and fewer
components. However, the difference between these statistics are less exaggerated
than in mention networks in Table 3.4.

While the verified-user mention networks reveal the same overall trend, Table 3.7
reveals the inversion of these statistics of Republicans and Democrats in the retweet
network. Specifically, for verified users, the Democratic networks have higher
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average degrees and shorter average distances. Moreover, even though there are
4.5 times as many nodes in the Democratic network, there are only 33 additional
components. Finally, a higher percentage of Democratic users are in the largest
component.

Thus, it appears elite Democrats, not elite Republicans, display a denser, more
close-knit retweet network structure. This is revealing, demonstrating that there are
better connections between Democratic elites than Republican elites on Twitter in
terms of sharing information. Hence, this particular network replicates Grossman’s
finding that Democratic networks are denser.

Avg. Avg. % L.
Type Nodes Edges Deg. Dist. Comp. Comp.

Mentions Left 182K 442K 4.86 6.43 16K 79.56
Right 129K 519K 8.02 5.83 3K 95.00

Retweets Left 657K 2,412K 7.35 5.96 14K 94.69
Right 272K 2,225K 16.35 4.95 4K 95.97

Table 3.8: Network Statistics: No Verified User

In Table 3.8, I present statistics for the same networks removing all verified users.
These networks display all the same trends as Table 3.4, pointing to a denser
Republican network structure.24

ComparingTable 3.7 andTable 3.8 reveals an interesting pattern betweenRepublican
and Democratic networks. It appears that while conventional ‘elite’ actors play
centralized roles in the Democratic networks, unconventional ‘informal’ actors play
the centralized role in the Republican network.

There are several possible explanations for this trend. Its possible that the results
represent a general finding, and that the more central actors in the Republican
network are non-conventional, “non-elite” users. Its also possible that this represents
a bias in Twitter’s verification procedure; highly connected Republican actors may
represent influential bloggers or online media-outlets that Twitter nonetheless fails
to consider users of “public interest.”

A third explanation is that this might represent a finding based on circumstances
unique to the 2016 election. In the 2016 electoral-cycle, while there was general

24An interesting statistic in Table 3.8 is the Democratic mention network component structure:
only 79.56% of users are part of the largest mention component, while 93.40% are part of the largest
mention component in Table 3.4 when including verified users. This points to an important role
for the elite-Democratic Twitter users as central network connections in the Democratic mention
network
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consensus amongst conventional Democratic elites to endorse Hilary Clinton, there
were factions of Democrats in the electorate that refused to support Clinton over
Sanders (Mulvihill and Trimble, 2016). This latter groupmight have been especially
popular online, with Sanders supporters and Twitter users both skewing towards
younger portions of the electorate. The inverse was true for Republicans – while
many conventional Republican elites were reluctant to endorse Trump leading up to
the 2016 election, Trump enjoyed “unbridled enthusiasm” from online communities
(Martin, 2017).

3.6 Conclusion
In this paper, I extend the parties-as-networks literature by constructing large-scale
conversation networks of partisan Twitter users. These networks not only include
elite-partisan actors in the form of ‘verified’ Twitter accounts, but also a large section
of the partisan electorate. This group of online partisan actors was previously
undetectable. However, by utilizing machine learning techniques and building a
neural net classifier, I was able to accurately label a large number of Democrats
and Republicans on Twitter. Thus, my work represents a significant methodological
contribution to the the ‘parties-as-networks’ literature, utilizing new deep-learning
techniques from the machine learning literature that allow me to identify and study
a new group of informal partisan actors.

My results confirm that there is a large amount of polarization on Twitter. This large
degree of homophily is most exaggerated on the retweet network, demonstrating
partisan actors have a strong tendency to only share messages within party lines.
This confirms previous work that finds online communities exhibit “echo chamber”
qualities, with all content being shared within the same party network.

I also explore the differences between the Democratic and Republican party struc-
ture, finding a large degree of heterogeneity between the partisan network structures.
While previous work pointed towards Democratic party networks as the denser of
the two, this work reveals that, when introducing the broader partisan electorate
community to the party network, the Republicans exhibit a denser network struc-
ture. These Republican users have, on average, more connection, shorter distances
between nodes, and fewer components. Democratic networks, on the other hand,
tend to be larger andmore spread-out, with a greater number of discrete communities
than their Republican counterparts.

These heterogeneous partisan network structures potentially have important conse-
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quences for behavior in the network. By showing the ability of the Republican com-
munities to use a small number of consistent hashtags, I find preliminary evidence
that Republican network structure allows for greater coordination and information
diffusion. Furthermore, this network structure points towards fewer intra-party di-
visions, allowing the Republican Twitter community to speak with a single, unified
voice.

I also separate the networks of partisan “elites” (those users with verified accounts)
and the ordinary partisan electorate, again examining differences in Republican and
Democratic network structures. Here, I find that Democratic elites seem to exhibit
denser network structures than Republican elites. This demonstrates the relative
importance of “non-elite” Republican users in playing a central role in the network
structure.

There are a number of immediate next steps in this research agenda. First, I hope
to increase the nuance and complexity of my network analysis by honing in on the
specific types of nodes and edges in the graph. Currently, I only specify two types of
nodes: “verified” and “non-verified.” However, it is possible to further differentiate
these vertices based on a number of other characteristics. Each of the verified actors
pairs with an actual person in the “public eye,” which allows me to collect far more
demographic information on these users. While the same is not necessarily true
of ‘non-verified’ users, I can still utilize metadata from Twitter, including numbers
of followers and friends, to further differentiate these users. I can also bring more
nuance into modeling edges: currently, I define an edge between two users if a user
sends a single mention that mentions or retweets another user. However, some pairs
of users form many such connections, which in theory increases the weight of this
edge.

Second, I hope to further examine whether the network structure allows for different
rates of information diffusion and coordination across the party networks. This
line of research would not only involve conducting large scale simulations, but also
empirically tracking whether specific pieces of information (including hashtags and
news stories) spread more quickly and thoroughly within Republican networks.

Finally, I hope to separate out networks in light of the location of the users in order
to see whether denser network structures correlate with political engagement. Given
a majority of individuals in my data set have location information associated with
their user ids, it is possible to build the same networks analyzed in this paper on a
state-by-state basis. Comparing the structure of Republican and Democratic state-



65

level party network with state turnout might demonstrate an association between
increased partisan activity online with increased political engagement.
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3.A Deep Neural Network Classifier Details
A deep neural network represents a series of linear layers and non-linear activations,
allowing one to quickly train and optimize complex non-linear functions. The
advantages of deep-learning is the ability to utilize a large number of these different
layers to locate complicated patterns between features.

To train my neural net, I use the training set of data described in Section 3. This
corresponds to a 128, 920 × 4, 364 document frequency matrix and a 128, 920 × 1
vector of party labels. Each row in the DFM represents a user and each column
represents a ‘feature’ (a unique word or hashtag) used in my dataset. Thus, the goal
of my classier is to take the 4, 364 dimensional feature-vector from user i, apply a
series of linear and non-linear transformations, and output a label prediction. The
neural net will optimize these weights against the training labels to minimize a
specified loss function.

The trick to training a neural network is to explore a variety of sequential patterns of
layers, altering the size and type of each layer. A potential pitfall is neural networks
can easily overfit the training data; with a large enough number of layers, its possible
to train a series of weights that predict the training set with an extremely high degree
of accuracy, but with the cost of low out-of-sample accuracy.

The primary component of a neural network is a dense layer, and the primary
unit of a dense layer is an artificial neuron. These simply represent a series of
summed linear weights. Thus, an artificial neuron with ten-feature input vector
would correspond to 11 weights, one for each of the input features and a bias term.
A layer in a neural net is a series of these artificial neurons, each of which can have
different values of weights. A layer in a neural network can shrink or grow the
number of parameters. For instance, a dense layer in a neural net might have 10
input parameters and 5 output parameters, corresponding to 55 total weights.

Between dense layers are activation layers, which introduce nonlinearities to the
functional form. The type of activation layer I used in my neural network were
rectified linear units, which take the functional form:

ReLU(S) = max(0, S)

A disadvantage of using rectified linear units as the acitvation layer is it partially
linearizes the network, making it less expressive, but a major advantage is it keeps
the gradient signal strong in early layers. In addition to activation layers, I include
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dropout layers. These layers stochastically drop a number of parameters, preventing
over-fitting the training data.

By sequencing a series of dense layers and activation layers, its possible to function
complex non-linear functions. The way neural nets can train these complicated
functions quickly and computationally efficiently is by using the chain rule to re-
cursively take derivatives at each level backward through the network, a technique
known as backpropogation (Rumelhart, Hinto, andWilliams, 1988). That is, given
the layered structure of the neural net, when training the weights in layer k − 1 of
the network, the algorithm can use previously stored information on the derivatives
for all weights in layers >= k. Therefore, even though neural networks have a
huge number of parameters, its possible to use standard stochastic gradient descent
techniques layer-by-layer to quickly optimize these weights against a loss function.

The final decision in building a neural network is picking a loss function to optimize
and optimization technique. The loss function I choose to optimize is binary cross
entropy, which corresponds to minimizing:

L = −
N∑

i=1

[
y(i) log(P(yi = 1|x(i))) + (1 − y(i)) log(1 − P(yi = 1|x(i)))

]
The optimizer I use is the adam adaptive learning rate technique. This is a version
of stochastic gradient descent, but with a momentum term to speed a learning (see
Kingma and Ba, 2014 for additional technical details).

With types of layers, a loss function, and an optimizer set, I used Keras to test and
train a large number of neural networks. For each neural network, I split removed
a portion of the training data to use as a validation set, trained the classifier, and
recorded the test and validation accuracy. If I found a network scheme that displayed
high accuracy, I would use a 10-cross-fold validation procedure to get a better sense
of the out-of-sample accuracy.

While each network was composed of the same basic types of layers, in each network
I altered the size and number of layers. In the end, I relied on the network that had
the greatest accuracy to label users in my main analysis. Table 3.9 presents this
network structure.
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Layer (type) Output Shape Param #
dense_1 (Dense) (None, 500) 2182500
activation_1 (Activation) (None, 500) 0
dropout_1 (Dropout) (None, 500) 0
dense_2 (Dense) (None, 200) 100200
activation_2 (Activation) (None, 200) 0
dropout_2 (Dropout) (None, 200) 0
dense_3 (Dense) (None, 100) 20100
activation_3 (Activation) (None, 100) 0
dropout_3 (Dropout) (None, 100) 0
dense_4 (Dense) (None, 100) 10100
activation_4 (Activation) (None, 100) 0
dense_5 (Dense) (None, 2) 202
activation_5 (Activation) (None, 2) 0
soft_max_5 (output) (2, None) 0

Table 3.9: Neural Network Layers

3.B Network Visualizations
With millions of vertices and edges, visualizing the entirety of my party network
structures is infeasible. However, one way to get a glimpse of these network
structures is to aggregate communities of of users and plot the connections between
these communities. I use the community detection algorithm which Blondel et.
al. (2008) developed, capable of quickly detecting communities for extremely large
networks. As these communities contain different numbers of users, I change the
size of each node to correspond to the relative size of the communities.25

For the aggregate networks showing in Figure 3.1, I color nodes based on the type
of users in the community. If the community is more than two-thirds Republicans, I
color the node red. If its more than two-thirds Democrat, I color it blue. Otherwise,
I color it purple.

25Specifically, I take the log of the number of users in each community as the relative weight.
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Figure 3.1: Full Network Structure
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Figure 3.2: Mention Network Structure

3.C AdditionalValidation: ConfirmingRepublicanPartyNetworks areDenser
than Democratic Party Networks

In this appendix, to further validate this result from section five that Republican
networks are denser than Democratic networks, I engage in two more analyses.
First, I consider two statistics that more directly measure network density. Second,
I engage in k-core analysis, looking at the number of highly connected nodes across
both networks.
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(b) Republican Users (97.46 %)

Figure 3.3: Retweet Network Structure

Density Statistics
There are a number of additional measures that directly measure the density of the
network. Two of these measures represent edge density and transitivity.

Edge density simply measures the ratio of the number of edges present in the graph
and the total number of possible edges in the graph. Transitivity represents the
probability that two adjacent nodes connected to a central node are themselves con-
nected. Thus, a denser network is one with more triangular structures. Transitivity
is also referred to as the “clustering coefficient.”

While both edge density and transitivity are important measures of network density,
the large size of the Democratic and Republican networks makes these values
extremely small and hard to differentiate. Thus, rather than simply report the
statistic for the overall network structure, I create a series of subnetworks, with each
subsequent subnetwork restricting the graph to only contain nodeswith degree higher
than X . This shrinks the size of each subsequent network, with smaller networks
representing the core of the network structure consisting of the most connected
nodes. I compute the edge density and transitivity for each of these subnetworks.

The result of this analysis is found in Figures 3.4-3.5. In Figure 3.4, edge den-
sity generally increases for both Republicans and Democrats as I restrict the size
of the network. This general pattern makes sense, because as I decrease the size
of the network, I decrease the total possible number of edges in the network (the
denominator of the edge density statistics). However, this measure does not increase
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Figure 3.4: Network Edge Density
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Figure 3.5: Network Transitivity
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monotonically, as I at times remove important central nodes. Across both the men-
tion and retweet networks, I find that the Republican network structure generally
has a higher edge-density than the Democratic networks. In particular, once I begin
considering networks including only nodes with degree 100 or greater, the den-
sity coefficients between the Republican and Democratic networks diverge. These
numbers to indicate there is a highly connected core network of Republicans.

In Figure 3.6a-3.6b reveal that Republicans and Democrats have very nearly identi-
cal levels of transitivity until we consider only the core networks of highly connected
nodes. Figure 3.6a reveals the same pattern found in Figure 3.4: at certain thresh-
old, the transitivity coefficient diverges, with Republican networks demonstrating
increased clustering. However, this does not seem to be the case in 3.6b, where
the Republicans network transitivity coefficient is only marginally higher than the
Democrats network.

K-Core Analysis
Another way to analyze the density of a network is examining the cumulative
distribution of k-cores. A k-core represents a maximally connected subgraph in
which every node has degree k or higher. A node in the k-core is also in the k-1 core
for all k. If a node is in the k-core but not the (k+1)-core, it is said to have coreness
k.
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Figure 3.6: K-Core Analysis

If a network has a large percentage of users in high k-cores, the network is more
highly connected. I graph the cumulative distribution of k-cores in the Democratic
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and Republican retweet networks in Figure 3.6. In Figure 3.6a, I plot the cumulative
distribution for all users. Given a large number of users in low k-cores, in Figure
3.6b I also plot the cumulative distribution for users conditioned on them being in
the 10-core.

Both Figure 3.6a and 3.6b reveal the same trend: the Republican network has greater
weight in the distribution for higher cores. That is, in Figure 3.6a, while 90% of
Democrats have coreness 8, 90% of the Republicans have coreness 22. This trend
continues until we consider the very tail-end of the distribution. Overall, Figure 3.6
provides yet another piece of evidence for the main result in the body of the paper:
the Republican network is denser and more highly connected than the Democratic
network.
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C h a p t e r 4

WORDS AND WEAPONS: ANALYZING REACTIONS TO GUN
VIOLENCE WITH A SOCIAL MEDIA PANEL

4.1 Introduction
How do citizens form and express opinions on important policy matters? This
fundamental question is at the core of understanding voter behavior in representative
democracy. Perhaps themost influential modern theory ofmass opinion formation is
John Zaller’s “Receive-Accept-Sample” (RAS) model described in The Nature and
Origins of Mass Opinion (1992). The RAS model posits citizen opinion forms at
the intersection of political elite messaging and a citizen’s own ideological leaning.
In the years since the book’s release, scholars have further expanded and tested
the RAS model by questioning Zaller’s definition of political elites (Friedman,
2012), broadening a citizen’s ability to question the source of elite messaging (Kam,
2012), and allowing for direct interactions between individuals (Malarz, Gronek,
and Kulakowski, 2009).

While these are all important developments to the RAS model, it is also necessary
to address the fact that, with the rise of social media, the medium of political
communication has changed dramatically since the publication of Zaller’s book.
Social media websites are the modern Political Forum, a place where, for better or
worse, over two-thirds of Americans receive and discuss news and current events
as stories unfold (Shearer and Gottfied, 2017). With social media, politicians can
directly communicate with the electorate and citizens can fine-tune their incoming
message streams. I explore the extent to which models of public opinion formation
and issue engagement apply in the world of social media by using data from the
Twitter platform, finding strong evidence that these models are still able to explain
important patterns in how elite messaging influences citizen behavior. I further
highlight a few important ways these theories differ in a social media setting, finding
that elites who defy conventional definitions often wield just as much influence over
public opinion as conventional elites.

I analyze the implications of the RAS model by investigating a substantively impor-
tant issue area: discussions of gun control policies in the wake of mass shootings. I
focus on this issue-area for several reasons. First, mass shootings have a predictable
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pattern of elite messaging, with an inevitable increase in messages concerning gun
policy by politicians and journalists following deadly shootings. Second, gun con-
trol is an “easy issue” in American politics (Carmines and Stimson, 1980), making
it simple for citizens to discern an elite’s position towards gun legislation based on
partisan leaning. Third, few previous studies track individual-levels of engagement
towards gun control in the wake of mass shootings, making it useful to further
analyze the dynamics of conversations towards gun policy as America undergoes a
distressing increase in the number of shootings each year.

Beyond simply testing theories of public opinion in a new environment, utilizing
social media data allows for methodological innovations that can better evaluate key
components of the RAS model, providing a richer and more robust understanding
of American public opinion. While the RAS model describes a process where
individual citizens receive and process different streams of elite messages, many
tests of this theory rely on aggregate cross-sectional survey data instead of large
panel datasets. With cross-sectional data, even when collecting a large sample
at several points in time, it is extremely difficult to isolate whether an individual’s
exposure to a specific elite-message stream induces opinion change. Determining the
particular set of elite messages exposed to a specific individual is nearly impossible
with survey methodologies, often requiring researchers to assume all individuals are
subject to similar media streams. This was perhaps an innocuous assumption when
Americans had relatively few choices over media channels, but in a world where
social media allows individuals to fine-tune the exact source of their information,
these assumptions can potentially produce a misleading picture of public opinion
expression in the modern era.

Instead of using survey data, I create a large panel dataset of social media users
on Twitter, tracking a set of partisan individuals’ message histories over time. This
allows me to solve many of the problems with cross-sectional survey research in
analyzing issue engagement. By looking at a user’s full Twitter history, I am able
to pinpoint exactly when a user becomes engaged with a specific policy topic.
Additionally, by observing each user’s “friend list,” an enumeration of all accounts
they follow, I am able to measure which elite message streams inform each user.
With a direct estimate of each user’s incoming message stream and the ability to
observe precisely when a particular user engages with an issue topic, social media
data allows me to make better inferences with the RAS model than traditional cross
sectional survey methodologies.
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In using social media text data to study conversations about gun policy, my paper
follows an emerging literature at the crossroads of computer and political science.
However, most previous studies using Twitter data to track public opinion and
issue engagement collect text data with a researcher-specified filter, obtaining only
those messages containing specific words, phrases, or hashtags. This introduces a
sample-selection problem, as this data-collection methodology necessarily excludes
the subpopulation who are active participants in the gun debate but who do not
discuss the topic with the researcher-selected keywords. By examining a panel, my
work not only includes everyone discussing gun policies following a high-profile
mass shooting, regardless of keywords, but further includes detailed information
on users choosing not to discuss gun polices at all. This allows my analysis to not
only highlight vocal citizens, but also those who choose to remain silent when gun
violence occurs.

The remainder of the paper proceeds as follows. In Section Two, I describe how
my work connects with theories of mass opinion formation and previous work on
public opinion towards gun policies. In Section Three, I explain my data collection
scheme and methodology. In Section Four, I test the key predictions of the RAS
model before expanding the definition of political elites in Section Five. Finally, I
conclude in Section Six.

4.2 Theories of Mass Opinion Formation and Activation
Central to many of the important questions in political science is understanding how
and why citizens form and express opinions on crucial policy matters. One of the
most influential books on public opinion is Zaller’s The Nature and Origins of Mass
Opinion (1992), which develops a precise and parsimonious model of mass opinion
formation. In this work, Zaller outlines the RAS framework. This model involves
three steps: first an individual receives messages from partisan elites, consisting of
politicians, journalists, and other policy experts (pg. 6). Second, citizens accept
messages from elite sources consistent with their own ideological leaning, filtering
out messages from opposing party elites. Finally, when forced to evaluate their
opinion towards a policy issue, they sample from their recently accepted messages.
By mostly processing like-minded messages, partisan citizens will begin to reflect
the policy attitudes of the partisan elite. In this way, elites act as an “information
shortcut,” allowing partisan citizens to hold ideologically consistent beliefs over a
wide variety of policy areas (Lupia, 1992; Lupia, 1994; Popkin, 1991).
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Zaller continues by arguing that changes in elite messaging result in changes in
public opinion. This process occurs in the context of a “two-sided information flow”
model, where the intensity of Republican and Democratic messaging changes over
time (1992, pgs. 185-215). This “two-sided information flow” model is especially
useful in explaining how people form opposing opinions about controversial policy
issues. In these debates, partisan elites compete fiercely over how they market their
own party’s solution, framing issues in a way that better supports their side of a
policy debate (Baumgartner and Jones, 1993; Chong and Druckman, 2007). The
news media often filters these elite messages, playing a critical role in disseminating
partisan messages to the public (Sheufele, 1999; Scheufele and Tewksbury, 2007).
One of the main problems in work looking at the “two-sided information flow”
model is the difficulty identifying which citizens are exposed to which information
flows, and this data scarcity forced researchers to make the unrealistic assumption
that all citizens receive a similar set of messages in a given unit of time.1

In some issue areas, ideology defines topics to such an extent that opinion change
is highly unlikely (Dunlap, McCright, and Yarosh, 2016). In spite of this, increased
partisan messaging may still serve to reinforce pre-existing beliefs (Bennett and
Iyengar, 2008), and mass media messaging can influence public perception of an
issue’s salience (McLeod, Becker, and Byrnes, 1974; Mutz and Soss, 1974). The
“agenda-setting” power of elite messaging is especially pronounced in the wake
of major events, which force the public to confront, update, or reconsider their
existing beliefs (Page and Shapiro, 1992; Atkeson and Maestas, 2012; Rogowski
and Tucker, 2018). Most of the time, only a narrow subset of the population –
so called “issue publics” – will engage with a particular issue (Converse, 1964;
Krosnick, 1990; Hutchings, 2003). However, in moments of crisis the population as
a whole may find itself evaluating policy issues they might normally ignore (Downs,
1972; Peters and Hogwood, 1985). With the advent of social media, this news
cycle can move extremely quickly, with specific stories having the power to rise and
decay with extreme alacrity (Asur et al., 2011). This makes it increasingly difficult
to accurately collect snapshots of public opinion after major events with traditional
survey methods.

1There is an emerging literature exploring novel ways to measure “exposure” to media content.
See Vreese and Neijens (2016) for an overview of developing methodologies.
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Mass Response to Gun Violence?
Theories of mass opinion formation and issue engagement are useful in considering
how the public responds to gun violence. While there is normally a large partici-
pation gap in the gun policy debate, with a small number of extremely active gun
owners representing a single-issue voting block capable of wielding an outsized in-
fluence on gun laws (Spitzer, 2007), mass shootings represent exogenous events that
force American citizens to consider and reevaluate their opinions toward gun policy.
These events consistently attract a large amount of media coverage, increasing the
salience of gun control as an issue topic and prompting normally silent citizens to
engage in discussions concerning gun regulation.

The gun policy debate is easily described with Zaller’s “two-sided message” model,
with Republican and Democratic elites taking radically different stands on guns and
crime in recent decades (Gimpel, 1998; Haider-Markel and Joslyn, 2003). There is,
however, sparse evidence that in the wake of amass shooting elite messaging induces
opinion change. While there is empirical evidence that, in the aggregate, support
for gun control legislation increases shortly after a major shootings (McGinty et al.,
2013), only a few studies investigate individual-level changes in opinion. Newman
and Hartman (2017) use CCES data and find that proximity to a mass shooting has
an impact on individual opinions towards gun control, but opinions are unlikely to
change from prior attitudes. Rogowski and Tucker (2018) use a panel survey to
measure whether the 2012 Sandy Hook shooting changed opinions on gun policy,
concluding that the “shooting had little effect on public support for gun control”
(pg. 9-10).

Current Study and Hypotheses
Based on existing empirical evidence that partisan citizens are unlikely to alter
their opinions towards gun control in the short-term following a mass shooting, the
present study is not concerned with identifying opinion change. Rather, I strive to
locate partisan actors who become “activated” – citizens who discuss gun control
as an important policy in the wake of mass shootings.

I choose to investigate citizen engagement in the month following a major shootings
for two reasons. First, mass shootings represent exogenous events that inevitably
increase the intensity of elite messaging on the gun control issue, allowing me to
better test how elite messages impact an individual’s likelihood of engaging with
gun policy as an issue topic. Second, mass shootings focus national attention on
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gun policy, increasing the likelihood individuals will discuss gun legislation. This
increase in gun policy discussions is important given the normally large participation
gap in the gun policy debate – a small number of pro gun-rights voters constantly
engage with gun policy while citizens in support of gun regulation remain silent.

I proceed by examining whether citizen behavior on Twitter is consistent with the
RAS model. Specifically, I test the following pair of hypotheses:

H1. After a mass shooting, users receiving more messages about gun control from
elites are more likely to themselves tweet about gun control.

H2. After a mass shooting, a partisan who receives more messages from elites of
the same party is more likely to tweet about gun control. Messages from elites
of the opposing party are less likely to be accepted, and will not be associated
with the partisan sending more messages about gun control.

In The Nature and Origins of Mass Opinion, Zaller outlines a relatively narrow
definition of elites. However, later empirical work points to the importance of other
actors in shaping public opinion (e.g. Friedman, 2012). On Twitter, “influencer”
status is determined largely by a user’s ability to disseminate their messages to a large
number of followers. While many of these users have the “verified” status, there
are also a large number non-verified users that manage to attract a large following.
While not traditionally defined ‘elites,’ these users may still be able to influence
public opinion on Twitter. Thus, I test a third hypothesis:

H3. Influencers that do not fit traditional definitions of media elites will affect
users in a way similar to traditionally defined elites.

I test these hypotheses with a unique set of Twitter data. I describe these data and
my identification strategy in the following section.

4.3 Data and Methods
The main weaknesses present in empirical work using the RAS model are 1) the
difficulty in measuring elite information flows, 2) estimating which citizens receive
these messages, and 3) uncertainty as to when certain issues will become important
in the public discourse. Compounding these issues is the high difficulty and costs
in running large panel surveys, with most empirical work instead relying on cross-
sectional samples.
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By using a Twitter panel, my data and methodology are uniquely suited to overcom-
ing these limitations, and can offer direct empirical tests of the predictions which the
RAS model provides. This section briefly describes the source of my social media
data and how I processed the data for analysis.

Advantages of a Twitter Panel
Twitter has become an increasingly useful source of text data in political science,
used for such various purposes as tracking elections (Larsson and Moe, 2012;
Tumasjan et al., 2013), gauging levels of political participation (Boulianne, 2015),
and measuring public opinion (O’Connor, Balasubramanyan, and Routledge, 2010;
Beauchamp, 2017). The most popular method to obtain Twitter data is via the
Streaming Application Program Interface (API), which allows researchers to obtain
tweets matching certain criteria as they are sent in near real-time.2

To utilize the Streaming API, researchers must specify criteria for the tweets they
wish to track. When monitoring issues, researchers often specify a series of track
words, terms and phrases tied to a specific issue or event, using the Streaming
API to obtain tweets mentioning one or more of these track words. However, in
many circumstances it is difficult to predict which words will capture conversations
about a specific event, and not until an event is unfolding will people gravitate
towards specific words and phrases to describe the incident.3 Though cutting-
edge data collection schemes have begun utilizing dynamic keyword algorithms to
predict new keywords as events unfolds King, Lam, and Roberts, 2017, the fact
that the Streaming API prevents access to historical data means one cannot obtain
old tweets with new ‘learned’ keywords, preventing these schemes from collecting
initial conversations about unexpected, breaking events.

A more fundamental problem with using the streaming API to analyze issue en-
gagement is that one only obtains tweets featuring the track words, necessarily
selecting on the dependent variable. That is, data obtained from the Streaming API
by construction only includes users choosing to discuss a specific issue topic in a
certain way, and will never include information about users choosing not to tweet
about the particular issue. Unless it is random which populations choose to discuss

2It is important to note that data obtained the Twitter Streaming API does not grant researchers
access to the full universe of messages, with rate limits preventing researchers from obtaining all
messages containing a researchers track words.(Morstatter et al., 2013)

3On Twitter, this is most apparent by noting that, during a breaking event, only one or two
hashtags will become ‘trending,’ with future tweeters encouraged to use those particular hashtags to
discuss.
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or not discuss the issues under analysis, this sampling bias can lead to misleading
results.

Collecting the Twitter Panel
To overcome this limitation, I create a panel of Twitter users, avoiding selecting a
user on the basis of their discussing gun control policy. Thus, I avoid selecting on
the outcome of interest.

I build this panel by first locating a group of users who discuss general political
issues and have clear partisan leanings. I make this sampling decision because,
although I do not want to select a panel based on a user’s proclivity to discuss gun
policy issues, I do want to ensure a panel with politically engaged users. To this
end, I used the Streaming API to locate users discussing either of the two political
parties during the 2016 election and explicatively mention affiliation with a political
party or ideology in their Twitter profile.4 In total, 55,674 users fit these criteria:
24,219 Democrats and 31,455 Republicans.5

After locating a large group of politically active partisans, I pulled each user’s
Twitter history from the Search API. Unlike the Streaming API, the Search API
allows a researcher to obtain a user’s full history of Twitter messages, not simply
those messages matching certain specified keywords.6 I also use the Search API to
pull additional information about each user, such as their number of followers and
their entire friend list. The friend lists index the full set of accounts a particular user
follows. This information is critical in analyzing issue engagement with the RAS
model, as it allows me to track each users source of incoming information.

Elite Messages About Gun Policy
To supplement the panel data, I also collect tweets from the StreamingAPI, obtaining
messages from users beyond my panel that contain keywords about gun policy

4The population of interest is strong partisans, and thus my inferences are made in particular
regard to this subpopulation. In the RAS model, it is necessary to be certain of a user’s partisan
leaning, and this sampling procedure represents the best way I can ensure each user’s partisan leaning
is correctly identified.

5Users clearly not residing in the United States (based on time-zone and location information)
were filtered out of the final panel.

6The Search API limits a pull of a specific user’s history to their last 3200 tweets. One issue
using the Search API is the large time-cost: the Search API is subject to strict rate-limits, making it
difficult to collect information on a large number of users. This limited the number of users I could
feasibly include in my panel. I pulled each user’s history twice, once in January 2018 and again in
April 2018.



87

and gun control.7 This monitor allowed me to capture many of the conversations
concerning gun policies in the wake of major shootings, which I then merged with
each panel user’s friend list to estimate the number and source of gun policymessages
each user was exposed to after a shooting. The monitor ran from September 2017
to May 2018, and captured tweets about gun control following the Las Vegas mass
shooting on October 1, 2017 and the Parkland High School shooting on February
14, 2018.

One problem with relying on the Streaming API to collect data about gun rights
during major shootings is the issue rate limiting. Rate limits trigger when a monitor
makes too many calls to the API, resulting in a 15-minute penalty.8 While on
most days, there was not enough traffic to make rate limiting an issue, on the
days immediately following a major shooting, the Twitter population sent a large
enough volume of tweets containing my selected keywords to trigger rate limiting.
This means I cannot guarantee the full range of elite messages on the first few
days following a shooting. However, I collect fewer elite messages precisely at
the moments users in my panel are most likely to send their own messages about
gun violence. This biases against my hypotheses, allowing me to interpret any
evidence that elite messages increase the probability a user tweets about gun control
as conservative estimates.

In order to utilize the RAS model, I need two additional pieces of information about
each received message: whether the tweet originates from a member of the political
elite and the ideological leaning of the message sender. In order to label a user
as being a member of the political elite, I use the Twitter verified status. Verified
users are individuals Twitter determines are people “of public interest,” most often
users in “music, acting, fashion, government, politics, religion, journalism, media,
sports, business, and other key interest areas.”9 While this notion of elite is broader
than Zaller’s original conception of the political elite, it encompasses this group,
as nearly every elected official in Congress and all major news organizations and
interest groups have verified accounts.10

7These trackwords were: ‘gun control’ , ‘gun violence’ , ‘firearm control’ , ‘firearm regulation’
, ‘second amendment’ , ‘2nd amendment’ , ‘concealed carry’ , ‘conceal carry’ , ‘conceal and carry’
, ‘concealed weapon’ , ‘shooting’ , ‘gun rights’ , ‘gun ownership’ , ‘gun safety’ , ‘gun regulation’ ,
‘handgun’ , ‘arms control’ , ‘gun regulation’ , ‘access to guns’ , ‘gun policy’ , ‘gun policies’ , ‘gun
law’ , ‘right to bear arms’ , ‘right to keep and bear arms’ , ‘NRA’ , ‘national rifles association’ , ‘#2a’

8See https://developer.twitter.com/en/docs/basics/rate-limiting.html for details.
9From https://support.twitter.com/articles/119135.
10See https://twitter.com/verified/lists/ for a selection of verified users on Twitter.
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To categorize the ideology of the message sender, I use labels estimated with Pablo
Barberá’s methodology described in “Birds of the Same Feather Tweet Together”
(2015).11 To briefly summarize, Barberá’s method takes advantage of each user’s
follower network to predict the likelihood a user is a Republican or Democrat.
Intuitively, the more Republicans one follows, the more likely that user receives a
Republican label, and vice versa for Democrats.

In total, 994,857 friends of users in my panel tweeted about gun control in the 28
days following the Las Vegas and Parkland shooting.12 120,681 of these friends
were verified users, and I was able to merge 38,508 of these verified users with
Barberá’s ideological labels: 25,939 Democrats and 12,569 Republicans. This
group represents the potential incoming message stream each panel user received
after each shooting.

In addition to serving as an estimate of howmany messages each user receives about
gun policy after major shootings, the Streaming API data serves a second equally
important purpose: allowing me to observe the phrases and keywords elites use to
discuss gun policy. By performing a variety of unsupervised keyword extraction
algorithms, I was able to locate a set of words and phrases across each shooting
event that indicated conversation about gun policy. These keywords allowed me to
filter through the large variety of issues each panel user tweeted about, extracting
only those messages concerning gun control and legislation.13

Combining the information I collect from the Search and Streaming API allows me
to observe detailed information about each user’s tweet history and incoming elite
message stream on a particular day. I aggregate all data to the day level, and each
row of my panel dataset includes both the number of gun control tweets a user sends,
as well as the number of gun control tweets they receive from partisan elites.

4.4 Testing The RAS Model
In order to estimate whether elite messages concerning gun control increase the
likelihood an individual will tweet about gun policy themselves, I use a binary probit
regression estimator with time-level fixed-effects. I divide my panel of 55,674 users

11I thank Barberá for granting me access to his dataset.
12I only analyzed friends that appear in at least ten different panel user’s friends list.
13I used the package UDPIPE (Straka and Straková, 2017) to run these keyword extraction

algorithms. This procedure involved breaking the text into individual tokens and using a part-of-
speech tagger to extract all nouns. I then located themost commonly occurring unigrams and bigrams
in the tweets sent in the wake of Las Vegas and Sutherland Shootings, removing any keywords that
were specific to a particular shooting.
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over the 28 days following the Las Vegas and Parkland mass shooting. My outcome
of interest is if, over the course of a day, a user sends at least one tweet about gun
policy. For my primary analysis, I convert this to a binary indicator taking on the
values zero or one.

The independent variable of interest is the number of tweets concerning gun policy
each user receives from elites, and I additionally add several time-invariant control
variables. The equation I estimate is as follows:

Prob(yit = 1) =
Φ

(
β0+β1messageit+β2 f riendsi+β3 f ollowersi+β3GOPi+β4 ActivePrePeriodi+

β5dayt + ε
)

where i indexes users and t indexes time. yit is the main outcome of interest: a
binary indicator measuring whether or not individual i tweeted about gun control
on day t. In testing the RAS model, β1 is the primary coefficient of interest, as
this estimates the impact of receiving elite messages concerning gun policy on the
probability an individual tweets themselves about gun control.

I also control for a number of time-invariant control variables. Most importantly,
I control for the number of elite accounts each user follows. This is an important
variable to include in my model specification, as it is entirely possible that what
is ultimately driving a user’s predilection to tweet about gun control is the initial
decision to follow elites, not the number of messages they receive from elites. By
controlling for the number of elite users followed, I am able to identify the impact
of receiving elite messages across individuals following similar numbers of elite
accounts.

Additionally, I control for the user’s party identification, their number of followers,
and whether or not they were active in the pre-period, which I define as having
tweeted about gun policy in the two months prior to the mass shooting. The
distribution of each user’s number of followers, number of elite friends, and number
elite messages received each follow a power distribution, so all these variables are
transformed with a log(x + 1) transformation. Finally, I include time-level fixed
effects, to control for the fact that the Twitter community sent more messages about
gun control in the early days following a mass shooting.
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Elite Influence on Discussions of Gun Policy
My methodology allows me to test the two core predictions of the RAS model
using Twitter data: 1) users receiving messages from elites are more likely to tweet
themselves about an issue topic and 2) users are more likely to accept messages
from elites of the same party.

I begin by considering the first process in isolation: is the number of elite mes-
sages a user receives about gun policy, regardless of the partisanship of the sender,
positively correlated with the probability the user sends their own message about
gun policy? I present the results of this analysis in Table 4.1, which includes four
model specifications. Models one and two model gun policy conversations in the
28 days following the shooting Las Vegas shooting on October 1, 2017 at Mandalay
Bay Resort while models three and four look at the 28 days following the Parkland,
Florida school shooting on February 14, 2018 at Marjory Stoneman Douglas High
School. Analyzing two separate but similar incidents helps confirm that the results
are not due to the specific circumstances of a single event, but rather a general trend.
In models one and three, the dependent variable represents any user tweet concern-
ing gun policy, including retweets, while models two and four restrict the outcome
to original tweets, excluding retweets. As writing an original message about gun
control is a more costly action, examining the elite influence on this behavior is in
some ways a stricter test of the RAS model.

In Table 4.1, I find positive and statistically significant elite messages coefficients
across each model specification. This shows that the number of elite messages
concerning gun policy a user receives is positively correlated with the probability
the user sends their own message about gun policy. This result holds when I restrict
attention away from retweets, indicating that elite messages increase the probability
a user will write their own, original message concerning gun policy. In the case of
the Las Vegas shooting, going from receiving no elite tweets about gun control to ten
elite tweets (the median) raises the probability a user sending their own tweet about
gun control on a given day by 4.85% (1.05% excluding retweets), and in the case of
Parkland, raises the probability by 6.96% (1.63% excluding retweets). Figure 4.1
visualizes how an increased number of elite tweets increases the probability a user
sends their own tweet about gun control in each model specification.14

It is important to note that these effects all represent conservative estimates given rate
14To calculate these probabilities, I consider a Democratic user tweeting on the second day after a

shooting who did not tweet in the pre-period and has the mean number of elite friends and followers
as the users in the panel.
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Table 4.1: The Effect of Elite Messaging On Tweeting About Gun Control

Dependent variable:
Tweet About Gun Control

Vegas Shooting Parkland Shooting
All No Retweets All No Retweets
(1) (2) (3) (4)

Intercept −1.28 −2.08 −1.57 −2.27
(0.02) (0.03) (0.01) (0.03)

Elite Messages 0.19 0.15 0.21 0.16
(0.00) (0.01) (0.00) (0.01)

Active Pre-Period 0.64 0.87 0.72 0.84
(0.01) (0.03) (0.00) (0.01)

GOP −0.02 −0.05 0.02 −0.03
(0.01) (0.01) (0.00) (0.01)

Elite Friends Yes Yes Yes Yes
Followers Yes Yes Yes Yes
Log Likelihood -108,487 -27,042 -300,593 -62,879
N 55,674 55,674 55,674 55,674
T 28 28 28 28

limiting prevented me from collecting the full universe of incoming elite messages
on precisely the days with the most Twitter traffic. As these days also represent the
moments panel users were most likely to send a tweet about gun policy, this biases
against finding a positive impact between the number elite messages received and a
user’s probability of tweeting about gun control.

Turning to the other variables in Table 4.1, I estimate a large negative intercept
for each model specification. This indicates that, overall, each user has a low-
likelihood of sending a message about gun control on a given day. I expected
this result since my data collection scheme did not select users in the panel on the
basis of their predilection to tweet about gun policy related issues. Indeed, the
large, positive, and highly significant Active Pre-Period coefficient demonstrates
that users who previously tweeted about gun control in the two months prior to a
shooting had a much higher chance of tweeting about gun control in the aftermath
of both shootings. It is important to note if I collected data from the Streaming API
to track issue engagement, these would be the only users that I could analyze. As
Figure 4.1 demonstrates, restricting attention to this subpopulation overestimates
the probability a given user will tweet about gun policy.
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Figure 4.1: The Impact of Elite Messages on the Probability of Tweeting About Gun
Control
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(a) Vegas: All Tweets
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(b) Vegas: No Retweets
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(c) Parkland: All Tweets
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(d) Parkland: No Retweets

Overall, the results in Table 4.1 are consistent with the RAS model – users who
receive more messages from elite accounts concerning gun control were more likely
to themselves tweet about gun control. The missing elite messages in the moments
panelists are most likely to tweet themselves attenuates these results, which provides
even stronger evidence in favor of my first Hypothesis (H1).

Impact of Partisan Messaging
The second core process described inZaller’s RASmodel is the tendency of partisans
to accept mostly their own party’s elite messages and resist the opposing party’s
elite messages. To test this behavior in my current study, I ran the binary probit
regression outlined above, but differentiated between the partisan source of the elite
message. For a Democratic user, I define Own Party Elite Messages as a message
from a Democratic elite and Opposing Party Elite Messages as messages from a
Republican elite, and vice versa for Republican users. Once again, I control for the
number of elite accounts followed, specifying the partisanship of each elite account.

I run a total of four models. Models one and two look at conversations following
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the Las Vegas shooting, differentiating between the subpopulation of Democratic
and Republican users respectively. Models three and four provide the same analyses
following the Parkland shooting.

Table 4.2 presents the results of this analysis. Each model specification in Table 4.2
serves to confirm the second core process of Zaller’s model – partisanmessages have
a differential impact on a user’s propensity to tweet, with gun policy messages from
partisan elites of a user’s own party associated with higher probabilities of tweeting
about gun control. While receiving opposing party elite messages also positively
correlates with the propensity to tweet, the effect is much smaller. Taken together,
this provides evidence that users filter elite messages based on their partisan content,
with users more likely to engage with an issue if the message comes from an elite
of the same party, which supports my second hypothesis (H2).

Table 4.2 also reveals some interesting differences between how Democrats and
Republicans respond to partisan elites. For Republicans, receiving elite messages
from Democrats has a much smaller impact on their propensity to tweet than Re-
publican elites. Zaller’s filtering process describes Republican behavior better than
Democrats in the current analysis.

Determining the Timing of Elite Tweets
The results of Table 4.1 and Table 4.2 offer strong support in favor of my first two
hypotheses: people respond to elite messaging by engaging more with the issue
topic themselves, and this effect is strongest when they receive messages from their
own party elites. However, one potential issue with these analyses is determining
the timing of the sending and receiving of tweets. That is, while Table 4.1 and
Table 4.2 indicate receiving more elite messages on a given day correlates with a
user sending their own message on that day, it is difficult to tell if users receive elite
messages before the user sends their own tweet about gun violence. If users do send
their messages after receiving elite messages, the evidence of a causal link is much
stronger.

While it is challenging to disentangle the timing of messages at the individual level,
it is possible to look at the aggregate time trends to determine whether an increase in
elite messages correlates with an increase in messages from the users in my panels.
To examine these time trends, I aggregate the number of messages about gun control
sent from elites and panel users at the hour level, looking at the trends 72 hours after
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Table 4.2: Accepting and Rejecting Elite Partisan Messages

Dependent variable:
Tweet About Gun Control

Vegas Shooting Parkland Shooting
Dem. Rep. Dem. Rep.
(1) (2) (3) (4)

Intercept −1.11 −1.59 −1.41 −1.89
(0.02) (0.02) (0.02) (0.02)

Own Party Elite Messages 0.15 0.15 0.16 0.19
(0.01) (0.01) (0.00) (0.00)

Opposing Party Elite Messages 0.05 0.02 0.04 0.02
(0.01) (0.01) (0.00) (0.00)

Active Pre-Period 0.59 0.67 0.68 0.77
(0.02) (0.01) (0.01) (0.01)

Own Elite Friends Yes Yes Yes Yes
Opposing Elite Friends Yes Yes Yes Yes
Followers Yes Yes Yes Yes
Log Likelihood -46,299 -61,773 -13,203 -167,377
N 24,219 31,455 24,219 31,455
T 28 28 28 28

the Parkland shooting.15

Figure 4.2 visualizes these trends. It is important to note the different scales: elites
send far fewer messages on an hourly basis than panelists do. However, the lower
number of elite messages is somewhat misleading, given elites tend to have much
higher follower counts than the users in my panel (elites have a median of 24,473
followers while my panel users have a median of 226 followers). Therefore, each
elite message has a much wider potential reach, with a single elite message capable
of reaching a large number of users.

Figure 4.2 also reveals how rate limiting impacted elite message collection from
the Streaming API. Roughly 24 hours after the shooting, the point in time with the
highest number of tweets sent by panel users, there is a large, sudden drop in the
number of elite messages collected due to rate limiting. This confirms that I obtain
fewer elite messages precisely in the moments the panel users are most likely to
tweet about gun legislation, biasing against my hypotheses. This attenuation bias
allows me to interpret my results as conservative, lower-bound estimates.

15For this analysis, I restrict attention to original tweets, excluding retweets.
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Figure 4.2: 72 Hours Post Parkland Shooting
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In spite of rate limiting impacting the number of elite messages recorded, figure
4.2 indicates that an increase in the number of messages from users in my panel
follows an increase in the number of elite messages. This provides evidence that elite
messaging about gun control tends to proceed panel user’s messages, a necessary
assumption of the RAS model.

Beyond a visual inspection, one way to formally test if the fluctuations in one time
trend correlate with similar fluctuations in another time trend is to measure Granger
causality. Tests of Granger causality consider the null hypothesis that lagged x-
values fail to explain variations in the y-values. I test for Granger causality by
considering whether the number of elite messages sent in hour t help predict the
number of panel user messages sent in hour t + 1.

The results of these tests are found in Table 4.3.16 Looking at the impact of all elite
messages on all panel messages in column one (the trends I visualize in Figure 4.2),
I find the fluctuations in elite messages have a statistically significant impact on the
fluctuations in panel messages. This is true for one and two hour lags, but I fail to
reject the null at the three hour lag.

When I alter the message streams by the partisan-leaning of the elites and panelists,
I see that Democratic users in my panel drive most of these results. Democrats are
highly responsive to elite messages from fellow Democrats, as the highly significant
p-values in column 2 demonstrates. Column 4 shows that Democrats are not as

16Once again, all these results should be interpreted as conservative estimates; due to rate limiting
I collect fewer elite messages precisely at moments there are large increases in panel messages.
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Table 4.3: Granger Causality - P Values

Own Partisan Elite Against Partisan Elite
Lag Elite→ Dem. Elite→ Rep. Elite→ Rep. Elite→ Dem. Elite→

Panel Dem. Panel Rep. Panel Dem. Panel Rep. Panel
(1) (2) (3) (4) (5)

1 Hour 0.002 0.001 0.323 0.102 0.003
2 Hours 0.041 0.001 0.049 0.133 0.119
3 Hours 0.530 0.022 0.335 0.342 0.450

responsive to elite messages from Republicans, providing further evidence that
Democrats are more likely to accept messages from their own party’s elite.

The results are less clear when looking at the Republican users in my panel. I
do not find evidence that the trends in messages from Republican elites correlate
with the trends of the Republican users in my panel, as the largely null results in
column 3 show. Moreover, I find evidence that, at the one-hour lag, Democratic
elite messages explain trends in the Republican message stream, which is not what
I would expect in the RAS model. This may indicate that the filtering process in
the RAS model does not fully explain Republican behavior online – Republicans
may choose to engage in the gun policy debate after a large, overall increase in the
number of messages sent by Democratic elites.17

4.5 Expanding the Notion of Elite
The previous analysis demonstrates that conventionally defined elite messaging
impacts behavior in a way consistent with the RAS model. However, subsequent
scholarship expands the definition of elite political actors (e.g. Friedman, 2012;
Zaller, 2012). Given the somewhat egalitarian nature of Twitter as a platform,
where any user can amass any number of followers, it is a natural extension of my
present work to consider the impact of other kinds of actors on tweeting behavior.

I conceptualize a non-conventional elite actor as a user who is able to reach a large
number of other users on Twitter, but would not hold social markers of an elite
outside of the Twitter platform. To define these actors, I look at users with a high
follower count, and thus have high out-degree centrality on the Twitter network,
but do not possess the verified tag. We may consider these users “Twitter-famous,”

17It is possible that this issue engagement comes in the form of countering claims made by
Democrats, with Republican users arguing in favor of gun rights precisely when Democrats bring up
gun control. This would require a more detailed look at the content of tweets, which is beyond the
scope of the current paper.
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Table 4.4: Expanding the Definition of Poltical Elites

Dependent variable:
Tweet About Gun Control

Vegas Shooting Parkland Shooting
All No RT All No RT
(1) (2) (3) (4)

Intercept −1.12 −2.04 −1.47 −2.29
(0.02) (0.03) (0.01) (0.03)

Elite Messages 0.09 0.10 0.07 0.09
(0.00) (0.01) (0.00) (0.01)

Non-Ver. Elite Mes. 0.10 0.05 0.13 0.07
(0.00) (0.01) (0.00) (0.00)

Active Pre-Period 0.61 0.50 0.68 0.44
(0.01) (0.02) (0.00) (0.01)

GOP −0.11 −0.10 −0.10 −0.08
(0.01) (0.01) (0.00) (0.01)

Elite Friends Yes Yes Yes Yes
Non-Ver. Elite Fr. Yes Yes Yes Yes
Followers Yes Yes Yes Yes
Log Likelihood -107,619 -27,033 -297,236 -62,948
N 55,674 55,674 55,674 55,674
T 28 28 28 28

since they manage to amass a large following without being “of public interest.”18

In order to specify which users are non-conventional elite actors, I need to choose
a threshold value for a large number of followers. I define this threshold value
as 24,473 followers, the median number of followers of the verified users. While
choosing this threshold value guarantees I choose non-conventional elite actorswith
similar reach on the Twitter network, I also in some ways bias against the verified
elites, half of whom will have fewer followers. Thus, I may be underestimating
verified elite actors impact in driving conversations in the following analysis.

To test the impact of Twitter-famous actors on conversations about gun policy, I
re-ran the models from Table 4.1, additionally including the number of messages
each panel user receives from non-conventional elites. Table 4.4 shows the results
of these tests.

Table 4.4 demonstrates that non-verified elite messages have a large, positive,
18See https://support.twitter.com/articles/119135 formore information on howTwitter determines

which accounts receive a verified tag.
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statistically significant effect on the probability a user will tweet about gun control.
This effect is similar in magnitude to receiving messages from verified elite actors,
which suggests it is necessary to expand Zaller’s original notion elite actors when
using the RAS model to explain issue engagement online.

One interesting finding in Table 4.4 is that the reception of non-verified elite mes-
sages has a heterogeneous impact depending on the outcome of interest. When
considering any tweet as the dependent variable, non-verified elite messages have
a larger impact on the probability a user will tweet than verified elite messages.
However, considering only original tweets as the outcome of interest (excluding all
retweets) reverses this trend. Given writing an original message on twitter is in
many ways a more costly behavior, this may indicate conventional elites are still
more important in driving people to engage with an issue topic. However, the overall
results of Table 4.4 indicate the necessity in including non-verified elites in any
model of opinion formation and activation on Twitter.

4.6 Conclusion
The unfolding of major events forces citizens are forced to update their opinions
and choose whether or not to participate in policy debates. In my work, I find
that citizens are more likely to engage with an issue topic when they receive elite
messages concerning that issue. Partisans react more strongly to incomingmessages
from elites within their same party, in a way consistent with the RAS model. I
further find that people react in a similar way to messages they receive from non-
conventional elites, which indicates the importance of these agents in influencing
political conversations online.

This paper also resolves a number of methodological issues that affect the study
of issue engagement online. While a large number of studies track issue topics
on Twitter, by selecting on the dependent variable all of this work has a sampling
problem that could potentially bias results. I avoid this sampling problem by
building a large panel of partisan Twitter users and obtaining their full Twitter
histories, regardless of whether or not they discuss the policy issue in question.
By supplementing these Twitter histories with a full list of the accounts each user
follows, I am able to directly estimate each user’s incoming message stream.

There are a number of ways to extend this current work. First, I only look at a single
issue area – discussions of gun policies in the wake of mass shootings. While I
make this decision given the predictable nature of the elite message streams after a
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major shooting, future work should extendmy analysis to other issue domains to find
whether these results are consistent. Second, I only look at issue activation instead
of opinion change. In the domain of gun control, where partisan opinion is highly
polarized and unlikely to change, issue activation represents a necessary approach.
In fact, finding that elite messaging can increase the likelihood of issue engagement
even in this highly polarized issue domain provides stronger evidence that online
behavior is consistent with the RAS model. Still, extending these analyses to other
political topics in other issue areas where opinion change is more likely will allow
for further confirmation that the RAS model applies in the realm of social media.

Overall, my current work finds that the RAS model still has the power to explain
citizen behavior and how individual’s form and express their opinions online. The
unique attributes of social media data allow me to directly estimate each user’s
unique incoming message stream, granting me the ability to directly test how elite
messaging impacts an issue topic’s salience. These positive findings suggest that
future scholarship using social media data to study and measure changing political
opinions online can and should utilize the RASmodel in organizing and interpreting
empirical findings.

These findings have broad implications. In considering the gun control debate, these
findings suggest elite messaging increases the likelihood citizens will themselves
discuss gun control. The fact that citizens filter messages from the partisan source of
the elite sender helps explain why the issue remains so polarized – while Democratic
elites can increase the likelihood Democrats will engage with the gun control debate,
so too can Republican elites energize Republicans. Highlighting the importance of
non-traditionally defined elite actors further demonstrates the power of citizens
themselves to influence public opinion; despite being outside the “public eye,”
amassing a large network of followers can give any individual the power to influence
public engagementwith issues. Analyzing how individuals respond to elitemessages
and cues online can help explain voter behavior as social media continues to play
an important role in fostering political communication.
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4.A Difference Between Active and Inactive Users in Twitter Panel
An issue with studies that collect data with the Twitter Streaming API is that
a researcher needs to pre-specify keywords related to the topic of interest. In the
current study, these would require me to specify a set of keywords on mass shootings
and gun policy, and using the Streaming API to collect messages containing one of
these key phrases.

However, since issue engagement is precisely the issue I wish to study, I necessarily
will be selecting on the dependent variable, limiting my sample to only those users
who choose to actively discuss gun policy with one of the pre-specified keywords.
By following a panel of partisan users, I avoid this problem, as I did not choose this
group by taking into consideration the user’s previous engagement with gun policy
issues.

To demonstrate how selecting on the dependent variable might bias the findings, I
can look at the demographic difference in the population of users in my panel that
discuss gun policy issues (are active) and choose not to discuss gun policy issues
(inactive) in the data I collect. Figure 4.3 displays these relative differences.

Figure 4.3: Differences between Active and Inactive Populations
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In Figure 4.3a, I look at the difference in each the active and inactive groups by
party. I find that there are very similar numbers of Democrats and Republicans
that discuss gun policy issues in my panel. However, looking at the differences in
the inactive group, I find a greater larger number of Republicans who remain silent
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about gun policy issues. This population of Republicans who choose not to discuss
gun policy would be absent if I only collected data from the Streaming API.

A similar pattern emerges in Figure 4.3b, where I look at differences across gender.19
As in Figure 4.3a, there seem to be differences in the proportion ofmales and females
in each group, with a larger portion of men choosing not to discuss gun policy as
compared to women in the panel.

4.B Elite Panel
In the body of the paper, I applyBarberá’smethdology (2015) tomeasure the partisan
leaning of users who discuss gun policy from data collected in the Streaming API.
I then use the Twitter verified status to determine elite users.

In this appendix, I show another a method to instead generate a separate panel data
set of elite users. This method begins by identifying six major partisan institutions:
the two American political parties (Democrats and Republicans), two of the most
widely read newspapers that lean left and right (The New York Times and The Wall
Street Journal), and two television news programs known to lean further to the
left and the right (MSNBC and Fox News). The Twitter handle of each institution
presented in Table 4.5.

Left Elites Right Elites
@TheDemocrats @GOP
@nytimes @WSJ
@MSNBC @foxnews

Table 4.5: Six Major Accounts of Partisan Elite

In addition to pulling the full history of these six accounts with the Search API,
each of these accounts maintain a list of user accounts related to these groups,
lists which include politicians, journalists, and television personalities respectively.
Additionally, I look at a list of the top-200 most followed verified accounts in my
Twitter panel, hand-labeling accounts with clear partisan leanings.

In total, this elite panel consists of 1,019 accounts on the left and 1,068 accounts
on the right. While there are certain advantages in building a panel set of elite user
accounts, this set of 2,087 accounts contains far less information than the 58,508
accounts I identify with Barberá’s method.

19To get the gender of each user, I look at the subset of users who provide first and last names as
part of their Twitter profile and use the gender package (Mullen, 2015) to link first names to gender.
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Still, the elite panel offers an alternative method to tracking elite opinion. Figure 4.4
shows the number of messages each of these elite account sends about gun policy
after mass shooting events, and reveals the large spike in messages about gun policy
after each mass shooting. While the Las Vegas and Sutherland shootings engender
a response, we note that the Parkland shooting leads to a more long-term effect, as
was true in the body of this paper. We also note how, in general, elite partisans on
the left discuss gun policy with a higher frequency than elite partisans on the right.

Figure 4.4: Elite Panel Tweet Frequencies After Mass Shootings
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In Figure 4.5, I compare the proportion of messages in the panel devoted to gun
policy in the fourteen days after a major shooting. On the left, I show the proportion
of messages in the elite panel, and on the right the proportion of messages in the
citizen panel (the 60,000 users analyzed in the body of the paper). We note similar
trends across each group, consistent with the findings in theDeterming the Timing
of Elite Tweets section above.

4.C Partisan Conversation Trends Post Shooting
In this section, I visualize the levels of engagement with gun policy across the two
partisan groups.

In Figure 4.6, I examine the daily proportion of tweets in the panel devoted to
gun policy in the four weeks following a mass shooting. This period of activity
demonstrates the initial spike in conversation immediately following a shooting and
the steady decline, although this decay is far slower in the Parkland case. Also,
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Figure 4.5: Elite Panel Compared with User Panel
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while Democrats initially tweet more about gun policy, after the first few days both
partisan groups discuss gun policy with the same relative intensity.

In Figure 4.7, I again look at conversation trends in the weeks following a mass
shooting, but instead of looking at the number of messages I visualize the proportion
of “active” users (those users that send at least one message about gun policy). In
Figure 4.7a, I look at the proportion of users in the panel who tweeted at least once
about gun policy on each given day, and in Figure 4.7b I observe the number of
users that have tweeted at least once about gun policy by a certain day. Figure 4.7b
shows that one of the biggest differences between the conversation trends is that in
the aftermath of the Las Vegas Shooting, few new users entered the conversation
about gun policy. In Parkland, on the other hand, new users began discussing gun
policy throughout the first two weeks after the school shooting.
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Figure 4.6: Gun Policy Twitter Conversation Trends: Message Level
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Figure 4.7: Gun Policy Twitter Conversation Trends: User Level

(a) Active Users: Daily
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(b) Active Users: Cumulative
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C h a p t e r 5

CONCLUSION

In this project, I explore the nature of political behavior and opinion formation using
social media data. As political communication increasingly takes place in online
forums, these findings and research methods can illuminate how politicians, mem-
bers of the media, and citizens interact, and help explain the origin and expression
of mass opinion and political movements in the modern digital era.

While each chapter in this dissertation highlights the strength of social media data
in analyzing political phenomena, one potential shortcoming in relying exclusively
on social media data is the question of external validity. The sample in each of the
preceding essays necessarily consists of individuals who are active on the Twitter
platform, a non-representative sample of the greater American public. However, the
difficulty in determining the external validity of these findings does not undermine
the core results.

First, this is not an issue unique to social media data. Surveys, the most common
source of data in analyzing the subjects I investigate in this dissertation, are in-
creasingly plagued by non-response biases that similarly threaten external validity.
With fewer people participating in surveys conducted over the phone, and those
participating tending to skew older, it becomes more difficult to generate a random
sample even with conventional methods. These problems compound if the hope
is to generate panel data, given the increased difficulty in re-interviewing the same
individuals over time.

Secondly, research designs with social media data maintain strong internal validity,
and in any research analyzing empirical data, the comparative statics are often far
more important than the overall level of estimated effects. The precision of social
media data at a temporal level allows for better estimates of dynamic trends, and
Twitter activity represents active decisions to express an opinion or interact with
another user.

Finally, individuals discussing political issues on Twitter are a vocal subset of the
American public, and the activity of this subgroup remains worthy of study. Even
if a movement starts on Twitter, there can be consequences outside the platform.
This was the case in the aftermath of the Parkland shooting, when a movement
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organized on Twitter led to the ‘March For Our Lives’ protest, an event reported
widely by conventional media outlets and whose participants were not necessarily
Twitter users.

Outside the issue of external validity, each chapter of my dissertation demonstrates
the unique advantages of using social media data to test classic political science
theories. Twitter data is “always on,” allowingme tomeasure the public’s immediate
reactions to unfolding events. In the case of a known event, social media data
represents a cheaper, more useful alternative to survey data in measuring public
opinion. In studying the reactions to the Obergefell v. Hodges decision, while
theoretically possible to design a survey with wide state coverage in a short time
interval, it would involve a huge investment of time and resources. By leveraging
expressed opinion on Twitter, constructing an accurate sentiment classifier, and
using a causal inference framework, I am able measure the impact of the Supreme
Court overturning state-level policy on public opinion, avoiding the costs of running
a large survey.

In the case of an unanticipated event, social media data represents a necessary
alternative to survey data. It is virtually impossible to constantly poll a panel of
citizens about their interest in gun policy in anticipation of an unforeseen disaster.
With social media data, however, I demonstrate how it to observe these phenomena
by constructing a panel of Twitter users and measuring their engagement pattern
after a mass shooting. This methodology can be expanded to study the reaction to
all manner of exogenous, unanticipated events.

Furthermore, the potential to map social media networks allows for a richer un-
derstanding of political behavior. I am able to observe how politically engaged
members of the mass electorate discuss, coordinate, and diffuse partisan informa-
tion by graphing conversation networks. Moreover, with knowledge of a user’s
incoming message stream, I can measure how message exposure impacts behavior.
This rich knowledge of an individual’s place in a communication network grants
social media data distinct advantages over traditional forms of observational data in
many research areas.

As long as politicians, media institutions, and citizens continue using online forums
to discuss, critique, and debate political issues, social media data will continue to
grant unique insights into voter behavior and public opinion.


