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ABSTRACT

The pace of biological research continues to grow at a staggering pace as high-
throughput experimental techniques rapidly increase our ability to sequence DNA,
quantify cell behavior, and image molecules of all types within the cellular milieu.
Given this surge in experimental prowess, the time is ripe to examine how well our
conceptual cartoons of biological phenomena can not only recapitulate the data but
also successfully predict the outcomes of future experiments.

One of the fundamental challenges in biology is that the space of possible molecules
is overwhelmingly large. The number of variants of a moderately-sized protein
(20300) is larger than the number of atoms in the universe, as is the space of possible
bacterial genomes, protein interaction networks, and effector functions; progress in
any of these fronts requires a theory-experiment dialogue that can extrapolate our
small drop of data to explain large swaths of parameter space.

My thesis strives towards this goal by analyzing a number of central molecular
players in biology including enzymes (biological catalysts that accelerate chemical
reactions), transcription factors (proteins that bind to DNA and regulate its expres-
sion), and ion channels (signaling proteins that regulate ion transport). I develop
a quantitative description in each context by harnessing the statistical mechanical
Monod-Wyman-Changeux model of allostery which coarse-grains the behavior of
a multi-state system into two effective states, demonstrating that these seemingly
diverse molecules are all governed by the same fundamental equation.

Writ large, there are two overarching goals encompassed by these projects. The first
is to translate our biological knowledge into concrete physical models, enabling us
to quantitatively describe how the key molecular components in each system interact
to carry out their function. The second goal is to analyze how mutations can be
mapped into the fundamental biophysical parameters governing each system. In
my opinion, predicting the effects of mutations remains one of the great unsolved
problems in biology, and it has been incredibly exciting to make progress on this
front.

Looking back at my amazing graduate school experience, one of the most surprising
aspects ofmyPhDwas howclosely each ofmyprojects revolved around experiments.
I entered graduate school as a theoretical physicist expecting to work on esoteric
mathematical models, yet the direct connection with data provided a window into
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the exhilarating world of biology. While I have never physically manipulated these
biological systems in the lab, mymodels allowme to push and prod and examine their
behavior from the most mundane to the utterly extreme limits. Through modeling,
I test our assumptions of how these systems work and tease out insights into their
underlying biophysical mechanism. Most importantly, these models enable me to
harness the incredible wealth of hard-won data to weave a few more threads of
understanding into our tapestry of how these incredible living systems operate.
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trations activity decreases, in contrast to a Michaelis-Menten enzyme
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1.14 Mechanism underlying peak in activation by substrate S. At low
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are mostly in the active form (rounded, green). As the amount of sub-
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S1.2 Theoretically and experimentally probing the effects of an al-
losteric regulator on activity. Data points show experimentally
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S1.3 Theoretically and experimentally probing the effects of a com-
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S1.11 Mechanism underlying peak in activation by a competitive inhi-
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inhibitor which results in a peak. Peak are shown for (A) small and
(B) large ratios of the enzyme’s energy in the active versus inactive
state, e−β(ε A−ε I ). As in the case of substrate inhibition, the height of
the peak increases with e−β(ε A−ε I ). The activity is computed from
Eq. S1.69 using the parameters [S]

K A
M

= 10, CA
D

CI
D

= 10−2, the parameters
from Fig. 1.13, and the different values of e−β(ε A−ε I ) shown. As
predicted by Eq. S1.70, for the parameters chosen every value in the
range e−β(ε A−ε I ) < 65 will yield a peak in activity. . . . . . . . . . . 82
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S1.14 Peak in enzyme activity A = 1
Etot

d[P]
dt

as a function of substrate
concentration [S]. As shown in Fig. 1.12A, with Michaelis-Menten
kinetics adding substrate can only increase enzyme activity, but an
MWC enzyme can exhibit a peak due to the interactions between
the active and inactive state. Peaks are shown for (A) small and
(B) large ratios of the enzyme’s energy in the active versus inactive
state, e−β(ε A−ε I ). The activity is computed from Eq. S1.82 using the
same parameter values from Fig. 1.13 except that kA

cat

k I
cat
= 103. The

curves with small e−β(ε A−ε I ) values shown in (A) vary appreciably
from those in Fig. 1.13 (where k I

cat = 0) because the inactive state
catalyzes substrate. This changes both the shape and the height of
the activity curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

S1.15 Peaks in activity can be induced by a competitive inhibitor. Ad-
ding a competitive inhibitor can induce a peak in activity d[P]

dt versus
substrate concentration [S]. Curves are shown for an enzymewith two
active sites using the parameters kA

cat

k I
cat
= 104, K A

M

K I
M

= 104, CA
D

CI
D

= 10−1,

and e−β(ε A−ε I ) = 1
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.1 Transcription regulation architectures involving an allosteric repres-
sor. (A) We consider a promoter regulated by an allosteric repressor (left
panel), where the addition of an effector binds to the repressor and stabilizes
the inactive state (the state with low affinity for DNA), thereby increasing
gene expression. Corepression (right panel) is characterized by the same
statistical mechanical model we develop. (B) A schematic response plot-
ting fold-change in gene expression as a function of effector concentration,
where fold-change is defined as the ratio of gene expression in the presence
versus the absence of repressor, together with four key phenotypic pro-
perties of the response. (C) The simple repression architectures has been
characterized using multiple experimental methods including colorimetric
assays/quantitative Western blots and video microscopy, and add to this list
the additional method of flow cytometry. . . . . . . . . . . . . . . . . . 95
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2.2 States and weights for the simple repression motif. (A) RNAP
(light blue) and a repressor compete for binding to a promoter of
interest. There are RA repressors in the active state (red) and RI

repressors in the inactive state (purple). The difference in energy
between a repressor bound to the promoter of interest versus another
non-specific site elsewhere on the DNA equals ∆εRA in the active
state and∆εRI in the inactive state; the P RNAP have a corresponding
energy difference ∆εP relative to non-specific binding on the DNA.
NN S represents the number of non-specific binding sites for both
RNAPand repressor. (B)A repressor has an active conformation (red,
left column) and an inactive conformation (purple, right column),
with the energy difference between these two states given by ∆εAI .
The inducer (blue circle) at concentration c is capable of binding to
the repressor with dissociation constants KA in the active state and KI

in the inactive state. The eight states for a dimer with n = 2 inducer
binding sites are shown along with the sums of the active and inactive
states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2.3 An experimental pipeline for high-throughput fold-change me-
asurements. Cells are grown to exponential steady state and their
fluorescence is measured using flow cytometry. Automatic gating
methods using forward- and side-scattering are used to ensure that
all measurements come from single cells (see Methods). Mean ex-
pression is then quantified at different IPTG concentrations (top, blue
histograms) and for a strain without repressor (bottom, green histo-
grams), which shows no response to IPTG as expected. Fold-change
is computed by dividing the mean fluorescence in the presence of
repressor by the mean fluorescence in the absence of repressor. . . . . 102
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2.4 Predicting induction profiles for different biological control parameters. (A)

We can quantitatively tune R via ribosomal binding site (RBS)modifications,∆εRA

by mutating the operator sequence, and c by adding different amounts of IPTG to

the growth medium. (B)We infer the value of the dissociation constants KA and KI

between the inducer and the repressor in the active and inactive states, respectively,

using Bayesian parameter estimation from a single induction curve. (C-J) Predicted

IPTG titration curves and key phenotypic parameters for different repressor copy

numbers and operator strengths. Titration data for the O2 strain (white circles

in Panel D) with R = 260, ∆εRA = −13.9 kBT , n = 2, and ∆εAI = 4.5 kBT

can be used to determine the thermodynamic parameters KA = 139+29
−22 × 10−6 M

and KI = 0.53+0.04
−0.04 × 10−6 M (orange line). The remaining solid lines predict the

fold-change Eq. 2.5 for all other combinations of repressor copy numbers (shown in

the legend) and repressor-DNA binding energies corresponding to the O1 operator

(−15.3 kBT), O2 operator (−13.9 kBT), and O3 operator (−9.7 kBT). Error bars

of experimental data show the standard error of the mean (eight or more replicates)

when this error is not smaller than the diameter of the data point. The shaded

regions denote the 95% credible region. . . . . . . . . . . . . . . . . . . . 103
2.5 Comparison of predictions against measured and inferred data.

Flow cytometry measurements of fold-change over a range of IPTG
concentrations for (A) O1, (B) O2, and (C) O3 strains at varying
repressor copy numbers, overlaid on the predicted responses. Error
bars for the experimental data show the standard error of the mean
(eight ormore replicates). As discussed in Fig. 2.4, all of the predicted
induction curves were generated prior to measurement by inferring
the MWC parameters using a single data set (O2 R = 260, shown
by white circles in Panel B). The predictions may therefore depend
upon which strain is used to infer the parameters. (D) The inferred
parameter values of the dissociation constants KA and KI using any of
the eighteen strains instead of the O2 R = 260 strain. Nearly identical
parameter values are inferred from each strain, demonstrating that the
same set of induction profiles would have been predicted regardless
of which strain was chosen. The points show the mode, and the
error bars denote the 95% credible region of the parameter value
distribution. Error bars not visible are smaller than the size of the
marker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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2.6 Predictions and experimental measurements of key properties
of induction profiles. Data for the (A) leakiness, (B) saturation,
and (C) dynamic range are obtained from fold-change measurements
in Fig. 2.5 in the absence of IPTG and at saturating concentrations
of IPTG. The three repressor-operator binding energies in the legend
correspond to theO1 operator (−15.3 kBT), O2 operator (−13.9 kBT),
and O3 operator (−9.7 kBT). Both the (D) [EC50] and (E) effective
Hill coefficient are inferred by individually fitting each operator-
repressor pairing in Fig. 2.5A-C separately to Eq. 2.5 in order to
smoothly interpolate between the data points. Error bars for A-C
represent the standard error of the mean for eight or more replicates;
error bars for D-E represent the 95% credible region for the parameter
found by propagating the credible region of our estimates of KA and
KI into Eqs. 2.9 and 2.10. . . . . . . . . . . . . . . . . . . . . . . . 107

2.7 Fold-change data from a broad collection of different strains col-
lapse onto a single master curve. (A) Any combination of para-
meters can be mapped to a single physiological response (i.e. fold-
change) via the free energy, which encompasses the parametric details
of the model. (B) Experimental data from Fig. 2.5 collapse onto a
single master curve as a function of the free energy Eq. 2.12. The
free energy for each strain was calculated from Eq. 2.12 using n = 2,
∆εAI = 4.5 kBT , KA = 139 × 10−6 M, KI = 0.53 × 10−6 M, and the
strain-specific R and ∆εRA. All data points represent the mean, and
error bars are the standard error of the mean for eight or more replicates.109

S2.1 Multiple sets of parameters yield identical fold-change responses.
(A) The data for the O2 strain (∆εRA = −13.9 kBT) with R = 260
in Fig. 2.4C was fit using Eq. 2.5 with n = 2. ∆εAI is forced to take
on the value shown on the x-axis, while the KA and KI parameters
are fit freely. (B) The resulting best-fit functions for several value of
∆εAI all yield nearly identical fold-change responses. . . . . . . . . . 121
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S2.2 Fold-change ofmultiple identical genes. (A) In the presence of N =

10 identical promoters, the fold-change Eq. S2.5 depends strongly on
the allosteric energy difference ∆εAI between the Lac repressor’s
active and inactive states. The vertical dotted lines represent the
number of repressors at which RA = N for each value of ∆εAI .
(B) Using previous fold-change measurements for the operators and
gene copy numbers shown, we can determine the most likely value
∆εAI = 4.5 kBT for LacI. . . . . . . . . . . . . . . . . . . . . . . . 124

S2.3 Global fit of dissociation constants, repressor copy numbers and
binding energies. Theoretical predictions resulting from simultane-
ously fitting the dissociation constants KA and KI , the six repressor
copy numbers R, and the four repressor-DNA binding energies ∆εRA

using the entire data set from Fig. 2.5 as well as the microscopy data
for the Oid operator. Error bars of experimental data show the stan-
dard error of the mean (eight or more replicates) and shaded regions
denote the 95% credible region. Where error bars are not visible, they
are smaller than the point itself. For the Oid operator, all of the data
points are shown since a smaller number of replicates were taken.
The shaded regions are significantly smaller than in Fig. 2.5 because
this fit was based on all data points, and hence the fit parameters are
much more tightly constrained. The dashed lines at 0 IPTG indicates
a linear scale, whereas solid lines represent a log scale. . . . . . . . . 127
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S2.4 Predictions of fold-change for strains with an Oid binding se-
quence versus experimental measurements with different repres-
sor copy numbers. (A) Experimental data is plotted against the
parameter-free predictions that are based on our fit to the O2 strain
with R = 260. Here we use the previously measured binding energy
∆εRA = −17.0 kBT . (B) The same experimental data is plotted
against the best-fit parameters using the complete O1, O2, O3, and
Oid data sets to infer KA, KI , repressor copy numbers, and the bin-
ding energies of all operators (see Appendix S2.2). Here the major
difference in the inferred parameters is a shift in the binding energy
for Oid from ∆εRA = −17.0 kBT to ∆εRA = −17.7 kBT , which now
shows agreement between the theoretical predictions and experimen-
tal data. Shaded regions from the theoretical curves denote the 95%
credible region. These are narrower in Panel B because the inference
of parameters was performed with much more data, and hence the
best-fit values are more tightly constrained. Individual data points
are shown due to the small number of replicates. The dashed lines at
0 IPTG indicate a linear scale, whereas solid lines represent a log scale.129

S2.5 Comparison of fold-change predictions based on binding energies
from Garcia and Phillips and those inferred from this work.
Fold-change curves for the different repressor-DNA binding energies
∆εRA are plotted as a function of repressor copy number when IPTG
concentration c = 0. Solid curves use previously determined binding
energies, while the dashed curves use the inferred binding energies
we obtained when performing a global fit of KA, KI , repressor copy
numbers, and the binding energies using all available data from our
work. Fold-change measurements from this work and from previous
measurements show that the small shifts in binding energy that we
infer are still in agreement with prior data. Note that only a single
flow cytometry data point is shown for Oid from this study, since the
R = 60 and R = 124 curves from Fig. S2.4 had extremely low fold-
change in the absence of inducer (c = 0) so as to be indistinguishable
from autofluorescence, and in fact their fold-change values in this
limit were negative and hence do not appear on this plot. . . . . . . . 130
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S2.6 Representative fold-change predictions for allosteric corepres-
sion and activation. (A) Contrary to the case of induction described
in the main text, addition of a corepressor decreases fold-change
in gene expression. The left and right panels demonstrate how va-
rying the values of the repressor copy number R and repressor-DNA
binding energy ∆εRA, respectively, change the predicted response
profiles. (B) In the case of inducible activation, binding of an effec-
tor molecule to an activator transcription factor increases the fold-
change in gene expression. Note that for activation, the fold-change
is greater than 1. The left and center panels show how changing the
activator copy number A and activator-DNA binding energy ∆εAA

alter response, respectively. The right panel shows how varying the
polymerase-activator interaction energy εAP alters the fold-change.
Relatively small perturbations to this energetic parameter drastically
change the level of activation and play a major role in dictating the
dynamic range of the system. . . . . . . . . . . . . . . . . . . . . . . 132

3.1 States and weights for simple repression. Both RNAP (light blue)
and repressor compete for DNA binding. There are RA repressors
in the active state (green, sharp) and RI repressors in the inactive
state (green, rounded), with the latter type typically bound to inducer
(gold). The difference in energy between a repressor bound to the
Lac operator and to another non-specific site on the DNA equals
∆εRD,A in the active state and ∆εRD,I in the inactive state; the P

RNAP have a corresponding energy difference ∆εPD. The number
of active repressors RA includes repressors that are unbound, singly
bound, or doubly bound to inducer, although the majority of active
state repressors will not be bound to inducer (which pushes them into
the inactive state). Similarly, the RI term includes all inactive state
repressors bound to any number of inducer molecules, with the most
prevalent state shown in the figure. . . . . . . . . . . . . . . . . . . . 139
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3.2 The eight states of the Lac repressor. The Lac repressor (green) has
an active conformation (left column) and inactive conformation (right
column), with the energy difference between these two states given
by ε . In each conformation, the repressor can bind an inducer (gold)
at two sites. Each state is shown with its corresponding Boltzmann
weight. If the sum of the active state weights shown (bottom left) is
greater than the sum of the inactive state weights (bottom right), the
repressor is more likely to be in the active state. . . . . . . . . . . . . 140

3.3 Operatormutants only vary their DNAbinding affinity. (A) Fold-
change in gene expression of the promoter controlled by Lac repressor
as a function of inducer (IPTG) concentration. Data is shown for wild
type Lac repressor and three mutants with point mutations in their
DNA binding region. First, the wild type Lac repressor data was fit
to the theoretical fold-change expression, Eq. 3.9. Following this,
the fold-change profiles of the three mutants were fit by only varying
their DNA binding affinity, KDNA, while keeping their remaining
thermodynamic parameters (KA, KI , ε) equal to the wild type values.
(B) Each mutant can be collapsed onto the same curve using the Bohr
parameter F (c) given by Eq. 3.11. A larger Bohr parameter indicates
that the repressor is less likely to be bound to the Lac operator. The
horizontal bars stretching from Fmin to Fmax have the same length
for all four repressors as determined by Eq. 3.16. Standard deviation
from triplicate measurements and the best fit parameters are shown
in the Supplementary Information. . . . . . . . . . . . . . . . . . . . 144

3.4 Theoretical values of leakiness and dynamic range for operator
mutants. (A) Assuming a fixed repressor concentration [R] for all
operator mutants, leakiness monotonically increases with increasing
KDNA while (B) the dynamic range has a peak. The wild type re-
pressor exhibits a good compromise between having a large dynamic
range and a small leakiness. Leakiness and dynamic range values
for the four repressors shown are taken from the best fit curves in
Fig. 3.3 and are not measured directly from data. Thus, we represent
these values as empty squares, and they fall exactly upon the black
theoretical curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
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3.5 Inducer mutants only vary their inducer binding affinities. (A)
Ten different point mutations in the Lac repressor’s inducer binding
region can be well characterized by only varying the mutant repres-
sor’s binding affinity to IPTG in the active (KA) and inactive (KI)
state, while keeping the other thermodynamic parameters (KDNA and
ε) in Eq. 3.9 equal to the wild type values. (B) Data collapse using
the Bohr parameter from Eq. 3.11. Standard deviation from triplicate
measurements and the best fit parameters are shown in the Supple-
mentary Information. . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.6 Theoretical values of the dynamic range for inducer mutants.
(A) The dynamic range, Eq. 3.15, as a function of KA and KI , using
the wild type values for ε and KDNA. (B) Dynamic range as a
function of KA/KI overlaid with the dynamic range values of the ten
titration curves from Fig. 3.5A. Note that KA/KI is muchmore tightly
constrained about the wild type value than the individual KA and KI

values. The dynamic range values shown are from the theoretical
best fit curves in Fig. 3.5 and are not measured directly from data. . . 146

3.7 Predicted behavior of doublemutants. The anticipated fold-change
of a double mutant, with a point mutation in the operator and inducer
binding domains, using the KDNA parameter from the operator mutant
and the KA and KI parameters from the inducer mutant. Predictions
are shown for the fold-change of the double mutation of Q18M in the
DNA binding domain and (A) F161N, (B) F161T, (C) F161W, and
(D) F293R in the inducer binding domain. . . . . . . . . . . . . . . . 147

S3.1 Multiple sets of thermodynamic parameters can yield nearly
identical functional forms. The blue data points represent the wild
type values of fold-change from Fig. 3.3A together with the best-fit
line shown as fit 1. Fold-change for this fit was given by Eq. S3.2 with
the parameters KA = 1.5 × 10−5 M, KI = 1.2 × 10−6 M, e−βε = 1.1,
and [R]/KDNA = 60. Overlaid on top is the dashed curve fit 2 with
identical KA and KI parameters but with the unrealistic parameters
e−βε = 2.2 × 104, and [R]/KDNA = 1.1 × 106. Note that the ratio
eβε [R]/KDNA = 0.02 is the same in both cases, but the individual
parameters can vary enormously. . . . . . . . . . . . . . . . . . . . 154
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S3.2 Fold-change of Lac repressor operator mutants. The curves show
fold-change as a function of (A) effector (IPTG) concentration and
(B) the Bohr parameter given in Eq. 3.11. Error bars represent the
standard deviation from triplicate measurements. . . . . . . . . . . . 155

S3.3 Fold-change of Lac repressor inducer mutants. The curves show
fold-change as a function of (A) effector (IPTG) concentration and
(B) the Bohr parameter given in Eq. 3.11. Error bars represent the
standard deviation from triplicate measurements. . . . . . . . . . . . 157

4.1 Key parameters governing CRP function. (A) Within the MWC
and KNFmodels, each CRP subunit can assume either an active or an
inactive conformation with a free energy difference ε between the two
states. cAMP can bind to CRP (with a dissociation constant M A

D in the
active state and M I

D in the inactive state) and promotes the active state
(M A

D < M I
D in theMWCmodel; M I

D → ∞ in the KNFmodel). Active
CRP has a higher affinity for the operator (LA

D) than the inactive state
(LI

D). When CRP is bound to DNA, it promotes RNA polymerase
binding through an interaction energy εP, thereby enhancing gene
expression. (B) Lanfranco et al. constructed a single-chain CRP
molecule whose two subunits could be mutated independently. All
possible dimers are shown using five mutant subunits: wild type
(WT), D (D53H), S (S62F), G (G141Q), and L (L148R). Lanfranco
et al. constructed the six mutants comprised of WT, D, and S (black
and pink boxes) and analyzed each mutant independently. . . . . . . 161
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4.2 Macroscopic states and Boltzmann weights for cAMP binding to
CRP. (A) Within the MWC model, cAMP (purple circles) may bind
to a CRP subunit in either the active (dark green) or inactive (light
green) state. M A

L and M I
L represent the dissociation constants of the

left subunit in the active and inactive states, respectively, while M A
R

and M I
R represent the analogous dissociation constants for the right

subunit. [M] denotes the concentration of cAMP and ε represents
the free energy difference between each subunit’s inactive and active
states. ε A

int and ε
I
int represent a cooperative energy when two cAMP

are bound to CRP in the active and inactive states, respectively. (B)
TheKNFmodel assumes that the twoCRP subunits are inactive when
unbound to cAMP and transition to the active state immediately upon
binding to cAMP. The parameters have the same meaning as in the
MWC model, but states where one subunit is active while the other
is inactive are allowed. . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.3 cAMP binding curves for different CRP mutants. In addition
to the wild type CRP subunit (denoted WT), the mutation D53H
(denoted D) and the mutation S62F (denoted S) can be applied to
either subunit as indicated by the subscripts in the legend. Curves
were characterized using the (A-C) MWC or (D-F) KNF model.
The response of the asymmetric mutants (Panels B,E) lie between
those of the symmetric mutants (Panels A,D). The fraction of CRP
in the active state (Panels C,F) is markedly different between the two
models; in the MWC model the mutants with an S subunit will be
inactive even in the limit of saturating cAMP. Error bars represent
the (corrected) sample standard deviation. . . . . . . . . . . . . . . . 165

4.4 States and weights for CRP binding to DNA. The DNA unbound
states from Fig. 4.2 are shown together with the DNA bound states.
The Boltzmann weight of each DNA bound state is proportional to
the concentration [L] of CRP and inversely proportional to the CRP-
DNAdissociation constants LA or LI for the active and inactive states,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
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4.5 The interaction between CRP and DNA. Anisotropy of 32-bp
fluorescein-labeled lac promoter binding to CRPD/S at different con-
centrations of cAMP. An anisotropy of 1 corresponds to unbound
DNA while higher values imply that DNA is bound to CRP. In the
presence of cAMP,more CRP subunits will be active, and hence there
will be greater anisotropy for any given concentration of CRP. The
sample standard deviation

√
1

n−1
∑n

j=1(y( j)
theory − y

( j)
data)

2 is 0.01, with
the corresponding parameters given in Tables 4.1 and 4.2. . . . . . . 171

4.6 States andweights for a simple activationmotif. Binding of RNAP
(blue) to a promoter is facilitated by the binding of the activator CRP.
Simultaneous binding of RNAP and CRP is facilitated by an inte-
raction energy εP,LA for active CRP (dark green) and εP,LI for inactive
CRP (light green). cAMP (not drawn) influences the concentration
of active and inactive CRP as shown in Fig. 4.4. . . . . . . . . . . . . 173

4.7 Predicted gene expression profiles for a simple activation archi-
tecture. (A) Gene expression for wild type CRP, where 1 Miller
Unit (MU) represents a standardized amount of β-galactosidase acti-
vity. This data was used to determine the relevant parameters in
Eq. 4.14 for the promoter in the presence of [L] = 1.5 µM of CRP.
The predicted behavior of the CRP mutants is shown using their
corresponding cAMP dissociation constants. (B) The spectrum of
possible gene expression profiles can be categorized based upon the
cAMP-CRP binding affinity in each subunit. In all cases, we assumed
M A

L = M A
R = 3 × 10−6 M and e−βε

A
int = 0. The activation response

(blue) was generated using M I
L = M I

R = 6 × 10−6 M. The repression
response (orange) used M I

L = M I
R = 10−7 M. The peaked response

(gold) used M I
L = 10−7 M and M I

R = 300×10−6 M. The flat response
used M I

L = M I
R = 3×10−6 M. The remaining parameters in both plots

were [P]
PD
= 130× 10−6, rtrans = 5× 105 MU

hr , γ = 0.1, εP,LA = −3 kBT ,
εP,LI = 0 kBT , ε = −3 kBT , and those shown in Tables 4.1 and 4.2. . . 174
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S4.1 Predicting the behavior of the asymmetric CRP mutants. (A)
We infer the cAMP-CRP dissociation constants for the WT, D, and S
subunits using the best-fit characterizations (solid curves) of the three
symmetric CRP mutants. (B) Using these values, we can predict
the behavior of the asymmetric mutants (dashed curves) with no
further fitting. (C) In an analogous manner, the KNF model can be
calibrated using the symmetric CRPmutants. (D) The corresponding
predictions of the KNF model for the asymmetric CRP mutants. The
(corrected) sample standard deviations for the asymmetric mutant
predictions are 0.08 for both the MWC and KNF models, and the
resulting best-fit parameters are shown in Table S4.1. . . . . . . . . . 184

S4.2 Individual characterization of each CRP mutant. Each of the
(A) symmetric and (B) asymmetric CRP mutants are characterized
individually using the MWCmodel Eq. 4.1, showing how closely the
model could match the data if the assumption that each subunit be-
haves identically and independently is relaxed. Similarly, each of the
(C) symmetric and (D) asymmetric CRP mutants are characterized
separately using the KNF model Eq. 4.5. The sample standard devi-
ation equals 0.02 for the MWC model and 0.04 for the KNF model,
and the best-fit parameters for both models are given in Table S4.2. . 187

S4.3 Effect of a D+S double mutation. With both the (A) MWC and (B)
KNF models, the D and S mutations are assumed to be independent
and additive, leading to the modified dissociation constants given
by Eqs. S4.8 and S4.9. The predicted behavior of the D+S subunit
(black line, drawn dashed to emphasize that it was not fit to the
data) loosely follows the experimental data (black points) for both
models. For reference, the symmetric mutants (WT/WT, D/D, S/S)
from from Fig. 4.3 are also shown. Parameters used were the same
as in Table 4.1 with no recourse to fitting. . . . . . . . . . . . . . . . 192

S4.4 Predicting the behavior of other D+S mutants. Using Eqs. S4.8
and S4.9, the behavior of any CRP mutant with a D+S subunit can
be modeled. The four possibilities are shown for the (A) MWC and
(B) KNF models together with the data on the WT/D+S mutant.
Parameters used were the same as in Table 4.1 with no recourse to
fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
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5.1 Schematic of nAChR and CNGA2 ion channels. (A) The hetero-
pentameric nicotinic acetylcholine receptor (nAChR) has two ligand
binding sites for acetylcholine outside the cytosol. (B) The homo-
tetrameric cyclic nucleotide-gated (CNGA2) has four ligand binding
sites, one on each subunit, for cAMP or cGMP located inside the
cytosol. Both ion channels have a higher probability of being closed
in the absence of ligand and open when bound to ligand. . . . . . . . 196

5.2 Probability that a ligand-gated ion channel is open as given by the
MWCmodel. (A) Microscopic states and Boltzmann weights of the
nAChR ion channel (green) binding to acetylcholine (orange). (B)
Corresponding states for the CNGA2 ion channel (purple) binding
to cGMP (brown). The behavior of these channels is determined
by three physical parameters: the affinity between the receptor and
ligand in the open (KO) and closed (KC) states and the free energy
difference ε between the closed and open conformations of the ion
channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.3 Characterizing nicotinic acetylcholine receptors with n subunits
carrying the L251S mutation. (A) Normalized currents of mu-
tant nAChR ion channels at different concentrations of the agonist
acetylcholine (ACh). The curves from right to left show a recep-
tor with n = 0 (wild type), n = 1 (α2 βγ

∗δ), n = 2 (α∗2 βγδ),
n = 3 (α2 β

∗γ∗δ∗), and n = 4 (α∗2 βγ
∗δ∗) mutations, where aste-

risks (∗) denote a mutated subunit. Fitting the data (solid lines) to
Eqs. 5.1 and 5.2 with m = 2 ligand binding sites determines the
three MWC parameters KO = 0.1× 10−9 M, KC = 60× 10−6 M, and
βε (n) = [−4.0,−8.5,−14.6,−19.2,−23.7] from left (n = 4) to right
(n = 0). With each additional mutation, the dose-response curve
shifts to the left by roughly a decade in concentration while the ε pa-
rameter increases by roughly 5 kBT . (B) The probability popen(c) that
the five ion channels are open can be collapsed onto the same curve
using the Bohr parameter FnAChR(c) given by Eq. 5.13. A positive
Bohr parameter indicates that c is above the [EC50]. See Supporting
Information section S5.3 for details on the fitting procedure. . . . . . 201
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5.4 Theoretical prediction and experimental measurements for mu-
tant nAChR ion channel characteristics. The open squares mark
the βε values of the five dose response curves from Fig. 5.3A. (A)
The leakiness given by Eq. 5.5 increases exponentially with each mu-
tation. (B) The dynamic range from Eq. 5.6 is nearly uniform for all
mutants. (C) The [EC50] decreases exponentially with eachmutation.
(D) The effective Hill coefficient h is predicted to remain approxi-
mately constant. [EC50] and h offer a direct comparison between the
best-fit model predictions (open squares) and the experimental mea-
surements (solid circles) from Fig. 5.3A. While the [EC50] matches
well between theory and experiment, the effective Hill coefficient h

is significantly noisier. . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.5 States and weights for mutant CNGA2 ion channels. CNGA2

mutants with m = 4 subunits were constructed using n mutated (light
red) and m − n wild type subunits (purple). The affinity between the
wild type subunits to ligand in the open and closed states (KO and KC)
is stronger than the affinity of the mutated subunits (K∗O and K∗C). The
weights shown account for all possible ligand configurations, with
the inset explicitly showing all of the closed states for the wild type
(n = 0) ion channel from Fig. 5.2B. The probability that a receptor
with n mutated subunits is open is given by its corresponding open
state weight divided by the sum of open and closed weights in that
same row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.6 Normalized currents for CNGA2 ion channels with a varying
number n of mutant subunits. (A) Dose-response curves for
CNGA2 mutants composed of 4 − n wild type subunits and n muta-
ted subunits with weaker affinity for the ligand cGMP. Once the free
energy ε and the ligand dissociation constants of the wild type subu-
nits (KO and KC) and mutated subunits (K∗O and K∗C) are fixed, each
mutant is completely characterized by the number ofmutated subunits
n in Eq. 5.15. Theoretical best-fit curves are shown using the para-
meters KO = 1.2×10−6 M, KC = 20×10−6 M, K∗O = 500×10−6 M,
K∗C = 140 × 10−3 M, and βε = −3.4. (B) Data from all five mutants
collapses onto a single master curve when plotted as a function of
the Bohr parameter given by Eq. 5.13. See Supporting Information
section S5.3 for details on the fitting. . . . . . . . . . . . . . . . . . 207



xxxix

5.7 Individual state probabilities for thewild type andmutantCNGA2
ion channels. (A) The state probabilities for the wild type (n = 0)
ion channel. The subscripts of the open (O j) and closed (Cj) states
represent the number of ligands bound to the channel. States with
partial occupancy, 1 ≤ j ≤ 3, are most likely to occur in a narrow
range of ligand concentrations [cGMP] ∈ [10−7, 10−5]M, outside of
which either the completely empty C0 or fully occupied O4 states
dominate the system. (B) The state probabilities for the n = 4 chan-
nel. Because the mutant subunits have a weaker affinity to ligand
(K∗O > KO and K∗C > KC), the state probabilities are all shifted to the
right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

5.8 Theoretical prediction and experimental measurements for mu-
tant CNGA2 ion channel characteristics. The open squares repre-
sent the five mutant ion channels in Fig. 5.6 with n mutated subunits.
(A) All ion channels have small leakiness. (B) The dynamic range of
all channels is near the maximum possible value of unity, indicating
that they rarely open in the absence of ligand and are always open
in the presence of saturating ligand concentrations. (C) The [EC50]
increases non-uniformly with the number of mutant subunits. Also
shown are the measured values (solid circles) interpolated from the
data. (D) The effective Hill coefficient has a valley due to the com-
peting influences of the wild type subunits (which respond at µM
ligand concentrations) and the mutant subunits (which respond at
mM concentrations). Although the homotetrameric channels (n = 0
and n = 4) both have sharp responses, the combined effect of having
both types of subunits (n = 1, 2, and 3) leads to a flatter response. . . 210

5.9 Predicting the dose-response of a class of mutants using a subset
of its members. (A) The MWC parameters of the nAChR mutants
can be fixed using only two data sets (solid lines), which together with
Eq. 5.20 predict the dose-response curves of the remaining mutants
(dashed lines). (B) For the CNGA2 channel, the properties of both
the wild type and mutant subunits can also be fit using two data sets,
accurately predicting the responses of the remaining three mutants.
Supporting Information section S5.4 demonstrates the results of using
alternative pairs of mutants to fix the thermodynamic parameters in
both systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
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5.10 Degenerate parameter sets for nAChR and CNGA2 model fit-
ting. Different sets of biophysical parameters can yield the same
system response. (A) Data for the nAChR system in Fig. 5.3 is fit
by constraining KO to the value shown on the x-axis. The remaining
parameters can compensate for this wide range of KO values. (B) The
CNGA2 system in Fig. 5.6 can similarly be fit by constraining the
KO value, although fit quality decreases markedly outside the narrow
range shown. Any set of parameters shown for either system leads to
responses with R2 > 0.96. . . . . . . . . . . . . . . . . . . . . . . . 212

S5.1 Rates for an ion channel with one ligand binding site. The ion
channel tends to transition from the closed (C) state to the open (O)
state after binding to ligand (L). We assume both ion channel states
have the same diffusion-limited on-rate kon = 109 1

M·s . The remaining
rates of the bound states should satisfy k (C)

off > k (O)
off and ko

+ > ko
− so

that ligand binding drives the ion channel to the open state OL. . . . 221
S5.2 Kinetics of a system heading towards equilibrium. The relative

probabilities of the four states are computed using Eqs. S5.1 and S5.2
and the rate constants kon[L] = 103 1

s , k (O)
off = 10−2 1

s , k (C)
off = 104 1

s ,
ko
+ = 104 1

s , ko
− = 101

s , ke
+ = 101

s , and ke
− = 103 1

s . Note that the
rate constants must satisfy the cycle condition: the product of rates
moving clockwise equals the product of rates going counterclockwise.
The dashed line indicates the exact time scale Eq. S5.7 for the system
to reach equilibrium. Initial conditions were chosen randomly as
pO = 0.005, pC = 0.45, pOL = 0.54, and pCL = 0.005. . . . . . . . . 224

S5.3 Categorizing the full set of ion channel mutants. Using the best-fit
KO and KC values obtained from the five mutants in Fig. 5.3, we
can use the measured [EC50] value for each mutant in Table S5.1 to
determine its βε parameter. Thus, a single data point for each mutant
enables us to predict its complete dose-response curve. All mutants
with the same total number n of mutations are plotted in shades of the
same color, together with the complete dose-response curves from
Fig. 5.3. Note that while each mutant family spans a range of [EC50]
values, the classes are distinct and do not overlap. . . . . . . . . . . 225
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S5.4 Mutating different nAChR subunits changes the gating energy
ε by different amounts. Using a linear model where each subunit
independently contributes to channel gating, we fit all of the [EC50]
values in Table S5.1 to compute the increase of the gating energy
ε when each subunit of α2 βγδ nAChR is mutated (see Eqs. S5.20-
S5.23). Uponmutation, a subunit of type j increases the gating energy
by ∆ε j , where ∆εα = 4.4 kBT , ∆ε β = 5.3 kBT , ∆εγ = 5.4 kBT ,
and ∆ε δ = 5.2 kBT . For each mutant in Table S5.1, the [EC50]
from the model can be compared to the corresponding experimental
measurement, with the black dashed line denoting the line of equality
y = x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

S5.5 Probability that an nAChR mutant will be open. (A) Normalized
current curves of the five nAChR mutants from Fig. 5.3A. (B) The
probability that each ion channel will be open is given by Eq. 5.1.
Note that the wild type ion channel has a smaller dynamic range and
the n = 4 mutant has a noticeably larger leakiness than the other
mutants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

S5.6 Probability that a CNGA2 mutant will be open. (A) CNGA2
dose-response curves from Fig. 5.6A. (B) The probability that each
ion channel will be open is given by Eq. 5.1. Since all of the channels
have small leakiness (≈ 0.03) and large dynamic range, the popen(c)
curves are nearly identical to the normalized current curves. . . . . . 229
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S5.7 Effects of L251Tmutations on nAChR. (A) [EC50] values for anot-
her class of L251T mutations introduced at different combinations of
subunits. This data set is separate from the L251S mutation conside-
red in the main text. The [EC50] mainly depends on the total number
of mutations, [EC50] ∝ e−1.82n, although there is slight variation
depending upon which subunits are mutated. From Eq. S5.24, we
find that each mutation imparts ∆ε = 3.64 kBT . (B) Once the MWC
parameters have been fixed from the [EC50] measurements, we can
predict the full dose-response curves for the entire class of L251T
nAChR mutants. Overlaid on these theoretical prediction are four
experimentally measured response curves for the wild type (α2 βγδ),
two n = 1 single mutants (α2 βγ

∗δ and α2 βγδ
∗), and the n = 2

double mutant (α2 βγ
∗δ∗). We expect the predicted dose-response

curves to match the data on average for the entire class of mutants,
but Part A shows that the [EC50] of the n = 1 and n = 2 mutants will
be overestimated while that of the n = 4 and n = 5 mutants will be
underestimated. Asterisks (∗) in the legend denote L251T mutations. 231

S5.8 Normalized currents for combinations of CNGA2 ion channels.
Channel currents of cells producing equal amounts of wild type n = 0
and the n = 4 mutant ion channels. As shown in Eq. S5.27, the
resulting dose-response curve equals the average of the n = 0 and
n = 4 individual response curves. . . . . . . . . . . . . . . . . . . . 232

S5.9 Exact and approximate expressions for nAChR characteristics.
The approximations Eqs. S5.28-S5.34 (dashed, teal) are valid in the
limit 1 � e−βε �

(
KC
KO

)m
where they closely match the exact expres-

sions (purple). (A) Leakiness can be approximated as an exponen-
tially increasing function of βε . (B) To lowest order, the dynamic
range of an ion channel should approach unity, with deviations only
at very large and very small βε values. (C) The [EC50] is an expo-
nentially decreasing function of βε . (D) The effective Hill coefficient
is roughly constant for all mutants, but as with the dynamic range it
decreases for very large and very small βε values. . . . . . . . . . . 233
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S5.10 CNGA2 properties are robust to changes in the ligand disso-
ciation constants. (A) The leakiness does not depend on either
dissociation constant. (B) The dynamic range is near unity for set
of dissociation constants where KO

KC
≤ 0.1, as was found for both the

nAChR and CNGA2 systems. For larger ratios of the dissociation
constants, the ligand no longer drives the ion channel to open. (C)
When KO

KC
≤ 0.1, [EC50] ≈ 1.4KO is proportional to KO but robust to

the ratio of dissociation constants. (D) The effective Hill coefficient
is also robust to changes in the dissociation constants, with h ≈ 2.4
when KO

KC
≤ 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

S5.11 Effects ofmixing two types of subunits in theCNGA2 ion channel.
The CNGA2 ion channel is composed of m = 4 subunits, each of
which has one ligand binding site. n of these subunits are mutated
so as to have weaker ligand binding affinity. (A) The leakiness of
the CNGA2 ion channel Eq. S5.37 is uniformly small. (B) All of the
mutants have nearly full dynamic range Eq. S5.38 because the open
channel dissociations constants (KO and K∗O) are significantly larger
than the closed channel dissociation constants (KC and K∗C). (C) The
exact expression (solid, purple) for the [EC50] is shown along with
approximations for the n = 0, 2, and 4 ion channels (teal diamonds)
from Eqs. S5.32 and S5.48. Because the mutated subunits bind
poorly to ligand, the [EC50] increases with n. (D) The effective Hill
coefficient Eqs. S5.34 and S5.50 can be approximated in the same
manner as the [EC50]. Although the homooligomeric n = 0 and
n = 4 channels have sharp responses, the effect of combining both
types of subunits (n = 1, 2, and 3) leads to a flatter response. . . . . . 237

S5.12 nAChR fits can be resolved by slightly perturbing the measured
βε value. (A) If the experimentally measured value of βε (0) = −14.2
forwild type nAChR is decreased to βε (0) = −18, we can characterize
all of the nAChRmutants (R2 > 0.99) using a single set of parameters.
(B) Even the very modest change to βε (0) = −16 enables us to fit
most of the data set well (R2 = 0.98). . . . . . . . . . . . . . . . . . 243
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S5.13 CNGA2 fits can also be resolved with slight changes to the mea-
sured βε value. (A) Increasing the experimentally measured value
of βε = −11 to βε = −5 permits us to recoup a single set of parame-
ters (R2 > 0.99) for the entire class of mutants. (B) A more modest
increase from βε = −11 to βε = −8 yields a poorer fit (R2 = 0.97). . 243

S5.14 Extracting [EC50] and h from the nAChR data. The individual
nAChR data sets can be fit to the MWC model in order to interpolate
between the data points and extract the best possible [EC50] and h

values. Note that each fit is very smooth around the midpoint where
normalized current equals 1⁄2, which is the key region where both
[EC50] and h are computed. . . . . . . . . . . . . . . . . . . . . . . 244

S5.15 Predicting nAChR mutants using different training sets. The
MWC parameters for the entire class of nAChR mutants can be fit
from two data sets (solid lines). Using these parameters, the dose-
response curves of the remaining three mutants can be predicted
(dashed lines) without any further fitting. The best-fit parameters are
listed in Table S5.4. . . . . . . . . . . . . . . . . . . . . . . . . . . 247

S5.16 Predicting CNGA2 mutants using different training sets. As was
found for nAChR, two data sets (solid lines) are sufficient to extract
the MWC parameters for the whole class of CNGA2 mutants, which
can then be used to extrapolate the responses of the remainingmutants
(dashed lines). The best-fit parameters are listed in Table S5.5. . . . . 249

6.1 The bivalent nature ofRNAP-promoter binding. (A)Gene expres-
sion was measured for RNAP promoters comprising any combination
of -35, -10, spacer, UP, and background (BG) elements. (B) When
no UP element is present, RNAP makes contact with the promoter at
the -35 and -10 sites giving rise to gene expression r0 when unbound
or partially bound and rmax when fully bound. (C) Having two bin-
ding sites alters the dynamics of RNAP binding. kon represents the
on-rate from unbound to partially bound RNAP and k̃on the analo-
gous rate from partially to fully bound RNAP, while koff, j denotes the
unbinding rate from site j. . . . . . . . . . . . . . . . . . . . . . . . 257
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6.2 Gene expression of promoters with no UP element. Model pre-
dictions using (A) an energy matrix (Eq. 6.1) where the -35 and -10
elements independently contribute to RNAP binding and (B) a mul-
tivalent model (Eq. 6.3) where the two sites contribute cooperatively.
Inset: The epistasis-free nature of the energy matrix model makes
sharp predictions about the gene expression of the consensus -35 and
-10 sequences that markedly disagree with the data. Parameter values
given in Appendix S6.2. . . . . . . . . . . . . . . . . . . . . . . . . 258

6.3 The interaction between RNAP and the UP element. (A) Possible
mechanisms by which the RNAP C-terminal can bind to the UP ele-
ment (orange segments represent strong binding comparable to the
-35 and -10 motifs; gray segments represent weak binding compa-
rable to the spacer and background). The data supports the bottom
schematic (see Appendix S6.4). (B) The corresponding characteriza-
tion of 8,192 promoters identical to those shown in Fig. 6.2 but with
one of two UP binding motifs. Red points represent promoters with
a consensus -35 and -10. Data was fit using the same parameters as
in Fig. 6.2B and fitting the binding energies of the two UP elements
(parameter values in Appendix S6.2). . . . . . . . . . . . . . . . . . 260

6.4 Gene expression is reduced when RNAP binds a promoter too
tightly. Measured gene expression versus the inferred promoter
strength ∆ERNAP relative to the transcription initiation state ∆Etrans =

−6.2 kBT (stronger promoters on the right). The dashed line shows
the prediction of the multivalent model. . . . . . . . . . . . . . . . . 261

6.5 The dissociation betweenRNAPand the promoter. RNAP binding
to a promoterwith a strong (solid lines, K-35 = 1µM)orweak (dashed,
K-35 → ∞) -35 sequence. c0 represents the local concentration of
singly bound RNAP. . . . . . . . . . . . . . . . . . . . . . . . . . . 263

S6.1 An energy matrix model with base pair resolution translates into
an energy matrix model with promoter element resolution. Each
promoter element contributes to RNAP binding with free energy
given by the sum of its free energies from its base pairs. The two
sample sequences shownonly differ in their -35 sequence (highlighted
blue in Sequence 1), resulting in different values of E (1)

-35 and E (2)
-35 but

the same free energies for the remaining promoter elements. . . . . . 270
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S6.2 Gene expression represented by an energy matrix model with sa-
turation. (A) Characterization of the same promoters as in Fig. 6.2
using the energy matrix model with saturation (Eq. S6.3) with es-
sentially identical fit quality as the multivalent model. (B) Since this
model assumes that the RNAP-promoter binding energy is epistasis-
free (with the -35 and -10 binding sites contributing additively and
independently to the RNAP binding energy), the gene expression of
double mutants can be predicted from the expression of single mu-
tants without resorting to fitting (Eqs. S6.4 and S6.5). The large
deviations demonstrate that the energy matrix with saturation cannot
characterize the gene expression of these constructs. . . . . . . . . . 275

S6.3 Relating gene expression measurements with minimal fitting.
Using gene expression measurements for a weak promoter and two
single mutants with higher gene expression, we can predict the ex-
pression of the double mutant and compare it to data. (A) The
epistasis-free energy matrix model with saturation (Eq. S6.3) unde-
restimates the gene expression, suggesting that the avidity between
the -35 and -10 sites is missing from this analysis. (B) The multiva-
lent model Eq. 6.3 predicts higher gene expression levels that better
characterize the data. . . . . . . . . . . . . . . . . . . . . . . . . . . 278

S6.4 Quantifying the interactions between promoter elements. If the
-35 and spacer promoter elements independently contribute to gene
expression, then an epistasis-free prediction of gene expression for
the double mutant (bottom right) can be predicted using the gene
expression of the other three promoters. . . . . . . . . . . . . . . . . 280
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S6.5 Interactions between the promoter elements with no UP binding
site. (A) For every pair of elements (brown labels on the left and
bottom), the measured gene expression (y-axis) is compared to the
epistasis-free prediction (x-axis, Eq. S6.12) assuming that the two
promoter elements are independent. Deviations between the pre-
dictions and measurements indicate that the two promoter elements
interact. Data is plotted with low opacity to better show the general
trend across the promoters. (B) The resulting schematic of a pro-
moter with no UP element is that RNAP can bind to either the -35
or -10 sites independently with an avidity interaction when both are
bound; the spacer and background (BG) contribute independently to
the RNAP binding energy provided RNAP is bound to either the -35
or -10 element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

S6.6 Interactions between the promoter elements with an UP binding
site. (A) For every pair of elements (brown labels on the left and
bottom), the measured gene expression (y-axis) is compared to the
epistasis-free prediction (x-axis, Eq. S6.12) assuming that the two
promoter elements are independent. (B) The resulting schematic of
gene expression where RNAP can bind to either the -35 or -10 sites
independently with an avidity interaction when both are bound; the
UP, spacer, and background (BG) contribute independently to the
RNAP binding energy provided RNAP is bound to either the -35 or
-10 element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
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S6.7 Gene expression is reduced for promoters that bind RNAP too
tightly. (A) In themultivalent model (Eq. 6.5), although there are 10x
fewer points on the right edge of the plot than the left edge, there are
the same number of outliers, suggesting a biophysical mechanism for
the reduction in gene expression of the strongest promoters. (B) The
average level of transcription modeled as a two state systemwhere the
bound RNAP state (with free energy ∆ERNAP relative to the unbound
state) can enter a transcription initiation state with free energy∆Etrans.
(C) Gene expression characterized using the modified maximum le-
vel of gene expression using Eq. S6.16 with ∆Etrans = −6.2 kBT .
(D) Measured gene expression versus the promoter strength ∆ERNAP

(stronger promoters on the right because of the minus sign). The
dashed line shows the prediction of the multivalent model modified
using Eq. S6.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

S6.8 Dynamics of RNAP unbinding from the -35 and -10 sites. The
avidity between the -35 and -10 sites will prolong the time before
RNAP unbinds from the promoter. . . . . . . . . . . . . . . . . . . . 287

7.1 Modeling the glycolytic pathway. (A) The steps of mammalian
glycolysis together with the enzymes (black), substrates (gray), al-
losteric regulators (green/brown), and energy carriers (red/teal). (B)
Phosphofructokinase is one of the key regulators of glycolysis. It is
composed of four identical subunits, each containing binding sites
for the substrates ATP and F6P as well as three sets of allosteric sites
for the regulators shown in the inset. (C-F) A statistical mechani-
cal model of phosphofructokinase is able to characterize its diverse
behavior across a diverse set of physiologically relevant conditions. . 293

7.2 The thermodynamics of a dimericmolecule binding to a receptor.
A heterodimer (the green and blue balls linked together by a flexible
linker) in solution with volumeVsol that is discretized into small boxes
with volume Vbox (comparable to the size of the green ball). (A) If
the green ball is fixed in place in one of the boxes, the blue ball can
reside in a volume Vu where the subscript signifies the unbound state.
(B) When the green ball is bound to the receptor, the blue ball can
access a volume Vb where the subscript denotes the bound state. . . . 295
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7.3 A General data collapse procedure. The difference between the
effective free energy Fbound in the presence and absence of repressor
(Eqs. 7.9 and 7.10) is plotted versus fold-change. The data collapses
onto the form of the exponential in Eq. 7.11, and this procedure can
be readily extended to arbitrary transcriptional regulation architectures.298
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4.1 Parameters for cAMP binding to CRP. The data in Fig. 4.3 can
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int
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4.2 Parameters for CRP binding to DNA. The anisotropy data for
CRPD/S characterized using Eq. 4.9, as shown in Fig. 4.5. Each value
is given as a mean ± standard error. The uncertainty in the M̃ A

S
parameter (shown in Table 4.1) leads to a corresponding uncertainty
in the active CRP dissociation constant LA. . . . . . . . . . . . . . . 172

S4.1 Best-fit parameters for the symmetric CRP mutant fitting. Using
only the symmetric CRP mutant data in Fig. S4.1 allows us to infer
the following cAMP-CRP binding parameters from which we can
predict the behavior of the asymmetric mutants. These values should
be compared with the corresponding best-fit parameters when fitting
the entire data set (Table 4.1). . . . . . . . . . . . . . . . . . . . . . 185

S4.2 Best-fit parameters for the individual CRP mutant fitting. The
following parameters were determined by fitting each cAMP-CRP
data set separately. Thus, each CRP mutant yield slightly different
values for the same fit parameters. In both models, the interactions
energies are assumed to be zero, ε A

int = ε
I
int = 0. . . . . . . . . . . . . 186

S4.3 Effective Hill coefficients for the CRP mutants. The effective Hill
coefficient Eq. S4.1 is approximately one for all of the CRP mutants
in both the MWC and KNF models. . . . . . . . . . . . . . . . . . . 188

S5.1 Dose-response relations for mouse muscle ACh receptors contai-
ning various numbers of mutated L251S subunits (n). Mutated
subunits are indicated by an asterisk (∗). Standard error of the mean
for [EC50] was less than 10% of the mean, except where given.
Responses for the α∗2 β

∗γ∗δ∗ mutant were too small for reliable mea-
surements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226



lii

S5.2 Best-fit parameters for the nAChR mutants given the constraint
βε (4) = −4.0. With this single parameter fixed, the remaining pa-
rameters have small uncertainties. R2 represents the coefficient of
determination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

S5.3 Best-fit parameters for the CNGA2 mutants with the constraint
K∗
C
= 140 × 10−3 M. As in the case of nAChR, we find that once

one of the parameters has a fixed value, the degeneracy within the
model is lifted and the remaining parameters have small uncertainties. 242

S5.4 nAChR parameter predictions from two input data sets. Data
sets from the two plain text βε (n) columns (shown as solid lines in
their corresponding figures) were used to determine the KO and KC

dissociation constants for the entire class of mutants and to linearly
extrapolate the energies (bold text) of the remaining mutants using
Eq. 5.20. R2 indicates the goodness of fit for the three predicted
curves (shown as dashed lines in the corresponding figures). . . . . . 246

S5.5 CNGA2 parameter predictions from two input data sets. Two
data sets (shown as solid lines in the corresponding figures) were
used to determine the thermodynamic parameters for the entire class
of mutants. R2 indicates the goodness of fit for the three predicted
curves (shown as dashed lines in the corresponding figures). . . . . . 250

S6.1 Parameter values for the models of transcriptional regulation
considered in this work. The levels of gene expression (r0 and
rmax) are in the same arbitrary units as the experimental measure-
ments while the energies are all in kBT units (energies that are more
negative indicate tighter binding). The original nomenclature from
the experimental work is used for each promoter element. Parameter
denoted by an asterisk (*) represent values that were fixed to their
corresponding value in the energy matrix model to prevent parameter
degeneracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290



1

C h a p t e r 0

INTRODUCTION

Physics and biology strive to explain how the world works, yet their underlying phi-
losophies are markedly different. Physics promotes simple, unifying ideas. Biology
embraces the unique and breathtaking complexity of life. This work empathizes
with both views, but at its core we apply the physicist’s mindset toward the broad
goal of determining how well our current understanding of biological mechanisms,
when translated into statistical mechanical models, can characterize biological phe-
nomena.

The level of description we aim for is not atomistic, but rather a coarse-grained
model of a system’s behavior. For example, Fig. 0.1 shows a ubiquitous input-
output response (black curve) that arise in many biological contexts where a protein
is regulated by an effector, a small molecule that binds to the protein and modulates
its activity. Later chapters contain many instances of such curves, and we develop
theoretical models to characterize these responses and quantify their salient features,
namely, their minimum (the leakiness of the response in the absence of effector),
maximum (the saturating response), midpoint (called the [EC50]), and slope (known
as the effective Hill coefficient). The resulting formulas tie these properties to
experimentally tunable parameters (e.g. concentrations of molecules or binding
energies), making sharp predictions that can guide experimental efforts seeking a
particular behavior (e.g. a sharp response with large saturation and low leakiness).

The majority of my thesis centers around the concept of allostery, in which macro-
molecules switch between multiple conformations, and its characterization through
the MWC model, eponymously named for Jacques Monod, Jeffries Wyman, and
Jean-Pierre Changeux who first developed it in the 1960s. This model provides
an elegant way to coarse-grain molecular fluctuations; at the nano scale, the in-
nards of a cell are a tumultuous maelstrom of activity, with individual molecules
constantly bouncing around, unfolding, refolding, and assuming different confor-
mational states. The MWC model quantifies the average behavior of this ensemble
of states by grouping conformations together and assessing how frequently each
occurs, enabling us to map intricate molecular responses onto a tractable two-state
system. And much as the two-state Ising model has been applied to diverse areas
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Figure 0.1: General input-output function of a biological system. Key biological
properties of the response (black curve) are shown on the right.

of physics ranging from magnetism to evaporation to spin glasses, the breadth and
scope of the following chapters – which includes molecular machinery involved in
bacterial transcription as well as ion channels that transmit signals in our brain – are
a testament to how a simple idea can describe complex and highly disparate systems.

The remainder of this chapter provides a roadmap that highlights the key objectives
and major results of this work. In Chapter 1, I describe my first case study of
allostery in the context of enzyme kinetics. Enzymes are molecular factories that
catalyze chemical reactions, the rate of which depend on the concentrations of their
substrates. Each cell in our body contains over 1000 different enzymes that are
collectively responsible for a myriad of tasks ranging from digesting the food we eat
to replicating our DNA to neutralizing invading pathogens. This process is often
regulated by a suite of activators and inhibitors that can speed it up or slow it down.

I first describe a number of theoretical results that apply to many different types
of enzymes. A key insight is that the activity of an enzyme in the presence of an
allosteric regulator or a competitive inhibitor can be exactly recast into the activity
of an enzyme with no regulator or inhibitor present, provided that parameters are
appropriately rescaled. This demonstrates that the space of possible input-output
responses cannot be increased by adding either of these effector molecules and offers
a way to rigorously integrate out these degrees of freedom.

We then consider two seemingly counter-intuitive phenomena where enzymes exhi-
bit non-monotonic activity as shown in Fig. 0.2. These peaked responses are
impossible in classical Michaelis-Menten kinetics (a simple and commonly-used
description of an enzyme), yet we demonstrate that an allosteric enzyme can exhi-
bit both behaviors provided that its binding constants obey a specific relationship.
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Figure 0.2: Non-monotonic enzyme activity. A peak in activity (blue curve)
contradicts the canonical Michaelis-Menten description (tan curve). (A) Adding
more substrate (the fuel for an enzyme’s reaction) ordinarily makes an enzyme work
faster rather than slower. (B) Adding a competitive inhibitor (which competes with
substrate) decreases an enzyme’s speed in the Michaelis-Menten model, in clear
contradiction with the data.

A subsequent literature search found that the enzyme acetylcholinesterase obeys
the mathematical criterion we predicted would assure non-monotonicity, and we
confirmed that this enzyme does indeed exhibit a non-monotonic activity curve!

Chapter 2 represents an incredible collaboration within the Phillips group, in which
I teamed up with four experimentalists (Stephanie Barnes, Nathan Belliveau, Griffin
Chure, andManuel Razo-Mejia) to test how accuratelywe can predict the behavior of
a transcription factor. Specifically, we examined the Lac repressor which is respon-
sible for regulating metabolism in the bacterium Escherichia coli. This organism
prefers to use glucose as its source of energy, but when glucose is scarce and lactose
is present, it switches tactics and begins to generate the lactose-digesting machinery.
This switch is mediated by the Lac repressor, which ordinarily binds to and blocks
expression of the genes necessary to import and break down lactose (Fig. 0.3A). But
when lactose is present, the repressor assumes a different conformation in which it
can no longer bind to DNA.

We developed a model of this process (Fig. 0.3B) that quantifies the fold-change, the
ratio of gene expression in the presence and absence of a repressor (a quantity that
must lie between 0 and 1 since the repressor inhibits expression). More precisely,
our model relates fold-change to experimentally-manipulatable, physical parameters
of the system including the number of repressors, the amount of the effector lactose,
and the binding energy of the repressor.
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We first inferred the values of all parameters in our model by measuring the system’s
response under one set of conditions (white points in Fig. 0.3D). This permitted
us to predict how the system should behave when the repressor copy number,
effector concentration, and repressor binding energy were varied (colored curves in
Fig. 0.3C-E). As a theoretical physicist, I was immensely proud of this result because
it exemplified our belief in the predictive power of our models, which stands as a
strong counterpoint to the more common role of theory in biology, where models
are primarily used to retrospectively analyze data.

The benefit of collaborating with four fantastic experimentalists is that they were
able to create and measure the responses of these 17 new strains of bacteria. This
project took an extraordinary amount of work, and themethods they developed could
have merited an entirely separate paper, yet the final results shown in Fig. 0.4A-C
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Figure 0.3: Predicting the behavior of a transcription factor. (A) The Lac
repressor (red) normally inhibits the expression of lactose digesting machinery, but
in the presence of lactose it assumes a different conformation (purple) and permits
the gene to be expressed. (B) The model of this system showing the experimental
variables that were tuned. (C-E) Using a single set of measurements (white points),
we predicted the behavior of 17 other genetic circuits (colored curves).
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Figure 0.4: Demonstrating the predictive power of our model. (A-C) 17 strains
of bacteria were subsequently designed and their response was measured to test the
predictive power of our model. (D) The full suite of data from all 18 strains can be
collapsed down into a one-dimensional parameterization using the free energy of
repressor binding.

were well worth it. The data points fall beautifully on the line, representing the
most careful and rigorous confirmation to-date of how predictive biology can be
in the context of this induction process. The coup de grace is shown in Fig. 0.4D
where we demonstrated that the responses of all 18 strains at every effector con-
centration, repressor copy number, and DNA binding energy collapse down into a
one-dimensional curve governed by the free energy of the repressor’s binding. This
result embodies the physicist’s credo that characterizing the underlying mechanism
governing a process – from tossing a ball into the air to regulating the transcription
of genetic elements – enables you to collapse seemingly disparate and complex
behavior and understand it from a unifying perspective.

While the success of this project was immensely gratifying, it was also grounded
upon decades of experiments that built up significant intuition about this system.
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In contrast, Chapter 3 abandons the comfortable bedrock of intuition and jumps to
the wild frontier by analyzing how mutations of this same Lac repressor change its
ability to inhibit gene expression. A mutation is an alteration in a DNA sequence
that can change the composition of a protein. In a sense, much of biology is the
study of mutations – they are the instrument by which change happens both on a
local scale (as when our immune system fights a new virus) and on evolutionary
time (the process by which organisms evolve). Yet studying mutations is daunting
because: (1) the space of possible mutants is enormous and (2) because it is rarely
possible to predict the effects of a mutation a priori.

To quantify the first point, an average protein has 300 amino acids, and with 20
variants for each slot there are 20300 permutations to explore (Fig. 0.5A). Since this
breathtakingly enormous quantity is larger than the number of atoms in the universe,
it is clear that even over evolutionary time, only a tiny fraction of all possible proteins
have been created in nature, even when considering every living organism that has
ever existed on our planet. This suggests that the search for an optimal protein-
targeting drug or the design of a synthetic circuit may be never-ending.

Yet the second point is of paramount importance, since the array of possible mutants
is only daunting when there is no model to extrapolate how the unknown multitudes
will behave. Unfortunately, we have very few models capable of characterizing
mutations. One confounding factor is that even a single amino acid mutation may
cause a protein to stop functioning, as seen in the case of sickle cell anemia, where
a change in one amino acid causes hemoglobin to misfold. Because even single
mutations may have such large and unforeseen consequences, it is tempting to treat
each mutant as a new intellectual adventure with no visible quantitative link to its
unmutated form.

In this sense, modeling mutations is akin to working on understanding memory
or the emergence of consciousness – it is an area of biology where some believe
that no simple theory is possible. Amid this backdrop of uncertainty, Rob and
I embarked on our journey to analyze a series of mutations in the effector- and
DNA-binding domains of the Lac repressor (Fig. 0.5B). We attempted to calculate
the first order “Taylor approximation” of each mutation by inferring the minimal
set of thermodynamic parameters that differ between each mutant and the wild type
protein.

Rob hypothesized that mutations in the effector binding domain should only affect
the repressor-effector binding energy and mutations in the DNA binding domain
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Figure 0.5: The arsenal of mutations within a typical protein. (A) The Lac
repressor from Fig. 0.3A has approximately 20300 variants. (B) We analyzed a suite
of mutations in amino acids surrounding the ligand biding domain or DNA binding
domain.

should only alter the repressor-DNA binding energy, with no cross-talk between
them. This lack of interference may sound innocuous, yet biology is replete with
examples where a single mutation alters many aspects of a protein’s function (for
example, it could affect all four properties of the response shown in Fig. 0.1). We
were curious whether seemingly diverse effects on an input-output function could
decouple when viewed through the underlying parameters of the system. More
precisely, does mutating the effector binding domain only affect the KA and KI

dissociation constants while mutating the DNA binding domain only alter ∆εRA (as
depicted in Fig. 0.3B) relative to the wild type repressor?

Much to our surprise, we found that the 14 mutants we considered were all well
characterized by our model. A key result was that the DNA and effector binding
mutations have different signatures. Each mutant in the former class exhibits the
same change in free energywhen transitioning from zero to saturating concentrations
of effector (the same length of horizontal lines above the right plot in Fig. 0.6A),
while the latter category is characterized by the same leakiness (all curves in the
left plot of Fig. 0.6B have small fold-change in the absence of effector). This
remarkable result suggests that the enormous space of arbitrary mutations to either
binding domain could be collapsed down into a one- or two-dimensional family of
curves, providing an unprecedented insight into how we can view the spectrum of
possible phenotypes.

Towards the end of this project, I made the casual observation that since the effects
of DNA and effector mutations are decoupled within our model, we can predict the
behavior of any double mutant with one DNA mutation and one effector mutation.
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Figure 0.6: Characterizing Lac repressor mutants. (A) Mutations in the DNA
binding domain were characterized by only altering their repressor-DNA interaction
energy relative to the wild type. (B) Mutations in the effector binding domain only
had their repressor-effector binding parameter changed from the wild type protein.

I created Fig. 0.7 and stuck it into the Supplementary Information of our paper, but
Rob quickly pointed out that this noteworthy figure deserved to be featured in the
main text, as it represents a significant stride towards harnessing the predictive power
of our model. Although we had narrowed the possible phenotypes of the DNA and
effector mutants to a one- or two-dimensional family of curves, our model could not
precisely predict how a new mutation at either site would behave a priori. But these
double mutant predictions were parameter-free and hence completely determined
by our model! This implies that after n DNA mutants and n effector mutants are
characterized, you can predict the behavior of n2 double mutants without doing a
single additional experiment! The notion that one experiment buys you more than a
single data point was extremely satisfying to me, and it generated significant interest
in our lab.

In fact, the same four experimentalists from our collaboration in Chapter 2 found
these results so intriguing that they set out to create these doublemutants and validate
my model, turning it from a retrospective theoretical analysis of existing data to yet
another journey into predicting the unknown. It has been an absolute privilege
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Figure 0.7: Predicting the effect of double mutants. Combining the disjoint ef-
fects of aDNAbindingmutation and an effector bindingmutation leads to parameter-
free predictions of double mutants (dashed red curves). Shown here are four of the
3 × 10 = 30 possible double mutants utilizing the data in Fig. 0.6.

to have labmates willing to invest months (or even years) of effort based on this
work. Three years later, this experiment is nearing completion, and our data have
confirmed the key prediction regarding how these classes of mutations combine.

In the interim, I generalized our model of mutations to other biological systems.
In Chapter 4, I turn to the transcriptional activator CRP shown in Fig. 0.8A. In
many respects, this protein serves as a counterpoint to the Lac repressor discussed
above. Both act on the lactose metabolism genes and both undergo a conformational
change upon binding an effector (lactose for the Lac repressor and cAMP for CRP)
that alters their ability to bind to DNA. But whereas the Lac repressor inhibits gene
expression, CRP enhances it.

The primary goal of this project was to characterize how wild type CRP interacts
with its effector to increase gene expression. But an exciting application of our
model arose when Rodrigo Maillard’s group in Georgetown University published
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Figure 0.8: Predicting the behavior of the CRP mutant combinations. (A)
CRP becomes allosterically active when bound by the effector cAMP, enabling the
protein to bind to DNA and recruit RNA polymerase (RNAP). (B) We analyzed a
series of mutations (denoted by D, S, G, and L) that could be introduced in either
subunit. The six boxed mutants were created by Rodrigo Maillard’s group and
analyzed in this work. (C) We first characterized the symmetric mutants (WT/WT,
D/D, S/S; solid curves). (D) We then predicted the responses of the asymmetric
mutants (dashed lines) and compared our results to the experimental data.

an experimental paper in which they independently mutated the two CRP subunits,
generating both symmetric and asymmetric mutants (Fig. 0.8B). This was an im-
pressive accomplishment, since CRP is a homodimer composed of two identical
wild type subunits (WT/WT). Altering the wild type gene to have the D mutation
creates the symmetric double mutant (D/D) but precludes the possibility of making
the asymmetric mutant with only one altered subunit (WT/D). If, instead of modi-
fying the existing wild type gene, an additional D gene is introduced, a cell creates
multiple CRP types (WT/WT, WT/D, and D/D), making it difficult to disentangle
the effects of the asymmetric mutant. Instead, Rodrigo’s group modified the gene
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to express both subunits tethered to one another, enabling them to create a homo-
geneous population of mutants where each subunit could be independently altered
(shown by the six boxed molecules in Fig. 0.8B).

A key result from our analysis was that data from the symmetric CRP mutants
(WT/WT, D/D, S/S) were sufficient to predict how the asymmetric mutants (WT/D,
WT/S, D/S) would behave, as shown in Fig. 0.8C and D. As with the Lac repres-
sor, this provides a way to harness the combinatorics of possible mutations, since
characterizing n subunits enables us to predict how n(n−1)

2 combination mutants
would behave (shown for n = 5 in Fig. 0.8B). These results confirmed yet again
that a single experiment can convey more than a single data point of information,
providing a way to build upon previous work and start navigating the vast space of
possible mutations.

Chapter 5 represents an even broader application of our mutation model, this time
in the context of ion channels. Upon ligand binding, these proteins permit ions to
flow across cell membranes, mediating a diverse array of signaling pathways that
enable our muscles to contract and our neurons to quickly transmit electric pulses.
In this project, we considered one of the best-studied channels in biology, namely,
the nicotinic acetylcholine receptor (nAChR) shown in Fig. 0.9A.

This project began when Rob sent me a paper with the data shown in Fig. 0.9B
depicting the current flowing through nAChR channels in eukaryotic oocytes at
different ligand concentrations. The data suggested that this channel becomes
10x more sensitive to ligand when any one of its five subunits acquires a specific
mutation, as exhibited by the leftward shift of the curve representing n = 1 mutated
subunits relative to the wild type n = 0 channel. Moreover, nAChR becomes 100x,
1000x, or 10 000x more sensitive when any two, three, or four of its subunits are
mutated in this manner. It is peculiar to see such clean trends in mutational data,
and we wondered whether our framework could explain this behavior.

It is worth mentioning that although research is more akin to a marathon than a
sprint, requiring long and consistent effort, the brunt of this analysis was completed
within three days! During that time, we successfully characterized the diverse set
of ion channel mutants as a one-parameter family of curves, where only the free
energy difference between the open and closed conformations was varied with each
mutation (shown by the curves in Fig. 0.9B). More generally, we demonstrated that
the full suite of data could be collapsed as a function of the free energy of ligand
binding (Fig. 0.9C), as we had seen in the case of transcription factors.
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We also discovered that the normalization of the y-axis in Fig. 0.9B (which is
stretched to run from 0 to 1) erased important information about the leakiness
of each mutant. Indeed, when we back-calculated the unnormalized current, we
discovered that the leakiness (the fraction of time that each channel is open in the
absence of ligand) increases exponentially with the number of mutated subunits.
Hence, while an ion channel with 0-3 mutations exhibits essentially no leakiness, a
channel with 4 mutations was 5% leaky, and a channel with all 5 subunits mutated
exhibits a leakiness greater than 50%. When Rob asked the paper’s author, Caltech
Professor Henry Lester, about this trend, Henry confirmed that channels with 4
mutations had some leakiness, and that cells with all five subunits mutated exhibited
so much leakiness that they quickly died (which is why there is no n = 5 data). This
example demonstrates how quantitative models can make penetrating insights into
the underlying mechanisms and expected effects of mutations.

Finally, Chapter 6 details my first brush with big data, where I examined whether
statistical mechanical models can predict the behavior of tens of thousands of genetic
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constructs. More specifically, this project analyzed how different DNA sequences
alter the binding affinity of RNA polymerase (RNAP), a molecular machine that
performs the first step of transforming a gene into a protein. Nearly every cellular
process relies on recruiting RNAP to a particular location on the genome, and
understanding how RNAP interacts with its myriad target sequences lies at the heart
of this critical task.

Fig. 0.10A shows the experimental setup, where over 10 000 promoters were con-
structed, representing all combinations of several sets of promoter elements (called
Background (BG), UP, -35, Spacer, and -10). The gene expression of each construct
was measured in vivo, an incredible feat that would have been nearly impossible as
little as ten years ago. To analyze this wealth of data, the original authors from the
Sri Kosuri lab utilized an energy matrix model which assumes that each promoter
element contributes additively and independently to the RNAP binding energy. In
their framework, gene expression is proportional to the Boltzmann factor

Gene Expression = rmaxe−β(EBG+EUP+E-35+ESpacer+E-10) . (1)

The full suite of data was used to infer the free energy for each of the eight Back-
grounds, three UPs, eight -35s, eight Spacers, and eight -10s, enabling them to
predict the expression of each construct using 35 parameters (+1 parameter for the
constant of proportionality rmax).

Fig. 0.10B shows that the resulting predictions match the experimental data poorly.
Indeed, in their original paper, the authors showed this figure and suggested twoways
to fix the model: (1) by introducing sixty-four interaction energies, one for each pair
of -35 and -10 elements or (2) by training a neural network. Both models were able
to characterize the data far better, yet we wondered whether a physically-motivated
change that required fewer parameters could describe the data equally well.

I hypothesized that one of the key features missing from the existing model was
the increase in binding affinity (also called avidity) arising from RNAP binding at
multiple sites. More precisely, RNAP is known to bindmost tightly to the -35 and -10
sites, and this two-site binding should enhance gene expression, as can be understood
from both kinetic and thermodynamic standpoints. Kinetically speaking, if RNAP
dissociates from one site, the likelihood of it quickly reassociating is increased
because it is tethered in place by the other site. The thermodynamic advantage
emerges because binding the first RNAP site results in losses of translational and
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Figure 0.10: Gene expression from combinations of promoter elements. (A)
A promoter is composed of Background (BG), UP, -35, Spacer, and -10 elements.
Every combination of a set of these elements was created, and its gene expression
was measured in vivo. (B) The energy matrix analysis in the original paper poorly
characterized the data; a good characterization would lie along the diagonal line
y = x and have a large coefficient of determination R2.

rotational degrees of freedom, but the subsequent binding of the second site incurs
a smaller entropic cost, thereby boosting the likelihood of the bivalent state.

The simplest statisticalmechanicalmodel embodying this idea is shown inFig. 0.11A,
and it differs from the energy matrix model in three key ways: (1) there is a single
interaction energy Eint (with the same value for all -35 and -10 elements) repre-
senting the boost in avidity in the bivalently bound state; (2) RNAP is assumed to
express low levels of the gene when unbound or only bound at one site (a small
r0 corresponding to background noise or spurious transcription) but exhibits much
higher expression when bivalently bound (rmax � r0); and (3) the Boltzmannweight
of each state must be normalized by the sum of all weights, namely,

Gene Expression =
r0 + e−β(EBG+EUP+ESpacer)

(
r0e−βE-35 + r0e−βE-10 + rmaxe−β(E-35+E-10+Eint)

)
1 + e−β(EBG+EUP+ESpacer)

(
e−βE-35 + e−βE-10 + e−β(E-35+E-10+Eint)

) .

(2)

This model only requires two more parameters (r0 and Eint) than the poor energy
matrix model discussed above, yet it shows a marked improvement in its ability
to characterize the 10 000 promoters (Fig. 0.11B). To test its predictive power, we
inferred the parameter values on 25% of the data and used them to predict the gene
expression of the remaining 75%, resulting in a significantly higher coefficient of
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Figure 0.11: Modeling the avidity of the -35 and -10 sites. (A) Because RNAP
binds most tightly to the -35 and -10 sites, we hypothesized that the avidity from this
two-site binding is a critical component of gene expression models. The Boltzmann
weight and level of gene expression for the four key states of the system are shown.
(B) The resulting model is better able to characterize the data than the energy matrix
model at the cost of only two additional, physically-motivated parameters.

determination R2 = 0.91 compared to the energy matrix (R2 = 0.57). To date,
this project remains the broadest application of my modeling efforts in terms of
the amount of data that was predicted and confirmed. It demonstrates that if we
understand each part of a biological system, we can harness their combinatorial
complexity to gain an explosion in our understanding.

To close, I invite you to contemplate the following question that my advisor Rob
Phillips asked during each project: “When should we be satisfied with our work and
declare victory?” My answer has been that theory must push our understanding of a
system until we uncover a jaw-dropping conclusion. While this criterion obviously
depends upon the spring constant of your particular jaw, it emphasizes my view that
it is not enough to simply draw a curve that fits the data. A successful model may
give intuition into a previously unexplained phenomenon, provide amental mapwith
which to contemplate newexperiments, enable you to search the spectrumof possible
behaviors and completely characterize the system, or significantly accelerate the pace
of experimental work. The following chapters each aim to fulfill at least one of these
criteria. Collectively, I hope these works demonstrate how the melding of theory
and experiment creates a whole that is far greater than the sum of its parts.
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of Physical Chemistry B. 2016;120(26):6021-6037. doi:10.1021/acs.jpcb.6b01911

Every journey begins with a single step, and this paper marks my first milestone in science

not merely because it was my first paper (when I learned how to make figures, write

scientific prose, and interact with Rob), but because towards the end of the project I got

stuck. We had developed a theory which predicted that an allosteric enzyme with certain

properties can exhibit a peculiar phenomenon called substrate inhibition. Naturally, Rob

asked me to search the literature for such an instance, and I spent a week crawling through

biochemical databases and manuscripts. Having painstakingly searched through 30 papers,

understanding very little and without finding our desired example, I returned to Rob and

informed him that this search may be impossible for me. He suggested that we email his

enzymology friends and capitalize on their decades of experience. We sent out emails,

and the next day a response came from Jean-Pierre Changeux telling us about one of his

paper where he specified that acetylcholinesterase had the exact properties we needed and

exhibited substrate inhibition. I was ecstatic! I had not only learned the key piece of

information needed to finish the paper, but I also tangibly felt that science was not (and

should not) be an independent adventure, but rather that we work as part of a community

where members support each other. It was a valuable lesson to learn early on.
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1.1 Abstract
The concept of allostery in whichmacromolecules switch between two different con-
formations is a central theme in biological processes ranging from gene regulation
to cell signaling to enzymology. Allosteric enzymes pervade metabolic processes,
yet a simple and unified treatment of the effects of allostery in enzymes has been
lacking. In this work, we take the first step towards this goal by modeling allosteric
enzymes and their interaction with two key molecular players – allosteric regulators
and competitive inhibitors. We then apply this model to characterize existing data
on enzyme activity, comment on how enzyme parameters (such as substrate binding
affinity) can be experimentally tuned, and make novel predictions on how to control
phenomena such as substrate inhibition.

1.2 Introduction
All but the simplest of cellular reactions are catalyzed by enzymes, macromolecules
that can increase the rates of reactions by many orders of magnitude. In some cases,
such as phosphoryl transfer reactions, rate enhancements can be as large as 1020-fold
or more [1]. A deeper understanding of how enzymes work can provide insights
into biological phenomena as diverse as metabolic regulation or the treatment of
disease [2–4]. The basic principles of enzyme mechanics were first proposed by
Michaelis and Menten [5] and later extended by others [6–8]. While the earliest
models considered enzymes as single-state catalysts, experiments soon revealed that
some enzymes exhibit richer dynamics [9, 10]. The concept of allosteric enzymes
was introduced by Monod-Wyman-Changeux (MWC) and independently by Pardee
and Gerhart [7, 11–13], providing a much broader framework for explaining the full
diversity of enzyme behavior. Since then, the MWC concept in which macromo-
lecules are thought of as having both an inactive and active state has spread into
many fields, proving to be a powerful conceptual tool capable of explaining many
biological phenomena [14–16].

Enzymology is a well studied field, and much has been learned both theoretically
and experimentally about how enzymes operate [17–20]. With the vast number
of distinct molecular players involved in enzymatic reactions (for example: mixed,
competitive, uncompetitive, and non-competitive inhibitors as well as cofactors,
allosteric effectors, and substrate molecules), it is not surprising that new discoveries
continue to emerge about the subtleties of enzyme action [9, 21, 22]. In this paper,
we use the MWC model to form a unifying framework capable of describing the
broad array of behaviors available to allosteric enzymes.
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Statistical mechanics is a field of physics that describes the collective behavior
of large numbers of molecules. Historically developed to understand the motion
of gases, statistical physics has now seen applications in many areas of biology
and has provided unexpected connections between distinct problems such as how
transcription factors are induced by signals from the environment, the function of the
molecular machinery responsible for detecting small gradients in chemoattractants,
the gating properties of ligand-gated ion channels, and even the accessibility of
genomic DNA in eukaryotes which is packed into nucleosomes [23–29]. One of
us (RP) owes his introduction to the many beautiful uses of statistical mechanics in
biology to Bill Gelbart to whom this special issue is dedicated. During his inspiring
career, Gelbart has been a passionate and creative developer of insights into a wide
number of problems using the tools of statistical mechanics and we hope that our
examples on the statistical mechanics of allosteric enzymes will please him.

The remainder of the paper is organized as follows. In section 1.3.1, we showhow the
theoretical treatment of the traditionalMichaelis-Menten enzyme, an inherently non-
equilibrium system, can be stated in a language remarkably similar to equilibrium
statisticalmechanics. This sets the stage for the remainder of the paper by introducing
key notation and the states and weights formalism that serves as the basis for
analyzing more sophisticated molecular scenarios. In section 1.3.2, we discuss how
the states and weights formalism can be used to work out the rates for the simplest
MWC enzyme, an allosteric enzyme with a single substrate binding site. This is
followed by a discussion of how allosteric enzymes are modified by the binding of
ligands, first an allosteric regulator in section 1.3.3 and then a competitive inhibitor in
section 1.3.4. We next generalize to the much richer case of enzymes with multiple
substrate binding sites in section 1.3.5. Lastly, we discuss how to combine the
individual building blocks of allostery, allosteric effectors, competitive inhibitors,
and multiple binding sites to analyze general enzymes in section 1.3.6. Having
built up this framework, we then apply our model to understand observed enzyme
behavior. In section 1.4.1, we show how disparate enzyme activity curves can be
unified within our model and collapsed onto a single curve. We close by examining
the exotic phenomenon of substrate inhibition in section 1.4.2 and show how the
allosteric nature of some enzymes may be the key to understanding and controlling
this phenomenon.
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1.3 Models
1.3.1 Michaelis-Menten Enzyme
We begin by briefly introducing the textbook Michaelis-Menten treatment of enzy-
mes [18]. This will serve both to introduce basic notation and to explain the states
and weights methodology which we will use throughout the paper.

Many enzyme-catalyzed biochemical reactions are characterized by Michaelis-
Menten kinetics. Such enzymes comprise a simple but important class where
we can study the relationship between the traditional chemical kinetics based on
reaction rates with a physical view dictated by statistical mechanics. According to
theMichaelis-Menten model, enzymes are single-state catalysts that bind a substrate
and promote its conversion into a product. Although this scheme precludes allosteric
interactions, a significant fraction of non-regulatory enzymes (e.g. triosephosphate
isomerase, bisphosphoglycerate mutase, adenylate cyclase) are well-described by
Michaelis-Menten kinetics [18].

The key player in this reaction framework is a monomeric enzyme E that binds a
substrate S at the substrate binding site (also called the active site or catalytic site),
forming an enzyme-substrate complex ES. The enzyme then converts the substrate
into product P which is subsequently removed from the system and cannot return to
its original state as substrate. In terms of concentrations, this reaction can be written
as

[E ]+[S ] [ES ]kon
koff

kcat [E ]+[P ] (1.1)

where the rate of product formation equals

d[P]
dt
= [ES]kcat . (1.2)

Briggs and Haldane assumed a time scale separation where the substrate and product
concentrations ([S] and [P]) slowly change over time while the free and bound
enzyme states ([E] and [ES]) changed much more rapidly [6]. This allows us to
approximate this systemover short time scales by assuming that the slow components
(in this case [S]) remain constant and can therefore be absorbed into the kon rate
[30],

[E ] [ES ].
kon[S ]

koff + kcat (1.3)

Assuming that the system 1.3 reaches steady-state (over the short time scale of this
approximation) quickly enough that the substrate concentration does not appreciably
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Figure 1.1: Dynamics of the Michaelis-Menten enzyme. (A) Probabilities of
the free enzyme pE and bound enzyme pES states as a function of substrate con-
centration. As the amount of substrate [S] increases, more enzyme is found in
the bound state rather than the free state. (B) The rate of product formation for a
non-allosteric enzyme. The rate of product formation has the same functional form
as the probability pES of the enzyme-substrate complex, as illustrated by Eqs. 1.2
and 1.7.

diminish, this implies

[E][S]kon = [ES]
(
ko f f + kcat

)
, (1.4)

which we can rewrite as
[ES]
[E]

=
[S]kon

ko f f + kcat
≡

[S]
KM

(1.5)

where KM =
kof f +kcat

kon
is called theMichaelis constant. KM incorporates the binding

and unbinding of ligand as well as the conversion of substrate into product; in the
limit kcat = 0, KM reduces to the familiar dissociation constant KD =

kof f
kon

. Using
Eq. 1.5 and the fact that the total enzyme concentration is conserved, [E] + [ES] =
[Etot], we can solve for [E] and [ES] separately as

[E] = [Etot]
1

1 + [S]
KM

≡ [Etot]pE (1.6)

[ES] = [Etot]
[S]
KM

1 + [S]
KM

≡ [Etot]pES, (1.7)

where pE =
[E]

[Etot ] and pES =
[ES]
[Etot ] are the probabilities of finding an enzyme in

the unbound and bound form, respectively. Substituting the concentration of bound
enzymes [ES] from Eq. 1.7 into the rate of product formation Eq. 1.2,

d[P]
dt
= kcat[Etot]

[S]
KM

1 + [S]
KM

. (1.8)
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Figure 1.2: States and weights for the Michaelis-Menten enzyme. Each enzyme
conformation is shown together with its weight and its catalytic rate. The probability
of finding an enzyme (green) in either the free or bound state equals the weight of
that state divided by the sum of all weights (1 + [S]

KM
) where [S] is the concentration

of substrate (dark red) and KM =
kof f +kcat

kon
is the Michaelis constant. At [S] = KM ,

half of the enzyme population exists in the free form and half exists in the bound
form. For [S] > KM , more than half of all enzymes will be bound to substrate.

Fig. 1.1 shows the probability of free and bound enzyme as well as the rate of
product formation. The two parameters kcat and [Etot] scale d[P]

dt vertically (if kcat is
increased by a factor of 10, the y-axis values in Fig. 1.1B will be multiplied by that
same factor of 10), while KM effectively rescales the substrate concentration [S].
Increasing KM by a factor of 10 implies that 10 times as much substrate is needed
to obtain the same rate of product formation; on the semi-log plots in Fig. 1.1, this
corresponds to shifting all curves to the right by one power of 10.

We can visualize the microscopic states of the enzyme using a modified states
and weights diagram shown in Fig. 1.2 [31]. The weight of each enzyme state is
proportional to the probability of its corresponding state (wE ∝ pE , wES ∝ pES) –
the constant of proportionality is arbitrary but must be the same for all weights. For
example, from Eqs. 1.6 and 1.7 we can multiply the probability that the enzyme will
be unbound (pE) or bound to substrate (pES) by 1 + [S]

KM
which yields the weights

wE = 1 (1.9)

wES =
[S]
KM

. (1.10)

Given the weights of an enzyme state, we can proceed in the reverse direction and
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obtain the probability for each enzyme state using

pE =
wE

Ztot
=

1
1 + [S]

KM

(1.11)

pES =
wES

Ztot
=

[S]
KM

1 + [S]
KM

(1.12)

where
Ztot = wE + wES (1.13)

is the sum of all weights. Dividing by Ztot ensures the total probability of all enzyme
states equals unity, pE + pES = 1. The rate of product formation Eq. 1.8 is given by
the product of the enzyme concentration [Etot] times the average catalytic rate over
all states, weighed by each state’s (normalized) weights. In the following sections,
we will find this trick of writing states and weights very useful for modeling other
molecular players.

The weights in Fig. 1.2 allow us to easily understand Fig. 1.1A: when [S] < KM ,
wE > wES so that an enzyme is more likely to be in the substrate-free state; when
[S] > KM , wE < wES and an enzyme is more likely to be found as an enzyme-
substrate complex. Increasing KM shifts the tipping point of how much substrate is
needed before the bound ES enzyme state begins to dominate over the free E state.

It should be noted that the formal notion of states and weights employed in physics
applies only to equilibrium systems. For example, a ligand binding to a receptor in
equilibrium will yield states and weights similar to Fig. 1.2 but with the Michaelis
constant KM replaced by the dissociation constant KD [32]. Yet the ligand-receptor
states and weights can also be derived from the Boltzmann distribution (where the
weight of any state j with energy E j is proportional to e−βEj ) while the enzyme
states and weights cannot be derived from the Boltzmann distribution (because the
enzyme system is not in equilibrium). Instead, the non-equilibrium kinetics of the
system are described by the modified states and weights in Fig. 1.2, where the KD

for substrate must be replaced with KM . These modified states and weights serve
as a mathematical trick that compactly and correctly represents the behavior of the
enzyme, enabling us to apply the well established tools and intuition of equilibrium
statistical mechanics when analyzing the inherently non-equilibrium problem of
enzyme kinetics. In the next several sections, we will show how to generalize
this method of states and weights to MWC enzymes with competitive inhibitors,
allosteric regulators, and multiple substrate binding sites.
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1.3.2 MWC Enzyme
Many enzymes are not static entities, but dynamic macromolecules that constantly
fluctuate between different conformational states. This notion was initially concei-
ved by Monod-Wyman-Changeux (MWC) to characterize complex multi-subunit
proteins such as hemoglobin and aspartate transcarbamoylase (ATCase) [7, 11, 12].
The authors suggested that the ATC enzyme exists in two supramolecular states: a
relaxed “R” state, which has high-affinity for substrate and a tight “T” state, which
has low-affinity for substrate. Although in the case ofATCase, the transition between
the T and R states is induced by an external ligand, recent experimental advances
have shown that many proteins intrinsically fluctuate between these different states
even in the absence of ligand [33–35]. These observations imply that the MWC
model can be applied to a wide range of enzymes beyond those with multi-subunit
complexes.

We will designate an enzyme with two possible states (an Active state EA and an
Inactive state EI) as an MWC enzyme. The kinetics of a general MWC enzyme are
given by

[EA]+[S ] [EAS ]konA

koffA

[EI ]+[S ] [EIS ]
koffI

ktransA ktransI

konI
ktransAS ktransIS

kcatA

kcatI

[EA]+[P ]

[EI ]+[P ],

(1.14)

which relates the active and inactive enzyme concentrations ([EA], [EI]) to the active
and inactive enzyme-substrate complexes ([EAS], [EI S]). In this two-state MWC
model, similar to that explored by Howlett et al.[36], the rate of product formation
is given by

d[P]
dt
= k A

cat[EAS] + k I
cat[EI S]. (1.15)

The active state will have a faster catalytic rate (often much faster) than the inactive
state, k A

cat > k I
cat .

As in the case of a Michaelis-Menten enzyme, we will assume that all four forms
of the enzyme (EA, EI , EAS, and EI S) quickly reach steady state on time scales so
short that the substrate concentration [S] remains nearly constant. Therefore, we can
incorporate the slowly-changing quantities [S] and [P] into the rates, a step dubbed
the quasi-steady-state approximation [30]. This allows us to rewrite the scheme
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1.14 in the following form,

[EA] [EAS ]
kon[S ]A

[EI ] [EIS ].

ktransA ktransI

kon[S ]I
ktransAS ktransIS

koff   
+kcatA A

koff   
+kcatI I

(1.16)

Assuming the quasi-steady-state approximation holds, the four enzyme states will
rapidly attain steady-state values

d[EAS]
dt

=
d[EA]

dt
=

d[EI S]
dt

=
d[EI]

dt
= 0. (1.17)

In addition, a separate constraint on the system that is necessary and sufficient to
apply the method of states and weights is given by the cycle condition: the product
of rates going clockwise around any cycle must equal the product of rates going
counterclockwise [30]. It should be noted that to violate the cycle condition, a
system must continuously pay energy since at least one step in any cycle must be
energetically unfavorable. We shall proceed with the assumption that there are no
such cycles in our system. For the MWC enzyme 1.16, this implies(

k A
on[S]

)
k AS

trans

(
k I

o f f + k I
cat

)
k I

trans =
(
k A

o f f + k A
cat

)
k A

trans

(
k I

on[S]
)

k IS
trans (1.18)

or equivalently
k A

on[S]
k A

o f f + k A
cat︸        ︷︷        ︸

[EAS]
[EA]

k I
trans

k A
trans︸︷︷︸
[EA]
[EI ]

=
k I

on[S]
k I

o f f + k I
cat︸        ︷︷        ︸

[EI S]
[EI ]

k IS
trans

k AS
trans︸︷︷︸

[EAS]
[EI S]

. (1.19)

The validity of both the quasi-steady-state approximation 1.17 and the cycle condi-
tion 1.19 will be analyzed in Appendix S1.1. Assuming both statements hold, we
can invoke detailed balance – the ratio of concentrations between two enzyme states
equals the inverse of the ratio of rates connecting these two states. For example,
between the active states [EAS] and [EA] in 1.16,

[EAS]
[EA]

=
k A

on[S]
k A

o f f + k A
cat
≡

[S]
K A

M

(1.20)

where we have defined the Michaelis constant for the active state, K A
M . Similarly,

we can write the equation for detailed balance between the inactive states [EI S] and
[EI] as

[EI S]
[EI]

=
k I

on[S]
k I

o f f + k I
cat
≡

[S]
K I

M

. (1.21)
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Figure 1.3: States and weights for an MWC enzyme. The energies ε A and
ε I provide the free energy scale for the substrate-free conformations, dictating
their relative probabilities. Decreasing the energy ε A of the active state would
increase the probability of all the active enzyme conformations relative to the inactive
conformations. K A

M denotes the substrate concentration at which half of the active
enzymes are bound and half the active enzymes are unbound, as indicated by the
crossing of the (pEA, blue) and (pEAS, gold) curves at [S] = K A

M in Fig. 1.4. K I
M

serves an analogous role for the inactive states.

An enzyme may have a different affinity for substrate or a different catalytic rate in
the active and inactive forms. Typical measured values of KM fall into the range
10−7 − 10−1 M [37]. Whether K A

M or K I
M is larger depends on the specific enzyme.

As a final link between the language of chemical rates and physical energies, we can
recast detailed balance between [EA] and [EI] as

[EA]
[EI]

=
k I

trans

k A
trans

≡ e−β(ε A−ε I ), (1.22)

where ε A and ε I are the free energies of the enzyme in the active and inactive
state, respectively, and β = 1

kBT where kB is Boltzmann’s constant and T is the
temperature of the system. Whether the active state energy is greater than or less
than the inactive state energy depends on the enzyme. For example, ε I < ε A in
ATCase whereas the opposite holds true, ε A < ε I , in chemoreceptors [9, 32].

Using Eqs. 1.20-1.22, we can recast the cycle condition 1.19 (as shown in the under-
braces) into a simple relationship between the steady-state enzyme concentrations.
Additionally, we can use these equations to define the weights of each enzyme state
in Fig. 1.3. Following section 1.3.1, the probability of each state equals its weight
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divided by the sum of all weights,

pEA = e−βε A
1

Ztot
(1.23)

pEAS = e−βε A
[S]
K A
M

Ztot
(1.24)

pEI = e−βε I
1

Ztot
(1.25)

pEI S = e−βε I
[S]
K I
M

Ztot
, (1.26)

where

Ztot = e−βε A *
,
1 +

[S]
K A

M

+
-
+ e−βε I *

,
1 +

[S]
K I

M

+
-
. (1.27)

Note that multiplying all of the weights by a constant c will also multiply Ztot by c,
so that the probability of any state will remain unchanged. That is why in Fig. 1.2
we could neglect the e−βε factor that was implicitly present in each weight.

The total amount of enzyme is conserved among the four enzyme states, [Etot] =
[EA] + [EAS] + [EI] + [EI S]. Using this fact together with Eqs. 1.20-1.22 enables
us to solve for the concentrations of both types of bound enzymes, namely,

[EAS] = [Etot]
e−βε A [S]

K A
M

e−βε A
(
1 + [S]

K A
M

)
+ e−βε I

(
1 + [S]

K I
M

) = [Etot]pEAS (1.28)

[EI S] = [Etot]
e−βε I [S]

K I
M

e−βε A
(
1 + [S]

K A
M

)
+ e−βε I

(
1 + [S]

K I
M

) = [Etot]pEI S . (1.29)

Substituting these relations into 1.15 yields the rate of product formation,

d[P]
dt
= [Etot]

k A
cate

−βε A [S]
K A
M

+ k I
cate

−βε I [S]
K I
M

e−βε A
(
1 + [S]

K A
M

)
+ e−βε I

(
1 + [S]

K I
M

) . (1.30)

The probabilities 1.23-1.26 of the different states and the rate of product formation
1.30 are shown in Fig. 1.4. Although we use the same parameters from Fig. 1.1
for the active state, the pEA and pEAS curves in Fig. 1.4A look markedly different
from the pE and pES Michaelis-Menten curves in Fig. 1.1A. This indicates that
the activity of an MWC enzyme does not equal the activity of two independent
Michaelis-Menten enzymes, one with the MWC enzyme’s active state parameters
and the other with the MWC enzyme’s inactive state parameters. The interplay of
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the active and inactive states makes an MWC enzyme inherently more complex than
a Michaelis-Menten enzyme.

When [S] = 0 the enzyme only exists in the unbound states EA and EI whose relative
probabilities are given by pEA

pEI
= e−β(ε A−ε I ). When [S] → ∞, the enzyme spends

all of its time in the bound states EAS and EI S which have relative probabilities
pEAS

pEI S
= e−β(ε A−ε I ) K I

M

K A
M

. The curves for the active states (for free enzyme pEA and
bound enzyme pEAS) intersect at [S] = K A

M while the curves of the two inactive
states intersect at [S] = K I

M . For the particular parameters shown, even though
the unbound inactive state (green) dominates at low substrate concentrations, the
active state (gold) has the largest statistical weights as the concentration of substrate
increases. Thus, adding substrate causes the enzyme to increasingly favor the active
state.
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Figure 1.4: Quantitative description of an MWC enzyme. (A) Probabilities
of each enzyme state. While the active state has the same catalytic rate k A

cat and
Michaelis constant K A

M as the Michaelis-Menten enzyme in Fig. 1.1A, the inactive
state significantly alters the forms of pEA and pEAS. The dashed vertical lines indicate
where the substrate concentration equals K A

M and K I
M , respectively. (B) The rate of

product formation, d[P]
dt . Assuming kA

cat

k I
cat
� 1, d[P]

dt (blue curve in (B)) is dominated
by the active enzyme-substrate complex, pEAS (gold curve in (A)). Parameters were
chosen to reflect “typical” enzyme kinetics values: kA

cat

k I
cat
= 102, K A

M

K I
M

= 10−1, and
e−β(ε A−ε I ) = e−1. Substrate concentrations are shown normalized relative to the
active state parameter [S]

K A
M

, although the inactive state parameter [S]
K I
M

could also have
been used.

Using this framework, we can compute properties of the enzyme kinetics curve
shown in Fig. 1.4(B). One important property is the dynamic range of an enzyme,
the difference between the maximum and minimum rate of product formation. In
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the absence of substrate ([S] → 0) and a saturating concentration of substrate
([S]→ ∞), the rate of product formation Eq. 1.30 becomes

lim
[S]→0

d[P]
dt
= 0 (1.31)

lim
[S]→∞

d[P]
dt
= [Etot]

k A
cat

e−βεA
K A
M

+ k I
cat

e−βεI
K I
M

e−βεA
K A
M

+ e−βεI
K I
M

. (1.32)

From these two expressions, we can write the dynamic range as

dynamic range =
(

lim
[S]→∞

d[P]
dt

)
−

(
lim

[S]→0

d[P]
dt

)

= [Etot]k A
cat

*...
,

1 −
1 − k I

cat

kA
cat

1 + e−β(ε A−ε I ) K I
M

K A
M

+///
-

(1.33)

where every term in the fraction has been written as a ratio of the active and inactive
state parameters. We find that the dynamic range increases as k I

cat

kA
cat

, e−β(ε A−ε I ), and
K I
M

K A
M

increase (assuming k A
cat > k I

cat).

Another important property is the concentration of substrate at which the rate of
product formation lies halfway between its minimum and maximum value, which
we will denote as [S50]. It is straightforward to show that the definition

lim
[S]→[S50]

d[P]
dt
=

1
2

(
lim

[S]→∞

d[P]
dt
+ lim

[S]→0

d[P]
dt

)
(1.34)

is satisfied when
[S50] = K A

M
e−β(ε A−ε I ) + 1

e−β(ε A−ε I ) +
K A
M

K I
M

. (1.35)

With increasing e−β(ε A−ε I ), the value of [S50] increases if K A
M > K I

M and decreases
otherwise. [S50] always decreases as K A

M

K I
M

increases. Lastly, we note that in the limit
of a Michaelis-Menten enzyme, ε I → ∞, we recoup the familiar results

dynamic range = [Etot]k A
cat (ε I → ∞) (1.36)

[S50] = K A
M (ε I → ∞). (1.37)

1.3.3 Allosteric Regulator
The catalytic activity of many enzymes is controlled by molecules that bind to regu-
latory sites which are often different from the active sites themselves. As a result of
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ligand-induced conformational changes, these molecules alter the substrate binding
site which modifies the rate of product formation, d[P]

dt . Allosterically controlled
enzymes represent important regulatory nodes in metabolic pathways and are of-
ten responsible for keeping cells in homeostasis. Some well-studied examples of
allosteric control include glycogen phosphorylase, phosphofructokinase, glutamine
synthetase, and aspartate transcarbamoylase (ATCase). In many cases the data from
these systems are characterized phenomenologically using Hill functions, but the
Hill coefficients thus obtained can be difficult to interpret [39]. In addition, Hill
coefficients do not provide much information about the organization or regulation of
an enzyme, nor do they reflect the relative probabilities of the possible enzyme con-
formations, although recent results have begun to address these issues [40]. In this
section, we add one more layer of complexity to our statistical mechanics framework
by introducing an allosteric regulator.

Consider an MWC enzyme with one site for an allosteric regulator R and a different
site for a substrate molecule S that will be converted into product. We can define
the effects of the allosteric regulator directly through the states and weights. As
shown in Fig. 1.5, the regulator R contributes a factor [R]

RA
D

when it binds to an

active state and a factor [R]
RI
D

when it binds to an inactive state where RA
D and RI

D are
the dissociation constants between the regulator and the active and inactive states
of the enzyme, respectively. Unlike the Michaelis constants K A

M and K I
M for the

substrate, the dissociation constants RA
D and RI

D enter the states and weights because
the regulator can only bind and unbind to the enzyme (and cannot be transformed
into product). In other words, if we were to draw a rates diagram for this enzyme
system, detailed balance between the two states where the regulator is bound and
unbound would yield a dissociation constant ( kof f

kon
) rather than a Michaelis constant

( kof f +kcat
kon

).

Using the states and weights in Fig. 1.5, we can compute the probability of each
enzyme state. For example, the probabilities of the four states that form product are
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Figure 1.5: States andweights for anMWCenzymewith an allosteric regulator.
The allosteric regulator (purple) does not directly interact with the substrate (dark
red) but instead introduces a factor [R]

RD
into the weights where RD is a dissociation

constant. Note that the regulator can only associate to and dissociate from the
enzyme, whereas substrate can be turned into product as shown by the Michaelis
constant KM . An allosteric activator binds more tightly to the active state enzyme,
RA

D < RI
D, which leads to an increased rate of product formation because the active

state catalyzes substrate at a faster rate than the inactive state, k A
cat > k I

cat . An
allosteric inhibitor would satisfy RA

D > RI
D.

given by

pEAS = e−βε A
[S]
K A
M

Ztot
(1.38)

pEASR = e−βε A
[S]
K A
M

[R]
RA
D

Ztot
(1.39)

pEI S = e−βε I
[S]
K I
M

Ztot
(1.40)

pEI SR = e−βε I
[S]
K I
M

[R]
RI
D

Ztot
(1.41)

where

Ztot = e−βε A *
,
1 +

[S]
K A

M

+
-

*
,
1 +

[R]
RA

D

+
-
+ e−βε I *

,
1 +

[S]
K I

M

+
-

*
,
1 +

[R]
RI

D

+
-

(1.42)

is the sum of all weights in Fig. 1.5. An allosteric activator has a smaller dissociation
constant RA

D < RI
D for binding to the active state enzyme, so that for larger [R] the
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probability that the enzyme will be in the active state increases. Because the active
state catalyzes substrate at a faster rate than the inactive state, k A

cat > k I
cat , adding

an activator increases the rate of product formation d[P]
dt . An allosteric inhibitor has

the flipped relation RA
D > RI

D and hence causes the opposite effects.

Proceeding analogously to section 1.3.2, the total enzyme concentration [Etot] is
a conserved quantity which equals the sum of all enzyme states ([EA], [EAS],
[EAR], [EASR], and their inactive state counterparts). Using the probabilities in
Eqs. 1.38-1.41, we can write these concentrations as [EAS] = [Etot]pEAS, [EASR] =
[Etot]pEASR, ... so that the rate of product formation is given by

d[P]
dt
= k A

cat ([EAS] + [EASR]) + k I
cat ([EI S] + [EI SR])

= [Etot]
k A

cate
−βε A [S]

K A
M

(
1 + [R]

RA
D

)
+ k I

cate
−βε I [S]

K I
M

(
1 + [R]

RI
D

)
e−βε A

(
1 + [S]

K A
M

) (
1 + [R]

RA
D

)
+ e−βε I

(
1 + [S]

K I
M

) (
1 + [R]

RI
D

) . (1.43)

The rate of product formation 1.43 for different [R] values is shown in Fig. 1.6. It
is important to realize that by choosing the weights in Fig. 1.5, we have selected a
particular model for the allosteric regulator, namely one in which the regulator binds
equally well to an enzyme with or without substrate. There are many other possible
models. For example, we could add an interaction energy between an allosteric
regulator and a bound substrate. However, the simple model in Fig. 1.5 already
possesses the important feature that adding more allosteric activator yields a larger
rate of product formation d[P]

dt , as shown in Fig. 1.6.
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Figure 1.6: Effects of an allosteric regulator R on the rate of product formation
d[P]
dt

. The regulator’s greater affinity for the active enzyme state increases the fraction

of the active conformations and hence d[P]
dt . Parameters used were RA

D

RI
D

= 10−2 and
the parameters from Fig. 1.4.
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An allosteric regulator effectively tunes the energies of the active and inactive states.
To better understand this, consider the probability of an active state enzyme-substrate
complex (with or without a bound regulator). Adding Eqs. 1.38 and 1.39,

pEAS + pEASR =

e−βε A [S]
K A
M

(
1 + [R]

RA
D

)
e−βε A

(
1 + [S]

K A
M

) (
1 + [R]

RA
D

)
+ e−βε I

(
1 + [S]

K I
M

) (
1 + [R]

RI
D

)
≡

e−βε̃ A [S]
K A
M

e−βε̃ A
(
1 + [S]

K A
M

)
+ e−βε̃ I

(
1 + [S]

K I
M

) (1.44)

where

ε̃ A = ε A −
1
β

log *
,
1 +

[R]
RA

D

+
-

(1.45)

ε̃ I = ε I −
1
β

log *
,
1 +

[R]
RI

D

+
-
. (1.46)

We now compare the total probability that an active state enzyme will be bound
to substrate in the presence of an allosteric regulator (Eq. 1.44) to this probability
in the absence of an allosteric regulator (Eq. 1.24). These two equations show
that an MWC enzyme in the presence of regulator concentration [R] is equivalent
to an MWC enzyme with no regulator provided that we use the new energies ε̃ A

and ε̃ I for the active and inactive states. An analogous statement holds for all the
conformations of the enzyme, so that the effects of a regulator can be completely
absorbed into the energies of the active and inactive states! In other words, adding
an allosteric regulator allows us to tune the parameters ε A and ε I of an allosteric
enzyme, and thus change its rate of product formation, in a quantifiable manner.
This simple result emerges from our assumptions that the allosteric regulator and
substrate bind independently to the enzyme and that the allosteric regulator does not
effect the rate of product formation.

One application of this result is that we can easily compute the dynamic range of an
enzyme as well as the concentration of substrate for half-maximal rate of product
formation discussed in section 1.3.2. Both of these quantities follow from the
analogous expressions for an MWC enzyme (Eqs. 1.33 and 1.35) using the effective
energies ε̃ A and ε̃ I , resulting in a dynamic range of the form

dynamic range = [Etot]k A
cat

*...
,

1 −
1 − k I

cat

kA
cat

1 + e−β(ε A−ε I ) 1+[R]/RA
D

1+[R]/RI
D

K I
M

K A
M

+///
-

(1.47)
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and an [S50] value of

[S50] = K A
M

e−β(ε A−ε I ) 1+[R]/RA
D

1+[R]/RI
D

+ 1

e−β(ε A−ε I ) 1+[R]/RA
D

1+[R]/RI
D

+
K A
M

K I
M

. (1.48)

As expected, the dynamic range of an enzyme increases with regulator concentration
[R] for an allosteric activator (RA

D < RI
D). Adding more activator will shift [S50] to

the left if K A
M < K I

M (as shown in Fig. 1.6) or to the right if K A
M > K I

M . The opposite
effects hold for an allosteric inhibitor (RI

D < RA
D).

1.3.4 Competitive Inhibitor
Another level of control found in many enzymes is inhibition. A competitive
inhibitor C binds to the same active site as substrate S, yet unlike the substrate, the
competitive inhibitor cannot be turned into product by the enzyme. An enzyme
with a single active site can either exist in the unbound state E, as an enzyme-
substrate complex ES, or as an enzyme-competitor complex EC. As more inhibitor
is added to the system, it crowds out the substrate from the enzyme’s active site
which decreases product formation. Many cancer drugs (e.g. lapatinib, sorafenib,
erlotinib) are competitive inhibitors for kinases involved in signaling pathways [41].

Starting from our model of an MWC enzyme in Fig. 1.3, we can introduce a
competitive inhibitor by drawing two new states (an enzyme-competitor complex
in the active and inactive forms) as shown in Fig. 1.7. Only the enzyme-substrate
complex in the active (EAS) and inactive (EI S) states form product. The probabilities
of each of these states is given by Eqs. 1.24 and 1.26 but using the new partition
function (which includes the competitive inhibitor states),

Ztot = e−βε A *
,
1 +

[S]
K A

M

+
[C]
C A

D

+
-
+ e−βε I *

,
1 +

[S]
K I

M

+
[C]
C I

D

+
-
. (1.49)

Repeating the same analysis from section 1.3.2, we write the concentrations of
bound enzymes as [EAS] = [Etot]pEAS and [EI S] = [Etot]pEI S, where [Etot] is the
total concentration of enzymes in the system and pEA,I S is the weight of the bound
(in)active state enzyme divided by the partition function, Eq. 1.49. Thus the rate of
product formation equals

d[P]
dt
= k A

cat[EAS] + k I
cat[EI S]

= [Etot]
k A

cate
−βε A [S]

K A
M

+ k I
cate

−βε I [S]
K I
M

e−βε A
(
1 + [S]

K A
M

+
[C]
CA
D

)
+ e−βε I

(
1 + [S]

K I
M

+
[C]
CI
D

) . (1.50)
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Figure 1.7: States andweights for anMWCenzymewith a competitive inhibitor.
While the substrate S (dark red) can be transformed into product, the inhibitor C
(light blue) can occupy the substrate binding site but cannot be catalyzed. As seen
with the allosteric regulator in section 1.3.3, the competitive inhibitor contributes a
factor [C]

CD
to the statistical weight of a state where CD is the inhibitor’s dissociation

constant.

Fig. 1.8 shows the rate of product formation for various inhibitor concentrations [C].
Adding more competitive inhibitor increases the probability of the inhibitor-bound
states and thereby drains probability out of those states competent to form product,
as expected. Similarly to our analysis of allosteric regulators, we can absorb the
effects of the competitive inhibitor (C A,I

D ) in Eq. 1.50 into the enzyme parameters
(ε A,I , K A,I

M ),

d[P]
dt
= [Etot]

k A
cate

−βε A
(
1 + [C]

CA
D

) [S]
K A
M

(
1+ [C]

CA
D

) + k I
cate

−βε I
(
1 + [C]

CI
D

) [S]
K I
M

(
1+ [C]

CI
D

)
e−βε A

(
1 + [C]

CA
D

) (
1 + [S]

K A
M

(
1+ [C]

CA
D

) ) + e−βε I
(
1 + [C]

CI
D

) (
1 + [S]

K I
M

(
1+ [C]

CI
D

) )

≡ [Etot]
k A

cate
−βε̃ A [S]

K̃ A
M

+ k I
cate

−βε̃ I [S]
K̃ I
M

e−βε̃ A
(
1 + [S]

K̃ A
M

)
+ e−βε̃ I

(
1 + [S]

K̃ I
M

) , (1.51)
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Figure 1.8: Effects of a competitive inhibitor C on the rate of product formation
d[P]
dt

. When [C] . C A
D,C

I
D, the inhibitor cannot out-compete the substrate at high

substrate concentrations while the free form of enzyme dominates at low substrate
concentrations. Therefore increasing [C] up to values of ≈ C A

D or C I
D has little

effect on d[P]
dt . Once [C] & C A

D,C
I
D, the inhibitor can out-compete substrate at large

concentrations, pushing the region where the enzyme-substrate complex dominates
further to the right. Parameters used were CA

D

CI
D

= 1 and the parameters from Fig. 1.4.

where we have defined the new energies and Michaelis constants,

ε̃ A = ε A −
1
β

log *
,
1 +

[C]
C A

D

+
-

(1.52)

ε̃ I = ε I −
1
β

log *
,
1 +

[C]
C I

D

+
-

(1.53)

K̃ A
M = K A

M
*
,
1 +

[C]
C A

D

+
-

(1.54)

K̃ I
M = K I

M
*
,
1 +

[C]
C I

D

+
-
. (1.55)

Note that Eq. 1.51 has exactly the same form as the rate of product formation
of an MWC enzyme without a competitive inhibitor, Eq. 1.30. In other words,
a competitive inhibitor modulates both the effective energies and the Michaelis
constants of the active and inactive states. Thus, an observed value of KM may not
represent a true Michaelis constant if an inhibitor is present. In the special case
of a Michaelis-Menten enzyme (e−βε I → 0), we recover the known result that a
competitive inhibitor only changes the apparent Michaelis constant [17].

As shown for the allosteric regulator, the dynamic range and the concentration of
substrate for half-maximal rate of product formation [S50] follow from the analogous
expressions for an MWC enzyme (section 1.3.2, Eqs. 1.33 and 1.35) using the
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parameters ε̃ A,I and K̃ A,I
M . Hence an allosteric enzyme with one active site in the

presence of a competitive inhibitor has a dynamic range given by

dynamic range = [Etot]k A
cat

*...
,

1 −
1 − k I

cat

kA
cat

1 + e−β(ε A−ε I ) K I
M

K A
M

+///
-

(1.56)

and an [S50] value of

[S50] = K A
M

e−β(ε A−ε I )
(
1 + [C]

CA
D

)
+

(
1 + [C]

CI
D

)
e−β(ε A−ε I ) +

K A
M

K I
M

. (1.57)

Notice that Eq. 1.56, the dynamic range of an MWC enzyme in the presence of a
competitive inhibitor, is exactly the same as Eq. 1.33, the dynamic range in the ab-
sence of an inhibitor. Thismakes sense because in the absence of substrate ([S]→ 0)
the rate of product formation must be zero and at saturating substrate concentrations
([S]→ ∞) the substrate completely crowds out any inhibitor concentration. Instead
of altering the rate of product formation at these two limits, the competitive inhibitor
shifts the d[P]

dt curve, and therefore [S50], to the right as more inhibitor is added.

Said another way, adding a competitive inhibitor effectively rescales the concen-
tration of substrate in a system. Consider an MWC enzyme in the absence of a
competitive inhibitor at a measured substrate concentration [Sno [C]]. Now consider
a separate system where an enzyme is in the presence of a competitive inhibitor
at concentration [C] and at a measured substrate concentration [Swith[C]]. It is
straightforward to show that the rate of product formation d[P]

dt is the same for both
enzymes,

d[P]
dt
= [Etot]

k A
cate

−βε A [Sno [C]]
K A
M

+ k I
cate

−βε I [Sno [C]]
K I
M

e−βε A
(
1 + [Sno [C]]

K A
M

)
+ e−βε I

(
1 + [Sno [C]]
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) , (1.58)

provided that

[Swith[C]] =
e−β(ε A−ε I )

(
1 + [C]

CA
D

)
+

(
1 + [C]

CI
D

)
e−β(ε A−ε I ) + 1

[Sno [C]]. (1.59)
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For any fixed competitive inhibitor concentration [C], this rescaling amounts to a
constant multiplicative factor which results in a horizontal shift on a log scale of
substrate concentration [S], as is indeed shown in Fig. 1.8.

As we have seen, the effects of both an allosteric regulator and a competitive
inhibitor can be absorbed into the parameters of an MWC enzyme. This suggests
that experimental data from enzymes that titrate these ligands can be collapsed into a
one-parameter family of curveswhere the single parameter is either the concentration
of an allosteric effector or a competitive inhibitor. Indeed, in section 1.4.1 we shall
find that this theory matches well with experimentally measured activity curves.

1.3.5 Multiple Substrate Binding Sites
In 1965, Gerhart and Schachman used ultracentrifugation to determine that ATCase
can be separated into a large (100 kDa) catalytic subunit where substrate binds and
a smaller (30 kDa) regulatory subunit which has binding sites for the allosteric
regulators ATP and CTP [42]. Their measurements correctly predicted that ATCase
had multiple active sites and multiple regulatory sites, although their actual numbers
were off (they predicted 2 active sites and 4 regulatory sites, whereas ATCase has 6
active sites and 6 regulatory sites) [13]. Three years later, more refined sequencing
by Weber and crystallographic measurements by Wiley and Lipscomb revealed the
correct quaternary structure of ATCase [43–45].

Many enzymes are composed of multiple subunits that contain substrate binding
sites (also called active sites or catalytic sites). Having multiple binding sites grants
the substrate more locations to bind to an enzyme which increases the effective
affinity between both molecules. A typical enzyme will have between 1 and 6
substrate binding sites, and bindings sites for allosteric regulators can appear with
similar multiplicity. However, extreme cases exist such as hemocyanin which can
have as many as 48 active sites. [46] Interestingly, across different species the
same enzyme may possess different numbers of active or regulatory sites, as well
as be affected by other allosteric regulators and competitive inhibitors [10, 47].
Furthermore, multiple binding sites may interact with each other in a complex and
often uncharacterized manner [48].

We now extend the single-site model of an MWC enzyme introduced in Fig. 1.3
to an MWC enzyme with two substrate binding sites. Assuming that both binding
sites are identical and independent, the states and weights of the system are shown
in Fig. 1.9. When the enzyme is doubly occupied EAS2, we assume that it forms
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product twice as fast as a singly occupied enzyme EAS.
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Figure 1.9: States and weights for anMWC enzyme with two substrate binding
sites. Each binding site acts independently and the rate of product formation of a
doubly bound state is twice the rate of the corresponding singly bound state.

It has been shown that in MWC models, explicit cooperative interaction energies
are not required to accurately model biological systems; cooperativity is inherently
built into the fact that all binding sites switch concurrently from an active state to
an inactive state [16]. For example, suppose an inactive state enzyme with two
empty catalytic sites binds with its inactive state affinity K I

M to a single substrate,
and that this binding switches the enzyme from the inactive to the active state. Then
the second, still empty, catalytic site now has the active state affinity K A

M , an effect
which can be translated into cooperativity. Note that an explicit interaction energy,
if desired, can be added to the model very simply.

As in the proceeding sections, we compute the probability and concentration of each
enzyme conformation from the states and weights (see Eqs. 1.23-1.29). Because the
active and inactive conformations each have two singly bound states and one doubly
bound state with twice the rate, the enzyme’s rate of product formation is given by

d[P]
dt
= k A

cat
(
2pEAS

)
+ 2k A

cat

(
pEAS2

)
+ k I

cat
(
2pEI S

)
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pEI S2

)
= 2[Etot]
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−βε A [S]
K A
M

(
1 + [S]

K A
M

)
+ k I

cate
−βε I [S]

K I
M

(
1 + [S]

K I
M

)
e−βε A

(
1 + [S]

K A
M

)2
+ e−βε I

(
1 + [S]

K I
M

)2 (1.60)
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We will have much more to say about this model in section 1.4.2.2, where we will
show that d[P]

dt as a function of substrate concentration [S] may form a peak. For
now, we mention the well-known result that a Michaelis-Menten enzyme with two
independent active sites will act identically to two Michaelis-Menten enzymes each
with a single active site (as can be seen in the ε I → ∞ limit of Eq. 1.60) [17]. It is
intuitively clear that this result does not extend toMWC enzymes: d[P]

dt for a two-site
MWC enzyme, Eq. 1.60, does not equal twice the value of d[P]

dt for a one-site MWC
enzyme, Eq. 1.30.

1.3.6 Modeling Overview
The above sections allow us to model a complex enzyme with any number of sub-
strate binding sites, competitive inhibitors, and allosteric regulators. Assuming that
the enzyme is in steady state and that the cycle condition holds, we first enumerate
its states and weights and then use those weights to calculate the rate of product
formation. Our essential conclusions about the roles of the various participants in
these reactions can be summarized as follows:

1. The (in)active state enzyme contributes a factor (e−βε I ) e−βε A to the weight.
The mathematical simplicity of this model belies the complex interplay be-
tween the active and inactive states. Indeed, an MWC enzyme cannot be
decoupled into two Michaelis-Menten enzymes (one for the active and the
other for the inactive states).

2. Each bound substrate contributes a factor ( [S]
K I
M

) [S]
K A
M

in the (in)active statewhere

KM =
kof f +kcat

kon
is a Michaelis constant between the substrate and enzyme. It

is this Michaelis constant, and not the dissociation constant, which enters the
states and weights diagram.

3. Each bound allosteric regulator or competitive inhibitor X contributes a factor
( [X]

X I
d

) [X]
X A
d

in the (in)active state where XD =
kX
of f

kX
on

is the dissociation constant
between X and the enzyme. An allosteric regulator R effectively tunes the
energies of the active and inactive states as shown in Eqs. 1.45 and 1.46. A
competitive inhibitor C effectively changes both the energies and Michaelis
constants of the active and inactive states as described by Eqs. 1.52-1.55.

4. The simplestmodel formultiple binding sites assumes that each site is indepen-
dent of the others. The MWCmodel inherently accounts for the cooperativity



40

between these sites, resulting in sigmoidal activity curves despite no direct
interaction terms.

In Appendix S1.2, we simultaneously combine all of these mechanisms by analyzing
the rate of product formation of ATCase (which has multiple binding sites) in the
presence of substrate, a competitive inhibitor, and allosteric regulators.

Note that while introducing new components (such as a competitive inhibitor or
an allosteric regulator) introduces new parameters into the system, increasing the
number of sites does not. For example, an MWC enzyme with 1 (Fig. 1.3), 2
(Fig. 1.9), or more active sites would require the same five parameters: e−β(ε A−ε I ),
K A

M , K I
M , k A

cat , and k I
cat .

1.4 Applications
Having built a framework to model allosteric enzymes, we now turn to some ap-
plications of how this model can grant insights into observed enzyme behavior.
Experimentally, the rate of product formation of an enzyme is often measured
relative to the enzyme concentration, a quantity called activity,

A ≡
1

[Etot]
d[P]

dt
. (1.61)

Enzymes are often characterized by their activity curves as substrate, inhibitor,
and regulator concentrations are titrated. Such data not only determines important
kinetic constants but can also characterize the nature of molecular players such
as whether an inhibitor is competitive, uncompetitive, mixed, or non-competitive
[49–51]. After investigating several activity curves, we turn to a case study of
the curious phenomenon of substrate inhibition, where saturating concentrations
of substrate inhibit enzyme activity, and propose a new minimal mechanism for
substrate inhibition caused solely by allostery.

1.4.1 Regulator and Inhibitor Activity Curves
We begin with an analysis of α-amylase, one of the simplest allosteric enzymes,
which only has a single catalytic site. α-amylase catalyzes the hydrolysis of large
polysaccharides (e.g. starch and glycogen) into smaller carbohydrates in human
metabolism. It is competitively inhibited by isoacarbose [51] at the active site and
is allosterically activated by Cl− ions at a distinct allosteric site [52].

Fig. 1.10 plots substrate concentration divided by activity, [S]/A, as a function of
substrate [S]. Recall from section 1.3.3 that an enzyme with one active site and one
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Figure 1.10: Theoretically and experimentally probing the effects of an alloste-
ric regulator on activity. Data points show experimentally measured activity from
Feller et al. for the enzyme α-amylase using substrate analog [S] (EPS) and allosteric
activator [R] (NaCl). Best fit theoretical curves described by Eq. 1.63 are overlaid
on the data. The best fit parameters are e−β(ε A−ε I ) = 7.8 × 10−4, K A

M = 0.6mM,
K I

M = 0.2mM, RA
D = 0.03mM, RI

D = 7.9mM, k A
cat = 14 s−1, and k I

cat = 0.01 s−1.

allosteric site has activity given by Eq. 1.43,

A =
k A

cate
−βε A [S]

K A
M

(
1 + [R]

RA
D

)
+ k I

cate
−βε I [S]

K I
M

(
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(
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) (
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)
+ e−βε I

(
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) . (1.62)

Thus we expect the [S]/A curves in Fig. 1.10 to be linear in [S],

[S]
A
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e−βε A
(
1 + [S]

K A
M

) (
1 + [R]

RA
D

)
+ e−βε I

(
1 + [S]
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) (
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)
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M

(
1 + [R]
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D

)
+ k I

cate−βε I
1

K I
M

(
1 + [R]

RI
D

) . (1.63)

Fig. 1.10 shows that the experimental data is well characterized by the theory so
that the rate of product formation at any other substrate and allosteric activator
concentration can be predicted by this model. The fitting procedure is discussed in
detail in Appendix S1.2.

In the special case of a Michaelis-Menten enzyme (ε I → ∞), the above equation
becomes

[S]
A
=

K A
M + [S]
k A

cat
(ε I → ∞). (1.64)

The x-intercept of all lines in such a plot would intersect at the point (−K A
M, 0) which

allows an easy determination of K A
M . This is why plots of [S] vs [S]/A, called Hanes

plots, are often seen in enzyme kinetics data. Care must be taken, however, when
extending this analysis to allosteric enzymes where the form of the x-intercept is
more complicated.
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Figure 1.11: Theoretically and experimentally probing the effects of a competi-
tive inhibitor on activity. (A) Data points show experimentally measured activity
in arbitrary units from Li et al. for the enzyme α-amylase using substrate analog
[S] (α-maltotriosyl fluoride) and competitive inhibitor [C] (isoacarbose). Best fit
theoretical curves described by the inverse of Eq. 1.65 are overlaid on the data. The
best fit parameters are e−β(ε A−ε I ) = 36, K A

M = 0.9mM, K I
M = 2.6mM,C A

D = 12 nM,
C I

D = 260 nM, and kA
cat

k I
cat
= 1.4. Note that the x-axis varies [C] rather than [S] as in

most other plots. (B) A data collapse of the three curves using the Bohr parameter
∆F from Eq. 1.68 which encompasses the effects of both the substrate and inhibitor
upon the system.

We now turn to competitive inhibition. Fig. 1.11(A) plots the inverse rate of
product formation

(
d[P]

dt

)−1
of α-amylase as a function of the competitive inhibitor

concentration [C]. The competitive inhibitor isoacarbose is titrated for three different
concentrations of the substrate α-maltotriosyl fluoride (αG3F).

Recall from section 1.3.4, Eq. 1.50 that the rate of product formation for an allosteric
enzyme with one active site in the presence of a competitive inhibitor is given by

(
d[P]

dt

)−1
=

1
[Etot]

e−βε A
(
1 + [S]

K A
M

+
[C]
CA
D

)
+ e−βε I

(
1 + [S]

K I
M

+
[C]
CI
D

)
k A

cate−βε A
[S]
K A
M

+ k I
cate−βε I

[S]
K I
M

, (1.65)

so that the best fit
(

d[P]
dt

)−1
curves in Fig. 1.11(A) are linear functions of [C]. Rather

than thinking of Eq. 1.65 as a function of the competitive inhibitor concentration [C]
and the substrate concentration [S] separately, we can combine these two quantities
into a single natural parameter for the system. This will enable us to collapse the
different activity curves in Fig. 1.11(A) onto a single master curve as shown in
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Fig. 1.11(B). Algebraically manipulating Eq. 1.65,
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(1.66)

where

K = e−β(ε A−ε I ) K I
M

K A
M

(1.67)

∆F = −
1
β
Log
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e−β(ε A−ε I )
(
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D

)
+

(
1 + [C]

CI
D

) 
. (1.68)

Therefore,
(

d[P]
dt

)−1
curves at any substrate and inhibitor concentrations can be

compactly shown as data points lying on a single curve in terms of ∆F, which is
called the Bohr parameter. Such a data collapse is also possible in the case of
allosteric regulators or enzymes with multiples binding sites, although those data
collapses may require more than one variable ∆F. In Appendix S1.3, we show that
the Bohr parameter corresponds to a free energy difference between enzyme states
and examine other cases of data collapse.

1.4.2 Substrate Inhibition
We now turn to a striking phenomenon observed in the enzyme literature: not all
enzymes have a monotonically increasing rate of product formation. Instead peaks
such as those shown schematically in Fig. 1.12 can arise in various enzymes, dis-
playing behavior that is impossible within Michaelis-Menten kinetics. By exploring
these two phenomena with the MWC model, we gain insight into their underlying
mechanisms and can make quantifiable predictions as to how to create, amplify, or
prevent such peaks.

In Fig. 1.12(A), the monotonically increasing Michaelis-Menten curve makes intui-
tive sense – a larger substrate concentration implies that at anymoment the enzyme’s
active site is more likely to be occupied by substrate. Therefore, we expect that the
activity, A = 1

[Etot ]
d[P]

dt , should increase with the substrate concentration [S]. Yet
many enzymes exhibit a peak activity, a behavior called substrate inhibition [53].

Even more surprisingly, when a small amount of competitive inhibitor – a molecule
whose very name implies that it competes with substrate and decreases activity –
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Figure 1.12: Enzyme activity curves do not need to be monotonic as predicted
by Michaelis-Menten enzyme kinetics. (A) As many as 20% of enzymes exhibit
substrate inhibition, where at high substrate concentrations activity decreases, in
contrast to a Michaelis-Menten enzyme shown for reference. Activity for acetyl-
cholinesterase is shown in units of (nanomoles product) · min−1 · (mL enzyme)−1.
(B) Some enzymes exhibit inhibitor acceleration, where adding a small amount of a
competitive inhibitor increases the rate of product formation. This generates a peak
in activity, in stark contrast to a Michaelis-Menten enzyme which only decreases
its activity as more competitive inhibitor is added. Relative activity is shown for
ATCase, where relative activity equals activity at [C] divided by the activity with no
competitive inhibitor. The data and best fit parameters for the substrate inhibition
and inhibitor acceleration curves are discussed in Appendix S1.3.

is mixed together with enzyme, it can increase the rate of product formation. This
latter case, called inhibitor acceleration, is shown in Fig. 1.12(B) [10, 56]. In con-
trast, a Michaelis-Menten enzyme shows the expected behavior that adding more
competitive inhibitor decreases activity. We will restrict our attention to the pheno-
menon of substrate inhibition and relegate a discussion of inhibitor acceleration to
Appendix S1.4.

Using the MWC enzyme model, we can make predictions about which enzymes
can exhibit substrate inhibition. We first formulate a relationship between the
fundamental physical parameters of an enzyme that are required to generate such a
peak and then consider what information about these underlying parameters can be
gained by analyzing experimental data.

1.4.2.1 Single-Site Enzyme

As a preliminary exercise, we begin by showing that an enzyme with a single active
site cannot exhibit substrate inhibition. Said another way, the activity, Eq. 1.61,
of such an enzyme cannot have a peak as a function of substrate concentration
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[S]. For the remainder of this paper, we will use the fact that all Michaelis and
dissociation constants (KM’s, CD’s, and RD’s) are positive and assume that both
catalytic constants (k A

cat and k I
cat) are strictly positive unless otherwise stated.

Consider the MWC enzyme with a single substrate binding site shown in Fig. 1.3.
Using Eq. 1.30, it is straightforward to compute the derivative of activitywith respect
to substrate concentration [S], namely,

dA
d[S]

=

(e−βε A + e−βε I )
(
e−βε A kA

cat

K A
M

+ e−βε I k I
cat

K I
M

)
(
e−βε A

(
1 + [S]

K A
M

)
+ e−βε I

(
1 + [S]

K I
M

))2 . (1.69)

Since the numerator cannot equal zero, this enzyme cannot have a peak in its
activity when [S] is varied. Note that the numerator is positive, indicating that
enzyme activity will always increase with substrate concentration.

The above results are valid for an arbitrary MWC enzyme with a single-site. In
particular, in the limit ε I → ∞, an MWC enzyme becomes a Michaelis-Menten
enzyme. Therefore, a Michaelis-Menten enzyme with a single active site cannot
exhibit a peak in activity. In Appendix S1.5, we discuss the generalization of
this result: a Michaelis-Menten enzyme with an arbitrary number of catalytic sites
cannot have a peak in activity. Yet as we shall now see, this generalization cannot
be made for an MWC enzyme, which can indeed exhibit a peak in its activity when
it has multiple binding sites.

1.4.2.2 Substrate Inhibition

As many as 20% of enzymes are believed to exhibit substrate inhibition, which
can offer unique advantages to enzymes such as stabilizing their activity amid
fluctuations, enhancing signal transduction, and increasing cellular efficiency [54].
This prevalent phenomenon has elicited various explanations, many of which rely
on non-equilibrium enzyme dynamics, although some equilibrium mechanisms
are known [53]. An example of this latter case is seen in the enzyme aspartate
transcarbamoylase (ATCase) which catalyzes one of the first steps in the pyrimidine
biosynthetic pathway. Before ATCase can bind to its substrate asparatate (Asp),
an intermediate molecule carbamoyl phosphate (CP) must first bind to ATCase,
inducing a change in the enzyme’s shape and electrostatics which opens up the Asp
binding slot [57, 58]. Because Asp can weakly bind to the CP binding pocket, at
high concentrations Asp will outcompete CP and prevent the enzyme from working
as efficiently, thereby causing substrate inhibition [59].
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To the list of such mechanisms, we add the possibility that an enzyme may exhibit
substrate inhibition without any additional effector molecules. In particular, an
allosteric enzyme with two identical catalytic sites can exhibit a peak in activity
when the substrate concentration [S] is varied. We will first analyze the properties
of this peak and then examine why it can occur. For simplicity, we will assume
k I

cat = 0 throughout this section and leave the general case for Appendix S1.5.

Using Eqs. 1.60 and 1.61, the activity of an MWC enzyme with two active sites is
given by

A =
1

[Etot]
d[P]

dt
=

2k A
cate

−βε A [S]
K A
M

(
1 + [S]

K A
M

)
e−βε A

(
1 + [S]

K A
M

)2
+ e−βε I

(
1 + [S]

K I
M

)2 . (1.70)

A peak will exist provided that dA
d[S] = 0 has a positive [S] root. The details of

differentiating and solving this equation are given in Appendix S1.5, the result of
which is that a peak in activity A occurs as a function of [S] provided that

1 + e−β(ε A−ε I ) < *
,

K A
M

K I
M

− 1+
-

2

(k I
cat = 0). (1.71)

The height of such a peak is given by

Apeak = k A
cat

K I
M

K A
M − K I

M

(√
1 + e−β(ε A−ε I ) − 1

)
. (1.72)

Examples of peaks in activity are shown in Fig. 1.13 for various values of e−β(ε A−ε I ).
Substituting in the peak condition Eq. 1.71, the maximum peak height is at most

Apeak < k A
cat

K A
M

K I
M

− 2

K A
M

K I
M

− 1
. (1.73)

If we consider the maximum value of e−β(ε A−ε I ) allowed by the peak condition
Eq. 1.71, the peak height approaches k A

cat for large
K A
M

K I
M

(as seen by the green curve
e−β(ε A−ε I ) = 80 in Fig. 1.13(B)). In this limit, the active bound state dominates over
all the other enzyme states so that the activity reaches its largest possible value, k A

cat .
Although the “peak height” is maximum in this case, the activity curve is nearly
sigmoidal, making the peak hard to distinguish. To that end, it is reasonable to
compare the peak height to the activity at large substrate concentrations,

A[S]→∞ = 2k A
cat

e−β(ε A−ε I )(
K A
M

K I
M

)2
+ e−β(ε A−ε I )

. (1.74)
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Figure 1.13: Peaks in enzyme activity A = 1
Etot

d[P]
dt

as a function of substrate
concentration [S]. Activity is shown in units of k A

cat , which rescales the activity
curves vertically. The peak for (A) small and (B) large ratios of the enzyme’s energy
in the active versus inactive state, e−β(ε A−ε I ). The height of the peak increases with
e−β(ε A−ε I ). The activity is computed from Eq. 1.70 using the parameters k I

cat = 0,
K A
M

K I
M

= 10, and the different values of e−β(ε A−ε I ) shown. As predicted by Eq. 1.71,

every value in the range e−β(ε A−ε I ) <
(

K A
M

K I
M

− 1
)2

will yield a peak in activity.
While the peak is more pronounced when the active state is energetically favorable
(e−β(ε A−ε I ) < 1) in (A), the maximum peak height is much larger in (B) as seen by
the different scale of the y-axis.

As the energy difference between the active and inactive state e−β(ε A−ε I ) increases,
the peak height Apeak monotonically increases but the relative peak height Apeak

A[S]→∞

monotonically decreases. These relations might be used to design enzymes with
particular activity curves; conversely, experimental data of substrate inhibition can
be used to fix a relation between the parameters e−β(ε A−ε I ) and K A

M

K I
M

of an enzyme.

We now turn to the explanation of how such a peak can occur. One remarkable fact
is that a peak cannot happen without allostery. If we consider a Michaelis-Menten
enzyme (by taking the limit k I

cat → 0 and ε I → ∞), then the peak condition Eq. 1.71
cannot be satisfied.

To gain a qualitative understanding of how a peak can occur, consider an enzyme
that inherently prefers the active state (e−β(ε A−ε I ) > 1) but with substrate that
preferentially binds to the inactive state (K A

M

K I
M

> 1). Such a system is realized in
bacterial chemotaxis, where the chemotaxis receptors are active when unbound but
inactivewhen bound to substrate [32]. This setup is shown schematically in Fig. 1.14.
At low substrate concentrations, [S] � K A

M , most enzymes will be unbound and
therefore in the active state. At intermediate substrate concentrations, [S] ≈ K A

M ,
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A[S ]→KM
A

ac
tiv

ity
A[S ]→∞

[S ]KM
A [S ] ≈KM

A [S ] KM
A

= active state

= inactive state

Figure 1.14: Mechanism underlying peak in activation by substrate S. At low
substrate concentrations (left region), all enzymes are unbound and are mostly in
the active form (rounded, green). As the amount of substrate is increased (middle
region), the probability that an enzyme is singly bound and then doubly bound
increase. Because the substrate prefers to bind to an inactive state (sharp, green)
enzyme-substrate complex, binding more substrate pushes the enzymes into the
inactive state. At medium substrate concentrations, more active state enzyme-
substrate complexes exist than at high substrate concentrations (right region) which
yields a peak. Each enzyme fluctuates between its different configurations, and the
cartoons show the distributions of the most prevalent states.

many enzymes will be singly bound. Because K A
M

K I
M

> 1, the substrate will pull these
bound enzymes towards the inactive state. For large substrate concentrations, [S] �
K A

M , most of the enzymes will be doubly bound and hence will be predominantly in
the inactive form. Because the inactive state does not catalyze substrate (k I

cat = 0),
only the number of substrate bound to active state enzymes increase the rate of
product formation, and because more of these exist in the intermediate regime a
peak forms.

To be more quantitative, the activity Eq. 1.70 at the medium substrate concentration
([S] = K A

M) is given by

A[S]→K A
M
= k A

cat
4e−β(ε A−ε I )(

K A
M

K I
M

+ 1
)2
+ 4e−β(ε A−ε I )

. (1.75)

Comparing this to A[S]→∞ in Eq. 1.74, we find that A[S]→K A
M
> A[S]→∞ provided

that

1 + e−β(ε A−ε I ) <
1
4

*
,

K A
M

K I
M

− 1+
-

2

. (1.76)

This is in close agreement with the peak condition Eq. 1.71, with the 1
4 prefactor

arising because the peak need not occur precisely at [S] = K A
M .
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Note that the peak condition Eq. 1.71 does not necessarily force the unbound en-
zyme to favor the active state (e−β(ε A−ε I ) > 1), since this condition can still be
satisfied if e−β(ε A−ε I ) < 1. However, the peak condition does require that substrate
preferentially binds to the inactive state enzyme (in fact, we must have K A

M

K I
M

> 2 to
satisfy the peak condition).

Recall that as many as 20% of enzymes exhibit substrate inhibition, and this par-
ticular mechanism will not apply in every instance. To be concrete, an allosteric
enzyme that obeys the mode of substrate inhibition proposed above must: (1) have
at least two catalytic sites and (2) must be driven towards the inactive state upon
substrate binding. Therefore, an enzyme such as ATCase which exhibits substrate
inhibition but where the substrate preferentially binds to the active state enzymemust
have a different underlying mechanism [60]. Various alternative causes including
the effects of pH due to substrate or product buildup [17, 61] or the sequestering
effects of ions [62, 63] may also be responsible for substrate inhibition. Yet the
mechanism of substrate inhibition described above exactly matches the conditions
of acetylcholinesterase whose activity, shown in Fig. 1.12(A), is well categorized
by the MWC model [55]. It would be interesting to test this theory by taking a
well characterized enzyme, tuning the MWC parameters so as to satisfy the peak
condition Eq. 1.71 (or an analogous relationship for an enzyme with more than two
catalytic sites), and checking whether the system then exhibits substrate inhibition.
Experimentally, tuning the parameters can be undertaken by introducing allosteric
regulators or competitive inhibitors as described by Eqs. 1.45-1.46 and Eqs. 1.52-
1.55, respectively. For example, in Appendix S1.5, we describe an enzyme system
where introducing a competitive inhibitor induces a peak in activity.

1.5 Discussion
Allosteric molecules pervade all realms of biology from chemotaxis receptors to
chromatin to enzymes [15, 64–66]. There are various ways to capture the allosteric
nature of macromolecules, with the MWC model representing one among many
[8, 67, 68]. In any such model, the simple insight that molecules exist in an active
and inactive state opens a rich new realm of dynamics.

The plethora of molecular players that interact with enzymes serve as the building
blocks to generate complex behavior. In this paper, we showed the effects of
competitive inhibitors, allosteric regulators, and multiple binding sites, looking at
each of these factors first individually and then combining separate aspects. This
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frameworkmatched well with experimental data and enabled us to make quantifiable
predictions on how theMWCenzymeparametersmay be tuned upon the introduction
of an allosteric regulator Eqs. 1.45-1.46 or a competitive inhibitor Eqs. 1.52-1.55.

As an interesting application, we used the MWC model to explore the unusual be-
havior of substrate inhibition, where past a certain point adding more substrate to
a system decreases its rate of product formation. This mechanism implies that an
enzyme activity curve may have a peak (see Fig. 1.12), a feat that is impossible for a
Michaelis-Menten enzyme. We explored a novel minimal mechanism for substrate
inhibition which rested upon the allosteric interactions of the active and inactive
enzyme states, with suggestive evidence for such a mechanism in acetylecholineste-
rase.

The power of the MWC model stems from its simple description, far-reaching
applicability, and its ability to unify the proliferation of data gained over the past 50
years of enzymology research. A series of activity curves at different concentrations
of a competitive inhibitor all fall into a one-parameter family of curves, allowing us
to predict the activity at any other inhibitor concentration. Such insights not only
shed light on the startling beauty of biological systems but may also be harnessed
to build synthetic circuits and design new drugs. We close by noting our gratitude
and admiration to Prof. Bill Gelbart to whom this special is dedicated and who
has inspired us with his clever use of ideas from statistical physics to understand
biological systems.
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C h a p t e r S1

SUPPLEMENTARY INFORMATION FOR STATISTICAL
MECHANICS OF ALLOSTERIC ENZYMES

S1.1 Validity of Approximations
In section 1.3.2, we showed the generalization of the Michaelis-Menten model by
granting the enzyme access to an active and inactive conformation. We then analyzed
this system using two assumptions: the quasi-steady-state approximation Eq. 1.17
and the cycle condition Eq. 1.19. In this section, we will formally determine when
these approximations are valid for anMWC enzyme and discuss what happens when
we relax these assumptions. It is straightforward to extend these results to the more
complicated MWC enzyme models where we introduce allosteric regulators, add
competitive inhibitors, and consider enzymes with multiple binding sites.

S1.1.1 Definitions
In section 1.3.2, we characterized an MWC enzyme using the reaction scheme

[EA] [EAS ]
kon[S ]A

[EI ] [EIS ]

ktransA ktransI

kon[S ]I
ktransAS ktransIS

koff   
+kcatA A

koff   
+kcatI I

(S1.1)

which we will now discuss in detail. We will use the following definitions freely
[1]:

• An edge of a reaction scheme denotes the value of an arrow from one enzyme
state to another. The edges on the left of S1.1 are k A

trans (linking [EA] to [EI])
and k I

trans (linking [EI] to [EA]).

• A path along enzyme states is the product of edges along this path. For
example, the path from [EI] to [EA] to [EAS] for the MWC scheme above is
given by k I

transk A
on[S].

• A system is in steady state if the concentration of every enzyme conformation
does not change over time. For the scheme above, this implies d[EAS]

dt =
d[EA]

dt =
d[EI S]

dt =
d[EI ]

dt = 0.
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• The cycle condition states that the product of edges going clockwise around
any cyclemust equal the product of edges going counterclockwise. For scheme
S1.1, the product of clockwise edges

(
k A

on[S]
) (

k AS
trans

) (
k I

o f f + k I
cat

) (
k I

trans

)
equals the counter-clockwise product

(
k A

o f f + k A
cat

) (
k A

trans

) (
k I

on[S]
) (

k IS
trans

)
.

• Detailed balance implies that the flow between two enzyme states is the same
in the forward and backwards direction. For the scheme above, if the flow of
enzymes from the [EA] state to the [EAS] state (given by [EA][S]k A

on) equals
the flow from [EAS] to [EA] (given by [EAS]

(
k A

o f f + k A
cat

)
) then the pair of

edges between [EA] and [EAS] obeys detailed balance. A reaction scheme is
in equilibrium if and only if every edge obeys detailed balance which occurs
if and only if the system is in steady state and obeys the cycle condition.

S1.1.2 Cycle Condition
In this section, we consider why the cycle condition is necessary to ensure that a
system in steady state is in equilibrium. Assume the MWC enzyme scheme S1.1 is
in steady state,

d[EAS]
dt

=
d[EA]

dt
=

d[EI S]
dt

=
d[EI]

dt
= 0. (S1.2)

The cycle condition ensures that equilibrium holds around the cycle in S1.1 regard-
less of which path is traversed. For example, suppose the system is in equilibrium
and we want to use detailed balance to determine the relation between EAS and EI .
Detailed balance provides a relation between adjacent vertices (i.e. any two enzyme
states connected by arrows) such as EAS and EI S or EI S and EI . Hence we can find
a relation between two non-adjacent edges such as EAS and EI by following two
different paths,

[EA] [EAS ]
kon[S ]A

[EI ] [EIS ].

ktransA ktransI

kon[S ]I
ktransAS ktransIS

koff   
+kcatA A

koff   
+kcatI I

(S1.3)

We could travel clockwise and follow the blue path around S1.3, first using detailed
balance between EAS and EI S and then between EI S and EI ,

[EAS]
[EI]

=
[EAS]
[EI S]

[EI S]
[EI]

=
k IS

trans

k AS
trans

k I
on[S]

k I
o f f + k I

cat
. (S1.4)

On the other hand, we could have moved counter-clockwise around S1.3 along the
orange path, first using the relationship between EAS and EA and then between EA
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and EI ,
[EAS]
[EI]

=
[EAS]
[EA]

[EA]
[EI]

=
k A

on[S]
k A

o f f + k A
cat

k I
trans

k A
trans

. (S1.5)

Setting Eqs. S1.4 and S1.5 equal to each other yields the cycle condition!

S1.1.3 Quasi-Steady-State Approximation
We will now consider the dynamics of the MWC enzyme,

[EA]+[S ] [EAS ]konA

koffA

[EI ]+[S ] [EIS ]
koffI

ktransA ktransI

konI
ktransAS ktransIS

kcatA

kcatI

[EA]+[P ]

[EI ]+[P ].

(S1.6)

At time t = 0, the enzyme and substrate are mixed together and the rate of product
formation is measured over time. The system starts off with all enzymes in the
unbound forms EA or EI and there are no enzyme-substrate complexes EAS or EI S.

To gain some intuition into this system, we first consider Fig. S1.1 which shows how
this MWC enzyme can behave over time for reasonable parameter values. On the
long time scales in Fig. S1.1B, the substrate concentration will appreciably diminish
to 1/e of its original value after a long time τS. On the other hand, Fig. S1.1A
shows that within a time τE � τS the enzymes reach 1/e of what appears to be a
“steady state.” Of course, this is not a true steady-state, since after a time τS the
substrate concentration will appreciably decrease and the enzyme conformations
will correspondingly change. Instead, we call the situation after one second a quasi-
steady-state, meaning that the enzyme conformations have all reached a steady-state
value assuming the current substrate concentration is fixed.

When τE is significantly smaller than τS (typically τE only needs to be roughly 100
times smaller than τS), the dynamics of the enzymes and substrate can be separated.
In other words, we can assume that the fast step (where the enzymes equilibrate
to the current concentration of substrate) happens instantly when considering the
slow dynamics of the substrate concentration diminishing over time. This is the
quasi-steady-state approximation that we formally made in Eq. 1.17 of section 1.3.2.
We will next show what relationship between the rate constants must hold so that
the quasi-steady-state approximation is valid.

We first calculate the time scale τE for the enzyme conformations to equilibrate.
We will assume that the substrate concentration equals the constant value [Stot]
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Figure S1.1: The quasi-steady-state approximation. (A) The fast dynamics of the
system in Eq. S1.6 begins by mixing unbound enzymes (EA and EI) and substrate.
The enzyme conformations quickly reach steady state on a time scale of τE ≈ 0.04 s.
During this period, the substrate concentration remains very nearly constant. (B)
The substrate changes appreciably over the much longer time scale τS ≈ 11 s. Over
this longer time scale, we can assume the quasi-steady-state approximation: the
enzymes conformations are always in quasi-steady-state with the slowly diminishing
substrate concentration. Concentrations used were [Etot] = 1 µM, [Stot] = 1mM,
[EAS] = [EI S] = 0, and [EA]

[EI ] =
k I
trans

kA
trans

≡ e−β(ε A−ε I ). The rate constants used were
k A

on = 1 s−1M−1, k I
on = 10−1 s−1M−1, k A

o f f = 1 s−1, k I
o f f = 10−3 s−1, k A

cat = 102 s−1,
k I

cat = 10 s−1, k AS
trans = k IS

trans = k A
trans = 10 s−1, and k I

trans = 102 s−1.

throughout this short timescale (which, as shown in Fig. S1.1A, is reasonable) and
then invoke a self-consistency condition to ensure that the actual change in substrate
concentration during the period τE was negligible.

As a warm up, we first consider the Michaelis-Menten enzyme which we redraw
here

[E ]+[S ] [ES ]kon
koff

kcat [E ]+[P ]. (S1.7)

The Michaelis-Menten enzyme is governed by the multiple differential equations

d[E]
dt
= [ES]

(
ko f f + kcat

)
− [E] [Stot] kon = −

d[ES]
dt

(S1.8)

and the constraint [E] + [ES] = [Etot]. As stated above, we fix the substrate
concentration at [Stot] and assume that the system starts off with [E] = [Etot] and
[ES] = 0. Solving the differential equation Eq. S1.8 yields

[E] = [Etot]
KM + [Stot] e−t/τ

KM + [Stot]
(S1.9)

[ES] = [Etot] [Stot]
1 − e−t/τ

KM + [Stot]
(S1.10)
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where τ = 1
kon[Stot ]+kof f +kcat

is the time scale for the system to equilibrate. Interes-
tingly, 1

τ equals the sum of all rates between the states [E] and [ES] (i.e. the sum
of all time scales in this system). Furthermore, τ does not depend on the initial
conditions of the system.

We now turn to the harder case of the MWC enzyme whose kinetics we describe
using the scheme

[EA]+[S ] [EAS ]konA

koffA

[EI ]+[S ] [EIS ]
koffI

ktransA ktransI

konI
ktransAS ktransIS

kcatA

kcatI

[EA]+[P ]

[EI ]+[P ].

(S1.11)

As we just saw for the Michaelis-Menten enzyme, if we just considered any
edge of the MWC enzyme separately, its corresponding time constant would be

1
sum of rates along this edge :

1
kA
on[Stot ]+kA

of f
+kA

cat
between [EA] and [EAS] (blue); 1

kA
trans+k I

trans

between [EA] and [EI] (red); 1
k I
on[Stot ]+k I

o f f
+k I

cat
between [EI] and [EI S] (green); and

1
kAS
trans+k IS

trans

between [EAS] and [EI S] (brown). We can approximate the time scale
τE of this system as the maximum of these four time scales between adjacent edges,

τE ≈ max *
,

1
k A

on[Stot] + k A
o f f + k A

cat
,

1
k A

trans + k I
trans

,
1

k I
on[Stot] + k I

o f f + k I
cat
,

1
k AS

trans + k IS
trans

+
-

=
1

min
(
k A

trans + k I
trans, k A

on [Stot] + k A
cat + k A

o f f , k AS
trans + k IS

trans, k I
on [Stot] + k I

cat + k I
o f f

) .
(S1.12)

This result is very similar (and in fact overestimates) the exact derivation of τE

discussed in the next section, Appendix S1.1.4.

With this form of τE in hand, we could proceed in several ways to determine when
the quasi-steady-state approximation holds. For example, we could compute the
time scale τS for the substrate to diminish and then enforce τE � τS as the quasi-
steady-state approximation. However, Segel and Slemrod [2] determined a tighter
constraint by demanding that the amount of substrate converted into product during
the transient period 0 < t < τE only amounts to a tiny fraction of the initial substrate
concentration. The amount of substrate turned into product ∆[S] after time τE can



62

be overestimated as
∆[S] ≈

�����
d[S]
dt

�����max
τE (S1.13)

so that the quasi-steady-state approximation can be written as

∆[S]
[Stot]

≈
1

[Stot]

�����
d[S]
dt

�����max
τE � 1. (S1.14)

From S1.6, the rate of change of substrate concentration for the MWC enzyme is

d[S]
dt
= − [EA] [S]k A

on − [EI] [S]k I
on + [EAS] k A

o f f + [EI S] k I
o f f . (S1.15)

Recall that at t = 0, the system starts offwith all enzymes unbound: [EAS] = [EI S] =
0 and [EA]+ [EI] = [Etot]. Then ���

d[S]
dt

���max
occurs at t = 0 (when [S] = [Stot]) and an

upper bound is given by
�����
d[S]
dt

�����max
= [Stot]

(
[EA] k A

on + [EI] k I
on

)
≤ [Etot] [Stot] max

(
k A

on, k I
on

)
. (S1.16)

Substituting this result and the time scale Eq. S1.12 into Eq. S1.14, we find a
sufficient condition for the quasi-steady state approximation to hold for an MWC
enzyme:

[Etot ]
max

(
kA
on, k I

on

)
min

(
kA
trans + k I

trans, kA
on [Stot ] + kA

cat + kA
of f

, kAS
trans + k IS

trans, k I
on [Stot ] + k I

cat + k I
o f f

) � 1.

(S1.17)

We could repeat this analysis for aMichaelis-Menten enzyme where only the EA and
EAS states exist. This is equivalent to disregarding all terms except for k A

on, k A
o f f ,

and k A
cat in the max and min of Eq. S1.17, so that the quasi-steady-state conditions

reduces to [Etot]
kA
on

kA
on[Stot ]+kA

cat+kA
of f

=
[Etot ]

[Stot ]+K A
M

� 1which is identical to the condition
found by Segel [2].

S1.1.4 Time Constants for the Quasi-Steady-State Approximation
In this section, we derive an exact expression for the time constant for which
the MWC enzyme 1.16 will attain its steady state for each enzyme conformation
assuming that the substrate concentration [S] = [Stot] remains fixed. The rate of
change of each enzyme conformation can be written in matrix form (with bold
denoting vectors and matrices) as

dE
dt
= KE (S1.18)

where
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K =

*........
,

−kA
cat − kA

of f − kAS
trans kA

on [Stot ] k IS
trans 0

kA
cat + kA

of f −kA
on [Stot ] − kA

trans 0 k I
trans

kAS
trans 0 −k I

cat − k I
o f f − k IS

trans k I
on [Stot ]

0 kA
trans k I

cat + k I
o f f −k I

trans − k I
on [Stot ]

+////////
-

, E =

*........
,

[EAS]

[EA]

[EI S]

[EI ]

+////////
-

.

(S1.19)

This matrix can be decomposed as

K = V−1ΛV (S1.20)

where V ’s columns are the eigenvectors of K and Λ is a diagonal matrix whose
entries are the eigenvalues of K . In general, it is known that the eigenvalues of
such a matrix K representing the dynamics of any graph such as 1.16 from the text
has one eigenvalue that is 0 while the remaining eigenvalues are non-zero and have
negative real parts [3]. (Indeed, because all of the columns of K add up to zero, K
is not full rank and hence one of its eigenvalues must be zero.) Defining the vector

Ẽ ≡ VE =

*......
,

Ẽ1

Ẽ2

Ẽ3

Ẽ4

+//////
-

, (S1.21)

Eq. S1.18 can be rewritten as
dẼ
dt
= ΛẼ . (S1.22)

If the eigenvalues of Λ are λ1, λ2, λ3, and 0, then Ẽ j = c jeλ j t for j = 1, 2, 3 and
Ẽ4 = c4 where the c j’s are constants determined by initial conditions. Since the
Ẽ j’s are linear combinations of [EAS] , [EA] , [EI S] , and [EI], this implies that the
− 1
λ1
,− 1

λ2
, and − 1

λ3
(or − 1

<(λ j )
if the eigenvalues are complex) are the time scales

for the system to come to equilibrium. Therefore, we can compute the overall time
scale for the system to come to equilibrium as

τ(exact)
E = max

(
−

1
λ1
,−

1
λ2
,−

1
λ3

)
. (S1.23)

Although the eigenvalues of this matrix can be calculated in closed form, they are
long and complicated expressions that contribute less intuition than the approxima-
tion

τE = max *
,

1
k A

on[S] + k A
o f f + k A

cat
,

1
k A

trans + k I
trans

,
1

k I
on[S] + k I

o f f + k I
cat
,

1
k AS

trans + k IS
trans

+
-

(S1.24)
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used in Eq. S1.12 in the text. However, given the exact form, we can compare how
well our approximation Eq. S1.24 matches the exact form Eq. S1.23.

When the four time scales in Eq. S1.24 are comparable to each other, the approxi-
mation is very close to the exact form. However, when at least one pair of edges in
the MWC enzyme rates diagram,

[EA] [EAS ]
kon[S ]A

[EI ] [EIS ],

ktransA ktransI

kon[S ]I
ktransAS ktransIS

koff   
+kcatA A

koff   
+kcatI I

(S1.25)

is very small the approximation tends to overshoot the exact value of τE . For
example, if k A

trans ≈ k I
trans ≈ 0), Eq. S1.24 implies τE → ∞ whereas Eq. S1.23 can

remain finite.

S1.1.5 Generalizing the Cycle Condition
We now consider what happens if an enzyme does not obey the cycle condition. Pro-
vided that the quasi-steady-state approximation holds, then on the long time scales
the enzyme conformations quickly equilibrate to the current substrate concentration.
From S1.6, the rate of change of each enzyme species obeys

d [EAS]
dt

= 0 = [EA] [S]k A
on − [EAS]

(
k A

o f f + k A
cat + k AS

trans

)
+ [EI S] k IS

trans (S1.26)

d [EA]
dt

= 0 = [EAS]
(
k A

o f f + k A
cat

)
− [EA] [S]k A

on − [EA] k A
trans + [EI] k I

trans

(S1.27)
d [EI S]

dt
= 0 = [EI] [S]k I

on − [EI S]
(
k I

o f f + k I
cat + k IS

trans

)
+ [EAS] k AS

trans (S1.28)

d [EI]
dt

= 0 = [EI S]
(
k I

o f f + k I
cat

)
− [EI] [S]k I

on − [EI] k I
trans + [EA] k A

trans .

(S1.29)

This system of equations, together with the conservation of total enzyme, [Etot] =
[EAS] + [EI S] + [EA] + [EI], can be solved to obtain the quasi-steady-state values
of each enzyme species. Using the Michaelis constants K A

M =
kA
of f
+kA

cat

kA
on

and K I
M =
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k I
o f f
+k I

cat

k I
on

, we can write the solutions as the three ratios

[EAS]
[EA]

=
[S]
K A

M

(
K I

M k I
on + k I

transγ + [S]k I
onγ

)
+ k A

transαγ(
K I

M k I
on + k I

transγ + [S]k I
onγ

)
+ k A

transαβδ
(S1.30)

[EI S]
[EI]

=
[S]
K I

M

(
K A

M k A
on + k A

transδ + [S]k A
onδ

)
+ k I

trans
δ
α(

K A
M k A

on + k A
transδ + [S]k A

onδ
)
+ k I

trans
γ
αβ

(S1.31)

[EA]
[EI]

=
k I

trans

k A
trans

(
K I

M k I
on + k I

transγ + k A
transαβδ

)
+ [S]k I

onγ(
K I

M k I
on + k I

transγ + k A
transαβδ

)
+ [S]k I

on βδ
(S1.32)

where we have defined α ≡ k I
on

kA
on
, β ≡ K I

M

K A
M

, γ ≡ k IS
trans

k I
trans

, δ ≡ kAS
trans

kA
trans

to simplify the
results. Notice that the terms in parenthesis in the numerator and denominator of
these three ratios are the same. Indeed, the large fractions in all three equations
equal 1 if we set γ = βδ so that

[EAS]
[EA]

=
[S]
K A

M

(S1.33)

[EI S]
[EI]

=
[S]
K I

M

(S1.34)

[EA]
[EI]

=
k I

trans

k A
trans

. (S1.35)

This fortuitous choice of γ is equivalent to the cycle condition Eq. 1.19, and so it is
no surprise that these three ratios match Eqs. 1.20-1.22.

Invoking the cycle condition is a theoretical conveniencewhich greatly simplifies our
equations. If the cycle condition does not hold, we can follow our same procedure
to turn Eqs. S1.30-S1.32 into a more general result for states and weights by only
assuming the quasi-steady-state approximation. While this more general procedure
is straightforward to implement numerically, it comes at the cost of introducing
more parameters into the model (for example, values for k I

on and k I
trans must now

be explicitly given whereas before we only needed to determine the ratios k I
on

k I
o f f
+k I

cat

and k I
trans

kA
trans

) and the parameters will now depend upon the substrate concentration.

Finally, we note that the cycle condition need not be invoked if a model does not
contain any cycles. In other words, if we instead defined an MWC enzyme using
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the rates diagram

[EA]+[S ] [EAS ]konA

koffA

[EI ]+[S ] [EIS ]
koffI

ktransA ktransI

konI

kcatA

kcatI

[EA]+[P ]

[EI ]+[P ],

(S1.36)

our analysis would proceed identicallywithout needing to invoke the cycle condition.
Therefore, the cycle condition ensures that the system S1.6 has the right value of
kAS
trans

k IS
trans

so that it can operate identically to S1.36.

S1.2 General Enzyme Models
In this section, we discuss the procedure used to fit the experimental enzyme kinetics
data to the theoretical framework we have developed for allosteric enzymes. We
then discuss the individual fits for each enzyme considered throughout the paper.

All fitting was done using nonlinear regression (NonlinearModelFit in Mathe-
matica) using the realistic constraints KM,CD, RD ∈ [10−2µM, 106µM], kcat ∈

[10−2 s−1, 105 s−1], and e−β(ε A−ε I ) ∈ [−10, 10] [4]. Initial conditions for the nonli-
near regression were chosen randomly from this parameter space until a sufficiently
good fit (R2 > 0.99) was found. A notebook carrying out these calculations can be
found in the supplement of the online publication.

It must be noted that, as with nearly all models, there are serious ambiguities in the
best fit values since multiple sets of best fits values yield nearly identical curves. In
point of fact, if the nonlinear regression would be performedwithout any constraints,
it nearly always lands outside of the physically relevant parameter space (although
the qualitative form of the best fit curves may be nearly indistinguishable from those
that we show below). This attribute of models, dubbed as “sloppiness,” is well
known [5]. One of its implications may be that a biological system can more easily
evolve whichever activity profile it requires to maximize fitness, since the system
is more likely the stumble across the best possible activity profile if it exists for
numerous sets of parameters.

With this in mind, our results below demonstrate that our framework is sufficient
to describe the complex interactions of allosteric enzymes, but that the individual
parameter values (i.e. KM , CD, RD values) are not tightly determined by these fits.

https://doi.org/10.1021/acs.jpcb.6b01911
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Figure S1.2: Theoretically and experimentally probing the effects of an allos-
teric regulator on activity. Data points show experimentally measured activity
from Feller et al. for the enzyme α-amylase using substrate analog [S] (EPS) and
allosteric activator [R] (NaCl), overlaid by theoretical curves of the form given in
Eq. S1.37. Reproduced from Fig. 1.10 in the main text.

S1.2.1 Fitting α-Amylase and Allosteric Regulator Chlorine
Fig. S1.2 shows three activity curves forA. haloplanctis α-amylase titrating substrate
at different concentrations of the allosteric activator NaCl. This enzyme has one
substrate binding site and one allosteric site for binding chlorine ions. As discussed
in section 1.4.1 of the main text, the [S]/A curves are linear in [S],

[S]
A
=

e−βε A
(
1 + [S]

K A
M

) (
1 + [R]

RA
D

)
+ e−βε I

(
1 + [S]

K I
M

) (
1 + [R]

RI
D

)
k A

cate−βε A
1

K A
M

(
1 + [R]

RA
D

)
+ k I

cate−βε I
1

K I
M

(
1 + [R]

RI
D

) . (S1.37)

Note that we are fitting the 7 parameters from this equation into a linear form with
2 parameters (i.e. slope and intercept). Therefore, the individual parameters are not
themselves reliable; instead, these fits are intended to show that the MWC model
can account for the observed enzyme behavior. One possible set of parameters that
matches the data is given by e−β(ε A−ε I ) = 7.8×10−4, K A

M = 0.6mM, K I
M = 0.2mM,

RA
D = 0.03mM, RI

D = 7.9mM, k A
cat = 14 s−1, and k I

cat = 0.01 s−1. To find the value
of an individual parameter, we would instead setup an experiment where only that
single parameter varies and fit the resulting data.

S1.2.2 Fitting α-Amylase and Competitive Inhibitor Isoacarbose
Fig. S1.3 shows three activity curves of human pancreatic α-amylase titrating com-
petitive inhibitor at different substrate concentrations. This enzyme has one active
site which the substrate or competitive inhibitor can bind to. As discussed in
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section 1.4.1 of the main text, the activity curves all take the form

(
d[P]

dt

)−1
=

1
[Etot]

e−βε A
(
1 + [S]

K A
M

+
[C]
CA
D

)
+ e−βε I

(
1 + [S]

K I
M

+
[C]
CI
D

)
k A

cate−βε A
[S]
K A
M

+ k I
cate−βε I

[S]
K I
M

(S1.38)

which is linear in [C].

As noted above, in fitting 6 parameters to a linear form, the best fit parameter values
are not reliable, but are only intended to show that the MWC model can account
for the observed enzyme behavior. One possible set of parameters that matches the
data is given by e−β(ε A−ε I ) = 36, K A

M = 0.9mM, K I
M = 2.6mM, C A

D = 12 nM,
C I

D = 260 nM, and kA
cat

k I
cat
= 1.4. Because units for activity were not included in

original data, we instead fit the dimensionless quantity [Etot]k A
cat

(
d[P]

dt

)−1
which

rescales the y-axis but does not change the form of the activity curves [7].
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Figure S1.3: Theoretically and experimentally probing the effects of a com-
petitive inhibitor on activity. Data points show experimentally measured activity
in arbitrary units from Li et al. for the enzyme α-amylase using substrate analog
[S] (α-maltotriosyl fluoride) and competitive inhibitor [C] (isoacarbose), overlaid
by theoretical curves of the form given by Eq. S1.38. Best fit theoretical curves
described by the inverse of Eq. 1.65 are overlaid on the data. Reproduced from
Fig. 1.11(A) in the main text.

S1.2.3 Fitting Acetylcholinesterase Data
The acetylcholinesterase data in Fig. S1.4 was taken from Torpedo marmorata [8].
Using our framework from section 1.3.6, activity is given by

A = N
e−β(ε A−ε I ) k A

cat
[S]
K A
M

(
1 + [S]

K A
M

)N−1
+ k I

cat
[S]
K I
M

(
1 + [S]

K I
M

)N−1

e−β(ε A−ε I )
(
1 + [S]

K A
M

)N
+

(
1 + [S]

K I
M

)N (S1.39)

where N = 2 is the number of active sites.
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Figure S1.4: The activity of acetylcholinesterase exhibits a peak. The theoretical
best-fit curve is shown (light blue) together with another theory curve which ignores
the last three data points but better captures the height of the peak in the data (dashed,
red).

Activity is shown in units of (nanomoles product)·min−1 ·(mL enzyme)−1. Using the
density 3.6 mg

mL andmolecularweight 2.3×105 g
mol of the enzyme [8], 1mL enzyme =

1.6 × 10−8 mol. Therefore, 1 unit on the y-axis of the figure corresponds to
10−3 sec−1.

The best fit parameters (light blue curve in Fig. S1.4) were e−β(ε A−ε I ) = 0.5, K A
M =

6.1 × 10−3 M, K I
M = 2.8 × 10−4 M, k A

cat = 3.1 s−1, and k I
cat = 3.7 × 10−2 s−1. The

fitting is made difficult by two factors. First, the data points are not evenly spaced,
and the three data points clumped together near [S] = 2× 10−4 M have more weight
on the fit than other points. Second, we suspect that the final three data points in this
figure have a significant amount of error and should not curve back up – indeed, none
of the other acetylcholinesterase substrate inhibition curves from the same source
exhibit this feature [8]. To that end, we also show another theoretical curve (dashed,
red) in order to exemplify that the MWCmodel can capture the height of the peak in
the data. This latter curve has the parameters e−β(ε A−ε I ) = 0.7, K A

M = 7.4× 10−3 M,
K I

M = 5.9 × 10−4 M, k A
cat = 2.9 s−1, and k I

cat = 2.0 × 10−2 s−1.

S1.2.4 Further Example Data
In this section, we present data on ATCase (not discussed in the main text) which
provides an excellent opportunity to combine all of themolecular players and enzyme
features we have analyzed – allosteric regulators, competitive inhibitors, multiple
substrate binding sites – in one complete model.

The ATCase data in Fig. S1.5 was taken from Escherichia coli [9]. ATCase is an
allosteric enzyme with 6 active sites and 6 allosteric regulator sites. A competitive
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Figure S1.5: Inhibitor activation in aspartate carbamoyltransferase (ATCase).
Activity curves from E. coli ATCase are shown in the absence (blue circles) and
the presence of allosteric effectors, either the activator ATP (yellow squares) or
the inhibitor CTP (green diamonds) as a function of the competitive inhibitor N-
(phosphonacetyl)-L-aspartate (PALA). Data reproduced from Wales et al. and fit to
an MWC model.

inhibitor PALA is titrated, and the experiment is then repeated in the presence of
the allosteric activator ATP and the allosteric repressor CTP. Using our framework
from section 1.3.6, the rate of product formation equals

d[P]
dt
= N[Etot]

e−β(ε A−ε I ) k A
cat

[S]
K A
M

(
1 + [S]

K A
M

+
[C]
CA
D

)N−1
+ k I

cat
[S]
K I
M

(
1 + [S]

K I
M

+
[C]
CI
D

)N−1

e−β(ε A−ε I )
(
1 + [S]

K A
M

+
[C]
CA
D

)N
+

(
1 + [S]

K I
M

+
[C]
CI
D

)N

(S1.40)
where N = 6 is the number of active sites. The plot in Fig. S1.5 shows relative
activity, which is defined as

relative activity =
d[P]

dt(
d[P]

dt

)
[C]→0

. (S1.41)

All three curves were carried out at a substrate concentration [S] = 5mM of
aspartate. In the absence of allosteric effectors (blue curve), the best fit parameters
were e−β(ε A−ε I ) = 0.005, K A

M = 1.1mM, K I
M = 1.8mM, k A

cat = 400 s−1, k I
cat =

0.02 s−1, C A
D = 0.3 µM, and C I

D = 1.8 µM. As per the theoretical framework
developed in section 1.3.3, an allosteric regulator such as ATP or CTP can be

modeled by changing e−β(ε A−ε I ) → e−β(ε A−ε I ) *
,

1+ [R]
RA
D

1+ [R]
RI
D

+
-

N

in Eq. S1.40. From [9],

the concentrations of ATP (gold curve) and CTP (green curve) were [R] = 2mM.
Using the same MWC parameters as in the blue curve, the best fit parameters for
the allosteric activator ATP were RA

D = 0.07mM and RI
D = 0.10mM; the best fit

parameters for the allosteric inhibitor CTPwere RA
D = 0.14mMand RI

D = 0.10mM.
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S1.3 Data Collapse
In this section, we analyze the concept of data collapse, which allows us to map
the result of multiple activity curves onto a single curve using natural parameters
of the system. In section S1.3.1, we start by reviewing the simplest case (presented
in the main text) of an MWC enzyme with one active site in the presence of a
competitive inhibitor. We show that such an enzyme admits a data collapse using a
single parameter, so that all activity curves can be collapsed onto a single curve. In
section S1.3.2, we next consider the simplest MWC enzyme in the presence of an
allosteric regulator, with one active site and one allosteric site. This case requires
two parameters for a data collapse, and we show the resulting collapse onto a sheet.
We end with a general discussion of data collapse theory in section S1.3.3 which
enables us to extend these results to more complex enzymes (e.g. enzymes with
more catalytic sites in the presence of multiple species of allosteric regulators and
competitive inhibitors).

S1.3.1 Special Case: Enzyme with 1 Active Site and a Competitive Inhibitor
We start with a recap of the data collapse (discussed in section 1.4.1) of an enzyme
with a single active site in the presence of a competitive inhibitor whose states and
weights diagram is redrawn in Fig. S1.6. The activity A = 1

[Etot ]
d[P]

dt for such an
enzyme is given by

A =
k A

cate
−β∆ε [S]

K A
M

+ k I
cat

[S]
K I
M

e−β∆ε
(
1 + [S]

K A
M

+
[C]
CA
D

)
+

(
1 + [S]

K I
M

+
[C]
CI
D

) (S1.42)

where e−β∆ε = e−β(ε A−ε I ). Dividing the numerator and denominator by e−β∆ε
(
1 + [C]

CA
D

)
+(

1 + [C]
CI
D

)
,

A =

k A
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*..
,
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(
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CA
D
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+

(
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) +//
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(
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CI
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(
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D

)
+

(
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CI
D

) +
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KI
M

e−β∆ε
(
1+ [C]

CA
D

)
+

(
1+ [C]

CI
D

) + 1

=
k A

cate
−β∆F13 + k I

cate
−β∆F23

e−β∆F13 + e−β∆F23 + 1
(S1.43)
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Figure S1.6: States and weights for an MWC enzyme with an allosteric regu-
lator. Redrawn from Fig. 1.5 in the main text.
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Figure S1.7: Data from Li et al. showing the effects of a competitive inhibitor C
on the rate of product formation d[P]

dt
. (A) Individual activity curves are shown at

various concentrations of the substrate α-maltotriosyl fluoride (αG3F). (B) Curves
are all data collapsed onto a single curve using the Bohr parameter ∆F23 from
Eq. S1.49.

where we have defined the two Bohr parameters,

∆F13 = −
1
β
Log



e−β∆ε [S]
K A
M

e−β∆ε
(
1 + [C]

CA
D

)
+

(
1 + [C]

CI
D

) 
(S1.44)

∆F23 = −
1
β
Log



[S]
K I
M

e−β∆ε
(
1 + [C]

CA
D

)
+

(
1 + [C]

CI
D

) 
. (S1.45)

Because both ∆F13 and ∆F23 have the exact same dependence on [S] and [C], we
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can characterize the system by a single natural variable. For example, since

e−β∆F13 = e−β∆ε
K I

M

K A
M

e−β∆F23 (S1.46)

we can rewrite Eq. 3.1 using only ∆F23,

A =
k A

cate
−β∆ε K I

M

K A
M

e−β∆F23 + k I
cate

−β∆F23

e−β∆ε
K I
M

K A
M

e−β∆F23 + e−β∆F23 + 1
. (S1.47)

For cleanliness, we can group the constants using

K ≡ e−β∆ε
K I

M

K A
M

, (S1.48)

so that the activity becomes

A =

(
k A

cat K + k I
cat

)
e−β∆F23

(K + 1)e−β∆F23 + 1
, (S1.49)

matching Eq. 1.66 from the text. As discussed in the text, this form allows us to map
any number of activity curves onto a single curve of activity A versus the natural
variable of the system ∆F23. We redraw such a plot from the main text in Fig. S1.7.

S1.3.2 Special Case: Enzyme with 1 Active Site and an Allosteric Regulator
Consider an enzyme with one active site and one allosteric site in the presence of
an allosteric regulator. The states and weights for such an enzyme are redrawn in
Fig. S1.8. The activity of such an enzyme is given by

A =
k A

cate
−β∆ε [S]

K A
M

(
1 + [R]

RA
D

)
+ k I

cat
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(
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) (
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)
+

(
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K I
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) (
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) . (S1.50)

where e−β∆ε = e−β(ε A−ε I ). We rewrite the numerator as

A =
A1e−β∆ε [S]

K A
M

(
1 + [R]

RA
D

)
+ A2

[S]
K I
M

(
1 + [R]

RI
D

)
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(
1 + [S]

K A
M

) (
1 + [R]

RA
D

)
+

(
1 + [S]

K I
M

) (
1 + [R]

RI
D

) (S1.51)

where

A1 = k A
cat (S1.52)

A2 = k I
cat . (S1.53)



74

kcat
A

kcat
A

e-βεA

[S ]
KM

e-βεA A

0

[R ]
RD

e-βεA A 0

[S ]
KM

e-βεA A
[R ]
RD

A kcat
I

kcat
I

0

0

e-βεI

[S ]
KM

e-βεI I

[R ]
RD

e-βεI I

[S ]
KM

e-βεI I
[R ]
RD

I

STATE RATEWEIGHT STATE RATEWEIGHT

ACTIVE
STATES

INACTIVE
STATES

Figure S1.8: States and weights for an MWC enzyme with a competitive inhi-
bitor. Redrawn from Fig. 1.7 in the main text.

Dividing the numerator and denominator by
(
1 + [R]

RA
D

)
+

(
1 + [R]

RI
D

)
, we can rewrite

the activity using four natural variables,

A =
A1e−β∆F13 + A2e−β∆F23

e−β∆F13 + e−β∆F23 + 1
(S1.54)

where
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∆F23 = −
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Log
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(
1 + [R]
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) 
. (S1.56)

In this case, the two natural variables have a fundamentally different dependence on
[R] and hence cannot be combined as in the case of a competitive inhibitor. With
two parameters, any number of activity curves can be collapsed down upon a surface
as shown in Fig. S1.9.

S1.3.3 General Theory
We now abstract the procedure used in the previous sections in order to understand
how to obtain a data collapse for any enzyme system. Suppose we enumerate all of
the states and weights of an enzyme, and that all of the states pooled together only
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Figure S1.9: Data fromFeller et al. demonstrating the rate of product formation
d[P]
dt

in the presence of an allosteric activator NaCl. (A) Individual activity curves
ofα-amylase are shown at various concentrations of a substrate analog (EPS). Curves
reproduced from Fig. 1.10 in main text but with the y-axis showing d[P]

dt rather than
[S]

d[P]/dt . (B) Curves are all data collapsed onto a surface using the Bohr parameters
∆F13 and ∆F23 from Eqs. S1.55 and S1.56.

have three distinct catalytic rates A1, A2, and A3. (It is straightforward to generalize
this argument to any number other than three.)

Define S1, S2, and S3 to be the states that have catalytic rates A1, A2, and A3. Then
the activity of the enzyme is given by

A =
A1

∑
j∈S1 e−βEj + A2

∑
j∈S2 e−βEj + A3

∑
j∈S3 e−βEj∑

j∈S1 e−βEj +
∑

j∈S2 e−βEj +
∑

j∈S3 e−βEj
. (S1.57)

Defining the free energies

e−βF1 ≡
∑
j∈S1

e−βEj (S1.58)

e−βF2 ≡
∑
j∈S2

e−βEj (S1.59)

e−βF3 ≡
∑
j∈S3

e−βEj (S1.60)

allows us to rewrite the activity as

A =
A1e−βF1 + A2e−βF2 + A3e−βF3

e−βF1 + e−βF2 + e−βF3

=
A1e−β∆F13 + A2e−β∆F23 + A3

e−β∆F13 + e−β∆F23 + 1
(S1.61)

where ∆F13 ≡ F1 − F3 and ∆F23 ≡ F2 − F3 are the two minimal parameters defining
the system. Here, we see explicitly that each Bohr parameter corresponds to a free
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energy difference between combinations of states with the same activity (hence the
notation ∆F).

For example, in section S1.3.1 above, the activity of an enzyme with one active site
in the presence of a competitive inhibitor is given by

A =
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) . (S1.62)

To match the form of Eq. S1.61, we rewrite this equation as
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with A1 = k A
cat , A1 = k I

cat , and A3 = 0. Dividing the numerator and denominator
by e−β∆ε
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)
yields the data collapse equation
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with the two Bohr parameters

∆F13 = −
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Log
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S1.4 Inhibitor Acceleration: ATCase
This section will examine the phenomenon of inhibitor acceleration. The analysis
will closely follow section 1.4.2 in the text. We first demonstrate that inhibitor
acceleration (having a peak in activity as a function of competitive inhibitor con-
centration) cannot occur for any enzyme with one active site and then show that it
can occur for an MWC enzyme with two (or more) active sites.
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Figure S1.10: The activity of aspartate carbamoyltransferase (ATCase) exhibits
a peak. Reproduced from Fig. S1.5.

S1.4.1 Inhibitor Acceleration Does Not Occur for an Enzyme with One Active
Site

Consider an enzyme with a single active site in the presence of a competitive
inhibitor, as in Fig. 1.7. We start by rewriting the activity for such an enzyme from
Eq. 1.50,

A =
1
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d[P]

dt
=

k A
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+
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)
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M

+
[C]
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D

) . (S1.67)

The derivative of activity with respect to inhibitor concentration [C] is given by

dA
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= −

(
e−βε A 1

CA
D

+ e−βε I 1
CI
D

) (
e−βε A kA

cat

K A
M

+ e−βε I k I
cat

K I
M

)
[S](

e−βε A
(
1 + [S]

K A
M

+
[C]
CA
D

)
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(
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K I
M

+
[C]
CI
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))2 . (S1.68)

Since the numerator cannot equal zero for any value of [C], a peak cannot occur
when the competitive inhibitor is added. Instead, dA

d[C] is negative, indicating that
adding more competitive inhibitor will decrease the activity, as is typically expected
from an inhibitor.

S1.4.2 Inhibitor Acceleration for an Enzyme with Two Active Sites
Some allosteric enzymes exhibit an increase in activity when a small amount of
competitive inhibitor C is introduced, as shown in Fig. S1.10. The simplest enzyme
model which allows such a peak has two substrate binding sites and includes allos-
tery. For simplicity, we work in the limit k I

cat = 0. Combining the results from
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Figure S1.11: Mechanism underlying peak in activation by a competitive in-
hibitor C. At low inhibitor concentrations, [C] � C A

D, most enzymes are in the
inactive form (sharp, green). As the amount of inhibitor increases, it will begin to
compete with the substrate for active sites. At medium concentrations, [C] � C A

D,
some enzymes will have one site filled with a competitive inhibitor which prefers to
bind in an active-state (rounded, green) enzyme complex. This increased probabi-
lity of having active-state enzyme-substrate complexes (albeit with one enzyme site
filled with an inhibitor) yields a larger activity compared to the low inhibitor con-
centrations. At large inhibitor concentrations, [C] � C A

D, the inhibitor outcompetes
the substrate for active sites and enzyme activity is suppressed.

sections 1.3.4 and 1.3.5, the activity for such an enzyme is given by

A = k A
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2 [S]
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)2 . (S1.69)

A peak will occur provided that dA
d[C] = 0 for a positive value of [C]. For now, we skip

the details of solving such a root (discussed in Appendix S1.5.2) and move straight
to the results. Eq. S1.69 will have a positive root for [C] provided the following
relation holds,

e−β(ε A−ε I ) <
*..
,

1 + [S]
K I
M

1 + [S]
K A
M

+//
-

2

− 2
C A

D

C I
D

1 + [S]
K I
M

1 + [S]
K A
M

(k I
cat = 0). (S1.70)

Acceleration by an inhibitor has historically been explained by a competitive inhibi-
tor binding to one active site of an enzyme, forcing it into the active state [10]. This
is indeed part of the story. Consider an enzyme that natively favors the inactive state
when no inhibitor is present, as shown in the [C] � C A

D region of Fig. S1.11. As [C]
increases, many enzymes will bind inhibitor in one active site, leaving the remaining
active site free to bind substrate. If the inhibitor favors binding to the active-state
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Figure S1.12: States and weights for an MWC enzyme with two substrate
binding sites. Reproduced from Fig. 1.9.

enzyme, the ratio of active to inactive enzymes will increase which will generate a
peak in activity. When [C] � C A

D, the inhibitor will fill nearly all active sites and
quash product formation. This story suggests that having a smaller CA

D

CI
D

value (i.e.
having an inhibitor which strongly prefers binding to an active-state enzyme) will
increase the likelihood of generating a peak. This is confirmed by the peak condition
Eq. S1.70 where decreasing CA

D

CI
D

increases the right-hand side of the inequality.

However, the complete story behind activation by inhibitor is more nuanced. To
gain some intuition, we first consider the limit CA

D

CI
D

≈ 0 where the inhibitor binds
exclusively to the active rather than the inactive state. This limit maximizes the
right-hand side of Eq. S1.70 which we can rewrite as

e−βε A *
,
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,
1 +

[S]
K I

M

+
-
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D

C I
D

= 0). (S1.71)

This inequality tells us about the nature of the enzyme. Let us return momentarily
to the states and weights of an allosteric enzyme with two substrate binding sites in
the absence of competitive inhibitor which we reproduce here in Fig. S1.12. The
total weights of the enzyme being in any active state is given by the sum of the
weights in the left column,

wA = e−βε A+e−βε A
[S]
K A

M

+e−βε A
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,
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+
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2

= e−βε A *
,
1 +
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K A

M

+
-

2

. (S1.72)
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Similarly, the total weight of the enzyme being in any inactive state is given by

wI = e−βε I + e−βε I
[S]
K I

M

+ e−βε I
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2
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+
-

2

. (S1.73)

Therefore, the relation Eq. S1.71 states that the total weight of the active states is
smaller than the total weight of the inactive states, wA < wI , or equivalently that the
enzyme (in the absence of a competitive inhibitor) is more likely to be in an inactive
state.

We now return to the more general case when CA
D

CI
D

> 0. Recall that as CA
D

CI
D

increases,
so does the relative affinity of the competitive inhibitor to the inactive states over the
active states. We can rewrite the peak condition when CA

D

CI
D

> 0 from Eq. S1.70 as

e−βεA *
,
1 +

[S]
K A
M

+
-

2

< e−βεI *
,
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[S]
K I
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-

2
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{
2e−βεI
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*
,
1 +

[S]
K I
M

+
-

*
,
1 +

[S]
K A
M

+
-

}
(k I

cat = 0).

(S1.74)
The term in curly braces {· · ·} on the right is positive and increases with CA

D

CI
D

.

Compared to the special case CA
D

CI
D

= 0 in Eq. S1.71, an enzyme satisfying Eq. S1.74
must favor the inactive states over the active states to a greater extent. More formally,
the maximal ratio wA

wI
of the active state weights to inactive state weights that permits

a peak decreases as CA
D

CI
D

increases.

Second, consider the limit C A
D = C I

D where the competitive inhibitor equally favors
the active and inactive states. According to Eq. S1.70, a peak can still occur provided
that

1 + e−β(ε A−ε I ) <
*..
,

[S]
K A
M

1 + [S]
K A
M

+//
-

2

*
,

K A
M

K I
M

− 1+
-

2

(k I
cat = 0, C A

D = C I
D). (S1.75)

It may seem surprising that an inhibitor that binds equally well to the active and
inactive enzyme states can increase the amount of active state enzymes as per
Fig. S1.11. However, Eq. S1.71 shows that any enzyme that exhibits inhibitor
acceleration must favor the inactive states more in the absence of inhibitor. Relative
to this pool of enzyme which are mostly in the inactive states, the presence of an
inhibitor with C A

D = C I
D will increase the fraction of enzymes in the active states.

Finally, we consider the case where introducing a competitor keeps the same fraction
of enzymes in the active and inactive states, and we expect that this case cannot
generate a peak in activity. Drawing on the states and weights in Fig. 1.7 (but
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recalling that our enzyme has two active sites), the dissociation constants C A
D and

C I
D of such a competitive inhibitor must satisfy

e−βε A
(
1 + [S]

K A
M

+
[C]
CA
D

)2

e−βε I
(
1 + [S]

K I
M

+
[C]
CI
D

)2 =
e−βε A

(
1 + [S]

K A
M

)2

e−βε I
(
1 + [S]

K I
M

)2 . (S1.76)

The only solution to this equation occurs when

C A
D

C I
D

=

1 + [S]
K I
M

1 + [S]
K A
M

, (S1.77)

which upon substitution into Eq. S1.70 yields the expected result that a peak cannot
occur when the competitive inhibitor does not change the balance between the
active and inactive states. One might expect that for all values of CA

D

CI
D

smaller than
this (where the inhibitor does push more enzymes into the active state), a peak could
occur. However, Eq. S1.70 indicates that a can only occur provided that a stronger
constraint holds, namely

2
C A

D

C I
D

<
1 + [S]

K I
M

1 + [S]
K A
M

. (S1.78)

Having analyzed these specific cases, we now turn to some general characteristics
of this peak. Having calculated the concentration [C]0 in Appendix S1.5.2 where
the peak occurs, it is straightforward to compute the maximum height of the activity
curve,

Apeak = k A
cat

[S]
K A

M

*
,

√(
CA
D

CI
D

)2
+ e−β(ε A−ε I ) −

CA
D

CI
D

+
-(

1 + [S]
K I
M

)
−

CA
D

CI
D

(
1 + [S]

K A
M

) . (S1.79)

Substituting in the peak condition Eq. S1.70 we obtain

Apeak < k A
cat

[S]
K A
M

1 + [S]
K A
M

. (S1.80)

The enzyme can approach the maximum possible activity k A
cat in the limit 1 �

[S]
K A
M

when the active state enzyme dominates, analogous to the result for substrate
inhibition Eq. 1.73. We can also compare the peak height to the activity when no
inhibitor is present,

A[C]→0 = 2k A
cat

e−β(ε A−ε I )
(

[S]
K A
M

+
[S]
K A
M

2
)

e−β(ε A−ε I )
(
1 + [S]

K A
M

)2
+

(
1 + [S]

K I
M

)2 . (S1.81)
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Figure S1.13: Peak in enzyme activity A = 1
Etot

d[P]
dt

as a function of competitive
inhibitor concentration [C]. As shown in Fig. 1.12B, with Michaelis-Menten
kinetics adding a competitive inhibitor can only slow down activity, but an MWC
enzyme can be activated by an inhibitor which results in a peak. Peak are shown
for (A) small and (B) large ratios of the enzyme’s energy in the active versus
inactive state, e−β(ε A−ε I ). As in the case of substrate inhibition, the height of the
peak increases with e−β(ε A−ε I ). The activity is computed from Eq. S1.69 using the
parameters [S]

K A
M

= 10, CA
D

CI
D

= 10−2, the parameters from Fig. 1.13, and the different
values of e−β(ε A−ε I ) shown. As predicted by Eq. S1.70, for the parameters chosen
every value in the range e−β(ε A−ε I ) < 65 will yield a peak in activity.

Examples of such peaks are shown in Fig. S1.13. As in the case of substrate
inhibition, the peak height Apeak monotonically increases and the relative peak
height Apeak

A[C]→0
monotonically decreases with the energy difference between the active

and inactive state, e−β(ε A−ε I ).

The enzyme ATCase offers an example of inhibitor acceleration. ATCase is an
allosteric enzyme with 6 active sites and 6 regulatory sites [11]. In the absence of
ligand, ATCase exists in an equilibrium between the unbound active and unbound
inactive states, the latter being more energetically favorable [12]. When the inhibitor
PALA binds to ATCase, it strongly induces a transition from inactive to active state
[13], in line with our theoretical prediction. It has been shown that by adding
allosteric regulators, the peak in ATCase activity can be increased or prevented
altogether [9]. It would be interesting to undertake the converse experiment and
induce inhibitor activation in an enzyme that typically does not show a peak in
activity.
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S1.5 Derivations
S1.5.1 Substrate Inhibition
We now derive the general peak condition for substrate inhibition without the extra
assumption k I

cat = 0 used in the text. Recall that we define the active state of an
enzyme as the state with the greater catalytic rate so that k A

cat > k I
cat . We start by

rewriting the full form of the activity equation 1.70 from section 1.4.2.2,

A =
2k A

cate
−βε A [S]

K A
M

(
1 + [S]

K A
M

)
+ 2k I

cate
−βε I [S]

K I
M

(
1 + [S]

K I
M

)
e−βε A

(
1 + [S]

K A
M

)2
+ e−βε I

(
1 + [S]

K I
M

)2 , (S1.82)

we derive the peak condition Eq. 1.71. We define the numerator and denominator
of the activity as

A ≡
ZS

Ztot
(S1.83)

where, from states and weights in Fig. 1.9,

ZS = 2k A
cate

−βε A
[S]
K A

M

*
,
1 +

[S]
K A

M

+
-
+ 2k I

cate
−βε I

[S]
K I

M

*
,
1 +

[S]
K I

M

+
-

(S1.84)

is the sum of all weights multiplied by their rate of product formation and

Ztot = e−βε A *
,
1 +

[S]
K A

M

+
-

2

+ e−βε I *
,
1 +

[S]
K I

M

+
-

2

(S1.85)

is the sum of all weights. By varying the substrate concentration [S], we find a peak
in the activity A provided that

dA
d[S]

=

dZS

d[S] Ztot − ZS
dZtot

d[S]

Z2
tot

= 0. (S1.86)

Thus, a peak occurs if the numerator dZS

d[S] Ztot − ZS
dZtot

d[S] equals zero. Because ZS and
Ztot are quadratic in [S], the terms dZS

d[S] Ztot and ZS
dZtot

d[S] in the numerator are cubic in
[S]. However, the cubic terms exactly cancel each other, so that Eq. S1.86 becomes
a quadratic equation,

0 =
dZS

d[S]
Ztot − ZS

dZtot

d[S]
≡ 2

(
K A

M K I
M

)4 (
a[S]2 + b[S] + c

)
, (S1.87)
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where we have pulled out the prefactor 2
(
K A

M K I
M

)4
for convenience and

a =
(
e−βε A + e−βε I

) *..
,

e−βε Ak A
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e−βε I k I
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K I
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+//
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(S1.88)
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b = 2
(
e−βε A + e−βε I

) *..
,
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+//
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c =
(
e−βε A + e−βε I

) *
,

e−βε Ak A
cat

K A
M

+
e−βε I k I

cat

K I
M

+
-
. (S1.91)

The roots of this equation are given by

[S]0 =
−b ±

√
b2 − 4ac

2a
. (S1.92)

Since b, c > 0, there will only be a positive real root [S]0 > 0 if

a < 0. (S1.93)

Writing this inequality out as
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we multiply by (K A

M )3

e−βεAe−βεI k I
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to obtain
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and move the kA
cat

k I
cat

terms to one side,
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There are now two cases to consider. If the term on the right hand side is positive,

1 +
e−βε A

e−βε I
< *
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K A
M

K I
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− 1+
-

2

, (S1.97)
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then we can divide by this term on both sides to obtain the peak condition
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On the other hand, if the term on the right-hand side of Eq. S1.96 is negative, then
the term on the left-hand side must also be negative,
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and because e−βε A, e−βε I , K A
M, K

I
M > 0 this implies
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. (S1.101)

Solving Eq. S1.96 for kA
cat

k I
cat

(and flipping the sign of the inequality because of
Eq. S1.99) yields the relation
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Assuming Eq. S1.101, the term on the left-hand side can be at most 1
2 , so that for an

enzyme that satisfies k A
cat > k I

cat Eq. S1.102 can never be satisfied. Hence, for a two
substrate binding site enzyme assuming k I

cat < k A
cat , a peak in activity as a function

of substrate concentration [S] will occur if and only if(
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(S1.103)
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In the text, we assumed k I
cat = 0 so that the second condition Eq. S1.104 is auto-

matically satisfied and Eq. S1.103 became the only necessary condition for a peak.
In the general case when k I

cat is not negligible, the second constraint Eq. S1.104
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ensures that the contribution of product formation from the inactive state does not
destroy the peak which would be formed by the active states alone.

Activity curves that exhibit a peakwith a non-zero k I
cat value are shown in Fig. S1.14.

Although these curves look very similar to those shown in Fig. 1.13 for the case
k I

cat = 0, one important difference is that given K A,I
M and k A,I

cat values, there is now a
lower bound for e−β(ε A−ε I ) given by the second peak condition Eq. S1.104.
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Figure S1.14: Peak in enzyme activity A = 1
Etot

d[P]
dt

as a function of substrate
concentration [S]. As shown in Fig. 1.12A, withMichaelis-Menten kinetics adding
substrate can only increase enzyme activity, but anMWC enzyme can exhibit a peak
due to the interactions between the active and inactive state. Peaks are shown for
(A) small and (B) large ratios of the enzyme’s energy in the active versus inactive
state, e−β(ε A−ε I ). The activity is computed from Eq. S1.82 using the same parameter
values from Fig. 1.13 except that kA

cat

k I
cat
= 103. The curves with small e−β(ε A−ε I ) values

shown in (A) vary appreciably from those in Fig. 1.13 (where k I
cat = 0) because the

inactive state catalyzes substrate. This changes both the shape and the height of the
activity curves.

It is straightforward to substitute the positive root for substrate concentrationEq. S1.92
into the activity Eq. S1.82 to find the height of the peak, resulting in

Apeak =

k I
cat K

A
M − k A

cat K
I
M +

√(
1
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1
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) (
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)2)
K A

M − K I
M

.

(S1.105)
In the limit k I

cat = 0 discussed in the text, this simplifies to

Apeak = k A
cat

K I
M

K A
M − K I

M

*
,

√
1 +

e−βε A

e−βε I
− 1+

-
. (S1.106)

Lastly, we note that adding a fixed amount of competitive inhibitor [C] to a system
may induce a peak in activity as a function of substrate concentration [S], as shown
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in Fig. S1.15. In the language of theMWCmodel (Eqs. 1.52-1.55 in the text), adding
the inhibitor tunes the MWC parameters so that the peak conditions Eqs. S1.103
and S1.104 apply.
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Figure S1.15: Peaks in activity can be induced by a competitive inhibitor.
Adding a competitive inhibitor can induce a peak in activity d[P]

dt versus substrate
concentration [S]. Curves are shown for an enzyme with two active sites using the
parameters kA

cat

k I
cat
= 104, K A

M

K I
M

= 104, CA
D

CI
D

= 10−1, and e−β(ε A−ε I ) = 1
2 .

S1.5.2 Inhibitor Acceleration
We now derive the peak condition for Inhibitor Acceleration discussed in Appendix
S1.4.2. For an enzyme with two substrate binding sites and a competitive inhibitor
C, enzyme activity is given by

A = k A
cat

(
2pEAS

)
+ k A

cat
(
2pEASC

)
+ 2k A

cat

(
pEAS2

)
+ k I

cat
(
2pEI S

)
+ k I

cat
(
2pEI SC

)
+ 2k I

cat

(
pEI S2

)
. (S1.107)

Assuming k I
cat = 0 for simplicity, this equation takes the form
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where
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A peak in activity will occur provided that

dA
d[C]

= 2k A
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−βε A
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d[C] Ztot − ZC
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d[C]

Z2
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= 0, (S1.111)

or equivalently that the numerator dZC

d[C] Ztot − ZC
dZtot

d[C] equals zero. We can rewrite
the numerator as
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The roots of this equation are given by

[C]0 =
−b ±

√
b2 − 4ac

2a
. (S1.116)

Since a, b < 0, there will only be a positive real root [C]0 > 0 if

c > 0. (S1.117)

Therefore, the peak condition can be written as
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or equivalently,
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which matches Eq. S1.70, as desired.
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S1.5.3 Michaelis-Menten Enzymes Do Not Exhibit Peaks
In this section, we show that aMichaelis-Menten enzymewith an arbitrary number of
substrate binding sites cannot exhibit substrate inhibition nor inhibitor acceleration.
This implies that the interplay between the active and inactive MWC states were
necessary to produce the peaks in activity discussed in section 1.4.2.2 and Appendix
S1.4.2.

Consider a Michaelis-Menten enzyme with N binding sites where either a substrate
S or a competitive inhibitor C can bind. Using the general formulation from
section 1.3.6, we will assume that the enzyme only has an active state and drop the
A superscripts. Each binding site can be either be empty, occupied by substrate,
or occupied by competitor, which would contribute a factor of 1, [S]

KM
, or [C]

CD
,

respectively, to its weight. A state with j bound substrates forms product at a rate
of j kcat . Therefore, the activity A = 1

Etot

d[P]
dt equals

A =

∑N
j=0

∑N− j
k=0

(
j kcat

) N!
j!k!(N− j−k)!

( [S]
KM

) j ( [C]
CD

) k(
1 + [S]

KM
+

[C]
CD

)N

=N kcat

[S]
KM

(
1 + [C]

CD
+

[S]
KM

)N−1(
1 + [S]

KM
+

[C]
CD

)N

=N kcat

[S]
KM

1 + [S]
KM
+

[C]
CD

. (S1.120)

Taking the derivative of the activity with respect to the substrate concentration [S]
and the inhibitor concentration [C],

dA
d[S]

=
N kcat

KM

1 + [C]
CD(

1 + [S]
KM
+

[C]
CD

)2 (S1.121)

and
dA

d[C]
= −

N kcat

CD

[S]
KM(

1 + [S]
KM
+

[C]
CD

)2 , (S1.122)

we find that neither derivative can be zero. Therefore, inhibitor acceleration cannot
occur for a non-MWC enzyme.
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In June 2016, Rob and I prepared a beautiful paper analyzing data from our collaborator

Mitch Lewis (University of Pennsylvania). The paper was ready to go and slated for PNAS,

but just as I was about to submit, Rob came into the room and said, “don’t submit!” It

turned out that some parameters might be different from what we had assumed, but I pointed

out that if these values were not more than an order of magnitude off (which Mitch believed

was the case), our results would remain unchanged. Rob agreed, but he suggested that we
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could quickly redo these experiments in our lab where we precisely know each parameter.

Moreover, we could write a prequel where we verify that the system follows our model. It

seemed that one paper had just become two papers, and the prequel paper is discussed in

this chapter while the ready-to-go paper is discussed in Chapter 3.

Little did I realize that this project would turn into one of the most rigorous, difficult, time-

consuming, awe-inspiring, and high-quality papers of my PhD. Four experimentalists from

my lab joined this project, and they developed an exquisitely robust data-analysis pipeline

(as attested by the 45 pages of Methods and Supplementary Information in our manuscript).

By sitting in on their meetings, I got a taste of what it means to be an experimentalist –

the positive mindset needed to tackle setbacks and to redo experiments time and again until

things work – as well as the joys and hardships of working in a large group. It took another

year for the paper to be published, but looking back, the most important lesson I learned was

that the final manuscript was far better than anything I could have written myself. Science

is always best when done in a community or, better yet, with friends.

2.1 Abstract
Allosteric regulation is found across all domains of life, yet we still lack simple,
predictive theories that directly link the experimentally tunable parameters of a
system to its input-output response. To that end, we present a general theory of
allosteric transcriptional regulation using theMonod-Wyman-Changeux model. We
rigorously test this model using the ubiquitous simple repression motif in bacteria
by first predicting the behavior of strains that span a large range of repressor copy
numbers and DNA binding strengths and then constructing and measuring their
response. Our model not only accurately captures the induction profiles of these
strains but also enables us to derive analytic expressions for key properties such
as the dynamic range and [EC50]. Finally, we derive an expression for the free
energy of allosteric repressors which enables us to collapse our experimental data
onto a single master curve that captures the diverse phenomenology of the induction
profiles.

2.2 Introduction
Understanding how organisms sense and respond to changes in their environment
has long been a central theme of biological inquiry. At the cellular level, this
interaction is mediated by a diverse collection of molecular signaling pathways.
A pervasive mechanism of signaling in these pathways is allosteric regulation,
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in which the binding of a ligand induces a conformational change in some target
molecule, triggering a signaling cascade [1]. One of the most important examples of
such signaling is offered by transcriptional regulation, where a transcription factor’s
propensity to bind to DNA will be altered upon binding to an allosteric effector.

Despite allostery’s ubiquity, we lack a formal, rigorous, and generalizable framework
for studying its effects across the broad variety of contexts in which it appears. A key
example of this is transcriptional regulation, in which allosteric transcription factors
can be induced or corepressed by binding to a ligand. An allosteric transcription
factor can adopt multiple conformational states, each of which has its own affinity
for the ligand and for its DNA target site. In vitro studies have rigorously quantified
the equilibria of different conformational states for allosteric transcription factors
and measured the affinities of these states to the ligand [2, 3]. In spite of these
experimental observations, the lack of a coherent quantitative model for allosteric
transcriptional regulation has made it impossible to predict the behavior of even a
simple genetic circuit across a range of regulatory parameters.

The ability to predict circuit behavior robustly— that is, across both broad ranges of
parameters and regulatory architectures—is important for multiple reasons. First, in
the context of a specific gene, accurate prediction demonstrates that all components
relevant to the gene’s behavior have been identified and characterized to sufficient
quantitative precision. Second, in the context of genetic circuits in general, robust
prediction validates the model that generated the prediction. Possessing a validated
model also has implications for future work. For example, when we have sufficient
confidence in the model, a single data set can be used to accurately extrapolate a
system’s behavior in other conditions. Moreover, there is an essential distinction
between a predictive model, which is used to predict a system’s behavior given
a set of input variables, and a retroactive model, which is used to describe the
behavior of data that has already been obtained. We note that even some of the
most careful and rigorous analysis of transcriptional regulation often entails only a
retroactive reflection on a single experiment. This raises the fear that each regulatory
architecture may require a unique analysis that cannot carry over to other systems, a
worry that is exacerbated by the prevalent use of phenomenological functions (e.g.
Hill functions or ratios of polynomials) that can analyze a single data set but cannot
be used to extrapolate a system’s behavior in other conditions [4–8].

This work explores what happens when theory takes center stage, namely, we first
write down the equations governing a system and describe its expected behavior



94

across a wide array of experimental conditions, and only then do we set out to
experimentally confirm these results. Building upon previous work [9–11] and the
work of Monod, Wyman, and Changeux [12], we present a statistical mechanical
rendering of allostery in the context of induction and corepression (shown schema-
tically in Fig. 2.1(A) and henceforth referred to as the MWC model) and use it as
the basis of parameter-free predictions which we then test experimentally. More
specifically, we study the simple repression motif – a widespread bacterial genetic
regulatory architecture in which binding of a transcription factor occludes binding
of an RNA polymerase, thereby inhibiting transcription initiation. TheMWCmodel
stipulates that an allosteric protein fluctuates between two distinct conformations –
an active and inactive state – in thermodynamic equilibrium [12]. During induction,
for example, effector binding increases the probability that a repressor will be in
the inactive state, weakening its ability to bind to the promoter and resulting in
increased expression. To test the predictions of our model across a wide range of
operator binding strengths and repressor copy numbers, we design an E. coli genetic
construct in which the binding probability of a repressor regulates gene expression
of a fluorescent reporter.

In total, the work presented here demonstrates that one extremely compact set of
parameters can be applied self-consistently and predictively to different regulatory
situations including simple repression on the chromosome, cases in which decoy
binding sites for repressor are put on plasmids, cases in which multiple genes
compete for the same regulatory machinery, cases involving multiple binding sites
for repressor leading to DNA looping, and induction by signaling [9, 10, 13–16].
Thus, rather than viewing the behavior of each circuit as giving rise to its own
unique input-output response, the MWC model provides a means to characterize
these seemingly diverse behaviors using a single unified framework governed by a
small set of parameters.

2.3 Results
2.3.1 CharacterizingTranscriptionFactor Inductionusing theMonod-Wyman-

Changeux (MWC) Model
We begin by considering a simple repression genetic architecture in which the bin-
ding of an allosteric repressor occludes the binding of RNA polymerase (RNAP) to
the DNA [19, 20]. When an effector (hereafter referred to as an “inducer" for the
case of induction) binds to the repressor, it shifts the repressor’s allosteric equili-
brium towards the inactive state as specified by the MWC model [12]. This causes



95

induction corepression

examples from E. coli
transcription factor allosteric 

effector role

TetR

LacI allolactose metabolism

antibiotic 
resistancetetracycline

NagC catabolism

[effector] [effector]

saturation

(B)

(C)

active repressor

inactive repressor

RNA polymerase

allosteric effector

GlcNAc

examples from E. coli
transcription factor allosteric 

effector role

PurR

IclR glyoxylate metabolism

catabolismpurines

TrpR catabolismtryptophan

leakiness

dynamic
range

[EC50]

effective Hill coefficient

(A)    

transcription factor competition

inferred parameter

free energy difference between 
repressor conformational states

via video microscopy

allosteric regulation

inferred parameter

inducer dissociation constants

via flow cytometry

single-site repression

measured parameter

repressor copy number

inferred parameter

repressor-DNA binding strength

via quantitative western blotting

via colorimetric assay

Figure 2.1: Transcription regulation architectures involving an allosteric repressor.
(A) We consider a promoter regulated by an allosteric repressor (left panel), where the
addition of an effector binds to the repressor and stabilizes the inactive state (the state
with low affinity for DNA), thereby increasing gene expression. Corepression (right panel)
is characterized by the same statistical mechanical model we develop. (B) A schematic
response plotting fold-change in gene expression as a function of effector concentration,
where fold-change is defined as the ratio of gene expression in the presence versus the
absence of repressor, together with four key phenotypic properties of the response. (C) The
simple repression architectures has been characterized using multiple experimental methods
including colorimetric assays/quantitative Western blots and video microscopy, and add to
this list the additional method of flow cytometry.

the repressor to bind more weakly to the operator, which increases gene expression.
Simple repression motifs in the absence of inducer have been previously characte-
rized by an equilibrium model where the probability of each state of repressor and
RNAP promoter occupancy is dictated by the Boltzmann distribution [9, 10, 19–22]
(we note that non-equilibrium models of simple repression have been shown to have
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the same functional form that we derive below [23]). We extend these models to
consider allostery by accounting for the equilibrium state of the repressor through
the MWC model.

Thermodynamic models of gene expression begin by enumerating all possible states
of the promoter and their corresponding statistical weights. As shown in Fig. 2.2A,
the promoter can either be empty, occupied by RNAP, or occupied by either an
active or inactive repressor. The probability of binding to the promoter will be
affected by the protein copy number, which we denote as P for RNAP, RA for active
repressor, and RI for inactive repressor. We note that repressors fluctuate between
the active and inactive conformation in thermodynamic equilibrium, such that RA

and RI will remain constant for a given inducer concentration [12]. We assign
the repressor a different DNA binding affinity in the active and inactive state. In
addition to the specific binding sites at the promoter, we assume that there are NN S

non-specific binding sites elsewhere (i.e. on parts of the genome outside the simple
repression architecture) where the RNAP or the repressor can bind. All specific
binding energies are measured relative to the average non-specific binding energy.
Thus, ∆εP represents the energy difference between the specific and non-specific
binding for RNAP to the DNA. Likewise, ∆εRA and ∆εRI represent the difference
in specific and non-specific binding energies for repressor in the active or inactive
state, respectively.

Thermodynamic models of transcription [9–11, 19–22, 24–26] posit that gene ex-
pression is proportional to the probability that the RNAP is bound to the promoter
pbound, which is given by

pbound =
P

NNS
e−β∆εP

1 + RA

NNS
e−β∆εRA +

RI

NNS
e−β∆εRI + P

NNS
e−β∆εP

, (2.1)

with β = 1
kBT where kB is the Boltzmann constant and T is the temperature of the

system. As kBT is the natural unit of energy at the molecular length scale, we treat
the products β∆ε j as single parameters within our model. Measuring pbound directly
is fraught with experimental difficulties, as determining the exact proportionality
between expression and pbound is not straightforward. Instead, we measure the
fold-change in gene expression due to the presence of the repressor. We define
fold-change as the ratio of gene expression in the presence of repressor relative to
expression in the absence of repressor (i.e. constitutive expression), namely,

fold-change ≡
pbound(R > 0)
pbound(R = 0)

. (2.2)
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Figure 2.2: States and weights for the simple repression motif. (A) RNAP
(light blue) and a repressor compete for binding to a promoter of interest. There
are RA repressors in the active state (red) and RI repressors in the inactive state
(purple). The difference in energy between a repressor bound to the promoter of
interest versus another non-specific site elsewhere on the DNA equals ∆εRA in the
active state and ∆εRI in the inactive state; the P RNAP have a corresponding energy
difference ∆εP relative to non-specific binding on the DNA. NN S represents the
number of non-specific binding sites for both RNAP and repressor. (B) A repressor
has an active conformation (red, left column) and an inactive conformation (purple,
right column), with the energy difference between these two states given by ∆εAI .
The inducer (blue circle) at concentration c is capable of binding to the repressor
with dissociation constants KA in the active state and KI in the inactive state. The
eight states for a dimer with n = 2 inducer binding sites are shown along with the
sums of the active and inactive states.
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We can simplify this expression using two well-justified approximations: (1) the
weak promoter approximation P

NNS
e−β∆εP � 1 implies that the promoter is most

often not bound to RNAP (NN S = 4.6 × 106, P ≈ 103 [27], ∆εP ≈ −2 to − 5 kBT

[14], so that P
NNS

e−β∆εP ≈ 0.01) and (2) RI

NNS
e−β∆εRI � 1 + RA

NNS
e−β∆εRA which

reflects our assumption that the inactive repressor binds weakly to the promoter of
interest. Using these approximations, the fold-change reduces to the form

fold-change ≈
(
1 +

RA

NN S
e−β∆εRA

)−1
≡

(
1 + pA(c)

R
NN S

e−β∆εRA

)−1
, (2.3)

where in the last step we have introduced the fraction pA(c) of repressors in the
active state given a concentration c of inducer, such that RA(c) = pA(c)R. Since
inducer binding shifts the repressors from the active to the inactive state, pA(c)
grows smaller as c increases [28].

We use the MWC model to compute the probability pA(c) that a repressor with n

inducer binding sites will be active. The value of pA(c) is given by the sum of
the weights of the active repressor states divided by the sum of the weights of all
possible repressor states (see Fig. 2.2B), namely,

pA(c) =

(
1 + c

KA

)n(
1 + c

KA

)n
+ e−β∆εAI

(
1 + c

KI

)n , (2.4)

where KA and KI represent the dissociation constant between the inducer and
repressor in the active and inactive states, respectively, and ∆εAI = εI − εA is
the free energy difference between a repressor in the inactive and active state (the
quantity e−∆εAI is sometimes denoted by L [12, 28] or KRR∗ [26]). In this equation,

c
KA

and c
KI

represent the change in free energy when an inducer binds to a repressor
in the active or inactive state, respectively, while e−β∆εAI represents the change
in free energy when the repressor changes from the active to inactive state in the
absence of inducer. Thus, a repressor which favors the active state in the absence of
inducer (∆εAI > 0) will be driven towards the inactive state upon inducer binding
when KI < KA. The specific case of a repressor dimer with n = 2 inducer binding
sites is shown in Fig. 2.2B.

Substituting pA(c) from Eq. 2.4 into Eq. 2.3 yields the general formula for induction
of a simple repression regulatory architecture [23], namely,

fold-change = *.
,
1 +

(
1 + c

KA

)n(
1 + c

KA

)n
+ e−β∆εAI

(
1 + c

KI

)n
R

NN S
e−β∆εRA+/

-

−1

. (2.5)
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While we have used the specific case of simple repression with induction to craft this
model, the same mathematics describe the case of corepression in which binding
of an allosteric effector stabilizes the active state of the repressor and decreases
gene expression (see Fig. 2.1B). Interestingly, we shift from induction (governed by
KI < KA) to corepression (KI > KA) as the ligand transitions from preferentially
binding to the inactive repressor state to stabilizing the active state. Furthermore, this
general approach can be used to describe a variety of other motifs such as activation,
multiple repressor binding sites, and combinations of activator and repressor binding
sites [10, 11, 24].

The formula presented in Eq. 2.5 enables us to make precise quantitative statements
about induction profiles. Motivated by the broad range of predictions implied by
Eq. 2.5, we designed a series of experiments using the lac system in E. coli to
tune the control parameters for a simple repression genetic circuit. As discussed in
Fig. 2.1(C), previous studies from our lab have provided well-characterized values
for many of the parameters in our experimental system, leaving only the values of
the MWC parameters (KA, KI , and ∆εAI) to be determined. We note that while
previous studies have obtained values forKA, KI , and L = e−β∆εAI [26, 29], theywere
either based upon biochemical experiments or in vivo conditions involving poorly
characterized transcription factor copy numbers and gene copy numbers. These
differences relative to our experimental conditions and fitting techniques led us to
believe that it was important to perform our own analysis of these parameters. After
inferring these three MWC parameters (see Appendix S2.1 for details regarding the
inference of ∆εAI , which was fitted separately from KA and KI), we were able to
predict the input/output response of the system under a broad range of experimental
conditions. For example, this framework can predict the response of the system
at different repressor copy numbers R, repressor-operator affinities ∆εRA, inducer
concentrations c, and gene copy numbers.

2.3.2 Experimental Design
We test ourmodel by predicting the induction profiles for an array of strains that could
be made using previously characterized repressor copy numbers and DNA binding
energies. Our approach contrasts with previous studies that have parameterized
induction curves of simple repression motifs, as these have relied on expression
systems where proteins are expressed from plasmids, resulting in highly variable
and unconstrained copy numbers [26, 30–33]. Instead, our approach relies on a
foundation of previous work as depicted in Fig. 2.1(C). This includes work from
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our laboratory that used E. coli constructs based on components of the lac system
to demonstrate how the Lac repressor (LacI) copy number R and operator binding
energy∆εRA affect gene expression in the absence of inducer [9]. Ref. [34] extended
the theory used in that work to the case of multiple promoters competing for a given
transcription factor, which was validated experimentally by Ref. [10], who modified
this system to consider expression from multiple-copy plasmids as well as the
presence of competing repressor binding sites.

The present study extends this body of work by introducing three additional biop-
hysical parameters – ∆εAI , KA, and KI – which capture the allosteric nature of the
transcription factor and complement the results shown by Ref. [9] and Ref. [10].
Although the current work focuses on systems with a single site of repression, in
Appendix S2.1 we utilize data from Ref. [10], in which multiple sites of repression
are explored, to characterize the allosteric free energy difference ∆εAI between the
repressor’s active and inactive states. As explained in that Section, this additional
data set is critical because multiple degenerate sets of parameters can characterize an
induction curve equally well, with the ∆εAI parameter compensated by the inducer
dissociation constants KA and KI (see Fig. S2.1). After fixing ∆εAI , we can use data
from single-site simple repression systems to determine the values of KA and KI .

We determine the values of KA and KI by fitting to a single induction profile
using Bayesian inferential methods [35]. We then use Eq. 2.5 to predict gene
expression for any concentration of inducer, repressor copy number, and DNA
binding energy and compare these predictions against experimental measurements.
To obtain induction profiles for a set of strains with varying repressor copy numbers,
we used modified lacI ribosomal binding sites from Ref. [9] to generate strains
with mean repressor copy number per cell of R = 22 ± 4, 60 ± 20, 124 ± 30,
260 ± 40, 1220 ± 160, and 1740 ± 340, where the error denotes standard deviation
of at least three replicates as measured by Ref. [9]. We note that R refers to the
number of repressor dimers in the cell, which is twice the number of repressor
tetramers reported by Ref. [9]; since both heads of the repressor are assumed to
always be either specifically or non-specifically bound to the genome, the two
repressor dimers in each LacI tetramer can be considered independently. Gene
expression was measured using a Yellow Fluorescent Protein (YFP) gene, driven
by a lacUV5 promoter. Each of the six repressor copy number variants were paired
with the native O1, O2, or O3 lac operator [36] placed at the YFP transcription start
site, thereby generating eighteen unique strains. The repressor-operator binding
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energies (O1 ∆εRA = −15.3 ± 0.2 kBT , O2 ∆εRA = −13.9 kBT ± 0.2, and O3
∆εRA = −9.7 ± 0.1 kBT) were previously inferred by measuring the fold-change
of the lac system at different repressor copy numbers, where the error arises from
model fitting [9]. Additionally, we were able to obtain the value ∆εAI = 4.5 kBT

by fitting to previous data as discussed in Appendix S2.1. We measure fold-change
over a range of known IPTG concentrations c, using n = 2 inducer binding sites
per LacI dimer and approximating the number of non-specific binding sites as the
length in base-pairs of the E. coli genome, NN S = 4.6 × 106.

Our experimental pipeline for determining fold-change using flow cytometry is
shown in Fig. 2.3. Briefly, cells were grown to exponential phase, in which gene
expression reaches steady state [37], under concentrations of the inducer IPTG
ranging between 0 and 5mM. We measure YFP fluorescence using flow cytometry
and automatically gate the data to include only single-cellmeasurements. To validate
the use of flow cytometry, we also measured the fold-change of a subset of strains
using the established method of single-cell microscopy. We found that the fold-
change measurements obtained from microscopy were indistinguishable from that
of flow-cytometry and yielded values for the inducer binding constants KA and KI

that were within error.

2.3.3 Determination of the in vivo MWC Parameters
The three parameters that we tune experimentally are shown in Fig. 2.4A, leaving the
three allosteric parameters (∆εAI , KA, and KI) to be determined by fitting. We used
previous LacI fold-change data [10] to infer that ∆εAI = 4.5 kBT (see Appendix
S2.1). Rather than fitting KA and KI to our entire data set of eighteen unique
constructs, we performed Bayesian parameter estimation on data from a single
strain with R = 260 and an O2 operator (∆εRA = −13.9 kBT [9]) shown in Fig. 2.4D
(white circles). Using Markov Chain Monte Carlo, we determine the most likely
parameter values to be KA = 139+29

−22 × 10−6 M and KI = 0.53+0.04
−0.04 × 10−6 M, which

are the modes of their respective distributions, where the superscripts and subscripts
represent the upper and lower bounds of the 95th percentile of the parameter value
distributions (see Fig. 2.4B). Unfortunately, we are not able to make a meaningful
value-for-value comparison of our parameters to those of earlier studies [26, 31]
because of uncertainties in both gene copy number and transcription factor copy
numbers in these studies. We then predicted the fold-change for the remaining
seventeen strains with no further fitting (see Fig. 2.4C-E) together with the specific
phenotypic properties described in Fig. 2.1 and discussed in detail below (see
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Figure 2.3: An experimental pipeline for high-throughput fold-change mea-
surements. Cells are grown to exponential steady state and their fluorescence is
measured using flow cytometry. Automatic gating methods using forward- and
side-scattering are used to ensure that all measurements come from single cells
(see Methods). Mean expression is then quantified at different IPTG concentrations
(top, blue histograms) and for a strain without repressor (bottom, green histograms),
which shows no response to IPTG as expected. Fold-change is computed by dividing
the mean fluorescence in the presence of repressor by the mean fluorescence in the
absence of repressor.

Fig. 2.4F-J). The shaded regions in Fig. 2.4C-J denote the 95% credible regions.

We stress that the entire suite of predictions in Fig. 2.4 is based upon the induction
profile of a single strain. Our ability to make such a broad range of predictions
stems from the fact that our parameters of interest – such as the repressor copy
number and DNA binding energy – appear as distinct physical parameters within
our model. While the single data set in Fig. 2.4D could also be fit using a Hill
function, such an analysis would be unable to predict any of the other curves in the
figure. Phenomenological expressions such as the Hill function can describe data,
but lack predictive power and are thus unable to build our intuition, help us design
de novo input-output functions, or guide future experiments [25, 30].
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Figure 2.4: Predicting induction profiles for different biological control parameters. (A)
We can quantitatively tune R via ribosomal binding site (RBS) modifications, ∆εRA by mutating
the operator sequence, and c by adding different amounts of IPTG to the growth medium. (B) We
infer the value of the dissociation constants KA and KI between the inducer and the repressor in the
active and inactive states, respectively, using Bayesian parameter estimation from a single induction
curve. (C-J) Predicted IPTG titration curves and key phenotypic parameters for different repressor
copy numbers and operator strengths. Titration data for the O2 strain (white circles in Panel D)
with R = 260, ∆εRA = −13.9 kBT , n = 2, and ∆εAI = 4.5 kBT can be used to determine the
thermodynamic parameters KA = 139+29

−22 × 10−6 M and KI = 0.53+0.04
−0.04 × 10−6 M (orange line). The

remaining solid lines predict the fold-change Eq. 2.5 for all other combinations of repressor copy
numbers (shown in the legend) and repressor-DNAbinding energies corresponding to theO1 operator
(−15.3 kBT), O2 operator (−13.9 kBT), and O3 operator (−9.7 kBT). Error bars of experimental
data show the standard error of the mean (eight or more replicates) when this error is not smaller
than the diameter of the data point. The shaded regions denote the 95% credible region.
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2.3.4 Comparison of Experimental Measurements with Theoretical Predicti-
ons

We tested the predictions shown in Fig. 2.4 by measuring fold-change induction
profiles in strains with a broad range of repressor copy numbers and repressor
binding energies as characterized in Ref. [9]. With a few notable exceptions, the
results shown in Fig. 2.5 demonstrate agreement between theory and experiment. We
note that there was an apparently systematic shift in the O3∆εRA = −9.7 kBT strains
(Fig. 2.5C) and all of the R = 1220 and R = 1740 strains. This may be partially due
to imprecise previous determinations of their ∆εRA and R values. By performing a
global fit where we infer all parameters including the repressor copy number R and
the binding energy ∆εRA, we found better agreement for these strains, although a
discrepancy in the steepness of the response for all O3 strains remains (see Appendix
S2.2). We considered a number of hypotheses to explain these discrepancies such
as including other states (e.g. non-negligible binding of the inactive repressor),
relaxing theweak promoter approximation, and accounting for variations in gene and
repressor copy number throughout the cell cycle, but none explained the observed
discrepancies. As an additional test of our model, we considered strains using
the synthetic Oid operator which exhibits an especially strong binding energy of
∆εRA = −17 kBT [9]. The global fit agrees well with the Oid microscopy data,
though it asserts a stronger Oid binding energy of∆εRA = −17.7 kBT (see Appendix
S2.3).

To ensure that the agreement between our predictions and data is not an accident of
the strain we used to perform our fitting, we also inferred KA and KI from each of
the other strains and found that the inferred values of KA and KI depend minimally
upon which strain is chosen, indicating that these parameter values are highly robust.
We also performed a global fit using the data from all eighteen strains in which we
fitted for the inducer dissociation constants KA and KI , the repressor copy number
R, and the repressor DNA binding energy ∆εRA (see Appendix S2.2). The resulting
parameter values were nearly identical to those fitted from any single strain. For
the remainder of the text we continue using parameters fitted from the strain with
R = 260 repressors and an O2 operator.

2.3.5 Predicting the Phenotypic Traits of the Induction Response
A subset of the properties shown in Fig. 2.1 (i.e. the leakiness, saturation, dynamic
range, [EC50], and effective Hill coefficient) are of significant interest to synthe-
tic biology. For example, synthetic biology is often focused on generating large
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Figure 2.5: Comparison of predictions against measured and inferred data.
Flow cytometry measurements of fold-change over a range of IPTG concentrations
for (A) O1, (B) O2, and (C) O3 strains at varying repressor copy numbers, overlaid
on the predicted responses. Error bars for the experimental data show the standard
error of the mean (eight or more replicates). As discussed in Fig. 2.4, all of the
predicted induction curves were generated prior to measurement by inferring the
MWC parameters using a single data set (O2 R = 260, shown by white circles in
Panel B). The predictions may therefore depend upon which strain is used to infer
the parameters. (D) The inferred parameter values of the dissociation constants KA
and KI using any of the eighteen strains instead of the O2 R = 260 strain. Nearly
identical parameter values are inferred from each strain, demonstrating that the same
set of induction profiles would have been predicted regardless of which strain was
chosen. The points show the mode, and the error bars denote the 95% credible
region of the parameter value distribution. Error bars not visible are smaller than
the size of the marker.

responses (i.e. a large dynamic range) or finding a strong binding partner (i.e. a
small [EC50]) [38, 39]. While these properties are all individually informative,
when taken together they capture the essential features of the induction response.
We reiterate that a Hill function approach cannot predict these features a priori and
furthermore requires fitting each curve individually. The MWC model, on the other
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hand, enables us to quantify how each trait depends upon a single set of physical
parameters as shown by Fig. 2.4F-J.

We define these five phenotypic traits using expressions derived from the model,
Eq. 2.5. These results build upon extensive work by Ref. [40], who computed many
such properties for ligand-receptor binding within the MWC model. We begin by
analyzing the leakiness, which is the minimum fold-change observed in the absence
of ligand, given by

leakiness = fold-change(c = 0)

=

(
1 +

1
1 + e−β∆εAI

R
NN S

e−β∆εRA

)−1
, (2.6)

and the saturation, which is the maximum fold change observed in the presence of
saturating ligand,

saturation = fold-change(c → ∞)

=
*.
,
1 +

1
1 + e−β∆εAI

(
KA

KI

)n
R

NN S
e−β∆εRA+/

-

−1

. (2.7)

Systems that minimize leakiness repress strongly in the absence of effector while
systems that maximize saturation have high expression in the presence of effector.
Together, these two properties determine the dynamic range of a system’s response,
which is given by the difference

dynamic range = saturation − leakiness. (2.8)

These three properties are shown in Fig. 2.4F-H. Fig. 2.6A-C shows that the measu-
rements of these three properties, derived from the fold-change data in the absence
of IPTG and the presence of saturating IPTG, closely match the predictions for all
three operators.

Two additional properties of induction profiles are the [EC50] and effective Hill
coefficient, which determine the range of inducer concentration inwhich the system’s
output goes from its minimum to maximum value. The [EC50] denotes the inducer
concentration required to generate a system response Eq. 2.5 halfway between its
minimum and maximum value,

fold-change(c = [EC50]) =
leakiness + saturation

2
. (2.9)
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Figure 2.6: Predictions and experimental measurements of key properties of
induction profiles. Data for the (A) leakiness, (B) saturation, and (C) dynamic range
are obtained from fold-change measurements in Fig. 2.5 in the absence of IPTG and
at saturating concentrations of IPTG. The three repressor-operator binding energies
in the legend correspond to the O1 operator (−15.3 kBT), O2 operator (−13.9 kBT),
and O3 operator (−9.7 kBT). Both the (D) [EC50] and (E) effective Hill coefficient
are inferred by individually fitting each operator-repressor pairing in Fig. 2.5A-C
separately to Eq. 2.5 in order to smoothly interpolate between the data points. Error
bars for A-C represent the standard error of the mean for eight or more replicates;
error bars for D-E represent the 95% credible region for the parameter found by
propagating the credible region of our estimates of KA and KI into Eqs. 2.9 and
2.10.

The effective Hill coefficient h, which quantifies the steepness of the curve at the
[EC50] [28], is given by

h =
(
2

d
d log c

[
log

(
fold-change(c) − leakiness

dynamic range

)])
c=[EC50]

. (2.10)

Fig. 2.4I-J shows how the [EC50] and effective Hill coefficient depend on the repres-
sor copy number.

Fig. 2.6D-E shows the estimated values of the [EC50] and the effectiveHill coefficient
overlaid on the theoretical predictions. Both properties were obtained by fitting
Eq. 2.5 to each individual titration curve and computing the [EC50] and effective
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Hill coefficient using Eq. 2.9 and Eq. 2.10, respectively. We find that the predictions
made with the single strain fit closely match those made for each of the strains with
O1 and O2 operators, but the predictions for the O3 operator are markedly off. The
uncertainty with O3 arises from its nearly flat response, where the lack of dynamic
rangemakes it impossible to determine the value of the inducer dissociation constants
KA and KI , as can be seen in the uncertainty of both the [EC50] and effective Hill
coefficient. Discrepancies between theory and data for O3 are improved, but not
fully resolved, by performing a global fit or fitting the MWC model individually to
each curve (see Appendix S2.2). It remains an open question how to account for
discrepancies in O3, in particular regarding the significant mismatch between the
predicted and fitted effective Hill coefficients.

2.3.6 Data Collapse of Induction Profiles
Our primary interest heretofore was to determine the system response at a specific
inducer concentration, repressor copy number, and repressor-DNA binding energy.
However, the cell does not necessarily “care about” the precise number of repressors
in the system or the binding energy of an individual operator. The relevant quantity
for cellular function is the fold-change enacted by the regulatory system. This
raises the question: given a specific value of the fold-change, what combination
of parameters will give rise to this desired response? In other words, what trade-
offs between the parameters of the system will give rise to the same mean cellular
output? These are key questions both for understanding how the system is governed
and for engineering specific responses in a synthetic biology context. To address
these questions, we follow the data collapse strategy used in a number of previous
studies [41–43], and rewrite Eq. 2.5 as a Fermi function,

fold-change =
1

1 + e−F (c) , (2.11)

where F (c) is the free energy of the repressor binding to the operator of interest
relative to the unbound operator state in kBT units [23, 42, 43], which is given by

F (c) =
∆εRA

kBT
− log

(
1 + c

KA

)n(
1 + c

KA

)n
+ e−β∆εAI

(
1 + c

KI

)n − log
R

NN S
. (2.12)

The first term in F (c) denotes the repressor-operator binding energy, the second the
contribution from the inducer concentration, and the last the effect of the repressor
copy number. We note that elsewhere, this free energy has been dubbed the Bohr
parameter since such families of curves are analogous to the shifts in hemoglobin
binding curves at different pHs known as the Bohr effect [23, 44, 45].
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Figure 2.7: Fold-change data from a broad collection of different strains col-
lapse onto a single master curve. (A) Any combination of parameters can be
mapped to a single physiological response (i.e. fold-change) via the free energy,
which encompasses the parametric details of the model. (B) Experimental data
from Fig. 2.5 collapse onto a single master curve as a function of the free energy
Eq. 2.12. The free energy for each strain was calculated from Eq. 2.12 using n = 2,
∆εAI = 4.5 kBT , KA = 139×10−6 M, KI = 0.53×10−6 M, and the strain-specific R
and ∆εRA. All data points represent the mean, and error bars are the standard error
of the mean for eight or more replicates.

Instead of analyzing each induction curve individually, the free energy provides a
natural means to simultaneously characterize the diversity in our eighteen induction
profiles. Fig. 2.7A demonstrates how the various induction curves from Fig. 2.4C-E
all collapse onto a single master curve, where points from every induction profile
that yield the same fold-change are mapped onto the same free energy. Fig. 2.7B
shows this data collapse for the 216 data points in Fig. 2.5A-C, demonstrating the
close match between the theoretical predictions and experimental measurements
across all eighteen strains.

There aremany different combinations of parameter values that can result in the same
free energy as defined in Eq. 2.12. For example, suppose a system originally has a
fold-change of 0.2 at a specific inducer concentration, and then operator mutations
increase the ∆εRA binding energy [46]. While this serves to initially increase both
the free energy and the fold-change, a subsequent increase in the repressor copy
number could bring the cell back to the original fold-change level. Such trade-offs
hint that there need not be a single set of parameters that evoke a specific cellular
response, but rather that the cell explores a large but degenerate space of parameters
with multiple, equally valid paths.
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2.4 Discussion
Since the early work by Monod, Wyman, and Changeux [12, 47], an array of bi-
ological phenomena has been tied to the existence of macromolecules that switch
between inactive and active states. Examples can be found in a wide variety of
cellular processes, including ligand-gated ion channels [48], enzymatic reactions
[45, 49], chemotaxis [42], quorum sensing [43], G-protein coupled receptors [50],
physiologically important proteins [51, 52], and beyond. One of the most ubiqui-
tous examples of allostery is in the context of gene expression, where an array of
molecular players bind to transcription factors to influence their ability to regulate
gene activity [17, 18]. A number of studies have focused on developing a quan-
titative understanding of allosteric regulatory systems. Ref. [28, 40] analytically
derived fundamental properties of the MWC model, including the leakiness and
dynamic range described in this work, noting the inherent trade-offs in these pro-
perties when tuning the model’s parameters. Work in the Church and Voigt labs,
among others, has expanded on the availability of allosteric circuits for synthetic
biology [7, 8, 53, 54]. Recently, Daber et al. theoretically explored the induction
of simple repression within the MWC model [31] and experimentally measured
how mutations alter the induction profiles of transcription factors [26]. Vilar and
Saiz analyzed a variety of interactions in inducible lac-based systems including the
effects of oligomerization and DNA folding on transcription factor induction [6].
Other work has attempted to use the lac system to reconcile in vitro and in vivo
measurements [33, 55].

Although this body of work has done much to improve our understanding of al-
losteric transcription factors, there have been few attempts to explicitly connect
quantitative models to experiments. Here, we generate a predictive model of al-
losteric transcriptional regulation and then test the model against a thorough set
of experiments using well-characterized regulatory components. Specifically, we
used the MWC model to build upon a well-established thermodynamic model of
transcriptional regulation [9, 24], allowing us to compose the model from a minimal
set of biologically meaningful parameters. This model combines both theoretical
and experimental insights; for example, rather than considering gene expression
directly we analyze the fold-change in expression, where the weak promoter ap-
proximation (see Eq. 2.3) circumvents uncertainty in the RNAP copy number. The
resulting model depended upon experimentally accessible parameters, namely, the
repressor copy number, the repressor-DNA binding energy, and the concentration
of inducer. We tested these predictions on a range of strains whose repressor copy
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number spanned two orders of magnitude and whose DNA binding affinity spanned
6 kBT . We argue that one would not be able to generate such a wide array of
predictions by using a Hill function, which abstracts away the biophysical meaning
of the parameters into phenomenological parameters [56].

More precisely, we tested our model in the context of a lac-based simple repression
system by first determining the allosteric dissociation constants KA and KI from a
single induction data set (O2 operator with binding energy ∆εRA = −13.9 kBT and
repressor copy number R = 260) and then using these values to make parameter-free
predictions of the induction profiles for seventeen other strains where ∆εRA and R

were varied significantly (see Fig. 2.4). We next measured the induction profiles
of these seventeen strains using flow cytometry and found that our predictions con-
sistently and accurately captured the primary features for each induction data set,
as shown in Fig. 2.5A-C. Importantly, we find that fitting KA and KI to data from
any other strain would have resulted in nearly identical predictions (see Fig. 2.5D).
This suggests that a few carefully chosen measurements can lead to a deep quanti-
tative understanding of how simple regulatory systems work without requiring an
extensive sampling of strains that span the parameter space. Moreover, the fact
that we could consistently achieve reliable predictions after fitting only two free
parameters stands in contrast to the common practice of fitting several free parame-
ters simultaneously, which can nearly guarantee an acceptable fit provided that the
model roughly resembles the system response, regardless of whether the details of
the model are tied to any underlying molecular mechanism.

Beyond observing changes in fold-change as a function of effector concentration,
our application of the MWC model allows us to explicitly predict the values of the
induction curves’ key parameters, namely, the leakiness, saturation, dynamic range,
[EC50], and the effective Hill coefficient (see Fig. 2.6). We are consistently able to
accurately predict the leakiness, saturation, and dynamic range for each of the strains.
For both theO1 andO2 data sets, ourmodel also accurately predicts the effectiveHill
coefficient and [EC50], though these predictions for O3 are noticeably less accurate.
While performing a global fit for all model parameters marginally improves the
prediction for O3 (see Appendix S2.2), we are still unable to accurately predict
the effective Hill coefficient or the [EC50]. We further tried including additional
states (such as allowing the inactive repressor to bind to the operator), relaxing the
weak promoter approximation, accounting for changes in gene and repressor copy
number throughout the cell cycle [57], and refitting the original binding energies
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from Ref. [13], but we were still unable to account for the O3 data. It remains an
open question as to how the discrepancy between the theory and measurements for
O3 can be reconciled.

The dynamic range, which is of considerable interest when designing or characteri-
zing a genetic circuit, is revealed to have an interesting property: although changing
the value of ∆εRA causes the dynamic range curves to shift to the right or left, each
curve has the same shape and in particular the same maximum value. This means
that strains with strong or weak binding energies can attain the same dynamic range
when the value of R is tuned to compensate for the binding energy. This feature
is not immediately apparent from the IPTG induction curves, which show very low
dynamic ranges for several of the O1 and O3 strains. Without the benefit of models
that can predict such phenotypic traits, efforts to engineer genetic circuits with allos-
teric transcription factors must rely on trial and error to achieve specific responses
[7, 8].

Despite the diversity observed in the induction profiles of each of our strains, our data
are unified by their reliance on fundamental biophysical parameters. In particular,
we have shown that our model for fold-change can be rewritten in terms of the free
energy Eq. 2.12, which encompasses all of the physical parameters of the system.
This has proven to be an illuminating technique in a number of studies of allosteric
proteins [41–43]. Although it is experimentally straightforward to observe system
responses to changes in effector concentration c, framing the input-output function
in terms of c can give the misleading impression that changes in system parameters
lead to fundamentally altered system responses. Alternatively, if one can find the
“natural variable" that enables the output to collapse onto a single curve, it becomes
clear that the system’s output is not governed by individual system parameters,
but rather the contributions of multiple parameters that define the natural variable.
When our fold-change data are plotted against the respective free energies for each
construct, they collapse cleanly onto a single curve (see Fig. 2.7). This enables us
to analyze how parameters can compensate each other. For example, rather than
viewing strong repression as a consequence of low IPTG concentration c or high
repressor copy number R, we can now observe that strong repression is achieved
when the free energy F (c) ≤ −5kBT , a condition which can be reached in a number
of ways.

While our experiments validated the theoretical predictions in the case of simple
repression, we expect the framework presented here to apply much more generally



113

to different biological instances of allosteric regulation. For example, we can
use this model to study more complex systems such as when transcription factors
interact with multiple operators [24]. We can further explore different regulatory
configurations such as corepression, activation, and coactivation, each of which are
found in E. coli (see Appendix S2.4). This work can also serve as a springboard
to characterize not just the mean but the full gene expression distribution and
thus quantify the impact of noise on the system [58]. Another extension of this
approach would be to theoretically predict and experimentally verify whether the
repressor-inducer dissociation constants KA and KI or the energy difference ∆εAI

between the allosteric states can be tuned by making single amino acid substitutions
in the transcription factor [23, 26]. Finally, we expect that the kind of rigorous
quantitative description of the allosteric phenomenon provided here will make it
possible to construct biophysical models of fitness for allosteric proteins similar to
those already invoked to explore the fitness effects of transcription factor binding
site strengths and protein stability [59–61].

To conclude, we find that our application of the MWC model provides an accurate,
predictive framework for understanding simple repression by allosteric transcription
factors. To reach this conclusion, we analyzed the model in the context of a well-
characterized system, in which each parameter had a clear biophysical meaning. As
many of these parameters had been measured or inferred in previous studies, this
gave us a minimal model with only two free parameters which we inferred from
a single data set. We then accurately predicted the behavior of seventeen other
data sets in which repressor copy number and repressor-DNA binding energy were
systematically varied. In addition, our model allowed us to understand how key
properties such as the leakiness, saturation, dynamic range, [EC50], and effective
Hill coefficient depended upon the small set of parameters governing this system.
Finally, we show that by framing inducible simple repression in terms of free energy,
the data from all of our experimental strains collapse cleanly onto a single curve,
illustrating the many ways in which a particular output can be targeted. In total,
these results show that a thermodynamic formulation of theMWCmodel supersedes
phenomenological fitting functions for understanding transcriptional regulation by
allosteric proteins.
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C h a p t e r S2

SUPPLEMENTARY INFORMATION FOR TUNING
TRANSCRIPTIONAL REGULATION THROUGH SIGNALING:

A PREDICTIVE THEORY OF ALLOSTERIC INDUCTION

A detailed description of the experimental methodology and the computational
notebooks used in this work can be found in the published manuscript.

S2.1 Inferring Allosteric Parameters from Previous Data
The fold-change profile described by Eq. 2.5 features three unknown parameters
KA, KI , and ∆εAI . In this section, we explore different conceptual approaches to
determining these parameters. We first discuss how the induction titration profile of
the simple repression constructs used in this paper are not sufficient to determine all
threeMWCparameters simultaneously, since multiple degenerate sets of parameters
can produce the same fold-change response. We then utilize an additional data set
from Ref. [1] to determine the parameter ∆εAI = 4.5 kBT , after which the remaining
parameters KA and KI can be extracted from any induction profile with no further
degeneracy.

S2.1.1 Degenerate Parameter Values
In this section, we discuss how multiple sets of parameters may yield identical
fold-change profiles. More precisely, we shall show that if we try to fit the data
in Fig. 2.4C to the fold-change Eq. 2.5 and extract the three unknown parameters
(KA, KI , and ∆εAI), then multiple degenerate parameter sets would yield equally
good fits. In other words, this data set alone is insufficient to uniquely determine the
actual physical parameter values of the system. This problem persists even when
fitting multiple data sets simultaneously as in Appendix S2.2.

In Fig. S2.1A, we fit the R = 260 data by fixing ∆εAI to the value shown on the
x-axis and determine the parameters KA and KI given this constraint. We use
the fold-change function Eq. 2.5 but with β∆εRA modified to the form β∆ε̃RA in
Eq. S2.4 to account for the underlying assumptions used when fitting previous data
(see Section S2.1.2 for a full explanation of why this modification is needed).

The best-fit curves for several different values of ∆εAI are shown in Fig. S2.1B.

https://doi.org/10.1016/j.cels.2018.02.004
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Note that these fold-change curves are nearly overlapping, demonstrating that diffe-
rent sets of parameters can yield nearly equivalent responses. Without more data,
the relationships between the parameter values shown in Fig. S2.1A represent the
maximum information about the parameter values that can be extracted from the
data. Additional experiments which independently measure any of these unknown
parameters could resolve this degeneracy. For example, NMR measurements could
be used to directly measure the fraction (1 + e−β∆εAI )−1 of active repressors in the
absence of IPTG [2, 3].
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Figure S2.1: Multiple sets of parameters yield identical fold-change responses.
(A) The data for the O2 strain (∆εRA = −13.9 kBT) with R = 260 in Fig. 2.4C was
fit using Eq. 2.5 with n = 2. ∆εAI is forced to take on the value shown on the x-axis,
while the KA and KI parameters are fit freely. (B) The resulting best-fit functions
for several value of ∆εAI all yield nearly identical fold-change responses.

S2.1.2 Computing ∆εAI
As shown in the previous section, the fold-change response of a single strain is
not sufficient to determine the three MWC parameters (KA, KI , and ∆εAI), since
degenerate sets of parameters yield nearly identical fold-change responses. To
circumvent this degeneracy, we now turn to some previous data from the lac system
in order to determine the value of ∆εAI in Eq. 2.5 for the induction of the Lac
repressor. Specifically, we consider two previous sets of work from: (1) Ref. [4] and
(2) Ref. [1], both of which measured fold-change with the same simple repression
system in the absence of inducer (c = 0) but at various repressor copy numbers
R. The original analysis for both data sets assumed that in the absence of inducer
all of the Lac repressors were in the active state. As a result, the effective binding
energies they extracted were a convolution of the DNA binding energy ∆εRA and
the allosteric energy difference ∆εAI between the Lac repressor’s active and inactive
states. We refer to this convoluted energy value as ∆ε̃RA. We first disentangle
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the relationship between these parameters in Garcia and Phillips and then use this
relationship to extract the value of ∆εAI from the Brewster et al. dataset.

Garcia and Phillips determined the total repressor copy numbers R of different
strains using quantitative Western blots. Then they measured the fold-change at
these repressor copy numbers for simple repression constructs carrying the O1, O2,
O3, and Oid lac operators integrated into the chromosome. These data were then
fit to the following thermodynamic model to determine the repressor-DNA binding
energies ∆ε̃RA for each operator,

fold-change(c = 0) =
(
1 +

R
NN S

e−β∆ε̃RA

)−1
. (S2.1)

Note that this functional form does not exactly match our fold-change Eq. 2.5 in the
limit c = 0,

fold-change(c = 0) =
(
1 +

1
1 + e−β∆εAI

R
NN S

e−β∆εRA

)−1
, (S2.2)

since it is missing the factor 1
1+e−β∆εAI

which specifies what fraction of repressors
are in the active state in the absence of inducer,

1
1 + e−β∆εAI

= pA(0). (S2.3)

In other words, Garcia and Phillips assumed that in the absence of inducer, all
repressors were active. In terms of our notation, the convoluted energy values
∆ε̃RA extracted by Garcia and Phillips (namely, ∆ε̃RA = −15.3 kBT for O1 and
∆ε̃RA = −17.0 kBT for Oid) represent

β∆ε̃RA = β∆εRA − log
(

1
1 + e−β∆εAI

)
. (S2.4)

Note that if e−β∆εAI � 1, then nearly all of the repressors are active in the absence of
inducer so that ∆ε̃RA ≈ ∆εRA. In simple repression systems where we definitively
know the value of ∆εRA and R, we can use Eq. S2.2 to determine the value of
∆εAI by comparing with experimentally determined fold-change values. However,
the binding energy values that we use from Ref. [4] are effective parameters ∆ε̃RA.
In this case, we are faced with an undetermined system in which we have more
variables than equations, and we are thus unable to determine the value of ∆εAI . In
order to obtain this parameter, we must turn to a more complex regulatory scenario
which provides additional constraints that allow us to fit for ∆εAI .
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A variation on simple repression in which multiple copies of the promoter are
available for repressor binding (for instance, when the simple repression construct
is on plasmid) can be used to circumvent the problems that arise when using ∆ε̃RA.
This is because the behavior of the system is distinctly different when the number
of active repressors pA(0)R is less than or greater than the number of available
promoters N . Repression data for plasmids with known copy number N allows us
to perform a fit for the value of ∆εAI .

To obtain an expression for a system with multiple promoters N , we follow Ref. [5],
writing the fold-change in terms of the grand canonical ensemble as

fold-change =
1

1 + λr e−β∆εRA
, (S2.5)

where λr = eβµ is the fugacity and µ is the chemical potential of the repressor.
The fugacity will enable us to easily enumerate the possible states available to the
repressor.

To determine the value of λr , we first consider that the total number of repressors
in the system, Rtot, is fixed and given by

Rtot = RS + RN S, (S2.6)

where RS represents the number of repressors specifically bound to the promoter
and RN S represents the number of repressors nonspecifically bound throughout the
genome. The value of RS is given by

RS = N
λr e−β∆εRA

1 + λr e−β∆εRA
, (S2.7)

where N is the number of available promoters in the cell. Note that in counting
N , we do not distinguish between promoters that are on plasmid or chromosomally
integrated provided that they both have the same repressor-operator binding energy
[5]. The value of RN S is similarly give by

RN S = NN S
λr

1 + λr
, (S2.8)

where NN S is the number of non-specific sites in the cell (recall that we use NN S =

4.6 × 106 for E. coli).

Substituting Eqs. S2.7 and S2.8 into the modified Eq. S2.6 yields the form

pA(0)Rtot =
1

1 + e−β∆εAI

(
N

λr e−β∆εRA

1 + λr e−β∆εRA
+ NN S

λr

1 + λr

)
, (S2.9)
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Figure S2.2: Fold-change of multiple identical genes. (A) In the presence of
N = 10 identical promoters, the fold-change Eq. S2.5 depends strongly on the
allosteric energy difference ∆εAI between the Lac repressor’s active and inactive
states. The vertical dotted lines represent the number of repressors at which RA = N
for each value of ∆εAI . (B) Using previous fold-change measurements for the
operators and gene copy numbers shown, we can determine the most likely value
∆εAI = 4.5 kBT for LacI.

where we recall from Eq. S2.4 that β∆εRA = β∆ε̃RA+ log
(

1
1+e−β∆εAI

)
. Numerically

solving for λr and plugging the value back into Eq. S2.5 yields a fold-change function
in which the only unknown parameter is ∆εAI .

With these calculations in hand, we can now determine the value of the ∆εAI para-
meter. Fig. S2.2A shows how different values of ∆εAI lead to significantly different
fold-change response curves. Thus, analyzing the specific fold-change response of
any strain with a known plasmid copy number N will fix ∆εAI . Interestingly, the
inflection point of Eq. S2.9 occurs near pA(0)Rtot = N (as shown by the triangles
in Fig. S2.2A), so that merely knowing where the fold-change response transitions
from concave down to concave up is sufficient to obtain a rough value for ∆εAI . We
note, however, that for ∆εAI & 5 kBT , increasing ∆εAI further does not affect the
fold-change because essentially every repressors will be in the active state in this
regime. Thus, if the ∆εAI is in this regime, we can only bound it from below.

Wenowanalyze experimental induction data for different strainswith knownplasmid
copy numbers to determine ∆εAI . Fig. S2.2B shows experimental measurements
of fold-change for two O1 promoters with N = 64 and N = 52 copy numbers and
one Oid promoter with N = 10 from Ref. [1]. By fitting these data to Eq. S2.5, we
extracted the parameter value ∆εAI = 4.5 kBT . Substituting this value into Eq. S2.3
shows that 99% of the repressors are in the active state in the absence of inducer
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and ∆ε̃RA ≈ ∆εRA, so that all of the previous energies and calculations made by
Ref. [1, 4] were accurate.

S2.2 Global Fit of All Parameters
In the main text, we used the repressor copy numbers R and repressor-DNA bin-
ding energies ∆εRA as reported by Ref. [4]. However, any error in these previous
measurements of R and ∆εRA will necessarily propagate into our own fold-change
predictions. In this section, we take an alternative approach to fitting the physical
parameters of the system to that used in the main text. First, rather than fitting only
a single strain, we fit the entire data set in Fig. 2.5 along with microscopy data for
the synthetic operator Oid (see Appendix S2.3). In addition, we also simultaneously
fit the parameters R and ∆εRA using the prior information given by the previous
measurements. By using the entire data set and fitting all of the parameters, we
obtain the best possible characterization of the statistical mechanical parameters of
the system given our current state of knowledge. As a point of reference, we state
all of the parameters of the MWC model derived in the text in Table S2.1.

To fit all of the parameters simultaneously, we perform a Bayesian parameter es-
timation of the dissociation constants KA and KI , the six different repressor copy
numbers R corresponding to the six lacI ribosomal binding sites used in our work,
and the four different binding energies ∆εRA characterizing the four distinct opera-
tors used to make the experimental strains. As in the main text, we fit the logarithms
k̃A = − log KA

1M and k̃I = − log KI

1M of the dissociation constants which grants better
numerical stability.

Fig. S2.3 shows the result of this global fit. When compared with Fig. 2.5 we can
see that fitting for the binding energies and the repressor copy numbers improves
the agreement between the theory and the data. Table S2.2 summarizes the values
of the parameters as obtained with this MCMC parameter inference. We note that
even though we allowed the repressor copy numbers and repressor-DNA binding
energies to vary, the resulting fit values were very close to the previously reported
values. The fit values of the repressor copy numbers were all within one standard
deviation of the previous reported values provided in Ref. [4]. And although some
of the repressor-DNA binding energies differed by a few standard deviations from
the reported values, the differences were always less than 1 kBT , which represents a
small change in the biological scales we are considering. The biggest discrepancy
between our fit values and the previous measurements arose for the synthetic Oid
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Parameter Description
c Concentration of the inducer

KA, KI Dissociation constant between an inducer and the repressor in the active/inactive state
∆εAI The difference between the free energy of repressor in the inactive and active states
∆εP Binding energy between the RNAP and its specific binding site

∆εRA,∆εRI Binding energy between the operator and the active/inactive repressor
n Number of inducer binding sites per repressor
P Number of RNAP

RA, RI, R Number of active/inactive/total repressors
pA =

RA

R Probability repressor will be in the active state
pbound Probability RNAP is bound to promoter of interest, assumed proportional to gene expression

fold-change Ratio of gene expression in the presence of repressor to that in the absence of repressor
F Free energy of the system

NNS The number of non-specific binding sites for the repressor in the genome
β = 1

kBT
The inverse product of the Boltzmann constant kB and the temperature T of the system

Table S2.1: Key model parameters for induction of an allosteric repressor.

operator, which we discuss in more detail in Appendix S2.3.

S2.3 Applicability of Theory to the Oid Operator Sequence
In addition to the native operator sequences (O1, O2, and O3) considered in the main
text, we were also interested in testing our model predictions against the synthetic
Oid operator. In contrast to the other operators, Oid is one base pair shorter in length
(20 bp), is fully symmetric, and is known to provide stronger repression than the
native operator sequences considered so far. While the theory should be similarly
applicable, measuring the lower fold-changes associated with this YFP construct
was expected to be near the sensitivity limit for our flow cytometer, due to the
especially strong binding energy of Oid (∆εRA = −17.0 kBT) [6]. Accordingly,
fluorescence data for Oid were obtained using microscopy, which is more sensitive
than flow cytometry.

We follow the approach of the main text and make fold-change predictions based on
the parameter estimates from our strain with R = 260 and an O2 operator. These
predictions are shown in Fig. S2.4A, where we also plot data taken in triplicate
for strains containing R = 22, 60, and 124, obtained by single-cell microscopy.
We find that the data are systematically below the theoretical predictions. We also
considered our global fitting approach (see Appendix S2.2) to see whether we might
find better agreement with the observed data. Interestingly, we find that the majority
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Figure S2.3: Global fit of dissociation constants, repressor copy numbers and
binding energies. Theoretical predictions resulting from simultaneously fitting the
dissociation constants KA and KI , the six repressor copy numbers R, and the four
repressor-DNA binding energies ∆εRA using the entire data set from Fig. 2.5 as well
as the microscopy data for the Oid operator. Error bars of experimental data show
the standard error of the mean (eight or more replicates) and shaded regions denote
the 95% credible region. Where error bars are not visible, they are smaller than the
point itself. For the Oid operator, all of the data points are shown since a smaller
number of replicates were taken. The shaded regions are significantly smaller than
in Fig. 2.5 because this fit was based on all data points, and hence the fit parameters
are much more tightly constrained. The dashed lines at 0 IPTG indicates a linear
scale, whereas solid lines represent a log scale.

of the parameters remain largely unchanged, but our estimate for the Oid binding
energy ∆εRA is shifted to −17.7 kBT instead of the value −17.0 kBT found by
Ref. [4]. In Fig. S2.4B we again plot the Oid fold-change data but with theoretical
predictions using the new estimate for the Oid binding energy from our global fit
and find substantially better agreement.

Fig. S2.5 shows the cumulative data from Ref. [4] and Ref. [1], as well as our data
with c = 0 µM, which all measured fold-change for the same simple repression
architecture utilizing different reporters and measurement techniques. We find that



128

Reported Values [4] Global Fit
k̃A − −5.33+0.06

−0.05
k̃I − 0.31+0.05

−0.06
KA − 205+11

−12 µM
KI − 0.73+0.04

−0.04 µM
R22 22 ± 4 20+1

−1
R60 60 ± 20 74+4

−3
R124 124 ± 30 130+6

−6
R260 260 ± 40 257+9

−11
R1220 1220 ± 160 1191+32

−55
R1740 1740 ± 340 1599+75

−87
O1 ∆εRA −15.3 ± 0.2 kBT −15.2+0.1

−0.1 kBT
O2 ∆εRA −13.9 ± 0.2 kBT −13.6+0.1

−0.1 kBT
O3 ∆εRA −9.7 ± 0.1 kBT −9.4+0.1

−0.1 kBT
Oid ∆εRA −17.0 ± 0.2 kBT −17.7+0.2

−0.1 kBT

Table S2.2: Global fit of all parameter values using the entire data set in
Fig. 2.5. In addition to fitting the repressor inducer dissociation constants KA and
KI as was done in the text, we also fit the repressor DNA binding energy ∆εRA as
well as the repressor copy numbers R for each strain. The middle columns show
the previously reported values for all ∆εRA and R values, with ± representing the
standard deviation of three replicates. The right column shows the global fits from
this work, with the subscript and superscript notation denoting the 95% credible
region. Note that there is overlap between all of the repressor copy numbers and that
the net difference in the repressor-DNA binding energies is less than 1 kBT . The
logarithms k̃A = − log KA

1M and k̃I = − log KI

1M of the dissociation constants were fit
for numerical stability.

the binding energies from the global fit, including ∆εRA = −17.7 kBT , compare
reasonably well with all previous measurements.

S2.4 Applications to Other Regulatory Architectures
In this section, we discuss how the theoretical framework presented in this work is
sufficiently general to include a variety of regulatory architectures outside of simple
repression by LacI. We begin by noting that the exact same formula for fold-change
given in Eq. 2.5 can also describe corepression. We then demonstrate how ourmodel
can be generalized to include other architectures, such as a coactivator binding to an
activator to promote gene expression. In each case, we briefly describe the system
and describe its corresponding theoretical description. For further details, we invite
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Figure S2.4: Predictions of fold-change for strains with an Oid binding se-
quence versus experimental measurements with different repressor copy num-
bers. (A) Experimental data is plotted against the parameter-free predictions that
are based on our fit to the O2 strain with R = 260. Here we use the previously
measured binding energy ∆εRA = −17.0 kBT . (B) The same experimental data is
plotted against the best-fit parameters using the complete O1, O2, O3, and Oid data
sets to infer KA, KI , repressor copy numbers, and the binding energies of all opera-
tors (see Appendix S2.2). Here the major difference in the inferred parameters is a
shift in the binding energy for Oid from ∆εRA = −17.0 kBT to ∆εRA = −17.7 kBT ,
which now shows agreement between the theoretical predictions and experimental
data. Shaded regions from the theoretical curves denote the 95% credible region.
These are narrower in Panel B because the inference of parameters was performed
with much more data, and hence the best-fit values are more tightly constrained.
Individual data points are shown due to the small number of replicates. The dashed
lines at 0 IPTG indicate a linear scale, whereas solid lines represent a log scale.

the interested reader to read Ref. [7, 8].

S2.4.1 Corepression
Consider a regulatory architecture where binding of a transcriptional repressor
occludes the binding of RNAP to the DNA. A corepressor molecule binds to the
repressor and shifts its allosteric equilibrium towards the active state inwhich it binds
more tightly to the DNA, thereby decreasing gene expression (in contrast, an inducer
shifts the allosteric equilibrium towards the inactive state where the repressor binds
more weakly to the DNA). As in the main text, we can enumerate the states and
statistical weights of the promoter and the allosteric states of the repressor. We note
that these states and weights exactly match Fig. 2.2 and yield the same fold-change
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Figure S2.5: Comparison of fold-change predictions based on binding energies
fromGarcia and Phillips and those inferred from this work. Fold-change curves
for the different repressor-DNA binding energies ∆εRA are plotted as a function
of repressor copy number when IPTG concentration c = 0. Solid curves use
previously determined binding energies, while the dashed curves use the inferred
binding energies we obtained when performing a global fit of KA, KI , repressor
copy numbers, and the binding energies using all available data from our work.
Fold-change measurements from this work and from previous measurements show
that the small shifts in binding energy that we infer are still in agreement with prior
data. Note that only a single flow cytometry data point is shown for Oid from this
study, since the R = 60 and R = 124 curves from Fig. S2.4 had extremely low
fold-change in the absence of inducer (c = 0) so as to be indistinguishable from
autofluorescence, and in fact their fold-change values in this limit were negative and
hence do not appear on this plot.

equation as Eq. 2.5,

fold-change ≈ *.
,
1 +

(
1 + c

KA

)n(
1 + c

KA

)n
+ eβ∆εAI

(
1 + c

KI

)n
R

NN S
e−β∆εRA+/

-

−1

, (S2.10)

where c now represents the concentration of the corepressor molecule. Mathemati-
cally, the difference between these two architectures can be seen in the relative sizes
of the dissociation constants KA and KI between the inducer and repressor in the
active and inactive states, respectively. The corepressor is defined by KA < KI , since
the corepressor favors binding to the repressor’s active state; an inducer must satisfy
KI < KA, as was found in the main text from the induction data (see Fig. 2.4). Much
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as was performed in the main text, we can make some predictions about the how the
response of a corepressor. In Fig. S2.6A, we show how varying the repressor copy
number R and the repressor-DNA binding energy ∆εRA influence the response. We
draw the reader’s attention to the decrease in fold-change as the concentration of
effector is increased.

S2.4.2 Activation
We now turn to the case of activation. While this architecture was not studied in this
work, we wish to demonstrate how the framework presented here can be extended
to include transcription factors other than repressors. To that end, we consider a
transcriptional activator that binds to DNA and aids in the binding of RNAP through
energetic interaction term εAP. Note that in this architecture, binding of the activator
does not occlude binding of the polymerase. Binding of a coactivatormolecule shifts
its allosteric equilibrium towards the active state (KA < KI), where the activator is
more likely to be bound to the DNA and promote expression. Enumerating all of
the states and statistical weights of this architecture and making the approximation
that the promoter is weak generates a fold-change equation of the form

fold-change =

1 +

(
1+ c

KA

)n
(
1+ c

KA

)n
+eβ∆εAI

(
1+ c

KI

)n A
NNS

e−β∆εAAe−βεAP

1 +

(
1+ c

KA

)n
(
1+ c

KA

)n
+eβ∆εAI

(
1+ c

KI

)n A
NNS

e−β∆εAA

, (S2.11)

where A is the total number of activators per cell, c is the concentration of a
coactivator molecule, ∆εAA is the binding energy of the activator to the DNA in
the active allosteric state, and εAP is the interaction energy between the activator
and the RNAP. Unlike in the cases of induction and corepression, the fold-change
formula for activation includes terms from when the RNAP is bound by itself on
the DNA as well as when both RNAP and the activator are simultaneously bound to
the DNA. Fig. S2.6B explores predictions of the fold-change in gene expression by
manipulating the activator copy number, DNA binding energy, and the polymerase-
activator interaction energy. Note that with this activation scheme, the fold-change
must necessarily be greater than one. An interesting feature of these predictions is
the observation that even small changes in the interaction energy (< 0.5 kBT) can
result in dramatic increase in fold-change.

As in the case of induction, the Eq. S2.11 is straightforward to generalize. For ex-
ample, the relative values of KI and KA can be switched such that KI < KA in which
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the secondary molecule drives the activator to assume the inactive state represents
induction of an activator. While these cases might be viewed as separate biologi-
cal phenomena, mathematically they can all be described by the same underlying
formalism.
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Figure S2.6: Representative fold-change predictions for allosteric corepression
and activation. (A) Contrary to the case of induction described in the main text,
addition of a corepressor decreases fold-change in gene expression. The left and
right panels demonstrate how varying the values of the repressor copy number R and
repressor-DNA binding energy ∆εRA, respectively, change the predicted response
profiles. (B) In the case of inducible activation, binding of an effector molecule to an
activator transcription factor increases the fold-change in gene expression. Note that
for activation, the fold-change is greater than 1. The left and center panels show how
changing the activator copy number A and activator-DNA binding energy∆εAA alter
response, respectively. The right panel shows how varying the polymerase-activator
interaction energy εAP alters the fold-change. Relatively small perturbations to this
energetic parameter drastically change the level of activation and play a major role
in dictating the dynamic range of the system.
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C h a p t e r 3

MUTATIONS FROM A THERMODYNAMIC PERSPECTIVE
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This short paper remains one of the most important works of my PhD, marking my first

sojourn of modeling mutations in allosteric proteins. Shown below is the publication-ready

draft written during the third year of my PhD, before four graduate students in the Phillips

lab joined the project to see how well the model predictions matched experiments. Careful,

rigorous experiments take time, and this project is ongoing in the lab, although we now have

sufficient data to convincingly demonstrate that the key prediction in this work – that single

mutants combine in an epistasis-free manner – was correct. In the interim, I have extended

this idea of decoupling mutational epistasis through statistical mechanical modeling to other

transcription factors (Chapter 4) and to ion channels (Chapter 5), giving further support for

the model. Because the field of mutations is both central to biological evolution and steeped

in complexity, I am particularly proud of the inroads I made with this work!

3.1 Abstract
Predicting the effects of mutations on protein function has been a long-standing goal
in biology, and simple quantitative models to respond to this challenge are hard to
come by. Here, we show that a thermodynamic model of transcriptional regula-
tion coupled with a statistical mechanical treatment of the induction of allosteric
proteins can be used to characterize large classes of mutants. Specifically, we link
the physiological role of mutations within a transcription factor to physical para-
meters present in the Monod-Wyman-Changeux model of allostery. For example, a
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mutation in a repressor’s DNA or inducer binding domains only affects its DNA or
inducer dissociation constants, respectively, leaving all other parameters unchanged.
This model suggests a unique perspective to understand and quantify the roles of
mutations and enables us, perhaps surprisingly, to collapse the plethora of data on
different mutants into a single family of curves. It further provides tight constraints
on important protein characteristics, such as the dynamic range and leakiness of
inducible transcription factors, which bolsters our ability to theoretically predict the
effects of mutations.

3.2 Introduction
Mutations pervade every aspect of biology from evolution to disease, providing
researchers with a critical resource to understand andmanipulate biological systems.
Although significant strides have been made to characterize mutations, systematic
efforts are hampered by the overwhelmingly large space of possible mutants. Given
an average protein comprised of 300 amino acids, substituting each of the 20 amino
acids in every positionwould yieldmore proteins than there are atoms in the universe.

The consequences of mutations are often extremely difficult to predict – even a
single amino acid mutation may cause a protein to stop functioning, as seen in
the case of hemoglobin and sickle cell anemia [1]. Consequently, it is tempting
to treat each mutant as a new intellectual adventure with no visible quantitative
link to its unmutated (i.e. wild type) form. The task of quantifying this sequence-
structure relationship is a central one within diverse fields of biology ranging from
molecular evolution to structural biology, and many quantitative techniques have
been developed towards this goal [2–4]. This paper investigates a quantitative
and mechanistic framework to predict the functional roles of mutations. More
specifically, we explore the hypothesis that many point mutations have a local effect,
which in the context of the Monod-Wyman-Changeux (MWC) model of allostery
implies that point mutations only change a subset of the parameters characterizing
that model, an interesting twist since the very notion of allostery is predicated upon
the “communication” between different parts of a protein [5].

This paper builds upon substantial earlier work in the context of both chemotaxis and
quorum sensingwhere differentmutants inmembrane receptors led to activity curves
which could be classified as one-parameter families within the MWC framework
[6, 7]. This approach enables us to characterize large classes of transcription factor
mutants based upon the location and the physiological role of their underlying
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mutations. For example, we test the notion that any mutation inside of a binding
motif only alters that binding region and leaves the coarse-grained description of
the rest of the protein, through its associated parameters, unaffected and identical to
the wild type form [8]. Such a treatment limits the phenotypes of binding domain
mutants and makes it possible to theoretically predict the effects of mutations on
important characteristics such as leakiness and dynamic range.

Specifically, we focus on the induction of Lac repressor in Escherichia coli and its
effects on transcriptional regulation, a core cellular process that allows an organism
to sense and respond to its environment by altering its level of gene expression.
The Lac repressor regulates the transcription of the lactose (lac) operon whose
gene products allow E. coli to digest the sugar lactose if glucose is not available
while lactose is. The Lac repressor is an allosteric protein which exists in two
conformations: an active state which tightly binds to the Lac operator and an
inactive state with a much lower affinity for the DNA. When the natural inducer
allolactose or the gratuitous inducer isopropyl β-D-1-thiogalactopyranoside (IPTG)
bind to the Lac repressor, they make the repressor more likely to assume the inactive
state, thereby hampering the repressor’s ability to bind to the DNA and increasing
gene expression.

Using the MWC model, we first characterize the thermodynamic parameters of the
wild type Lac repressor (namely, its DNA binding affinity, inducer binding affinity,
and the energy difference between the repressor’s allosteric states). We then analyze
three Lac repressors with mutations in their operator binding regions. We find that
these mutants are well characterized by only varying their repressor-DNA binding
affinity, leaving all other parameters identical to those describing the wild type Lac
repressor. A key outcome of this analysis is that the data from the wild type Lac
repressor and all mutants can be collapsed onto a single master curve. In this way,
the MWC model provides a unifying framework that allows us to mathematically
characterize different mutants as members of a one-parameter family.

We next analyze ten mutants with mutations in their inducer binding sites and find
that these mutants also obey the simple model where only their repressor-inducer
binding affinity changes. This notion may appear to contradict the principle of al-
lostery, since when an inducer binds to a repressor it hampers that repressor’s ability
to bind to DNA. Yet our results demonstrate that although the Lac repressor’s DNA
and inducer binding domains are allosterically linked, they can still be indepen-
dently modified as exhibited by the insulation of the corresponding thermodynamic
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parameters that govern these two distinct classes of mutants.

In addition to categorizing existing data, this framework provides new insights into
important metrics such as the leakiness and dynamic range of a transcription factor.
For example, the MWC model correctly predicts that mutating the inducer binding
region has no effect on the leakiness of the Lac repressor. We also find that the wild
type Lac repressor provides an excellent compromise between exhibiting a large
dynamic range and small leakiness. The leakiness and dynamic range of all thirteen
mutants studied were well characterized within the MWC framework, indicating
that the DNA and inducer binding affinities are the correct set of variables, both
complete and complementary, to study these Lac repressor mutants.

Lastly, it is important to realize that while we focus on the model system of the Lac
repressor, this framework can be readily extended not only to other transcription
factors [9], but beyond that to many other biological systems (such as enzymes
[10, 11], transport proteins [12, 13], the cytoskeleton [14], and antibodies [15], to
name a few) that are well characterized by models where each parameter is tied to
a physical trait of a protein, thus raising the possibility of classifying mutants in a
much wider setting.

3.3 Results
3.3.1 The Monod-Wyman-Changeux (MWC) Model
This paper builds upon an extensive dialogue between theory and experiment in
transcriptional regulation. A first round of experiments measured the dependence
of gene expression on repressor copy number and binding strength [16]. A second
round of experiments pushed beyond the “independent promoter approximation” to
acknowledge the fact that different genes compete for the same regulatory apparatus.
Here too we were able to show that theoretical predictions of this subtle effect were
consistent with their measured counterparts, even permitting the collapse of data
from multiple experiments onto master curves [17, 18]. In the current paper, we
consider yet another layer of complexity having to do with how signaling works in
the context of transcription.

It has been shown that removing the tetramerization region inwild type Lac repressor
creates a functional dimeric repressor that: (1) can bind to DNA; (2) exists in both
an active and inactive allosteric conformation; and (3) has two binding sites for the
inducer IPTG –we shall refer to this truncated dimeric protein as “the Lac repressor”
for the remainder of this paper [5, 19].
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As discussed previously, the behavior of the Lac repressor as a regulatory protein is
well characterized by an equilibrium model where the probability of each state of
repressor and RNA polymerase occupancy is proportional to its Boltzmann weight
[20–22]. We begin with a summary of this model. Suppose there are P RNA
polymerase (RNAP) and R repressor molecules in a cell. RA repressors will be in
the active state (the favored state when repressor is not bound to inducer; in this
state the repressor binds tightly to DNA) and the remaining RI repressors will be in
the inactive state (the predominant state when repressor is bound to inducer; in this
state the repressor binds weakly to DNA) so that RA + RI = R.

We first model the interaction between the Lac repressor and DNA by enumerating
all possible states and their corresponding weights. As shown in Fig. 3.1, the Lac
promoter can either be empty, occupied by RNAP, or occupied by either an active
or inactive repressor molecule. Assume that there are NN S non-specific sites on
the DNA outside the Lac operator where RNAP or the Lac repressor can bind.
∆εPD represents the energy difference between RNAP bound to the Lac operator
or bound elsewhere on the DNA; ∆εRD,A and ∆εRD,I equal the difference in energy
when the Lac repressor is bound to the Lac operator compared to when it is bound
non-specifically elsewhere on the DNA in the active and inactive state, respectively.
β = 1

kBT where kB is Boltzmann’s constant and T is the temperature of the system.

In thermodynamic models of transcription, gene expression is proportional to the
probability pbound that RNAP is bound to the Lac operator which is given by

pbound(R) =
p

1 + rA + rI + p
, (3.1)

where

p =
P

NNS
e−β∆εPD (3.2)

rA =
RA

NNS
e−β∆εRD,A (3.3)

rI =
RI

NNS
e−β∆εRD,I . (3.4)

Gene expression can be readily measured experimentally by exploiting the fold-
change,

fold-change ≡
pbound(R)
pbound(0)

=
1 + p

1 + rA + rI + p
. (3.5)

We can simplify this expression using two well-justified approximations: p � 1
and rI � rA. The first approximation is called the weak promoter approximation
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Figure 3.1: States and weights for simple repression. Both RNAP (light blue)
and repressor compete for DNA binding. There are RA repressors in the active state
(green, sharp) and RI repressors in the inactive state (green, rounded), with the latter
type typically bound to inducer (gold). The difference in energy between a repressor
bound to the Lac operator and to another non-specific site on the DNA equals∆εRD,A
in the active state and ∆εRD,I in the inactive state; the P RNAP have a corresponding
energy difference ∆εPD. The number of active repressors RA includes repressors
that are unbound, singly bound, or doubly bound to inducer, although the majority
of active state repressors will not be bound to inducer (which pushes them into the
inactive state). Similarly, the RI term includes all inactive state repressors bound to
any number of inducer molecules, with the most prevalent state shown in the figure.

and is valid for the wild type Lac promoter [23]. The second approximation follows
because e−β∆εRD,I is approximately 1000 times smaller than e−β∆εRD,A for the Lac
repressor [5]. Using these approximations, the fold-change reduces to the form

fold-change ≈
1

1 + rA
=

(
1 +

RA

NNS
e−β∆εRD,A

)−1
. (3.6)

We now introduce the role of inducer binding, which changes the number of re-
pressors in the active and inactive allosteric states. We define pA(c) ≡ RA(c)

R to be
the fraction of repressors in the active state given a concentration c of the inducer
IPTG. We define V as the volume of an E. coli cell, [R] = R

V as the concentration
of repressors, and KDNA =

NNS
V eβ∆εRD,A as the dissociation constant of the active

repressor binding to the Lac operator DNA. This last expression, which links the
physical energies of the system with the language of dissociation constants and
chemical rates, is discussed in detail in the Supplementary Information. With these
definitions, Eq. 3.6 becomes

fold-change =
(
1 +

pA(c)[R]V
NNS

e−β∆εRD,A

)−1
=

(
1 +

pA(c)[R]
KDNA

)−1
. (3.7)
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As shown in Fig. 3.2, we can enumerate the relative likelihood of the eight possible
conformations of the repressor (the repressor can be in an active or inactive state,
and each of its two inducer binding sites can be empty or occupied), using the energy
difference ε between a Lac repressor in the active and inactive state. From these
eight states, we can compute the probability pA(c) that a repressor will be in the
active state as the sum of the weights of the active states divided by the sum of the
weights of every possible state, namely,

pA(c) =

(
1 + c

KA

)2(
1 + c

KA

)2
+ e−βε

(
1 + c

KI

)2 . (3.8)
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Figure 3.2: The eight states of the Lac repressor. The Lac repressor (green) has
an active conformation (left column) and inactive conformation (right column), with
the energy difference between these two states given by ε . In each conformation,
the repressor can bind an inducer (gold) at two sites. Each state is shown with
its corresponding Boltzmann weight. If the sum of the active state weights shown
(bottom left) is greater than the sum of the inactive state weights (bottom right), the
repressor is more likely to be in the active state.

Substituting this result into Eq. 3.7 yields the complete formula

fold-change =
*..
,
1 +

(
1 + c

KA

)2(
1 + c

KA

)2
+ e−βε

(
1 + c

KI

)2
[R]

KDNA

+//
-

−1

, (3.9)

which predicts that given a concentration [R] of Lac repressor and a concentration
c of the inducer IPTG, the fold-change in gene expression will depend solely on 4
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parameters: the DNA binding affinity of the repressor (KDNA), the inducer binding
affinities for the repressor in the active state (KA) and inactive state (KI), and the
difference in free energy between the active and inactive states of the repressor (ε).

3.3.2 Lac Repressor Mutants
A protein with a single point mutation can often behave so differently from its
unmutated form that it is difficult to draw a connection between the two. In terms
of the thermodynamic model for fold-change described in Eq. 3.9, the standard
practice for any mutant Lac repressor would be to measure fold-change at multiple
concentrations of inducer and refit all four parameters KDNA, KA, KI , and ε [13, 24,
25].

It has long been known both experimentally and through simulations that mutations
deep within a binding pocket effect ligand binding much more than mutations far
outside the binding domain [6, 7, 26–28]. For example, consider a Lac repressor
with a single amino acid mutation in its DNA binding domain. We shall call
such a mutant an operator mutant. We first show that operator mutants are well
characterized by the simple model where only their affinity KDNA between the Lac
repressor and DNA changes while the other parameters KA, KI , and ε retain the
same values as the wild type Lac repressor. We next test the hypothesis that a
mutation within the Lac repressor’s inducer binding domain (where allolactose or
IPTG bind) only changes the thermodynamic parameters KA and KI . We shall call
this latter mutant an inducer mutant.

The concept that mutations can be linked to a small subset of thermodynamic
parameters has been shown to work well in the context of bacterial chemotaxis [29]
and quorum sensing [7]. Extending it beyond these model systems would drastically
improve our ability to characterize mutants [30] and help guide future experiments
aimed at designing specific gene expression profiles. Here we show that, like in
the cases of quorum sensing and chemotaxis, the use of allosteric models allows
us to unify broad classes of mutants and make quantitative predictions about their
leakiness and dynamic range. We now turn to an analysis of operator and inducer
mutants within the Lac system.

The Bohr Parameter It is instructive to isolate the effects of the thermodynamic
parameters by rewriting the fold-change Eq. 3.9 as

fold-change =
1

1 + e−βF (c) (3.10)
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where we have introduced the Bohr parameter,

F (c) ≡ −kBT log
*..
,

(
1 + c

KA

)2(
1 + c

KA

)2
+ e−βε

(
1 + c

KI

)2
[R]

KDNA

+//
-
. (3.11)

The Bohr parameter captures many of the important properties of the system inclu-
ding whether DNA is more likely to be bound to repressor (F (c) < 0) or unbound
(F (c) > 0) [6, 7]. Our reasoning for calling this the Bohr parameter is suggested
by work from Mirny that hypothesizes an analogy between allosteric transitions in
chromatin and in the binding of oxygen to hemoglobin [31]. Specifically, the Bohr
effect refers to the change in oxygen’s binding affinity to hemoglobin as a function
of pH, which results in families of binding curves analogous to those found for
different transcription factor mutants.

Consider the minimum and maximum values that F (c)
kBT can attain over all concen-

trations c of inducer. Assuming KA ≥ KI , the minimum and maximum values are
given by

Fmin
kBT

= lim
c→0

F (c)
kBT

= log
(
1 + e−βε

)
− log

(
[R]

KDNA

)
(3.12)

and
Fmax
kBT

= lim
c→∞

F (c)
kBT

= log *
,
1 + e−βε

(
KA

KI

)2
+
-
− log

(
[R]

KDNA

)
, (3.13)

respectively (if KA < KI , then Fmin is achieved as c → ∞ and Fmax as c → 0).

The Bohr parameter is a natural variable with which we can understand quantities
such as the leakiness or dynamic range of a repressor. Leakiness is defined as the
fold-change in the absence of inducer, c = 0, which relates how much a gene is
expressed even when the repressor is working at full strength,

leakiness =
1

1 + e−βFmin
. (3.14)

The dynamic range equals the difference between the maximum and minimum fold-
change. Assuming KA ≥ KI , maximum fold-change occurs when the system is
saturated with inducer (c → ∞) while the minimum fold-change occurs with no
inducer (c = 0), resulting in a dynamic range given by

dynamic range =
1

1 + e−βFmax
−

1
1 + e−βFmin

. (3.15)

The maximum and minimum values of the Bohr parameter, Eqs. 3.12 and 3.13, also
provide a simple way to test the theory of operator mutants and inducer mutants
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discussed above. For operator mutants where only KDNA changes, the difference
Fmax − Fmin is predicted to stay the same,

Fmax − Fmin
kBT

= log
*..
,

1 + e−βε
(

KA

KI

)2

1 + e−βε
+//
-
. (3.16)

Experimentally, this invariant quantity can be determined by making two measure-
ments of fold-change, one in the absence of inducer (c = 0, F (c) → Fmin) and the
other when the system is saturated with inducer (c → ∞, F (c) → Fmax), and then
using Eq. 3.10 to transform from fold-change to the Bohr parameter. On the other
hand, for inducer mutants where only KA and KI vary, Fmin is predicted to exactly
equal the wild type value (or equivalently, the leakiness of the wild type and any
inducer mutant should be identical). We will see both of these results in the next
two sections.

We now consider experimental measurements of a broad class of Lac repressor
mutants that control the expression of a promoter driving the production of a GFP
reporter. By altering the amount of inducer, the fold-change in gene-expression was
measured using the GFP fluorescence in the presence and absence of Lac repressor
as per Eq. 3.5. The calculations described here aim to discover to what extent
the apparent complexity of these different induction curves can be tamed by the
appropriate underlying theoretical models.

Operator Mutants Fig. 3.3A shows inducer titration curves for wild type Lac
repressor and three mutants with point mutations in the DNA binding region [19].
The wild type curve was used to fit all four parameters (KA, KI , ε , and KDNA). Then
the three operator mutants were fit assuming that only their KDNA parameter was
different from the wild type. These fits are discussed in detail in the Supplementary
Information. Fig. 3.3B plots the fold-change of each mutant collapsed onto a single
master curve as a function of the Bohr parameter. The horizontal line segments
stretch from Fmin to Fmax for each operator mutant. As implied by Eq. 3.16,
Fmax − Fmin will be the same for all three operator mutants and the wild type, which
can be seen by the identical size of all four horizontal bars.

As a technical note, in fitting the variables KA, KI , ε , and KDNA from Eq. 3.9, we
make the further assumption that [R] remains constant among all mutants (with
[R] ≈ 11 ± 2 nM for the promoter used in the experiment) [16, 32]. However,
point mutations may cause proteins to improperly fold and hence be degraded at
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significantly faster rates [33, 34], and if such an effect exists we implicitly absorb it
into our KDNA value.

Using Eqs. 3.14 and 3.15, we can plot the leakiness and dynamic range of a general
operator mutant as a function of KDNA, using the values of KA, KI , and ε from the
wild type titration curve. Fig. 3.4 shows the leakiness and dynamic range for any
KDNA value along with the theoretical best fit values from the four titration curves
in Fig. 3.3(A).

As shown in Fig. 3.4A, increasing KDNA increases the leakiness in a sigmoidal
fashion. From Fig. 3.4B, we see that the dynamic range has a symmetric peak (on
a logarithmic plot); from Eq. 3.15 it is straightforward to see that the peak occurs at(

[R]
KDNA

)
max

dynamic
range

=

√√(
1 + e−βε

) *
,
1 + e−βε

(
KA

KI

)2
+
-
. (3.17)

Interestingly, the wild type values for Lac repressor appear to be an excellent com-

A

wild type
Q18A
Q18M
Y17I

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1
0.0

0.2

0.4

0.6

0.8

1.0

[inducer] (M)

fo
ld
-

ch
an

ge

B

-6 -4 -2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

Bohr parameter (kBT units)

fo
ld
-

ch
an

ge
   

   
   

 

wild type
Q18AQ18M

Y17I

Figure 3.3: Operator mutants only vary their DNA binding affinity. (A) Fold-
change in gene expression of the promoter controlled by Lac repressor as a function
of inducer (IPTG) concentration. Data is shown for wild type Lac repressor and
three mutants with point mutations in their DNA binding region. First, the wild
type Lac repressor data was fit to the theoretical fold-change expression, Eq. 3.9.
Following this, the fold-change profiles of the three mutants were fit by only varying
their DNA binding affinity, KDNA, while keeping their remaining thermodynamic
parameters (KA, KI , ε) equal to the wild type values. (B) Each mutant can be
collapsed onto the same curve using the Bohr parameter F (c) given by Eq. 3.11.
A larger Bohr parameter indicates that the repressor is less likely to be bound to
the Lac operator. The horizontal bars stretching from Fmin to Fmax have the same
length for all four repressors as determined by Eq. 3.16. Standard deviation from
triplicate measurements and the best fit parameters are shown in the Supplementary
Information.
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Figure 3.4: Theoretical values of leakiness and dynamic range for operator
mutants. (A) Assuming a fixed repressor concentration [R] for all operator mutants,
leakiness monotonically increases with increasing KDNA while (B) the dynamic
range has a peak. The wild type repressor exhibits a good compromise between
having a large dynamic range and a small leakiness. Leakiness and dynamic range
values for the four repressors shown are taken from the best fit curves in Fig. 3.3
and are not measured directly from data. Thus, we represent these values as empty
squares, and they fall exactly upon the black theoretical curve.

promise between small leakiness and large dynamic range.

Inducer Mutants Fig. 3.5A shows inducer titration curves for wild type Lac
repressor and ten mutants with point mutations in the inducer binding region [19].
Fig. 3.5B collapses all of these titration profiles onto a single master curve using
the Bohr parameter. As in the case of operator mutants, the data matches well to
the simple model where only the inducer binding constants KA and KI vary within
the mutants, while the KDNA and ε parameters are equal to those of the wild type
repressor. Note from Eq. 3.5 that fold-change values greater than 1 are an indication
of the noise in the measurements. The fits and the error are discussed further in the
Supplementary Information.

Of these ten inducer mutants, only one (Q291R) was rendered completely unable
to bind to inducer (or alternatively its KA and KI increased to the point that an
IPTG concentration larger than 0.1Mwas required to induce it). Yet even if Q291R
causes the Lac repressor to cease functioning, the fact that all three operator mutants
and nine out of the ten inducer mutants we considered are well categorized by this
simple allosteric model gives confidence in the possible broader applicability of
such thinking.

From Eqs. 3.12 and 3.14, the leakiness of all inducer mutants should be exactly
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Figure 3.5: Inducer mutants only vary their inducer binding affinities. (A) Ten
different point mutations in the Lac repressor’s inducer binding region can be well
characterized by only varying the mutant repressor’s binding affinity to IPTG in the
active (KA) and inactive (KI) state, while keeping the other thermodynamic parame-
ters (KDNA and ε) in Eq. 3.9 equal to the wild type values. (B) Data collapse using
the Bohr parameter from Eq. 3.11. Standard deviation from triplicate measurements
and the best fit parameters are shown in the Supplementary Information.
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Figure 3.6: Theoretical values of the dynamic range for inducer mutants. (A)
The dynamic range, Eq. 3.15, as a function of KA and KI , using the wild type
values for ε and KDNA. (B) Dynamic range as a function of KA/KI overlaid with the
dynamic range values of the ten titration curves from Fig. 3.5A. Note that KA/KI is
much more tightly constrained about the wild type value than the individual KA and
KI values. The dynamic range values shown are from the theoretical best fit curves
in Fig. 3.5 and are not measured directly from data.

equal to the leakiness of the wild type Lac repressor, which is indeed confirmed
by the titration curves in Fig. 3.5A. Turning to the dynamic range, Fig. 3.6A shows
the KA and KI values for the inducer mutants which collectively span 2-3 decades.
However, Fig. 3.6B demonstrates that the KA/KI values of all inducermutants is very
tightly constrained (less than 1 decade) around the wild type value. In other words,
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Figure 3.7: Predicted behavior of double mutants. The anticipated fold-change
of a double mutant, with a point mutation in the operator and inducer binding
domains, using the KDNA parameter from the operator mutant and the KA and KI
parameters from the inducer mutant. Predictions are shown for the fold-change of
the double mutation of Q18M in the DNA binding domain and (A) F161N, (B)
F161T, (C) F161W, and (D) F293R in the inducer binding domain.

any mutation in the inducer binding domain that increases the affinity of the inducer
to active-state repressor (e.g. by altering avidity or electrostatic interactions) also
seems to increase the affinity of inducer to inactive-state repressor by approximately
the same amount. Note that in our discussion of leakiness and dynamic range above,
the ratio KA/KI emerged as the critical parameter in the MWC model, rather than
the individual values of KA and KI .

3.4 Discussion
We have shown that within the Monod-Wyman-Changeux statistical mechanical
model of allostery, the physiological role of mutations within the Lac repressor have
a deep, intuitive connection with the thermodynamic parameters characterizing that
protein. Said another way, the Lac repressor is amenable to a treatment of mutations
as local perturbations to protein structure. Compared to the wild type Lac repressor,
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mutations inside the operator binding domain will only noticeably affect the DNA
binding affinity (KDNA) while mutations within the inducer binding domain only
alter the inducer binding affinities (KA and KI) in the fold-change Eq. 3.9.

While general relationships are well-known between quantities such as leakiness and
dynamic range for allosteric proteins [30], the framework developed here has made
it possible to make mechanistically specific predictions about the consequences of
different classes of mutations. For example, we predict that mutating the inducer
binding domain should not change the leakiness of repressor mutants, which has
been confirmed in all ten inducer mutants tested. In addition, we have been able
to more tightly constrain the relationship between leakiness and dynamic range for
our different classes of mutants. For instance, significant effort has been invested to
find a Lac repressor mutant with a larger dynamic range but comparable leakiness
to the wild type [5]. Our analysis has shown that operator mutants are unlikely to
yield these characteristics and that inducer mutants can at best yield only a slightly
improved dynamic range.

We have also shown that a subset of the possible mutations of Lac repressor seem
to act locally, only changing the MWC parameters corresponding to the physical
region of the mutation. While we acknowledge that not all mutations may be
amenable to a similar treatment, we are intrigued by the success of the simple model
proposed here and are curious to explore the limits of this mindset as the mutational
landscape becomes more complicated. For example, it would be interesting to test
whether the effects of double mutants, with a point mutation in the DNA binding
region and another point mutation in the inducer binding region, will dictate the
KDNA parameter from the former mutation while KA and KI will be fixed by the
latter mutation [7, 29]. Fig. 3.7 shows four such double mutants, although any
combination of an operator and inducer mutant analyzed in this paper is possible.
These results assume that the two mutations are completely independent and do
not interact with each other, a trait which appears supported by the clear classes
of operator and inducer mutants presented in the text, but which ultimately must
be verified experimentally. In addition, it remains an open question whether one
can access the ε parameter, the energy difference between the active and inactive
allosteric conformations, in Lac repressor independently of the DNA and inducer
binding affinities and create an ε mutant. Answering these questions will surely
lead to new insights into the ways in which evolution has shaped proteins by giving
a sense of which parameters are evolutionarily accessible.
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3.5 Methods
Detailed notes about how the induction profiles of the Lac repressor were measured
can be found in [5]. Both the Lac repressor and Lac promoter were on low copy
number plasmids. Provided that the number of repressors is significantly larger than
the number of plasmids, the form of the fold-change equation remains unchanged
from Eq. 3.9 [18].
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C h a p t e r S3

SUPPLEMENTARY INFORMATION FOR MUTATIONS FROM
A THERMODYNAMIC PERSPECTIVE

S3.1 Linking Thermodynamics and Statistical Mechanics
In this section, we discuss how to pass naturally between the language of thermody-
namics, which utilizes rate constants and dissociation constants, and the language of
statistical mechanics, which focuses upon energies of different states. We begin by
rewriting Eq. 3.6, the fold-change of the Lac operator in the language of statistical
mechanics,

fold-change =
1

1 + RA

NNS
e−β∆εRD,A

. (S3.1)

Using Fig. 3.1, the probability of active Lac repressor binding to the Lac operator
versus the probability that the Lac operator is unoccupied equals RA

NNS
e−β∆εRD,A.

However, this ratio must also be given by the thermodynamic form [RA]
KDNA

where [RA]
is the concentration of active Lac repressors and KDNA is the dissociation constant
between the repressor and operator. To link these two quantities, we consider the
volume V of our system (the volume of an E. coli) so that [RA] = RA

V . Thus, we find
that KDNA =

NNS
V eβ∆εRD,A from which Eq. 3.7 follows.

S3.2 Data Fitting
In this section, we describe the fitting procedure used to match the experimental
fold-change data at various concentrations of inducer (Fig. 3.3A and Fig. 3.5A) with
the theoretically predicted curves of the form

fold-change =
*..
,
1 +

(
1 + c

KA

)2(
1 + c

KA

)2
+ e−βε

(
1 + c

KI

)2
[R]

KDNA

+//
-

−1

. (S3.2)

All fitting was done using nonlinear regression (NonlinearModelFit in Mathema-
tica). Initial guesses were randomly chosen from the realistic parameter space
KA, KI ∈ [10−9 M, 10−3 M], [R]/KDNA ∈ [10−3, 103], and βε ∈ [−5, 5] until a
sufficiently good fit (R2 > 0.95) was found.

It must be noted that, as with nearly all models, there are serious ambiguities in the
best fit values since multiple values may yield nearly identical curves. In point of
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Figure S3.1: Multiple sets of thermodynamic parameters can yield nearly
identical functional forms. The blue data points represent the wild type values
of fold-change from Fig. 3.3A together with the best-fit line shown as fit 1. Fold-
change for this fit was given by Eq. S3.2 with the parameters KA = 1.5 × 10−5 M,
KI = 1.2 × 10−6 M, e−βε = 1.1, and [R]/KDNA = 60. Overlaid on top is the
dashed curve fit 2 with identical KA and KI parameters but with the unrealistic
parameters e−βε = 2.2 × 104, and [R]/KDNA = 1.1 × 106. Note that the ratio
eβε [R]/KDNA = 0.02 is the same in both cases, but the individual parameters can
vary enormously.

fact, consider the wild type best fit parameters (shown in Table S3.1). Because KI

is sufficiently smaller than KA and e−βε ≈ 1, the term
(
1 + c

KA

)2
in the denominator

of Eq. S3.2 is much less than e−βε
(
1 + c

KI

)2
for nearly the entire range of inducer

concentrationsmeasured in Fig. 3.3. Thus the fold-change is very well approximated
by the form

fold-change ≈
*..
,
1 +

(
1 + c

KA

)2(
1 + c

KI

)2 eβε
[R]

KDNA

+//
-

−1

. (S3.3)

Therefore, it is really the ratio eβε [R]
KDNA

rather than the individual parameters e−βε

and [R]
KDNA

that are tightly constrained by the fitting. Fig. S3.1 demonstrates this
phenomenon by plotting the best fit curve for the wild type repressor overlaid on
another curve with unrealistically large parameters.

This attribute of models, sometimes dubbed “sloppiness,” is well known [1]. With
this in mind, our results below demonstrate that our framework is sufficient to
describe the induction profile of Lac repressor, but that the individual parameter
values (i.e. KA, KI , KDNA, and e−βε ) are not tightly determined by these fits.
Finally, we point out that while fitting the wild type Lac repressor has a certain
amount of sloppiness, consequently fitting the operator mutants (with a 1 parameter
fit) and inducer mutants (with a 2 parameter fit) has much less sloppiness.
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Figure S3.2: Fold-change of Lac repressor operator mutants. The curves show
fold-change as a function of (A) effector (IPTG) concentration and (B) the Bohr
parameter given in Eq. 3.11. Error bars represent the standard deviation from
triplicate measurements.

S3.2.1 Operator Mutants
Consider the operator mutant titration curves, Fig. 3.3, from the main text. To obtain
the theoretical curves, we first fit the wild type data to the fold change Eq. S3.2 by
letting all four parameters KA, KI , ε , and [R]/KDNA vary. The resulting best fit
values are shown in the top row of Table S3.1. Then, the three parameters KA, KI ,
and ε were held fixed while only [R]/KDNA was allowed to vary for the operator
mutant data. The resulting [R]/KDNA values are shown in Table S3.1.

Fig. S3.2 shows the operator mutant data together with the standard deviation obtai-
ned through triplicate measurements within the same experiment. However, these
error bars were not used when fitting the data, as we strongly suspect that there was
systematic error unaccounted for, especially at low IPTG concentrations where it is
difficult to distinguish signal from background. In particular, the standard deviation
of the data points at 10−8 M inducer, which are a factor of 5-10 times smaller than
the standard deviation at larger inducer concentrations, would disproportionately
skew any fitting that assumes these standard deviations accurately represent the true
measurement error. Without a systematic measurement of error, we opted to weigh
each data point evenly.

S3.2.2 Inducer Mutants
We now turn to the inducer mutant titration curves, Fig. 3.5, from the main text.
We used the same wild type parameters as in the case of the operator mutants, as
shown in the top row of Table S3.2. We then fixed the value of ε and [R]/KDNA

for all inducer mutants using the wild type values and fit the two inducer binding
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Mutant KA (M) KI (M) e−βε [R]/KDNA

wild type 1.5 × 10−5 1.2 × 10−6 1.1 60
Q18A — — — 6.5
Q18M — — — 570
Y17I — — — 3.5

Table S3.1: Best fit parameters for the wild type Lac repressor and three
mutants with a single amino acid mutation in their operator binding site. The
three mutants only fit their KDNA parameter. Empty spaces indicate that the wild
type parameter value was used.

affinities KA and KI for the inducer mutant data, with the resulting values shown in
Table S3.2.

Fig. S3.3 shows the operator mutant data together with the standard deviation obtai-
ned through triplicate measurements. As in the case of the operator mutants discus-
sed above, these error bars were not used when fitting the data, but instead all data
points were weighted equally.

All of the best fit values for these inducermutants seem reasonable except for Q291R.
This particular mutation either made Lac repressor incapable of binding to inducer
or raised its KA and KI so much that IPTG concentrations larger than 0.1M are
required to induce it. In either case, fitting data points with zero fold-change will
inevitably lead to near-infinite KA and KI values. Hence, we ignored this mutant in
our analysis within the main text.

In general, while mutants such as Q291R with flat-line fold-change technically
qualify to be inducer mutants (i.e. their data can be well fit by the theory), no
real information can be gained by studying them within our framework. Hence, we
recommend to first try inducing such repressors at maximum IPTG concentrations
(around 1M) and if no fold-change can be detected to ignore these mutants.
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Figure S3.3: Fold-change of Lac repressor inducer mutants. The curves show
fold-change as a function of (A) effector (IPTG) concentration and (B) the Bohr
parameter given in Eq. 3.11. Error bars represent the standard deviation from
triplicate measurements.

Mutant KA (M) KI (M) e−βε [R]/KDNA

wild type 1.5 × 10−5 1.2 × 10−6 1.1 60
F161N 7.4 × 10−5 3.8 × 10−6 — —
F161T 1.4 × 10−5 8.6 × 10−7 — —
F161W 9.2 × 10−5 5.9 × 10−6 — —
F293R 1.6 × 10−2 2.2 × 10−3 — —
L296W 4.6 × 10−4 3.6 × 10−5 — —
Q291I 4.9 × 10−5 4.5 × 10−6 — —
Q291K 8.7 × 10−5 7.4 × 10−6 — —
Q291M 2.3 × 10−5 1.0 × 10−6 — —
Q291R* 6.8 × 10−25 2.5 × 10−24 — —
Q291V 2.8 × 10−3 3.2 × 10−4 — —

Table S3.2: Best fit parameters for the wild type Lac repressor and tenmutants
with a single amino acid mutation in their inducer binding site. The ten mutants
only fit their KA and KI parameters which represent the repressor’s affinity to the
inducer in the active and inactive states, respectively. Dashes indicate that the wild
type parameter values were used. * Q291R had zero fold-change for all IPTG
concentrations measured, to which a wide variety of parameters can be fit. Hence it
was discarded from our analysis of inducer mutants.
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C h a p t e r 4

THEORETICAL ANALYSIS OF INDUCER AND OPERATOR
BINDING FOR CYCLIC-AMP RECEPTOR PROTEIN MUTANTS

Einav T, Duque J, Phillips R. Theoretical Analysis of Inducer and Operator Binding
for Cyclic-AMP Receptor Protein Mutants. PLOS ONE (Public Library of Science).
2018;13(9):e0204275. doi:10.1371/journal.pone.0204275

This was the first project that I had developed from the ground up. Rob and I had met Julia

Duque the previous summer at MBL, and we enjoyed interacting with her so much that Rob

invited her to visit Caltech for three months and conduct post-course research with us. As

we were looking for projects, I read a beautiful paper by Rodrigo Maillard and immediately

knew that it was perfect. Together with my Lac repressor paper (Chapter 3) and ion channel

paper (Chapter 5), these projects make a compelling case that the MWC model of allostery

can refine how we think about mutations.
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4.1 Abstract
Allosteric transcription factors undergo binding events at inducer binding sites as
well as at distinct DNA binding domains, and it is difficult to disentangle the struc-
tural and functional consequences of these two classes of interactions. We compare
the ability of two statistical mechanical models – the Monod-Wyman-Changeux
(MWC) and the Koshland-Némethy-Filmer (KNF) models of protein conformati-
onal change – to characterize the multi-step activation mechanism of the broadly
acting cyclic-AMP receptor protein (CRP). We first consider the allosteric transition
resulting from cyclic-AMP binding to CRP, then analyze how CRP binds to its ope-
rator, and finally investigate the ability of CRP to activate gene expression. We use
these models to examine a beautiful recent experiment that created a single-chain
version of the CRP homodimer, creating six mutants using all possible combina-
tions of the wild type, D53H, and S62F subunits. We demonstrate that the MWC
model can explain the behavior of all six mutants using a small, self-consistent set
of parameters whose complexity scales with the number of subunits, providing a
significant benefit over previous models. In comparison, the KNF model not only
leads to a poorer characterization of the available data but also fails to generate
parameter values in line with the available structural knowledge of CRP. In addition,
we discuss how the conceptual framework developed here for CRP enables us to not
merely analyze data retrospectively, but has the predictive power to determine how
combinations of mutations will interact, how double mutants will behave, and how
each construct would regulate gene expression.

4.2 Introduction
Transcriptional regulation lies at the heart of cellular decision making, and under-
standing how cells modify the myriad of players involved in this process remains
challenging. The cyclic-AMP receptor protein (CRP; also known as the catabo-
lite receptor protein, CAP) is an allosteric transcription factor that regulates over
150 genes in Escherichia coli [1–4]. Upon binding to cyclic-AMP (cAMP), the
homodimeric CRP undergoes a conformational change whereby two alpha helices
reorient to open a DNA binding domain [5], allowing CRP to bind to DNA and
affect transcription [6–8]. While much is known about the molecular details of CRP
and how different mutations modify its functionality [9, 10], each new CRP mutant
is routinely analyzed in isolation using phenomenological models. We argue that
given the hard-won structural insights into the conformational changes of proteins
like CRP, it is important to test how well mechanistically motivated models of such
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proteins can characterize the wealth of available data.

The picture that has emerged from various domains of biology is that allostery
involves the interplay of a spectrum of dynamically linked states [11–17]. In some
systems, it is straightforward to partition these states into the physiologically rele-
vant categories; for example, CRP naturally divides into the cAMP unbound, singly
bound, and doubly bound states as well as the DNA bound and unbound states. Nu-
clearmagnetic resonance (NMR) and isothermal titration calorimetry (ITC) have be-
gun to tease out the precise thermodynamics of the underlying interactions between
these states [18, 19]. These methods have demonstrated that allosteric regulation
in CRP includes both large structural changes as well as entropic modifications that
make the protein more rigid [20, 21]. In this work, we ask whether we can capitalize
upon this detailed knowledge of the system to construct a coarse-grained model of
the multi-step activation cycle of CRP shown in Fig. 4.1A using a compact set of
parameters. Specifically, we investigate variants of the Monod-Wyman-Changeux
(MWC) model, which posits that both CRP subunits fluctuate concurrently between
an active and inactive conformational state [22], and the Koshland-Némethy-Filmer
(KNF) model, which proposes that each subunit must independently transition from
an inactive to active state upon ligand binding [23], adapted for the CRP system.
These two models have been investigated in a wide variety of allosteric systems,
and evidence for both models as well as their shortcomings have been extensively
analyzed [24–28]. Nevertheless, the simple thermodynamic view provided by the
MWC and KNF models provides fertile ground to both verify how well we under-
stand the critical factors governing CRP behavior as well as to explore hypotheses
about mutational perturbations to the system.

Our paper is inspired by a recent in vitro study of CRP performed by Lanfranco et
al. who engineered a single-chain CRP molecule whose two subunits are tethered
together by an unstructured polypeptide linker [29]. This construct enabled them
to mutate each subunit independently, providing a novel setting within which to
analyze the combinatorial effects of mutations. Specifically, they took three distinct
CRP subunits – the wild type (WT) subunit and the well characterized mutations
D53H and S62F (denoted D and S, respectively) originally chosen to perturb the
transcription factor’s cAMP binding domain [30, 31] – and linked them together in
every possible combination to create six CRP mutants as shown in Fig. 4.1B (black
and pink boxes). Lanfranco et al. measured the cAMP-binding and DNA-binding
capabilities of these mutants, separating these two key components of transcription
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Figure 4.1: Key parameters governing CRP function. (A) Within the MWC
and KNF models, each CRP subunit can assume either an active or an inactive
conformation with a free energy difference ε between the two states. cAMP can bind
to CRP (with a dissociation constant M A

D in the active state and M I
D in the inactive

state) and promotes the active state (M A
D < M I

D in the MWC model; M I
D → ∞ in

the KNF model). Active CRP has a higher affinity for the operator (LA
D) than the

inactive state (LI
D). When CRP is bound to DNA, it promotes RNA polymerase

binding through an interaction energy εP, thereby enhancing gene expression. (B)
Lanfranco et al. constructed a single-chain CRPmolecule whose two subunits could
bemutated independently. All possible dimers are shown using fivemutant subunits:
wild type (WT), D (D53H), S (S62F), G (G141Q), and L (L148R). Lanfranco et
al. constructed the six mutants comprised of WT, D, and S (black and pink boxes)
and analyzed each mutant independently.

factor activation. In this work, we present an analysis of these CRP mutants that
demonstrates how their diverse phenotypes are related by their subunit compositions.

More specifically, the effects of mutations are often difficult to interpret, and indeed
the results from Lanfranco et al. showed no clear pattern. The behavior of each
mutant was analyzed independently by fitting its binding curve to a second order
polynomial [29]. In this work, we propose an alternative framework that bolsters
our understanding of the system in two significant ways: (1) we link the response
functions of each CRP construct to its subunit composition, closing the gap between
structure and function and (2) the number of parameters in our model scales linearly
with the number of subunits whereas the number of parameters in the original
analysis scaled with the number of CRP mutants (i.e. the square of the number of
subunits). The advantage of this scaling behavior growswith the number of subunits.
For example, this work focuses on the CRP mutants made by Lanfranco et al. using
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three subunits (black and pink boxes in Fig. 4.1B). If we include two additional
well-characterized mutants – such as G141Q (G) and L148R (L) [32] – for a total of
N = 5 subunits, our model would only require 2N = 10 parameters to describe the
N (N+1)

2 = 15 mutants whereas a model analyzing each mutant independently would
require 30 parameters (2 per mutant). With N = 10 subunits, we would require
20 parameters to understand 55 mutants while a model characterizing individual
mutants would require 110 parameters.

In addition to analyzing the available in vitro data for these mutants, we consider
how each construct would promote gene expression in vivo. Because CRP is a global
activator, its activity within the cell is tightly regulated by enzymes that produce,
degrade, and actively transport cAMP [7]. We discuss how these processes can
either be modeled theoretically or excised experimentally and calibrate our resulting
framework for transcription using gene expression measurements for wild type CRP.
In this manner, we find a small, self-consistent set of parameters able to characterize
each step of CRP activation shown in Fig. 4.1A.

The remainder of this paper is organized as follows. First, we characterize the
interaction between cAMP and CRP for the six CRP mutants created by Lanfranco
et al. and quantify the key parameters governing this behavior. Next, we analyze the
interaction between CRP and DNA and discuss how the inferred parameters align
with structural knowledge of the system. Finally, we consider how CRP enhances
gene expression and extend the results from Lanfranco et al. to predict the activation
profiles of the CRP mutants within a cellular environment.

4.3 Results
4.3.1 The Interaction between CRP and cAMP
In this section, we examine the cAMP-CRP binding process through the lenses of
generalized MWC and KNF models which tie each mutant’s behavior to its subunit
composition. We find that both frameworks can characterize data from a suite of
CRP mutants using a compact set of parameters, but only the interpretation of the
MWC parameters is consistent with structural knowledge of CRP.

4.3.1.1 MWCModel

We first formulate a description of cAMP-CRP binding using a generalized form
of the MWC model, where the two subunits of each CRP molecule fluctuate con-
currently between an active and inactive state. The different conformations of
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CRP binding to cAMP and their corresponding Boltzmann weights are shown in
Fig. 4.2A. We define the free energy difference between inactive CRP and active
CRP as 2ε (or ε per subunit). ε will be large and negative since the activator is
preferentially inactive in the absence of ligand, which will allow us to simplify
the description of the system. β = 1

kBT where kB is Boltzmann’s constant and T

represents temperature. The two cAMP binding events are known to be cooperative
[26, 33, 34], where the magnitude and the sign of this cooperativity (whether it is
favorable or unfavorable) strongly depends upon the conditions of the buffer, mu-
tational perturbations to the system, and whether the full or partial CRP protein is
considered [29, 35, 36]. To that end, we introduce two types of cooperativity. First,
the classic MWC model is inherently cooperative, as the binding of each ligand
alters the probable conformation and hence binding affinity of the other binding
site; however, this mode of cooperativity can only be favorable [37]. Because CRP
may also exhibit negative cooperativity, we introduce explicit interaction energies
ε A
int and ε

I
int between two ligands in the active and inactive CRP states, respectively.

For simplicity, and because it will enable us to characterize the CRP collectively
rather than requiring a unique parameter for each mutant, we assume that these
explicit cooperative interactions are the same across all constructs (see Supporting
Information Section S4.1 where we relax such assumptions).

For each cAMP-CRP dissociation constant MY
X , the subscript denotes which CRP

subunit it describes – either the left (L) or right (R) subunit – while the superscript
denotes the active (A) or inactive (I) state of CRP. Note that the left and right
subunits may be different (see Fig. 4.1B). Given a cAMP concentration [M], the
fraction of occupied cAMP binding sites is given by

fractional CRP occupancy([M]) =
1
2

(
[M]
MA

L

+
[M]
MA

R

)
+ e−βε

A
int [M]

MA
L

[M]
MA

R

+ e−2βε
(

1
2

(
[M]
M I

L

+
[M]
M I
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)
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int [M]
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[M]
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) . (4.1)
Here, the fractional occupancy of CRP bound to zero, one, or two cAMP equals 0,
1/2, and 1, respectively. Experimentally, the fractional occupancy was measured in
vitro in the absence of DNA using ANS fluorescence which utilizes a fluorescent
probe triggered by the conformational change of cAMP binding to CRP [29].

Lanfranco et al. considered CRP subunits with either the D53H or S62F point
mutations (hereafter denoted by D and S, respectively), with the D subunit binding
more strongly to cAMP than the wild type while the S subunit binds more weakly
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Figure 4.2: Macroscopic states and Boltzmann weights for cAMP binding to
CRP. (A) Within the MWC model, cAMP (purple circles) may bind to a CRP
subunit in either the active (dark green) or inactive (light green) state. M A

L and
M I

L represent the dissociation constants of the left subunit in the active and inactive
states, respectively, while M A

R and M I
R represent the analogous dissociation constants

for the right subunit. [M] denotes the concentration of cAMP and ε represents the
free energy difference between each subunit’s inactive and active states. ε A

int and ε
I
int

represent a cooperative energy when two cAMP are bound to CRP in the active and
inactive states, respectively. (B) The KNFmodel assumes that the two CRP subunits
are inactive when unbound to cAMP and transition to the active state immediately
upon binding to cAMP. The parameters have the same meaning as in the MWC
model, but states where one subunit is active while the other is inactive are allowed.

as shown in Fig. 4.3A. While we could characterize the dose-response curves of
each CRP mutant independently – for example, by using Eq. 4.1 to extract a set of
parameters for each mutant – such an analysis lacks a direct connection between the
subunit composition and the corresponding binding behavior. Instead, we assume
that the cAMP binding affinity for each subunit should be uniquely dictated by that
subunit’s identity as either the WT, D, or S subunit. To that end, we represent the
fractional occupancy of CRPD/WT using Eq. 4.1 with one D subunit (M A

L = M A
D ,

M I
L = M I

D) and one WT subunit (M A
R = M A

WT, M I
R = M I

WT). The equations for the
remaining CRP mutants follow analogously, tying the behavior of each mutant to its
subunit composition. For simplicity, we will assume that the D and S mutations do
not alter the cAMP interaction energies ε A

int and ε
I
int.

One difficulty in inferring parameter values from Eq. 4.1 is that degenerate sets
of parameters may produce equivalent binding curves. For example, in S1 Text
section A, we demonstrate how the same cAMP-CRP binding curves can arise from
an arbitrarily large and negative free energy difference (ε → −∞) provided that
the dissociation constants scale appropriately. In that same supporting information
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Figure 4.3: cAMP binding curves for different CRP mutants. In addition to
the wild type CRP subunit (denoted WT), the mutation D53H (denoted D) and
the mutation S62F (denoted S) can be applied to either subunit as indicated by the
subscripts in the legend. Curves were characterized using the (A-C) MWC or (D-F)
KNF model. The response of the asymmetric mutants (Panels B,E) lie between
those of the symmetric mutants (Panels A,D). The fraction of CRP in the active
state (Panels C,F) is markedly different between the two models; in the MWCmodel
the mutants with an S subunit will be inactive even in the limit of saturating cAMP.
Error bars represent the (corrected) sample standard deviation.

section, we demonstrate how this degeneracy can be excised so that Eq. 4.1 is well
approximated by the following form,
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MWC Parameter Best-Fit Value KNF Parameter Best-Fit Value
M̃ A

WT, M I
WT {25 ± 1, 40 ± 3} × 10−6 M M̄ A

WT (30 ± 2) × 10−6 M
M̃ A

D , M I
D {10 ± 1, 50 ± 5} × 10−6 M M̄ A

D (20 ± 1) × 10−6 M
M̃ A

S , M I
S {≥ 1000, 200 ± 10} × 10−6 M M̄ A

S (350 ± 10) × 10−6 M
ε I
int 0.0 ± 0.2 kBT ε A

int −0.8 ± 0.2 kBT

Table 4.1: Parameters for cAMP binding to CRP. The data in Fig. 4.3 can be charac-
terized using a single set of dissociation constants for the WT, D, and S subunits whose
values and standard errors are shown. To excise parameter degeneracy, the active-inactive
free energy difference ε and the cAMP interaction energy in the active state ε A

int are ab-
sorbed into the active state dissociation constants in the MWC model (Eqs. 4.2 and 4.3).
Similarly, ε is absorbed into the KNF dissociation constants (Eqs. 4.6 and 4.7).

fractional CRP occupancy([M]) ≈
[M]
M̃A

L

[M]
M̃A

R

+ 1
2

(
[M]
M I

L

+
[M]
M I

R

)
+ e−βε

I
int [M]

M I
L

[M]
M I

R

[M]
M̃A
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[M]
M̃A

R

+

(
1 + [M]

M I
L

+
[M]
M I

R

+ e−βε
I
int [M]

M I
L

[M]
M I

R

) ,
(4.2)

where we have neglected the unbound and singly-cAMP-bound active CRP states
and defined the effective dissociation constants

M̃ A
L = e−βεeβε

A
int/2M A

L (4.3)

and
M̃ A

R = e−βεeβε
A
int/2M A

R . (4.4)

Using Eq. 4.2, we can extract the set of effective dissociation constants for the WT,
D, and S subunits that determine the behavior of all six CRP mutants. The resulting
parameters (shown in Table 4.1) give rise to the cAMP-CRP binding curves in
Fig. 4.3A and B. Note that in removing the parameter degeneracy using Eqs. 4.3
and 4.4, we can no longer determine the individual values of ε , ε A

int, and the active
state dissociation constants M A

X , but rather only the parameter combinations M̃ A
X .

On the other hand, the inactive state cooperativity energy ε I
int can be unambiguously

determined to be negligible. The effective dissociation constant of the S subunit
in the MWC model can only be bounded from below as M̃ A

S ≥ 1000 × 10−6 M.
However, NMR measurements reported that in the limit of saturating cAMP, the
S/S mutant will be inactive state 98% of the time (see Fig. 4.3C and Supporting
Information Section S4.1) which corresponds to a value of M̃ A

S ≈ 1300 × 10−6 M
[20].
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In Supporting Information Section S4.1, we demonstrate that the symmetric CRP
mutants in Fig. 4.3A provide sufficient information to approximate the behavior
of the asymmetric mutants in Fig. 4.3B. We further show that fitting each CRP
data set individually to the MWC or KNF models without constraining the WT,
D, and S subunits to a single unified set of dissociation constants results in only a
marginal improvement over the constrained fitting. Finally, we analyze the slope of
each cAMP binding response and explain why they are nearly identical for the six
CRP mutants. In Supporting Information Section S4.2, we investigate the effects
of the double mutation D+S on a single subunit by comparing its CRP occupancy
data supposing that the change in free energy from both mutations is additive and
independent. Within this epistasis-free model, we can similarly predict the behavior
of other double mutants including CRPD/D+S, CRPS/D+S, and CRPD+S/D+S.

Lastly, we reiterate that the MWC model presented here provides a coarse-grained
model of the system. For example, experiments have revealed that the first cAMP
binding does not alter the conformation of the second subunit, although it does
drastically diminish its protein motions [34]. In the MWC model, these effects are
captured both by the inherent cooperativity [37] as well as by the explicit interaction
energies ε A

int and ε
I
int, since within this model the binding of one cAMP can induce

the other CRP subunit to change (e.g. changing the unbound inactive state into the
active singly-bound state). In light of these results, we next consider an alternative
model of the system which explicitly assumes that each subunit only becomes active
upon ligand binding.

4.3.1.2 KNF Model

We now turn to a KNF analysis of CRP, where the two subunits are individually
inactive when not bound to cAMP and become active upon binding as shown in
Fig. 4.2B. Some studies have claimed that cAMP binding to one CRP subunit does
not affect the state of the other subunit, in support of the KNF model [34]. Other
studies, meanwhile, have reported that a fraction of CRPmolecules are active even in
the absence of cAMP, thereby favoring anMWC interpretation [9, 38]. To determine
whether either model can accurately represent the system, we explore some of the
consequences of a KNF interpretation of CRP.

Using the statistical mechanical states of the system in Fig. 4.2B, the occupancy of
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CRP is given by

fractional CRP occupancy([M]) =
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where the parameters have the same meaning as in the MWC model. Multiplying
the numerator and denominator by e2βε , we obtain the form

fractional CRP occupancy([M]) =
1
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where, similar to the MWC model effective dissociation constants Eqs. 4.3 and 4.4,
we have defined

M̄ A
L = e−βεM A

L (4.7)

and
M̄ A

R = e−βεM A
R . (4.8)

This simplification occurs because within the KNF model, a CRP monomer only
switches from the inactive to active state upon cAMP binding. As a result, the
free energy of cAMP binding to CRP and the free energy of the CRP undergoing
its inactive-to-active state conformational always occur concurrently and may be
combined into the effective dissociation constants M̄ A

L and M̄ A
R .

As shown in Fig. 4.3D and Fig. 4.3E, the KNFmodel can approximately characterize
the sixmutant CRP binding curves, although the S/S andWT/D responses lie slightly
below the data while the D/S curve deviates above the data. These discrepancies
could potentially be alleviated by letting the interaction energy ε A

int vary with each
mutant, although doing so would significantly increase the number of parameters
in the model (which would then scale with the number of mutants rather than the
number of subunits). However, a greater failing of the KNF model is that it predicts
that at saturating cAMP concentrations the protein will always be completely active,
even though the S/S mutant is 98% inactive in this limit (Fig. 4.3F) [20]. These
results suggest that a more complex variant of the KNF model should be used to
quantitatively dissect the CRP system.

4.3.2 The Interaction between CRP and DNA
We now turn to the second binding interaction experienced by CRP, namely, that
between CRP and DNA. Since the preceding analysis demonstrated that the KNF
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Figure 4.4: States and weights for CRP binding to DNA. The DNA unbound
states from Fig. 4.2 are shown together with the DNA bound states. The Boltzmann
weight of each DNA bound state is proportional to the concentration [L] of CRP
and inversely proportional to the CRP-DNA dissociation constants LA or LI for the
active and inactive states, respectively.

model considered here cannot characterize the existing data, we proceed by only
analyzing the MWC model.

Consider a concentration [L] of CRP whose subunits either assume an active state
(where they tightly bind to DNA with a dissociation constant LA) or in an inactive
state (characterized by weaker DNA binding with dissociation constant LI satisfying
LI > LA). The states and weights of this systemwithin the generalizedMWCmodel
are shown in Fig. 4.4.

Lanfranco et al. fluorescently labeled a short, 32 bp DNA sequence that binds to
CRP. Using a spectrometer, they measured the anisotropy of this fluorescence when
different concentrations of CRP and cAMP were added in vitro [29]. The data
are shown in Fig. 4.5A for CRPD/S for various concentrations of the receptor and
effector. When CRP binds, it slows the random tumbling of the DNA so that over
very short time scales the fluorescence is oriented along a particular axis, resulting
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in a larger anisotropy readout. Unbound DNA is defined as having anisotropy equal
to 1 while DNA-bound CRP with 0, 1, or 2 bound cAMP have higher anisotropy
values of 1 + r0, 1 + r1, and 1 + r2, respectively. Thus, the total anisotropy within
the model is given by the weighted sum of each species [39], namely,

anisotropy = 1 + r0p0 + r1p1 + r2p2. (4.9)

Here, p0, p1, and p2 represent the probabilities that DNA-bound CRP will be bound
to 0, 1, and 2 cAMP molecules, respectively. Using the effective dissociation
constants (Eqs. 4.3 and 4.4) and neglecting all terms proportional to the small
quantity eβε , we can write these probabilities as
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In making these approximations, we have assumed the stricter conditions e2βε LI

LA
�

1 and e2βε LI

LA

M I
X

M̃A
X

� 1 for the WT, D, and S subunits, all of which are valid
assumptions for this system.

Fig. 4.5 shows the resulting best-fit curves for the anisotropy data, with the corre-
sponding CRPD/S DNA dissociation constants given in Table 4.2. Since 1 + r0 ≈ 1,
cAMP-unbound CRP binds poorly to DNA, in accordance with the inactive state
crystal structure whose DNA recognition helices are buried inside the protein [10].
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Figure 4.5: The interaction between CRP and DNA. Anisotropy of 32-bp
fluorescein-labeled lac promoter binding to CRPD/S at different concentrations of
cAMP. An anisotropy of 1 corresponds to unbound DNA while higher values imply
that DNA is bound to CRP. In the presence of cAMP, more CRP subunits will be
active, and hence there will be greater anisotropy for any given concentration of
CRP. The sample standard deviation

√
1

n−1
∑n

j=1(y( j)
theory − y

( j)
data)

2 is 0.01, with the
corresponding parameters given in Tables 4.1 and 4.2.

Additionally, the anisotropy 1+ r1 = 1.7 of the DNA-CRP-cAMP complex is larger
than that of both the cAMP-unbound state and the doubly bound state DNA-CRP-
(cAMP)2 with 1 + r2 = 1.4; this suggests that CRP-(cAMP)2 binds more weakly
to DNA than CRP-cAMP. However, we note that these results depend upon the ani-
sotropy values for the three CRP states (r j in Table 4.2); Lanfranco et al. assumed
that difference between the singly-cAMP-bound CRP state and the unbound CRP
state should be the same as the difference between the doubly- and singly-cAMP-
bound states and subsequently determined that the singly- and doubly-cAMP bound
CRP states bind with roughly the same affinity to DNA. That said, previous studies
have supported the claim that the singly-cAMP bound state binds tightest to DNA
using multiple experimental methods including proteolytic digestion by subtilisin,
chemical modification of Cys-178, and fluorescence measurements [40–42]. Given
the ability of the MWC model to characterize the cAMP-binding and DNA-binding
data of Lanfranco et al., we next consider the final step in the CRP activation cycle,
namely, how well CRP can enhance gene expression.

4.3.3 Implications of Mutations for in vivo Systems
Since CRP is a global transcriptional activator that governs many metabolic genes in
E. coli [8], introducing mutations in vivo may vastly change cell behavior. Nevert-
heless, because the framework introduced above is very generic, it can be readily
applied to other transcriptional activators that regulate a more limited number of
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MWC Parameter Best-Fit Value
r0, r1, r2 {0.1, 0.8, 0.5} ± 0.1
LA, LI {≤ 30, 30 ± 10} × 10−9 M

Table 4.2: Parameters for CRP binding to DNA. The anisotropy data for CRPD/S
characterized using Eq. 4.9, as shown in Fig. 4.5. Each value is given as a mean ±
standard error. The uncertainty in the M̃ A

S parameter (shown in Table 4.1) leads to
a corresponding uncertainty in the active CRP dissociation constant LA.

genes. In that spirit, we briefly explore how the CRP mutants characterized in the
Lanfranco et al. experiments would behave in vivo assuming that they only affect a
single gene.

4.3.3.1 Simple Activation

Consider a cell with cAMP concentration [M] and CRP concentration [L] where the
population of CRP is split between an active [LA] and an inactive [LI] conformation.
Suppose the cell has a concentration [P] of RNA polymerase (RNAP) which have a
dissociation constant PD with a promoter of interest. The thermodynamic states of
the system are shown in Fig. 4.6, where the activator can bind to and recruit RNAPvia
an interaction energy εP,LA between active CRP and RNAPwith a weaker interaction
εP,LI between inactive CRP and RNAP. Without these two interaction energies
(εP,LA = εP,LI = 0), the RNAP and CRP binding events would be independent and
there would be no activation. Moreover, if the two activation energies were the same
(εP,LA = εP,LI ), the system could not exhibit the level of activation seen in the data
(see Supporting Information Section S4.1).

We assume that gene expression is equal to the product of the RNAP transcription
rate rtrans and the probability that RNAP is bound to the promoter of interest, namely,

activity = rtrans

[P]
PD

(
1 + [LI ]

LI
e−βεP,LI + [LA]

LA
e−βεP,LA

)
[P]
PD

(
1 + [LI ]

LI
e−βεP,LI + [LA]

LA
e−βεP,LA

)
+ 1 + [LI ]

LI
+

[LA]
LA

. (4.14)

Several additional factors influence gene expression in vivo. First, cAMP is synt-
hesized endogenously by cyaA and degraded by cpdA, although both of these genes
have been knocked out for the data set shown in Fig. 4.7A (seeMethods and Ref. [7]).
Furthermore, cAMP is actively transported out of a cell leading to a smaller con-
centration of intracellular cAMP. Following Kuhlman et al., we will assume that
the intracellular cAMP concentration is proportional to the extracellular concentra-
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Figure 4.6: States and weights for a simple activation motif. Binding of RNAP
(blue) to a promoter is facilitated by the binding of the activator CRP. Simultaneous
binding of RNAP and CRP is facilitated by an interaction energy εP,LA for active
CRP (dark green) and εP,LI for inactive CRP (light green). cAMP (not drawn)
influences the concentration of active and inactive CRP as shown in Fig. 4.4.

tion, namely, γ[M] (with 0 < γ < 1) [43, 44]. Hence, the concentration of active
CRP satisfies [LA]

[L] = pL
act(γ[M]) where the fraction of active CRP pL

act is given by
Fig. 4.2A as
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In the last step, we have again introduced the effective dissociation constants from
Eqs. 4.3 and 4.4 and dropped any terms proportional to eβε . In addition to these
considerations, proteins in vivo may experience crowding, additional forms of mo-
dification, and competition by other promoters. However, since our primary goal is
to understand how CRP mutations will affect gene expression, we proceed with the
simplest model and neglect the effects of crowding, modification, and competition.

Because of the uncertainty in the dissociation constant LA between active CRP and
DNA (see Table 4.2), it is impossible to unambiguously determine the transcription
parameters from the single data set for wild typeCRP shown in Fig. 4.7A. Instead, we
select one possible set of parameters ( [P]

PD
= 130×10−6, rtrans = 5×105 MU

hr , γ = 0.1,
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Figure 4.7: Predicted gene expression profiles for a simple activation architec-
ture. (A) Gene expression for wild type CRP, where 1Miller Unit (MU) represents a
standardized amount of β-galactosidase activity. This datawas used to determine the
relevant parameters in Eq. 4.14 for the promoter in the presence of [L] = 1.5 µM of
CRP. The predicted behavior of the CRPmutants is shown using their corresponding
cAMP dissociation constants. (B) The spectrum of possible gene expression profiles
can be categorized based upon the cAMP-CRP binding affinity in each subunit. In
all cases, we assumed M A

L = M A
R = 3 × 10−6 M and e−βε

A
int = 0. The activation re-

sponse (blue) was generated using M I
L = M I

R = 6×10−6 M. The repression response
(orange) used M I

L = M I
R = 10−7 M. The peaked response (gold) used M I

L = 10−7 M
and M I

R = 300 × 10−6 M. The flat response used M I
L = M I

R = 3 × 10−6 M. The
remaining parameters in both plots were [P]

PD
= 130 × 10−6, rtrans = 5 × 105 MU

hr ,
γ = 0.1, εP,LA = −3 kBT , εP,LI = 0 kBT , ε = −3 kBT , and those shown in Tables 4.1
and 4.2.

εP,LA = −3 kBT , and εP,LI = 0 kBT) that is consistent with the wild type data. Next,
we inserted the other cAMP-CRP dissociation constants (given in Table 4.1) into
Eq. 4.14 to predict the gene expression profiles of the CRP mutants. Fig. 4.7A show
the possible behavior of the CRPD/D and CRPWT/D mutants. As expected, replacing
a WT subunit with a D subunit shifts the gene expression profile leftwards since the
D subunit has a higher cAMP affinity (see Fig. 4.3A). Interestingly, the substitution
of WT with D subunits comes with a concomitant increase in the maximum gene
expression because at saturating cAMP concentrations, a larger fraction of CRPD/D
is active compared to CRPWT/WT (96% and 68%, respectively) as seen by using
Eq. 4.15 and the parameters in Table 4.1. Note that we cannot predict the behavior
of any of the CRP mutants with S subunits due to the large uncertainty in M̃ A

S .

Lastly, we probe the full spectrum of phenotypes that could arise from the activity
function provided in Eq. 4.14 for any CRP mutant by considering all possible values
of the cAMP-CRP dissociation constants M A

L , M I
L, M A

R , and M I
R in Eq. 4.15. In
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particular, we relax our assumption that cAMP binding promotes the CRP’s active
state, as a CRP mutation may exist whose inactive state binds more tightly to cAMP
than its active state. Fig. 4.7B demonstrates that given such a mutation, a variety of
novel phenotypes may arise. The standard sigmoidal activation response is achieved
when cAMP binding promotes the active state in both CRP subunits (M A

L < M I
L,

M A
R < M I

R). A repression phenotype is achieved in the opposite extreme when
cAMP binding favors the inactive CRP state (M A

L > M I
L, M A

R > M I
R); we note that

the ability to switch between a repressing and activating phenotype was achieved
in the Lac repressor with as few as three mutations (see the Rc phenotypes in
Ref. [46]). When one subunit is activated and the other is repressed by cAMP
(M A

L < M I
L, M A

R > M I
R or M A

L > M I
L, M A

R < M I
R), a peaked response can form. If

the CRP subunits have the same affinity for cAMP in the active and inactive states
(M A

L = M I
L = M A

R = M I
R), then CRP will behave identically for all concentrations

of CRP, generating a flat-line response. It will be interesting to see whether these
phenotypes can be achieved experimentally.

4.4 Discussion
The recent work of Lanfranco et al. provides a window into the different facets of
gene regulation through activation [29]. Using insights from their in vitro experi-
ments, we can break down the process of activation into its key steps, namely: (1)
the binding of cAMP to make the activator CRP competent to bind DNA (Fig. 4.3);
(2) the binding of CRP to DNA (Fig. 4.5); and (3) the recruitment of RNAP to
promote gene expression (Fig. 4.7A). In this work, we generalized the classic MWC
and KNF models to include a cAMP interaction energy as well as different DNA-
binding affinities for the various cAMP-CRP bound states, allowing us to globally
analyze the CRP binding data. Whereas biological research relishes the unique
nuances in each system, the physical sciences suggest that common motifs – such
as the prevalence of systems adopting an MWC-like description – lead to equally
profound insights into the underlying principles governing systems.

By concurrently modeling the multi-step process of activation, we begin to unravel
relationships and set strict limits for the binding energies and dissociation constants
governing these systems. One hurdle to precisely fixing these values for CRP has
been that many different sets of parameters produce the same degenerate respon-
ses. This parameter degeneracy is surprisingly common when modeling biological
systems [47, 48], and we discuss how to account for it within the MWC and KNF
models of CRP. A key feature of our analysis is that it permits us to identify the
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relevant parameter combinations for the system, quantify howwell we can infer their
values, and suggest which future experiments should be pursued to best constrain
the behavior of the system.

Lanfranco et al. further explored how mutations in one or both subunits of CRP
would influence its behavior. Specifically, they used three distinct subunits (WT, D,
and S) to create the six CRP mutants shown in Fig. 4.1B (black and pink boxes). In
this work, we showed that the effects of these mutations can be naturally understood
through simple thermodynamic models so that each mutation need not be analyzed
individually as if it had no relation to any other mutant. Instead, a compact set
of parameters characterizing each subunit (see Table 4.1) could self-consistently
characterize the cAMP-binding of all six mutants. The MWC model was shown
to successfully describe the CRP activation data for all mutants whereas the KNF
model led to a poorer characterization of the data andmoreover incorrectly predicted
the inhomogeneous population of CRP in the absence and presence of saturating
cAMP. Even though an MWC description of the system was sufficient for the data
set considered here, the full CRP system exhibits richer behavior that may require
more generalized models that include the ensemble of different states seen by NMR
[34, 49]. Nevertheless, it remains a useful exercise to understand how much of a
system’s behavior can be successfully captured by such simple models [50].

The models presented here suggest several avenues to further our understanding of
CRP. First, we note that both the MWC and KNF models can serve as a springboard
for more complex descriptions of CRP or other regulatory architectures [51]. Howe-
ver, a key advantage of simple frameworks lies in their ability to predict how different
CRP subunits combine. For example, in Supporting Information Section S4.1 we
demonstrate how the data from the three symmetric CRPmutants in Fig. 4.3A can be
used to coarsely predict the asymmetric mutant responses in Fig. 4.3B. It would be
interesting to see whether such predictions continue to hold as more mutant subunits
are characterized, such as for the expanded suite of mutants shown in Fig. 4.1B.
This framework has the potential to harness the combinatorial complexity of oligo-
meric proteins and presents a possible step towards systematically probing the space
of mutations. In addition, any deviations in these predictions will provide further
information on how allostery propagates in this system.

Second, several groups have proposed that multiple CRP mutations (K52N, T127,
S128, G141K, G141Q, A144T, L148K, H159L fromRefs. [9, 32, 52]) only affect the
free energy difference ε between the CRP subunit’s active and inactive states while
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leaving the cAMP-CRP dissociation constants unchanged. Our model predicts a
narrow spectrum of phenotypes for such mutants, since the dependence of the ε
parameter is solely confined to the effective dissociation constants (see Eqs. 4.3 and
4.4).

Finally, the framework considered here can be used to predict how the CRP mutants
generated by Lanfranco et al. would behave in vivo. We calibrated the CRPWT/WT

gene expression profile using data from Ref. [7] and suggested how the remaining
CRP mutants may function within a simple activation regulatory architecture given
the currently available data (see Fig. 4.7). It would be interesting to measure such
constructs – or better yet, similar activators that regulate very few genes – within
the cell and test the intersection of our in vivo and in vitro understanding both
in the realm of the multi-step binding events of transcription factors as well as in
quantifying the effects of mutations.

4.5 Methods
As described in Ref. [29], the fractional CRP occupancy data in Fig. 4.3 was measu-
red in vitro using 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence which
is triggered by the conformational change of cAMP binding to CRP. Experiments
were conducted in 20mM Tris, 50mM NaCl, 1mM EDTA, pH 7.8, and at 25°C.
The CRP-DNA anisotropy data in Fig. 4.5 was measured in vitro by tagging the end
of a 32 bp lac promoter with a fluorescein molecule and measuring its anisotropy
with a spectrometer. When CRP is bound to DNA, anisotropy arises from two
sources: the fast bending of the flanking DNA sequence and the slower rotation
of the CRP-DNA complex. Sources of error include oligomerization of CRP, the
bending of the flanking DNA, and nonspecific binding of CRP to the DNA.

The in vivo gene expression data was taken from Kuhlman et al. using the lac
operon E. coli strain TK310 [7]. This strain had two genes knocked out: cyaA
(a gene encoding adenylate cyclase, which endogenously synthesizes cAMP) and
cpdA (encoding cAMP-phosphodiesterase, which degrades cAMP within the cell).
Experiments were done at saturating concentrations of inducer ([IPTG] = 1mM)
so that Lac repressor negligibly binds to the operator [53]. In this limit, the only
transcription factor affecting gene expression is the activator CRP. Gene expression
was measured using β-galactosidase activity.

A Mathematica notebook that contains all of the data, reproduces the fitting (using
both nonlinear regression and MCMC), and generates the plots in this paper can be
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found in the supplement of the online publication.
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C h a p t e r S4

SUPPLEMENTARY INFORMATION FOR THEORETICAL
ANALYSIS OF INDUCER AND OPERATOR BINDING FOR

CYCLIC-AMP RECEPTOR PROTEIN MUTANTS

S4.1 Additional Characterizations of the cAMP-CRP Binding Data
In this section, we probe more deeply into the cAMP-CPR data presented in Fig. 4.3
of the main text. We first explore how both the MWC and KNF descriptions for
this binding process enable us to use a subset of the available data to predict the
remaining data. We then take the opposite approach and analyze each CRP mutant
independently within each model and determine how well each data set can conform
to an MWC or KNF description. Finally, we touch upon how NMR data allows us
to make direct contact between experiment and theory by measuring the fraction of
active CRP molecules at saturating cAMP.

S4.1.1 Predicting the Asymmetric Mutants from the Symmetric Mutants
In the main text, our goal was to characterize the full suite of data generated by
Lanfranco et al. in order to determine the best-possible description of the CRP
system. In this section, our goal is not to analyze a system retrospectively, but rather
to test how well knowledge of a subset of the CRP mutants can predict the behavior
of the remaining mutants. Suppose that Lanfranco et al. had only measured cAMP
binding for the symmetric CRP mutants (black box in Fig. 4.1B). Can we use this
data to predict the behavior of the asymmetric mutants (pink box in Fig. 4.1B)?

Fig. S4.1A shows the calibration of the MWC model Eq. 4.1 to the three symmetric
CRP mutants which, being the only data fit, are very well characterized. The
corresponding parameters are shown in Table S4.1. Aside from M̃S

WT and the
interaction energy ε I

int, the remaining parameters are all within a factor of 2 of their
more precise values obtained by fitting the entire data set (Table 4.1 in the main
text).

Since the three symmetric CRP mutants contain all three types of subunits (WT, D,
and S), we can now predict the behavior of the asymmetric CRP mutants without
recourse to any further fitting. Using Eq. 4.2 and the parameters in Table S4.1,
the resulting predictions are plotted in Fig. S4.1B using dashed lines to emphasize
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Figure S4.1: Predicting the behavior of the asymmetric CRP mutants. (A) We
infer the cAMP-CRP dissociation constants for the WT, D, and S subunits using the
best-fit characterizations (solid curves) of the three symmetric CRP mutants. (B)
Using these values, we can predict the behavior of the asymmetric mutants (dashed
curves) with no further fitting. (C) In an analogous manner, the KNF model can be
calibrated using the symmetric CRP mutants. (D) The corresponding predictions of
the KNF model for the asymmetric CRP mutants. The (corrected) sample standard
deviations for the asymmetric mutant predictions are 0.08 for both the MWC and
KNF models, and the resulting best-fit parameters are shown in Table S4.1.

that the data in those plots were not used to fit these curves. Fig. S4.1C shows
the analogous calibration of the KNF model using the symmetric CRP mutants and
Fig. S4.1D displays the corresponding predictions of the asymmetric mutants.

As expected, the predicted cAMP-CRP binding curves for both models are worse
than the main text fits, since in the main text all of the cAMP-CRP data was used to
infer the parameters. While these predictions only capture the approximate shape
of the data, it must be noted that they provide an answer to the otherwise impossible
question: how can you predict the behavior of an asymmetric CRP mutant without
measuring it? Note the predictive power scales with the number of subunits. For
example, the five symmetric mutants shown in Fig. 4.1B can be used to predict the
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MWC Parameter Best-Fit Value KNF Parameter Best-Fit Value
M̃ A

WT, M I
WT {20 ± 2, 20 ± 3} × 10−6 M M̄ A

WT (30 ± 3) × 10−6 M
M̃ A

D , M I
D {10 ± 1, 20 ± 3} × 10−6 M M̄ A

D (10 ± 2) × 10−6 M
M̃ A

S , M I
S {200 ± 10, 220 ± 20} × 10−6 M M̄ A

S (250 ± 20) × 10−6 M
ε I
int 2.2 ± 0.2 kBT ε A

int −0.6 ± 0.2 kBT

Table S4.1: Best-fit parameters for the symmetric CRP mutant fitting. Using
only the symmetric CRP mutant data in Fig. S4.1 allows us to infer the following
cAMP-CRP binding parameters from which we can predict the behavior of the
asymmetric mutants. These values should be compared with the corresponding
best-fit parameters when fitting the entire data set (Table 4.1).

behavior of the ten asymmetric mutants. More generally, given N subunits we could
carry out N experiments on the symmetric mutants and predict the responses of the
N (N−1)

2 asymmetric mutants. Since the number of mutants scales quadratically with
N , the number of predictions grows much faster than the number of experiments
that must be carried out, enabling us to harness the combinatorial complexity of
oligomeric proteins. The expediency of checking the space of mutants theoretically
may be well worth the decrease in the quality of this characterization.

S4.1.2 Individual Characterizations of each CRP Mutant
In this section, we relax our assumption that each CRP subunit behaves identically
regardless of the composition of its partner subunit and instead analyze a broader
question: how well can the MWC or KNF models presented in the text characterize
each individual cAMP-CRP binding curve? In other words, suppose there is a
complex interaction between CRP subunits, so that the free energy change c

MA
WT

of
cAMP binding to either subunit in CRPWT/WT is different from the corresponding
free energy change of the WT subunit in CRPWT/D. To this end, we fit each CRP
mutant’s binding data to either the MWC model Eq. 4.1 or the KNF model Eq. 4.5
with no constraint between the parameters of the individual fittings. We note that
the original analysis of the six mutants conducted by Lanfranco et al. was carried
out in an analogous manner by fitting each mutant individually [6].

To simplify this analysis, we restrict ourselves to the case where the two interaction
energies are negligible (ε A

int = ε
I
int = 0); even with this restriction, we find that both

the MWC and KNF models can fit the individual data sets remarkably well. In
the case where the interaction energies are allowed to be non-zero (not shown), the
MWC model negligibly improves while the KNF model becomes indistinguishable
from the MWC model. However, we now proceed with the assumption that both
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Mutant Fit MWC Parameter Best-Fit Value KNF Parameter Best-Fit Value
CRPWT/WT M̃ A

WT, M I
WT {210, 20} × 10−6 M M̄ A

WT 20 × 10−6 M
CRPD/D M̃ A

D , M I
D {10, 20} × 10−6 M M̄ A

D 10 × 10−6 M
CRPS/S M̃ A

S , M I
S {370, 220} × 10−6 M M̄ A

S 180 × 10−6 M
CRPWT/D M̃ A

WT, M I
WT, M̃ A

D , M I
D {20, 40, 10, 40} × 10−6 M M̄ A

WT, M̄ A
D {10, 10} × 10−6 M

CRPWT/S M̃ A
WT, M I

WT, M̃ A
S , M I

S {50, 40, 160, 2000} × 10−6 M M̄ A
WT, M̄ A

S {80, 80} × 10−6 M
CRPD/S M̃ A

D , M I
D, M̃ A

S , M I
S {90, 40, 160, 1200} × 10−6 M M̄ A

D , M̄ A
S {50, 220} × 10−6 M

Table S4.2: Best-fit parameters for the individual CRP mutant fitting. The
following parameterswere determined byfitting each cAMP-CRPdata set separately.
Thus, each CRP mutant yield slightly different values for the same fit parameters.
In both models, the interactions energies are assumed to be zero, ε A

int = ε
I
int = 0.

interaction energies are vanishingly small.

Fig. S4.2 shows the resulting individual fits for the CRP mutants within the MWC
and KNF models, with the corresponding parameters given in Table S4.2. We
find that both models can characterize all of the data sets very well; aside from
small errors in the KNF description of CRPWT/D, nearly every data point is within
one standard deviation of the predicted value. Thus, both models are capable of
characterizing the cAMP-CRP binding behavior, and any discrepancies between the
theory and data in Fig. 4.3 may ultimately be attributed to the assumption posited
in the text that the WT, D, and S subunits must function identically regardless of
the identity of the other CRP subunit. We note that fitting each curve individually
results in a sample standard deviation that is a factor of 2 smaller than fitting the
six mutants using a single set of parameters (Fig. 4.3); we stress again that this
improvement in fit quality comes at the cost of losing both a unified description of
the system as well as the predictive power discussed in the previous section.

That said, analyzing each curve individually has the merit in providing the best
possible characterization of the data. For example, the individual fitting provides a
smooth interpolation between the data points of each CRP mutant, enabling us to
compute additional properties of the binding such as the slope at the half-maximal
effective concentration (also known as the effective Hill coefficient [7]), which is
given by

h =
(
2

d
d log[M]

log
(
fractional CRP occupancy

))
[M]=[ECcAMP

50 ]
. (S4.1)

Table S4.3 shows that the effective Hill coefficients of each data set is roughly one.
To understand this result, note that the fractional CRP occupancy Eq. 4.6 within the
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Figure S4.2: Individual characterization of each CRP mutant. Each of the
(A) symmetric and (B) asymmetric CRP mutants are characterized individually
using the MWC model Eq. 4.1, showing how closely the model could match the
data if the assumption that each subunit behaves identically and independently is
relaxed. Similarly, each of the (C) symmetric and (D) asymmetric CRP mutants
are characterized separately using the KNF model Eq. 4.5. The sample standard
deviation equals 0.02 for the MWC model and 0.04 for the KNF model, and the
best-fit parameters for both models are given in Table S4.2.

KNF model when both subunits have the same cAMP affinity (M̄ A
L = M̄ A

R ) is given
by the Hill equation

fractional CRP occupancy([M]) =
[M]
M̄A

L

1 + [M]
M̄A

L

(S4.2)

which has an effectiveHill coefficient of 1. In otherwords, if we linearly approximate
the fractional occupancy of any curve in Fig. S4.2C at its midpoint on the log-linear
plot, any symmetric CRP mutant will transition from being unbound to cAMP
(fractional CRP occupancy ≈ 0) to mostly bound (fractional CRP occupancy ≈ 1)
over approximately one order of magnitude in cAMP concentration.

From Table S4.2, the three asymmetric CRP mutants also have nearly identical
cAMP binding affinities in their two subunits within the KNFmodel, thereby leading
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Mutant Fit MWC Effective Hill Coefficient KNF Effective Hill Coefficient
CRPWT/WT 1.0 1.0
CRPD/D 1.4 1.0
CRPS/S 1.1 1.0
CRPWT/D 1.5 1.0
CRPWT/S 1.0 1.0
CRPD/S 0.9 0.9

Table S4.3: Effective Hill coefficients for the CRP mutants. The effective Hill
coefficient Eq. S4.1 is approximately one for all of the CRPmutants in both theMWC
and KNF models.

to a value of approximately one for each of their effective Hill coefficients as well.
Note that the slopes at the midpoints of the CRPD/D and CRPWT/D binding curves are
slightly steeper than predicted by the KNF model. On the other hand, the effective
Hill coefficient for the MWC model, which can be derived in an analogous manner,
is more complex than the KNF expression but captures the slopes of all six CRP
mutants more accurately, as is seen in Fig. S4.2A and B.

We end with the cautionary note that a Hill coefficient of order unity does not
imply that there is little-to-no cooperativity in the system. Indeed, Lanfranco et
al. determined that CRPWT/WT is 15x more cooperative than CRPS/S and 5x less
cooperative than CRPD/D, features that are completely masked by only considering
the effective Hill coefficient (see the cooperativity (c) column in Table 1 as well as
Eq (1) of Ref. [6]). Although the precise definition of cooperativity depends upon
the model used, the slope at the half-way point of a sigmoidal response may not be
a good indicator of the energies and dissociation constants governing a system.

S4.1.3 Comparing the Fraction of CRP in the Active State
In this section, we derive the fraction of active CRP, enabling us to use NMR mea-
surements to compare the predictions of the MWC and KNF models to experiment.
Using Fig. 4.2, the probability that CRP will be in the active state is given by the
sum of active weights divided by the sum of all weights, namely,
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fraction active CRP([M]) =
1 + [M]

MA
L

+
[M]
MA

R

+ e−βε
A
int [M]

MA
L

[M]
MA

R

1 + [M]
MA

L

+
[M]
MA

R

+ e−βε
A
int [M]

MA
L

[M]
MA

R

+ e−2βε
(
1 + [M]

M I
L

+
[M]
M I

R

+ e−βε
I
int [M]

M I
L

[M]
M I

R

)
(S4.3)

≈

[M]
M̃A

L

[M]
M̃A

R

[M]
M̃A

L

[M]
M̃A

R

+

(
1 + [M]

M I
L

+
[M]
M I

R

+ e−βε
I
int [M]

M I
L

[M]
M I

R

) , (S4.4)

where we have applied the same approximations as in Eqs. 4.2-4.4. Similarly, the
fraction of active CRP in the KNF model is given by

fraction active CRP([M]) =
e−βε

A
int [M]

MA
L

[M]
MA

R

e−2βε + e−βε
(

[M]
MA

L

+
[M]
MA

R

)
+ e−βε

A
int [M]

MA
L

[M]
MA

R

(S4.5)

=

e−βε
A
int [M]

M̄A
L

[M]
M̄A

R

1 + [M]
M̄A

L

+
[M]
M̄A

R

+ e−βε
A
int [M]

M̄A
L

[M]
M̄A

R

, (S4.6)

where we have used Eqs. 4.7 and 4.8.

Fig. 4.3C,F show the resulting predictions for the fraction of active CRP in both
models, with the two models starkly disagreeing in the limit of saturating cAMP.
Whereas the KNF model predicts that CRP must ultimately be doubly bound and
hence active for sufficiently large concentrations of cAMP, theMWCmodel purports
that some CRP may be inactive regardless of how high the cAMP concentration is
raised. In particular, the MWC model predicts that the S subunit is highly biased
towards the inactive state, so that only a minute fraction of the S/S mutant will
be active at saturating cAMP. This MWC viewpoint agrees with NMR data which
shows that only 2% of the S/S mutant is active at saturating cAMP [8].

S4.1.4 CRPActivationwith the SameRNAPAffinity in theActive and Inactive
CRP States

In this section, we demonstrate why the activation energies between RNAP and
active-CRP (εP,LA) as well as between RNAP and inactive-CRP (εP,LI ) must be
different in order to characterize the activation data in Fig. 4.7A.

To orient ourselves, the maximum possible cAMP activation (see (Fig. 4.6 and
Eq. 4.14) is achieved if in the absence of cAMP all CRP was inactive ([LA] = 0,
[LI] = [L]) and in the limit of saturating cAMP all CRPwould be active ([LA] = [L],
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[LI] = 0). In such a case, fold-change in activity (i.e. the activity in the presence
of saturating cAMP divided by the activity in the absence of cAMP) that we would
like to maximize would be given by

fold-change in activity =

(
1 + e−βεP,LA [L]

LA

) (
1 + [L]

LI
+

(
1 + e−βεP,LI [L]

LI

) [P]2

P2
D

)
(
1 + e−βεP,LI [L]

LI

) (
1 + [L]

LA
+

(
1 + e−βεP,LA [L]

LA

) [P]2

P2
D

) .
(S4.7)

In the limit where the interactions energies are the same and either really small
(εP,LA = εP,LI = 0) or really large (εP,LA = εP,LI → −∞), the fold change goes to 1
(the only assumption necessary is that [P]

PD
� 1, as is true in the data set we consider

where the best-fit value is [P]
PD
≈ 10−6). A in fold-change emerges at intermediate

values of the activation energy, but such a model is unable to fit the 30-fold increase
in activation of the experimental data in Fig. 4.7A.

In the opposite limit where the activation energies are infinitely far apart from each
other (εP,LA → −∞ and εP,LI = 0), the fold-change in activation reduces to the
large value of

( [P]
PD

)−2
≈ 1012, which is more than capable of matching the 30-fold

increase in activation seen in the data. As described in the main text, the much more
modest energy difference of εP,LA = −3kBT and εP,LI = 0 can characterize the data.

S4.2 Multiple Mutations within a Subunit
In addition to their symmetric mutants (WT/WT, D/D, S/S) and asymmetric mutants
(WT/D, WT/S, D/S), Lanfranco et al. constructed one additional WT/D+S mutant
that had both the D and S mutation within one subunit. The purpose of this
mutant was to study the difference between intersubunit communication (D/S) and
intrasubunit communication (WT/D+S) in an allosteric protein. In this section, we
consider the simplest possible model for this double mutant, namely, that the change
in free energy incurred by both the D and S mutations is additive and independent.
While mutations are often epistatic (i.e. either not independent or nonlinear; for
example see Ref. [9]), this simple model provides a null hypothesis to test whether
there are any interactions between such mutations.

Since the WT subunit has already been characterized (see Table 4.1), we only
need to determine how the D+S subunit behaves. To proceed, we will assume
that the effects of the D and S mutations on cAMP-CRP affinity are independent
as, for example, has been shown to be the case for mutations in the pore region
of the nAChR ion channel [10]. More precisely, if the D mutation increases the
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cAMP-CRP binding energy by 2 kBT and the S mutation changes it by −3 kBT ,
then we assume the D+S mutant changes the cAMP-CRP binding energy by their
sum, −1 kBT . Because dissociation constants are proportional to the exponential
of the cAMP-CRP binding energy, KD ∝ eβεbound , the D+S mutation translates into
a multiplicative effect on the dissociation constant. For example, the inactive state
dissociation constants in the MWC model will obey

M I
D+S = M I

WT
M I

D

M I
WT

M I
S

M I
WT

. (S4.8)

In both the MWC and KNF models, we can obtain an analogous expression for
the active state dissociation constants by changing I → A in the superscripts.
Multiplying both sides by e−βε leads to the equivalent statement for the effective
dissociation constants,

M̃ A
D+S = M̃ A

WT
M̃ A

D

M̃ A
WT

M̃ A
S

M̃ A
WT

. (S4.9)

Using these relations, we can predict the behavior of CRPWT/D+S without recourse to
fitting. Fig. S4.3A shows the predictions for the MWC model (dashed black curve)
together with the experimental measurements (black data points). For reference, the
data and best-fit curves for the three symmetric mutants (green, gold, brown) are
also shown. Fig. S4.3B demonstrates that a very similar prediction is achieved by
the KNF model. In both cases, the experimental measurements roughly follow the
theoretical predictions, suggesting that there may be some epistatic interaction in
the system, but that assuming linearity and independence for the D and S mutations
provides a reasonable zeroth order approximation to the behavior of the system.
While we find it interesting that the KNF prediction better matches the CRPWT/D+S

data, it does not exonerate the KNFmodel’s shortcomings described in the main text
(e.g. predicting that CRPS/S will be 100% active in the limit of saturating cAMP
even though experimental measurements show it to be 2% active in this limit). It
would be interesting to compare the ability of the MWC and KNF models to predict
the behavior of other double mutants, as would be possible by introducing additional
subunit mutations such as G141Q and L148R [11].

With this characterization of the D+S subunit, we can similarly predict how the
other possible CRP mutants (D/D+S, S/D+S, D+S/D+S) would behave, as shown
in Fig. S4.4. Since Lanfranco et al. did not construct any of these mutants, they
provide a unique testbed to probe how well the notion of independent mutations
holds up within the context of CRP.
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Figure S4.3: Effect of a D+S double mutation. With both the (A) MWC and (B)
KNF models, the D and S mutations are assumed to be independent and additive,
leading to the modified dissociation constants given by Eqs. S4.8 and S4.9. The
predicted behavior of the D+S subunit (black line, drawn dashed to emphasize that
it was not fit to the data) loosely follows the experimental data (black points) for
both models. For reference, the symmetric mutants (WT/WT, D/D, S/S) from from
Fig. 4.3 are also shown. Parameters used were the same as in Table 4.1 with no
recourse to fitting.
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Figure S4.4: Predicting the behavior of other D+S mutants. Using Eqs. S4.8
and S4.9, the behavior of any CRP mutant with a D+S subunit can be modeled. The
four possibilities are shown for the (A) MWC and (B) KNF models together with
the data on the WT/D+S mutant. Parameters used were the same as in Table 4.1
with no recourse to fitting.
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In March 2016, Rob emailed me a manuscript with ion channel data together with the single

comment: “The plot is very sneaky (in a bad way).” I read the article and created a model

to understand the data, sending the results to Rob at 4am and immediately falling asleep.

I awoke to see that Rob had responded ten minutes after my email asking me if I can talk,

and then emailing me again two hours later telling me that he was quite excited about these

results. When I awoke, we discussed the calculations and Rob gave me many excellent

suggestions that I implemented that day and night, sending him the results at 6am. I got out

of bed at noon to find more feedback on my latest notes which I immediately implemented.

And with that, the first half of this paper was written in three days. Finding the data for

the second ion channel took another week. It was the most intense and enjoyable burst of

activity of my PhD, and there is no better feeling then to be perfectly in sync with your

advisor. The icing on the cake came when we posted the paper on the bioRxiv and got an

invitation the next day to submit to the Biophysical Journal (to which we politely informed

them that we had already submitted to JPC B). One day, I hope to surpass the speed of even

this project!
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5.1 Abstract
We present a framework for computing the gating properties of ligand-gated ion
channel mutants using the Monod-Wyman-Changeux (MWC) model of allostery.
We derive simple analytic formulas for key functional properties such as the leaki-
ness, dynamic range, half-maximal effective concentration ([EC50]), and effective
Hill coefficient, and explore the full spectrum of phenotypes that are accessible
through mutations. Specifically, we consider mutations in the channel pore of ni-
cotinic acetylcholine receptor (nAChR) and the ligand binding domain of a cyclic
nucleotide-gated (CNG) ion channel, demonstrating how each mutation can be cha-
racterized as only affecting a subset of the biophysical parameters. In addition, we
show how the unifying perspective offered by the MWC model allows us, perhaps
surprisingly, to collapse the plethora of dose-response data from different classes of
ion channels into a universal family of curves.

5.2 Introduction
Ion channels are signaling proteins responsible for a huge variety of physiological
functions ranging from responding to membrane voltage, tension, and temperature
to serving as the primary players in the signal transduction we experience as vision
[1]. Broadly speaking, these channels are classified on the basis of the driving
forces that gate them. In this work, we explore one such classification for ligand-
gated ion channel mutants based on the Monod-Wyman-Changeux (MWC) model
of allostery. In particular, we focus on mutants in two of the arguably best studied
ligand-gated ion channels: the nicotinic acetylcholine receptor (nAChR) and the
cyclic nucleotide-gated (CNG) ion channel shown schematically in Fig. 5.1 [2, 3].

The MWC model has long been used in the contexts of both nAChR and CNG
ion channels [4–6]. Although careful analysis of these systems has revealed that
some details of ligand-gated ion channel dynamics are not captured by this model
(e.g. the existence and interaction of multiple conducting states [7, 8]), the MWC
framework nevertheless captures many critical features of a channel’s response and
offers one of the simplest settings to explore its underlying mechanisms. For exam-
ple, knowledge of both the nAChR and CNG systems’ molecular architecture and
our ability to measure their complex kinetics has only recently become sufficiently
advanced to tie the effects of mutations to key biophysical parameters. Purohit
and Auerbach used combinations of mutations to infer the nAChR gating energy,
finding that unliganded nAChR channels open up for a remarkably brief 80 µs every
15 minutes [9]. Statistical mechanics has been used to show how changes to the
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Figure 5.1: Schematic of nAChR and CNGA2 ion channels. (A) The heteropen-
tameric nicotinic acetylcholine receptor (nAChR) has two ligand binding sites for
acetylcholine outside the cytosol. (B) The homotetrameric cyclic nucleotide-gated
(CNGA2) has four ligand binding sites, one on each subunit, for cAMP or cGMP
located inside the cytosol. Both ion channels have a higher probability of being
closed in the absence of ligand and open when bound to ligand.

energy difference between conformations in allosteric proteins translate to different
functional behavior (i.e. how it modifies the leakiness, dynamic range, [EC50]
and the effective Hill coefficient) [10, 11], and we extend this work to find simple
analytic approximations that are valid within the context of ion channels. Using
this methodology, we systematically explore the full range of behaviors that may be
induced by different types of mutations. This analysis enables us to quantify the
inherent trade-offs between key properties of ion channel dose-response curves and
potentially paves the way for future biophysical models of evolutionary fitness in
which the genotype (i.e. amino acid sequence) of allosteric molecules is directly
connected to phenotype (i.e. properties of a channel’s response).

To this end, we consider two distinct classes of mutants which tune different sets of
MWC parameters – either the ion channel gating energy or the ligand-channel disso-
ciation constants. Previous work by Auerbach et al. demonstrated that these two sets
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of physical parameters can be independently tuned within the nAChR ion channel;
pore mutations only alter the channel gating energy whereas mutations within the
ligand binding domain only affect the ligand-channel dissociation constants [12].
Utilizing this parameter independence, we determine the full spectrum of nAChR
phenotypes given an arbitrary set of channel pore mutations and show why a linear
increase in the channel gating energy leads to a logarithmic shift in the nAChR
dose-response curve. Next, we consider recent data from CNGA2 ion channels with
mutations in their ligand binding pocket [13]. We hypothesize that modifying the
ligand binding domain should not alter the channel gating energy and demonstrate
how the entire class of CNGA2 mutants can be simultaneously characterized with
this constraint. This class of mutants sheds light on the fundamental differences
between homooligomeric channels composed of a single type of subunit and he-
terooligomeric channels whose distinct subunits can have different ligand binding
affinities.

By viewing mutant data through its effects on the underlying biophysical parameters
of the system, we go well beyond simply fitting individual dose-response data,
instead creating a framework with which we can explore the full expanse of ion
channel phenotypes available through mutations. Using this methodology, we: (1)
analytically compute important ion channel characteristics, namely the leakiness,
dynamic range, [EC50], and effective Hill coefficient, (2) link the role of mutations
with thermodynamic parameters, (3) show how the behavior of an entire family of
mutants can be predicted using only a subset of the members of that family, (4)
quantify the pleiotropic effect of point mutations on multiple phenotypic traits and
characterize the correlations between these diverse effects, and (5) collapse the data
from multiple ion channels onto a single master curve, revealing that such mutants
form a one-parameter family. In doing so, we present a unified framework to collate
the plethora of data known about such channels.

5.3 Model
Electrophysiological techniques can measure currents across a single cell’s mem-
brane. The current flowing through a ligand-gated ion channel is proportional to the
average probability popen(c) that the channel will be open at a ligand concentration
c. For an ion channel with m identical ligand binding sites (see Fig. 5.2), this
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probability is given by the MWC model as

popen(c) =

(
1 + c

KO

)m(
1 + c

KO

)m
+ e−βε

(
1 + c

KC

)m , (5.1)

where KO and KC represent the dissociation constants between the ligand and the
open and closed ion channel, respectively, c denotes the concentration of the ligand,
ε (called the gating energy) denotes the free energy difference between the closed
and open conformations of the ion channel in the absence of ligand, and β = 1

kBT

where kB is Boltzmann’s constant and T is the temperature of the system. Wild
type ion channels are typically closed in the absence of ligand (ε < 0) and open
when bound to ligand (KO < KC). Fig. 5.2 shows the possible conformations of the
nAChR (m = 2) and CNGA2 (m = 4) ion channels together with their Boltzmann
weights. popen(c) is given by the sum of the open state weights divided by the sum
of all weights. Note that the MWC parameters KO, KC, and ε may be expressed
as ratios of the experimentally measured rates of ligand binding and unbinding as
well as the transition rates between the open and closed channel conformations (see
Supporting Information section S5.1.1).

Current measurements are often reported as normalized current, implying that the
current has been stretched vertically to run from 0 to 1, as given by

normalized current =
popen(c) − pmin

open

pmax
open − pmin

open
. (5.2)

popen(c) increases monotonically as a function of ligand concentration c, with a
minimum value in the absence of ligand given by

pmin
open = popen(0) =

1
1 + e−βε

, (5.3)

and a maximum value in the presence of saturating levels of ligand given as

pmax
open = lim

c→∞
popen(c) =

1
1 + e−βε

(
KO
KC

)m . (5.4)

Using the above two limits, we can investigate four important characteristics of ion
channels [10, 11]. First, we examine the leakiness of an ion channel, or the fraction
of time a channel is open in the absence of ligand, namely,

leakiness = pmin
open. (5.5)
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Figure 5.2: Probability that a ligand-gated ion channel is open as given by
the MWC model. (A) Microscopic states and Boltzmann weights of the nAChR
ion channel (green) binding to acetylcholine (orange). (B) Corresponding states
for the CNGA2 ion channel (purple) binding to cGMP (brown). The behavior of
these channels is determined by three physical parameters: the affinity between the
receptor and ligand in the open (KO) and closed (KC) states and the free energy
difference ε between the closed and open conformations of the ion channel.

Next we determine the dynamic range, or the difference between the probability of
the maximally open and maximally closed states of the ion channel, given by

dynamic range = pmax
open − pmin

open. (5.6)

Ion channels that minimize leakiness only open upon ligand binding, and ion chan-
nels that maximize dynamic range have greater contrast between their open and
closed states. Just like popen(c), leakiness and dynamic range lie within the interval
[0, 1].

Two other important characteristics are measured from the normalized current. The
half maximal effective concentration [EC50] denotes the concentration of ligand at
which the normalized current of the ion channel equals 1⁄2, namely,

popen([EC50]) =
pmin
open + pmax

open

2
. (5.7)

The effective Hill coefficient h equals twice the log-log slope of the normalized
current evaluated at c = [EC50],

h = 2
d

d log c
log *

,

popen(c) − pmin
open

pmax
open − pmin

open
+
-c=[EC50]

, (5.8)
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which reduces to the standard Hill coefficient for the Hill function [14]. The [EC50]
determines how the normalized current shifts left and right, while the effective Hill
coefficient corresponds to the slope at [EC50]. Together, these two properties de-
termine the approximate window of ligand concentrations for which the normalized
current transitions from 0 to 1.

In the limit 1 � e−βε �
(

KC
KO

)m
, which we show below is relevant for both the

nAChR and CNGA2 ion channels, the various functional properties of the channel
described above can be approximated to leading order as (see Supporting Information
section S5.2):

leakiness ≈ eβε (5.9)

dynamic range ≈ 1 (5.10)

[EC50] ≈ e−βε/mKO (5.11)

h ≈ m. (5.12)

5.4 Results
5.4.1 nAChR Mutants can be Categorized using Free Energy
Muscle-type nAChR is a heteropentamer with subunit stoichiometry α2 βγδ, con-
taining two ligand binding sites for acetylcholine at the interface of the α-δ and
α-γ subunits [15]. The five homologous subunits have M2 transmembrane domains
which move symmetrically during nAChR gating to either occlude or open the ion
channel [16]. By introducing a serine in place of the leucine at a key residue (L251S)
within theM2 domain present within each subunit, the corresponding subunit is able
to more easily transition from the closed to open configuration, shifting the dose-
response curve to the left (see Fig. 5.3A) [17]. For example, wild type nAChR is
maximally stimulated with 100 µM of acetylcholine, while a mutant ion channel
with one L251S mutation is more sensitive and only requires 10 µM to saturate its
dose-response curve.

Labarca et al. used L251S mutations to create ion channels with n mutated subunits
[17]. Fig. 5.3A shows the resulting normalized current for several of these mutants;
from right to left the curves represent n = 0 (wild type) to n = 4 (an ion channel
with four of its five subunits mutated). One interesting trend in the data is that each
additional mutation shifts the normalized current to the left by approximately one
decade in concentration (see Supporting Information section S5.1.2). This constant
shift in the dose-response curves motivated Labarca et al. to postulate that mutating
each subunit increases the gating free energy ε by a fixed amount.
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Figure 5.3: Characterizing nicotinic acetylcholine receptors with n subunits
carrying the L251S mutation. (A) Normalized currents of mutant nAChR ion
channels at different concentrations of the agonist acetylcholine (ACh). The curves
from right to left show a receptor with n = 0 (wild type), n = 1 (α2 βγ

∗δ), n = 2
(α∗2 βγδ), n = 3 (α2 β

∗γ∗δ∗), and n = 4 (α∗2 βγ
∗δ∗) mutations, where asterisks (∗)

denote amutated subunit. Fitting the data (solid lines) to Eqs. 5.1 and 5.2 with m = 2
ligand binding sites determines the three MWC parameters KO = 0.1 × 10−9 M,
KC = 60× 10−6 M, and βε (n) = [−4.0,−8.5,−14.6,−19.2,−23.7] from left (n = 4)
to right (n = 0). With each additional mutation, the dose-response curve shifts to
the left by roughly a decade in concentration while the ε parameter increases by
roughly 5 kBT . (B) The probability popen(c) that the five ion channels are open
can be collapsed onto the same curve using the Bohr parameter FnAChR(c) given
by Eq. 5.13. A positive Bohr parameter indicates that c is above the [EC50]. See
Supporting Information section S5.3 for details on the fitting procedure.

To test this idea, we analyze the nAChR data at various concentrations c of the
ligand acetylcholine using the MWC model Eq. 5.1 with m = 2 ligand binding
sites. Because the L251S mutation is approximately 4.5 nm from the ligand binding
domain [18], we assume that the ligand binding affinities KO and KC are unchanged
for the wild type and mutant ion channels, an assumption that has been repeatedly
verified byAuerbach et al. for nAChR poremutations [12]. Fig. 5.3A shows the best-
fit theoretical curves assuming all five nAChR mutants have the same KO and KC

values but that each channel has a distinct gating energy ε (n) (where the superscript
n denotes the number of mutated subunits). These gating energies were found to
increase by roughly 5 kBT per n, as would be expected for a mutation that acts
equivalently and independently on each subunit.

One beautiful illustration of the power of theMWCmodel lies in its ability to provide
a unified perspective to view data from many different ion channels. Following
earlier work in the context of both chemotaxis and quorum sensing [19, 20], we
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rewrite the probability that the nAChR receptor is open as

popen(c) ≡
1

1 + e−βF (c) , (5.13)

where this last equation defines the Bohr parameter [21]

F (c) = −kBT log *.
,
e−βε

(
1 + c

KC

)m(
1 + c

KO

)m
+/
-
. (5.14)

The Bohr parameter quantifies the trade-offs between the physical parameters of
the system (in the case of nAChR, between the entropy associated with the ligand
concentration c and the gating free energy βε). When the Bohr parameters of two
ion channels are equal, both channels will elicit the same physiological response.
Using Eqs. 5.1 and 5.13 to convert the normalized current data into the probability
popen (see Supporting Information section S5.1.3), we can collapse the dose-response
data of the five nAChR mutants onto a single master curve as a function of the Bohr
parameter for nAChR, FnAChR(c), as shown in Fig. 5.3B. In this way, the Bohr
parameter maps the full complexity of a generic ion channel response into a single
combination of the relevant physical parameters of the system.

5.4.1.1 Full Spectrum of nAChR Gating Energy Mutants

We next consider the entire range of nAChR phenotypes achievable by only mo-
difying the gating free energy ε of the wild type ion channel. For instance, any
combination of nAChR pore mutations would be expected to not affect the ligand
dissociation constants and thus yield an ion channel within this class (see Supporting
Information section S5.1.4 for one such example). For concreteness, we focus on
how the ε parameter tunes key features of the dose-response curves, namely the le-
akiness, dynamic range, [EC50], and effective Hill coefficient h (see Eqs. 5.5-5.12),
although we note that other important phenotypic properties such as the intrinsic
noise and capacity have also been characterized for the MWC model [10]. Fig. 5.4
shows these four characteristics, with the open squares representing the properties
of the five best-fit dose-response curves from Fig. 5.3A.

Fig. 5.4A implies that all of the mutants considered here have negligible leakiness;
the probability that the wild type channel (βε (0) = −23.7) will be open is less than
10−10. Experimental measurements have shown that such spontaneous openings
occur extremely infrequently in nAChR [22], although directmeasurement is difficult
for such rare events. Other mutational analysis has predicted gating energies around
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Figure 5.4: Theoretical prediction and experimental measurements for mutant
nAChR ion channel characteristics. The open squares mark the βε values of
the five dose response curves from Fig. 5.3A. (A) The leakiness given by Eq. 5.5
increases exponentially with each mutation. (B) The dynamic range from Eq. 5.6 is
nearly uniform for all mutants. (C) The [EC50] decreases exponentially with each
mutation. (D) The effective Hill coefficient h is predicted to remain approxima-
tely constant. [EC50] and h offer a direct comparison between the best-fit model
predictions (open squares) and the experimental measurements (solid circles) from
Fig. 5.3A. While the [EC50] matches well between theory and experiment, the
effective Hill coefficient h is significantly noisier.

βε (0) ≈ −14 (corresponding to a leakiness of 10−6) [12], but we note that such
a large wild type gating energy prohibits the five mutants in Fig. 5.3 from being
fit as a single class of mutants with the same KO and KC values (see Supporting
Information section S5.3.2). If this large wild type gating energy is correct, it may
imply that the L251S mutation also affects the KO and KC parameters, though the
absence of error bars on the original data make it hard to quantitatively assess the
underlying origins of these discrepancies.

Fig. 5.4B asserts that all of the mutant ion channels should have full dynamic range
except for the wild type channel, which has a dynamic range of 0.91. In comparison,
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the measured dynamic range of wild type nAChR is 0.95, close to our predicted
value [12]. Note that only when the dynamic range approaches unity does the
normalized current become identical to popen; for lower values, information about
the leakiness and dynamic range is lost by only measuring normalized currents.

We compare the [EC50] (Fig. 5.4C) and effective Hill coefficient h (Fig. 5.4D)
with the nAChR data by interpolating the measurements (see Supporting Infor-
mation section S5.3.3) in order to precisely determine the midpoint and slope of
the response. The [EC50] predictions faithfully match the data over four orders of
magnitude. Because each additional mutation lowers the [EC50] by approximately
one decade, the analytic form Eq. 5.11 implies that ε increases by roughly 5 kBT

per mutation, enabling the ion channel to open more easily. In addition to the
L251S mutation considered here, another mutation (L251T) has also been found to
shift [EC50] by a constant logarithmic amount (see Supporting Information section
S5.1.4) [23]. We also note that many biological systems logarithmically tune their
responses by altering the energy difference between two allosteric states, as seen
through processes such as phosphorylation and calmodulin binding [24]. This may
give rise to an interesting interplay between physiological time scales where such
processes occur and evolutionary time scales where traits such as the [EC50] may
be accessed via mutations like those considered here [25].

Lastly, the Hill coefficients of the entire class of mutants all lie between 1.5 and
2.0 except for the n = 3 mutant whose dose-response curve in Fig. 5.3A is seen
to be flatter than the MWC prediction. We also note that if the L251S mutation
moderately perturbs the KO and KC values, it would permit fits that more finely
attune to the specific shape of each mutant’s data set. That said, the dose-response
curve for the n = 3 mutant could easily be shifted by small changes in the measured
values, and hence, without recourse to error bars, it is difficult to make definitive
statements about the value adopted for h for this mutant.

Note that the simplified expressions Eqs. 5.9-5.12 for the leakiness, dynamic range,
[EC50], and effective Hill coefficient apply when 1 � e−βε �

(
KC
KO

)m
, which given

the values of KC and KC for the nAChR mutant class translates to −22 . βε . −5.
The n = 1, 2, and 3 mutants all fall within this range, and hence each subsequent
mutation exponentially increases their leakiness and exponentially decreases their
[EC50], while their dynamic range and effective Hill coefficient remain indifferent
to the L251S mutation. The βε parameters of the n = 0 and n = 4 mutants lie
at the edge of the region of validity, so higher order approximations can be used
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to more precisely fit their functional characteristics (see Supporting Information
section S5.2).

5.4.2 Heterooligomeric CNGA2Mutants can be Categorized using an Expan-
ded MWCModel

The nAChR mutant class discussed above had two equivalent ligand binding sites,
and only the gating free energy βε varied for the mutants we considered. In this
section, we use beautiful data for the olfactory CNGA2 ion channel to explore the
unique phenotypes that emerge from a heterooligomeric ion channel whose subunits
have different ligand binding strengths.

The wild type CNGA2 ion channel is made up of four identical subunits, each with
one binding site for the cyclic nucleotide ligands cAMP or cGMP [26]. Within
the MWC model, the probability that this channel is open is given by Eq. 5.1 with
m = 4 ligand binding sites (see Fig. 5.2B).Wongsamitkul et al. constructed amutated
subunit with lower affinity for ligand and formed tetrameric CNGA2 channels from
different combinations of mutated and wild type subunits (see Fig. 5.5) [13]. Since
the mutation specifically targeted the ligand binding sites, these mutant subunits
were postulated to have new ligand dissociation constants but the same free energy
difference βε .

We can extend the MWCmodel to compute the probability popen that these CNGA2
constructs will be open. The states and weights of an ion channel with n mutated
subunits (with ligand affinities K∗O and K∗C) and m−n wild type subunits (with ligand
affinities KO and KC) is shown in Fig. 5.5, and its probability to be open is given by

popen(c) =

(
1 + c

KO

)m−n
(
1 + c

K∗O

)n

(
1 + c

KO

)m−n
(
1 + c

K∗O

)n
+ e−βε

(
1 + c

KC

)m−n
(
1 + c

K∗C

)n . (5.15)

Measurements have confirmed that the dose-response curves of the mutant CNGA2
channels only depend on the total number of mutated subunits n and not on the
positions of those subunits (for example both n = 2 with adjacent mutant subunits
and n = 2 with mutant subunits on opposite corners have identical dose-response
curves) [13].

Fig. 5.6A shows the normalized current of all five CNGA2 constructs fit to a
single set of KO, KC, K∗O, K∗C, and ε parameters. Since the mutated subunits have
weaker affinity to ligand (leading to the larger dissociation constants K∗O > KO and
K∗C > KC), the [EC50] shifts to the right as n increases. As in the case of nAChR, we
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Figure 5.5: States and weights for mutant CNGA2 ion channels. CNGA2
mutants with m = 4 subunits were constructed using n mutated (light red) and
m − n wild type subunits (purple). The affinity between the wild type subunits to
ligand in the open and closed states (KO and KC) is stronger than the affinity of the
mutated subunits (K∗O and K∗C). The weights shown account for all possible ligand
configurations, with the inset explicitly showing all of the closed states for the wild
type (n = 0) ion channel from Fig. 5.2B. The probability that a receptor with n
mutated subunits is open is given by its corresponding open state weight divided by
the sum of open and closed weights in that same row.

can collapse the data from this family of mutants onto a single master curve using
the Bohr parameter FCNGA2(c) from Eqs. 5.13 and 5.15, as shown in Fig. 5.6B.

Although we analyze the CNGA2 ion channels in equilibrium, we can glimpse the
dynamic nature of the system by computing the probability of each channel confor-
mation. Fig. 5.7A shows the ten possible states of the wild type (n = 0) channel,
the five open states O j and the five closed states Cj with 0 ≤ j ≤ 4 ligands bound.
Fig. 5.7B shows how the probabilities of these states are all significantly shifted to
the right in the fully mutated (n = 4) channel since the mutation diminishes the
channel-ligand affinity. The individual state probabilities help determine which of
the intermediary states can be ignored when modeling. One extreme simplification
that is often made is to consider the Hill limit, where all of the states are ignored save
for the closed, unbound ion channel (C0) and the open, fully bound ion channel (O4).
The drawbacks of such an approximation are two-fold: (1) at intermediate ligand
concentrations (c ∈ [10−7, 10−5]M for n = 0 and c ∈ [10−4, 10−2]M for n = 4) the
ion channel spends at least 10% of its time in the remaining states which results in
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Figure 5.6: Normalized currents for CNGA2 ion channels with a varying
number n of mutant subunits. (A) Dose-response curves for CNGA2 mutants
composed of 4 − n wild type subunits and n mutated subunits with weaker affinity
for the ligand cGMP. Once the free energy ε and the ligand dissociation constants of
thewild type subunits (KO and KC) andmutated subunits (K∗O and K∗C) are fixed, each
mutant is completely characterized by the number of mutated subunits n in Eq. 5.15.
Theoretical best-fit curves are shown using the parameters KO = 1.2 × 10−6 M,
KC = 20 × 10−6 M, K∗O = 500 × 10−6 M, K∗C = 140 × 10−3 M, and βε = −3.4.
(B) Data from all five mutants collapses onto a single master curve when plotted as
a function of the Bohr parameter given by Eq. 5.13. See Supporting Information
section S5.3 for details on the fitting.

fundamentally different dynamics than what is predicted by the Hill response and
(2) even in the limits such as c = 0 and c → ∞ where the C0 and O4 states dominate
the system, the Hill limit ignores the leakiness and dynamic range of the ion channel
(requiring them to exactly equal 0 and 1, respectively), thereby glossing over these
important properties of the system.

5.4.2.1 Characterizing CNGA2 Mutants based on Subunit Composition

We now turn to the leakiness, dynamic range, [EC50], and effective Hill coefficient
h of a CNGA2 ion channel with n mutated and m − n wild type subunits. Detailed
derivations for the following results are provided in Supporting Information section
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Figure 5.7: Individual state probabilities for the wild type and mutant CNGA2
ion channels. (A) The state probabilities for the wild type (n = 0) ion channel. The
subscripts of the open (O j) and closed (Cj) states represent the number of ligands
bound to the channel. States with partial occupancy, 1 ≤ j ≤ 3, are most likely to
occur in a narrow range of ligand concentrations [cGMP] ∈ [10−7, 10−5]M, outside
of which either the completely empty C0 or fully occupied O4 states dominate the
system. (B) The state probabilities for the n = 4 channel. Because the mutant
subunits have a weaker affinity to ligand (K∗O > KO and K∗C > KC), the state
probabilities are all shifted to the right.

S5.2:

leakiness =
1

1 + e−βε
(5.16)

dynamic range =
1

1 + e−βε
(

KO
KC

)m−n
(

K∗O
K∗C

)n −
1

1 + e−βε
(5.17)

[EC50] ≈




e−βε/mKO n = 0

e−2βε/m KOK∗O
KO+K∗O

n = m
2

e−βε/mK∗O n = m

(5.18)

h ≈




m n = 0
m
2 n = m

2

m n = m.

(5.19)

Note that we recover the originalMWCmodel results Eqs. 5.5-5.12 for the n = 0wild
type ion channel. Similarly, the homooligomeric n = m channel is also governed
by the MWC model with KO → K∗O and KC → K∗C. We also show the [EC50] and
h formulas for the n = m

2 case to demonstrate the fundamentally different scaling
behavior that this heterooligomeric channel exhibits with the MWC parameters.

Fig. 5.8A shows that all of the CNGA2 mutants have small leakiness, which can
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be understood from their small ε value and Eq. 5.16. In addition, the first term in
the dynamic range Eq. 5.17 is approximately 1 because the open state affinities are
always smaller than the closed state affinities by at least a factor of ten, which is then
raised to the fourth power. Thus, all of the mutants have a large dynamic range as
shown in Fig. 5.8B. Experimentally, single channel measurements confirmed that
the wild type n = 0 channel is nearly always closed in the absence of ligand; in the
opposite limit of saturating cGMP, it was found that pmax

open = 0.99 for both the n = 0
and n = m ion channels (see Supporting Information section S5.3.2) [13].

The [EC50] and effective Hill coefficient h are shown in Fig. 5.8C and D. In contrast
to the nAChR case, where each additional mutation decreased [EC50], each CNGA2
mutation tends to increase [EC50], although not by a uniform amount. The effective
Hill coefficient has a particularly complex behavior, first decreasing with each of the
first three subunit mutations and then finally increasing back to the wild type level for
the fully mutated ion channel. To explain this decrease in h for the heterooligomeric
channels, we first note that the wild type n = 0 channel has a sharp response about
its [EC50] ≈ e−βε/mKO while the fully mutated n = m channel has a sharp response
about [EC50] ≈ e−βε/mK∗O. Roughly speaking, the response of the heterooligomeric
channels with 1 ≤ n ≤ 3 will occur throughout the full range between e−βε/mKO

and e−βε/mK∗O, which causes the dose-response curves to flatten out and leads to
the smaller effective Hill coefficient. Such behavior could influence, for example,
the response of the heterooligomeric nAChR ion channel if the two acetylcholine
binding pockets diverged to have different ligand affinities.

Although we have focused on the particular mutants created by Wongsamitkul
et al., it is straightforward to apply this framework to other types of mutations.
For example, in Supporting Information section S5.2.2 we consider the effect of
modifying the KO and KC parameters of all four CNGA2 channels simultaneously.
This question is relevant for physiological CNGA2 channels where a mutation in
the gene would impact all of the subunits in the homooligomer, in contrast to the
Wongsamitkul constructs where the four subunits were stitched together within a
single gene. We find that when KO and KC vary for all subunits, the leakiness,
dynamic range, and effective Hill coefficient remain nearly fixed for all parameter
values, and that only the [EC50] scales linearly with KO as per Eq. 5.11. In order to
affect the other properties, either the gating energy βε or the number of subunits m

would need to be changed.
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Figure 5.8: Theoretical prediction and experimental measurements for mutant
CNGA2 ion channel characteristics. The open squares represent the five mutant
ion channels in Fig. 5.6 with n mutated subunits. (A) All ion channels have small
leakiness. (B) The dynamic range of all channels is near the maximum possible
value of unity, indicating that they rarely open in the absence of ligand and are always
open in the presence of saturating ligand concentrations. (C) The [EC50] increases
non-uniformly with the number of mutant subunits. Also shown are the measured
values (solid circles) interpolated from the data. (D) The effective Hill coefficient
has a valley due to the competing influences of the wild type subunits (which
respond at µM ligand concentrations) and the mutant subunits (which respond at
mM concentrations). Although the homotetrameric channels (n = 0 and n = 4) both
have sharp responses, the combined effect of having both types of subunits (n = 1,
2, and 3) leads to a flatter response.

5.4.3 Extrapolating the Behavior of a Class of Mutants
In this section, we explore how constant trends in both the nAChR and CNGA2
data presented above provide an opportunity to characterize the full class of mutants
based on the dose-response curves from only a few of its members. Such trends may
well be applicable to other ion channel systems, enabling us to theoretically probe a
larger space of mutants than what is available from current data.

First, we note that because the [EC50] of the five nAChR mutants fell on a line
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Figure 5.9: Predicting the dose-response of a class of mutants using a subset
of its members. (A) The MWC parameters of the nAChR mutants can be fixed
using only two data sets (solid lines), which together with Eq. 5.20 predict the
dose-response curves of the remaining mutants (dashed lines). (B) For the CNGA2
channel, the properties of both the wild type andmutant subunits can also be fit using
two data sets, accurately predicting the responses of the remaining three mutants.
Supporting Information section S5.4 demonstrates the results of using alternative
pairs of mutants to fix the thermodynamic parameters in both systems.

in Fig. 5.4C, we can predict the response of the entire class of mutants by only
considering the dose-response curves of two of its members and extrapolating the
behavior of the remaining mutants using linear regression. Experimentally, such
a characterization arises because the L251S mutation acts nearly identically and
independently across subunits to change the gating free energy of nAChR [12, 17,
23]. This implies that mutating n subunits would yield an ion channel with gating
energy

ε (n) = ε (0) + n∆ε, (5.20)

where ε (0) is the wild type gating energy and ∆ε is the change in free energy per
mutation. This functional form is identical to the mismatch model for transcription
factor binding, where each additional mutation-induced mismatch adds a constant
energy cost to binding [27]. Fig. 5.9A demonstrates how fitting only the n = 0
and n = 4 dose-response curves (solid lines) accurately predicts the behavior of the
n = 1, 2, and 3 mutants (dashed lines). In Supporting Information section S5.4, we
carry out such predictions using all possible input pairs.

We now turn to the CNGA2 ion channel where, once the KO, KC, K∗O, K∗C, and ε
parameters are known, the dose-response curve of any mutant can be predicted by
varying n in Eq. 5.15. Fig. 5.9B demonstrates that the wild type ion channel (n = 0)
and the ion channel with only one mutated subunit (n = 1) can accurately predict
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Figure 5.10: Degenerate parameter sets for nAChR and CNGA2 model fitting.
Different sets of biophysical parameters can yield the same system response. (A)
Data for the nAChR system in Fig. 5.3 is fit by constraining KO to the value shown
on the x-axis. The remaining parameters can compensate for this wide range of KO
values. (B) The CNGA2 system in Fig. 5.6 can similarly be fit by constraining the
KO value, although fit quality decreases markedly outside the narrow range shown.
Any set of parameters shown for either system leads to responses with R2 > 0.96.

the dose-response curves of the remaining mutants. Supporting Information section
S5.4 explores the resulting predictions using all possible input pairs.

5.4.4 MWCModel allows for Degenerate Parameter Sets
One critical aspect of extracting model parameters from data is that degenerate sets
of parameters may yield identical outputs, which suggests that there are fundamental
limits to how well a single data set can fix parameter values [25, 28]. This phenome-
non, sometimes dubbed “sloppiness,” may even be present in models with very few
parameters such as the MWC model considered here. Fig. 5.10 demonstrates the
relationship between the best-fit parameters within the nAChR and CNGA2 systems.
For concreteness, we focus solely on the nAChR system.

After the value of KO is fixed (to that shown on the x-axis of Fig. 5.10A), the
remaining parameters are allowed to freely vary in order to best fit the nAChR data.
Although every value of KO ∈

[
10−11 10−9

]
M yields a nearly identical response

curve in excellent agreement with the data (with a coefficient of determination
R2 > 0.96), we stress that dissociation constants are rarely found in the range KO �

10−10 M. In addition, a dissociation constant above the nM range, KO � 10−9 M,
cannot fit the data well and is therefore invalidated by the model. Thus, we may
suspect the true parameter values will fall around the interval KO ∈

[
10−10 10−9

]
M

for the nAChR system. KO could ultimately be fixed by measuring the leakiness
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Eq. 5.5 (and thereby fixing βε) for any of the ion channel mutants.

Two clear patterns emerge from Fig. 5.10A: (1) The value of KC is approximately
constant for all values of KO and (2) the five free energies all vary as βε (n) =

2 log (KO) + n (constant). This suggests that KC and e−βε/2KO are the fundamental
parameter combinations of the system.

We end by noting that the notion of sloppiness, while detrimental to fixing the phy-
sical parameter values of a system, nevertheless suggests that multiple evolutionary
paths may lead to optimal ion channel phenotypes, providing another mechanism
by which allostery promotes a protein’s capacity to adapt [29].

5.5 Discussion
There is a deep tension between the great diversity of biological systems and the
search for unifying perspectives to help integrate the vast data that has built up around
this diversity. Several years ago at the Institut Pasteur, a meeting was convened to
celebrate the 50th anniversary of the allostery concept, which was pioneered in a
number of wonderful papers in the 1960s and which since then has been applied
to numerous biological settings [30–34]. Indeed, that meeting brought together
researchers working in physiology, neuroscience, gene regulation, cell motility,
and beyond, making it very clear that allostery has great reach as a conceptual
framework for thinking about many of the key macromolecules that drive diverse
biological processes.

In this paper, we have built upon this significant previous work and explored how
theMonod-Wyman-Changeux model can serve as a unifying biophysical framework
for whole suites of ion channel mutants (see Figs. 5.3 and 5.6). Specifically, we
used two well-studied ligand-gated ion channels to explore the connection between
mutations, the MWC parameters, and the full spectrum of dose-response curves
which may be induced by those mutations. In addition, we have shown how earlier
insights into the nature of “data collapse” in the context of bacterial chemotaxis
and quorum sensing [19, 20] can be translated into the realm of ion channels. By
introducing the Bohr parameter, we are able to capture the nonlinear combination
of thermodynamic parameters which governs the system’s response.

For both the nAChR and CNGA2 ion channels, we showed that precise predictions
of dose-response curves can bemade for an entire class of mutants by only using data
from two members of this class (Fig. 5.9). In other words, the information contained
in a single dose-response curve goes beyond merely providing data for that specific
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ion channel. Ultimately, because the total space of all possible mutants is too
enormous for any significant fraction to be explored experimentally, we hope that a
coupling of theory with experiment will provide a step toward mapping the relation
between channel function (phenotype) and the vast space of protein mutations.

Moreover, we used the MWC model to determine analytic formulas for key pro-
perties such as the leakiness, dynamic range, [EC50], and the effective Hill coeffi-
cient, which together encapsulate much of the information in dose-response curves.
These relationships tie into the extensive knowledge about phenotype-genotype
maps [27, 29, 35], enabling us to quantify the trade-offs inherent in an ion channel’s
response. For example, when modifying the ion channel gating free energy, the
changes in the leakiness and [EC50] are always negatively correlated (Fig. 5.4),
whereas modifying the ligand binding domain will not affect the leakiness but may
change the [EC50] (Fig. 5.8 and Supporting Information section S5.2.2). The abi-
lity to navigate between the genotype and phenotype of proteins is crucial in many
bioengineering settings, where site-directed mutagenesis is routinely employed to
find mutant proteins with specific characteristics (e.g. a low leakiness and large
dynamic range) [36–38].

While general formulas for these phenotypic properties were elegantly derived in
earlier work [10], we have shown that such relations can be significantly simplified
in the context of ion channels where 1 � e−βε �

(
KC
KO

)m
(see Eqs. 5.9-5.12). This

approximation is applicable for the range of parameters spanned by both the nAChR
and CNGA2 systems, and we suspect it may hold for many other ion channels.
These formulas provide a simple, intuitive framework to understand the effects of
mutations. For example, they suggest the following: (1) Channel pore mutations
that increase ε will exponentially increase the leakiness of the channel, although the
constraint 1 � e−βε ensures that this leakiness will still be small. Ligand domain
mutations are not expected to affect leakiness at all. (2) Channel pore mutations
will exponentially decrease the [EC50] with increasing ε , although this effect is
diminished for ion channels with multiple subunits. For mutations in the ligand
binding domain, the [EC50] will increase linearly with the dissociation constant KO

between the ligand and the open ion channel (see Supporting Information section
S5.2.2). (3) Neither the dynamic range nor the effective Hill coefficient will be sig-
nificantly perturbed by either type of mutation. (4) Transforming a homooligomeric
ion channel into a heterooligomer can generate a significantly flatter response. For
example, even though the CNGA2 channel composed of either all wild type or all
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mutant subunits had a very sharp response, a channel composed of both subunits
had a smaller effective Hill coefficient (see Fig. 5.8D).

The framework presented here could be expanded in several exciting ways. First,
it remains to be seen whether channel pore mutations and ligand binding domain
mutations are completely independent, or whether there is some cross-talk between
them. This question could be probed by creating a channel poremutant (whose dose-
response curves would fix its new ε̃ values), a ligand domain mutant (whose new K∗O
and K∗C values would be characterized from its response curve), and then creating
the ion channel with both mutations. If these two mutations are independent, the
response of the double mutant can be predicted a priori using ε̃ , K∗O, and K∗C.

We also note that theMWCmodel discussed here does not consider several important
aspects relating to the dynamics of ion channel responses. Of particular importance
is the phenomenon of desensitization which significantly modifies an ion channel’s
response in physiological settings [39, 40]. In addition, some ion channels have
multiple open and closed conformations [7, 41, 42] while other channels exhibit slow
switching between the channel states [43]. Exploring these additional complexities
within generalizations of the MWC model would be of great interest.

Finally, we believe that the time is ripe to construct an explicit biophysical model
of fitness to calculate the relative importance of mutation, selection, and drift in
dictating the diversity of allosteric proteins such as the ion channels considered
here. Such a model would follow in the conceptual footsteps laid in the context of
fitness of transcription factors binding [27, 35, 44], protein folding stability [45–
47], and influenza evolution [48]. This framework would enable us to make precise,
quantitative statements about intriguing trends; for example, nearly all nAChR pore
mutations appear to increase a channel’s leakiness, suggesting that minimizing
leakiness may increase fitness [12]. One could imagine that computing derivatives
such as dleakiness

dε , a quantity analogous to the magnetic susceptibility in physics,
would be correlated with how likely an ε mutation is to be fixed. The goal of such
fitness functions is to map the complexity of the full evolutionary space (i.e. changes
to a protein amino acid sequence) onto the MWC parameters and then determine
how these parameters evolve in time. In this way, the complexity of sequence and
structure would fall onto the very low dimensional space governed by ε , KO, and
KC.
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5.6 Conclusions
We have shown that the Monod-Wyman-Changeux (MWC) model of allostery can
quantitatively account for the behavior of broad classes of mutant ligand-gated ion
channels using the three biophysical parameters featured in that model: the free
energy difference ε between the closed and open conformations of the ion channel
in the absence of ligand and the dissociation constants KO and KC between the
ligand and the open and closed ion channel, respectively. By examining nAChR
and CNGA2 ion channel mutants, we demonstrated that pore mutations can be
quantitatively understood as only affecting the ε parameter while mutations in the
ligand binding site only alter KO and KC (Figs. 5.3 and 5.6).

Building upon these insights, we derived simple analytic approximations for several
important properties of an ion channel’s response, namely, the leakiness, dynamic
range, [EC50], and effectiveHill coefficient (Eqs. 5.9-5.12 for nAChR,Eqs. 5.16-5.19
for CNGA2). These formulae are not limited in scope to nAChR and CNGA2, but
rather reflect more general properties of ligand-gated ion channels. Utilizing these
analytic relations, we quantified the spectrum of possible phenotypes achievable by
mutating an ion channel pore or ligand binding domain (Figs. 5.4 and 5.8).

In examining ion channels through the lens of the MWC model, we gained several
intriguing insights into the dynamics of channel behavior. First, critical information
about the leakiness and dynamic range of a channel’s response gets lost when
reporting normalized current rather than absolute current (or when only considering
the Hill limit). Second, when the physical parameters induced by a series of
mutations exhibit a simple trend, the behavior of an entire class of mutants may
be extrapolated from only a few of its members (Fig. 5.9). Third, care must be
taken when extracting the physical parameters that characterize the MWC model
from data, as multiple degenerate parameter sets can often lead to nearly identical
response curves (Fig. 5.10). Finally, data from disparate mutants collapse onto a
singlemaster curve as a function of theBohr parameter Eq. 5.14, which represents the
combination of physical parameters that completely characterizes an ion channel’s
response. In such cases, rather than thinking of each mutant as a story unto itself,
we can instead categorize and understand mutants through simple one-parameter
families.
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C h a p t e r S5

SUPPLEMENTARY INFORMATION FOR
MONOD-WYMAN-CHANGEUX ANALYSIS OF
LIGAND-GATED ION CHANNEL MUTANTS

S5.1 Additional Ion Channel Data
In this section, we explore some of the additional experimental measurements avai-
lable for the nAChR and CNGA2 systems studied above and elaborate on several
calculations mentioned in the text. In S5.1.1, we analyze the time scale required for
an ion channel to reach equilibrium. In S5.1.2, we present data on additional L251S
nAChR mutants. Using these mutants, we examine the approximation made in the
text that only the total number of mutations, and not the identity of the subunits
mutated, influences the resulting nAChR mutant behavior. In S5.1.3, we examine
popen(c) for the classes of ion channels considered in the text and comment on how
this probability differs from the normalized current. In S5.1.4, we examine data
from a similar class of L251T mutations and show that their qualitative behavior is
similar to the L251S mutants. In S5.1.5, we discuss measurements of combinations
of CNGA2 ion channels.

S5.1.1 Dynamics Towards Equilibrium

k+
ek   -

e

O   OL
k  on[L]

C CL
k  on[L]

k  off   

(O)

k  off   

(C)

k+
ok   -

o

Figure S5.1: Rates for an ion channel with one ligand binding site. The ion
channel tends to transition from the closed (C) state to the open (O) state after
binding to ligand (L). We assume both ion channel states have the same diffusion-
limited on-rate kon = 109 1

M·s . The remaining rates of the bound states should satisfy
k (C)
off > k (O)

off and ko
+ > ko

− so that ligand binding drives the ion channel to the open
state OL.

In this section, we derive an exact expression for the time constant for which an ion
channel with one ligand binding site will come to equilibrium. This analysis can be
readily extended numerically to include multiple ligand binding sites.
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Fig. S5.1 shows the rates between the four possible ion channel states: the unbound
open (O) and closed (C) states as well as the bound open (OL) and closed (CL)
states. We assume that there is a sufficient ligand [L] in the system so that when
the ligand binds to the ion channels its concentration does not appreciably diminish.
Hence the rate equations for the system can be written in matrix form (with bold
denoting vectors and matrices) as

dE
dt
= KE (S5.1)

where the right hand side represents the product of the transition matrix

K =

*......
,

−(ke
+ + kon[L]) k (C)

off ke
− 0

kon[L] −(ko
+ + k (C)

off ) 0 ko
−

ke
+ 0 −(ke

− + kon[L]) k (O)
off

0 ko
+ kon[L] −(ko

− + k (O)
off )

+//////
-

(S5.2)

and the vector representing the occupancy of each ion channel state

E =

*......
,

[C]
[CL]
[O]

[OL]

+//////
-

. (S5.3)

The matrix K can be decomposed as

K = V−1ΛV (S5.4)

where V ’s columns are the eigenvectors of K and Λ is a diagonal matrix whose
entries are the eigenvalues of K . In general, it is known that the eigenvalues of
such a matrix K representing the dynamics of any graph such as Fig. S5.1 has one
eigenvalue that is 0 while the remaining eigenvalues are non-zero and have negative
real parts [1]. (Indeed, because all of the columns of K add up to zero, K is not full
rank and hence one of its eigenvalues must be zero.) Defining the vector

Ẽ ≡ VE =

*......
,

Ẽ1

Ẽ2

Ẽ3

Ẽ4

+//////
-

, (S5.5)

Eq. S5.1 can be rewritten as
dẼ
dt
= ΛẼ . (S5.6)
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If the eigenvalues of Λ are λ1, λ2, λ3, and 0, then Ẽ j = c jeλ j t for j = 1, 2, 3 and
Ẽ4 = c4 where the c j’s are constants determined by initial conditions. Since the Ẽ j’s
are linear combinations of [C] , [CS] , [O] , and [OS], this implies that the − 1

λ1
,− 1

λ2
,

and− 1
λ3

(or− 1
<(λ j )

if the eigenvalues are complex) are the time scales for the normal
modes of the system to come to equilibrium, with the largest value representing the
time scale τ for the entire system to reach equilibrium,

τ = max
(
−

1
λ1
,−

1
λ2
,−

1
λ3

)
. (S5.7)

Although the eigenvalues of this matrix can be calculated in closed form, as roots
of a cubic function, the full expression is complicated. Instead, we write the Taylor
expansion of λ1, λ2, and λ3 in the limit ko

+ → ∞, since we suspect that the transition
from CS → OS is extremely fast. In this limit, the λ js take the forms

λ1 = −(k (O)
off + kon[L]) +O

(
1
ko
+

)
(S5.8)

λ2 = −(k (C)
off + ko

− + ko
+) +O

(
1
ko
+

)
(S5.9)

λ3 = −(kon[L] + ke
− + ke

+) +O
(

1
ko
+

)
. (S5.10)

Fig. S5.2 shows an example of how the system attains its equilibrium starting from a
random initial condition. The exact time scale Eq. S5.7 using the matrix eigenvalues
leads to τ = 1.1× 10−3 s, which is very close to the approximation using Eqs. S5.8-
S5.10 which yields τ(approx) = 1.0 × 10−3 s. The exact time scale is shown in
Fig. S5.2 as a dashed line, and states achieve near total equilibrium by t = 10−2 s.

As a point of reference for this time scale described above for the system to come
to equilibrium, there are two other relevant times scales for an ion channel: (1) the
time scale for an ion channel to switch between the open and closed conformations
and (2) the time scale for an ion channel to stay in its open conformation before
switching to the closed conformation. The former occurs on the microsecond scale
for nAChR [2], while the latter occurs on the millisecond scale [3, 4]. Thus, the
time to transition between the closed and open conformations can be ignored, and
the system reaches equilibrium after only a few transitions between the open and
closed states.

Lastly, we compute the fractional occupancy of the four states ion channel states in
steady state, dE

dt = 0. We first make the standard assumption that the system is not
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Figure S5.2: Kinetics of a system heading towards equilibrium. The relative
probabilities of the four states are computed using Eqs. S5.1 and S5.2 and the rate
constants kon[L] = 103 1

s , k (O)
off = 10−2 1

s , k (C)
off = 104 1

s , ko
+ = 104 1

s , ko
− = 101

s ,
ke
+ = 101

s , and ke
− = 103 1

s . Note that the rate constants must satisfy the cycle
condition: the product of rates moving clockwise equals the product of rates going
counterclockwise. The dashed line indicates the exact time scale Eq. S5.7 for the
system to reach equilibrium. Initial conditionswere chosen randomly as pO = 0.005,
pC = 0.45, pOL = 0.54, and pCL = 0.005.

expending energy to drive a cyclic flux in the system. Formally, this implies that the
rate constants satisfy the cycle condition: the product of rates moving clockwise in
Fig. S5.1 equals the product of rates going counterclockwise [5],

kon[L]ko
−k (C)

off ke
+ = ke

−k (O)
off kon[L]ko

+. (S5.11)

With this condition, the fractional occupancy of each state is given by

[C] =
ke−
ke+(

1 + kon[L]
k (O)
off

)
+

ke−
ke+

(
1 + kon[L]

k (C)
off

) (S5.12)

[CL] =

ke−
ke+

kon[L]
k (C)
off(

1 + kon[L]
k (O)
off

)
+

ke−
ke+

(
1 + kon[L]

k (C)
off

) (S5.13)

[O] =
1(

1 + kon[L]
k (O)
off

)
+

ke−
ke+

(
1 + kon[L]

k (C)
off

) (S5.14)

[OL] =

kon[L]
k (O)
off(

1 + kon[L]
k (O)
off

)
+

ke−
ke+

(
1 + kon[L]

k (C)
off

) , (S5.15)

A system in steady state which satisfies the cycle condition must necessarily be
in thermodynamic equilibrium [6], which implies that these fractional occupancies
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must be identical to the result derived from the Boltzmann distribution (see Fig. 5.2).
And indeed, this correspondence is made explicit if we define

e−βε =
ke
−

ke
+

(S5.16)

KO =
k (O)
off

kon
(S5.17)

KC =
k (C)
off

kon
. (S5.18)

In this way, the MWC parameters can be defined through the ratios of the rate
parameters of the system.

S5.1.2 Additional nAChR Mutants
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Figure S5.3: Categorizing the full set of ion channel mutants. Using the best-fit
KO and KC values obtained from the fivemutants in Fig. 5.3, we can use themeasured
[EC50] value for each mutant in Table S5.1 to determine its βε parameter. Thus, a
single data point for each mutant enables us to predict its complete dose-response
curve. All mutants with the same total number n of mutations are plotted in shades
of the same color, together with the complete dose-response curves from Fig. 5.3.
Note that while each mutant family spans a range of [EC50] values, the classes are
distinct and do not overlap.

In addition to the five constructs shown in Fig. 5.3, namely n = 0 (wild type), n = 1
(α2 βγ

∗δ), n = 2 (α∗2 βγδ), n = 3 (α2 β
∗γ∗δ∗), and n = 4 (α∗2 βγ

∗δ∗), Labarca et
al. constructed multiple other ion channel mutants listed in Table S5.1 [3]. While
complete dose-response curves are not available for these other constructs, their
[EC50] values were measured. Using the KO and KC values for this entire class of
mutants given in Fig. 5.3, we can use the [EC50] measurements to fit the βε value
of each mutant, thereby providing us with a complete description of each mutant.

In particular, we can predict the dose-response curves of each of these mutants, as
shown in Fig. S5.3. We overlay the data from Fig. 5.3 on top of these theoretical
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curves, wheremutantswith the same total number n ofmutations are drawn as shades
of the same color. Note that there was some error in the original measurements,
since the reported [EC50] value for the n = 4 (α∗2 βγ

∗δ∗) mutant shown in purple
dots in Fig. S5.3 should clearly be less than 10−9 M, even though it was given as
(2.0 ± 0.6) × 10−9 M in Ref. 3.

n subunits [EC50] (nM)
0 α2 βγδ 24,010
1 αα∗ βγδ 1,290

α2 β
∗γδ 531

α2 βγ
∗δ 1,910

α2 βγδ
∗ 486

2 α∗2 βγδ 202
α2 β

∗γ∗δ 49.7
α2 β

∗γδ∗ 208 ± 69
α2 βγ

∗δ∗ 42.7
3 α∗2 β

∗γδ 10.3
α∗2 βγ

∗δ 15.1
α∗2 βγδ

∗ 8.4 ± 1.3
α2 β

∗γ∗δ∗ 9.8 ± 1.3
4 α∗2 β

∗γδ∗ 2.3
α∗2 βγ

∗δ∗ 2.0 ± 0.6
5 α∗2 β

∗γ∗δ∗ < 1

Table S5.1: Dose-response relations for mouse muscle ACh receptors contai-
ning various numbers of mutated L251S subunits (n). Mutated subunits are
indicated by an asterisk (∗). Standard error of the mean for [EC50] was less than
10% of the mean, except where given. Responses for the α∗2 β

∗γ∗δ∗ mutant were too
small for reliable measurements.

Fig. S5.3 demonstrates that not all subunit mutations cause a tenfold decrease in
[EC50], but rather that there is a small spread in [EC50] depending on precisely
which subunit was mutated. This variation is not unreasonable given that α2 βγδ

nAChR is a heteropentamer. Indeed, such subunit-dependent spreading in [EC50]
values has also been seen in other heteromeric ion channels [7, 8] but is absent
within homomeric ion channels such as the CNGA2 ion channel explored in the text
[4].

To explore this subunit-dependent shift in the dose-response curves, we now relax
the assumption that mutating any of the four nAChR subunits results in an identical
increase of roughly 5 kBT to the allosteric gating energy ε . Instead, we allow each
type of subunit to shift ε by a different amount upon mutation. We begin by writing
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the ε parameter of wild type nAChR as

εα2 βγδ = 2εα + ε β + εγ + ε δ, (S5.19)

where ε j denotes the gating energy contribution from subunit j andwe have assumed
that the five subunits independently contribute to channel gating. Upon mutation,
we define the free energy differences of each type of subunit as

∆εα ≡ εα∗ − εα (S5.20)

∆ε β ≡ ε β∗ − ε β (S5.21)

∆εγ ≡ εγ∗ − εγ (S5.22)

∆ε δ ≡ ε δ∗ − ε δ, (S5.23)

where ε j∗ denotes the gating energy from the mutated subunit j.

The allosteric energy of any nAChR mutant can be found using the wild type energy
εα2 βγδ = −23.7 kBT from the main text together with ∆εα, ∆ε β, ∆ε δ, and ∆εγ. For
example, the gating energy of α2 β

∗γδ is given by εα2 β∗γδ = εα2 βγδ + ∆ε β while
that of α∗2 βγδ

∗ is given by εα∗2 βγδ∗ = εα2 βγδ + 2∆εα + ∆ε δ.

Using the measured [EC50] values of all the mutants in Table S5.1, we can fit
the four ∆ε j’s to determine how the different subunits increase the ion channel
gating energy upon mutation. We find the values ∆εα = 4.4 kBT , ∆ε β = 5.3 kBT ,
∆εγ = 5.4 kBT , and ∆ε δ = 5.2 kBT , which show a small spread about the value of
roughly 5 kBT found in the text by assuming that all four ∆ε j’s are identical. To
show the goodness of fit, we can compare the [EC50] values from this model to the
experimental measurements in Table S5.1, as shown in Fig. S5.4.

S5.1.3 popen(c) Curves
Although the dose-response curves we analyze for nAChR were all presented using
normalized current, the underlying physical process – namely, the opening and
closing of the ion channel – is not required to go from 0 to 1. Fig. S5.5 shows
the normalized dose-response curves from Fig. 5.3A together with the average
probability that each ion channel mutant will be open, popen(c). Note that these
popen(c) curves have exactly the same shape as the normalized current curves but
are compressed in the vertical direction to have the leakiness and dynamic range
specified by Fig. 5.4A and B.

From the viewpoint of these popen(c) curves, various nuances of this ion channel
class stand out more starkly. For example, the four mutant channels have pmax

open ≈ 1,
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Figure S5.4: Mutating different nAChR subunits changes the gating energy
ε by different amounts. Using a linear model where each subunit independently
contributes to channel gating, we fit all of the [EC50] values in Table S5.1 to compute
the increase of the gating energy ε when each subunit of α2 βγδ nAChR is mutated
(see Eqs. S5.20-S5.23). Upon mutation, a subunit of type j increases the gating
energy by ∆ε j , where ∆εα = 4.4 kBT , ∆ε β = 5.3 kBT , ∆εγ = 5.4 kBT , and
∆ε δ = 5.2 kBT . For each mutant in Table S5.1, the [EC50] from the model can be
compared to the corresponding experimental measurement, with the black dashed
line denoting the line of equality y = x.

noticeably larger than the pmax
open ≈ 0.9 value of the wild type channel. In addition, the

n = 4 mutant is the only ion channel with non-negligible leakiness, and Fig. 5.4A
suggests that an n = 5 mutant with all five subunits carrying the L251S mutation
would have an even larger leakiness value greater than 1⁄2. In other words, the n = 5
ion channel is open more than half the time even in the absence of ligand, which
could potentially cripple or kill the cell. This may explain why Labarca et al. made
the n = 5 strain but were unable to measure its properties [3].

Fig. S5.6 repeats this same analysis for the CNGA2 dose-response curves from
Fig. 5.6A. In this case, all of the ion channel mutants have uniformly small values
of pmin

open ≈ 0.03 and uniformly large pmax
open ≈ 1, as indicated by Fig. 5.8A and B.

Therefore, the popen(c) curves look very similar to the normalized currents.

S5.1.4 nAChR L251T Mutation
In this section, we consider a separate nAChR data from the one considered in the
main paper. Filatov and White constructed nAChR ion channel mutants closely re-
lated to those of Labarca et al. but employing a L251Tmutation [9]. They measured
the [EC50] of multiple such constructs with the L251T mutation on different subsets
of nAChR subunits, with the results shown in Fig. S5.7A as a function of the total
number of mutated subunits n.
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Figure S5.5: Probability that an nAChR mutant will be open. (A) Normalized
current curves of the five nAChR mutants from Fig. 5.3A. (B) The probability that
each ion channel will be open is given by Eq. 5.1. Note that the wild type ion
channel has a smaller dynamic range and the n = 4 mutant has a noticeably larger
leakiness than the other mutants.
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Figure S5.6: Probability that a CNGA2 mutant will be open. (A) CNGA2
dose-response curves from Fig. 5.6A. (B) The probability that each ion channel will
be open is given by Eq. 5.1. Since all of the channels have small leakiness (≈ 0.03)
and large dynamic range, the popen(c) curves are nearly identical to the normalized
current curves.

As in the case of the L251S mutations from Labarca (see Fig. S5.3 and Table S5.1),
there was some variation in [EC50] between different mutants with the same total
number of mutations n, but the entire class of mutants is well approximated as
having [EC50] exponentially decrease with each additional mutation. Utilizing our
analytical formula for the [EC50] of nAChR, Eq. 5.11, and assuming that each
mutation changes ε by a fixed amount ∆ε , the shift in [EC50] due to n mutations is
given by

[EC50] = e−β(ε (0)+n∆ε )/2KO. (S5.24)
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We can fit the logarithm of the [EC50] values in Fig. S5.7A to a linear function going
through the wild type (n = 0) data point to obtain ∆ε = 3.64 kBT from the slope
of this line. This value is comparable to that found for the L251S mutation (where
∆ε = 5 kBT).

With the gating energy now fully determined for any number of mutations n, and
using the KO and KC parameters from Fig. 5.3, we now have a complete theoretical
model of the L251T nAChR mutant class. For example, we can plot the predicted
dose-response curves for all such mutants. Fig. S5.7B shows these predictions
together with experimentally measured responses from the wild type channel and
three mutant constructs. The dose-response predictions should match the data on
average for the entire class of mutants, although individual channel responses may
be slightly off. For example, Fig. S5.7A indicates that the [EC50] of the n = 1 and
n = 2 mutants will be lower than predicted while that of the n = 4 and n = 5 mutants
(whose dose-response data was not provided) will be higher than predicted.

S5.1.5 Combining Multiple Ion Channels
In this section, we consider the dose-response curve for the case in which the cell
harbors both wild type and mutant ion channels. Given n1 ion channels whose
dose-response curves are governed by p1,open(c) and n2 ion channels with a different
response p2,open(c), the current produced by the combination of these two ion
channels is given by

current ∝ n1p1,open(c) + n2p2,open(c). (S5.25)

Experimental measurements are computed on a relative scale so that the data runs
from 0 to 1. Analytically, this amounts to subtracting the leakiness and dividing by
the dynamic range,

(normalized current)tot =
n1p1,open(c) + n2p2,open(c) − n1pmin

1,open − n2pmin
2,open

n1pmax
1,open + n2pmax

2,open − n1pmin
1,open − n2pmin

2,open
.

(S5.26)
Wongsamitkul et al. constructed cells expressing both the n = 0 wild type ion
channels and the n = 4 fully mutated ion channels in a ratio of 1:1 (i.e. n1 = n2) as
shown in Fig. S5.8 [4].

Recall from Fig. 5.8 that these ion channels have very small leakiness (pmin
1,open ≈

pmin
2,open ≈ 0) and nearly full dynamic range (pmax

1,open ≈ pmax
2,open ≈ 1). This implies that

p1,open(c) ≈ (normalized current)1 and p2,open(c) ≈ (normalized current)2, so that
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Figure S5.7: Effects of L251T mutations on nAChR. (A) [EC50] values for
another class of L251T mutations introduced at different combinations of subunits.
This data set is separate from the L251S mutation considered in the main text.
The [EC50] mainly depends on the total number of mutations, [EC50] ∝ e−1.82n,
although there is slight variation depending upon which subunits are mutated. From
Eq. S5.24, we find that each mutation imparts ∆ε = 3.64 kBT . (B) Once the MWC
parameters have been fixed from the [EC50] measurements, we can predict the full
dose-response curves for the entire class of L251T nAChR mutants. Overlaid on
these theoretical prediction are four experimentally measured response curves for
the wild type (α2 βγδ), two n = 1 single mutants (α2 βγ

∗δ and α2 βγδ
∗), and the

n = 2 double mutant (α2 βγ
∗δ∗). We expect the predicted dose-response curves to

match the data on average for the entire class of mutants, but Part A shows that the
[EC50] of the n = 1 and n = 2 mutants will be overestimated while that of the n = 4
and n = 5 mutants will be underestimated. Asterisks (∗) in the legend denote L251T
mutations.

the total normalized current due to the combination of ion channels is given by

(normalized current)tot =
(normalized current)1 + (normalized current)2

2
.

(S5.27)
Fig. S5.8 shows that this simple prediction compares well to the measured data.

S5.2 Computing nAChR and CNGA2 Characteristics
In S5.2.1, we derive Eqs. 5.9-5.12, the approximations for the leakiness, dynamic
range, [EC50], and the effective Hill coefficient h for the general MWC model
Eq. 5.1. We begin by Taylor expanding the well known exact expressions from
Ref. 10 in the limit 1 � e−βε �

(
KC
KO

)m
, which we found to be appropriate for both

the nAChR and CNGA2 ion channels, and find the lowest order approximations.

Following that, in S5.2.2 we consider how mutations in the ligand dissociation
constants KO and KC affect these four properties. We show that ion channel dose-
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Figure S5.8: Normalized currents for combinations of CNGA2 ion channels.
Channel currents of cells producing equal amounts of wild type n = 0 and the n = 4
mutant ion channels. As shown in Eq. S5.27, the resulting dose-response curve
equals the average of the n = 0 and n = 4 individual response curves.

response curves are robust to changes in KO and KC aside from left-right shifts
dictated by [EC50] = e−βε/mKO. This discussion complements the nAChR section
of the text where we considered mutations of the βε parameter.

Lastly, in S5.2.3 we determine how ion channels comprised of a mix of wild type
subunits (with ligand dissociation constants KO and KC) and mutant subunits (with
dissociation constants K∗O and K∗C) influences the four properties. Specifically, we
focus on the analytically tractable case where half of the subunits are wild type and
the other half are mutated (see Eqs. 5.18 and 5.19 in the text).

S5.2.1 Characteristics of the MWCModel
Using 1 � e−βε , the leakiness Eq. 5.5 can be expanded as

leakiness =
1

1 + e−βε
≈ eβε . (S5.28)

Therefore, ion channels have a very small leakiness which scales exponentially with
βε . Fig. S5.9A shows that this is a good approximation across the entire range of
parameters within the class of nAChR mutants, −24 ≤ βε ≤ −4.

The dynamic range Eq. 5.6 can be similarly expanded to obtain

dynamic range =
1

1 + e−βε
(

KO
KC

)m −
1

1 + e−βε
≈ 1 − e−βε

(
KO
KC

)m

− eβε . (S5.29)

Keeping only the lowest order term yields the approximation Eq. 5.10 that ion
channels have full dynamic range. Fig. S5.9B shows that keeping the first order terms
in Eq. S5.29 also captures the behavior of the wild type channel (βε (0) = −23.7)
and the n = 4 mutant (βε (4) = −4.0).
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Figure S5.9: Exact and approximate expressions for nAChR characteristics.
The approximations Eqs. S5.28-S5.34 (dashed, teal) are valid in the limit 1 �
e−βε �

(
KC
KO

)m
where they closely match the exact expressions (purple). (A)

Leakiness can be approximated as an exponentially increasing function of βε .
(B) To lowest order, the dynamic range of an ion channel should approach unity,
with deviations only at very large and very small βε values. (C) The [EC50] is
an exponentially decreasing function of βε . (D) The effective Hill coefficient is
roughly constant for all mutants, but as with the dynamic range it decreases for very
large and very small βε values.

We next turn to the [EC50] Eq. 5.7, whose exact analytic formula is given by [11]

[EC50] = KO
1 − λ 1

m

λ
1
m −

KO
KC

(S5.30)

where

λ =
2 −

(
pmin
open + pmax

open
)

e−βε
(
pmin
open + pmax

open
) . (S5.31)

The limit 1 � e−βε �
(

KC
KO

)m
suggests that we Taylor expand this formula to lowest
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order about e−βε
(

KO
KC

)m
≈ 0 and e−βε ≈ ∞, which yields

[EC50] ≈ KO

KC
KO

((
1 − 1

2+e−βε

)1/m)
KC
KO

(
1

2+e−βε

)1/m
− 1

≈ KO

KC
KO

(
1 − eβε/m

)
KC
KO

eβε/m − 1

≈ KO

KC
KO

KC
KO

eβε/m

= KOe−βε/m. (S5.32)

Thus, the [EC50] decreases exponentially with ε , although this effect is diminished
with the number of ligand binding sites m. The precise relationship [EC50] ∝ e−βε/2

for the nAChR data is shown in Fig. S5.9C.

Finally, we turn to the effective Hill coefficient, whose exact analytic form is given
by [11]

h =
m[EC50] (KC − KO)

(
pmin
open + pmax

open
) (

2 − pmin
open − pmax

open
)(

pmin
open − pmax

open
)

([EC50] + KO) ([EC50] + KC)
, (S5.33)

where we have used pmin
open and pmax

open from Eqs. 5.3 and 5.4 as well as the [EC50]
formula Eq. S5.30. Again, we make a Taylor series of this expression about
e−βε

(
KO
KC

)m
≈ 0 and e−βε ≈ ∞ to obtain the lowest order approximation, which

is given by

h ≈ m
KC
KO
+ 1

KC
KO
− 1
− m

(
1

2+e−βε

)−1/m

KC
KO
− 1

− m
KC
KO

(
1

2+e−βε

)1/m

KC
KO
− 1

− 2meβε
KC
KO

(
1

2+e−βε

)1/m

KC
KO
− 1

≈ m − m
e−βε/m

KC
KO

− m
KC
KO

eβε/m

KC
KO

− 2meβε
KC
KO

eβε/m

KC
KO

≈ m − m
KO
KC

e−βε/m − meβε/m. (S5.34)

Note that in the second step, we used the stronger constraint that KC
KO
� 1, although

it is still reasonably satisfied for both the nAChR (KC
KO
= 6 × 105) and CNGA2

(KC
KO
= 17) ion channels considered in the text. By keeping the lowest order term,

we recoup Eq. 5.12 that all ion channels have the same sharp response, and that this
sharpness increases linearly with the number of ligand binding sites. Fig. S5.9D
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shows that by keeping the first order terms in Eq. S5.34, the shallower responses of
the wild type (βε (0) = −23.7) and n = 4 mutant (βε (4) = −4.0) can also be well
approximated.

S5.2.2 Mutations Affecting the Ligand-Channel Dissociation Constants
In this section, we discuss how the leakiness, dynamic range, [EC50], and effective
Hill coefficient h vary when the channel-ligand dissociation constants KO and KC are
perturbed, as can be accomplished by mutating the ligand binding domain. Recall
that ligand-gated ion channels are typically closed in the absence of ligand (ε < 0)
and open when bound to ligand (KO < KC).

Fig. S5.10 shows the four ion channel properties using the parameters of the wild
type CNGA2 ion channel (βε = −3.4 and m = 4 ligand binding sites) and letting
the ratio KO

KC
of dissociation constants vary. All four graphs demonstrate that the

ion channel’s traits are nearly insensitive to changes in the dissociation constants
provided that KO does not approach KC. In the limit KO → KC, the ligand no longer
drives the ion channel to open, causing the dynamic range to shrink to zero. As
such, the behavior of the [EC50] and h in this limit should be considered as artifacts
from taking this limit (since neither trait is well defined when the dynamic range
shrinks to zero). For reference, the wild type CNGA2 channel has KO

KC
= 0.06.

Note that the y-axis in Fig. S5.10C plots [EC50]
KO

, so if both KO and KC are reduced
by a constant factor, then the [EC50] will also be reduced by this same factor. In the
limit KO

KC
→ 0, [EC50] = KO

(
2 + e−βε

)1/m
− 1 ≈ 1.4KO for the wild type CNGA2

channel (see Eq. S5.30).

S5.2.3 The Heterooligomeric CNGA2 Channel
We now consider an ion channel with m subunits, each of which could either be
a wild type subunit (with dissociation constants KO and KC) or a mutated subunit
(with dissociation constants K∗O and K∗C). Each subunit contains a single ligand
binding site. We compute the leakiness, dynamic range, [EC50], and the effective
Hill coefficient h of an ion channel composed of n mutated subunits and m − n wild
type subunits. In the text, we analyzed the specific case of the CNGA2 ion channel
with m = 4 subunits.

We begin by taking the limits of popen(c), Eq. 5.15, in the absence of ligand, which
is given by

pmin
open =

1
1 + e−βε

, (S5.35)
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Figure S5.10: CNGA2 properties are robust to changes in the ligand dissocia-
tion constants. (A) The leakiness does not depend on either dissociation constant.
(B) The dynamic range is near unity for set of dissociation constants where KO

KC
≤ 0.1,

as was found for both the nAChR and CNGA2 systems. For larger ratios of the dis-
sociation constants, the ligand no longer drives the ion channel to open. (C) When
KO
KC
≤ 0.1, [EC50] ≈ 1.4KO is proportional to KO but robust to the ratio of disso-

ciation constants. (D) The effective Hill coefficient is also robust to changes in the
dissociation constants, with h ≈ 2.4 when KO

KC
≤ 0.1.

and in the presence of saturating levels of ligand, which is given as

pmax
open =

1

1 + e−βε
(

KO
KC

)m−n
(

K∗O
K∗C

)n . (S5.36)

Throughout this analysis, we assume KO < KC and K∗O < K∗C so that ligand binding
makes both the wild type and mutant subunits more likely to open.

The two limits of popen(c) above allow us to directly compute the leakiness and
dynamic range of the ion channels. The former is given by

leakiness =
1

1 + e−βε
, (S5.37)

which has an identical form to the leakiness of the MWC model Eq. S5.28. As
shown in Fig. S5.11A, the leakiness does not depend explicitly on the number of
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Figure S5.11: Effects ofmixing two types of subunits in theCNGA2 ion channel.
The CNGA2 ion channel is composed of m = 4 subunits, each of which has one
ligand binding site. n of these subunits are mutated so as to have weaker ligand
binding affinity. (A) The leakiness of the CNGA2 ion channel Eq. S5.37 is uniformly
small. (B) All of the mutants have nearly full dynamic range Eq. S5.38 because the
open channel dissociations constants (KO and K∗O) are significantly larger than the
closed channel dissociation constants (KC and K∗C). (C) The exact expression (solid,
purple) for the [EC50] is shown along with approximations for the n = 0, 2, and
4 ion channels (teal diamonds) from Eqs. S5.32 and S5.48. Because the mutated
subunits bind poorly to ligand, the [EC50] increases with n. (D) The effective
Hill coefficient Eqs. S5.34 and S5.50 can be approximated in the same manner as
the [EC50]. Although the homooligomeric n = 0 and n = 4 channels have sharp
responses, the effect of combining both types of subunits (n = 1, 2, and 3) leads to
a flatter response.

mutated subunits n. We next turn to the formula for the dynamic range,

dynamic range =
1

1 + e−βε
(

KO
KC

)m−n
(

K∗O
K∗C

)n −
1

1 + e−βε
. (S5.38)

The first term in the dynamic range is approximately 1 because the open state
affinities are always smaller than the closed state affinities by at least a factor of ten,
and these factors are collectively raised to the mth power. Since these ion channels
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also exhibit small leakiness, they each have a large dynamic range as shown in
Fig. S5.11B.

We next consider approximations for the [EC50] and effective Hill coefficient h.
The wild type CNGA2 channel (n = 0) will necessarily follow the formulas derived
above for the MWC model (Eqs. S5.32 and S5.34). Similarly, the homooligomeric
CNGA2 ion channel comprised of all mutated subunits (n = m) will have the same
formulas as the wild type channel but with KO → K∗O and KC → K∗C.

To gain a sense of how the [EC50] and h vary for channels comprised of a mix of
wild type and mutant subunits (1 ≤ n ≤ m − 1), we analyze the n = m/2 case
(implicitly assuming that m is even) where half the subunits are wild type and the
other half are mutated. We begin with the [EC50] formula which by definition is
given by

[(
1 + c

KO

) (
1 + c

K∗O

)] m/2

[(
1 + c

KO

) (
1 + c

K∗O

)] m/2
+ e−βε

[(
1 + c

KC

) (
1 + c

K∗C

)] m/2 =
1
2

(
pmin
open + pmax

open
)
.

(S5.39)
Rearranging the terms, we find

λ

[(
1 +

c
KO

) (
1 +

c
K∗O

)] m/2
=

[(
1 +

c
KC

) (
1 +

c
K∗C

)] m/2
, (S5.40)

where we have introduced the same (positive) constant λ in Eq. S5.31 from the
[EC50] of the standard MWC model,

λ =
2 −

(
pmin
open + pmax

open
)

e−βε
(
pmin
open + pmax

open
) . (S5.41)

Upon raising both sides of Eq. S5.39 to the 2
m power, we find the quadratic equation

Ac2 + Bc + C = 0 (S5.42)

where

A =
λ2/m

KOK∗O
−

1
KCK∗C

(S5.43)

B =
λ2/m

KO
+
λ2/m

K∗O
−

1
KC
−

1
K∗C

(S5.44)

C = λ2/m − 1, (S5.45)
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which has the exact solution

[EC50] =
−B +

√
B2 − 4AC
2A

. (S5.46)

To simplify this expression, we note that |4AC | is smaller than B2 by more than
a factor of 10 for the CNGA2 parameter values, so that the square root can be
approximated as

√
B2 − 4AC ≈ B − 2AC

B , and hence the [EC50] becomes

[EC50] ≈ −
C
B
=

1 − λ2/m

λ2/m

KO
+ λ2/m

K∗O
− 1

KC
− 1

K∗C

. (S5.47)

To further simplify this result, we utilize the relationships 1 � e−βε �
(

KC
KO

)m/2

and 1 � e−βε �
(

K∗C
K∗O

)m/2
which hold for the CNGA2 parameters. In this limit,

pmin
open ≈ 0, pmax

open ≈ 1, and λ ≈ eβε � 1, so that the formula for the [EC50] becomes

[EC50] ≈
1

e2βε/m

KO
+ e2βε/m

K∗O
− 1

KC
− 1

K∗C

≈
1

e2βε/m

KO
+ e2βε/m

K∗O

= e−2βε/m KOK∗O
KO + K∗O

. (S5.48)

Since the mutated CNGA2 subunits have significantly weaker binding affinity
(KO � K∗O), [EC50] ≈ e−2βε/mKO where the exponent is twice as large as the
homooligomeric case Eq. S5.32. Fig. S5.11C shows how the [EC50] gradually
increases as more of mutant subunits are introduced into the ion channel, with the
approximation for the n = m

2 mutant given by Eq. S5.48 while the n = 0 and n = m

mutants are described by Eq. S5.32.

We next turn to the effective Hill coefficient h. To greatly simplify the computation,
we ignore all of the dissociation constants (KC = 20×10−6 M, K∗O = 500×10−6 M,
and K∗C = 140 × 10−3 M) greater than the [EC50] ≈ 6 × 10−6 M, since they all

enter popen(c) as
(
1 + c

K j

)m/2
with m = 4 for CNGA2. Thus, the probability of the

channel opening becomes

popen(c) ≈

(
1 + c

KO

)m/2(
1 + c

KO

)m/2
+ e−βε

(S5.49)
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where only the effect of the smallest dissociation constant (KO = 1.2 × 10−6 M) is
considered. Noting that KO � K∗O, the effective Hill coefficient is given by

h ≈
m(

1 + e2βε/m) (
1 +

(
1 + e2βε/m)m/2)

≈
m
2
−

m
2

(m
4
+ 1

)
e2βε/m, (S5.50)

where in the second stepweused theTaylor expansion about e2βε/m � 1. Fig. S5.11D
shows the effective Hill coefficient together with the approximations for the ho-
mooligomeric (n = 0 and n = 4) ion channel Eq. S5.34 and the n = 2 channel
given by Eq. S5.50. As discussed in the text, the effective Hill coefficient exhi-
bits a surprising decrease for ion channels comprised of a mix of both types of
subunits (1 ≤ n ≤ 3). Qualitatively, this comes about because the subunits of
the n = 0 wild type channel become sensitive to ligand at concentrations appro-
aching [EC50](n=0) ≈ e−βε/mKO while the mutant subunits respond at the much
larger concentrations [EC50](n=4) ≈ e−βε/mK∗O. Channels containing both subunits
consequently have a much flatter response over the range between e−βε/mKO and
e−βε/mK∗O.

S5.3 Data Fitting
In this section, we discuss the fitting procedure used on the nAChR and CNGA2 data
sets. All fitting was done using nonlinear regression (NonlinearModelFit inMathe-
matica), and the notebook carrying out this analysis can be found in the supplement
of the online publication. A wide array of initial conditions were considered (for
example, dissociation constants were sampled in the range KD ∈ [10−12 M, 100 M]
and allosteric energies were sampled across βε ∈ [−30, 5]), and the best-fit para-
meters were chosen from the fit with the largest coefficient of determination R2.
Because all dissociation constants are necessarily positive, we employed the stan-
dard trick of fitting the logarithms of dissociation constants, which improves both
the fit stability and accuracy.

In S5.3.1, we give more details on the fitting procedure. In S5.3.2, we focus on the
related point of the sensitivity of the MWC model parameter values. We compare
experimentally measured values from the literature and analyze them in the context
of the nAChR and CNGA2 data sets to determine how much flexibility the MWC
model has in its ability to capture observed trends. In S5.3.3, we discuss how values
such as the [EC50] and effective Hill coefficient can be extracted from experimental
measurements.

https://doi.org/10.1021/acs.jpcb.6b12672
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KO (M) KC (M) βε (0) βε (1) βε (2) βε (3) βε (4) R2

(0.13 ± 0.16) × 10−9 (11 ± 7) × 10−6 −23.7 ± 5.9 −19.2 ± 2.5 −14.6 ± 2.5 −8.5 ± 2.3 −4.0 0.995

Table S5.2: Best-fit parameters for the nAChR mutants given the constraint
βε (4) = −4.0. With this single parameter fixed, the remaining parameters have
small uncertainties. R2 represents the coefficient of determination.

S5.3.1 Fitting Procedure
The fit parameters from Fig. 5.3 are shown in Table S5.2. If the data is fit to
the MWC model (Eqs. 5.1 and 5.2) with no constraints, then all of the degenerate
parameter sets in Fig. 5.10A would yield equally good fits. For example, any set
of degenerate parameters with KO ≤ 10−10 M have coefficient of determination
R2 = 0.995± 0.0002. In other words, it is impossible to distinguish the actual set of
parameter values for nAChRwithout further information. As highlighted in themain
text, one method for lifting this degeneracy is to independently measure one model
parameter, which could then be used to fix the remaining parameters. For example,
measuring the leakiness of one of the nAChR mutants would fix its corresponding
βε (n) parameter, resolving the degeneracy in Fig. 5.10A. The leakiness of the n = 3
and n = 4 mutants is significantly larger than that of wild type nAChR, and hence
should be possible to directly measure experimentally.

Next, we examine howmuch sloppiness would remain in the system if an experimen-
tal measurement fixed one of the βε parameters. To do this, we arbitrarily choose
βε (4) = −4.0, and we then fit the remaining parameters with this constraint. With
the degeneracy now removed from the model, Table S5.2 presents the mean para-
meter values and the error based on confidence intervals. Note that the remaining
MWC parameters are all tightly constrained about their best-fit values, so that there
is very little sloppiness left in the system after one parameter value is determined.

A similar fit procedure was used for the CNGA2 data set in Fig. 5.6. Here, we
arbitrarily fixed the parameter K∗C = 140×10−3 M and fit the remaining parameters,
with the results shown in Table S5.3. Again, we find that with one parameter fixed,
the remaining parameters are tightly constrained.

S5.3.2 Comparison with Parameters Values from the Literature
In this section, we explore the degree of consistency between multiple independent
measurements of the thermodynamic parameters in both the nAChR and CNGA2
systems.
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KO (M) KC (M) K∗O (M) K∗C (M) βε R2

(1.2 ± 0.1) × 10−6 (20 ± 3) × 10−6 (500 ± 100) × 10−6 140 × 10−3 −3.4 ± 0.2 0.997

Table S5.3: Best-fit parameters for the CNGA2 mutants with the constraint
K∗
C
= 140 × 10−3 M. As in the case of nAChR, we find that once one of the

parameters has a fixed value, the degeneracy within the model is lifted and the
remaining parameters have small uncertainties.

We begin with the nAChR ion channel, whose allosteric gating parameter βε has
been exceedingly difficult to measure, since channel openings in the absence of
ligand occur extremely infrequently. Instead of direct measurement, several groups
measured the leakiness of nAChR channels with multiple pore mutations. The wild
type channel parameter βε (0) ≈ −14.2 was then extrapolated by assuming that all of
these pore mutations only affect the ε parameter and have energetically independent
effects (i.e. if two mutations change ε by ∆ε1 and ∆ε2, respectively, then a channel
with both mutations would change ε by ∆ε1 + ∆ε2) [12, 13]. Subsequently, dose-
response curves were used to determine the values of the remaining thermodynamic
parameters, namely, KO = 25 × 10−9 M and KC = 150 × 10−6 M [5].

We first attempted to use these literature values directly to specify KO and KC for
the entire class of nAChR mutants. However, using these values the n = 4 nAChR
mutant cannot be well characterized for any value of βε (4) (R2 < 0.5). Thus, we next
examined the sensitivity of the measured βε (0) = −14.2 parameter to see how well
the full nAChR data set could be fit if this value was slightly altered. Fig. S5.12A
demonstrates that if ε (0) is lowered by 4 kBT , the family of nAChR mutants can
once again be well characterized (R2 > 0.99) by a single parameter set. In fact,
as seen in Fig. S5.12B, even a decrease of 2 kBT in ε (0) provides a reasonable fit
(R2 = 0.98) for the class of nAChRmutants. We note that 2 kBT , roughly the energy
of a hydrogen bond, is a very small energy, and this discrepancy may represent a
source of error in the assumptions used to determine the βε (0) = −14.2 value (e.g.
that the effects of multiple channel pore mutations are additive and independent).

We now turn to how the MWC model compares to known literature values for the
CNGA2 ion channel. In their paper, Wongsamitkul et al. reported single channel
measurements for the ratio of the open to closed state for the wild type (n = 0)
channel, finding

[O]
[C]
= 1.7 × 10−5 = eβε (S5.51)

or equivalently βε = −11 [4]. However, other sources have reported values as high
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Figure S5.12: nAChR fits can be resolved by slightly perturbing the measured
βε value. (A) If the experimentally measured value of βε (0) = −14.2 for wild type
nAChR is decreased to βε (0) = −18, we can characterize all of the nAChR mutants
(R2 > 0.99) using a single set of parameters. (B) Even the very modest change to
βε (0) = −16 enables us to fit most of the data set well (R2 = 0.98).
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Figure S5.13: CNGA2 fits can also be resolved with slight changes to the
measured βε value. (A) Increasing the experimentallymeasured value of βε = −11
to βε = −5 permits us to recoup a single set of parameters (R2 > 0.99) for the entire
class of mutants. (B) A more modest increase from βε = −11 to βε = −8 yields a
poorer fit (R2 = 0.97).

as βε = −6 for this same ion channel [14, 15].

We find that the full spectrum of CNGA2 ion channel mutants can be fit to a single
set of thermodynamic parameters (KO, KC, K∗O, K∗C, and βε) when βε = −6, as
shown in Fig. S5.13A (with R2 > 0.99). Alternatively, using the value βε = −9
halfway between the experimental measurements yields markedly worse fits (with
R2 = 0.97), as shown in Fig. S5.13B.



244

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3
0.0

0.2

0.4

0.6

0.8

1.0

[ACh] (M)
no

rm
al

iz
ed

 c
ur

re
nt

Figure S5.14: Extracting [EC50] and h from the nAChR data. The individual
nAChR data sets can be fit to the MWC model in order to interpolate between the
data points and extract the best possible [EC50] and h values. Note that each fit is
very smooth around the midpoint where normalized current equals 1⁄2, which is the
key region where both [EC50] and h are computed.

S5.3.3 Fitting the nAChR Mutants with Non-Uniform KO and KC

In order to extract the [EC50] and effective Hill coefficient h of an nAChR ion
channel from experimental measurements (Fig. 5.3A), the individual data points
must be connected in order to precisely infer where the normalized current reaches
1⁄2. This interpolation may be done in multiple ways, including connecting the data
points with straight line segments or fitting the data to a sigmoidal function. The
resulting [EC50] and h values can then be compared to the predictions in Fig. 5.4
which were made while constraining all of the mutants to have the same KO and
KC dissociation constants (which may have resulted in worse predictions for the
characteristics of these mutants).

We chose to interpolate the nAChRdata sets by fitting eachmutant’s data individually
to the sigmoidal MWC response Eqs. 5.1 and 5.2. Fig. S5.14 shows how each data
set is well fit by an individual MWC response, and that the behavior around the
midpoint of each curve when normalized current equals to 1⁄2 is well aligned to the
data, which gives us confidence that the corresponding [EC50] and h values that are
extracted from these curves (see Fig. 5.4C and D) will be precise. Note that the
resulting best-fit parameters are not meaningful, as the sole purpose of this plot is to
interpolate between the given data points in order to extract the best possible [EC50]
and h values.
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S5.4 Predicting the behavior of mutants using the MWC model
This section is intended to explore two related questions. First, experiments on
nAChR ion channels with single point mutations in different subunits hint at the
possibility that each mutation incurs the same energetic cost, as described by the
MWC ε (n) parameter (see Eq. 5.20). In S5.4.1, we explore how well this hypothesis
accords with the data and the predictive power that it grants the MWC model of
nAChR. In S5.4.2, we turn to theCNGA2 ion channelswhere the opposite hypothesis
holds true, namely, that the gating energy ε is unaltered by subunit mutations while
the remainingMWCparameters are impacted by thesemutations. We again examine
how a subset of the CNGA2 mutant data captures the behavior of the entire class of
mutants.

S5.4.1 nAChR
The wild type nAChR ion channel is characterized by the three MWC parameters
KO, KC, and βε (0) (see Eqs. 5.1 and 5.2), all three of which can be fit from the wild
type data set (n = 0 in Fig. 5.3A). We further postulate that the L251S mutations
will only change the allosteric energy βε (0), leaving the ligand binding affinities KO

and KC unchanged.

The nAChR data suggests that each L251Smutation increases the gating equilibrium
by ∆ε per mutation, so that βε (n) = βε (0) + n∆ε . We aim to find to what extent
this hypothesis holds true. Specifically, we note that after the wild type data set
fixes KO, KC, and βε (0), using one additional data set can fix ∆ε , enabling us to
extrapolate the βε (n) values for the remaining mutants. For example, in Fig. 5.9A
of the main text, we used βε (0) = −23.7 kBT and βε (4) = −4.0 kBT to determine
∆ε = −4.9 kBT , fromwhichwe determined βε (1) = −18.8 kBT , βε (2) = −13.9 kBT ,
and βε (3) = −8.9 kBT . The resulting predictions characterized the data sets for the
n = 1, 2, 3 nAChR mutants remarkably well (R2 = 0.985).

Note that this same procedure could work with any two nAChR data sets. For
example, we could use the n = 1 mutant’s data to determine the MWC parameters
KO, KC, and βε (1), and then use the n = 2 data set to determine ∆ε and extract the
remaining βε (n) values. Fig. S5.15 demonstrates the resulting predictions when all
ten possible input pairs are used to predict the remaining three mutant dose-response
curves. The corresponding best-fit parameters are given in Table S5.4. In each case,
the two input curves used to extract the MWC parameters are shown as solid curves,
while the three predicted responses are shown as dashed lines.
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KO (M) KC (M) βε (0) βε (1) βε (2) βε (3) βε (4) R2

Fig. S5.15A 0.3 × 10−9 60 × 10−6 −22.4 −17.8 -13.2 -8.6 -4.1 0.950
Fig. S5.15B 20 × 10−9 80 × 10−6 −14.0 -9.5 −5.0 -0.5 4.0 0.868
Fig. S5.15C 20 × 10−9 80 × 10−6 −13.7 -8.6 -3.5 1.6 6.7 0.839
Fig. S5.15D 0.1 × 10−9 80 × 10−6 −23.8 -18.8 -13.9 -8.9 −4.0 0.985
Fig. S5.15E 10 × 10−9 10 × 10−6 -13.7 −9.5 −5.4 -1.2 2.9 0.867
Fig. S5.15F 20 × 10−9 10 × 10−6 -13.9 −8.8 -3.7 1.4 6.6 0.839
Fig. S5.15G 0.1 × 10−9 10 × 10−6 -23.8 −18.8 -13.9 -8.9 −4.0 0.983
Fig. S5.15H 20 × 10−9 200 × 10−3 -17.0 -10.9 −4.8 1.4 7.5 0.729
Fig. S5.15I 0.1 × 10−9 3 × 10−6 -25.0 -19.7 −14.5 -9.2 −4.0 0.930
Fig. S5.15J 0.1 × 10−9 10 × 10−9 -20.7 -16.6 -12.5 −8.4 −4.3 0.063

Table S5.4: nAChR parameter predictions from two input data sets. Data sets
from the two plain text βε (n) columns (shown as solid lines in their corresponding
figures) were used to determine the KO and KC dissociation constants for the entire
class of mutants and to linearly extrapolate the energies (bold text) of the remaining
mutants using Eq. 5.20. R2 indicates the goodness of fit for the three predicted
curves (shown as dashed lines in the corresponding figures).

Most of the predictions do an especially good job of predicting the behavior of the
intermediary n = 1, 2, and 3 mutants, while predictions for the two outer data sets
n = 0 (wild type) and n = 4 are likely to be worse. This follows the general rule
that interpolation – predicting values inside the domain of the training set – is more
reliable than extrapolation. This suggests that when trying to make predictions for a
similar family of mutants, it is most beneficial to acquire data for the extreme cases
(i.e. the n = 0 and n = 4 data sets). In terms of the overall fit performance on the
three unknown data sets in each of the ten plots, four of the fits have R2 > 0.9 while
four others have 0.9 > R2 > 0.8. This fit performance is improved if three or four
input data sets are used to predict the remaining dose-response curves.

Interestingly enough, when these predictions fail (most notably in Fig. S5.15J), it
occurs because the fitting captures the local details of (and noise in) the input data
sets, which throws off the extrapolation to the remaining ion channel mutant. This
concept is reminiscent of over-fitting in computer science. Indeed, it suggests that
contrary to our intuition, using a more generalized model which has more degrees
of freedom and is able to capture the tiny nuances of each individual data set even
more precisely would do worse at predicting the global behavior of this class of
mutants. In other words, having a coarse-grained model of the system with fewer
parameters may provide a better opportunity to correctly predict protein behavior.
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Figure S5.15: Predicting nAChR mutants using different training sets. The
MWC parameters for the entire class of nAChR mutants can be fit from two data
sets (solid lines). Using these parameters, the dose-response curves of the remaining
three mutants can be predicted (dashed lines) without any further fitting. The best-fit
parameters are listed in Table S5.4.
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S5.4.2 CNGA2
The wild type CNGA2 ion channel has 4 identical subunits with ligand affinity KO

in the open state and KC in the closed state. The free energy difference between
the closed and open states is given by ε . A mutation was introduced in the ligand
binding site of any subunit, which results in new dissociation constants K∗O in the
open state and K∗C in the closed state, but which will leave the free energy difference
ε unchanged. Once all of the MWC parameters are known, a CNGA2 mutant with n

mutated subunit and 4 − n wild type subunits is fully described using Eq. 5.15 with
m = 4.

One conceptually simple route to resolving the MWC parameters is to first fix the
wild type parameters KO, KC, and ε using the wild type data set (n = 0) and then
fix the two mutant dissociation constants K∗O and K∗C from the n = 4 data set. From
these parameters, the intermediate mutants n = 1, 2, and 3 would all follow from
Eq. 5.15. Yet, as in the case of nAChR, any two data sets could be used to fix the
parameter values. In fact, in this system all five thermodynamic parameters (KO,
KC, K∗O, K∗C, and ε) could be fit using a single data set from one of the n = 1, 2, or
3 mutants, since the dose-response curve Eq. 5.15 for such a mutant would contain
all five parameters.

Fig. S5.16 shows the predictions (dashed lines) generated by fitting the MWC
parameters to all possible input pairs (solid lines), with the best-fit parameters given
in Table S5.5. As was found for the nAChR ion channels, the worst predictions
resulted from data sets that are very close together (for example, when both input
parameters came from n = 2, n = 3, or n = 4), which results in poor extrapolations
for the remaining mutant data sets. Surprisingly, the prediction based on the n = 0
and n = 4 data set, which could be expected to be one of the best fits, was also poor.
That said, the majority of the predictions were quite accurate (R2 > 0.96), once
again demonstrating the power of the simple statistical mechanical model we have
employed.
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Figure S5.16: Predicting CNGA2 mutants using different training sets. As
was found for nAChR, two data sets (solid lines) are sufficient to extract the MWC
parameters for the whole class of CNGA2 mutants, which can then be used to
extrapolate the responses of the remaining mutants (dashed lines). The best-fit
parameters are listed in Table S5.5.
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KO (M) KC (M) K∗O (M) K∗C (M) βε R2

Fig. S5.16A 1.5 × 10−6 35 × 10−6 470 × 10−6 70 × 10−3 −3.6 0.983
Fig. S5.16B 0.3 × 10−6 15 × 10−6 180 × 10−6 3 × 10−3 −5.5 0.962
Fig. S5.16C 0.5 × 10−6 6 × 10−6 260 × 10−6 5 × 10−3 −4.6 0.962
Fig. S5.16D 0.3 × 10−6 5 × 10−6 120 × 10−6 2 × 10−3 −6.5 0.857
Fig. S5.16E 0.6 × 10−6 20 × 10−6 290 × 10−6 2 × 10−3 −4.3 0.982
Fig. S5.16F 0.5 × 10−6 5 × 10−6 60 × 10−6 170 × 10−6 −4.6 0.978
Fig. S5.16G 1 × 10−6 30 × 10−6 370 × 10−6 4 × 10−3 −3.9 0.990
Fig. S5.16H 0.5 × 10−6 4 × 10−6 15 × 10−6 140 × 10−3 −4.1 0.883
Fig. S5.16I 0.1 × 10−6 3 × 10−6 20 × 10−6 20 × 10−6 −10.2 0.640
Fig. S5.16J 0.5 × 10−6 4 × 10−6 3 × 10−6 140 × 10−3 −4.6 0.713

Table S5.5: CNGA2 parameter predictions from two input data sets. Two data
sets (shown as solid lines in the corresponding figures) were used to determine the
thermodynamic parameters for the entire class ofmutants. R2 indicates the goodness
of fit for the three predicted curves (shown as dashed lines in the corresponding
figures).
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C h a p t e r 6

HOW THE AVIDITY OF RNA POLYMERASE BINDING TO THE
-35/-10 PROMOTER SITES AFFECTS GENE EXPRESSION

Binding
Avidity

–   35 –   10

Binding
Affinity

Einav T, Phillips R. How the Avidity of Polymerase Binding to the -35/-10 Promoter Sites
Affects Gene Expression. Proceedings of the National Academy of Sciences. In press

In 2016, Caltech Professor Pamela Bjorkman gave an amazing presentation that started an

incredibly fun collaboration between our groups to analyze her synthetic HIV antibodies.

Our goal was to design an optimal antibody capable of binding HIV with two arms, a

significant improvement over the body’s natural antibodies that can typically only bind HIV

with only one arm. The quantity that we wanted to maximize, called avidity, quantifies

the enhancement achieved by when two binding sites are involved. Inspired by that work,

I wondered whether this same principle of avidity could play a role in our lab’s area of

expertise, namely, transcription. After some discussions with my labmate Suzy Beeler, I

learned that the perfect data set had been published that very month. And the rest, as they

say, is written below.

6.1 Abstract
Although the key promoter elements necessary to drive transcription in Escherichia
coli have long been understood, we still cannot predict the behavior of arbitrary novel
promoters, hampering our ability to characterize the myriad of sequenced regulatory
architectures as well as to design new synthetic circuits. This work builds upon a
beautiful recent experiment by Urtecho et al. who measured the gene expression of
over 10,000 promoters spanning all possible combinations of a small set of regulatory
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elements. Using this data, we demonstrate that a central claim in energy matrix
models of gene expression – that each promoter element contributes independently
and additively to gene expression – contradicts experimental measurements. We
propose that a key missing ingredient from such models is the avidity between the
-35 and -10 RNA polymerase binding sites and develop what we call a multivalent
model that incorporates this effect and can successfully characterize the full suite of
gene expression data. We explore several applications of this framework, namely,
how multivalent binding at the -35 and -10 sites can buffer RNAP kinetics against
mutations and how promoters that bind overly tightly to RNA polymerase can inhibit
gene expression. The success of our approach suggests that avidity represents a key
physical principle governing the interaction of RNA polymerase to its promoter.

6.2 Introduction
Promotersmodulate the complex interplay ofRNApolymerase (RNAP) and transcrip-
tion factor binding that ultimately regulates gene expression. While our knowledge
of the molecular players that mediate these processes constantly improves, more
than half of all promoters in Escherichia coli still have no annotated transcription
factors in RegulonDB [1] and our ability to design novel promoters that elicit a
target level of gene expression remains limited.

As a step towards taming the vastness and complexity of sequence space, the re-
cent development of massively parallel reporter assays has enabled entire libraries
of promoter mutants to be simultaneously measured [2–4]. Given this surge in
experimental prowess, the time is ripe to reexamine how well our models of gene
expression can extrapolate the response of a general promoter.

A common approach to quantifying gene expression, called the energymatrix model,
assumes that every promoter element contributes additively and independently to
the total RNAP (or transcription factor) binding energy [3]. This model treats
all base pairs on an equal footing and does not incorporate mechanistic details of
RNAP-promoter interactions such as its strong binding primarily at the -35 and -10
binding motifs (shown in Fig. 6.1A). A newer method recently took the opposite
viewpoint, designing an RNAP energymatrix that only includes the -35 element, -10
element, and the length of the spacer separating them [5], neglecting the sequence
composition of the spacer or the surrounding promoter region.

Although thesemethods have been successfully used to identify important regulatory
elements in unannotated promoters [6] and predict evolutionary trajectories [5], it is
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clear that there is more to the story. Even in the simple case of the highly-studied lac
promoter, such energy matrices show systematic deviations from measured levels
of gene expressions, indicating that some fundamental component of transcriptional
regulation is still missing [7].

We propose that one failure of current models lies in their tacit assumption that
every promoter element contributes independently to the RNAP binding energy. By
naturally relaxing this assumption to include the important effects of avidity, we can
push beyond the traditional energy matrix analysis in several key ways including: (i)
We can identify which promoter elements contribute independently or cooperatively
without recourse to fitting, thereby building an unbiased mechanistic model for
systems that bind at multiple sites. (ii) Applying this approach to RNAP-promoter
binding reveals that the -35 and -10 motifs bind cooperatively, a feature that we
attribute to avidity. Moreover, we show that models that instead assume the -35
and -10 elements contribute additively and independently sharply contradict the
available data. (iii) We show that the remaining promoter elements (the spacer, UP,
and background shown in Fig. 6.1A) do contribute independently and additively to
the RNAP binding energy and formulate the correspondingmodel for transcriptional
regulation that we call a multivalent model. (iv) We use this model to explore
how the interactions between the -35 and -10 elements can buffer RNAP kinetics
against mutations. (v) We analyze a surprising feature of the data where overly-
tight RNAP-promoter binding can lead to decreased gene expression. (vi) We
validate our model by analyzing the gene expression of over 10,000 promoters in
E. coli recently published by Urtecho et al. [8] and demonstrate that our framework
markedly improves upon the traditional energy matrix analysis.

While this work focuses on RNAP-promoter binding, its implications extend to ge-
neral regulatory architectures involving multiple tight-binding elements including
transcriptional activators that make contact with RNAP (CRP in the lac promo-
ter [9]), transcription factors that oligomerize (as recently identified for the xylE
promoter [6]), and transcription factors that bind to multiple sites on the promoter
(DNA looping mediated by the Lac repressor [10]). More generally, this approach
of categorizing which binding elements behave independently (without resorting
to fitting) can be applied to multivalent interactions in other biological contexts
including novel materials, scaffolds, and synthetic switches [11, 12].
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6.3 Results
6.3.1 The -35 and -10 Binding Sites give rise to Gene Expression that Defies

Characterization as Independent and Additive Components
Decades of research have shed light upon the exquisite biomolecular details involved
in bacterial transcriptional regulation via the family of RNAP σ factors [13]. In
this work, we restrict our attention to the σ70 holoenzyme [8], the most active form
under standard E. coli growth condition, whose interaction with a promoter includes
direct contact with the -35 and -10 motifs (two hexamers centered roughly 10 and 35
bases upstream of the transcription start site), a spacer region separating these two
motifs, an UP element just upstream of the -35 motif that anchors the C-terminal
domain (αCTD) of RNAP, and the background promoter sequence surrounding
these elements.

Urtecho et al. constructed a library of promoters composed of every combination
of eight -35 motifs, eight -10 motifs, eight spacers, eight backgrounds (BG), and
three UP elements (Fig. 6.1A) [8]. Each sequence was integrated at the same locus
within the E. coli genome and transcription was quantified via DNA barcoding and
RNA sequencing. One of the three UP elements considered was the absence of an
UP binding motif, and this case will serve as the starting point for our analysis.

The energy matrix approach used by Urtecho et al. posits that every base pair of the
promoter will contribute additively and independently to the RNAP binding energy
[8], which by appropriately grouping base pairs is equivalent to stating that the free
energy of RNAP binding will be the sum of its contributions from the background,
spacer, -35, and -10 elements (see Appendix S6.1). Hence, the gene expression
(GE) is given by the Boltzmann factor

GE ∝ e−β(EBG+ESpacer+E-35+E-10) . (6.1)

Note that all E js represent free energies (with an energetic and entropic component);
to see the explicit dependence on RNAP copy number, refer to Appendix S6.1.
Fitting the 32 free energies (one for each background, spacer, -35, and -10 element)
and the constant of proportionality in Eq. 6.1 on 25% of the data enables us to
predict the expression on the remainder of the 8 × 8 × 8 × 8 = 4,096 promoters (see
Methods).

Fig. 6.2A demonstrates that Eq. 6.1 leads to a poor characterization of these promo-
ters (R2 = 0.57, parameter values listed in Appendix S6.2), suggesting that critical
features of gene expression are missing from this model. One possible resolution
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is to assume that the level of gene expression saturates for very strong promoters
at rmax and for very weak promoters at r0 (caused by background noise or spurious
transcription, see Appendix S6.2), namely,

GE =
r0 + rmaxe−β(EBG+ESpacer+E-35+E-10)

1 + e−β(EBG+ESpacer+E-35+E-10) . (6.2)

Since Eq. 6.2 still assumes that each promoter element contributes additively and
independently to the total RNAP binding energy, it also makes sharp predictions
that markedly disagrees with the data (see Appendix S6.3). Inspired by these
inconsistencies, we postulated that certain promoter elements, most likely the -35
and -10 sites, may not contribute synergistically to RNAP binding.

To that end, we consider a model for gene expression shown in Fig. 6.1B where
RNAP can separately bind to the -35 and -10 sites. RNAP is assumed to elicit a
large level of gene expression rmax when fully bound but the smaller level r0 when
unbound or partially bound. Importantly, the Boltzmann weight of the fully bound
state contains the free energy Eint representing the avidity of RNAP binding to the
-35 and -10 sites. Physically, avidity arises because unbound RNAP binding to
either the -35 or -10 sites gains energy but loses entropy, while this singly bound
RNAP attaching at the other (-10 or -35) site again gains energy but loses much
less entropy, as it was tethered in place rather than floating in solution. Hence we
expect e−βEint � 1, and including this avidity term implies that RNAP no longer
binds independently to the -35 and -10 sites.

Our coarse-grainedmodel of gene expression neglects the kinetic details of transcrip-
tion whereby RNAP transitions from the closed to open complex before initiating
transcription. Instead, we assume that there is a separation of timescales between the
fast process of RNAP binding/unbinding to the promoter and the other processes that
constitute transcription. In the quasi-equilibrium framework shown in Fig. 6.1B,
gene expression is given by the average occupancy of RNAP in each of its states,
namely,

GE =
r0 + e−β(EBG+ESpacer)

(
r0e−βE-35 + r0e−βE-10 + rmaxe−β(E-35+E-10+Eint)

)
1 + e−β(EBG+ESpacer)

(
e−βE-35 + e−βE-10 + e−β(E-35+E-10+Eint)

) . (6.3)

We call this expression a multivalent model since it reduces to the energy matrix
Eq. 6.1 (with constant of proportionality rmaxE−βEint) in the limit where gene ex-
pression is negligible when the RNAP is not bound (r0 ≈ 0) and the promoter is
sufficiently weak or the RNAP concentration is sufficiently small that polymerase is
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Figure 6.1: The bivalent nature of RNAP-promoter binding. (A) Gene expres-
sion was measured for RNAP promoters comprising any combination of -35, -10,
spacer, UP, and background (BG) elements. (B) When no UP element is present,
RNAP makes contact with the promoter at the -35 and -10 sites giving rise to gene
expression r0 when unbound or partially bound and rmax when fully bound. (C)
Having two binding sites alters the dynamics of RNAP binding. kon represents the
on-rate from unbound to partially bound RNAP and k̃on the analogous rate from
partially to fully bound RNAP, while koff, j denotes the unbinding rate from site j.

most often in the unbound state (so that the denominator ≈ 1). The background and
spacer are assumed to contribute to RNAP binding in both the partially and fully
bound states, an assumption that we rigorously justify in Appendix S6.4.

Fig. 6.2B demonstrates that the multivalent model Eq. 6.3 is better able to capture
the system’s behavior (R2 = 0.91) while only requiring two more parameters (r0

and Eint) than the energy matrix model Eq. 6.1. The sharp boundaries on the left
and right represent the minimum and maximum levels of gene expression, r0 = 0.18
and rmax = 8.6, respectively (see Appendix S6.5). The multivalent model predicts
that the top 5% of promoters will exhibit expression levels of 7.6 (compared to 8.5
measured experimentally) while the weakest 5% of promoters should express at 0.2
(compared to the experimentally measured 0.1). In addition, this model quickly
gains predictive power, as its coefficient of determination only slightly diminishes
(R2 = 0.86) if the model is trained on only 10% of the data and used to predict the
remaining 90%.
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Figure 6.2: Gene expression of promoters with no UP element. Model pre-
dictions using (A) an energy matrix (Eq. 6.1) where the -35 and -10 elements
independently contribute to RNAP binding and (B) a multivalent model (Eq. 6.3)
where the two sites contribute cooperatively. Inset: The epistasis-free nature of
the energy matrix model makes sharp predictions about the gene expression of the
consensus -35 and -10 sequences that markedly disagree with the data. Parameter
values given in Appendix S6.2.

6.3.2 Epistasis-Free Models of Gene Expression Lead to Sharp Predictions
that Disagree with the Data

To further validate that the lower coefficient of determination of the energy matrix
approach (Eq. 6.1) was not an artifact of the fitting, we can utilize the epistasis-free
nature of this model to predict the gene expression of double mutants from that of
single mutants. More precisely, denote the gene expression GE(0,0) of a promoter
with the consensus -35 and -10 sequences (and any background or spacer sequence).
Let GE(1,0), GE(0,1), and GE(1,1) represent promoters (with this same background
and spacer) whose -35/-10 sequences are mutated/consensus, consensus/mutated,
and mutated/mutated, respectively, where “mutated” stands for any non-consensus
sequence. As derived in Appendix S6.4, the gene expression of these three later
sequences can predict the gene expression of the promoter with the consensus -35
and -10 without recourse to fitting, namely,

GE(0,0) = GE(1,1) GE(0,1)

GE(1,1)

GE(1,0)

GE(1,1) . (6.4)

The inset in Fig. 6.2A compares the epistasis-free predictions (x-axis, right-hand
side of Eq. 6.4) with themeasured gene expression (y-axis, left-hand side of Eq. 6.4).
These results demonstrate that the simple energy matrix formulation fails to capture
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the interaction between the -35 and -10 binding sites. While this calculation cannot
readily generalize to the multivalent model since it exhibits epistasis, it is analyti-
cally tractable for weak promoters where the multivalent model displays a marked
improvement over the energy matrix model (see Appendix S6.3).

6.3.3 RNAP Binding to the UP Element occurs Independently of the Other
Promoter Elements

Having seen that the multivalent model (Eq. 6.3) can outperform the traditional
energy matrix analysis on promoters with no UP element, we next extend the former
model to promoters containing an UP element. Given the importance of the RNAP
interactions with the -35 and -10 sites seen above, Fig. 6.3A shows three possible
mechanisms for how the UP element could mediate RNAP binding. For example,
the C-terminal could bind strongly and independently so that RNAP has three
distinct binding sites. Another possibility is that the RNAP αCTD binds if and
only if the -35 binding site is bound. A third alternative is that the UP element
contributes additively and independently to RNAP binding (analogous to the spacer
and background).

To distinguish between these possibilities, we analyze the correlations in gene ex-
pression between every pair of promoter elements (UP and -35, spacer and back-
ground, etc.) to determine the strength of their interaction. Each model in Fig. 6.3A
will have a different signature: The top schematic predicts strong interactions bet-
ween the -35 and -10, between the UP and -35, and between the UP and -10; the
middle schematic would give rise to strong dependence between the -35 and -10 as
well as between the UP and -10, while the UP and -35 elements would be perfectly
correlated; the bottom schematic suggests that the UP elements will contribute
independently of the other promoter elements.

This analysis, which we relegate to Appendix S6.4, demonstrates that the UP ele-
ment is approximately independent of all other promoter elements (R2 & 0.6) as
are the background and spacer, indicating that the bottom schematic in Fig. 6.3A
characterizes the binding of the UP element. This leads us to the general form of
transcriptional regulation by RNAP, shown in Eq. 6.5.

GE =
r0 + e−β(EBG+ESpacer+EUP)

(
r0e−βE-35 + r0e−βE-10 + rmaxe−β(E-35+E-10+Eint)

)
1 + e−β(EBG+ESpacer+EUP) (

e−βE-35 + e−βE-10 + e−β(E-35+E-10+Eint)
)

(6.5)
Fig. 6.3B demonstrates how the expression of all promoters containing one of the
two UP elements combined with each of the eight background, spacer, -35, and
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Figure 6.3: The interaction between RNAP and the UP element. (A) Possible
mechanisms by which the RNAP C-terminal can bind to the UP element (orange
segments represent strong binding comparable to the -35 and -10 motifs; gray
segments represent weak binding comparable to the spacer and background). The
data supports the bottom schematic (see Appendix S6.4). (B) The corresponding
characterization of 8,192 promoters identical to those shown in Fig. 6.2 but with
one of two UP binding motifs. Red points represent promoters with a consensus
-35 and -10. Data was fit using the same parameters as in Fig. 6.2B and fitting the
binding energies of the two UP elements (parameter values in Appendix S6.2).

-10 sequences (2 × 84 = 8,192 promoters) closely matches the model predictions
(R2 = 0.88). We note that the large number of outliers on the left edge of the data
may be attributable to noise, since more than half of all promoters have predicted
gene expression < 0.2 (see Appendix S6.5). Remarkably, since we used the same
free energies and gene expression rates from Fig. 6.2B, characterizing these 8,192
promoters only required two additional parameters (the free energies of the two UP
elements). This result emphasizes how understanding each modular component of
gene expression can enable us to harness the combinatorial complexity of sequence
space.

6.3.4 Sufficiently Strong RNAP-Promoter Binding Energy can Decrease Gene
Expression

Although the 12,288 promoters considered above are well characterized by Eq. 6.5
on average, the data demonstrate that the full mechanistic picture is more nuan-
ced. For example, Urtecho et al. found that gene expression (averaged over all
backgrounds and spacers) generally increases for -35/-10 elements closer to the
consensus sequences [8]. In terms of the gene expression models studied above
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Figure 6.4: Gene expression is reduced when RNAP binds a promoter too
tightly. Measured gene expression versus the inferred promoter strength ∆ERNAP
relative to the transcription initiation state ∆Etrans = −6.2 kBT (stronger promoters
on the right). The dashed line shows the prediction of the multivalent model.

(Eqs. 6.1-6.3), promoters with fewer -35/-10 mutations have more negative free
energies E-35 and E-10 leading to larger expression. Yet the strongest promoters with
the consensus -35/-10 violated this trend, exhibiting less expression than promoters
one mutation away. Thus, Urtecho et al. postulated that past a certain point, pro-
moters that bind RNAP too tightly may inhibit transcription initiation and lead to
decreased gene expression.

The promoters with a consensus -35/-10 are shown as red points in Fig. 6.3B, and
indeed these promoters are all predicted to bind tightly to RNAP and hence express
at the maximum level rmax = 8.6, placing them on the right-edge of the data. Yet
depending on their UP, background, and spacer, many of these promoters exhibit
significantly less gene expression then expected. Motivated by this trend, we posit
that the state of transcription initiation can be characterized by a free energy ∆Etrans

relative to unbound RNAP that competes with the free energy∆ERNAP between fully
bound and unbound RNAP (see Appendix S6.5), analogous to a non-equilibrium
boundary crossing problem with an effective barrier height ∆Etrans [14].

Assuming the rate of transcription initiation is proportional to the relative Boltzmann
weights of these two states, the level of gene expression rmax in Eq. 6.5 will be
modified to

rmax + r0e−β(∆ERNAP−∆Etrans)

1 + e−β(∆ERNAP−∆Etrans)
. (6.6)

As expected, this expression reduces to rmax for promoters that weakly bind RNAP
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(e−β(∆ERNAP−∆Etrans) � 1) but decreases for strong promoters until it reaches the
background level r0 when RNAP is glued to the promoter and unable to initiate
transcription. Upon reanalyzing the gene expression data with the inferred value
∆Etrans = −6.2 kBT (Appendix S6.5), we find that gene expression diminishes for
the strongest RNAP-promoter free energies ∆ERNAP as shown in Fig. 6.4 (stronger
promoters to the right). This suggests that for sufficiently strong promoters, the rate
limiting step in transcription initiation changes from RNAP dissociation to promoter
escape.

6.3.5 The Bivalent Binding of RNAP Buffers its Interaction with DNA against
Promoter Mutations

In this final section, we investigate how the avidity between the -35 and -10 sites
changes the dynamics of RNAP binding. More specifically, we consider the effective
dissociation constant governing RNAP binding when both the -35 and -10 sites are
intact and compare it to the case where only one site is capable of binding. To
simplify this discussion, we focus exclusively on the case of RNAP binding to the
-35 and -10 motifs as shown in the rates diagram Fig. 6.1C, absorbing the effects of
the background, spacer, and UP elements into these rates.

At equilibrium, there is no flux between the four RNAP states. We define the
effective dissociation constant

Keff
D =

K-35K-10
c0 + K-35 + K-10

(6.7)

which represents the concentration of RNAP at which there is a 50% likelihood that
the promoter is bound (see Appendix S6.6). K j =

koff, j
kon

stands for the dissociation
constant of free RNAP binding to the site j and c0 =

k̃on
kon
= [RNAP]e−βEint represents

the increased local concentration of singly bound RNAP transitioning to the fully
bound state (i.e., Eint and c0 are the embodiments of avidity in the language of sta-
tistical mechanics and thermodynamics, respectively). Note that Keff

D is a sigmoidal
function of K-10 with height K-35 and midpoint at K-10 = c0 + K-35.

Fig. 6.5 demonstrates how the effective RNAP dissociation constant Keff
D changes

when mutations to the -10 binding motif alter its dissociation constant K-10. When
the -35 sequence is weak (dashed lines, koff,-35 → ∞), Keff

D ≈ K-10 signifying that
RNAP binding relies solely on the strength of the -10 site. In the opposite limit
where RNAP tightly binds to the -35 sequence (solid lines), the cooperativity c0 and
the dissociation constant K-35 shift the curve horizontally and bound the effective
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Figure 6.5: The dissociation between RNAP and the promoter. RNAP binding
to a promoter with a strong (solid lines, K-35 = 1µM) or weak (dashed, K-35 → ∞)
-35 sequence. c0 represents the local concentration of singly bound RNAP.

dissociation constant to Keff
D ≤ K-35. This upper boundmay buffer promoters against

mutations, since achieving a larger effective dissociation constant would require not
only wiping out the -35 site but in addition mutating the -10 site. Finally, in the case
where the cooperativity c0 is large, Keff

D ≈
K-10K-35

c0
indicating that as soon as one site

of the RNAP binds, the other is very likely to also bind, thereby giving rise to the
multiplicative dependence on the two KDs.

To get a sense for how these numbers translate into physiological RNAP dwell times
on the promoter, we note that the lifetime of bound RNAP is given by τ = 1

Keff
D kon

(see Appendix S6.6). Using Keff
D ≈ 550 nM for the lac promoter [15] and assuming

a diffusion-limited on-rate 107 1
M·s leads to a dwell time of 5 s, comparable to the

measured dwell time of RNAP-promoter in the closed complex [16]. It would
be fascinating if recently developed methods that visualize real-time single-RNAP
binding events probed the dwell time of the promoter constructed by Urtecho et
al. to see how well the predictions of the multivalent model match experiments [16].

6.4 Discussion
While high-throughput methods have enabled us to measure the gene expression of
tens of thousands of promoters, they nevertheless only scratch the surface of the
full sequence space. A typical promoter composed of 200 bp has 4200 variants
(more than the number of atoms in the universe). Nevertheless, by understanding
the principles governing transcriptional regulation, we can begin to cut away at this
daunting complexity to design better promoters.

In this work, we analyzed a recent experiment by Urtecho et al. measuring gene
expression of over 10,000 promoters in E. coli using the σ70 RNAP holoenzyme [8].



264

These sequences comprised all combinations of a small set of promoter elements,
namely, eight -10s, eight -35s, eight spacers, eight backgrounds, and three UPs
depicted in Fig. 6.1A, providing an opportunity to deepen our understanding of
how these elements interact and to compare different quantitative models of gene
expression.

We first analyzed this data using classic energy matrix models which posit that each
promoter element contributes independently to the RNAP-promoter binding energy.
As emphasized by Urtecho et al. and other groups, such energy matrices poorly
characterize gene expression (Fig. 6.2A, R2 = 0.57) and offer testable predictions
that do not match the data (Appendix S6.3), mandating the need for other approaches
[7, 8].

To meet this challenge, we first determined which promoter elements contribute
independently to RNAP binding (Appendix S6.4). This process, which was done
without recourse to fitting, demonstrated that the -35 and -10 elements bind in a
concerted manner that we postulated is caused by avidity. In this context, avidity
implies that when RNAP is singly bound to either the -35 or -10 sites, it is much
more likely (compared to unbound RNAP) to bind to the other site, similar to the
boost in binding seen in bivalent antibodies [17] or multivalent systems [12, 18, 19].
Surprisingly, we found that outside the -35/-10 pair, the other components of the
promoter contributed independently to RNAP binding.

Using these findings, we developed a multivalent model of gene expression (Eq. 6.5)
that incorporates the avidity of between the -35/-10 sites as well as the independence
of the UP/spacer/background interactions. This model was able to characterize the
4,096 promoters with noUP element (Fig. 6.2B, R2 = 0.91) and the 8,192 promoters
containing an UP element (Fig. 6.3B, R2 = 0.88). These results surpass those of
the traditional energy matrix model (Fig. 6.2A, R2 = 0.57), only requiring two
additional parameters that could be experimentally determined (e.g., the interaction
energy Eint arising from the -35/-10 avidity and the level of gene expression r0 of
a promoter with a scrambled -10 motif, a scrambled -35 motif, or with both motifs
scrambled).

These promising findings suggest that determiningwhich components bind indepen-
dently is crucial to properly characterizemultivalent systems. It would be fascinating
to extend this study to RNAP with other σ factors [13] as well as to RNAP mutants
with no αCTD or that do not bind at the -35 site [20, 21]. Our model would predict
that polymerases in this last category with at most one strong binding site should
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conform to an energy matrix approach.

Quantitative frameworks such as the multivalent model explored here can deepen
our understanding of the underlyingmechanisms governing a system’s behavior. For
example, while searching for systematic discrepancies between ourmodel prediction
and the gene expression measurements, we found that promoters predicted to have
the strongest RNAP affinity did not exhibit the largest levels of gene expression (thus
violating a core assumption of nearly all models of gene expression that we know of).
This led us to posit a characteristic energy for transcription initiation that reduces
the expression of overly strong promoters (Fig. 6.4). In addition, we explored how
having separate binding sites at the -35 and -10 elements buffers RNAP kinetics
against mutations; for example, no single mutation can completely eliminate gene
expression of a strong promoter with the consensus -35 and -10 sequence, since at
least one mutation in both the -35 and -10 motifs would be needed (Fig. 6.5).

Finally, we end by zooming out from the particular context of transcription regu-
lation and note that multivalent interactions are prevalent in all fields of biology
[22], and our work suggests that differentiating between independent and dependent
interactions may be key to not only characterizing overall binding affinities but to
also understand the dynamics of a system [23]. Such formulations may be essential
when dissecting the much more complicated interactions in eukaryotic transcription
where large complexes bind at multiple DNA loci [24, 25] and more broadly in
multivalent scaffolds and materials [11, 12].

6.5 Methods
Gene expression was measured as the ratio of RNA to DNA barcodes [8]. We fit
both the energy matrix and multivalent models on 75% of the data and characterized
the predictive power on the remaining 25%, repeating the procedure 10 times. The
coefficient of determination R2 was calculated for ydata = log10(gene expression) to
prevent the largest gene expression values from dominating the result (see Appendix
S6.2).
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C h a p t e r S6

SUPPLEMENTARY INFORMATION FOR HOW THE AVIDITY
OF RNA POLYMERASE BINDING TO THE -35/-10 PROMOTER

SITES AFFECTS GENE EXPRESSION

S6.1 The Energy Matrix Model
S6.1.1 Translating between an Energy Matrix with Base Pair Resolution and

Promoter Element Resolution
In this section, we discuss how an energy matrix model with base-pair resolution
can be translated into an equivalent model with the resolution of promoter elements.
The former model purports that the RNAP-promoter binding energy is composed of
independent and linearly additive contributions from each base pair. More precisely,
if at position j the base b j (either A, T, C, or G) contributes a free energy E (bj )

j to

RNAP binding, then the total free energy of binding is given by
∑

j E (bj )
j as shown

in Fig. S6.1.

By breaking this sum up over the positions j demarking the -35 (−35 ≤ j ≤ −30),
spacer (−29 ≤ j ≤ −13), -10 (−12 ≤ j ≤ −7), UP (−59 ≤ j ≤ −38; where “no UP”
used a random sequence that did not enhance gene expression), and background (all
the remaining base pairs between −120 ≤ j < 30) elements, we achieve an energy
matrix model where the free energies EBG, E-35, ESpacer, and E-10 represent the sum
of all base pair contributions of the particular sequence considered. For simplicity,
the UP element is not explicitly drawn in the figure.

As shown for two sample sequences in Fig. S6.1, modifying the -35 sequence while
keeping the rest of the promoter unchanged leads to a different E-35 but keeps EBG,
ESpacer, and E-10 unchanged. The expression of the full suite of 12,288 promoters
studied in this work can be determined from the free energies of the three UP
elements and the eight backgrounds, spacers, -35s, and -10s.

S6.1.2 Characterizing the Dependence of Gene Expression on RNAP Copy
Number

In this section, we explicitly write the dependence of RNAP copy number embedded
within the free energies of RNAP binding in Eqs. 6.1 and 6.2, therebymaking contact
with previous models of gene regulation [1]. To that end, we consider P RNAP
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Figure S6.1: An energy matrix model with base pair resolution translates
into an energy matrix model with promoter element resolution. Each promoter
element contributes to RNAP binding with free energy given by the sum of its free
energies from its base pairs. The two sample sequences shown only differ in their
-35 sequence (highlighted blue in Sequence 1), resulting in different values of E (1)

-35
and E (2)

-35 but the same free energies for the remaining promoter elements.

molecules that are free to bind anywhere along a bacterial genome with NNS non-
specific base pairs (i.e., potential RNAP binding sites outside of our promoter of
interest). Let ∆ε be the average energy difference between RNAP bound to the
specific promoter versus at any other location along the genome. By definition, the
free energy of RNAP binding considered in this work is given by both the entropic
and energetic contributions of this binding, namely,

e−β(EBG+ESpacer+E-35+E-10) ≡
P

NNS
e−β∆ε = e−β(∆ε−kBT log(P/NNS)) . (S6.1)

Because the gene expression for each promoter generated by Urtecho et al. was me-
asured under the same experimental condition, the RNAP copy number is consistent
across all constructs, and hence the constant kBT log (P/NNS) can be absorbed into
the free energies. If these measurements were repeated under experimental condi-
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tions where the RNAP copy number is halved (P → P
2 ), the total free energy of

RNAP binding considered in this work would need to be correspondingly modified
from

(
EBG + ESpacer + E-35 + E-10

)
→

(
EBG + ESpacer + E-35 + E-10 + kBT log 2

)
.

S6.2 Model Fitting and Parameter Values
The energymatrix model (Eq. 6.1) was solved as a least-squares problem that only fit
the promoters in Fig. 6.2Awith noUP element. Themultivalent model (Eq. 6.5) was
fit using nonlinear regression on promoter sequenceswith andwithout anUP element
in order to obtain a single, self-consistent set of parameters capable of capturing
the data in Fig. 6.2B and Fig. 3B. The fitting for both models is presented in a
supplementary Mathematica notebook available online (doi: 10.22002/D1.1242).

The coefficient of determination R2 was calculated for ydata = log10(gene expression)
to prevent the largest gene expression values from dominating the result. We trained
both the energy matrix and multivalent models on 75% of the data and characterized
the predictive power on the remaining 25%, repeating the procedure 10 times. The
exact form used was

R2 = 1 −
∑N

j=1

(
y

( j)
data − y

( j)
predicted

)2

∑N
j=1

(
y

( j)
data − ȳdata

)2 (S6.2)

where ypredicted is the vector of the N measurements of log10(gene expression)
predicted by the model and ȳdata =

1
N

∑N
j=1 y

( j)
data is the average of the logarithmic

gene expression data. In this form, the R2 represents the fraction of variance in the
measured gene expression data that arises from the variance in the predicted gene
expression data. To test the predictive power of each model, we also trained both
models on only 10% of the data and used it to predict the gene expression of the
remaining 90% of promoters. We found that the coefficient of determination R2

only slightly decreased from 0.57 → 0.54 for the energy matrix model and from
0.91 → 0.86 for the multivalent model when fitting on this much smaller training
set, demonstrating that these models require no more than a thousand promoters to
reach their full predictive power.

Table S6.1 shows the parameter values inferred by the energymatrixmodel (Fig. 6.2A)
and multivalent model (Figs. 6.2B and 6.3B). Due to the large number of parame-
ters involved, both models exhibit parameter degeneracy [2] where disparate sets
of parameters yield nearly identical results. For example, all of the free energies
of the spacer elements can be increased by an arbitrary amount provided that the
free energies of all background elements are decreased by this same amount (with

http://dx.doi.org/10.22002/D1.1242
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similar degeneracy holding between other pairs of promoter elements). To circum-
vent this degeneracy, one -35, one spacer, one -10, one UP, and one background
element (denoted by asterisks in Table S6.1) were fixed to their corresponding value
in the energy matrix model, and as such, the parameters belowmay not represent the
binding energies of the promoter elements, but rather only one possible embodiment
of these values.

We point out that our model coarse-grains kinetic details of transcription (e.g.,
transcription initiation, elongation, transcriptional bursting) into the levels of gene
expression r j shown in Fig. 6.1B. Modifying the promoter sequence (i.e., conside-
ring different spacers or backgrounds) may well change these rates, although our
model assumes that such changes only affect the RNAP-promoter binding affinity.
If experiments measure the changes in these kinetic rates, they could either be in-
corporated into the r j or into an expanded model that explicitly takes these steps of
transcription into account [3].

The small but nonzero r0 term in our model (Fig. 6.1B) represents the background
level of gene expression arising from promoters that lack an RNAP-binding site. Ur-
techo et al.measured 500 negative controls, sequences from the E. coli genome that
have no promoter or RNA-seq activity, whose expression was nonzero and centered
around 0.15 (see Fig. 6.2E of Ref. [4]), comparable to our inferred r0 = 0.18 value.
This nonzero expressionmay arise from instrumental noise or spurious transcription,
and we elected to model it using a nonzero r0 rather than background subtracting
it in order to present the data on a log-scale (upon background subtraction, some
gene expression measurements would be negative due to experimental noise which
would have precluded log-plots). We note that log-fitting is likely to more accurately
portray how gene expression proceeds in the cell, since most endogenous promoters
exhibit low gene expression while synergistic effects between promoter elements
can play a significant role; in contrast, linear fitting would downplay the importance
of all but the strongest promoters.

Lastly, we note from Urtecho et al. that the UP elements were named because they
increased transcription by 136-fold and 326-fold in vivo relative to the physiological
rrnb P1 UP element. Thus, it follows that the free energy of the 326-fold UP should
be smaller than that of the 136-fold UP which should be smaller than the free energy
of having no UP element, as seen in Table S6.1. Additionally, we point out that all
spacer elements are 17 bp long; RNAP binding is highly dependent on this length,
and promoters with longer or shorter spacers may influence the -35 and -10 binding



273

free energies. Lastly, the sequence composition of all spacers and backgrounds is
given in Ref. [4].

S6.3 Comparing the Energy Matrix and Refined Energy Matrix Models of
Gene Expression

S6.3.1 AnEpistasis-Free EnergyMatrixModel with Saturation does not Cap-
ture the Trends in Gene Expression Exhibited by the Data

As shown in Fig. 6.2A, the simplest model where gene expression is proportional
to e−β(EBG+ESpacer+E-35+E-10) (in the absence of an UP element) fails to characterize
the data (R2 = 0.57). In contrast, the multivalent model in Fig. 6.2B quantitatively
matches the behavior of the spectrum of promoters (R2 = 0.91). Thus, it behooves
us to examine what properties of the latter model are necessary to achieve this
concordance with the data.

To that end, we consider an intermediate model where gene expression is given by

GE =
r0 + r̃maxe−β(EBG+ESpacer+E-35+E-10)

1 + e−β(EBG+ESpacer+E-35+E-10) (S6.3)

where r0 represents the minimum level of gene expression in the absence of RNAP
binding, r̃max denotes the amount of gene expression when RNAP is fully bound
to the promoter, and the E j represent the free energy contribution of the promoter
element j. Note that this model represents the limit of a very strong interaction
energy in Eq. 6.3 (e−βEint � 1 with r̃max = rmaxe−βEint) where RNAP is either
unbound or fully bound to the promoter.

Fig. S6.2A demonstrates that the data is well characterized by Eq. S6.3 (R2 = 0.91).
Therefore, one key feature missing from the simplest energy matrix model descrip-
tion Eq. 6.1 was that gene expression will saturate once RNAP binding becomes suf-
ficiently strong (or, mathematically, that the denominator 1+e−β(EBG+ESpacer+E-35+E-10)

must include the RNAP binding term). Note that the results of this energy matrix
model with saturation are nearly identical to the results of the multivalent model in
Fig. 6.2B. Indeed, since the inferred interaction energy Eint = −6.3 kBT between
the -35 and -10 sites is large and negative (see Table S6.1), it is not surprising that
the two models produce similar results for the majority of promoters.

Intuitively, the difference between these two models will emerge in their predictions
for promoters with weak expression. As we will show below, the energy matrix
model with saturation (Eq. S6.3) is epistasis-free: given the gene expression of any
initial promoter and two mutants of that promoter, we can predict the expression
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of the double mutant. If, for example, the initial promoter exhibits weak gene
expression and the two mutants exhibit a medium level of gene expression, then the
double mutant would be predicted to exhibit a large amount gene expression. As
will be explained below, the resulting predictions shown in Fig. S6.2B are highly
damning. On the other hand themultivalentmodel (Eq. 6.3) predicts amore complex
relationship between these four promoters, and in the Appendix S6.3.2 we examine
an analytically tractable limit to show that this model better recapitulates the gene
expression measurements.

We proceed by utilizing the epistasis-free nature of Eq. S6.3. A key feature of
the following analysis is that it will not require any model fitting, and hence for
the remainder of this Appendix we proceed as if we have no knowledge of the
parameter values in Table S6.1. To begin, we approximate the values of r0 ≈ 0.2
and r̃max ≈ 10 from the gene expression data (the minimum and maximum y-values
in Fig. S6.2A, averaging by eye to account for noise). These two values, together
with the gene expression measurements for every construct, will be sufficient to
make our epistasis-free predictions without explicitly determining any of the E j .

As in the main text, denote the gene expression GE(0,0) of a promoter with the
consensus -35 and -10 sequences (and any background or spacer sequence). Let
GE(1,0), GE(0,1), and GE(1,1) represent promoters (with this same background and
spacer) whose -35/-10 sequences are mutated/consensus, consensus/mutated, and
mutated/mutated, respectively. Eq. S6.3 can be inverted to determine

e−β(EBG+ESpacer+E-35+E-10) =
GE − r0

r̃max − GE
≡ f (GE) (S6.4)

for the double mutant with GE(1,1) as well as the two singly mutated promoters
with GE(1,0) and GE(0,1), where we have defined the function f for convenience.
Importantly, since the -35 and -10 binding energies additively and independently
contribute to the RNAP-promoter free energy, the left-hand side of Eq. S6.4 for
the unmutated construct is given by f (GE(1,1)) f (GE(0,1) )

f (GE(1,1) )
f (GE(1,0) )
f (GE(1,1) )

(exactly analogous
to Eq. 6.4 for the simple energy matrix model). Therefore, its gene expression is
predicted to be

GE(0,0) =
r0 + r̃max f (GE(1,1)) f (GE(0,1) )

f (GE(1,1) )
f (GE(1,0) )
f (GE(1,1) )

1 + f (GE(1,1)) f (GE(0,1) )
f (GE(1,1) )

f (GE(1,0) )
f (GE(1,1) )

. (S6.5)

Fig. S6.2B shows the results of these epistasis-free predictions. Because Eq. S6.5
applies to any pairs of -35 and -10 elements with the same BG and spacer, there
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Figure S6.2: Gene expression represented by an energy matrix model with
saturation. (A) Characterization of the same promoters as in Fig. 6.2 using the
energy matrix model with saturation (Eq. S6.3) with essentially identical fit quality
as the multivalent model. (B) Since this model assumes that the RNAP-promoter
binding energy is epistasis-free (with the -35 and -10 binding sites contributing
additively and independently to the RNAP binding energy), the gene expression
of double mutants can be predicted from the expression of single mutants without
resorting to fitting (Eqs. S6.4 and S6.5). The large deviations demonstrate that
the energy matrix with saturation cannot characterize the gene expression of these
constructs.

is a combinatorial explosion of predictions, providing a solid test for this model.
As can be seen, aside from the plethora of data points with correctly-predicted low
gene expression in the bottom-left corner of the plot, there are large swathes of data
points that do not fall on the expected diagonal line, indicating that the epistasis-
free prediction in Eq. S6.3 cannot accurately capture the gene expression of the
constructs considered here. In the next section, we show that the multivalent model
is better equipped to characterize these cases. Notably, these results indicate that
although a model may fit the majority of data on average (as in Fig. S6.2A), it may
nevertheless make spurious predictions. Such hidden gems may go unnoticed when
a pure-fitting mentality is applied to the wealth of data that is becoming increasingly
easy to generate.

S6.3.2 A Multivalent Model outperforms the Energy Matrix Model in the
Limit of a Weak -35 or Weak -10 RNAP Binding Site

In section S6.3.1, we showed that an energy matrix model with saturation Eq. S6.3
is epistasis-free and hence makes sharp predictions that are inconsistent with the
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data (Fig. S6.2B). In this section, we consider the multivalent model Eq. 6.3 where
binding to the -35 and -10 sites is no longer independent. Because this latter model
exhibits epistasis, we will restrict our analysis to the limit of weak promoters with
no UP element where we can approximate the multivalent model and compare its
results to the energy matrix model with saturation. As before, we proceed without
referencing the parameter values in Table S6.1 to emphasize that this analysis can
be done without recourse to fitting.

We define GE(1,1), GE(1,0), GE(0,1), and GE(0,0) as in section S6.3.1, but we will
restrict our attention to promoters where the original sequence exhibits low gene
expression (GE(1,1) . 0.25) and the two mutants exhibit medium gene expression
(0.25 . GE(1,0),GE(0,1) . 1.0). For such cases, we expect that the predicted gene
expression GE(0,0) of the double mutant will be larger in the multivalent model
(Eq. 6.3) than the energy matrix model with saturation (Eq. S6.3) due to the avidity
between the -35 and -10 sites. In other words, the multivalent model acknowledges
that the -35 and -10 sites bolster each other and consequently predicts larger gene
expression when both sites exhibit even a moderate capability of binding.

As discussed in section S6.3.1, GE(0,0) is exactly given by Eq. S6.5 in the energy ma-
trixmodelwith saturation. Applying that result to the present case ofweak promoters
(GE(1,1) . 0.25) with medium-strength singly mutants (0.25 . GE(1,0),GE(0,1) .

1.0), Fig. S6.3A shows that this model generally underestimates the gene expression
of these promoters. This serves as a promising indicator that the avidity of RNAP
binding is missing from such an approach.

We next turn to the more complex multivalent model. Because RNAP exhibits
epistasis within this framework, the relationship between gene expression is more
complex and hence we only roughly approximate GE(0,0). To that end, it behooves
us to generalize the levels of gene expression in Fig. 1(B) so that RNAP bound only
at the -35 site leads to a gene expression level of r-35 while RNAP bound only at the
-10 site elicits r-10 gene expression (satisfying r0 < r-35, r-10 ≤ rmax), leading to

GE =
r0 + e−β(EBG+ESpacer)

(
r-35e−βE-35 + r-10e−βE-10 + rmaxe−β(E-35+E-10+Eint)

)
1 + e−β(EBG+ESpacer)

(
e−βE-35 + e−βE-10 + e−β(E-35+E-10+Eint)

) .

(S6.6)
In the main text, we assumed that r-35 = r-10 = r0 for simplicity (and because
relaxing this assumption does not qualitatively change any of our results). Here, we
will keep these more general rates, as it will aid in the following analysis.

Using Eq. S6.6, we can approximate gene expression for our four promoters of
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interest,

GE(1,1) ≈ r0 (S6.7)

GE(0,1) ≈
r0 + r-35e−β(EBG+ESpacer)e−βE-35

1 + e−β(EBG+ESpacer)e−βE-35
(S6.8)

GE(1,0) ≈
r0 + r-10e−β(EBG+ESpacer)e−βE-10

1 + e−β(EBG+ESpacer)e−βE-10
(S6.9)

GE(0,0) ≈
r0 + rmaxe−β(EBG+ESpacer)e−β(E-35+E-10+Eint)

1 + e−β(EBG+ESpacer)e−β(E-35+E-10+Eint)
. (S6.10)

In Eq. S6.7, we used the fact that the promoter is very weak (GE(1,1) . 0.25) to infer
that RNAP is unable to bind at either the -35 or -10 sites (e−βE-35, e−βE-10 � 1). Since
replacing the -35 site slightly improves gene expression (0.25 . GE(0,1) . 1.0), we
only keep the -35 binding term in Eq. S6.8 but continue to neglect the -10 terms
(assuming that binding to the -10 is sufficiently unfavored that it overwhelms the
avidity term, e−β(E-10+Eint) � 1). Analogous statements hold for GE(1,0) and the -10
site in Eq. S6.9. Lastly, when both the -35 and -10 sites are replaced (Eq. S6.10),
the fully bound RNAP state will dominate over the two partially bound states due to
avidity.

For every set of four promoters satisfying our criteria, we can use Eq. S6.7 to infer
r0, Eq. S6.8 to solve for e−β(EBG+ESpacer)e−βE-35 (in terms of r-35), and Eq. S6.9 to solve
for e−β(EBG+ESpacer)e−βE-10 (in terms of r-10). In addition, we can directly estimate
rmax ≈ 10 directly from the maximum gene expression of all promoters. Combining
these statements, we can rewrite Eq. S6.10 as

GE(0,0) ≈
r0 + rmaxAe−β(EBG+ESpacer)e−βE-35 e−β(EBG+ESpacer)e−βE-10

1 + Ae−β(EBG+ESpacer)e−βE-35 e−β(EBG+ESpacer)e−βE-10
(S6.11)

with the unknown quantity A = eβ(EBG+ESpacer−Eint). Therefore, the three unknown
constants r-35, r-10, and Awould permit us to predict GE(0,0) using single and double
mutant datawithin themultivalentmodel. To facilitate this, we coarsely approximate
that the partially bound RNAP states give rise to intermediate expression levels
r-35 = r-10 ≈

√
r0rmax ≈ 1 and that the average energy of a background and spacer

sequence is negligible compared to the favorable interaction energy which is on
the order of several kBT leading to A ≈ e−βEint ≈ 100. Fig. S6.3B demonstrates
that the multivalent model predicts larger gene expression often closer to rmax ≈ 10.
Although this approximate result for the multivalent model exhibits scatter about the
predicted diagonal line, it nevertheless show a marked improvement over the energy
matrix model, supporting the notion that avidity is a key concept when predicting
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the gene expression of mutations that greatly weaken or greatly strengthen the -35
and -10 sites.
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Figure S6.3: Relating gene expression measurements with minimal fitting.
Using gene expression measurements for a weak promoter and two single mutants
with higher gene expression, we can predict the expression of the double mutant
and compare it to data. (A) The epistasis-free energy matrix model with saturation
(Eq. S6.3) underestimates the gene expression, suggesting that the avidity between
the -35 and -10 sites is missing from this analysis. (B) Themultivalent model Eq. 6.3
predicts higher gene expression levels that better characterize the data.

S6.4 Interactions Between the Different Promoter Elements
In this section, we extend the analysis shown in the Fig. 6.2A inset to determine
the strength of interactions between every pair of promoter elements as shown in
Fig. S6.5A. As an example, Fig. S6.4 considers the combinations of a promoter with
two possible -35 motifs (−35(1) or −35(2)) and two possible spacers (Spacer(1) or
Spacer(2)) with the same UP, -10, and background sequences.

Suppose that the -35 and spacer elements contribute independently to gene expres-
sion (GE) so that we can write GE = f1(E−35) f2(ESpacer) as the product of two
functions f1 and f2 (in the standard energy matrix model, f1(E) = f2(E) = e−βE).
This independence implies that the system has no epistasis, namely,

GE(0,0) = GE(1,1) GE(0,1)

GE(1,1)

GE(1,0)

GE(1,1) . (S6.12)

Thus, for all possible pairs of -35 and spacer elements, we can compare the predicted
gene expression given by Eq. S6.12 with the experimental measurements to discern
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whether these two segments of the promoter contribute independently to gene ex-
pression. In the following analysis, we will also restrict ourselves to promoters
where GE > 10−0.5 for all four mutants to ensure that the measurements are within
the dynamic range of the experiment (so that we can be certain we are analyzing
gene expression measurements and not noise).

S6.4.1 Characterizing Promoters with no UP Element
Wefirst carry out this analysis on the 4,096 promoters with no UP elements as shown
in Fig. S6.5. In each plot, we compare the epistasis-free predicted GE (x-axis) with
the measured value (y-axis). If two promoter elements independently contribute
to gene expression, their data should fall onto the straight line y = x. We can
quantify all deviations from such lines using the coefficient of determination R2,
with smaller R2 values signifying that the promoter elements are not multiplicatively
independent.

This analysis shows that while the -35 and -10 elements interact in a fashion discor-
dant with an energy matrix formulation (leading to a negative R2), the remaining
promoter elements interact approximately independently of each other and can be
approximated using an energy matrix model. This rigorously justified our sole
consideration of the -35 and -10 binding sites in Fig. 6.1B, allowing us to avoid,
for example, enumerating states where the RNAP is solely bound to the spacer or
the background. Instead, the promoter is well approximated by treating the -35 and
-10 motifs as cooperative binding sites while the spacer and background contribute
independently to RNAP binding (as per Eq. 6.3).

Lastly, we note that the multivalent model (Eq. 6.3) does not strictly exhibit the mul-
tiplicative independence between the -35 and spacer elements (or any of the other
weakly interacting promoter elements) that would lead to an R2 = 1 expectation, but
as we now show it closely approximates multiplicative independence. First, note that
using the parameter values from Table S6.1, the denominator in the multivalent mo-
del is approximately 1 because e−β(EBG+ESpacer)

(
e−βE-35 + e−βE-10 + e−β(E-35+E-10+Eint)

)
is . 1 for approximately 90% of the promoters. Additionally, the numerator in the
model may be dominated by either of its terms: For weak promoters where r0 �

r0e−β(EBG+ESpacer)
(
e−βE-35 + e−βE-10 +

rmax
r0

e−β(E-35+E-10+Eint)
)
and GE ≈ r0. In the op-

posite case of a strong promoter, r0 � r0e−β(EBG+ESpacer)
(
e−βE-35 + e−βE-10 +

rmax
r0

e−β(E-35+E-10+Eint)
)

and we can approximate Eq. 6.5 as

GE ≈ r0e−β(EBG+ESpacer)
(
e−βE-35 + e−βE-10 +

rmax
r0

e−β(E-35+E-10+Eint)
)
, (S6.13)
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–35(1) Spacer(1) –35(1) Spacer(0)

–35(0) Spacer(1) –35(0) Spacer(0)

Epistasis-Free Predicted

Figure S6.4: Quantifying the interactions between promoter elements. If the
-35 and spacer promoter elements independently contribute to gene expression, then
an epistasis-free prediction of gene expression for the double mutant (bottom right)
can be predicted using the gene expression of the other three promoters.

which exhibits the multiplicative independence implied by Eq. S6.12 between the
weakly interacting promoter elements. Practically speaking, this means that in
creating Fig. S6.5, we only considered data points where gene expression was above
the background level that we inferred to be 10−0.5 based on the gene expression
measurements in Fig. 6.2. In summation, Eq. 6.5 exhibits approximate independence
between the weakly interacting promoter elements which can be identified as the
plots for which R2 > 0 in Fig. S6.5.

S6.4.2 Characterizing Promoters with an UP Element
Here, we extend the analysis in the previous section to a promoter that includes an
UP element. As before, we seek to understand whether the UP, -35, spacer, -10, and
background elements act independently of each other or whether they interact with
avidity to facilitate RNAP binding.

Fig. S6.6 carries out this analysis using all 12,288 sequences from Urtecho et al. for
every pair of promoter elements [4]. As in the previous section, we find that the
-35 and -10 sites do not interact independently (as shown by a negative R2). We
acknowledge that several additional pairs of elements (i.e., -10/BG, -35/BG, and
-10/Spacer) exhibit low R2 values which may arise because: (i) Our model only
approximately obeys multiplicative independence as discussed in Appendix S6.4.1
(so that R2 ≈ 1 even in the absence of experimental noise) or (ii) there may be
additional interactions between promoter elements that we neglect, such as the
importance of the discriminator [5] or weak RNAP binding sites in the background
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Figure S6.5: Interactions between the promoter elements with no UP binding
site. (A) For every pair of elements (brown labels on the left and bottom), the mea-
sured gene expression (y-axis) is compared to the epistasis-free prediction (x-axis,
Eq. S6.12) assuming that the two promoter elements are independent. Deviations
between the predictions and measurements indicate that the two promoter elements
interact. Data is plotted with low opacity to better show the general trend across
the promoters. (B) The resulting schematic of a promoter with no UP element is
that RNAP can bind to either the -35 or -10 sites independently with an avidity
interaction when both are bound; the spacer and background (BG) contribute inde-
pendently to the RNAP binding energy provided RNAP is bound to either the -35
or -10 element.

sequences [6]. We proceed by only considering interactions sufficiently strong to
induce a negative R2 value, namely, the avidity between the -35 and -10 motifs, with
our eyes wide open to the possibility that more complex models could attempt to
capture the full suite of higher-order interactions.

We end this section by analyzing which of the three schematics shown in Fig. 6.3A
best characterizes the binding of the UP element. We note that the UP element
appears to be particularly independent (0.6 . R2) compared all other pairings of
elements (0.1 . R2 . 0.6), suggesting that the RNAP C-terminal binds weakly
provided that either the -35 or -10 motifs are bound (Fig. S6.6B). This supports the



282

bottom schematic in Fig. 6.3 and gives rise to the form of gene expression Eq. 6.5
used in the main text.

To complete this argument, we further note that the middle schematic in Fig. 6.3A
would imply that the UP element only binds when the -35 element is bound, which
would result in gene expression of the form

GE = r0
1 + e−β(EBG+ESpacer)

(
e−β(E-35+EUP) + e−βE-10 +

rmax
r0

e−β(E-35+EUP+E-10+Eint)
)

1 + e−β(EBG+ESpacer)
(
e−β(E-35+EUP) + e−βE-10 + e−β(E-35+EUP+E-10+Eint)

) .

(S6.14)
In this case, we would expect a low R2 between the -35 and -10 elements as well
as between the UP and -10 elements, but we would have an R2 ≈ 1 between UP
and -35 since binding of one forces the binding of the other in this model. Given
the larger-than-expected R2 = 0.56 value between the UP and -10 elements and
the smaller-than-expected R2 = 0.62 value between the UP and -35 elements, this
model is unlikely to be correct.

Finally, the top schematic in Fig. 6.3A implies a low R2 value between the -35 and
-10, the UP and -35, and the UP and -10 elements. In this case, all three elements
bind strongly and in a highly dependent manner, so that eight RNAP states would
need to be considered (with avidity terms between every pair of elements). Because
the R2 values between the UP/-35 and UP/-10 are larger than expected, this model
does not appear to properly characterize RNAP binding, leading us to favor the
bottom schematic in Fig. 6.3A.

S6.5 RNAP Binding Too Tightly Decreases Gene Expression
All of the gene expression models examined in this work assert that gene expression
monotonically increases with the RNAP-promoter binding affinity. In contrast,
Urtecho et al. found that this monotonic relationship did not hold for the strongest
promoters. In other words, gene expression increased as the -35 and -10 motifs
approached their consensus sequences (which bind the tightest to RNAP) except
that promoters with both a consensus -35 and consensus -10 sequence exhibited
lower gene expression than the corresponding sequences with one mutation in either
motif [4]. This suggests that past a certain point, increasing the RNAP-promoter
binding energy causes RNA polymerase to bind top tightly, thereby inhibiting gene
expression [7].

In this Appendix, we explore this phenomenon and develop a model to account for
it. More specifically, our model will posit that the state of transcription initiation can
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Figure S6.6: Interactions between the promoter elements with an UP binding
site. (A) For every pair of elements (brown labels on the left and bottom), the
measured gene expression (y-axis) is compared to the epistasis-free prediction (x-
axis, Eq. S6.12) assuming that the two promoter elements are independent. (B) The
resulting schematic of gene expression where RNAP can bind to either the -35 or
-10 sites independently with an avidity interaction when both are bound; the UP,
spacer, and background (BG) contribute independently to the RNAP binding energy
provided RNAP is bound to either the -35 or -10 element.

be characterized by a free energy so that the probability of initiating transcription
versus remaining bound on the promoter is given by the Boltzmann weight of the
two states.

To start our analysis, Fig. S6.7A shows the predicted versus measured gene expres-
sion of the multivalent model (Eq. 6.5) for promoters with an UP element, with all
data plotted with low opacity except the promoters with the lowest or highest levels
of predicted gene expression. The sharp left edge of the data is set by the background
level of gene expression r0 = 0.18 in the absence of RNAP, while the right edge
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represents the maximal expression rmax = 8.6 of very strong promoters. Note that
if the scatter in data on the left edge is attributable to noise, then the outliers on the
right edge cannot simply arise from noise, since there are 10x fewer data points and
hence we expect 10x fewer outliers (although there are roughly the same number of
outliers 2σ, 3σ, and 4σ away from the predicted values on both edges of the plot).
This suggests that there is a mechanistic explanation for why the promoters that our
model predicts should bind very tightly to RNAP exhibit low gene expression.

We next analyzed whether any promoters increased expression when their -35 or
-10 sites were replaced by the consensus sequences, but exhibited decreased gene
expression when both the -35 and -10 sites became the consensus sequences. Out
of the 12,000 constructs, 850 exhibited this pattern of expression. One possible ex-
planation is that although strong binding helps recruit RNAP to the promoter, overly
strong binding could inhibit transcription initiation and decrease gene expression.
We note, however, that this is a coarse-grained effective model that neglects molecu-
lar details of the transition from the closed to open complex, transcription initiation,
and other critical steps of RNAP functioning [8]. Nevertheless, in the multivalent
model, the effect of overly strong RNAP-promoter binding must be to decrease the
single parameter rmax (which represents the level of gene expression when RNAP
is fully bound to the promoter), since no other parameters should depend upon the
total RNAP-promoter binding strength.

To proceed, we assume that fully bound RNAP with free energy

∆ERNAP = EBG + ESpacer + EUP + E-35 + E-10 + Eint (S6.15)

relative to the unbound state can initiate transcription by moving into a transcription
initiation state with free energy ∆Etrans relative to the unbound state as shown
schematically in Fig. S6.7B. Intuitively, bound RNAP will always immediately
transcribe when ∆Etrans − ∆ERNAP is large and negative, but when the affinity
between the RNAP and promoter becomes sufficiently strong (the case depicted in
Fig. S6.7B), RNAP will prefer to stay bound to the promoter and not transcribe
immediately. We posit that the rate of entering the transcribing state [8], and hence
the rate of gene expression rmax in Fig. 6.1B, should be modified to

r̃max ≡
rmax + r0e−β(∆ERNAP−∆Etrans)

1 + e−β(∆ERNAP−∆Etrans)
, (S6.16)

similar to recently proposed scrunching models of transcription initiation [9].
For promoters whose RNAP binding is far weaker than transcription initiation
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Figure S6.7: Gene expression is reduced for promoters that bind RNAP too
tightly. (A) In the multivalent model (Eq. 6.5), although there are 10x fewer points
on the right edge of the plot than the left edge, there are the same number of
outliers, suggesting a biophysical mechanism for the reduction in gene expression
of the strongest promoters. (B) The average level of transcription modeled as a two
state system where the bound RNAP state (with free energy ∆ERNAP relative to the
unbound state) can enter a transcription initiation state with free energy ∆Etrans. (C)
Gene expression characterized using themodifiedmaximum level of gene expression
using Eq. S6.16 with ∆Etrans = −6.2 kBT . (D) Measured gene expression versus the
promoter strength ∆ERNAP (stronger promoters on the right because of the minus
sign). The dashed line shows the prediction of the multivalent model modified using
Eq. S6.16.

(e−β(∆ERNAP−∆Etrans) � 1), this rate reduces to the constant value rmax. Increasing the
RNAP-promoter affinity decreases ∆ERNAP which leads to a decrease in the level
of gene expression. In the limit of an infinitely strong promoter (∆ERNAP → −∞),
RNAP is glued in place and unable to transcribe, thereby reducing the level of gene
expression to the background level r0.
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Fig. S6.7C shows the gene expression data refit to the multivalent model with the
maximal level of gene expression given by Eq. S6.16 (using ∆Etrans = −6.2 kBT

inferred by nonlinear regression). We note that using this model eliminates the sharp
right edge of the data (red ellipse in Panel A), signifying that the promoters with
extremely tight RNAP binding have shifted left, moving closer to the level of gene
expression predicted by the model. Fig. S6.7D compares the predicted −∆Etrans

for each promoter (using the best fit parameter in Table S6.1) against the measured
level of gene expression. To facilitate a comparison with the multivalent model, we
overlay this data with the approximate predicted level of gene expression

GE ≈
r0 + r̃maxe−β∆ERNAP

1 + e−β∆ERNAP
, (S6.17)

where we have ignored the two partially bound RNAP states and used the maximum
level of gene expression in Eq. S6.16. Although only a small number of promoters
exhibits sufficiently strong binding that diminishes their gene expression, the data
exhibits a clear downwards trend in this limit.

S6.6 Dynamics of RNAP with Avidity
S6.6.1 Probability of the RNAP States at Equilibrium
In this section, we derive the probabilities of the four RNAP states shown in Fig. 6.1C
in equilibrium. RNAP may be unbound (concentration U), singly bound at the -35
site (B-35), singly bound at the -10 site (B-10), or bound to both sites (B-35,-10). These
concentrations must obey detailed balance,

B-35 =
[RNAP]kon

koff,-35
U (S6.18)

B-10 =
[RNAP]kon

koff,-10
U (S6.19)

B-35,-10 =
k̃on

koff,-10
B-35, (S6.20)

as well as the normalization condition

[RNAP] = U + B-35 + B-10 + B-35,-10. (S6.21)

In writing Eqs. S6.18 and S6.19, we have assumed a sufficiently large reservoir of
RNAP so that binding to the promoter of interest does not appreciably decrease the
concentration of free RNAP (a reasonable assumption in E. coli where there are
≈ 2000 RNAP molecules [10]).
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Eqs. S6.18-S6.21 can be solved to obtain the concentration of each RNAP state,
namely,

U =
K-35K-10

K-35K-10 + K-35[RNAP] + K-10[RNAP] + c0[RNAP]
[RNAP] (S6.22)

B-35 =
K-35[RNAP]

K-35K-10 + K-35[RNAP] + K-10[RNAP] + c0[RNAP]
[RNAP] (S6.23)

B-10 =
K-10[RNAP]

K-35K-10 + K-35[RNAP] + K-10[RNAP] + c0[RNAP]
[RNAP] (S6.24)

B-35,-10 =
c0[RNAP]

K-35K-10 + K-35[RNAP] + K-10[RNAP] + c0[RNAP]
[RNAP], (S6.25)

where we have defined the dissociation constants K j =
koff, j
kon

of free RNAP binding
to the site j as well as the effective concentration c0 =

k̃on
kon

of singly bound RNAP
binding to the remaining promoter site. If we further define the effective dissociation
constant

Keff
D =

K-35K-10
c0 + K-35 + K-10

, (S6.26)

we can rewrite the probability of the unbound state as

U =
Keff

D

Keff
D + [RNAP]

[RNAP]. (S6.27)

From this equation, we see that the promoter is bound 50% of the time (U = [RNAP]
2 )

when [RNAP] = Keff
D , as stated in the main text.

S6.6.2 Dynamics of RNAP Unbinding with Avidity
Here, we rederive the results from the previous section by analyzing the dynamics of
RNAP binding rather than its equilibrium configuration. This calculation highlights
the intimate connection between the effective dissociation constant in Eq. S6.26 and
the kinetics of RNAP binding.

Unbound -35/-10 Bound
(B-35,-10)(U )

-10 Bound
(B-10)

-35 Bound
(B-35)

Figure S6.8: Dynamics of RNAP unbinding from the -35 and -10 sites. The
avidity between the -35 and -10 sites will prolong the time before RNAP unbinds
from the promoter.



288

To that end, we first compute the probability that a bound RNAP will remain bound
after a time t. Since we are only interested in the unbinding process, we consider
the rates diagram in Fig. S6.8 where the on-rates from the unbound state have been
removed. Following Ref. [11], we assume that the three bound states – RNAP bound
to only the -35 site (concentration B-35), only the -10 site (B-10), or to both sites
(B-35,-10) – quickly equilibrate and compute the effective off-rate from these bound
states to the RNAP unbound state (U). If the three bound states are in equilibrium,
then there is no flux between any two states, namely,

k̃onB-35 = koff,-10B-35,-10 (S6.28)

and
k̃onB-10 = koff,-35B-35,-10. (S6.29)

The total concentration of bound RNAP is given by

[RNAP]bound = B-35 + B-10 + B-35,-10 = B-35,-10

(
1 +

koff,-35

k̃on
+

koff,-10

k̃on

)
. (S6.30)

The loss of bound RNAP is caused by unbinding from the two singly bound forms,
leading to the effective off-rate

d
dt

[RNAP]bound ≡ −keffoff[RNAP]bound (S6.31)

= −koff,-35B-35 − koff,-10B-10 (S6.32)

= −
2koff,-35koff,-10

k̃on + koff,-35 + koff,-10
[RNAP]bound. (S6.33)

Hence, the dynamics of RNAP unbinding are characterized by

[RNAP]bound,t = [RNAP]bound,0e−keffofft (S6.34)

where the likelihood of remaining bound decreases exponentially according to the
timescale τ = 1

keffoff
.

Lastly, to connect this result to the calculations in the previous section, we return to
the full model in Fig. 6.1C where unbound RNAP can associate onto the promoter.
As in simple monovalent ligand-receptor systems, the effective dissociation constant
Eq. S6.26 is related to the off-rate from the bound to unbound states (keffoff) divided
by the on-rate from the unbound to bound states (2kon), namely,

Keff
D =

keffoff
2kon

. (S6.35)
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Description Parameter Energy Matrix Model Multivalent Model
Level of rmax 0.42 8.6

gene expression r0 — 0.18
Interaction energy Eint — −6.3

-35 motif TTGACA −1.3 −1.3*
(E-35) TTTACA −0.2 3.3

ATTACA 0.6 8.3
TTTACC 0.3 5.7
TTAAGA 0.6 8.8
TTGCAA −0.4 2.5
CTCAGA 0.7 9.5
CTTAGA 0.6 9.5

-10 motif TATAAT −0.9 −0.9*
(E-10) AATAAT −0.1 3.6

GATAAT −0.1 3.2
TATAAA 0.0 4.4
GATAAC 0.6 9.8
TATGTT 0.1 4.6
GTTAAA 0.6 >10
GTTGTA 0.6 >10

Spacer P1-6 0.0 0.0*
(ESpacer) lac 0.4 3.9

ECK125136938 0.0 1.0
ECK125137104 0.1 1.5
ECK125137108 0.1 0.7
ECK125137405 0.1 1.2
ECK125137640 0.4 3.8
ECK125137726 −0.1 −0.8

Background bg463205:463355 0.0 0.0*
(EBG) bg977040:977190 0.1 2.3

bg991964:992114 0.3 4.2
bg1163421:1163571 0.1 1.5
bg3514590:3514740 0.1 1.9
bg4323949:4324099 0.1 2.5
bg4427287:4427437 0.2 3.1
bg4471352:4471502 −0.1 1.6

UP No UP 0.0 0.0*
(EUP) 136-fold UP — −2.6

326-fold UP — −3.2

Table S6.1: Parameter values for the models of transcriptional regulation con-
sidered in this work. The levels of gene expression (r0 and rmax) are in the same
arbitrary units as the experimental measurements while the energies are all in kBT
units (energies that are more negative indicate tighter binding). The original nomen-
clature from the experimental work is used for each promoter element. Parameter
denoted by an asterisk (*) represent values that were fixed to their corresponding
value in the energy matrix model to prevent parameter degeneracy.
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C h a p t e r 7

ADDENDUM

This short chapter presents additional insights that extend the calculations in the
previous chapters and will serve as the foundation for future work.

7.1 Cranking up Complexity: Analyzing the Multi-Step Process of Metabolic
Regulation

ImetDenis Titov in January 2018, when he had just finished a postdoc inHarvard and
was moving to Berkeley as a newly minted professor. Denis’s area of expertise was
metabolism, the process by which we convert food into energy. Metabolism is ripe
with applications to many facets of human health from diet (how calorie restriction
extends lifespan) to exercise (why physical activity decreases the risk of heart
disease, stroke, and cancer) to aging (how metabolism influences our susceptibility
to age-related diseases). Denis had devised an ingenious experimental method
that alters the balance of cellular energy carriers (NADH/NAD+, NADPH/NADP+,
ATP/ADP) that are ordinarily tightly regulated in cells. The question that Denis
proposed to Rob and me was whether we could model the glycolytic pathway
(the first step in metabolism shown in Fig. 7.1A) to characterize his system both
experimentally and theoretically.

There are many reasons why modeling glycolysis is especially tractable. First,
glycolysis is “the E. coli of metabolic pathways” – it is one of the simplest and
best-studied systems where every component has been extensively characterized.
Second, the majority of steps in glycolysis have no regulation and their associated
enzyme follows Michaelis-Menten kinetics (which is straightforward to model).
However, the key regulatory nodes in the pathway are the three allosteric enzymes
hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) shown in
pink boxes as Fig. 7.1A, and these enzymes have a host of allosteric inhibitors
(brown) and activators (green) that regulate their activity. Denis proposed that if
we can carefully model the behavior of these key nodes, we can pull together the
accumulated knowledge from the other simpler steps of the pathway and create a
robust model of glycolysis.

Sincemy expertise is in characterizing allosteric systems, andmy first project looked
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at allosteric enzymes (Chapter 1), it quickly became apparent that we had a solid
collaboration with two complementary skill sets that together make this project
tractable. In this way, I began an incredibly fun and fascinating journey with Denis
that still continues today.

While this project is ongoing, Fig. 7.1 demonstrates the style of modeling we have
carried out thus far. Denis begins by reading the literature to determine all of the
allosteric effectors that interact with each key enzyme, enabling us to make a cartoon
representation as shown for phosphofructokinase in Panel B. I then mathematize this
cartoon using a statistical mechanics framework to quantify how the activity should
vary as the concentration of each effector is changed. Denis then mines the last fifty
years of papers (an incredible feat!) to create a “gold standard” data set featuring the
most pristine, careful experiments that collectively span the range of physiological
conditions under which phosphofructokinase operates. A subset of this massive data
set is shown in Panels C-F, summarizing 15 different experimental conditions from
5 different papers. Finally, Denis and I test how well the model can reproduce the
data, discuss possible modifications, set off to find further data sets to validate our
hypotheses, and iterate until we achieve the characterizations shown by the curves
in Panels C-F.

These results are noteworthy because reproducibility in biology is fraught with
difficulties. Experiments are tough to reproduce across labs (and surprisingly often
within the same lab), so there is no reason to think that any model should be able to
characterize this diverse set of data that spans multiple years, comes from different
labs, and carries out measurements under a range of conditions. Direct conflicts
between data sets and systematic discrepancies must be resolved using rigorous,
unbiased methods. Our success in doing this for the key nodes in glycolysis has
revealed that we can push our models of allosteric systems to these complex cases
riddled with multiple substrates and allosteric effectors. We are now in the process
of combining all of the steps to see how well they can characterize the full glycolytic
pathway. Following that, we will make contact with Denis’s experiments that alter
the ratio of NADH/NAD+, NADPH/NADP+, and ATP/ADP to predict the outcome
of his experiments before he carries them out!

7.2 The Statistical Mechanics of Bivalent Binding
In statistical mechanical models of ligand-receptor binding, the probability that a
molecule with concentration c will be bound to a receptor is given by c/(c + KD)
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Figure 7.1: Modeling the glycolytic pathway. (A) The steps of mammalian
glycolysis together with the enzymes (black), substrates (gray), allosteric regulators
(green/brown), and energy carriers (red/teal). (B) Phosphofructokinase is one of
the key regulators of glycolysis. It is composed of four identical subunits, each
containing binding sites for the substrates ATP and F6P as well as three sets of
allosteric sites for the regulators shown in the inset. (C-F) A statistical mechanical
model of phosphofructokinase is able to characterize its diverse behavior across a
diverse set of physiologically relevant conditions.

where KD is the dissociation constant (the off-rate divided by the on-rate) of the
molecule. When two identical molecules are tethered together, it is conventional
wisdom that the dissociation constant will be halved (KD →

KD

2 ), since the on-rate
has doubled while the off-rate has stayed the same (or equivalently, since either
molecule could bind the receptor). In 2018, my amazing labmate Vahe Galstyan
showed me that conventional wisdom was not necessarily right.

Before launching into the math, it is worth mentioning that this type of calculation
often arises in the context of multivalent binding (the subject of Chapter 6). For
example, our bodies harbor multivalent cells ranging from the T cells that enable
antibody production, natural killer cells that destroy invaders, and inflamed epithelial
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cells that recruit other bodily defenses to sites of infection. Different classes of
antibodies can have 2, 4, or even 10 arms, so that even if each individual receptor
binds weakly, the cell as a whole binds very tightly. Viruses such as influenza
harness multivalency by packing their surface with hundreds of binding sites to
better stick to their target cells. HIV take the opposite approach and decreases
its number of binding sites to fifteen, making it far less infective than influenza
but also undercutting our body’s immune response by preventing our antibodies
from multivalently binding to its surface. The following calculation comparing the
dissociation constant of a single ligand versus two tethered ligands applies in each
of these contexts.

To proceed, consider a heterodimeric molecule composed of a green and blue ligand
tethered together by a flexible linker. The two ligands have the same size, shape, and
binding energy to the receptor (in other words, these ligands are identical, but we
color them differently to help keep track of particle identity during the calculation).
As shown in Fig. 7.2, define the volume of the solution to be Vsol and discretize this
volume into small boxes with volume Vbox whose size is comparable to that of either
ligand. Thus, rather than thinking of a continuous picture, we will suppose that the
green ligand must reside in one of these boxes, which will enable us to compute its
entropy.

Let Vu represent the volume accessible to the blue ligand when the green molecule
is unbound but fixed in one of the boxes (Fig. 7.2A). Let Vb represent the volume
accessible to the blue ligand when the green molecule is bound to the receptor
(Fig. 7.2B; this is equivalent to the volume accessible to the green ligand when the
blue molecule is bound). We denote the binding energy in the bound state relative
to the unbound state as Ebound.

In the unbound case, the number of states of the system equals Ωunbound =
Vsol
Vbox

Vu
Vbox

where the two terms account for translational and rotational entropy, respectively.
In the case where either the green or the blue ligand is bound, the multiplicity of the
states is given by Ωbound =

2Vb
Vbox

, where the factor of two accounts for either ligand
(green or blue) being equally capable of binding. The relative probability of the
bound state is given by the ratio of its Boltzmann weight (Ωe−βE) to that of the
unbound state, namely,

Ωbounde−βEbound

Ωunbound
=

2Vb
Vbox

e−βEbound

Vsol
Vbox

Vu
Vbox

= 2
Vbox
Vsol

Vb
Vu

e−βEbound . (7.1)
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Figure 7.2: The thermodynamics of a dimericmolecule binding to a receptor. A
heterodimer (the green and blue balls linked together by a flexible linker) in solution
with volume Vsol that is discretized into small boxes with volume Vbox (comparable
to the size of the green ball). (A) If the green ball is fixed in place in one of the boxes,
the blue ball can reside in a volume Vu where the subscript signifies the unbound
state. (B) When the green ball is bound to the receptor, the blue ball can access a
volume Vb where the subscript denotes the bound state.

We next compare this situation with a monovalent ligand (i.e. a green molecule
that is not tethered to a blue molecule). Here, the unbound state has multiplicity
Ωmono

unbound =
Vsol
Vbox

while the bound state has multiplicityΩmono
bound = 1 and relative energy

Ebound. Therefore, the ratio of Boltzmann weights is given by

Ωmono
bounde−βEbound

Ωmono
unbound

=
e−βEbound

Vsol
Vbox

=
Vbox
Vsol

e−βEbound . (7.2)

The dissociation constant KD for the bivalent ligand and the analogous Kmono
D

for a monovalent ligand are proportional to Eqs. 7.1 and 7.2, respectively, with
the same constant of proportionality. Therefore KD

Kmono
D
=

2Vb
Vbox

, demonstrating that
the dissociation constant changes from Kmono

D →
2Vb
Vbox

Kmono
D when two ligands are

tethered together. In the case where the binding site is large and planar, Vb =
Vu
2 and

the dissociation constant is unchanged by this tethering. In contrast, the dissociation
constant doubles (as per conventional wisdom) when the blue ligand is free to rotate
completely around a bound green ligand, suggesting that the epitope is, for example,
a very small and thin stalk. Pamela Bjorkman suggested that an antibody binding
to a virus likely approximates this latter case more than the former, suggesting
that in the context of antibody-virus binding, the shift of Kmono

D → 2Kmono
D often

seen in models is correct. However, in the many cases where a molecule binds
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to an embedded pocket (as in some instances of B cell-T cell binding or antibody-
pathogen interactions), care should be taken when writing down such equations, and
the underlying assumption inherent in this equation should be acknowledged.

7.3 Generalized Data Collapse
In Chapter 2 Eq. 2.11, we presented a framework to collapse fold-change data from
simple repression onto the functional form

fold-change =
1

1 + e−βF (c) , (7.3)

where F (c) represents the free energy difference between the (active) repressor
bound state and the empty promoter. In this section, we investigate how this data
collapse could be extended to other regulatory architectures.

More precisely, the functional form in Eq. 7.3 is well suited to model the fold-
change of repressed systems, which naturally lie between 0 (for a highly repressed
system) and 1 (for a minimally repressed system). However, other architectures
such as simple activation cannot be collapsed using Eq. 7.3 since no value of F (c)
could account for fold-change values greater than 1. In this section, we present a
general framework to collapse fold-change data from any transcriptional regulation
architecture. In the present analysis, we focus on collapsing the probability that
RNAP is bound the promoter (pbound) as a function of the effective free energy of
the system and then translate this result into fold-change measurements.

We begin by rewriting Eq. 2.1 for pbound as

pbound =
p

1 + rA + rI + p
, (7.4)

where we have defined

p =
P

NN S
e−β∆εP, (7.5)

rA =
RA

NN S
e−β∆εRA, (7.6)

and
rI =

RI

NN S
e−β∆εRI (7.7)

to be the free energy differences between the unbound promoter and the RNAP
bound, active-repressor bound, and inactive-repressor bound states shown in Fig. 2.2,
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respectively. We can rewrite pbound in the form

pbound =
1

1 + 1+rA+rI
p

≡
1

1 + e−βFbound
(7.8)

where in the last step we defined the free energy of pbound for simple repression,

e−βFbound =
1 + rA + rI

p
. (7.9)

Fbound represents the effective free energy difference if all of the RNAP-bound states
were grouped together into a single state and all of the RNAP-unbound states were
grouped together into another state. Because 0 ≤ pbound ≤ 1, such an Fbound will
always exist.

Since the parameter p, which includes both the RNAP copy number P and binding
energy ∆εP, is often poorly characterized, experimental measurements focus on
fold-change. Recall that fold-change is given by the ratio of pbound in the presence
and absence of repressor (see Eq. 2.2). In the limit of no repressor, the free energy
F (R=0)
bound satisfies

e−βF (R=0)
bound =

1
p
. (7.10)

Therefore, the fold-change equation Eq. 2.3 can be rewritten as

fold-change =
1

1 + rA + rI
= eβ

(
Fbound−F (R=0)

bound

)
. (7.11)

We recover Eq. 2.3 exactly by employing the approximation rI � 1 + rA from
Chapter 2, which assumes that the inactive repressor binds weakly to DNA.

Fig. 7.3 shows the data from Fig. 2.7B collapsed onto this new functional form. Note
that since Eq. 7.11 has the form of an exponential function, the data collapses onto a
straight linewhen fold-change is plotted on a logarithmic axis. By definition, Fbound−

F (R=0)
bound ≤ 0 for simple repression, since the fold-change can only be decreased by

the addition of repressors. Activation would obey Fbound −F (R=0)
bound ≥ 0, providing an

elegant way to immediately categorize the mechanism of transcriptional regulation
within this framework.
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Figure 7.3: A General data collapse procedure. The difference between the
effective free energy Fbound in the presence and absence of repressor (Eqs. 7.9
and 7.10) is plotted versus fold-change. The data collapses onto the form of the
exponential in Eq. 7.11, and this procedure can be readily extended to arbitrary
transcriptional regulation architectures.
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C h a p t e r 8

CONCLUSION

The proceeding chapters chronicled my journey to model a diverse set of allosteric
systems ranging from enzymes to transcription factors to ion channels. This final
chapter provides an opportunity to reflect on these accomplishments and to consider
how future work may build upon these results to carry the field forward.

8.1 The Power of Quantitative Modeling
In their first week of classes, Caltech freshmen use Newton’s laws to compute the
parabolic trajectory of a ball thrown into the air. Five weeks later, they utilize these
same laws to predict whether the energy and angular momentum of a rolling ball
enables it to roll up a step. The following term, they learn that when a ball is
thrown at relativistic velocities, Newtonian mechanics breaks down, suggesting that
a new mechanism governs objects traveling near the speed of light. The unity of
this approach stems from the fact that it is driven by a fundamental theory, rather
than by examining each individual phenomenon as a separate conceptual challenge.

Yet in the present age of high-throughput experiments, machine learning, and big
data, it is worth pausing to reexamine what it means to truly master a system.
For example, is it enough to create a neural network that can fit data? While
such progress, fueled by immense creativity and great effort, certainly deserves
recognition, in my mind it does not suggest mastery of the material on par with our
understanding of Newton’s laws.

One of the themes of my work has been to attempt to hold biology to the same lofty
standards as physics. The models developed in the preceding chapters emphasized
the fundamental principles governing a system and the intuition that arises from
tying their behavior to experimentally-tunable parameters. Much as in Caltech’s
physics classes, such quantitative frameworks enable us to generalize our results
and predict how other systems would behave. And when we encounter data that
runs counter to our predictions, these models reveal that a novel mechanism is at
play that merits further exploration.

This work emphasized that in many instances, modeling can add a layer of un-
derstanding that is complementary to what additional experiments could provide.
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Notable highlights include: (1) We explained how seemingly counter-intuitive non-
monotonic activity curves can arise in the context of enzymes and showed that
allostery was sufficient to drive this phenomenon (Figs. 1.12 and 1.14). (2) We
demonstrated that biology can be highly predictive by using the induction profile of
a transcription factor under one set of conditions to predict its behavior in seventeen
other physiologically relevant conditions (Figs. 2.4 and 2.5). (3) We showed that the
seemingly complex effects of mutations on input-output responses can be decoupled
by mapping the mutations onto a subset of physical parameters governing the system
(Figs. 3.5 and S4.1). (4) We made sense of curious patterns in ion channel mutants
and confirmed our predictions of how these mutations affected the survival of the
host cells via channel leakiness (Figs. 5.6 and S5.5). (5) We pushed our models to
their utmost limits and showed that they are able to predict the gene expression of
over 10 000 promoters (Figs. 6.2 and 6.3).

Each of these cases exemplifies howbiophysicalmodels provide a unique perspective
that can uncover novel connections and make sharp predictions about a system’s
behavior. These projects embody my love of statistical mechanics and my belief that
simple models can explain the behavior of our complex world. Most importantly,
they weave a narrative of unity by suggesting that disparate biological phenomena
can be collapsed down to their underlying mechanisms, which both deepens our
understanding of these systems and helps guide future experiments.

8.2 The Future of Quantitative Modeling
In this final section, I turnmy gaze frommy personal accomplishments and speculate
upon how the style of thinking embodied in this work may advance the field of
biology in the coming decades.

Being able to predict the effects of generalmutationswould revolutionizemany fields
of biology from the study of genetics and evolution to the branches of microbiology
and biochemistry. One of my personal interests lies in synthetic biology, where
many groups aim to construct novel proteins (e.g. transcription factors that are
inducible by a new effector molecule) or create biosensors (e.g. proteins that
specifically attack cancer cells). Such efforts often begin by combining components
of known molecules, but the resulting proteins may have small signal-to-noise (high
leakiness or low saturation) or may only function at physiologically inaccessible
concentrations (have an [EC50] that is too large or too small) and thus must be
altered by mutations to enhance their functionality.
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This problem is being tackled experimentally, with recent high-throughput methods
able to measure tens of thousands of mutations in vivo, and this number will surely
continue to rise in the coming years. Many computational groups are also refining
models of mutations, and programs such as Rosetta and Evolutionary Coupling have
seen great success in specific contexts.

One feature that I think is missing from such efforts is a theoretical approach that
coarse-grains themyriad details in both the experimental and computationalmethods
and searches for general principles that govern how mutations behave. For example,
operator mutant data in Chapter 3 suggests that making any mutation in residues 17
or 18 of LacI will shift its input-output response along a one-parameter family of
curves (see Fig. 3.4). Such insights could be missed by both of the above approaches
by focusing exclusively on the response of each mutant.

An ideal theoretical model would predict what mutations could alter a given input-
output response into a desired response. While such a framework is not yet feasible,
the projects above hint that it is possible to predict how certain combinations of
mutations interact. Another major area of research would be to harness comprehen-
sive mutagenesis studies that examine every point mutation in a protein and map
exactly which of the physical parameters are altered by these mutations. Lastly,
once point mutation have been examined, it is imperative to consider how multiple
mutations interact. A first step in this direction could be to analyze how mutations
in the same region of a protein (i.e. two or more mutations in the LacI DNA binding
site) affect protein function. Resolving these questions would greatly bolster our
ability to navigate the vast space of protein mutations, because once we characterize
n individual mutations, we could predict how all 2n mutants (with or without each
mutation) would behave, providing an exponential explosion in our understanding.

In all likelihood, new methods that combine theory, experiment, and computation
will lead to revolutions not just in predicting the effects of mutations, but in all areas
of biology. There is no doubt that this is the century of the life sciences, as the air
sizzles with the excitement sparked by recent discoveries. As I look back on all that
I have learned these past six years, I remain awed by nature’s beauty, complexity,
and ingenuity, and by the immense privilege of being a scientist and getting to tackle
some of greatest mysteries of life.
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