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ABSTRACT 

At the heart of an inflammatory response lies a tightly regulated gene expression program. 

Perturbations to this finely tuned response can result in unchecked or inappropriately scaled 

inflammation, shifting the balance from protective to destructive immunity. A variety of 

post-transcriptional mechanisms play a role in the fine-tuning of an inflammatory gene 

expression program.  One such mechanism involves unproductive RNA splicing, whereby 

alternative splicing can frameshift the transcript or introduce a premature termination codon 

(PTC). These effects render the transcript nonfunctional and/or subject it to nonsense-

mediated decay.  

 

We observed such an event in Irf7, the master regulator of the type I interferon response.  We 

found a single intron was consistently retained at a level much greater than other introns in 

the Irf7 transcript.  In an effort to understand trans-acting factors that regulate this retention, 

we used RNA-antisense purification followed by mass spectrometry (RAP-MS) to identify 

the factor BUD13 as a highly enriched protein on Irf7 transcripts.  Deficiency in BUD13 was 

associated with increased retention, decreased mature Irf7 transcript and protein levels, and 

consequently a dampened type I interferon response, which compromised the ability of 

BUD13-deficient macrophages to withstand vesicular stomatitis virus (VSV) infection. 

 

Beyond this intron retention event in Irf7, we identified a variety of other unproductive 

splicing events in a number of important genes involved with the innate immune response.  

This unproductive splicing was not restricted to intron retention events.  For example, we 

identified a frequently used alternative splice site in the crucial murine antiviral response 

gene, oligoadenylate synthetase 1g (Oas1g) that led to both a frameshift and incorporation 

of a PTC.  Genome editing was used to remove the alternative splice site in a macrophage 

cell line, which led to both increased Oas1g expression and improved viral clearance.  We 

hypothesize these events exist as a means of mitigation for what might otherwise be an 

inappropriately scaled response.  In doing so, they represent a previously underappreciated 

layer of gene expression regulation in innate immunity.   
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C h a p t e r  1  

INTRODUCTION TO mRNA SPLICING AND POST-
TRANSCRIPTIONAL REGULATION 
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mRNA Splicing and Post-Transcriptional Regulation 

While transcription is the most well-scrutinized area of gene expression regulation1,2, there 

have emerged a variety of post-transcriptional mechanisms that play a role in the fine-tuning 

of a gene expression program (Figure 1.1).  These post-transcriptional mechanisms act in 

concert to ensure proper expression of individual transcripts given the cell-type and 

environment.  In general, such regulation involves the alteration of either lifespan, 

localization, or translational efficiency of a given RNA molecule.  In doing so, a cell can 

effectively adjust at the post-transcriptional level how many functional gene products are 

produced during a given period of time. 

 

Figure 1.1: Common mechanisms of post-transcriptional gene expression regulation. (Adapted from 
ruo.mbl.co) 

 

One mechanism that in recent years has emerged as an important mediator of post-

transcriptional gene expression regulation is RNA splicing.  The vast majority of human 
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genes contain multiple exons, with adjoining intronic sequences that need to be spliced from 

a transcribed pre-mRNA to form the mature mRNA.  Through a process known as alternative 

splicing (AS) a single pre-mRNA can be variably spliced into unique mature transcripts.  The 

advent of next generation sequencing has led to a wealth of transcriptomic data over the past 

decade.  This, coupled with the development of computational tools that allow proper 

analysis of splicing events (Box 1), has shed light on the widespread nature of AS.  This 

process is extensively controlled in different tissues, cell types, and differentiation stages3–8, 

and dysregulation is believed to be significantly contribute to the development of human9,10 

disease11–13.    

Despite the fact most mammalian genes exhibit alternative splicing14,15, not all of the 

produced transcripts encode functional proteins (Figure 1.2).  In cases where translation does 

occur, different splice variants can lead to different protein functions.  However, in addition 

to these cases, which we define as productive splicing events, AS can also generate 

unproductive isoforms that are not translated and are either subjected to decay or have their 

expression restricted to the nucleus16.  Starting with the latter, this chapter will cover RNA 

splicing as a mechanism of post-transcriptional gene expression and further, discuss the 

relevance such regulation has with respect to human physiology and disease. 

Unproductive alternative splicing 

While its evident alternative splicing in certain cases acts to increase proteomic diversity, it 

can also generate isoforms that either shift the frame of the transcript, altering the coding 

region in the process, and/or lead to the incorporation of a premature termination codon 

(PTC).  The vast majority of these isoforms are subjected to decay17,18, primarily by the 
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Nonsense-Mediated Decay (NMD) pathway19 in the case of PTC-containing transcripts.  

However, there exists a nuclear exosome, which is responsible for degradation of unspliced 

RNAs in the nucleus20,21.  In essence, by preventing the production of the final gene product, 

these events allow a cell to functionally down-regulate expression of a given gene at the post-

transcriptional level.  This mechanism of regulation has been called AS coupled to NMD 

(AS-NMD) or Regulated Unproductive Splicing and Translation (RUST)22, the latter being 

the term we will use to broadly describe all unproductive splicing events (with the exception 

of the fourth chapter, where the term AS-NMD is used due to likely degradation of Oas1g 

transcripts by the NMD machinery).  It has been estimated between 10-30% of mammalian 

genes may be regulated post-transcriptionally through RUST, potentially in a context specific 

manner, through unproductive splicing17,18,23,24. 

 

Figure 1.2. A schematic depiction of constitutive splicing as well as the different forms of alternative 
splicing.  Depicted on the left are the pre-mRNA with the possible splice choices represented.  
Depicted on the right are the possible mature mRNA isoforms from each alternative splicing event.  
The stop sign represents the inclusion of a premature termination codon (PTC), which thus subjects 
the transcript to decay. 
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The coupling of alternative splicing to decay has been shown to affect a variety of 

biological processes.  Perhaps most well studied are the consequences of RUST in the 

autoregulation of splicing factor genes.  Initially discovered to impact the autoregulation of 

serine/arginine-rich (SR) proteins in C. elegans25, RUST is now recognized as a wide-spread 

mechanisms of splicing factor autoregulation24,26–30.  With respect to SR protein 

autoregulation, this occurs through the establishment of a negative feed-back loop.  SR 

proteins bind to cis elements of a pre-mRNA molecule and can promote the inclusion of an 

exon at a nearby junction31.  An increase concentration of a given SR protein can lead to the 

inclusion of a cassette exon in its own transcript, which contains a PTC and thus subjects the 

transcript to NMD decay (Figure 1.3).  Such exons are termed poison cassette exon32.  This 

leads to less production of the SR protein, in turn reducing the inclusion of the poison cassette 

exon.  In addition to autoregulation, cross-regulation can occur where RUST is used to 

regulate the expression of other splice factors, exemplified by the negative regulation of 

PTBP2 by PTBP133.  However, the impact of RUST extends beyond splicing factor 

regulation.  More recently, RUST has been implicated in the regulation of transcripts that 

play a role in cellular differentiation4–6,34–36, chromatin modification37, and inflammation7,38.   

 

Figure 1.3. Schematic depiction of auto-regulatory negative feedback.  The coded splicing factor 
promotes the inclusion of a poison cassette exon, thus regulating its own NMD event.  When levels of 
the splicing factor are high, the unproductive transcript incorporating the poison cassette is 
frequently used, leading to a reduction in splicing factor production.  When levels of the splicing 
factor are low, the productive transcript is frequently used, leading to an increase in splicing factor 
production.  Adapted from Jangi and Sharp 24. 
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In the last decade, with respect to unproductive splicing, IR has emerged as a 

previously underappreciated form of AS that mediates post-transcriptional gene expression 

regulation.  The transient nature of an intron, as well as transcripts that retain introns due to 

swift degradation, has made it hard to identify and quantify retention39.  However, 

improvements in next-generation sequencing have played a large role in changing this.  

While there are cases of IR containing transcripts being translated40–42, the vast majority of 

these isoforms are subjected to decay17,18 either via the NMD pathway19 or the nuclear 

exosome20,21.  Thus, as was the case for RUST mediated by other AS events, IR can 

functionally “tune” the transcriptome of a cell43.  IR as a mechanism of gene expression 

regulation is maybe best exemplified through the study of cellular differentiation.  One 

notable study involved the impact of IR events on granulopoiesis5.  As a granulocyte 

develops from a promyelocyte, IR is found to be dramatically upregulated in a subset of 

junctions, ultimately leading to a decrease in the corresponding proteins expression.  

Accompanying this IR is the downregulation of a number of important spliceosome and 

splicing factor genes.  Many of these IR events are found in genes coding for proteins that 

play an important role in nuclear structure, an interesting finding considering granulocytes 

have a multi-lobed, highly deformable nuclear morphology which allows them to move 

through tissue interstitial spaces44.  One particular example involved LaminB1 (Lmnb1), 

whereby retention in a number of introns in the transcript was upregulated >100-fold and 

mRNA expression was down-regulated 100-fold.  Expression of intronless Lmnb1 reduced 

granulocyte numbers and altered nuclear morphology.  Thus, it was concluded that 
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orchestrated IR coupled with degradation could act as a physiological mechanism of gene 

expression control, ultimately affecting an important cellular differentiation pathway. 

In contrast to regulation via degradation, a scenario where these IR events are spliced 

in a delayed or regulated manner is also possible.  For example, in LPS induced macrophages, 

certain introns were found to represent rate-limiting intermediates, thus acting as a timing 

mechanism altering the kinetics of gene expression38,45–47.  Another scenario involves a group 

of introns that have been defined as “detained introns” (DIs)48.  Such introns are defined as 

being unspliced in otherwise fully spliced polyadenylated transcripts, which in turn leads to 

nuclear retention of the transcript44,48.  While it is possible some degradation occurs in the 

nucleus via the nuclear exosome, these transcripts are insensitive to NMD due to their nuclear 

localization.  Regardless, they negatively regulate protein expression as they are not 

translated. This negative regulation can be removed through post-transcriptional splicing, 

which has been shown to occur in response to certain stimuli4,34,48,49.  Alteration of DI 

splicing can have major physiological consequences.  It was recently shown that in 

glioblastomas (GBM), the arginine methyltransferase PRMT5, upregulated in high grade 

gliomas50,51, regulates the splicing of detained introns through the modulation of snRNP 

biogenesis49. Inhibition of PRMT5 had an antitumor effect, believed to be mediated through 

an increase in DIs.  Many of these DIs were located in genes that were predominantly 

associated with proliferation and neurogenesis. It was concluded that GBMs, through 

PRMT5, assume control of DI splicing allowing them to upregulate a gene expression 

program suited for proliferation.  With respect to slow-splicing junctions and DIs, a great 

deal of work is needed to understand the exact nature of such junctions, to determine the 
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extent to which they are post-transcriptionally spliced as compared to degraded, and to 

understand the factors that regulate them.  

 

Other forms of AS mediated post-transcriptional regulation. 

In contrast to unproductive AS events, productive AS events do not shift the frame of the 

transcript and/or lead to the incorporation of a premature termination codon (PTC).  As such, 

the resulting isoforms have the potential to be translated into functional protein products.  

Still, these AS events have the ability to affect post-transcriptional regulation.  Productive 

AS can lead to a protein product that has an altered function.  In many cases, this new function 

is not consistent with the original function, or even further acts to negatively regulate the 

original function.  This form of regulation is particularly ubiquitous in the innate immune 

response52–60.  For example, there exists an alternative splice variant of the toll-receptor gene 

Tlr4 that introduces an extra exon that contains an in-frame stop codon52.  Tlr4 is a pattern 

recognition receptor (PRR) that is most well-known for recognizing the Gram-negative 

bacteria component lipopolysaccharide, leading to activation of an innate immune 

response61.  This in-frame stop codon leads to the generation of a soluble form of TLR4 that 

still binds LPS, but no longer has the ability to signal to downstream components.  Thus, it 

acts to negatively regulate a Tlr4 response.  Interestingly, many of the AS events that lead to 

negative regulation of the original protein product in the innate immune response are induced 

by LPS stimulation, suggesting that such negative regulation is needed to ensure responses 

are self-limiting52,53,60,62.  
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Beyond these AS events that lead to productive transcripts, AS in non-coding regions 

of a transcript can have a major effect on the stability of a transcript.  One such case involves 

the regulation of transcript stability through AS at junctions located in the 3’ UTR63.  The 3’ 

UTR is an important determinant of transcript stability.  Both miRNAs and RNA binding 

proteins can bind to the 3’ UTR and alter transcript stability.  With respect to miRNAs, 

binding at the 3’ UTR negatively regulates gene expression64.  However, in order for this 

regulation to occur, the miRNA binding site must be present in the transcript.  It has been 

estimated that one third of miRNA binding sites are controlled by AS events65.  This is 

exemplified by a case involving the divalent metal transporter 1 gene (DMT1), which 

contains two alternative 3’ terminal exons66.  One isoform contains an iron response element 

(IRE), the other does not.  The isoform lacking this IRE carries a binding site for the miRNA 

let-7d, which in turn limits expression of this isoform but has no effect on the isoform 

containing the IRE.  Down-regulation of let-7d during erythroid differentiation allows the 

DMT1 isoform without the IRE element to become more prevalent.  While the 3’ UTR plays 

an important role in transcript stability via miRNA regulation, it also has an effect on 

transcript stability due to binding of RNA-binding proteins (RBPs) to the region.  A notable 

example of this type of regulation involves 3′UTR-enriched AU-rich elements (AREs) that 

recruit corresponding RBPs67–70 and modulate transcript stability and translational activity63.  

As was the case with miRNA regulation, ARE mediate regulation can be affected by AS71.  

For example, in the human parathyroid hormone-related protein (PTHrP), three alternative 

3’ terminal exons exist, one of which contains an ARE in its 3′ UTR, making it the least 

stable72.  
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More recently, work in S. cerevisiae has identified a new mechanism by which an 

AS event can post-transcriptionally regulate a gene expression program.  A new class of 

“spliceosome-sequestering” introns were found to play a key role in the cellular response of 

S. cerevisiae to nutrient deprivation73,74.  These introns are either retained, forming a hairpin 

with the 5’ UTR73, or they are first excised and then stabilized through interactions with 

spliceosomal proteins74.  Then, under stress, these introns modulate splicing by sequestering 

specific spliceosome components.  In the case of S. cerevisiae cells under nutrient 

deprivation, this modulation of splicing leads to dampen the expression of highly expressed 

genes as a means of energy conservation during starvation.75  It will be interesting to see if a 

similar mechanism of gene expression regulation occurs in both higher eukaryotes and other 

physiological conditions.  

 

Regulation of AS Events 

While a large body of work has identified and classified a number of the AS events that 

mediated post-transcriptional regulation, it remains unknown the extent to which these events 

are actively regulated by an external input.  A simpler scenario involves transcripts being 

split between isoforms at a constant ratio.  As such, the combined effect of the AS on a gene 

expression program remains relatively constant.  For example, in cases of unproductive 

splicing where AS is coupled with NMD, the reduction of mRNA abundance occurs by a 

relatively constant factor.  There are a number of examples of such events, including in the 

widely expressed protease Calpain-10 which has four isoforms that incorporate PTCs and 
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have shown to be consistently downregulated76,77. However, in all of these situations, such a 

conclusion is quite difficult to make due to the potential for undiscovered regulatory inputs.  

Contrary to constitutive unproductive splicing, it is also possible for external factors 

to regulate splicing mediated post-transcriptional gene expression regulation.  For example, 

a change in the abundance of splicing factors can promote the production of an unproductive 

splicing event.  This in turn will reduce the number of transcripts and the amount of 

functional protein products.  This is exactly what happens in the aforementioned work 

involving orchestrated IR during granulocyte differentiation as the observed IR is 

accompanied by downregulation of spliceosomal components and trans-acting splicing 

factors5.  In contrast, the factors that regulate other seemingly orchestrated AS events that 

occur in response to a given stimuli remain poorly understood.  During an innate immune 

response, there is a significant increase in isoform diversity78.  While some factors have been 

identified that play a role in either “safe-guarding” proper splicing or regulating a given AS 

event7,62,79, it remains unknown why the majority of these AS events occur in the presence 

but not absence of stimulation.  This is epitomized by the aforementioned case with Tlr4.  It 

is possible that some of this increase in AS is due to burden on the spliceosome, akin to what 

is seen upon oncogenic MYC activation80.  Stimulation leads to an orchestrated 

transcriptional response which in turn increases the amount of RNA that needs to be spliced.  

Regardless, new RNA centric methods have been developed that allow for the discovery of 

RNA/protein interactions.  Methods like RAP-MS81 and ChIRP82, promise to help identify 

trans-acting factors that regulate these AS events and thus, contribute to post-transcriptional 

gene expression regulation.  In fact, the third chapter of this thesis describes use of RAP-MS 

to discover an RNA-protein interaction that aids in the splicing efficiency of an IR event in 
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Irf77.   This protein, BUD13, was found to be enriched on Irf7 transcripts using RAP-MS, 

and deficiency of BUD13 led to increased IR in Irf7.  This increased IR was associated with 

impaired induction, a dampened type I interferon response, and consequently an inability to 

clear virus.  As these methods continue to improve, our understanding of external regulation 

of AS events affecting gene expression should continue to blossom.   

 

Conclusion 

Advancements in next-generation sequencing technologies have drastically improved our 

understanding of AS.  This in turn has led to the development of AS as a mechanism of gene 

expression regulation.  Increased wealth of transcriptomic data from a wider variety of cell-

types and more physiological conditions promises to further improve our understanding of 

such regulation.  Further, seeing as dysregulated AS has been shown to be widespread in a 

variety of diseases, from cancer to autoimmunity, our understanding of AS mediated gene 

expression regulation could shed light on the relationship between alterations in isoform 

abundance and disease pathogenesis13,83–86.   

Inherently, regulation at the post-transcriptional level might seem inefficient.  Why 

spend the resources to transcribe a transcript if it is destined for degradation?  First and 

foremost, the very fact introns exist and are transient in nature argues against the idea that 

the cost of transcription is prohibitive22.  A significant majority of transcribed sequence 

(~90% in humans87) is spliced and discarded. As such, it can be argued the fine-tuning 

capabilities inherent to splicing based post-transcriptional regulation far outweigh the 

cellular cost of additional transcription.  Additionally, it is well understood that 

transcriptional regulation is largely a cooperative venture88, epitomized by complexes like 



 

 

13 

the interferon-β (IFN-β) enhanceosome89.  As transcriptional regulation is not simply one 

protein interacting with one DNA sequence, but instead a multitude of proteins interacting 

with a host of other proteins and a variety of DNA sequences, it is quite possible that once 

transcriptional control has been placed on a system, changing it quantitatively is difficult.  

Thus, secondary mechanisms, like mRNA splicing, are needed to fine-tune the gene 

expression levels of select transcripts.  
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Box 1 – Computational Analysis of RNA Splicing 

There are a number of widely used computational tools designed to analyze and quantify 

differential splicing in RNA-seq data.  Broadly, they fall into two main categories.  The 

first category involves tools that utilize a transcript-based approach, whereby an 

expectation-maximization algorithm is used to estimate isoform abundance90,91.  Recent 

progress in pseudo-alignment has allowed for the development of tools like kallisto92 and 

Salmon93, which perform alignment free isoform quantification and are computationally 

extraordinarily efficient.  Still, the identification and quantification of full-length 

transcripts from short reads is non-trivial and further, in the case of pseudo-alignment, the 

approach is inherently sensitive to the input transcript annotations (i.e. an input recording 

the precise location of intron and exon boundaries), which may be incomplete or 

inconsistent94,95.   

The second category involves tools that utilize an event-based approach.  These 

tools ignore the estimation of isoform expression and instead, detect alternative splicing 

events by comparing reads at a given junction between multiple samples and quantifies 

using a metric like percent spliced in (PSI/Ψ).  There are a variety of commonly used tools 

in this category (i.e. MISO96, rMATS97, MAJIQ98, Leafcutter99, SplAdder100, JUM101 and 

Whippet102).  Each has its own intricacies, most notably the statistical methods used to 

quantify differences between data-sets and the extent to which they rely on a pre-annotation 

of known alternative splicing events.  The latter can alter the number of events detected as 

programs that can augment an annotation or are annotation free are inherently able to detect 

a wider range of alternative splicing events.  However, for a given set of alternative splicing 

events, the tools produce very similar PSI values95.    



 

 

15 

Overview of thesis 

The overarching theme behind this thesis is the study of RNA splicing as a means of post-

transcriptional gene expression regulation.  In particular, this work focuses on how splicing-

mediated post-transcriptional regulation affects an inflammatory response.  Central to an 

inflammatory response is a robust and coordinated gene expression program.  Tight 

regulation of this gene expression program is essential as small alterations can shift the 

balance from protective to destructive immunity.  While transcriptional control certainly 

drives such a regulated gene expression program, post-transcriptional regulation has been 

shown to be essential to aid in the fine-tuning of expression.  Inherently, post-transcriptional 

regulation appears inefficient.  Why transcribe a transcript simply to throw it away?  But as 

will be discussed, transcriptional regulation is largely a cooperative venture, involving a host 

of proteins and a range of cis elements.  Thus, secondary mechanisms are needed to fine-

tune the gene expression levels of select transcripts.  The benefit of quickly fine-tuning 

expression of select transcripts post-transcriptionally far outweigh the cellular cost of 

additional transcription, especially in the context of a tightly regulated gene expression 

program like inflammation. 

The first chapter will present background information with respect to mRNA splicing 

and its ability to mediate post-transcriptional regulation, particularly in the fine-tuning of an 

inflammatory response.  Chapter 2 will cover our work quantifying the rates of intron splicing 

throughout the NF-κB transcriptome, and our identification of intron retention events that 

remain extraordinarily unspliced throughout a stimulation time-course.  In Chapter 3, we 

focus on one such retention event in Irf7, the master regulator of the type I interferon 
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response, and attempt to find trans-acting factors that regulate the level of retention.  Using 

RNA Antisense Purification followed by Mass Spectrometry (RAP-MS), we identified the 

RNA binding protein BUD13 as enriched on Irf7, and further perform Bud13 knockdown 

studies to show altered Irf7 induction and an impaired anti-viral response in macrophages 

deficient of Bud13.  Chapter 4 expands our study of splicing as a post-transcriptional 

mechanisms of gene expression regulation during inflammation by focusing on alternative 

splicing events beyond intron retention.  While it is true that alternative splicing (AS) can act 

to increase proteomic diversity, it can also generate unproductive isoforms that incorporate 

a premature termination codon (PTC), and are thus subjected to NMD or exosomal decay.  

We focus on one frequently used unproductive splicing event in oligoadenylate synthetase 

1g (Oas1g), an important murine anti-viral response factor, and show that removal of the 

alternative splice site mediating this AS event increases expression of Oas1g and 

consequently, improves the ability for macrophages to clear viruses.  Finally, Chapter 5 

concludes this thesis by offering insight regarding the future directions and potential 

implications of this work. 
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Abstract 

The process of inflammation involves a coordinated gene expression program.  Tight 

regulation of this gene expression program is crucial to ensure inflammation remains 

properly scaled.  Here, we developed a RNA “hybrid-capture” purification technique to 

enrich for specific cDNAs relevant to the NF-κB pathway, which thus allowed us to 

investigate the role of pre-mRNA splicing in the regulation of inflammatory gene expression.  

Our results support the notion that most introns in mRNA are spliced linearly and co-

transcriptionally (i.e. the earlier an intron is transcribed, the earlier it will be spliced).  

However, a number of transcripts contain introns that are spliced at significantly slower rates 

than neighboring introns. In many instances, poor splicing at such junctions is attributable to 

evolutionarily conserved poor splice donor sequences.  This has led to the idea that specific 

introns, so called “bottleneck” introns, can regulate the expression of genes through the 

timing of splicing, as well as decay of intron-containing transcripts. 
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Introduction 
Essential to an effective inflammatory response is a tightly regulated gene expression 

program.  Small alterations to this program can shift the balance from protective to 

destructive immunity1.  While transcription and protein turnover are the most well-

scrutinized area of gene expression regulation2–5, there have emerged a variety of post-

transcriptional mechanisms that play a role in the fine-tuning of an inflammatory gene 

expression program i.e. RNA stabilization6, RNA deadenylation7, and microRNA 

regulation8.  We and others have recently investigated the role of RNA splicing as a means 

of post-transcriptional gene expression regulation9–13.   

RNA synthesis begins with the initiation of transcription by RNA Polymerase II (Pol 

II) at the promoter region of a gene.  Pol II synthesizes RNA as it elongates through the DNA 

template until transcription is terminated many kilobases downstream14.  This pre-mRNA 

contains many intervening sequences (introns) that are excised allowing the remaining 

sequences (exons) to be concatenated together to form a mature eukaryotic RNA transcript15.  

Following the completion of transcription, pre-mRNA molecules must be cleaved from the 

template DNA and polyadenylated at the 3’ end16.  Then, full-length completely spliced 

transcripts can be released into the cytoplasm. In cases where a transcript retains an intron, 

such a transcript can remain in the nucleus and undergo delayed splicing17, or be degraded 

via the nuclear exosome or the NMD decay machinery in the cytoplasm18.  This allows a cell 

to fine-tune when and how much message is produced at the post-transcriptional level.  While 

there are exceptions, it is rare for a transcript with a retained intron to contribute to proteomic 

diversity19.   
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In order to understand the role of splicing with respect to the timing and levels of 

gene expression during an inflammatory response, a proper analysis of the rate of pre-mRNA 

processing is needed.  Current methods, namely qPCR and RNA-seq, have limitations with 

respect to such analyses.  qPCR is inherently limited by the number of junctions with which 

can be analyzed, and because of the relative number of transcripts involved with the 

inflammatory response as compared to total mRNA, RNA-seq results in limited resolution 

at the majority of induced junctions.  To overcome this sequencing depth problem, we 

developed a RNA “hybrid-capture” purification technique to enrich for specific cDNAs 

relevant to the NF-κB pathway, which thus allowed us to investigate the role of pre-mRNA 

splicing in the regulation of inflammatory gene expression.  We found that the majority of 

splicing is co-transcriptional.  However, there were junctions in important inflammatory 

transcripts that were significant outliers, remaining primarily unspliced throughout a 

stimulation time-course.  We hypothesize that these outliers, which we deem “bottleneck” 

introns, regulate the timing and levels expression of their respective genes through the delay 

of splicing and decay of intron containing transcripts.   

Results 
Hybrid-Capture Optimization 

The first step in the project involved implementing the “hybrid-capture” purification 

technique (Figure 1A)20.  This technique utilizes biotinylated 120-nucleotide sense strand 

probes that are able to form strong hybrids with the target, antisense cDNA.  These probe-

DNA complexes are captured with streptavidin-coated beads and then undergo multiple 

washes before the captured sequences are eluted into a basic solution.  Probes were designed 
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that were targeted to the last exon of all of the  >300 genes in the NF-κB transcriptome 

previously shown to be highly induced by an LPS immune response in macrophages10.  

Oligo(dT) priming and the choice of the last exon as a capture target enabled us to sequence 

complete transcripts from the standpoint of the splicing machinery, because all introns will 

have been transcribed in such transcripts.  To ensure efficient pull-down of targeted genes 

120bp probes were created that were tiled to sequences form the last exons of transcripts 

using a process called microarray printing.  The oligonucleotides for each fragment were 

synthesized via microarray printing, a T7 promoter was appended through the use of PCR, 

and biotinylated RNAs were made with an RNA Pol reaction from the PCR product.  qPCR 

was used to measure efficiency of “pull-down”, which showed significant enrichment for 

targeted transcripts and correspondingly, depletion of the non-targeted transcript RPL32 

(Figure 1B-D).   

Upon optimization of the “hybrid-capture” protocol, our next goal was to optimize 

the library preparation protocol in order to be able to submit the samples for initial Illumina 

sequencing.  In a typical library preparation for Illumina RNA-Seq, samples are reverse 

transcribed and sheared to ~200 bp.  Then, samples are end-repaired and dA-tailed to allow 

for the ligation of a specific Illumina adaptor.  These adaptors allow for further non-biased 

amplification via PCR and are necessary for sample bridge formation on flow cell, an 

essential component of Illumina’s sequencing by synthesis (SBS) approach.  Despite the 

optimization we performed on the hybrid-capture, the technique is only able to effectively 

“pull-down” a limited number of transcripts.  This presents a number of issues with respect 

to sequencing library preparation as a typical Illumina library preparation protocol requires 

>1ng of input DNA.  As we capture much less than 1ng, we needed to develop a way to 
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amplify these “pulled-down” transcripts in a manner that introduces no length or sequence 

biases. The molecular biology to do this successfully involves investigation and feasibility 

studies of several methods of Rapid Amplification of cDNA Ends (RACE).   

Our initial approach utilized T4 RNA ligase to perform a single-stranded ligation 

that adds a specialized adaptor sequence onto samples.  As the samples had been reverse 

transcribed with a special 5’ poly-A primer that contained a unique flanking handle, the 

ligation of the second handle to the 3’ end of the samples would allow for non-biased whole 

sample PCR enrichment.  Two PCR primers specific for the 5’ and 3’ handles could be 

designed to amplify the entire sample.  At the extremely low concentration of DNA that 

we were working with, this ligation proved to be problematic.  Our analysis showed that 

there was only a 0.01% alignment between our reads and the reference genome.  Further 

inspection of the sequencing reads showed a plethora of reads that contained the sequence 

of the adaptor that was used in the T4 RNA ligase reaction.  We concluded that the 

extremely low concentration of the sample hindered the efficiency of the ligation reaction, 

in turn preventing us from amplifying our sample. 

Next, we tried to use terminal deoxynucleotidyl transferase (TdT) to add the 3’ 

handle to the captured DNA sample.  TdT is a template independent polymerase that is 

able to add specific deoxynucleotides to the 3’ end of DNA molecules21.  TdT plays an 

important role in V(D)J recombination as it is able to add N-nucleotides during antibody 

gene recombination, allowing for junctional diversity21.  We attempted to first add a poly-

cytosine handle by adding TdT and a specific concentration of deoxycytidine triphosphate 
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(dCTP). At 2.5 uM, a ~5-25 cytosine handle was shown to be added.  However, the 

subsequent PCR amplification reaction involving the complementary poly-guanine PCR 

primer proved to be extremely inefficient.  Attempts made using different nucleotide base 

handles and PCR primer combinations had similar amplification issues.  

Finally, our last attempt at RACE exploited the ability of MMLV reverse 

transcriptase to “template switch”.  Prior to the hybrid capture, the extracted RNA needs to 

be reverse transcribed to cDNA.  Because the MMLV reverse transcriptase enzyme has 

terminal transferase activity22, when it reaches the 5’ end of an RNA molecule, it adds a few 

additional nucleotides (primarily deoxycytidine).  A special “template-switch” 

oligonucleotide that contains a poly(G) sequence at its 3’ end is simultaneously added to the 

reverse transcription reaction.  The 3’ end of this oligonucleotide base pairs with the 

deoxycytidine stretch that the MMLV reverse transcriptase added to the synthesized cDNA.  

Reverse transcriptase then is able to switch template, adding the complementary sequence to 

the “template switch” oligonucleotide to the end of the synthesized cDNA molecule.  This 

“template switch” method of RACE provides the second handle needed for the non-biased 

amplification.  We tested the method by performing the “template switch” reverse 

transcription on RNA from LPS stimulated bone-marrow derived macrophages (BMDMs). 

Initial libraries showed read alignments >70% (data not shown).  Comparison of the “hybrid-

capture” derived sequencing data to data from LPS stimulated BMDMs that had not been 

captured10 highlights the effectiveness of the capture.  Counting reads that map to NF-κB 

transcriptome (i.e. reads of interesting transcripts induced by LPS stimulation), ~70% of the 

reads from the capture data set map to the transcriptome as compared to ~2% of the reads 
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from the non-capture data-set (Figure 2A-C).  This makes our protocol more cost-efficient, 

as greater depth can be achieved for transcripts of interest without an increase in the total 

number of reads sequenced.  

Splicing Analysis 

Following optimization, chromatin-associated captured transcripts from BMDMs induced 

with TNFα were sequenced.  To quantify splicing, we modified we modified what is known 

as the Completed Splicing Index (CoSI) that was originally published as a part of the 2012 

ENCODE project23. The CoSI metric from the ENCODE project offers insight into the 

splicing of introns around a single exon (i.e. the extent of splicing of the introns upstream 

and downstream of a given exon).  As we wanted to narrow in on intron specific splicing, we 

modified this CoSI value so that it would only provide us with a ratio for the extent of splicing 

around a single intron (Figure 3A).  CoSI values of 1 and 0 imply near-complete splicing and 

virtually unspliced states, respectively.  Using the CoSI metric, quick induction of IκBα can 

be seen by the significant drop in the CoSI values within the first 5 minutes of TNFα 

stimulation (Figure 3B).  This drop corresponds to active transcription of IκBα.  Further, this 

CoSI data again supports the conclusion that splicing occurs primarily co-transcriptionally.  

The closer an intron is to the 3’ end of the transcript, the lower its CoSI value and thus, the 

less likely it is to be completed splicing upon completion of transcription.  Strikingly, the 

final intron deviates significantly in its kinetic trajectory, as its read density does not obey a 

similar relative reduction. This might be due to a lag in terminal intron splicing24 or a feature 

of splicing that accompanies transcript release from chromatin.   A global analysis of CoSI 

data using a single time point (12 minutes) from the TNFα stimulation time course showed 
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this statement more conclusively.  Introns were grouped based on their location to the 3’ end 

of their respective transcripts.  From these groups, we calculated the average CoSI values.  

As shown in Figure 3C, terminal (3’) introns have lower CoSI values on average than 5’ 

introns.  This agrees with a recently published co-transcriptional splicing model developed 

by the Hoffmann lab at UCLA25.  Hoffmann models splicing as a series of sequential 

reactions where the time of each reaction is an independent, exponentially distributed random 

variable (with an associated rate constant).  In turn, the probability that an intron has been 

spliced at a certain time is dependent only on the time following synthesis of the intron and 

the rate at which the intron is spliced. Assuming similarity in the rates of splicing between 

introns, an assumption which will later be shown to not always be valid, this model predicts 

terminal introns will have much lower co-transcriptional splicing efficiencies as they are 

synthesized last and thus, there is less time between synthesis and completion of transcription 

/ polyadenylation.   

We next used the CoSI metric to study splicing on a global scale across all time 

points.  Figure 4A represents the CoSI values in Tukey boxplot format for all introns in the 

NF-κB transcriptome at different TNFα stimulation time points.   The majority of introns 

splice relatively quickly and consistently.  Their CoSI values dip with the initiation of 

transcription following stimulation; however, the introns transcribed during this induction 

phase are spliced out and the CoSI values return to their non-stimulated levels in well under 

60 minutes.  In saying this, there are numerous splicing outliers that reveal delayed 

inflammatory introns.  In particular, the fourth intron of IRF7, shown in Figure 4B, 

epitomizes a delayed intron that is spliced at a much slower rate than would be expected and 

can be seen as an outlier on the plot.  IRF7 is one of many genes among our list of NF-κB 
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induced genes that have an intron that splice with notably slow kinetics.  Other inflammatory 

genes with a conspicuously and consistently unspliced intron include: CD40 (Figure 5A), 

DAXX (Figure 5B), A20, CXCL2, BAX, IκBɛ, IL27, DUSP2, MX1, XBP1, and CD79a.  

We hypothesize that the timing of expression of certain of these genes may represent a 

biological mechanism delaying or limiting their expression and that regulation of intron 

splicing may be an important avenue in understanding the processes limiting inflammation. 

Thus, we have given them the name “bottleneck” introns as they presumably prevent the 

completion of the full-length spliced transcript well past the completion of transcription.  It 

is interesting to note that many of these “bottleneck introns” contain evolutionarily conserved 

splice donors or acceptors that differ from the consensus donor/acceptor sequences.  Figure 

6 depicts the case for the poorly spliced fourth intron of IL27, which has a splice donor that 

both differs from the consensus sequence and is conserved across a variety of species.   We 

hypothesize that this non-consensus, “poor” splice donor plays a role in the regulation of 

expression of the IL27 gene, thus the reason it is evolutionarily conserved.  

Next, we measured the rates of splicing across the transcriptome.  As ongoing 

transcription complicates the process of quantitatively analyzing splicing rates and intron 

half-lives, we decided to again stimulate BMDMs with TNFα but halt transcription using 

actinomycin D (ActD) to get at meaningful quantification of the splicing pattern.  ActD is 

able to stop transcription by binding DNA at the transcription initiation complex and 

preventing the elongation of the RNA chain by RNA polymerase26.  Once transcription is 

stopped, it becomes feasible to accurately measure the rate of intron disappearance.  BMDMs 

were first stimulated with TNFα and then, 8 minutes after stimulation, were treated with 

ActD.  Whole cell RNA was enriched for mRNAs from the NF-κB transcriptome and 
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sequenced.  Whole cell RNA was used as opposed to chromatin-fractioned RNA to prevent 

biasing for introns in transcripts and thus, artificially increasing their half-lives.  Figure 7A 

shows the IκBα sequencing reads for our TNFα / ActD time course.  Following the addition 

of ActD, intron levels rapidly decreased indicating splicing without simultaneous 

transcription.  To quantify intron half-lives, we performed an exponential fit of the CoSI data 

following the addition of the ActD (Figure 7B, C).  Then, by using the fit to determine the 

time it takes for half the intron to disappear (in other words, the time it takes for the CoSI 

value to get to the midpoint of its maximally unspliced and maximally spliced levels), we 

could quantify the rate with which each intron was being spliced.  The majority of introns 

had relatively small (<250 seconds) half-lives (Figure 7B), indicating the efficiency with 

which they were being spliced.  However, there was a great deal of heterogeneity in these 

half-life values. The distribution of half-lives for introns in the NF-κB transcriptome ranged 

from 30s to 10 minutes. 

Finally, we looked at the correlation between splicing rates and transcriptional gene 

expression groups.  Previous work by the Smale group at UCLA used RNA-Seq transcript 

expression levels to group genes in the NF-κB transcriptome as either early, intermediate, or 

late induced (Figure 8). With our TNFα stimulation time course data, we used Tukey 

boxplots to globally represent the CoSI values for the introns within each of these groupings 

(Figure 8A).  As seen in Figure 8A, we are able to show that early genes tend to splice quicker 

than intermediate genes, which tend to splice quicker than late genes.  Although there are 

outliers, the mean and the 25th percentile or the lower edge of the IQR box shifts lower the 

later the expression of the grouping.   This result naturally fits with a hypothesis whereby the 
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rate at which introns of given transcript splice have the ability to effectively regulate the 

timing of the expression of a given gene.   

Discussion 

In this study, we sought to investigate the role of pre-mRNA splicing in the regulation of 

inflammatory gene expression.  We developed a “hybrid-capture” method which allowed us 

to enrich for transcripts in the NF-κB transcriptome.  We found that the majority of junctions 

splice efficiently.  Further, the closer an intron is to the 3’ end of the transcript, the lower its 

CoSI value and thus, the less likely it is to be completed splicing upon completion of 

transcription, agreeing with a largely co-transcriptional model of splicing23,27,28.  In saying 

this, we found considerable heterogeneity in splicing efficiency among these introns, with a 

large number of splicing “outliers” which remain significantly unspliced throughout a 

stimulation time-course.  One explanation for such outliers comes from analysis of splice 

donor sequences.  A number of poorly spliced introns contained evolutionarily conserved 

weak 5’ splice donors.  However, there were a significant number of introns that did not 

contain such sequences, which suggests splice donor strength is just one of the regulatory 

mechanisms responsible for poor splicing.  It is likely factors like intron GC content, size, 

branch point strength, and 3’ splice site strength, which have been shown to correlate with 

poor splicing in other work29, contribute to the observed poor splicing efficiency of given 

junctions.  To determine more specifically the rates of slowly splicing introns, we used ActD 

to stall transcription and monitor intron half-lives.  Supporting the idea of heterogenous rates 

of splicing, while most introns spliced within 20-40s, some were delayed significantly and 

took >5 minutes to splice.   
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The fact that these inefficiently spliced introns occur in important inflammatory 

genes, some with the seemingly negative characteristic of having an evolutionarily conserved 

poor splice donor sequence, begs the question as to why they exist?  We hypothesize that 

these junctions act to either slow-down, or limit gene expression.  Again, at the heart of an 

inflammatory response is a tightly regulated gene expression program. Regulation of this 

gene expression program is crucial, as small changes can shift the balance away from 

protective immunity toward either nonexistent or destructive immunity.  Regulation at the 

post-transcriptional level through splicing can allow a cell the ability to quickly fine-tune 

when and how much of a given gene product is produced without altering the transcriptional 

landscape of a cell. With respect to the transcripts containing poorly spliced introns, it stands 

to reason the weak introns acts to dampen protein output, perhaps as a means to mitigate 

what otherwise would be an unchecked or inappropriately scaled response.  As splicing 

inherently involves a variety of trans-acting factors, future work aimed at identifying such 

factors that potentially regulate such splicing events will be important to our understanding 

of this form of post-transcriptional regulation.   

In conclusion, the hybrid capture approach provides a large number of junctional 

sequencing reads, which permitted unique insight into the efficiency and kinetics of splicing 

of mature transcripts, and revealed surprising heterogeneity. We suggest that this 

methodology and analysis could have wider applicability for other gene induction situations. 
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Materials and Methods 
 
Animals  

The California Institute of Technology Institutional Animal Care and Use Committee 

approved all experiments. C57BL/6 WT mice were bred and housed in the Caltech Office of 

Laboratory Animal Resources (OLAR) facility. C56BL6/J mice were sacrificed via CO2 

euthanasia and sterilized with 70% ethanol. Femur and tibia bones harvested and stripped of 

muscle tissue. Bone marrow cells were resuspended in 20mL of fresh DMEM. 2.5 *106 

bone-marrow cells plated in a 150mm dish in 20mL of BMDM Media (DMEM, 20% FBS, 

30% L929 condition media, and 1% Pen/Strep) and grown at 5% CO2 and 37°C. BMDM 

media was completely replaced on day 3 as well as a supplemental addition of 5mL L929 

condition media on day 5.  

 

Cell Culture  

Human embryonic kindey cells (HEK293T) from ATCC were cultured in DMEM 

supplemented with 10% FBS and 1% Pen/Strep. Cell lines were maintained at 37°C in 5% 

CO2. 

 

RNA Fractionation  

Confluent 10-cm dish of mature BMDMs were scraped into 400mL cold NP-40 lysis buffer, 

APJ1 (10mM Tris-HCl (pH 7.5), 0.08% NP-40, 150mM NaCl). Lysed cells layered onto 

1mL cold sucrose 322 cushion, APJ2 (10mM Tris-HCl (pH 7.5), 150mM NaCl, 24% w/v 

sucrose) and centrifuged for 10min at 4°C and 13000 rpm. The supernatant from this spin 
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represents the cytoplasmic RNA fraction, which is immediately added to 3 volumes of 100% 

ethanol and 2 volumes of buffer RLT (4M GuSCN, 325 0.1M b-mercaptoethanol, 0.5% N-

lauroyl sarcosine, 25mM Na-citrate, pH7.2) and stored at 80°C until ready to purify RNA. 

Pellet, containing intact nuclei, is resuspended in 500mL TRIzol reagent. If the pellet was 

difficult to dissolve, it was heated at 50°C with occasional vortexing. 100mL chloroform 

added and shaken vigorously for 15-20 s; allowed to phase separate at room temperature for 

5min. Tube centrifuged at 4°C and 12000 x g for 15min. Clear upper aqueous phase removed 

to a new tube, ensuring white DNA mid-phase is not removed, and is immediately added to 

3 volumes of 100% ethanol and 2 volumes of buffer RLT and stored at 80°C until ready to 

purify RNA. RNA is purified according to QIAGEN RNeasy column protocol and eluted in 

30mL nuclease-free H2O. RNA samples are DNase treated with Turbo-DNase and stored at 

80°C. 

 

cDNA Pulldown 

cDNA is added to biotinylated RNA probes, generated by Ampliscribe T7-Flash Biotin Kit 

(Epicentre), and incubated at 74°C for 4.5min to denature followed by addition of 1 volume 

of 2X hybridization (HYB) buffer (1M LiCl, 40mM Tris-HCl (pH 7.5), 20mM EDTA (pH 

8.0), 4M Urea, 0.5% Triton X-100, 1% SDS, 0.2% Na-deoxycholate). Reaction incubated at 

70°C for 30min. 0.3mg BioMag streptavidin beads (Bang Laboratories Inc.), washed 3 times 

in 1X HYB buffer, added and reaction incubated at 70°C and 1100rpm for 20min to capture 

cDNA-probe complex. Beads pelleted on magnet, followed by 2 washes of 150µL with 

preheated 1X HYB at 70°C, 1 wash of 150µL with wash #4 (160mM LiCl, 20mM Tris-HCl 

(pH 7.5), 10mM EDTA (pH 8.0), 2M Urea, 0.25% Triton X-100, 0.5% SDS, 0.1% Na-
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deoxycholate), and 1 final wash with wash #5 (40mM LiCl, 20mM Tris-HCl (pH 7.5), 10mM 

EDTA (pH 8.0), 2M Urea, 0.25% Triton X-100, 0.5% SDS, 0.1% Na-deoxycholate). Beads 

resuspended in 35µL of base elution buffer (125mM NaOH, 10mM EDTA (pH 8.0), 10mM 

Tris-HCl (pH 7.5) and incubated at 74°C and 1100rpm for 5min. Beads pelleted and 30µL 

cDNA containing supernatant removed to a new tube. Solution neutralized with 6.25µL 

neutralization buffer (800mM HCl, 160mM Tris-HCl (pH 7.5), 20mM EDTA (pH 8.0)). 

Immediately after neutralization, cDNA purified by 1.0X Sera-Mag treatment as described 

previously above and eluted in 45µL and stored at -80°C.  

 

RNA-Sequencing Analysis  

Sequencing was performed on a HiSeq 2500 High Throughput Sequencer (Illumina). Single-

end 50-mer reads were aligned using Tophat v2.1.130. Gene expression was determined using 

Cufflinks v2.2.1 and the FPKM (Fragments Per Kilobase Million) metric31. 
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Figure Legends 
 
 
Figure 1. (A) Schematic of RAP.  Biotinylated nucleotide probes are first hybridized to 

cDNA.  This probe-cDNA complex is then bound to streptavidin magnetic beads, which 

allows for non-hybridized sequences to be washed away.  The “captured” cDNA is then 

eluted from the beads and ultimately sequenced.  (B) A comparison of the total transcripts 

pulled down by the A20, IκBɛ, TNFα, and IκBα probes as compared to the non-targeted 

RPL32.  (C) Fold depletion of transcripts following “hybrid-capture” in log scale.  (D) As in 

(C) but in linear scale.  

 

Figure 2. (A) Comparison of reads that map to NF-κB transcriptome with hybrid capture or 

without hybrid capture. (B) Number of reads that map to the NF-κB transcriptome (left) and 

number of reads sequenced (right).  (C) Percent of reads that map to the NF-κB transcriptome 

with hybrid capture (red) or without hybrid capture (blue). 

 

Figure 3. (A) CoSI metric is a ratio comparing the number of reads that map across a splice 

junction to the number of reads that contain partial intron and exon sequences.  A CoSI value 

of 1 indicates that a junction is completely spliced, whereas a CoSI value of 0 indicates that 

no splicing has occurred.  (B) A plot depicting the change in CoSI for chromatin-associated 

RNA at different timepoints of TNFα stimulation.  (C) The RefSeq annotation and the 

sequencing reads for the 20 minute timepoint are shown below the CoSI plot. (D) Plot 

depicting CoSI with respect to intron position. 
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Figure 4. (A) Tukey boxplot representing CoSI values at different TNFα stimulation time 

points.  The top of the ‘box’ represents the 75th percentile value; the bottom of the ‘box’ 

represents the 25th percentile value.  The space between represents the interquartile difference 

(IQR) and the line inside the box represents the mean CoSI value.  The ‘whisker’ is calculated 

by subtracting 1.5*IQR from the 25th percentile.  Values lower than the whisker are classified 

as ‘outliers’.  (B) Histogram of RNA-seq reads for IRF7 throughout a TNFα stimulation 

time-course.  The retained fourth intron is highlighted in yellow. 

 

Figure 5. Histogram of RNA-seq reads for CD40 (A) and DAXX (B) throughout a TNFα 

stimulation time-course.  The retained intron is highlighted in yellow. 

 

Figure 6. (A) A depiction of the sequencing reads that map to the IL27 gene at 40 minutes 

of TNFα stimulation.  (B) Consensus sequence for splice donors.  The first four bases are 

usually gtaag or gtgag.  (C) The mouse NCBI37/mm9 RefSeq annotation for IL27. The 

fourth intron has the sequence gtaga, which differs from the consensus sequence.  (D) A 

comparison of the splice donor sequence for the fourth intron of IL27 shows the sequence is 

conserved across a variety of species.  

 

Figure 7. (A) Histogram of RNA-seq reads showing induction of IκBα in response to TNFα 

and ActD.  Time at which TNFα and ActD are added is depicted.  (B) Histogram of intron 

half-lives.  (C) Scatter plot representing the intron half-life on the x-axis and the minimum 

CoSI value during the time-course on the y-axis.  
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Figure 8. (A) Tukey boxplot representing CoSI values at different TNFα stimulation time 

points for early, intermediate, and late induced genes. (B) Expression data from the Smale 

group depicting the timing of expression for genes classified as early, intermediate, or late.    
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Abstract 

Intron retention (IR) has emerged as an important mechanism of gene expression control, but 

the factors controlling IR events remain poorly understood. We observed consistent IR in 

one intron of the Irf7 gene and identified BUD13 as an RNA-binding protein that acts at this 

intron to increase the amount of successful splicing. Deficiency in BUD13 was associated 

with increased IR, decreased mature Irf7 transcript and protein levels, and consequently a 

dampened type I interferon response which compromised the ability of BUD13-deficient 

macrophages to withstand VSV infection. Global analysis of BUD13 knockdown and 

BUD13 cross-linking to RNA revealed a subset of introns that share many characteristics 

with the one found in Irf7 and are spliced in a BUD13-dependent manner. Deficiency of 

BUD13 led to decreased mature transcript from genes containing such introns. Thus, by 

acting as an antagonist to IR, BUD13 facilitates the expression of genes at which IR occurs. 
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INTRODUCTION 

Three forms of alternative processing of a pre-mRNA have been described: differential 

inclusion of an exon, alternative splice site selection, and intron retention (IR).  The latter, 

IR, has emerged as a previously underappreciated mechanism of post-transcriptional gene 

regulation.  Unlike the two alternative splicing events, IR rarely contributes to proteomic 

diversity (Schmitz et al., 2017).  However, IR events have the ability to act as negative 

regulators of gene expression by: (1) delaying onset of gene expression by slowing down 

splicing kinetics (Hao and Baltimore, 2013), (2) increasing potential nuclear degradation by 

nuclear exosomes, (3) increasing potential cytoplasmic degradation by nonsense mediated 

decay (Wong et al., 2016). 

Recent genomic studies suggest IR plays an important role in the regulation of gene 

expression in a wide range of processes including cellular differentiation (Wong et al., 2013; 

Yap et al., 2012) and tumorigenesis (Dvinge and Bradley, 2015).  Further, widespread IR 

throughout mouse and human cell and tissue types has led to the idea that IR events act to 

functionally “tune” the transcriptome of a cell (Braunschweig et al., 2014).  However, with 

few exceptions, the factors that control IR events and thus potentially shape gene expression 

programs of cells, remain poorly understood.  

Irf7 is an interferon-inducible master regulator of the type-I interferon-dependent 

immune response and is crucial to the production of interferon-α and β (Honda et al., 2005).  

Aberrant IRF7 production is linked to a wide range of pathologies, from life-threatening 

influenza (Ciancanelli et al., 2015) to autoimmunity (Harley et al., 2008), because precise 

regulation of Irf7 ensures a proper immune response. Notably, intron 4 of Irf7 is short, GC-
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rich, and has a poor splice donor sequence, characteristics shared by many poorly spliced 

introns.  We and others have previously shown that intron 4 of Irf7 splices inefficiently 

(Shalek et al., 2013), affecting gene expression and opening a new line of inquiry as to the 

mechanism of IR regulation in Irf7.  

Using RNA antisense purification-mass spectrometry (RAP-MS) (McHugh et al., 

2015), we identified the protein BUD13 as one that regulates IR in Irf7.  BUD13 was found 

to aid splicing efficiency and expression of the Irf7 mature transcript and protein, thus 

promoting the downstream type-I interferon-dependent immune response.  We show that 

IRF7 is able to trigger a robust interferon response in the presence but not in the absence of 

BUD13.  Further, BUD13 was found to increase the splicing efficiency of a multitude of 

other junctions with similar characteristics to the one found in Irf7.  By aiding in splicing 

efficiency, BUD13 limits intron retention and increases gene expression levels of transcripts 

containing BUD13 dependent junctions.  

 

RESULTS 

Irf7 contains an intron that splices poorly following stimulation.  

To study the role of mRNA splicing during an innate immune response, we sequenced the 

RNA from mouse bone marrow-derived macrophages (BMDMs) stimulated with TNFα.  

From this sequencing, we identified an increased number of reads in the fourth intron of the 

most abundant transcript of Irf7 as compared to other introns in the transcript (Figure 1A). A 

variety of features of this intron make it a likely candidate for retention (Braunschweig et al., 

2014).  It is extremely small at 69 nucleotides and has a high G/C content in both the flanking 

exons and within the intron itself (Figures 1B-E).  Furthermore, the intron contains a ‘weak’ 
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5’ splice site, one that deviates from a consensus splice site sequence.  This is quantified 

using a maximum entropy model to calculate the splice site quality score (Figure 1F) (Yeo 

and Burge, 2004).  This increase in the number of intron reads at the fourth intron as 

compared to neighboring introns is also seen upon induction of Irf7 with Poly(I:C) and IFNα 

(Figures 1G, H). 

To quantify the extent of retention across RNA-seq data-sets, we use a metric we 

designate the “splicing ratio” (SR) (Figure 1I; see methods), which is a length normalized 

ratio of intronic reads to total reads at each junction.  Low SR values indicate a junction is 

primarily spliced, whereas high SR values indicate a junction is primarily unspliced.  Of note, 

junction reads that map across intron-exon boundaries are called unspliced as they can only 

be derived from a transcript that has yet to splice at the given junction.  This can lead to some 

discrepancy when comparing SR with the histogram of RNA-seq reads as reads that map 

only a few base pairs into the intron do not easily appear unspliced but come from unspliced 

transcripts and count exclusively as unspliced in the SR value calculation (see methods).  

Using this metric, we quantified the extent of retention for all junctions in the most abundant 

Irf7 transcript.  We observed that for all types of stimulation, the retention of the fourth intron 

of the transcript is much greater than that seen for any of the other introns (Figures 1J and 

S1A, B). This intron remains poorly spliced despite the fact that there is clear excision of 

neighboring introns.  It is worth noting that quantitation of the IFNα stimulation shows 

increased intronic signal throughout the Irf7 transcript.  This increased intronic signal is due 

to faster and stronger induction of Irf7 via stimulation with IFNα and as such, an increase in 

the amount of pre-mRNA at a given stimulation time-point.  Despite this increase in intronic 

signal throughout the transcript, we observed a corresponding increase in the level of 
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retention for the poorly spliced fourth intron (Figures 1J, S1B).  Thus, we conclude this intron 

of Irf7 splices poorly following many forms of stimulation. 

 

RAP-MS identifies BUD13 as an RNA binding protein that interacts with Irf7 mRNA. 

To understand how cells handle a retained intron, we sought to identify trans-acting proteins 

that might affect the process using RNA Antisense Purification followed by Mass 

Spectrometry (RAP-MS) (Figure 2A) (McHugh et al., 2015).  RAP-MS employs antisense 

biotin-containing ssDNAs complementary to Irf7 exons to purify the proteins associated with 

the total pool of Irf7 transcripts, containing both nascent pre-mRNAs and mature mRNA. 

Using this proteomic approach, we identified the RNA-binding protein BUD13 to be highly 

enriched (~6-fold) on Irf7 transcripts as compared to β-actin transcripts, which were used as 

a control (Figure 2B, Table S2).  Bud13 has been characterized in yeast as a member of the 

Retention and Splicing complex (RES) (Dziembowski et al., 2004), forming a trimeric 

complex with Pml1p and Snu17p, and aids in the splicing and nuclear retention of a subset 

of transcripts. It is not well characterized in mammalian systems.  We captured a variety of 

other known RNA-binding proteins (PUM2, PRPF40a, SON); however, no other protein was 

enriched greater than two fold on Irf7 transcripts.  We observed specificity in the RNA 

antisense purification for the intended transcripts (Figure 2C).    

Following RAP-MS, we confirmed BUD13 enrichment on Irf7 transcripts by 

performing RNA Immunoprecipitation (RIP) followed by qPCR.  Using formaldehyde cross-

linked, BMDMs stimulated with TNFα for 30 minutes or Poly(I:C) for 12 hours, we observed 

>7-fold enrichment of Irf7 transcripts associated with Bud13 immunoprecipitates as 

compared to Rabbit IgG control immunoprecipitates (Figures 2D, E).  Of note, despite using 



 

 

61 

two different stimuli, we found similar levels of enrichment. In contrast, no differential 

enrichment of Rpl32 was observed.  Thus, isolating the proteins associated with Irf7 mRNA 

transcripts led to the identification of BUD13, and immunoprecipitation of BUD13 protein 

confirmed enrichment of Irf7 mRNA.   

 

Bud13 knockdown leads to increased retention in the weak Irf7 intron. 

To determine whether the enrichment of Bud13 had an effect on Irf7 mRNA processing, we 

used an shRNA approach to knockdown Bud13 protein levels in BMDMs (Figures S2A, B).  

To quantify differences in splicing between the shBud13 sample and the scrambled control 

sample, we calculated the difference in the previously mentioned splicing ratio (SR) metric 

between shBud13 and control for each junction at each time point.  This resulting value was 

designated ΔSR. A positive ΔSR indicates a junction is more unspliced in the shBud13 

sample while a negative ΔSR indicates a junction is more unspliced in the control sample.  

RNA-seq was performed on RNA from unstimulated BMDMs, as well as macrophages 

stimulated with TNFα for 0, 30, 60, and 120 minutes.  Bud13 knockdown led to a further 

increased retention of the fourth intron in Irf7 (Figure 3A – highlighted intron, S2C).  Further, 

the sequencing coverage plots showed little variation in splicing for the other seven introns 

in the transcript.  This was confirmed when splicing was quantified using the ΔSR metric 

(Figure 3B).  At all stimulation time-points, the ΔSR value for the fourth intron was 

significantly greater than zero, indicating an increase in retention when BUD13 levels were 

reduced.  There is a significant difference in the ΔSR of intron 4 as compared to every other 

junction in the Irf7 transcript (p<0.001, Student’s t-test).  All other pairwise comparisons are 

insignificant.  This splicing difference at the fourth intron was confirmed via RT-PCR 
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(Figure 3C).  It appears that BUD13 plays a specific role of aiding in the excision of the 

poorly spliced junction but is not required for total splicing of other introns in the transcript, 

at least as indicated by the partial knockdown with an shRNA.  We next looked at how this 

retention affected the induction kinetics of Irf7.  We observed decreased induction of Irf7 

mRNA in response to TNFα stimulation in shBUD13 BMDMs as compared to control 

BMDMs (Figure 3D), consistent with the idea that intron retention leads to transcript 

degradation (Jacob and Smith, 2017).  Other TNFα induced transcripts that lacked a BUD13 

dependent splicing defect showed similar induction between the time-courses (Figures S2 D-

F). 

 

BUD13 knockdown alters the type I interferon response. 

Because Irf7 is known as a ‘master regulator’ for robust type I interferon production (Honda 

et al., 2005), we next investigated the effect of BUD13 knockdown on a type I interferon 

response. To do so, we stimulated BMDMs with the TLR3 agonist Poly(I:C) for up to 24 

hours.  Activation of TLR3 leads to the production of type I interferons followed by the 

downstream induction and activation of Irf7, which serves to amplify the type I interferon 

response via positive feedback (Ciancanelli et al., 2015). We again observed differential 

splicing between the shBUD13 samples and the control samples in intron 4 of Irf7 (Figures 

4A, S3A).  As before, there is a significant difference in the ΔSR of intron 4 as compared to 

every other junction in the Irf7 transcript (Figure 4B. p<0.001, Student’s t-test), whereas all 

other pairwise comparisons are insignificant.  As is the case with TNFα, knocking down 

BUD13 altered Irf7 induction kinetics.  Less Irf7 mRNA is induced at 240, 720, and 1440 
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mins of poly(I:C) stimulation (Figure 4C).  This reduction in Irf7 mRNA leads to a decrease 

in the amount of IRF7 protein produced (Figure 4D).   

Next we looked at how this reduction in IRF7 would alter the production of RNA 

from interferon signature genes (ISGs).  Expression of 119 ISGs (selected based on 

upregulation in response to IFNα; see methods) (Mostafavi et al., 2016) was examined. In 

unstimulated BMDMs, used as a baseline, the median log2 expression fold change (FPKM 

shBUD13/ FPKM control) is 0.1655 (Figure 4D).  In contrast, at 720 mins of stimulation, 

the median log2 expression fold change shifts to -0.1007 (Figure 4E), indicating a significant 

decrease in ISG expression in the shBUD13 sample compared to the control sample at this 

time-point compared to the baseline (Wilcoxon rank-sum, P<0.001). This significant 

decrease in ISG expression remained true when comparing any of the ‘early’ timepoints (0, 

15, 60 mins) to any of the ‘late’ timepoints (240, 720, 1440 mins) (Figure 4G, Wilcoxon 

rank-sum, P<0.001). qPCR was used to monitor expression of both IFNα and IFNβ 

following 720 and 1440 mins of Poly(I:C) stimulation.  We observed significant reduction 

in both when comparing the shBUD13 samples to the control samples (Figures 4H, I).  To 

ensure differential expression of ISGs was not due to splicing defects from BUD13 

knockdown, we quantified the ΔSR for every ISG junction at 720 mins.  The fourth intron 

of Irf7 has the greatest ΔSR at 0.227. Only four other junctions of the 375 that were examined 

have ΔSRs greater than 0.1, and the majority of junctions have ΔSRs close to 0 (Figure S3C 

and Table S3; mean = 0.002, median = 0).  Similar results were obtained when BMDMs 

were stimulated with the TLR9 agonist CpG (Figures S4A-E). Taken together, we conclude 

that Bud13 deficiency results in a highly compromised type I interferon response. 
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We next examined whether Irf7 pre-mRNA with a retained fourth intron was able to 

exit the nucleus and enter the cytoplasm.  BMDMs were stimulated with poly(I:C) and 

fractionated into a nuclear fraction (containing the nucleoplasm and chromatin) and a 

cytoplasmic fraction. RNA-seq was performed on both fractions.  In the cytoplasm, we found 

Irf7 mRNA to be completely spliced (Figures 4J, K).  Thus, unspliced Irf7 is either being 

degraded in the nucleus, or it makes it to the cytoplasm and is degraded extremely quickly, 

such that virtually no signal can be detected via RNA-seq.  Furthermore, in support of our 

whole cell sequencing data and IRF7 immunoblots, we observed less Irf7 mRNA in the 

cytoplasm in shBUD13 samples as compared to control samples (Figure 4L).  Finally, 

although we notice a large number of unspliced reads in the nucleus at all junctions in both 

samples, the fourth intron had a greater nuclear RPKM in shBUD13 compared to control 

BMDMs across the stimulation time-course (Figure 4K) and had a significantly greater 

nuclear ΔSR as compared to any other junction in the transcript (Figure S4G). 

 

Global analysis of the role of BUD13 in BMDMs. 

We next investigated global splicing differences caused by Bud13 knockdown.  Using the 

TNFα stimulated data-set, ΔSR was calculated for every junction in every expressed gene.  

We found that a number of other transcripts had a Bud13 dependent junction (Figure 5A).  

Of note, the fourth intron of Irf7 is among the most BUD13 dependent junctions in both the 

TNFα and Poly(I:C) data-sets (Figures 5A and S5H, see methods for analysis details).  

Similar to the case with Irf7, almost all transcripts contain only a single Bud13 dependent 

junction, even when low thresholds are used to quantify dependency (Figure 5B).  To 



 

 

65 

determine whether splicing differences caused by BUD13 knockdown led to altered gene 

expression, we compared the effect of the BUD13 knockdown on genes that contained a 

BUD13 dependent junction to those that did not. (see methods).  The median log2 expression 

fold change (FPKM shBUD13/ FPKM control) for genes containing a BUD13 dependent 

junction was -0.5084.  In contrast, the median log2 expression fold change (FPKM shBUD13/ 

FPKM control) for genes without any junctions affected by Bud13 knockdown was -0.2170.  

Thus, we conclude there is an inverse relationship between IR due to BUD13 knockdown 

and gene expression (Wilcoxon rank-sum, P< .01) (Figure 5C).   

Next, it was of interest to us to identify sequence elements that led BUD13 to have its specific 

splicing effect. The most evident element to explore was the effect of splice site strength on 

BUD13 dependent splicing.  Previous work has shown that the yeast orthologue of Bud13 

plays a role in efficient splicing for a junction with a weak 5’ splice site (Dziembowski et al., 

2004).  Further, the junction affected in Irf7 has a non-consensus 5’ splice site.  To investigate 

this issue, we first quantified every 5’ and 3’ splice site using a maximum entropy model 

(Yeo and Burge, 2004). Then, we took progressively weaker splice site thresholds, and 

compared the mean ΔSR for every junction below that threshold to the mean ΔSR of every 

junction in the data-set (Figure 5D).  We saw that as the splice site threshold for the 5’ splice 

site became progressively weaker, the mean ΔSR for junctions weaker than that threshold 

increased and thus there was a greater BUD13 splicing effect.  This result was not seen when 

the same analysis was applied to the 3’ splice site.  In support of a 5’ splice site dependency 

for a BUD13 effect, we noticed differences in the 5’ splice site motif of BUD13 dependent 

junctions as compared to to all expressed junctions (Figure 5E).  
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We then analyzed the BUD13 splicing effect with respect to other features known to 

correlate with IR (Braunschweig et al., 2014).  Across all time-points for both TNFα (Figures 

5F-H) and Poly(I:C) (Figures S5 A-C), BUD13 dependent introns were dramatically smaller 

and had increased G/C content in both the intron and in the flanking exons.  We also noticed 

that the distance from the branch point to the 3’ splice site was smaller in the BUD13 

dependent introns than in the total data-set (Figures 5I and S5D).  This could be a byproduct 

of the smaller intron length; however, it is of interest because BUD13 has been shown in 

yeast to bind just downstream of the branch point (Schneider et al., 2015).  A significant 

difference was not seen in branch point strength and BUD13 splicing effect (Figures S5 E, 

F).   

Finally, as IR is only one form of alternative splicing, we looked at whether other 

forms of alternative splicing were affected by Bud13 knockdown.  We found that the 

majority of statistically significant alternative splicing events involved intron retention 

(Figure S5G, see methods).  Of the 42 alternative splicing events that were significant in 

multiple data-sets upon BUD13 depletion, 27 involved intron retention, 9 involved a skipped 

exon, and the remaining 6 involved either an alternative 3’ or 5’ splice site.  IR at intron 4 in 

Irf7 was the only alternative splicing event that occurred in transcripts related to the type I 

interferon response. 

 

eCLIP shows enrichment on Bud13 dependent junctions near the 3’ splice site. 

Next we used enhanced crosslinking and immunopreciptation (eCLIP)-seq data from the 

ENCODE Project Consortium(Consortium, 2012) to investigate BUD13 binding specificity 
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across the genome.  We found that in K562 and Hep G2 cells, the majority of Bud13 eCLIP-

sequencing reads were located downstream of the branchpoint near the 3’ splice site (Figures 

6A, B), consistent with what is seen in yeast (Schneider et al., 2015).  Plots are shown as a 

measure of binding over input.  There is some read density near the 5’ splice site, which we 

hypothesize is due to BUD13’s association with the spliceosome.  Although BUD13 may 

not bind near the 5’ splice site, factors in the spliceosome that interact with BUD13 may 

immunoprecipitate with it, leading to 5’ signal.  Data for SF3B4 and PRPF8, known RBPs 

that interact with the 3’ and 5’ splice site respectively, is also shown for comparison (Figures 

6A, B).  Additionally, it was expected that BUD13 binding would correlate with BUD13 

activity.  To test this hypothesis, we used knockdown data from the ENCODE Project 

Consortium to determine BUD13 dependent junctions in K562 and Hep G2 cells.  In K562 

cells, we noticed that there was a significant increase in BUD13 binding over input at BUD13 

dependent junctions (Figure 6A).  In Hep G2 cells, this increase was less pronounced (Figure 

6B); however, we note that we found BUD13 knockdown had a much greater impact in K562 

cells as compared to Hep G2 cells (Figure S5I).  In order to survey a large enough selection 

of junctions in Hep G2’s, we had to significantly lower our threshold for what was deemed 

a BUD13 dependent junction (see methods), which in turn might explain the dampened 

BUD13 binding/activity relationship in Hep G2.  We conclude that Bud13 either 

preferentially associates with these BUD13 dependent junctions or associates with them for 

a longer period of time.   

We then performed peak calling to determine the location of significant peaks.  We 

found the majority of peaks are in intronic regions or intron-exon junctions and that most of 

the peaks that lie in intron-exon junction are located at the 3’ junction (Figures 6C, D).  As 
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might be expected from knockdown data, when comparing introns that have an overlapping 

eCLIP peak to all introns from expressed transcripts, we see both a length and G/C% bias 

(Figures 6E, F).  BUD13 peaks tend to fall in smaller introns that are GC rich, a finding 

consistent with the ΔSR data.  Lastly, a list of the GO biological processes most enriched 

from the list of peaks in K562 and Hep G2 cells is shown (Figure 6G).   

 

Bud13 knockdown alters the BMDM response to VSV. 

Vesicular stomatitis virus (VSV) is a (-)ssRNA virus known to induce type I IFN through 

TLR7 (Lund et al., 2004).  To test whether impairment of IRF7 due to BUD13 knockdown 

was present in VSV stimulated BMDMs, we infected both shBUD13 and control BMDMs 

at an MOI of 5 and 10.  At all time-points throughout infection in both MOIs, there was 

dampened IRF7 induction (Figures 7A, B) as quantified by Taqman qPCR.  Next, in order 

to determine the consequences of impaired IRF7 induction, we determined the yield of virus 

from BMDMs following a period of infection with a given input MOI. shBUD13 BMDMs 

produce significantly more VSV as compared to control BMDMs (Figure 7C).  This 

difference in viral production is presumably due to decreased production of IRF7 associated 

with depletion of BUD13 and the corresponding dampened type I interferon response.  To 

test the extent to which this increase in viral production following BUD13 depletion was due 

to impairment of IRF7, we rescued IRF7 levels by expressing Irf7 cDNA either in the context 

of the BUD13 knockdown or the control.  We found overexpression of Irf7 cDNA effectively 

rescues the ability for a cell to clear virus (Figure 7C).  As such, we conclude that the viral 

susceptibility associated with BUD13 knockdown is due primarily to the inefficient 

production of mature IRF7 associated with BUD13 depletion. 
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DISCUSSION 

In this study, we sought proteins that might relate to the poor splicing of an intron in Irf7 

transcripts.   Using RAP-MS, we identified BUD13 as a protein that has the ability to increase 

splicing of the Irf7 intron.  In the absence of BUD13, in response to inflammatory stimulus, 

macrophages produced Irf7 with increased intron retention (IR) and notably less mature Irf7 

transcript and protein (Figures 3C, 4C, 4D, S4C).  Irf7 is the interferon-inducible master 

regulator of the type-I interferon-dependent immune response (Honda et al., 2005).  

Correspondingly, depletion of BUD13 led to a general reduction in ISG and cytokine 

production, implying a compromised type I interferon response (Figures 4E-J, S4D-G).  This 

splicing and corresponding expression defect upon BUD13 depletion was observed under 

various stimulation regimens and times. We found that macrophages deficient for BUD13 

were strikingly more susceptible to infection by VSV, presumably owing to the reduction in 

Irf7 transcript levels (Figure 7). 

We observed the BUD13 splicing dependence in other introns of other genes.  A 

number of short, GC-rich introns with non-consensus splice donor sites were excised 

inefficiently when BUD13 levels were depleted (Figure 5).  As was the case with Irf7, this 

increased IR reduced mature transcript levels (Figure 5A).  Transcripts containing retained 

introns have been shown in the literature to be degraded by two mechanisms: (1) nuclear 

degradation via the RNA exosome, (2) cytoplasmic degradation upon detection of a pre-

termination codon (PTC) via the NMD decay machinery.  Although the majority of these 

introns contain a PTC, it remains to be determined whether degradation is occurring in the 

nucleus or cytoplasm (Jacob and Smith, 2017; Sayani and Chanfreau, 2012) 
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Bud13 was originally identified as a part of a “Retention and Splicing” (RES) 

complex (Dziembowski et al., 2004) in yeast. However, yeast Bud13 (ScBud13) and 

mammalian BUD13 are significantly different lengths (266 vs. 637 amino acids) (Na et al., 

2016), with only the mammalian protein containing a large, disordered arginine-rich N-

terminal domain.  ScBud13 counteracts IR in introns within the mediator complex, mating 

genes, and tRNA modifying genes (Ni and Snyder, 2001; Zhou et al., 2013; Zhou and 

Johansson, 2017), which in turn impair yeast budding.  In connection with the RES complex, 

ScBud13 is thought to safeguard formation of the ‘Bact complex’ of the spliceosome (Bao et 

al., 2018).  In the Bact
 stage, the 5’ splice donor and branch point are recognized by the 

spliceosome. However, progression to catalysis of the first step of the splicing reaction 

requires remodeling of several spliceosome components (Ohrt et al., 2012).  Lack of the RES 

complex has been shown to lead to premature binding of Prp2, a quality control factor that 

is responsible for spliceosome remodeling as well as the disassembly of suboptimal 

substrates.  It has been hypothesized that ScBud13 and the RES complex temporally regulate 

Prp2 binding (Bao et al., 2018).  In the mammalian context, short, GC-rich introns with weak 

donor sites may be particularly susceptible to Prp2-mediated disassembly, which may 

explain the specificity of IR events upon BUD13 depletion. 

In yeast, differential studies using mass spectrometry (Fabrizio et al., 2009) and 

cross-linking have established that some ScBud13 is detectable in preparations of stalled B, 

Bact, and B* complexes. One cryo-EM structure of the yeast spliceosome found density 

corresponding to ScBud13 in a stalled Bact pre-catalytic complex, although a structure of the 

stalled B complex found only weak density for ScBud13 (Plaschka et al., 2017; Zhou and 

Johansson, 2017).  In mammals, structural evidence of BUD13 is limited. Given the partial 
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sequence homology between all members of the yeast RES complex and their mammalian 

counterparts, it is not surprising that BUD13 (and other RES complex members) are often 

undetectable in preparations of stalled spliceosomes using cross-linking and mass-

spectrometry. Furthermore, BUD13 was not detected in a recent human cryo-EM structure 

of a stalled B complex (Bertram et al., 2017).  Taken together, it is not yet possible to 

determine if the sub-stoichiometric nature of BUD13 in mammalian spliceosome complexes 

is because it is constitutively associated but highly transient or because it serves as a non-

essential accessory to spliceosome function. Cryo-EM studies, as well as single molecule 

studies, would seem to suggest compositional heterogeneity of the spliceosome, and that the 

BUD13-endowed spliceosome may catalyze the splicing reaction in a fundamentally 

different way than is used in its absence (Bao et al., 2018; Blanco et al., 2015; Hoskins and 

Moore, 2012). 

Recently, the RES complex in zebrafish was shown to regulate levels of IR in short, 

GC-rich introns in knockout studies (Fernandez et al., 2018).  Indeed, both in Zebrafish 

(Fernandez et al., 2018) and C. Elegans (Jiang et al., 2001), deficiency of RES components 

has been reported to lead to embryonic lethality.  Our results show that mammalian BUD13 

shares this splicing fidelity function, and deficiency may prevent proper development.  

Despite this, knockdown and knockout cell lines have displayed no overt growth defects, 

suggesting a developmental but not immune-cell intrinsic dependence on BUD13 for 

survival.  Of note, we did knockdown the other components of the RES complex, RBMX2 

and SNIP1 (Figure S7).  We found that the fourth intron of Irf7 has a largest ΔSR as 

compared to other introns in the transcripts (Figure S7B) and that there is some global IR 

upon knockdown (Figure S7C); however, these effects are very slight as compared to what 
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is observed with BUD13 depletion.  It might be that more efficient knockdowns or a total 

knockout of these components is needed to replicate the strong effect seen with BUD13 

depletion, or alternatively that there is some redundancy with these components in 

mammalian cells. 

With respect to Irf7, the fact that a crucial immunological gene has such an intron, 

with its variety of seemingly negative characteristics that make it difficult for the spliceosome 

to excise, begs the question as to why it exists.  At the heart of an inflammatory response is 

a tightly regulated gene expression program.  Regulation of this gene expression program is 

crucial as small changes can shift the balance away from protective immunity towards either 

nonexistent or destructive immunity (Kontoyiannis et al., 1999).  Here we’ve shown that 

alterations to the splicing efficiency of the fourth intron have the ability to significantly alter 

the functional output of IRF7.  Thus, by existing in the Irf7 transcript and commonly being 

retained, it stands to reason the weak fourth intron acts to dampen IRF7 output, perhaps as a 

means to mitigate what otherwise would be an unchecked or inappropriately scaled response.  

Whether a cell actively controls this splicing event and thus, the intron serves as a regulatory 

control point, remains unknown.  Further, it remains unknown whether BUD13 plays a role 

in this regulation or whether it simply represents a mechanism that evolved to counter intron 

retention in a subset of introns that require splicing but happen to be inherently weak. 

In summary, we found that BUD13 modulates gene expression through its ability to 

alter IR, often in notably small, GC-rich introns with weak splice sites.  Deficiency of BUD13 

results in IR and concomitant decreased gene expression in transcripts such as Irf7, 

dampening the type I interferon response and increasing viral susceptibility.   Therefore, in 

mediating Irf7 gene expression, BUD13 presents a potential therapeutic target for the 
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treatment of infections or autoimmune conditions.  Future studies should seek to understand 

why BUD13 is vital for the efficient splicing of only a subset of junctions and whether or not 

this junction specificity plays an active role in regulating gene expression. If modulated, this 

strategy by which components associated with the spliceosome rescue transcripts from intron 

retention and degradation may represent a previously underappreciated layer of regulation in 

many gene expression programs. 
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EXPERIMENTAL METHODS 

Contact for Reagent and Resource Sharing 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, David Baltimore (baltimo@caltech.edu). 

 

Experimental Model and Subject Detail 

Animals 

The California Institute of Technology Institutional Animal Care and Use Committee 

approved all experiments. C57BL/6 WT mice were bred and housed in the Caltech Office of 

Laboratory Animal Resources (OLAR) facility.  C56BL6/J mice were sacrificed via CO2 

euthanasia and sterilized with 70% ethanol. Femur and tibia bones harvested and stripped of 

muscle tissue. Bone marrow cells were resuspended in 20mL of fresh DMEM. 2.5 *106 bone-

marrow cells plated in a 150mm dish in 20mL of BMDM Media (DMEM, 20% FBS, 30% 

L929 condition media, and 1% Pen/Strep) and grown at 5% CO2 and 37°C. BMDM media 

was completely replaced on day 3 as well as a supplemental addition of 5mL L929 condition 

media on day 5.   

Cell Culture 

Human embryonic kindey cells (HEK293T) from ATCC were cultured in DMEM 

supplemented with 10% FBS and 1% Pen/Strep.  Cell line was maintened at 37°C in 5% 

CO2. 
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Method Detail 

Knockdown Experiments  

BMDMs for knockdown experiments were grown as described above with a few additions. 

On days 3 and 4, retrovirus encoding shRNAs were added to cells.  On day 5, cells were 

selected with puromycin (5ug/mL).  On day 8, following ~72 hours of puromycin treatment, 

media was removed and 10mL of PBS w/ 2mM EDTA was added.  Depending on the 

experiment, cells were stimulated directly or lightly scraped and replated in 6-well plates or 

10-cm dishes for stimulation the following day. Stimulation involved with either 20ng/mL 

of TNFα, 5ug/mL Poly(I:C) (Sigma), 5µM ODN 1585 (InvivoGen), or the indicated MOI of 

VSV.  

 

RNA Isolation: 

Total RNA was purified from BMDMs using TRIzol reagent (Ambion) as per the 

manufacturer’s instructions.  Genomic DNA in RNA purifications was eliminated through 

treatment with Turbo DNase (Thermo Fisher Scientific) for 30 min at 37°C.  0.1-1µg RNA 

and 1µM dT(30) oligo (d14-954: 5’-AAGCAGTGGTATCAACGCAGAGTACT(30)) was 

heated at 80°C for 2.5min followed by snap cooling on ice. 10µL template-switch RT mix 

added (10µM template-switch oligo (TSO: 5’-

AAGCAGTGGTATCAACGCAGAGTACACArGrGrG), 20mM DTT, 2X ProtoScriipt II 

Reverse Transcriptase Reaction Buffer (NEB), 1mM dNTPs, 40U Murine RNAse Inhibitor 

(NEB), and 200U ProtoScript II (NEB) Reverse Transcriptase. Reaction incubated in 

thermocycler with the following program: 1. 42°C for 30min, 2. 45°C for 30min, 3. 50°C for 

10min, followed by deactivation of RT for 10min at 80°C.  
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RNA Fractionation: 

Confluent 10-cm dish of mature BMDMs were scraped into 400µL cold NP-40 lysis buffer, 

APJ1 (10mM Tris-HCl (pH 7.5), 0.08% NP-40, 150mM NaCl). Lysed cells layered onto 

1mL cold sucrose 322 cushion, APJ2 (10mM Tris-HCl (pH 7.5), 150mM NaCl, 24% w/v 

sucrose) and centrifuged for 10min at 4°C and 13000 rpm. The supernatant from this spin 

represents the cytoplasmic RNA fraction, which is immediately added to 3 volumes of 100% 

ethanol and 2 volumes of buffer RLT (4M GuSCN, 325 0.1M β-mercaptoethanol, 0.5% N-

lauroyl sarcosine, 25mM Na-citrate, pH7.2) and stored at -80°C until ready to purify RNA. 

Pellet, containing intact nuclei, is resuspended in 500µL TRIzol reagent.  If the pellet was 

difficult to dissolve, it was heated at 50°C with occasional vortexing.  100µL chloroform 

added and shaken vigorously for 15-20s; allowed to phase separate at room temperature for 

5min. Tube centrifuged at 4°C and 12000 x g for 15min. Clear upper aqueous phase removed 

to a new tube, ensuring white DNA mid-phase is not removed, and is immediately added to 

3 volumes of 100% ethanol and 2 volumes of buffer RLT and stored at -80°C until ready to 

purify RNA. RNA is purified according to Qiagen RNeasy column protocol and eluted in 

30µL nuclease-free H2O. RNA samples are DNAse treated with Turbo-DNAse and stored 

at -80°C. 

 

Library preparation and RNA-Seq Analysis 

Limited PCR amplifications was performed prior to library preparation.  PCR reaction done 

with KAPA HiFi HotStart 2x ReadyMix, 5% cDNA, and 1µM primer (d14-955: 5’-

AAGCAGTGGTATCAACGCAGAGTACT).  Thermal cycler programmed for 120 

seconds at 95°C as initial denaturation, followed by 14 cycles of 30sec at 95°C for 
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denaturation, 30sec at 62.5°C as annealing, 150sec at 72°C for extension, and final extension 

at 72°C for 5 min.  PCR reactions 0.9X SeraMag and eluted in 25µL. Concentrations of 

purified library determined using Qubit High Sensitivity dsDNA kit (Invitrogen) as 

described.  Full length cDNA libraries were barcoded using the Nextera XT Tagmentation 

protocol (Illumina).  

 

RNA-Antisense Purification 

RNA antisense purification-mass spectrometry (RAP-MS) was performed as described in 

McHugh et al. with a few alterations.  Briefly, we designed three 90-mer DNA 

oligonucleotide probes that were antisense to the complementary target RNA sequence in 

both Irf7 and Actb transcripts.  Each probe was targeted to a different location on the 

transcript and modified with a biotin in order to enable capture of DNA:RNA hybrids on 

streptavidin coated magnetic beads.   

RNA Prep and Lysis: ~250million cells, or 25 150mm plates of BMDMs were used for each 

capture. Following stimulation with TNFα (20ng/ml) for 30 minutes, ~5-10 mL of PBS w/ 

2mM EDTA was added to each plate and cells were removed by lightly scraping.  Cells were 

pelleted, resuspended in PBS, and poured into a new 150mm plate.  The cells were then 

crosslinked in Spectrolinker at 254 nm wavelength with 0.8 J/cm2 (instrument setting: 8000 

x 100 uJ/cm2).  Following crosslinking, cells were again pelleted, at which point the pellet 

could be frozen and stored at -80°C.  Cells were lysed in 2mL of lysis buffer per capture (10 

mM Tris pH 7.5, 500 mM LiCl, 0.5% Triton X-100, 0.2% sodium dodecyl sulphate, 0.1% 

sodium deoxycholate) supplemented with Protease Inhibitor Cocktail (EMD Millipore) and 

1000 U of Murine RNase Inhibitor (New England Biolabs).  We found the smaller the 
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volume used per sample, the more efficient the capture was downstream and thus the 

minimum volume needed to lyse cells should be optimized.  Samples were incubated for 10 

min on ice to allow lysis.  Following lysis, sample was passed through 20-gauge needle once 

and then 26-gauge needle 3-5 times to disrupt the pellet and shear genomic DNA.  In between 

passing the sample through the 26-gauge needle, the sample was sonicated on ice with a 

microtip set at 5W power for a total of 30 s in intermittent pulses (0.7 s on, 1.3 s off).  Samples 

were then mixed with twice the lysate volume of 1.5x LiCl/Urea Buffer (the final buffer 

contains 10 mM Tris pH 7.5, 500 mM LiCl, 0.5% Triton X-100, 0.2% SDS, 0.1% 

deoxycholate, 4 M urea). Lysates were incubated on ice for 10 min then cleared by 

centrifugation for 10 min at 4,000g. 

Pre-clearing lysate: BioMag streptavidin beads (Bang Laboratories Inc.) were first washed 

3x in 0.25-0.5ml of 500mM LiCl/4M Urea buffer (10 mM Tris pH 7.5, 500 mM LiCl, 0.5% 

Triton X-100, 0.2% SDS, 0.1% deoxycholate, 4 M urea).  50ul of beads were added to each 

sample and the samples were incubated at 37°C for 30 min with shaking.  Streptavidin beads 

were then magnetically separated from lysate samples using a magnet.  The beads used for 

preclearing lysate were discarded and the lysate sample was transferred to fresh tubes twice 

to remove all traces of magnetic beads.  Input for quality control experiments can be removed 

at this point.   

Hybridization, Capture of Probes and Elution of Associated Protein: Following pre-clearing, 

the biotinylated 90-mer DNA oligonucleotide probes specific for the RNA target of interest 

(vary per sample but ~5ul of 25uM per probe) were heat-denatured at 85°C for 3 min and 

then snap-cooled on ice.  Probes and pre-cleared lysate were mixed and incubated at 55°C 

with shaking for 2 h to hybridize probes to the capture target RNA.  500mL of washed 
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streptavidin beads (Bang Laboratories Inc.) were then added to each sample at 55°C with 

shaking for 30 mins.  Beads with captured hybrids were washed 6 times with LiCl/Urea 

Hybridization Buffer.  If needed, 1% of the beads can be removed for qPCR quality control 

experiment.  TRIzol reagent can be added directly to beads to elute RNA.  Beads were then 

resuspended in Benzonase Elution Buffer (20 mM Tris pH 8.0, 2 mM MgCl2, 0.05% NLS, 

0.5 mM TCEP) and 125 U of Benzonase nonspecific RNA/DNA nuclease was added.  

Incubation occurred for 1-2 h at 37°C.  Beads were then separated from the sample using a 

magnet.  Supernatant was collected.  Contaminant beads were removed by 5 rounds of 

magnetic separation on supernatant.  Protein was precipitated overnight at 4°C with 10% 

trichloroacetic acid (TCA). TCA treated protein elution samples were pelleted by 

centrifugation for 30 min at 20,000g, then washed with 1 ml cold acetone and recentrifuged. 

Final protein elution pellets were air dried to remove acetone, resuspended in fresh 8 M urea 

dissolved in 40 ml of 100 mM Tris-HCl pH 8.5, and stored at -20°C. 

Mass Spec Prep. and Analysis Performed as in McHugh et al. with few exceptions.  Instead 

of SILAC we label proteins at the mass spec prep step using TMT (Thermo).  After desalting 

on a Microm Bioresources C8 peptide MicroTrap column and lyophilization of peptide 

fraction, lyophilized protein pellets were resuspended in 100mM TEAB at a concentration 

of 1ug/ul.  We then added 1.64ul of TMT labelling reagent to each ug of sample.  The reaction 

was incubated for one hour at room temperature.  The reaction was quenched with 0.32ul of 

5% hydroxylamine per ug of protein used and incubated for 15 mins at room temperature.  

Following quenching, the samples were mixed, desalted as before, lyophilized, and mass 

spec was performed on Orbitrap Fusion mass spectrometer using a TMT instrument method 

as described in Liu et al (Liu et al., 2016). 
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Raw files were searched using MaxQuant (v. 1.5.3.30) against the UniProt mouse database 

(59550 sequences) and a contaminant database (248 sequences). TMT 6plex was selected as 

the quantitation method with a reporter mass tolerance of 0.3. Oxidation of methionine and 

protein N-terminal acetylation were variable modifications and carbamidomethylation of 

cysteine was fixed modification. A 1% protein and peptide false discovery rate as estimated 

by the target-decoy approach was used for identification. 

 

RNA Immunoprecipitation 

RNA immunoprecipitations were performed as previously described.  Between 5-10 

confluent 15 cm2 dishes of BMDMs per sample were stimulated with either 20ng/mL of 

TNFα for 30 minutes or 5ug/mL Poly(I:C) for 12 hours.  Following stimulation, proteins 

were cross-linked to DNA by adding formaldehyde directly to the media to a final 

concentration of 0.75%, with light shaking at room temperature for 10 mins.  To quench the 

crosslinking reaction, glycine to a final concentration of 125 mM was added to the media 

and incubated with shaking for 5 mins at room temp.  Media was then aspirated and cells 

were rinsed twice with 10 mL of cold PBS.  Following the second wash, cells were scraped 

into 10mL of PBS and spun down gently (5 min, 4°C, 1,000xg).  Final cell pellet was 

resuspended in 0.1-1mL of polysome lysis buffer (100 mM KCl, 5 mM MgCl2, 10 mM 

HEPES (pH 7.0), 0.5% NP40, 1 mM DTT, 100 U.ml RNase Inhibitor (NEB)) supplemented 

with Protease Inhibitor Cocktail (EMD Millipore).  At this point the mRNP lysate was frozen.  

If needed, passing the lysate through a small gauge needle can help with lysate.  Protein-G 

beads were pre-treated at 4°C with NT2 (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM 

MgCl2, 0.05% NP40) supplemented with 5% BSA to a final ratio of 1:5 for at least 1h before 
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use.  Appropriate amount of antibody per sample (optimized based on antibodyused but 

typically ~1-10ug) was added ot 250-500ul of bead/BSA slurry and incubated at 4°C.  

Following incubation, beads were spun down and washed with 1 ml of ice-cold NT2 buffer 

4–5 times.  Following final wash, beads were resuspended in 850ul of NT2 and supplemented 

with 200U of RNase inhibitor, 10 µl of 100 mM DTT and EDTA to 20 mM.  Frozen lysate 

was thawed and centrifuged at 15,000*g for 15 mins.  The cleared supernatant was removed 

and 100ul was added to the prepared beads.  Input removed at this step.  Beads and lysate 

were incubated for 4h at 4°C with mixing.  The beads were washed 4-5 times with ice-cold 

NT2 and then resuspended in 100ul of NT2 buffer.  4ul of 5M NaCl was added incubated 

with shaking at 65°C for 2 hours. NT2 buffer can also be supplemented with 30 µg of 

proteinase K to release the RNP component. RNA was isolated by adding TRIzol reagent 

(Ambion) as per the manufacturer’s instructions.  RNA was reverse transcribed and 

quantification was performed using TaqMan qPCR.   

 

Immunoblot 

BMDM samples were prepared as described previously.  BMDMs were stimulated with 

either TNFα or Poly(I:C) for the indicated period of time.  Cells extracts were collected using 

RIPA lysis buffer (Sigma cat: R0278-50ML), and were subjected to gel electrophoresis and 

transfer onto a nitrocellulose membrane.  pRroteins were analyzed by immunoblot using the 

following reagents:  anti-IRF7 (abcam, ab215326) and anti-beta Actin (Cell Signalling, 

13E5).  For nuclear fractionation, cells were scraped into subcellular fractionation buffer 

(20mM HEPES (pH 7.4), 10 mM KCl, 2 mM MgCl2, 1mM EDTA, 1 mM EGTA).  The cells 

were then passed through a 27-gauge needle 10 times, incubated on ice for 10 mins, and spun 
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down at 720xg for 5 min.  The pellet contained the nuclei, which was washed with 

fractionation buffer, passed through a 25-gauge needle 10 times, and centrifuged again at 

720xg for 10 mins.  The resulting pellet was resuspended in RIPA lysis buffer.  Equal 

amounts of proteins were analyzed by immunoblot using the following reagents:  anti-IRF7 

(Millipore, ABF130), anti-Lamin B1 HRP conjugate (Cell Signalling, D9V6H), and anti-

rabbit IgG HRP conjugate (Cell Signalling). 

 

Viral Plaque Assays 

Plaque assays were done one Vero cells.  2.5*105 vero cells were plated in a 12 well plate 

the night before infection.  Prior to infection, cells were checked to ensure confluence.  VSV 

was serially diluted and infected in 12 well plate for 1 h.  VSV was then removed and cells 

were layered carefully with DMEM supplemented with 2% FBS and 0.4% agarose.  Plate 

was incubated for 2 days, and then fixed with 10% formaldehyde, for 1 h to overnight.  

Finally, agarose plugs were removed carefully and cells were stained with crystal violet.  

 

VSV-GFP Infection Experiment 

BMDMs were grown as described above in 150mm dishes.  On day 8, following ~72 hours 

of puromycin treatment, media was removed and 10mL of PBS w/ 2mM EDTA was added.  

Cells were lightly scraped and 250,000 cells/well were replated in 12 well plates in BMDM 

media.  Cells were left for 12 hours to adhere.  Following adherence, VSV-GFP was added 

at the specified MOI for the specified amount of time.  Following the time-course, cells were 

lightly scraped, washed and spun down, and resuspended in PBS. Samples were analyzed on 
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a MACSQuant10 Flow Cytometry machine (Miltenyi).  Gating strategy depicted in Figure 

S7.  

 

VSV-GFP Viral Supernatant Experiment 

BMDMs were grown as described above in 150mm dishes.   On day 8, following ~72 hours 

of puromycin treatment, media was removed and 10mL of PBS w/ 2mM EDTA was added.  

Cells were lightly scraped and 400,000 cells/well were replated in 12 well plates in BMDM 

media.  Cells were left to adhere for 12 hours, before being infected at an MOI of 25 for 8 

hours.  Following infection, virus was removed and the cells were washed with PBS three 

times.  Then, 500ul of BMDM media (DMEM, 20% FBS, 30% L929 condition media, and 

1% Pen/Strep) was added to each well.  18 hours later, media was collected and stored at -

80°C.  To titer viral supernatant, Vero cells were plated in a 96-well plate at 30,000 cells per 

well in 90ul of D10 media.  12 hours after plating, 90ul supernatant was added to the 90ul of 

D10 at different dilutions.  PFU/mL was calculated from a standard curve with a virus of 

known concentration. 

 

Quantification and Statistical Analysis 

All statistical analysis was performed in Python (version 2.7.9).  Unless otherwise indicated 

in figure legends, statistical significance measurements were marked as follows: * denotes p 

< 0.05, ** denotes p < 0.01, *** denotes p < 0.001, and n.s. denotes not significant.  RNA-

Seq expression and splicing analysis as well as eCLIP analysis is described in more detail 

below. 
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RNA-Sequencing Analysis 

Sequencing was performed on a HiSeq 2500 High Throughput Sequencer (Illumina).  Single-

end 50-mer reads were aligned using Tophat v2.1.1 (Kim et al., 2013).  Gene expression was 

determined using Cufflinks v2.2.1 and the FPKM (Fragments Per Kilobase Million) metric 

(Trapnell et al., 2010). 

 

Splicing Ratio and ΔSR Calculation 

A custom script was written in Python using the HTSeq (Anders et al., 2015) library to 

calculate Splicing Ratio. First, reads that map to an intron or exon feature are summed.  To 

map to a feature, reads must have >1 bp overlap with the feature.  If a read maps to more 

than one feature, such as in the case of a splice junction read, the read is split between the 

features.  SR is calculated by taking the length normalized number of reads that map to each 

intron, divided by the average length normalized number of exon reads plus the length 

normalized intron value.  When SR is equal to 0, this indicates a junction is completely 

spliced.  In contrast, large SR values indicate intron retention.  We use the SR value to 

calculate ΔSR, which is equal to SR(shBUD13) – SR(Ctl).  Values greater than 0 indicate 

the junction is more unspliced in the shBud13 sample, whereas values less than 0 indicate 

the junction is more unspliced in the Ctl sample.  For each stimulation (TNFα, Poly(I:C), and 

CpG), ΔSR was calculated for each individual junction of the Irf7 transcript.  Bar graphs 

represent the mean (error bars indicate s.d.) ΔSR for stimulated time-points (non-zero time-

points).  For the global analysis, in order for the ΔSR of a junction to be considered, it must 

pass through a number of filters.  To account for transcripts that are annotated in Ensembl 

version 67, but not expressed, we set an FPKM threshold of 15.  Further, a local normalized 
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read count threshold on the upstream/downstream exons was implemented to ensure a level 

of sequencing depth needed to get accurate splicing values.  To pass this threshold, the sum 

of the reads that map to the the upstream/downstream exons divided by the length of these 

exons must be ≥ 0.25.  

 

ISG and Genome-Wide Analysis 

ISGs used in Figures 4 E-H were selected based on induction 2 hours after in vivo IFNa 

injection (Mostafavi et al., 2016).  We classified ISGs to be any gene with a fold change ≥ 

3.5 following 2 hours of induction.  Intron RPKM was calculated using a custom python 

script with the HTSeq library.  In Figure 5a, transcripts from the 30 min. TNFα data-set that 

had a junction with a ΔSR value above 0.15 were sorted into an ‘increased IR’ category (ΔSR 

>0.15), whereas all other transcripts were sorted into an unaffected category (ΔSR <-0.15).  

The selected data-set is representative of all time-points from the TNFα, Poly(I:C) and CpG 

datasets.  A maximum entropy model was used to calculate 3’ and 5’ splice site strengths 

(Yeo and Burge, 2004).  To determine differences in 5’ splice site sequence for Bud13 

dependent junctions, the nine base pair sequence near the 5’ splice site junctions for junctions 

that had a ΔSR >0.15 was compared to all expressed junctions (FPKM>1).  The top Bud13 

dependent junctions were plotted based on the average ΔSR value across all time-points from 

the TNFα data-set (Figure 5D) as well as the Poly (I:C) data-set (Figure S5H).  Junctions that 

had a ΔSR value <0.15 in a time-point were filtered out in the TNFα data-set, while junctions 

that had a ΔSR value <0.15 in two time-points were filtered out in the Poly (I:C) data-set.  

The zero time-point was removd for the transcripts induced by the stimulant (Irf7 and Cd14).  
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For the comparison of alternative splicing events, rMATs (S. Shen et al., 2014) was used on 

the TNFα data-set.  Splicing events were deemed significant if p<0.05 and FDR<0.1 for all 

time-points.  SVMBPfinder was used to determine BP related features (BP strength and 

distance from BP to 3' splice site) (Corvelo et al., 2010). 

 

eCLIP 

Data for eCLIP experiments were downloaded from ENCODE Project Consortium 

(Consortium, 2012).  Analysis of eCLIP data is the same as has been described previously 

(Van Nostrand et al., 2016).  Fold change of eCLIP read density compared to input read 

density along a normalized intron was calculated using ngs.plot.(L. Shen et al., 2014)  Bud13 

dependent junctions were calculated using ΔSR.  In K562 cells, any junction that had a ΔSR 

> 0.1 for all pairwise comparison of replicates was considered Bud13 dependent.  In Hep G2, 

the ΔSR was lowered to 0.03.  Peaks were called using CLIPper (Lovci et al., 2013).  Peaks 

were deemed significant if they were >3-fold enriched and had p-value<10-5.  Peak locations 

were determined using a custom python script with the HTSeq library.  Enriched GO terms 

were determined using Seten (Budak et al., 2017). 

 

Data and Software Availability 

All next-generation sequencing data reported in this study is depsited in the Gene Expression 

Omnibus database under accession number GSE122543. 
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FIGURE LEGENDS 

Figure 1: Irf7 contains a weak intron that is retained following many forms of 

stimulation.  (A) Histogram of mapped reads corresponding to the TNFα-induced 

expression of Irf7.  The poorly spliced fourth intron is highlighted.  For all read density plots, 

reads are histogrammed in log10 scale and normalized to the maximum value across the 

stimulation.  (B) Comparison of Irf7 splice donor and acceptor sites in mice, rats, and 

humans.  (C-F) Histogram representing the intron length (C), intron GC content (D), flanking 

exon GC content (E), or 5’ splice site strength of introns of expressed in BMDMs.  Red 

represents location of Irf7 intron 4 (C, D, F) or upstream exon (E). Black line represents 

downstream exon (E). (G, H) Histogram of mapped reads corresponding to the IFNα (G) 

and poly(I:C) (H) induced expression of Irf7 focused on the slow splicing fourth intron. (I) 

Outline of Splicing Ratio (SR) metric. (J) Splicing ratio for all introns in Irf7 plotted against 

time stimulated with TNFα.   

 

Figure 2: RAP-MS and RIP identifies BUD13 as an RNA binding protein that interacts 

with Irf7 mRNA.  (A) Outline of the RAP-MS procedure used to identify RNA-binding 

proteins on transcritps of interest. (B)  TMT ratio (Irf7/Actb) for proteins identified as 

enriched on either Irf7 (TMT ratio >1) or ActB (TMT ratio <1) transcripts.  (C) RT-qPCR 

analysis of transcripts captured via RAP for Irf7 (blue) and ActB (gold) probes.  (D) RIP 

followed by RT-qPCR for Irf7 and Rpl32 in TNFα stimulated BMDMs.  Shown is the 

relative enrichment of transcripts captured in BUD13 RIP as compared to Rabbit IgG RIP. 

(E) Same as (d) except stimulation with poly(I:C).  Data are representative of two 
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independent experiments ((C-E), mean, error bars indicate s.d.). *P < 0.05, **P < 0.01 and 

***P < 0.001 (t-test).  

 

Figure 3: BUD13 knockdown leads to increased retention in the poorly splicing intron 

of Irf7.  (A) Histogram of mapped reads corresponding to the TNFα-induced expression of 

Irf7.  The poorly spliced fourth intron is highlighted.  shBUD13 samples are shown in green.  

Control samples are shown in grey. (B) ΔSRs calculated for each junction in the Irf7 

transcript for all stimulated time-points.  The ΔSR of intron 4 as compared to all other 

junctions is significant (Student’s t-test, p<0.001).  No other pairwise comparison is 

significant.  (C) Splicing gel from RNA extracted from BMDMS stimulated for 30 mins. 

TNFα (top).  Quantification of splicing gel (bottom).  (D) Irf7 FPKM fold change with 

respect to time stimulated.  shBUD13 is shown in green, control is shown in grey. Data is 

representative of two independent experiments (C) and is represented as mean (error bars 

indicate s.d.).  * denotes p < 0.05, ** denotes p < 0.01, and *** denotes p < 0.001 using a 

Student’s t test. 

Figure 4: BUD13 knockdown alters the type I interferon response. (A) Histogram of 

mapped reads corresponding to the TNFα-induced expression of Irf7.  The poorly spliced 

fourth intron is highlighted.  shBUD13 samples are shown in blue. Control samples are 

shown in grey. (B) ΔSRs calculated for each junction in the Irf7 transcript for all stimulated 

time-points.  The ΔSR of intron 4 as compared to all other junctions is significant 

(Student’s t-test, p<0.001).  No other pairwise comparison is significant.  (C) Irf7 FPKM 

fold change with respect to time stimulated.  shBUD13 is shown in blue, control is shown 



 

 

90 

in grey.  (D) Immunoblot analysis of IRF7 protein following 720 mins. poly(I:C) 

stimulation (left).  Quantification relative to ActB (right). (E) Log2 expression fold change 

(shBUD13/control) for 119 ISGs in unstimulated BMDMs (median = 0.1655). (F) As in 

(E) for stimulated BMDMs (720 mins poly(I:C) (median = -0.1007). Wilcoxon rank-sum 

between (E) and (F), P< .001.  (G) Median log2 expression fold change (shBUD13/control) 

for ISGs in unstimulated BMDMs, and BMDMs stimulated with Poly(I:C) 15, 60, 240, 

720, and 1440 mins.  Bars represent 95% CI.  (Wilcoxon rank-sum, P< .001, for any of the 

‘early’ time-points (0, 15, 60 mins) compared to any of the ‘late’ time-points (240, 720, 

1440 mins). (H) RT-qPCR analysis of IFNα mRNA levels in unstimulated BMDMs and 

BMDMs stimulated with poly(I:C) for 720 mins and 1440 mins. (I) Same as (H) for IFNβ. 

(J) Nuclear fraction (top) and cytoplasmic fraction (bottom) histograms of mapped reads 

corresponding to the poly(I:C)-induced expression of Irf7 (720 mins). The poorly spliced 

fourth intron is highlighted.  shBUD13 samples are shown in blue.  Control samples are 

shown in grey. Nuclear ΔSR = 0.35. (K) Nuclear and cytoplasmic RPKM for Irf7 intron 4 

from fractionated BMDMs stimulated with poly(I:C).  (L) Cytoplasmic Irf7 FPKM for 

control (grey) and shBUD13 BMDMs stimulated with poly(I:C).  Data is representative of 

three (D) or four (H,I) independent experiments and is represented as mean (error bars 

indicate s.d.).  * denotes p < 0.05, ** denotes p < 0.01, and *** denotes p < 0.001 using a 

Student’s t test.  Results are presented relative to those of Rpl32 (H,I). 

Figure 5: Global analysis of the role of BUD13. (A) Ranked bar chart showing genes with 

a junction most affected by BUD13 knock-down in all samples during TNFα stimulation.  

See S7 for histograms relating to most affected junctions. (B) Grouped bar chart depicting 
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the number of genes that have a single BUD13 affected junction vs. multiple BUD13 

affected junctions using three different ΔSR thresholds.  (C) Transcripts were classified as 

‘BUD13 dependent’ if they had a junction with a ΔSR. >0.15.  The log2 expression fold 

change (FPKM shBUD13/ FPKM control) for each gene represented by the transcripts in the 

‘BUD13 dependent’ category as well as all other genes is shown.  Median ‘increased IR’ = 

-0.5084.  Median ‘decreased IR’ = -0.2170.  (Wilcoxon rank-sum, P< .01).  (D)  Mean ΔSR. 

for junctions below the indicated threshold (x-axis) vs. mean ΔSR. for all junctions.  

Threshold applied for the 5’ splice site (blue) and the 3’ splice site (green). (E) 5’SS motif 

for all expressed junctions as compared to junctions that show retention upon Bud13 

knockdown (ΔSR. > 0.15). (F) Size of intron for introns retained upon BUD13 knockdown 

(ΔSR. > 0.15) (blue), in introns located in the same transcript as those affected by BUD13 

(green), and in introns from all expressed transcripts (orange). (G) Same as (F) for GC 

content.  (H) Flanking exon GC content for exons that flank introns retained upon 

BUD13 knockdown (ΔSR. > 0.15) (dark green) as compared to exons that flank introns from 

all expressed transcripts (light green).  (I) Distance from the branch point to the 3’ splice site 

for introns retained upon BUD13 knockdown (ΔSR. > 0.15) (dark blue) as compared to 

introns from all expressed transcripts (light blue).  (F-I) data from BMDM TNFα 

stimulation. Box plots show median (center line), interquartile range (box) and tenth and 

ninetieth percentiles.  *P < 0.05, **P < 0.01 and ***P < 0.001 (Mann-Whitney U-test).  

Figure 6: BUD13 interacts primarily near the 3’ splice site of small, GC rich introns. 

(A) eCLIP-seq read density plots in K562 cells.  BUD13 density plot over all expressed 

junctions shown in blue (top), BUD13 density plot over BUD13 dependent junctions shown 
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in red (top). SF3B4 density plot over all expressed junctions shown in maroon (middle), and 

PRPF8 density plot over all expressed junctions is shown in green (bottom).  (B) Same as in 

(A) but for Hep G2 cells.  (C) BUD13 eCLIP-seq peak distribution.  Peaks fell within either 

intronic regions, intron-exon junctions, or exonic regions.  Peaks that fell within intron-exon 

junction were further classified as 5’ junction peaks or 3’ junction peaks (bottom).  (D) Same 

as (C) but for Hep G2.  (E)  Size of all introns in expressed transcripts for the given cell line 

(dark blue) vs size of introns with overlapping eCLIP peak (maroon).  Shown in K562 (left) 

and Hep G2 (right) cells.  Box plots show median (center line), interquartile range (box) and 

tenth and ninetieth percentiles (whiskers).  *P < 0.05, **P < 0.01 and ***P < 0.001 (Mann-

Whitney U-test). (F) Same as (E) for GC content.  (G) GO terms (biological process) 

enriched among BUD13 eCLIP peaks in K562(dark blue) and Hep G2 (maroon) cells. 

Figure 7: BUD13 knockdown alters the BMDM response to VSV. (A) RT-qPCR analysis 

of Irf7 mRNA levels in infected control or shBUD13 BMDMs stimulated with VSV (MOI 

5) across 24 hours.  (B) Same as in (A) except stimulated at an MOI of 10. Results are 

presented relative to those of Rpl32. (C) PFU/mL for viral supernatant from infected 

shBUD13 (blue), control (red), shBUD13 with Irf7 overexpression (yellow), or control with 

Irf7 overexpression (maroon) BMDMs.   Data is representative of two (A, B) or three 

independent experiments (C) and is shown as mean (error bars indicate s.d.). * denotes p < 

0.05, ** denotes p < 0.01, and *** denotes p < 0.001 using a Student’s t test. 
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Supplemental Figures 

Figure S1: Splicing Ratios across all junctions in Irf7.  Related to Figure 1.  Splicing 

ratios calculated for all junctions in the most abundant transcript of Irf7.  Color represents 

time-point indicated in legend.  (A) Poly(I:C) (B) IFNα. 

Figure S2: shBUD13 knocks down BUD13 protein and mRNA.  Related to Figure 3. 

(A) Immunoblot analysis of BUD13 in BMDMs infected with control or shBUD13.  ActB 

serves as loading control.  (B) qRT-PCR analysis of Bud13 mRNA in BMDMs infected with 

control or shBUD13.  (C) Immunoblot analysis of IRF7 protein following 120 mins. TNFα 

stimulation.  (D-F) FPKM fold change with respect to time stimulated (C) Zfp36, (D) IκBϵ, 

and (E) CD83.  shBUD13 is shown in green, control is shown in grey. Data is representative 

of two individual experiments (A, B) and is shown as mean (error bars indicate s.d.) (B). 

*P < 0.05, **P < 0.01 and ***P < 0.001.  

Figure S3: Irf7 Intron 4 is the most BUD13 knockdown affected junction of all ISGs. 

Related to Figure 4. (A) Normalized levels of spliced vs. unspliced intron 4 in control and 

shBUD13 BMDMs as measure through quantitative RT-qPCR.  (B) Normalized FPKM 

expression levels in shBUD13 and control samples at 720 mins poly(I:C) stimulation for 

select ISGs). (C) ΔSR was calculated at 720 mins of poly(I:C) stimulation for each ISG 

junction that passed the transcript and local read count threshold (see methods).  Mean ΔSR 

= 0.002, Median ΔSR = 0. (D) Immunoblot analysis of Irf7 protein after nuclear fractionation 

from BMDMs left untreated (UT) or treated with poly(I:C) (PIC) or CpG for 12h. Lamin B1 

serves as loading control. � 
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Figure S4: BUD13 knockdown alters the type I interferon response in response to CpG. 

(A) Histogram of mapped reads corresponding to the CpG-induced expression of Irf7.  The 

poorly spliced fourth intron is highlighted.  shBUD13 samples are shown in pink.  Control 

samples are shown in grey. (B) Irf7 FPKM fold change with respect to time stimulated.  

shBUD13 is shown in pink, control is shown in grey. (C) RT-qPCR analysis of IFNα mRNA 

levels in unstimulated BMDMs and BMDMs stimulated with CpG for 720 and 1440 mins.  

(D) Log2 expression fold change (shBUD13/Control) for 119 ISGs (selected based on 

upregulation in response to IFNα) in unstimulated BMDMs (median = -0.2442). (E) As in 

(D) for stimulated BMDMs (720 mins CpG (median = -0.4776). Wilcoxon rank-sum 

between (D) and (E), P< .001.  (F) Ratio of cytoplasmic FPKM levels to cytoplasmic and 

nuclear FPKM levels for transcripts that are primarily nuclear (Malat1, Neat1, Xist, U2; left), 

and primarily cytoplasmic (Rpl32, Rps5, Actb, Rpl5; right) (BMDMs – 720 mins poly(I:C) 

stimulation). (G)  Nuclear ΔSR calculated for each junction in the Irf7 transcript. Unless 

indicated, comparison of intron 4 ΔSR to any other junction is significant (Student’s t-test, 

p<0.001).  No other pairwise comparison is significant.  Data is represented as mean (error 

bars indicate s.d.).  * denotes p < 0.05, ** denotes p < 0.01, and *** denotes p < 0.001 using 

a Student’s t test.  Results are presented relative to those of Rpl32. 

 

Figure S5: Supplemental global analysis of BUD13.  Related to Figure 5 and 6. (A) Size 

of intron for introns retained upon BUD13 knockdown (ΔSR. > 0.15) (blue), in introns 

located in the same transcript as those affected by BUD13 (green), and in introns from all 

expressed transcripts (orange). (B) Same as (A) for GC content.  (C) Flanking exon GC 

content for exons that flank introns retained upon BUD13 knockdown (ΔSR. > 0.15) (dark 
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green) as compared to exons that flank introns from all expressed transcripts (light green).  

(D) Distance from the branch point to the 3’ splice site for introns retained upon BUD13 

knockdown (ΔSR. > 0.15) (dark blue) as compared to introns from all expressed transcripts 

(light blue).  (A-D) data from BMDM poly(I:C) stimulation. (E) Branch point score for 

introns retained upon Bud13 knockdown (ΔSR. > 0.15) (beige) as compared to introns from 

all expressed transcripts (dark brown) in TNFα stimulated BMDMs.  (F) Same as (E) but for 

poly(I:C) stimulated BMDMs.  (G) Significant number of alternative splicing events across 

the TNFα time-course as calculated by rMATs.  (H)  Ranked bar chart showing genes with 

a junction most affected by BUD13 knock-down in all samples during PIC stimulation.  (I) 

Box plot showing the number of retention events across replicates at the indicated ΔSR.  Box 

plots show median (center line), interquartile range (box) and tenth and ninetieth percentiles.  

*P < 0.05, **P < 0.01 and ***P < 0.001 (Mann-Whitney U-test).   

 

Figure S6: BUD13 knockdown alters the BMDM infection via VSV.  Related to Figure 

7.  (A) FSC/SSC plot showing the gating of live BMDMs in an uninfected control sample 

and the subsequent threshold used to calculate infectivity.  (B) Same as in (A) but for a 

control sample infected with VSV-GFP for 12 hours.  (C) Percent of live cells infected with 

VSV-GFP (MOI 10) in both control and shBUD13 BMDMs across a 24-hour time-course.  

(D) Percent of live cells infected in both control and shBUD13 BMDMs at 12 hours across 

a range of VSV-GFP MOIs.  Data is representative of three (C, D) independent experiments 

and is represented as mean (error bars indicate s.d.).  * denotes p < 0.05, ** denotes p < 0.01, 

and *** denotes p < 0.001 using a Student’s t test.   
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Figure S7: Knockdown of other RES complex proteins. Related to Figure 4.  (A) 

Bargraph indicating knockdown efficiency for RBMX2 shRNA (green) and SNIP1 shRNA 

(orange) as compared to BUD13 shRNA (blue).  (B) ΔSRs calculated for each junction in 

the Irf7 transcript for shBUD13 (blue), shRBMX2 (green) and shSNIP1 (orange).  The 

shBUD13 data is from figure 4 and is shown for perspective.  Comparison of intron ΔSR at 

intron 4 to all other junctions is significant (Student’s t-test, p<0.001).  No other pairwise 

comparison is significant for shBUD13.  No pairwise comparison is significant for other 

knockdown constructs. (C) Box plot showing the number of retention events across 

replicates at the indicated ΔSR for shBUD13 (blue), shRBMX2 (green), and shSNIP1 

(orange). 

 

Supplemental Table S1: shRNA Sequences. Related to STAR Methods. 

Supplemental Table S2: List of Irf7/ActB Associated Proteins Detected with RAP-MS. 
Related to Figure 2 
 
Supplemental Table S3: ΔSR for ISGs at 720 mins. Poly(I:C).  Related to Figure 4. 
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C h a p t e r  4  

Alternative Splicing Coupled with NMD Acts to Mitigate OAS1 Antiviral 
Activity 

 
Manuscript in Preparation: Frankiw, L. et al. Alternative Splicing Coupled with NMD Acts 
to Mitigate OAS1 Antiviral Activity. 
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Abstract 
 
At the heart of an innate immune response lies a tightly regulated gene expression program.  

This precise regulation is crucial because small changes can shift the balance from protective 

to destructive immunity.  Here we identify a frequently used alternative splice site in the gene 

oligoadenylate synthetase 1g (Oas1g), a key component of the 2-5A antiviral system.  Usage 

of this splice site leads to the generation of a transcript subject to decay, and removal of the 

site leads to increased expression of Oas1g and an improved antiviral response.  However, 

removal of the splice site also leads to an increase in apoptotic cell death, suggesting this 

splicing event exists as a compromise between the pathogen protective benefits and collateral 

damage associated with OAS1g activity.  Across the innate immune response, we show 

similar alternative splicing events coupled with decay are widespread and represent a 

previously underappreciated mechanism of gene expression regulation in innate immunity. 
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Introduction 
 
Central to an inflammatory response is a robust and coordinated gene expression program.  

Precise regulation of this gene expression program is essential because small alterations can 

shift the balance from protective to destructive immunity1.  While transcription and protein 

turnover are the best-examined areas of gene expression regulation2–5, a variety of post-

transcriptional mechanisms have emerged that play a role in the fine-tuning of an 

inflammatory response.  Well-studied examples include mRNA stabilization6, mRNA 

deadenylation7, and microRNA regulation8.   

More recently, the wealth of transcriptomic data generated over the last decade has 

shed light on the widespread nature of alternative mRNA splicing of mammalian genes.  

While most mammalian genes exhibit alternative splicing9,10, not all of the produced 

transcripts encode functional proteins. It is true that alternative splicing can act to increase 

proteomic diversity; however, it can also generate unproductive isoforms that incorporate a 

premature termination codon (PTC), thus subjecting the transcript to either cytoplasmic 

NMD decay11.  Coupling of alternative splicing to NMD decay (AS-NMD) provides cells 

with a mode of downregulation of expression of a given gene.  It has been estimated that 10-

30% of mammalian genes may be regulated post-transcriptionally, potentially in a context-

specific manner, through AS-NMD12–15. 

While several AS-NMD events have been identified and have been shown to play an 

important role in a variety of biological processes, most notably the autoregulation of splicing 

factor genes15,16, little is known with respect to the role of AS-NMD during the finely-tuned 

inflammatory response.  Here we identify a frequently used unproductive splicing event in 

oligoadenylate synthetase 1g (Oas1g), an important murine anti-viral response factor.  Upon 
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binding viral dsRNA, OAS1g acts to convert ATP into 2-5 linked oligoadenylates (2-5A), 

which in turn activate RNase L.  Although humans have a single Oas1 gene, in mice the 

Oas1 gene locus underwent a series of duplication events leading to the existence of eight 

Oas1 paralogues.  However, only OAS1a and OAS1g have been shown to be enzymatically 

active17,18.  Activated RNase L degrades viral RNA, in turn inhibiting viral replication and 

propagation19.  Removal of the Oas1g alternative splice site in a murine macrophage cell line 

led to increased expression of Oas1g, both in stimulated and unstimulated conditions.  

Further, this increased expression of Oas1g improved the ability of macrophages that lack 

the unproductive splice site to withstand infection with Encephalomyocarditis virus 

(EMCV).  However, removal of the Oas1g alternative splice site led to an increase in 

apoptotic cell death in uninfected cells, a finding consistent with the idea that activation of 

the 2-5A system can be detrimental to host fitness20–22.  Beyond Oas1g, AS-NMD events 

were found in a number of other important transcripts involved with the innate immune 

response.  Thus, evolution of splice sites in such transcripts, with a consequent dampening 

of gene output, is a means of mitigating what might otherwise be an unchecked or 

inappropriately scaled response. 

 

Results 

Oas1g has a Frequent AS-NMD Event  

AS events have the potential to generate both productive isoforms coding for functional 

proteins as well as unproductive isoforms subject to degradation (Figure 1A).  The latter 

allows for the use of AS as a post-transcriptional mechanism of gene-expression regulation.  

To investigate the extent to which unproductive splicing acts as a post-transcriptional 
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regulator of gene expression during inflammation, we analyzed nuclear fractionation RNA-

sequencing data from mouse bone marrow-derived macrophages (BMDMs) stimulated with 

the TLR3 agonist poly(I:C) for up to 12 hrs23.  Activation of TLR3 leads to activation of 

interferon regulator factors, production of interferon-α and β, and induction of a type I 

interferon response24.  From this data, we identified frequent usage of an alternative 5’ splice 

site at the third junction of Oas1g (Figure 1B).  In each time-point, this alternative 

“unproductive” splice site is frequently selected over the consensus “productive” splice site 

(Figure 1C, left).  This is evident by simply comparing the number of reads that map across 

the two different junctions, as well as through the use of the computational program MISO, 

which utilizes a probabilistic framework to estimate the expression of alternatively spliced 

isoforms25 (Figure 1C, right).  The expression metric is represented by the value Percent 

Spliced In (PSI; φ), which is an estimate of the fraction of transcripts that utilize the 

alternative splice site.  Of interest was the strength of the productive and unproductive splice 

site, which can be quantified using a maximum entropy model26.  We find the productive and 

unproductive 5’ splice sites are similar in strength, and are fairly strong with respect to all 

expressed junctions (Figure S1). 

Next we looked at this alternative splicing event in the context of all expressed 

junctions. To do this, we calculated the alternative junction usage at each expressed junction 

from the BMDM data-set stimulated with poly(I:C) for 4 hours (Figure 1D, see methods).  

From this junction-centric viewpoint, the sequencing data supports the conclusion that most 

expressed junctions splice with high fidelity (Figure 1E).  Still, there is some alternative 

junction usage, which can be attributed to both regulated AS events as well as splicing noise.  

With respect to the alternatively spliced junction of Oas1g, it ranks among the top percentile 
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of alternative junction usage, supporting the conclusion that this AS event is among the most 

frequently utilized in poly(I:C) stimulated BMDMs (Figure 1E).   

 

Removal of Alternative Splice Site Alters Oas1g Expression and Macrophage Response 

to EMCV. 

In order to explore the effect of this alternative splicing event on Oas1g expression, and 

correspondingly the antiviral response, we used clustered regularly interspaced short 

palindromic repeats (CRISPR)–CRISPR-associated protein-9 nuclease (Cas9) technology to 

engineer murine RAW 264.7 cell lines devoid of this unproductive splice site (Figure 2A).  

In parallel, cell lines expressing Cas9 and a non-targeting guide were generated.  We selected 

seven clones that had the splice site removed in both alleles, which we deem as “fixed” clones 

(Figure 2B, S2).  RT-PCR upon stimulation with poly(I:C) both confirmed alternative splice 

site usage in control populations, and showed forced productive splicing in these fixed clones 

(Figure 2C). 

To determine what effect this forced productive splicing has on Oas1g expression, 

we used Taqman qPCR to monitor levels of Oas1g in both unstimulated and stimulated (8 

hrs poly(I:C)) conditions.  In each case, the engineered lines lacking the unproductive Oas1g 

splice site had significantly higher levels of expression, presumably due to lack of AS-NMD 

associated with selection of the unproductive splice site (Figure 2D).  Of interest, levels of 

Oas1g in unstimulated Oas1g splice site engineered cells were similar to levels of Oas1g in 

stimulated control cells.  Next, to determine the effect of removal of the unproductive splice 

site with respect to the anti-viral response, we used EMCV to infect both groups of 

macrophages.  EMCV is a (+)ssRNA member of the Picornaviridae family that replicate 
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through partially dsRNA intermediates27.  Infection has been shown to cause accumulation 

of 2-5A, and viral replication is sensitive to the OAS/RNase L pathway20,28.  As 

oligoadenylate synthetases bind viral dsRNA, the RNA activators in EMCV-infected cells 

are believed to be the viral replicative intermediates19.  Upon 18 hrs of infection with EMCV, 

we again observed significantly higher levels of Oas1g expression in the engineered lines 

lacking the unproductive Oas1g splice site.  Using qPCR to measure levels of EMCV 

following 18 hrs of infection, we found the engineered lines controlled viral replication more 

efficiently than the control lines.  Thus, we conclude that forced productive splicing of Oas1g 

improves the antiviral defense through increased expression of Oas1g.  Next, as activation 

of the 2-5A system can affect apoptosis in host cells29, we were interested in determining 

whether removal of the unproductive Oas1g splice site altered the levels of apoptotic cells.  

These cells were detected with annexin V, which binds to phosphatidylserine exposed on the 

outer leaflet of cells undergoing apoptosis.  We observed ~2 fold increase in the fraction of 

cells positive for annexin V in the engineered lines lacking the unproductive Oas1g splice 

site as compared to the control cells (Figure 2G) in unstimulated conditions.  We conclude 

that the increased Oas1g observed with the removal of the unproductive splice site has the 

effect of increasing levels of apoptosis in a cell population.  

Of note, the other enzymatically active member of the murine Oas1 family, Oas1a, 

has a highly homologous junction with an identical unproductive splice site.  However, 

despite nearly complete similarity of sequence at and nearby this splice-site (Figure S3A), it 

is used less frequently than that of Oas1g (Figure S3B-D).  Because of this similarity, our 

guide targeted to the unproductive splice site of Oas1g also cut at Oas1a (Figure S4), and 

genotyping confirmed all selected clones deleted the Oas1a unproductive splice site in 
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addition to the Oas1g unproductive splice site.  Again, RT-PCR upon stimulation with 

poly(I:C) confirmed alternative splice site usage in control populations, and showed forced 

productive splicing in edited clones (Figure S3C).  To determine what effect this forced 

productive splicing has on Oas1a expression, we again used Taqman qPCR to monitor levels 

of Oas1a in both unstimulated and stimulated (8 hrs poly(I:C)) conditions.  In this case, we 

found that while the mean expression of Oas1a in both unstimulated and stimulated 

conditions was greater in non-engineered clones, the effect lacked significance (Figure S3D).  

We hypothesize the dampened effect with respect to Oas1a as compared to Oas1g is likely 

due to decreased usage of the unproductive splice site to begin with, but also note that the 

small differences observed in Oas1a expression levels could play a role in the 

aforementioned antiviral and apoptosis effects.   

 

A Similar AS-NMD Event Occurs in Human Monocytes 

Human Oas1 differs quite significantly from the mouse Oas1 paralogues, a finding that is 

perhaps not surprising given the volatile evolutionary history of the gene30–32.  The human 

Oas1 orthologue contains six exons, and alternative splicing gives rise to five isoforms (p42, 

p44, p46, p48, and p52) which differ at the C-terminal region.  Genetic variation that alters 

isoform abundance has been shown to lead to altered OAS1 activity and further, viral 

susceptibility33,34.  There exists a single G/A SNP in the OAS1 exon 6 splice-acceptor 

(rs10774671) that accounts for some of this variability.  Those with the G allele 

predominantly produce p46, while the A allele leads to production of p42, p44, p48, and p52. 

The p46 isoform has been shown to have increased activity, an effect mediated at least in 

part by defects in protein accumulation of the other alleles22,34,35.  
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However, in addition to the productive splicing events that lead to the generation of 

multiple isoforms, we also find a previously unreported unproductive splicing event at the 

third splice junction of Oas1.  Human monocytes consistently and frequently use an 

alternative splice site that leads to an NMD substrate (Figure 3B). This 3’ alternative splice 

both shifts the frame of the transcript and incorporates a PTC.  While this alternative splice 

site is used less frequently than the one found in murine Oas1g, it is worth noting that the 

human sequencing samples are derived from whole cell RNA as compared to nuclear RNA.  

As such, the fraction of human Oas1 transcripts that utilize the unproductive splice site  due 

to efficient degradation of transcripts targeted by the NMD decay machinery in the 

cytoplasm.  Interestingly enough, while this splice site is used frequently in a variety of 

stimuli, frequency of usage does differ with the cell-type and stimulation.  Monocytes 

stimulated with LPS use the alternative splice site much more frequently as compared to HIV 

infected CD4+ T cells (Figure 3B, C).  This points to stimulation and/or cell-type specific 

regulation of this splicing event.  Regardless, this AS-NMD, coupled with the altered activity 

from productive splicing events, supports the conclusion that despite differences between 

human Oas1 and mouse Oas1g, human Oas1 is extensively regulated at the post-

transcriptional level.  

 

AS-NMD Events Are Common in Transcripts Related to Innate Immunity 

While Oas1g contained one of the most frequently used AS-NMD events, it was not the only 

AS-NMD event found in genes related to the innate immune response.  For example, in 

nuclear fractionation RNA-sequencing data from mouse BMDMs stimulated with poly(I:C), 

we found significantly utilized skipped exon events that led to a frameshift and incorporation 
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of a PTC in the important inflammatory transcripts Mx1, IKKε, and Oasl2  (Figure 4A-C).  

In each case, the event is utilized in all, or nearly all of the sequenced time-points   These 

events were confirmed in a macrophage cell line with RT-PCR upon stimulation with 

poly(I:C) for 4, 8, and 12 hours (Figure 4E-F).  To classify AS-NMD events globally, we 

utilized the tool SplAdder to predict and quantify AS events supported by an input sample36.  

A stringent confidence criteria was required to avoid including AS events derived from 

splicing noise (see methods).  Then, a custom Python script was used to select only events 

that led to frameshifts and/or PTC inclusion.  Among the list of AS-NMD events, as 

compared to a background of expressed genes, we observed significant enrichment for GO 

terms associated with the innate immune response (Figure 4G).  With respect to the viral 

pathogen response, which is tasked with limiting viral replication through degradation of 

viral (as well as non-viral) mRNA and establishment of a cellular antiviral state, a host of 

factors involved with the response contain AS-NMD events identified here or in other 

published work23 (Figure 4H). 

 

Discussion 

The robust and coordinated gene expression program involved in the defense against 

pathogens requires extraordinarily tight regulation.  In this study, we sought to shed light on 

the role of AS-NMD in this regulation.  We identified a frequently used unproductive 

splicing event in Oas1g, an important murine anti-viral response factor, and show that forced 

productive splicing leads to increased Oas1g expression and further, an increased ability to 

clear virus.  Additionally, we identify a number of other examples of unproductive splicing 
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events in the innate immune response which could subject the corresponding transcript to 

decay via the NMD pathway.   

With respect to Oas1g, it is fair to ask what benefit such an alternative splicing event 

offers?  The alternative splice site mediating this AS-NMD event is of comparable strength 

to the consensus 5’ splice site (Figure S1).  If possession of the greatest pathogen defense 

were the only goal of an organism, it seems unlikely this splice site would be retained.  

However, while pathogen defense systems can provide a protective benefit, they also can 

cause collateral damage to a host.  With respect to Oas1, its pathogen defense effects are 

repeatedly forfeited by a host due to the fact its activity can be so detrimental22,37.  This is 

exemplified by the surprisingly high frequency of loss-of-function mutations in primates22, 

and the fact OAS1 activity has been completely lost in several animal lineages, including 

teleost fish and insects37.  Moreover, while mice deficient for RNase L, the downstream 

effector of Oas1 in the 2-5A system, exhibit susceptibility to viral infection20, in the absence 

of infection they display significantly increased longevity21.  Given the fact that host RNAs 

have been shown to be able to activate OAS enzymes, its reasonable to hypothesize that the 

longevity effect is mediated, at least in part, by chronic 2-5A production22,38–40.  With respect 

to the AS-NMD event we observed in Oas1g, we found removal of the unproductive splice 

site significantly increased the number of cells undergoing apoptosis.  From this, it stands to 

reason that removal of the unproductive splice site, while improving the ability to limit viral 

infection, could negatively impact host fitness.  In turn, we believe this splice site represents 

a compromise between the pathogen protective benefits and collateral damage associated 

with OAS1g activity. 
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A second question has to do with the manner with which this mitigation occurs.    

Innately, regulation at the post-transcriptional level through AS-NMD seems appears 

inefficient.  Why spend the resources to transcribe a transcript if it is destined for 

degradation?    For one, the very fact introns exist and are transient in nature argues against 

the idea that the cost of transcription is prohibitive41.  A significant majority of transcribed 

sequence (~90% in humans42) is spliced and discarded.  Additionally, it is well understood 

that transcriptional regulation is largely a cooperative venture43, epitomized by complexes 

like the interferon-β (IFN-β) enhanceosome44.  As transcriptional regulation is not simply 

one protein interacting with one DNA sequence, but instead a multitude of proteins 

interacting with a host of other proteins and a variety of DNA sequences, it is quite possible 

that once transcriptional control has been placed on a system, changing it quantitatively is 

difficult.  Thus, secondary mechanisms are needed to fine-tune the gene expression levels of 

select transcripts.  As such, we argue the fine-tuning capabilities inherent to splicing based 

post-transcriptional regulation far outweigh the cellular cost of additional transcription, 

especially in the context of a tightly regulated gene expression program like inflammation. 

It remains unknown whether the AS-NMD event in Oas1g is regulated by an external 

input or whether a constant fraction of transcripts is discarded.  While we do see a trend 

whereby increases in stimulation time accompany decreases in φ (Fig. 1C), in essence 

arguing this AS-NMD event acts as a break released upon Oas1g induction, we are hesitant 

to draw such a conclusion without both increased sequencing depth at Oas1g and more 

sequencing time-points.  Regardless, the fact that the alternative splice site for Oas1g and 

Oas1a is identical in sequence, and further both junctions are nearly identical, strongly 

supports the idea that trans-acting proteins might affect the process.  Newly developed 
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methods like RAP-MS45 and ChIRP46, which identify RNA binding proteins bound to RNAs 

of interest, could help discover interactions that have the ability to affect splice site selection. 

In summary, we found a frequently used AS-NMD event in Oas1g.  When the splice site that 

mediates this event is removed, we observed increased expression of Oas1g and an improved 

antiviral response.  A similar AS-NMD event was found in human Oas1.  Indeed, genetic 

variation that dampens OAS1 activity in humans has been shown to lead to susceptibility to 

viral infection, particularly to West Nile virus33 and Epstein Barr virus34.  Forced productive 

splicing using an antisense oligonucleotide could limit viral propagation and thus, has a 

potential therapeutic role in the treatment of infection.  Similar unproductive splicing events 

were found throughout the innate immune response.  While future studies should seek to 

understand the functional significance of individual events, this form of unproductive 

splicing represents a previously underappreciated mechanism of gene expression regulation 

in innate immunity. 
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Figure Legends 
 
Figure 1. Oas1g has a Frequent AS-NMD Event. (A) A schematic depiction an alternative 

splicing event leading to either a productive isoform destined for translation or an 

unproductive isoform destined for degradation.  (B) Sashimi plot for the entire gene body of 

Oas1g from BMDMs stimulated with poly(I:C) for 12 hrs.  Oas1g is a negative strand gene 

and is depicted right to left.  (C) (left) Sashimi plots centered at the third junction of Oas1g 

from BMDMs stimulated with poly(I:C) for 0, 1, 4, 8, and 12 hrs. (right) φ estimates (red 

line), as well as confidence intervals over estimates (histogram) for each time point.  (D) 

Schematic representation of the alternative junction usage calculation.  (E)  Pie chart 

representing alternative junction usage for all expressed junctions upon 4 hrs. of poly(I:C) 

stimulation.  The slice including the alternatively spliced third junction of Oas1g is depicted 

by the arrow.   

 

Figure 2. Removal of Alternative Splice Site Alters Oas1g Expression and Macrophage 

Response to EMCV. (A) Schematic representation of the two alternative splice isoforms, 

and the gRNA/Cas9 targeting of the alternative splice site. (B) Sanger sequencing gDNA 

from a control sample (top) and an Oas1 SS KO sample (bottom).  Sequencing is oriented 

such that the negative strand runs left to right.  The alternative splice site is represented by 

the yellow highlighted region.  (C) RT-PCR upon stimulation with poly(I:C) confirming 

alternative splice site usage in control populations and forced productive splicing in fixed 

clones.  (D)  RT-qPCR analysis of Oas1g mRNA levels in unstimulated and stimulated (8 

hrs poly(I:C)) macrophages.  Control samples are represented in light blue, SS KO clones 

are represented in dark blue.  (E)  RT-qPCR analysis of Oas1g mRNA levels in EMCV 
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infected (18 hrs) macrophages.  Control samples are represented in light blue, SS KO clones 

are represented in dark blue.  (F)  RT-qPCR measurement of EMCV viral load following 18 

hrs of infection at 1 MOI.  Control samples are represented in light blue, SS KO clones are 

represented in dark blue.  (G)  Annexin V staining for apoptotic cells under unstimulated 

conditions.  Control samples are represented in light blue, SS KO clones are represented in 

dark blue.  Data is representative of two independent experiments (D-G) and is shown as 

mean (error bars indicate SEM). * denotes p < 0.05, ** denotes p < 0.01, and *** denotes p 

< 0.001 using a Student’s t test.  Results are presented relative to those of Rpl32 (D-F). 

 

Figure 3. A Similar AS-NMD Event Occurs in Human Macrophages.  (A) Depiction of 

the mRNA splice isoforms found in human Oas1.  There exists a single G/A SNP in the 

OAS1 exon 6 splice-acceptor (rs10774671), with the G variant producing the more active 

p46 isoform.  (B) Sashimi plots for an AS-NMD event identified in exon 3 of human Oas1 

from human monocytes stimulated with LPS for 0, 1 and 6 hrs.  (C) Same as (B) but for 

patient derived HIV infected CD4+ T cells. 

 

Figure 4. AS-NMD Events Are Common in Transcripts Related to Innate Immunity.  

(A) Sashimi plots for an AS-NMD event identified in Mx1 from BMDMs stimulated with 

poly(I:C) for 0, 1, 4, 8, and 12 hrs.  (B) Same as (A) for IKKε.  (C) Same as (A) for Oasl2.  

(D) RT-PCR of Mx1 upon stimulation with poly(I:C) for 4, 8, and 12 hrs.  (E) Same as (D) 

for IKKε.  (F) Same as (D) for Oasl2 (G) GO terms enriched for AS-NMD events, as 

compared to a background of expressed genes.  (H) Schematic representation of major 
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pathways in the viral pathogen response.  Red arrows are shown above factors containing 

AS-NMD events.  Data is representative of two independent experiments (D-F). 
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Methods 
 
Contact for Reagent and Resource Sharing 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, David Baltimore. 

 

Experimental Model and Subject Detail 

Animals 

The California Institute of Technology Institutional Animal Care and Use Committee 

approved all experiments.  Bone marrow derived macrophages were isolated from mixed-

sex C57BL/6 mice and cultured and stimulated as previously described23. 

 

Cell Culture 

human embryonic kidney cells (HEK293T) were cultured in DMEM supplemented 

with 10% FBS. All cell lines were maintained at 37°C.  Human embryonic kindey cells 

(HEK293T) from ATCC were cultured in DMEM supplemented with 10% FBS and 1% 

Pen/Strep.  RAW 264.7 murine macrophages from ATCC were cultured in DMEM 

supplemented with 10% FBS and 1% Pen/Strep.  Cell lines were maintained at 37°C in 5% 

CO2. 

 

Method Detail 

RNA Isolation 

Total RNA was purified from BMDMs using TRIzol reagent (Ambion) as per the 

manufacturer’s instructions.  Genomic DNA in RNA purifications was eliminated through 
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treatment with Turbo DNase (Thermo Fisher Scientific) for 30 min at 37°C.  RT reactions 

were performed in 20µL (20mM DTT, 2X ProtoScript II Reverse Transcriptase Reaction 

Buffer (NEB), 1mM dNTPs, 40U Murine RNAse Inhibitor (NEB), and 200U ProtoScript II 

(NEB) Reverse Transcriptase) with 500-1000ng RNA. Reaction incubated in thermocycler 

with the following program: 1. 42°C for 60min, 2. 65°C for 20min. 

 

RT-PCR of Splice Isoforms 

Total RNA was isolated using Tri reagent solution and digested with DNase I 

(Invitrogen). RT reactions were performed in 20µL (20mM DTT, 2X ProtoScript II Reverse 

Transcriptase Reaction Buffer (NEB), 1mM dNTPs, 40U Murine RNAse Inhibitor (NEB), 

and 200U ProtoScript II (NEB) Reverse Transcriptase) with 500-1000ng RNA. Reaction 

incubated in thermocycler with the following program: 1. 42°C for 60min, 2. 65°C for 20min.  

PCR was performed using Q5 Hot Start High-Fidelity DNA Polymerase (NEB) and gene 

specific primers.  

 

CRISPR Experiments 

RAW 264.7 cell lines were grown in individual 10cm plates.  20,000 cells were plated in a 

cell well plate and left overnight to adhere.  Following adherence, lentvirus expressing Cas9 

and either the Oas1a/g guide or a scramble control guide was added to the cells.  48 hours 

later, infected cells were selected with puromycin, which was added at a concentration of 

3.75ug/mL.  Following 72 hours of selection, cells infected with the Oas1a/g guide were 

single-cell plated in 96 well plates.  Clones were passed to 6-well plates following 5 days of 

growth, at which point genotyping was performed.  Cells infected with the scramble control 
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guide were passaged as a bulk infected population, with independent biological replicates 

representing cells independently infected and puromycin selected. 

  

Poly(I:C) Stimulations 

RAW 264.7 cell lines were grown in individual 10cm plates.  12 hours prior to infection cells 

were counted and plated at a density of 350,000 cells/well in 6 well plate.  Following 

adherence, 5ug/mL of Poly(I:C) (Sigma) was added.  Following the infection, cells were 

lysed in TRIzol.  Viral RNA was quantified as described above.  Cellular RNA was 

quantified as described above.  

 

EMCV Infection Experiment 

RAW 264.7 cell lines were grown in individual 10cm plates.  12 hours prior to infection, 

cells were counted and plated at a density of 350,000 cells/well in 6 well plate.  Following 

adherence, EMCV was added at the specified MOI for the specified amount of time.  

Following the infection, cells were lysed in TRIzol.  Cellular and viral RNA was quantified 

as described above.   

 

Annexin V Experiment 

RAW 264.7 cell lines were grown in individual 10cm plates.  12 hours prior to infection, 

cells were counted and plated at a density of 125,000 cells/well in 12 well plate.  24 hours 

after plating, cells were stained with Annexin V APC Ready Flow Conjugate (Thermo 

Fischer).  Samples were analyzed on a MACSQuant10 Flow Cytometry machine (Miltenyi).  

Data was analyzed with FlowJo 10.2. 
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Data Download 

Raw RNA-sequencing samples in FASTQ format were downloaded from the Gene 

Expression Omnibus (GEO) database.  Mouse bone-marrow macrophages derived data data 

can be found under accession number GSE122543.  Human monocyte data can be found 

under accession number GSE60216 

 

RNA-Sequencing Analysis 

Sequencing was performed on a HiSeq 2500 High Throughput Sequencer (Illumina).  All 

previously downloaded RNA-seq samples were individually aligned using a uniform 

processing pipeline based on the STAR aligner47.  The STAR software (version 2.6.0a) was 

used in a 2-pass mode.  The first pass identifies non-annotated junctions in the input, allowing 

for the construction of a genome index containing non-annotated junctions. The second pass 

alignment is then performed against the junction-aware index.  The command line parameters 

were as follows: 

 

STAR --runThreadN 12 –genomeDir GENOME --genomeLoad NoSharedMemory --
sjdbGTFfile GTF --twopassMode Basic --readFilesIn FASTQ --outFileNamePrefix NAME -
-outSAMattributes NM --outStd BAM_Unsorted --outSAMtype BAM Unsorted --
outSAMmode Full --outSAMstrandField intronMotif --outSAMunmapped None --
outFilterType BySJout > OUTPUT.bam 
 

Following alignment, Portcullis48 was used to filter invalid splice junctions from the 

aligned BAM file.  Isoform expression was quantified using the raw fastq files and the 

mouse reference transcriptome mm9 as input for Kallisto (v.0.45.0)49.  The resultant 

normalized transcript frequencies were provided to the R package Sleuth for differential 
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analysis (v.0.30.0)50.  Alternative splicing events were detected and quantified on produced 

BAM files using the SplAdder toolkit36 as per Kahles et al., 201851.  Unproductive splicing 

events were determined using a custom Python script.  Alternative splicing sashimi plots 

across an entire gene were generated with ggsashimi52 whereby only junctions with greater 

than 5 supporting RNA-seq reads were plotted, while alternative splicing sashimi plots 

centered at an individual junction were generated with MISO25. 

 

Alternative Junction Usage Analysis 

Isoform expression was quantified using the raw fastq files and the mouse reference 

transcriptome mm9 as input for Kallisto (v.0.45.0).  Only isoforms with a TPM greater 

than 10 were considered.  Junctions from the most abundant isoform for each gene were 

selected, as long as there were 8 supporting reads for the junction.  Alternative junction 

usage was calculated by comparing the number of reads that overlap a given selected 

junction, but did not utilize the same 5’ and/or 3’ splice site, to the total number of reads 

at a junction.   

 

Quantification and Statistical Analysis 

All statistical analysis was performed in Python (version 2.7.9).  Unless otherwise indicated 

in figure legends, statistical significance measurements were marked as follows: * denotes p 

< 0.05, ** denotes p < 0.01, *** denotes p < 0.001, and n.s. denotes not significant.   
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Supplemental Figure Legends 
 
Figure S1. The Alternative 5’ Splice Site Mediating the AS Event is of Similar Strength 

to the Consensus 5’ Splice Site. (A) Histogram representing the 5’ splice site strength 

(MaxEntScore) of introns of expressed in BMDMs.  The bin with which the consensus splice 

site falls is shown by the light blue line.  The bin with which the alternative splice site falls 

is shown by the dark blue line.  (C) MaxEntScore quantifications of the consensus and 

alternative 5’ splice site. 

 

Figure S2. Oas1g Macrophage Cell Line Genotyping.  Sanger sequencing gDNA from a 

control sample (very top) and the Oas1g SS KO clones.  Sequencing is centered around the 

Oas1g alternative splice site.  Sequencing is oriented such that the negative strand runs left 

to right. 

 

Figure S3. Oas1a has a Similar Frequently Utilized AS-NMD Event.  (A) Schematic 

depiction showing the homology between Oas1a and Oas1g at the alternatively spliced third 

junction.  (B) (left) Sashimi plots centered at the third junction of Oas1g from BMDMs 

stimulated with poly(I:C) for 0, 1, 4, 8, and 12 hrs. (right) φ estimates (red line), as well as 

confidence intervals over estimates (histogram) for each time point. (C) RT-PCR upon 

stimulation with poly(I:C) confirming alternative splice site usage in control populations and 

forced productive splicing in fixed clones.  (D)  RT-qPCR analysis of Oas1g mRNA levels 

in unstimulated and stimulated (8 hrs poly(I:C)) macrophages.  Control samples are 

represented in light blue, SS KO clones are represented in dark blue.  Data is representative 

of two independent experiments (D-F) and is shown as mean (error bars indicate SEM). * 



 

 

145 

denotes p < 0.05, ** denotes p < 0.01, and *** denotes p < 0.001 using a Student’s t test.  

Results are presented relative to those of Rpl32 (D) 

 

Figure S4. Oas1a Macrophage Cell Line Genotyping.  Sanger sequencing gDNA from a 

control sample (very top) and the Oas1a SS KO clones.  Sequencing is centered around the 

Oas1a alternative splice site.  Sequencing is oriented such that the negative strand runs left 

to right. 
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C h a p t e r  5  

Conclusion and Future Directions 
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Concluding Remarks 

This thesis highlights the importance of post-transcriptional regulation mediated by 

mRNA splicing in the control of an inflammatory gene expression program.  In this thesis, I 

have identified unproductive splicing events that affect gene expression levels of transcripts 

involved in the innate immune response, as well as a trans-acting factor that regulates one 

such event.  This type of regulation has shown to be extraordinarily important for the fine-

tuning of the tightly regulated inflammatory gene expression program.   

While seemingly an inefficient method of regulation, post-transcriptional regulation 

is a key mechanism by which a cell can fine-tune the levels of specific transcripts.  While 

transcriptional regulation has been the focus in the study of gene expression regulation, it has 

some characteristics that make the process of fine-tuning difficult.  In contrast to post-

transcriptional regulation, transcriptional regulation is largely a cooperative venture1. It is not 

simply one protein interacting with one DNA sequence, but instead a multitude of proteins 

interacting with a host of other proteins and a variety of DNA sequences.  Thus, we believe 

that once transcriptional control has been placed on a system, changing it quantitatively is 

difficult.  In turn, secondary mechanisms, like the one highlighted in this thesis, are needed 

for the fine-tuning of gene expression levels.  While there are cellular costs due to unneeded 

transcription, we argue the fine-tuning capabilities inherent to splicing based post-

transcriptional regulation far outweigh this increased burden.  Furthermore, the very fact 

introns exist and are transient in nature argues against the idea that the cost of transcription 

is prohibitive as a significant majority of transcribed sequence are spliced and discarded2. 
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An innate immune response offers an exceptional system to study such regulation.  

The innate immune response is crucial in the fight against infection; however, there are 

inherent costs to such a response.  If this response is left unscaled or unchecked, it can do 

damage to an organism and contribute to a variety of diseases3.  Thus, this response needs to 

be highly regulated and turned on at the right scale only in response to pathogens.  If not, the 

balance can be shifted from protective to destructive immunity.  Relatively small changes to 

this tightly regulated gene expression program can have fairly drastic effects4.  Thus, this 

post-transcriptionally mediated fine-tuning is exceptionally important in such a system, and 

dysregulation has easily observable effects.  

 
Future Directions  
 
While it is apparent such post-transcriptional regulation mediated by mRNA splicing is 

frequent and wide-spread during an innate immune response, several open questions remain 

regarding the role of this form of regulation.  The most obvious questions have to do with 

the regulation of these unproductive splicing events.  With respect to the third chapter, it 

remains unknown whether or not the retention event in Irf7 is actively regulated.  We showed 

decreasing the splicing efficiency of the fourth intron has the ability to significantly dampen 

the functional output of IRF7.  We hypothesize this dampening acts to mitigate what 

otherwise might be an unchecked or inappropriately scaled response.  However, whether a 

cell actively controls this splicing event and thus the intron serves as a regulatory control 

point remains unknown.  Further, despite the fact we identified the factor BUD13 as a 

component involved with the splicing efficiency of the intron, it remains unknown whether 

BUD13 plays a role in this regulation.  An alternative hypothesis is that BUD13 simply 
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represents a mechanism that has evolved to counter IR in a subset of inherently weak introns 

that require splicing5.   

Regulation is also a question affecting Oas1g and Oas1a in the fourth chapter.  Are 

these alternative splicing events regulated by an external input or is some constant fraction 

of transcripts discarded?  With respect to Oas1g, we do notice a trend whereby increases in 

stimulation time accompany decreases in PSI (φ).  It is tempting to speculate regarding this 

trend.  For example, it is possible this unproductive splicing event acts as a break released 

upon Oas1g induction.  However, we are hesitant to draw such a conclusion without both 

increased sequencing depth at Oas1g and more sequencing time-points. Regardless, the fact 

that the alternative splice sites and much of the junction for Oas1g and Oas1a are identical 

in sequence, yet the two junction significantly differ in their usage of the unproductive splice 

site, strongly suggests a trans-acting proteins might affect this process. 

Beyond regulation, an important future direction involves the determination of 

functional relevance of many of the other identified unproductive splicing events.  While Irf7 

and Oas1g contain two of the most frequently used unproductive splicing events, they are 

not the the only events found in genes related to the innate immune response.  For example, 

in RNA-sequencing data from mouse BMDMs stimulated with poly(I:C), we found 

significantly utilized skipped exon events that led to a frameshift and incorporation of a PTC 

in the important inflammatory transcripts Mx1, IKKε, and Oasl2.  In each case, the event is 

utilized in all, or nearly all of the sequenced time-points (Chapter 4).  The computational tool 

SplAdder was used to predict and quantify AS events6.  A stringent confidence criteria was 

utilized to avoid including AS events derived from splicing noise.  However, mRNA splicing 

can be a noisy process as the dynamic nature of the spliceosome can be a source of stochastic 
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fluctuation7.  In order to prove these splicing events play a role in post-transcriptional 

regulation, and are not just a byproduct of this noise, it needs to be shown that removal of 

the event has some functional effect.   

Furthermore, little work has been done regarding the role of unproductive splicing 

during inflammation at the organismal level.  While we notice significant effects upon 

alteration of unproductive splicing events in cells grown in culture (Chapters 3 and 4), to 

gain a proper understanding of the physiological implications of the removal of such events, 

experiments need to be done at the level of an animal.  Creating a mouse lacking the 

alternative splice sites found in Oas1a and Oas1g with CRISPR-Cas9 technology should be 

relatively straightforward.  Further, it is potentially feasible to remove introns, which could 

either eliminate the potential for a skipped cassette exon or intron retention event.  Of note, 

deficiency of Bud13 has been shown to be embryonic lethal both in zebrafish8 and in C. 

elegans9, findings that are consistent with preliminary work of ours in mice.  Thus, the 

organism wide alteration of Irf7 retention through removal of Bud13 appears not to be 

feasible.  

It is important to note that all of the aforementioned work has been studied at the bulk 

level.  Cell-level insight regarding uproductive splicing could provide meaningful insight 

into the purpose and regulation of individual unproductive splicing events.  It has previously 

been reported that there is a great deal of variation in splicing patterns among single cells10,11.  

Can such heterogeneity be found among unproductive splicing events and if so, what 

regulates this heterogeneity and why does it exist?  In saying this, it remains uncertain how 

feasible it is to perform such analyses.  Innate to the sequencing of a single cell is the low 

amount of starting material, which can restrict analysis to only highly abundant transcripts12.  
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While this can be challenging in typical gene expression analyses, it is even more problematic 

when studying isoform abundance in non mutually-exclusive cases as non-dominant 

isoforms tend to be expressed at low levels and thus, are especially susceptible to “drop-

out”13.  Further, low sequence coverage common in scRNA-seq data makes it difficult to 

accurately characterize splicing variations in low abundant transcripts.  Such a problem 

might be alleviated through the development of machine learning algorithms like the recently 

published DARTS14, which offers the ability to better characterize splicing variations in 

transcripts with minimal coverage.  Technological advances in both library preparation and 

sequencing methods, as well as new computational strategies that are tailored to the 

intricacies of scRNA-seq (namely high technical noise, high processing requirements, and 

misquantification of poorly expressed isoforms due to lack of coverage) offer a great deal of 

promise15–17. 

Finally, there are potential therapeutic consequences to unproductive splicing.  This 

can be exemplified through our work with Oas1g, which shows the unproductive splicing 

event in Oas1g acts to mitigate Oas1g gene expression, and thus the antiviral response.  While 

the evolutionary history of Oas1 is quite volatile, epitomized by the fact that in humans there 

is only one copy of Oas1 that differs significantly in sequence from the eight Oas1 mouse 

paralogues, human Oas1 contains a similar unproductive splicing event.  It might be possible 

to force productive splicing of this human Oas1 transcript using an antisense oligonucleotide 

(ASO) to block the unproductive splice site.  ASOs are short, synthetic, single-stranded 

oligodeoxynucleotides that can alter RNA splicing by base pairing to cis sequences18.  The 

clinical success of drugs like Eteplirsen, an ASO which negates a frameshift mutation in 

DMD by causing the skipping of exon 51 and thus shifting the transcript back into frame, has 
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created a great deal of interest in ASOs as potential therapeutics19.  As in mice, genetic 

variation that dampens OAS1 activity has been shown to lead to susceptibility to viruses like 

West Nile virus20 and Epstein Barr virus21.  Forcing productive splicing with an ASO could 

improve an anti-viral response and thus, potentially be used as an anti-viral agent.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

162 

References 
 
1. Spitz, F. & Furlong, E. E. Transcription factors: from enhancer binding to developmental 

control. Nat. Rev. Genet. 13, 613 (2012). 

2. Lareau, L. F., Brooks, A. N., Soergel, D. A., Meng, Q. & Brenner, S. E. The coupling of 
alternative splicing and nonsense-mediated mRNA decay. (2007). 

3. O’Connor, B. P. et al. Regulation of toll-like receptor signaling by the SF3a mRNA 
splicing complex. PLoS Genet. 11, e1004932 (2015). 

4. Kontoyiannis, D., Pasparakis, M., Pizarro, T. T., Cominelli, F. & Kollias, G. Impaired 
on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: 
implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 
(1999). 

5. Frankiw, L. et al. Bud13 Promotes a Type I Interferon Response By Countering Intron 
Retention in Irf7. Mol. Cell 73, 803–814 (2019). 

6. Kahles, A., Ong, C. S., Zhong, Y. & Rätsch, G. SplAdder: identification, quantification 
and testing of alternative splicing events from RNA-Seq data. Bioinformatics 32, 1840–
1847 (2016). 

7. Wan, Y. & Larson, D. R. Splicing heterogeneity: separating signal from noise. Genome 
Biol. 19, 86 (2018). 

8. Fernandez, J. P. et al. RES complex is associated with intron definition and required for 
zebrafish early embryogenesis. PLoS Genet. 14, e1007473 (2018). 

9. Jiang, M. et al. Genome-wide analysis of developmental and sex-regulated gene 
expression profiles in Caenorhabditis elegans. Proc. Natl. Acad. Sci. 98, 218–223 (2001). 

10. Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression and 
splicing in immune cells. Nature 498, 236–240 (2013). 

11. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary 
glioblastoma. Science 344, 1396–1401 (2014). 

12. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges 
in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015). 

13. Arzalluz-Luque, Á. & Conesa, A. Single-cell RNAseq for the study of isoforms—how 
is that possible? Genome Biol. 19, 110 (2018). 

14. Zhang, Z. et al. Deep-learning augmented RNA-seq analysis of transcript splicing. Nat. 
Methods 16, 307–310 (2019). 



 

 

163 

15. Song, Y. et al. Single-cell alternative splicing analysis with expedition reveals splicing 
dynamics during neuron differentiation. Mol. Cell 67, 148–161 (2017). 

16. Huang, Y. & Sanguinetti, G. BRIE: transcriptome-wide splicing quantification in single 
cells. Genome Biol. 18, 123 (2017). 

17. Welch, J. D., Hu, Y. & Prins, J. F. Robust detection of alternative splicing in a population 
of single cells. Nucleic Acids Res. 44, e73 (2016). 

18. Rinaldi, C. & Wood, M. J. A. Antisense oligonucleotides: the next frontier for treatment 
of neurological disorders. Nat. Rev. Neurol. 14, 9–21 (2018). 

19. Levin, A. A. Treating Disease at the RNA Level with Oligonucleotides. N. Engl. J. Med. 
380, 57–70 (2019). 

20. Lim, J. K. et al. Genetic variation in OAS1 is a risk factor for initial infection with West 
Nile virus in man. PLoS Pathog. 5, e1000321 (2009). 

21. Liu, X. et al. A functional variant in the OAS1 gene is associated with Sjögren’s 
syndrome complicated with HBV infection. Sci. Rep. 7, 17571 (2017). 

  


