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ABSTRACT

Materials by design is a core driver in enhancing sustainability and improving effi-
ciency in a broad spectrum of industries. To this end, thermo-mechanical processes
and many of the underlying phenomena were studied extensively in the context of
specific cases. The goal of this thesis is threefold: First, we aim to establish a
novel numerical model on the micro- and mesoscale that captures dynamic recrys-
tallization in a generalized framework. Based on the inheritance of the idea of state
switches, we term this scheme Field-Monte-Carlo Potts method. We employ a fi-
nite deformation framework in conjunction with a continuum-scale crystal plasticity
formulation and extend the idea of state switches to cover both grain migration and
nucleation. We introduce physically-motivated state-switch rules, based on which
we achieve a natural marriage between the deterministic nature of crystal plastic-
ity and the stochastic nature of dynamic recrystallization. Using a novel approach
to undertake the states-switches in a transient manner, the new scheme benefits
from enhanced stability and can, therefore, handle arbitrary levels of anisotropy.
We demonstrate this functionality at the example of pure Mg at room temperature,
which experiences strong anisotropy through the different hardening behavior on the
〈c + a〉-pyramidal and prismatic slip systems as opposed to the basal slip systems
as well as through the presence of twinning as an alternative strain accommodating
mechanisms. Building on this generalized approach, we demonstrate spatial con-
vergence of the scheme along with the ability to capture the transformation from
single- to multi-peak stress-strain behavior.

Second, motivated by the lack of transparency concerning the benefits of high-
fidelity approaches in the modeling of dynamic recrystallization, we present two
derivative models of the Field-Monte-Carlo Potts method, both of which afford
reduced computational expense. One model preserves the spatial interpretation of
grains, but imposes a Taylor assumption regarding the distribution of strain; the
other reduces the spatial notion of a grain to a volume fraction in the idea of a Taylor
model. In order to concentrate on the differences in accuracy between the various
approaches, we fit all three schemes to experimental data for pure copper, which
allows us to employ a well-understood crystal plasticity-based constitutive model
and to simultaneously provide sufficient data for the analysis of the texture, stress and
grain-size evolution. Owing to the large strains attained in these simulations, using
the FFT-based scheme, we achieve capturing a precursor of continuous dynamic
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recrystallization. For low temperatures, the Taylor model fails to replicate the
nucleation-dominated recrystallization process, whereas, at high temperatures, it
shows compelling agreement with experiments and the two higher-fidelity models
both in terms of the homogenized stress-evolution and the microstructural evolution.

Finally, we present a novel multiscale analysis of thermo-mechanical processes
through coupling of the computationally efficient Taylor model for modeling dy-
namic recrystallization on the mesoscale to a max-ent based meshfree approach on
the macroscale in the idea of vertical homogenization. We analyze the severe plastic
deformation-based process of equal channel angular extrusion, which is intriguing
from a numerical perspective due to the heavily localized zone of extensive shear
deformation. By employing novel tools on the microscale regarding the stable up-
date of internal variables as well as a careful interpretation of macroscale boundary
conditions, we present the first multiscale analysis of a severe plastic deformation
process informing simultaneously about the evolution of stress, texture and grain
refinement. We attain convincing qualitative agreements for the evolution of the
plunger force and texture. As an outlook on future investigations, we analyze mul-
tiple passes of the same billet in the form of route C with emphasis on the texture
evolution after the second pass.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Among the primary factors influencing the strength of a metal or an alloy lies the
average grain size and shape. The renown Hall-Petch relation shows the impact
of grain refinement on strength [59, 124] by postulating an inverse relationship
between the yield strength and the square root of the average grain size. Grain
refinement can, however, also influence other macroscopic parameters. In general,
wear, fatigue and corrosion resistance as well as ductility and hardness experience an
improvement, whereas creep resistance deteriorates with grain refinement [40, 151].
Numerous forming processes can achieve this reorganization of the polycrystalline
grain structure, including accumulative roll bonding [141], asymmetric rolling [24],
equal channel angular extrusion [147], high-pressure torsion [21], multi-directional
forging [49], and twist extrusion [17] (see, e.g., Estrin and Vinogradov [40], Hall-
berg [60], Huang and Logé [68]). These processes belong to the class of severe
plastic deformation techniques, which are characterized by the grain refinement in-
duced through large plastic strains; Estrin and Vinogradov [40] provide an extensive
review over a wide range of established and novel severe plastic deformation meth-
ods. Throughout the past decades, research on the optimization of these processes
gathered extensive empirical knowledge [45, 48, 65, 88, 93, 98, 178, 199]. In view
of an ever-rising number of metallic alloys and the many parameters that define
each one of the above processes, the tailoring of a material’s performance for a
specific application calls for a computational framework capable of describing the
microstructural evolution. Such numerical means of optimization are particularly
valuable for metal alloys with a complex structure, including those with hexago-
nal closed pack crystallography, which inherently causes a severe anisotropy that
is partially responsible for the challenges associated with the thermo-mechanical
treatment of magnesium alloys [88, 115]. At room temperature, the low num-
ber of closed-packed slip systems yields difficult formability conditions [42, 131].
Higher temperatures, however, facilitate the activation of the non-closed-packed slip
systems, which can be beneficial during forming, provided the right combination
of texture and loading [5, 131]. However, changes in the microstructure, e.g., in
the sense of grain refinement, can alter the texture and therefore again aggravate
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formability. This illustrative example demonstrates the difficulty in tailoring certain
classes of metals. The example also emphasizes the need mentioned above for a
numerical framework on the micro- and macro-scale to gain a better understand-
ing of the evolution of grain size and texture, which can then be used to optimize
processing routes.

1.2 Physical classification of recrystallization
For certain classes of metals – including iron, titanium, cobalt, and their respective
alloys – the restructuring of the microscale is possible by inducing phase transfor-
mations through cooling [35]. This method does, however, not apply to copper,
nickel, and aluminum as well as their alloy derivatives. Here, a complete change of
the microstructure – in the sense of both modified average grain size and shape –
is only possible after deformation through a process termed recrystallization. Do-
herty et al. [35] define recrystallization as "the formation and migration of high
angle grain boundaries driven by the stored energy of deformation", where high
angle boundaries are generally defined through a misorientation of at least 10-15◦

[35, 60, 68].

Recrystallization occurs in various ways. Figure 1.1 illustrates the categorization,
which derives from several factors, which we briefly summarize in this section.
Static recrystallization is a temperature-driven process that takes place under slowly-
varying, creep-like loading conditions such as annealing [144, 194]. An increase
in the average grain size generally accompanies static recrystallization and conse-
quently has a negative impact on the strength properties. Alloying with rare earth
metals allows mitigating this deficiency as Zhang et al. [194] reported after enrich-
ing Mg-Zn-Zr alloys with Er and subjecting them to static recrystallization at high
temperatures. We can classify static recrystallization based on the dominant driving
force [68]. Discontinuous static recrystallization refers to the nucleation of fine,
pristine crystallites by a process termed static recovery. Driven by the reduction
of stored surface and inelastic energy, the nuclei consume the surrounding strain
hardened matrix resulting in the aforementioned grain-coarsening effect [166]. In
contrast, the precipitation of fine particles along grain boundaries and the subse-
quent coarsening of the dispersoid stimulates continuous static recrystallization,
which describes a change in microstructure induced through subgrain growth. As
these subgrains continuously deform, their low-angle grain boundaries steadily de-
velop into high angle grain boundaries, thus ultimately leaving the material with a
new microstructure [162].



3

Figure 1.1: Categorization of recrystallization mechanisms. (i) Based on the pro-
cessing conditions, recrystallization can be categorized into static (temperature-
driven) and dynamic (simultaneous to loading) recrystallization. (ii) Furthermore,
depending predominantly on material parameters such as the stacking fault energy
(SFE), these two categories can be sub-categorized into continuous (referring to
the continuous transformation of low-angle subgrain subgrain boundaries into high-
angle grain boundaries), discontinuous (sudden nucleation of a grain endowed with
a high-angle grain boundary), geometric (referring to the emergence of high-angle
boundaries after the initial grains’ smallest dimension reaches around two to three
subgrain sizes) and post-dynamic (posterior to loading) recrystallization.



4

Occurring at higher loading rates, dynamic recrystallization1 emerges from the com-
petition between recrystallization and continued plastic deformation such as during
equal channel angular extrusion. Similar to static recrystallization, we further cat-
egorize dynamic recrystallization based on the microstructural processes into two
main subcategories. Generally present in high-stacking-fault-energy metals such
as aluminum, continuous dynamic recrystallization describes the gradual transfor-
mation of subgrain structures formed from dislocation networks into new grains,
resulting in grain refinement [14, 56, 167].

Discontinuous dynamic recrystallization describes the process of grain nucleation
at high-energy sites and the subsequent grain growth by grain boundary migration
[30, 42, 43], which predominantly occurs in metals with low to medium stacking
fault energy such as copper [9, 18, 50] or magnesium [144]. While it is generally
acknowledged that the reduction of stored elastic and plastic strain energy density
[155, 169] drives nucleation, the exact criterion for the onset of nucleation remains a
subject of debate: [144, 164] propose a critical dislocation density ansatz which pos-
tulates that nucleation is only possible if the local dislocation density surpasses this
critical threshold. Other reports concentrate on a critical (plastic) strain [28, 30] or
a critical inelastic strain energy density [110], instead. As a competing mechanism,
the difference in stored strain energy between neighboring grains with differing
plastic histories [60, 68] results in the migration of grain boundaries. Thus, discon-
tinuous dynamic recrystallization involves the interplay between three phenomena
– severe plastic deformation of a polycrystal, grain boundary migration, and grain
nucleation. The availability of active recovery processes explains the dependence
of dynamic and static recrystallization on the stacking fault energy. Atomic lattices
endowed with a high stacking-fault energy generally allow recovery processes, such
as dislocation climb, to act sufficiently fast and to keep the dislocation density or
the inelastic strain energy density below the threshold mentioned above. In low-
to-medium stacking fault metals, however, this recovery process is relatively slow
compared to the accumulation and motion of dislocation, which ultimately requires
the discontinuous nucleation of a pristine grain to attain a thermodynamically stable
state. The general perception sees continuous and discontinuous dynamic recrys-
tallization as the main recrystallization processes co-occurring with deformation.
Figure 1.2 illustratively summarizes the underlying physics, while Doherty et al.
[35], Hallberg [60], Huang and Logé [68], Sakai et al. [144] provide in-depth re-

1Note that dynamic refers to the fact that the recrystallization mechanisms occur during continued
plastic deformation. It does not imply the presence of inertia or shocks.
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views of the respective fields.

Owing to its relatively late discovery, geometric recrystallization has – to this point –
experienced the least attention among the three dynamic recrystallization types, both
from an experimental and a numerical point of view (see, e.g., Sakai et al. [144]).
Observed at high strains, it describes the grain-refinement through the formation
of equiaxed grains with high-angle grain boundaries during hot deformation [68].
The origin of these new grains lies in the elongation of the original grains and the
simultaneous generation of local serrations due to a pronounced subgrain structure.
Despite little influence at small strains, these serrations allow for the formation
of new grain boundaries endowed with high angle misorientations as high angle
boundaries belonging to the original grains approach each other. This transformation
into a new microstructure is observable around the time when the thickness of the
elongated grains reaches around one to two times the size of a subgrain [68].

Although the above introduction to static and dynamic recrystallization processes
covers an extensive depiction of the different microstructural mechanisms inher-
ent to recrystallization, they are non-exhaustive in the sense that mixtures of the
above or similar derivatives are possible. In the case of discrete dynamic recrystal-
lization, the creation of high angle boundaries provides new surfaces along which
new grains can nucleate. This behavior is frequently observed in hexagonal closed
packed metals such as magnesium, where nucleation can develop along twin bound-
aries [126], but can also theoretically occur along high angle boundaries generated
through continuous dynamic recrystallization [60]. Furthermore, although we gen-
erally associate dynamic recrystallization with the change in microstructure while
deformation is active, grain nucleation and growth can still occur based on the
earlier mentioned energetic principles posterior to the loading phase. We usually
refer to this retarded occurrence as metadynamic recrystallization or post-dynamic
recrystallization [68, 144] to distinguish it from recrystallization processes which
appear simultaneously to loading. Finally, we note that grain refinement can also
be achieved without any deformation, e.g., by changing the composition of an alloy.
For aluminum, the addition of boron and titanium to the melt of Al-7Si-0.3Mg
alloy allowed for the induction of additional grain refinement [82]. In like manner,
the addition of solutes such as zirconium, silicon, and calcium to pure magnesium
impedes the growth process during solidification, thus achieving a decrease in the
average grain size [99]. The interest in this thesis lies, however, in the grain-
refinement-induced strengthening of metal alloys with a specific composition; the
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Figure 1.2: Illustration of discontinuous and continuous dynamic recrystallization.
Initially, the deformation drives the generation and motion of dislocations. (a) Dur-
ing discontinuous dynamic recrystallization, this eventually causes local instabilities
that allow for the emergence of pristine nuclei. Further deformation leads to the
growth of these nuclei based on the favorable difference in stored energy compared
to the surrounding plastically distorted grains. Simultaneously, new grains nucleate
along the boundary of the initial grain and around the newly nucleated grains to
form the necklace structure characteristic for discontinuous dynamic recrystalliza-
tion. (b) In the case of continuous dynamic recrystallization, strain heterogeneity
within the grains causes the evolution of subgrain structures equipped with low-
angle grain boundaries. Continuous application of deformation ultimately allows
these low-angle grain boundaries to transform into high-angle grain boundaries.

physics behind precipitation and solidification is therefore out of scope.

1.3 Numerical approaches to modelling dynamic recrystallization on the
mesoscale

In this section, we provide brief summaries on three of the most widely used
numerical methods for the modeling of discontinuous dynamic recrystallization on
the (sub)granular scale. We attach particular emphasis to the realization ofmigration
and nucleation models and do not discuss the underlying dislocation density or
crystal plasticity models are not discussed in much detail at this point. Furthermore,
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we note that those three methods do not exhaust available recrystallization models.
Wemerely based our choice on their impact on the field as well as their contributions
to this work. Hallberg [60] provides a general review on methods including cellular
automata [11, 55, 127, 191], vertex methods [110, 152], and the level-set method
[15, 37]. Sakai et al. [144] and Huang and Logé [68] further complement this
contribution by a more in-depth physical analysis of recrystallization including a
summary of numerical developments2.

1.3.1 Grain-homogenized methods
Numerous methods build on the assumption that the entire entity of a grain can be
deprived of the notion of space and summarized through a homogenized set of states.
We refer to this set of schemes as grain-homogenized methods. Although the various
approaches that belong to this category differ significantly from one to another, the
set of states usually comprises a volume fraction ηi∈{1,...,Ng}, a set of internal variables
Qi∈{1,...,Ng} as well an orientation tensor Ri∈{1,...,Ng} or a relatedmeasure which allows
distinguishing grains. Based on the viscoplastic self-consistent model [181, 182] –
which affords a compromise between the Taylor model [168] (upper bound on stress)
and the Sachs model [140] (lower bound on stress) – the scheme presented in Wenk
and Tomé [183] realizes grain migration through a time-evolution law of the volume
fraction. Assuming a linear dependence on the difference between the energy of
a grain and the system’s average energy, they postulate a the volume fraction rate
through

∂ηi

∂t
= −κGBM

©­«Wi −
1

Ng

Ng∑
i=1

Wi
ª®¬ η2/3

i , (1.1)

with migration rate coefficient κGBM and grain-specific stored energy density Wi.
The scaling of the change in volume fraction by its volume fraction raised to the
power of 2/3 hinges on the assumption of a spherical growth of the associated grain
boundary area. Although this is a reasonable assumption during the growth stage of
a nucleus, it is not representative of a grain’s consumption by its surrounding grains,
as shown in analyses of Adam et al. [1]. We note that the ad-hoc evolution principle
from (1.1) requires normalization of all grains by the total volume. Further, every

2We note that the nomenclature we use in this section may differ significantly from the ones employed
in some of the contributions in the respective fields as we picked the variable designations in favor of
improved comparability. Lastly, we constrain our presentation to the finite deformations framework.
Although the majority of contributions rely on a small strain ansatz or do not even carry the notion
of a strain, we decided to pursue this approach, as the formulations of mobility and nucleation are
compatible either way and all subsequent chapters build on a finite deformation framework.
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Figure 1.3: Illustration of a set of generalized interpretations concerning grain
boundary migration and grain nucleation in the framework of grain-homogenized
methods such as the one presented in Wenk and Tomé [183].

grain entails a parent and a recrystallized volume fraction via ηi = ηi,parent+ηi,nucleus,
with ηi,nucleus initially set to 0. The nucleation criterion is deterministic and occurs
as soon as the equivalent strain reaches a threshold. At this point, ηi,nucleus is set
to the size of a nucleus at the expense of ηi,parent . The size of a nucleus varies
linearly with the grain’s size as well as the equivalent strain rate. ηi,nucleus then
evolves according to (1.1) with the nucleus being at zero accumulated energy since,
by design, it does not harden. The orientation of the nucleus is set to the orientation
of the parent grain. As ηi,nucleus reaches a specific fraction of ηi,parent , the nucleated
volume fraction is transferred into the original volume fraction of the parent grain,
which updates the inelastic strain accordingly.

Figure 1.3 illustrates the main idea of migration and nucleation in the framework
of a grain-homogenized method, such as the one presented in Wenk and Tomé
[183]. Although this type of model allows the inclusion of both nucleation and
grain growth, the lack of spatial resolution causes various challenges:

• In the absence of space, curvature-driven growth is difficult to account for in
thesemodels. Attempts to penalize the grain boundary area can be found in the
growth model for subgrains by Cram et al. [30]. In their work – which reduces
the notion of a grain’s spatial component into a radius – they tracked subgrain
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growth in a phenomenological fashion to include the additional surface area
due to the subgrains in the nucleation model for discontinuous dynamic re-
crystallization. The growth of grains again appears in linear dependence
to the change in stored energy without any information on the surface area.
However, the component of the subgrain growth stemming from capillary
effects is inversely proportional to the grain boundary area, thus effectively
penalizing subgrains endowed with a large surface. The necklace-formation
characteristic for discontinuous dynamic recrystallization (see, e.g., Huang
and Logé [68]) is another phenomenon that models of this class in general do
not capture due to the lack of a notion of space.

• To this point, models that fall into this category tend to isolate their analysis on
specific parts of dynamic recrystallization without trying to capture dynamic
recrystallization as a whole. While Wenk and Tomé [183] managed to verify
experimental findings fromZhang andKarato [196] concerning the qualitative
influence of recrystallization onto texture evolution, the nature of their nucle-
ation model forbade the capturing of any realistic grain refinement. Although
the notion of a homogenized stress does exist in their model, they provide no
information concerning its evolution, and it is likely that the ad-hoc structure
did not permit the replication of experimental stress evolutions. The work
of Cram et al. [30] – which replaced the viscoplastic self-consistent model
from Wenk [181, 182] by an iso-work-increment assumption [19] – allowed
recovering experimental results concerning the evolution of grain refinement
and stress with a satisfactory agreement. However, lacking the explicit notion
of a grain rotation, they could not track texture evolution.

1.3.2 Phase-field method
Among the methods that attracted most attention in the modeling of recrystallization
stands the phase-field method [28, 113, 155, 197, 198]. In this approach, each
one of the Ng grains is associated with a continuous order parameter ηi∈{1,...,Ng} :
[0, tmax] ×Ω→ [0,1] defined throughout the time interval [0, tmax] and across space
in the form of a representative volume element (RVE) Ω. The order parameter
ηi = ηi(t,X) describes the local volume fraction of grain i. At some point inside of
grain i, we, therefore, have ηi = 1 and η j = 0 for some other grain j. In a diffuse
way, we model the grain boundary between grain i and grain j via 0 < ηi, η j < 1
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and ηk∈{1,...,Ng}/{i,j} = 0. The phase-field method further imposes

Ng∑
i=1

ηi(t,X) = 1 ∀t ∈ [t, tmax],X ∈ Ω. (1.2)

A general form for the total energy stored in the system is provided by Hallberg [60]
as

I =

∫
Ω

 f ({ηi,Fi,Qi}i∈{1,...,Ng}) +

Ng∑
i=1

γ

2
(∇ηi)

2
 dV . (1.3)

Here, the first term accounts for the internal energy at some point in space through
an interpolation function f , which takes into account the local volume fraction of
all grains, as well as their respective deformation gradient F and a set of internal
variables Q. In the case of phase-field methods, the notion of an internal energy
entails the elastic energy, inelastic energy as well as a chemical potential. A
Ginzburg-Landau term generally accounts for the chemical potential, which creates
a driving force for the individual order parameters towards 0 or 1. The second term
includes information on the curvature and acts as a penalization of grain boundary
surface with surface penalization constant γ. Allen-Cahn kinetics of the form [6]

∂ηi

∂t
= −κ

δI

δηi
= −κ

(
∂I

∂ηi
− ∆ηi

)
, (1.4)

naturally integrate grain boundarymigration into such a diffuse-interface description
through. We note that in distinction to the Cahn-Hilliard equation, (1.4) does not
preserve the global total volume of an order parameter, which is appropriate given
the nature of grain boundary migration. Figure 1.4 illustrates a crude depiction
of the above theory. While the phase field method is ideal for the modeling of
microstructures via migration, its structure poses a number of challenges:

• The aforementioned interpolation between states does not derive from a phys-
ical principle, as the presence of two grains at one point in space and time
already is a mere artifact of the phase-field ansatz. Among the simpler ap-
proaches stands the work of Sreekala and Haataja [155], who solely tracked
two order parameters, namely recrystallized and non-recrystallized material.
In their work, they weighted the elastic, inelastic and surface energy con-
tribution by a function of the form H(η) = η3/3 − η, where η denotes the
recrystallized volume fraction. Chen et al. [28] used an interpolation func-
tion of the form H = H(ηi) = −2η3

i + 3η2
i , with i ∈ {1, ...,Ng}, based on
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Figure 1.4: Illustration of the phase-fieldmethod, including a depiction of the diffuse
interface between grains as well as grain boundary migration and nucleation.

which they interpolated individual grain parameters, which we then used in
the aforementioned energetic interpolation rule f from (1.3). The exact choice
of interpolation functions often owes to mathematical convenience more than
physics [155].

• Phase field methods, in general, assume the tracking of one set of elastic
and inelastic parameters per order parameter at every point in space (see,
e.g., Zhao et al. [197, 198]), which especially in light of a large number of
nucleated grains can become computationally expensive. Chen et al. [28]
circumvent this issue by extrapolating the average values of the inelastic strain
to areas where it is not the dominant order parameter. This extrapolation rule
effectively constrains the space in which the update of some grain’s internal
variables is necessary to the space in which this grain is dominant. Takaki
et al. [164] reduced the number of elastic and inelastic variables to one per
grain by imposing a Taylor assumption and thus – in general – violating
linear momentum conservation. This automatically implies a homogeneous
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stress distribution across grains and therefore prevents the capturing of any
heterogeneities.

• The nucleation of grains requires an ad-hoc introduction of a new order
parameter. To overcome the adversary effects of the surface penalizing term
as well as the Ginzburg-Landau potential, Chen et al. [28] hold the newly
introduced grains at a constant level for a specified period of time until their
favorable energy state (they initially possess a pristine state) allows them to
stabilize or to grow.

• Our general assumption is that nuclei inhibit a significantly reduced dislocation
density compared to their parent grains. A high stress state surrounding the
area of nucleation, however, poses a challenge to both the update of the
local inelastic state as well as the elastic solver. Chen et al. [28] and Zhao
et al. [197, 198] mitigate this issue by assuming that recrystallized grains
do not undergo further inelastic deformation. This simplification in return
prevents recrystallized grains from undergoing subsequent recrystallization,
which prevents them from capturing, e.g., the steady state. We note, that Chen
et al. [28] considers static recrystallization, where this assumption is valid as
nucleation and migration are temperature-driven, and no further deformation
occurs at this point.

Phase-field models allow replicating the theoretical results from the Johnson-Mehl-
Avrami-Kolmogorov (JMAK) model by Avrami [13], Johnson and Mehl [79], Kol-
mogorov [86] (see, e.g., Takaki et al. [164]). Furthermore, the natural integration of
grain boundary migration renders the phase-field method suitable for cases where
multiple recrystallization waves are unlikely, such as in the analysis of static recrys-
tallization [28]. Although highly parallelizable, the large number of inelastic and
elastic states that require tracking renders the phase-field method computationally
increasingly inefficient for a large number of grains. Approximative measures such
as the Taylor assumption, which Takaki et al. [164] employed, allow constraining
of the computational expense associated with an order parameter to its support, but
the underlying assumptions reduce the model’s applicability. Since a regular grid is
suitable as the discretization of the RVE, we can reduce the computational expense
the elastic solver carries with it by using an FFT-based solver [28, 197, 198]. We
note that due to their diffuse interface, Gibbs phenomena are of little concern in the
framework of phase-field methods.
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1.3.3 Monte-Carlo Potts
Based on the idea of energy-dependent state switching, the Monte-Carlo Potts
method affords a natural implementation of both grain boundary migration as well
as of nucleation and is, therefore, one of the most widely used numerical methods for
discontinuous dynamic recrystallization [1, 8, 25, 72, 135, 138, 157, 184]. Every
point in the RVE Ω is uniquely associated with exactly one grain via s : Ω →
[1, ...,Ng] with Ng denoting the number of grains. Initially, every grain association
is linked to exactly one orientation through the rotation tensor Ri∈{1,...,Ng}. In all
generality, u = u(X) and Q = Q(X) describe the deformation field and internal
variables, respectively, across Ω3. The total energy for a Monte-Carlo Potts method
in a finite deformations framework comprises contributions from the strain energy
density W = W(F(X),Q(X)) as well as the surface tension via

I =

∫
Ω

W(∇u(X),Q(X))dV +
∫
Γ

γ(s(X−), s(X+))dS, (1.5)

where Γ is the set of all grain boundaries and X+, as well as X−, are convenient
ways of referring to the two orientation associations on both side of the grain. The
misorientation between the two grains at the boundary, which R(X+) and R(X−)

readily provide, can then influence the contribution to the surface penalization
function γ. The Monte-Carlo Potts method requires a discretization Ω∆ of Ω.
Historically, this discretization adopts a regular grid with square cells in 2D and
cubic cells in 3D (see, e.g., Hallberg [60]), although non-regular grids are possible.
Discretizing the energy formulation from (1.5) yields

I =
∑

Xi∈Ω∆

W(∇u(Xi),Q(Xi))∆V +
∑
j∈Si

γ(s(Xi), s(X j))∆S, (1.6)

with unit cell volume ∆V , unit cell surface ∆S and the set of all neighbor cells
of Xi, Si. A stochastic model, which accepts and rejects state switches based on
their energetics, naturally realizes the energy-minimizing nature of grain migration.
During one time step – which owing to the lack of a characteristic time-scale is
also often referred to as a Monte-Carlo step [60] – nMC points in Ω are randomly
chosen, for each one of which a state switch is considered. A state switch at a
point Xi in its most general sense describes a change of grain association, namely
from s(Xi) to s(X j∈Si ), the grain association of any of the neighbors. Studies which
use this lean definition of a state switch concentrate solely on curvature-driven
3We note that many of the early works relied on a phenomenologically distributed internal energy,
which often had no relation to the actual elastic or inelastic deformation state. To account for these
cases, we attribute such a randomly distributed internal energy to the internal variables.
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migration (see, e.g., Anderson et al. [8], Cetinel et al. [25]). The notion of a state
switch can, however, also comprise the elastic and inelastic state, in which case we
would need to define both a deformation state in the form of ∇u∗(Xi) and a new
set of internal variables Q∗(Xi). Their respective new states can in general depend
on the (in)elastic state of the neighbor with whom a state switch is considered.
In favor of compatibility, the total deformation state is in general not subjected
to changes, i.e., ∇u∗(Xi) = ∇u(Xi). For every one of the nMC points and every
potential state switch, the difference in energy ∆I across the hypothetical state
switch follows from the energy in the non-switched state I and the switched state
Ĩ. Using an energy-change-dependent threshold wth(∆I) alongside a randomly
generated number w ∼ U([0,1]), the formerly hypothetical state switch is accepted
if w < wth(∆I) and rejected otherwise. While the exact form of threshold functions
varies greatly among contributions [132], most of them derive from the well-known
Glauber dynamics [60]

wth(I) =
κGBM

2

[
1 − tanh

(
∆I

2kbTs

)]
, (1.7)

with migration rate coefficient κGBM, Boltzmann constant kb and numerical temper-
ature TS. Atomic jump probabilities in the form of an Arrhenius law inspired the
above form, which satisfies the condition of higher thresholds for more favorable
energy changes (i.e., more negative energy changes). We further note, that – in
general – the numerical temperature does not equate to the process temperature
[60]. Nucleation generally describes the choice of a number of sites per time-step at
which one defines a new orientation along with a new set of inelastic variables. The
nucleation condition and rates resemble their respective counterparts in many other
numerical methods and we therefore discuss them no further at this introductory
level.

In contrast with the phase-field method, the Monte-Carlo Potts method provides a
natural implementation for both nucleation and migration and further accomplishes
to incorporate the stochastic nature of recrystallization. Like for the previous two
models, various challenges arise due to its inherent structure:

• Implementation requires the inclusion of linear momentum conservation (or
equilibrium), since state heterogeneities are integral to the capturing of, e.g.,
stress concentrations near the boundary. Owing to the predominantly square
or cubic grid elements alongside the periodic boundary conditions that derive
from vertical homogenization, an FFT-based solver (see, e.g., Eisenlohr et al.
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Figure 1.5: Illustration of the implementation of a Monte-Carlo Potts model in a
finite deformations framework, including the interpretation of both grain boundary
migration and nucleation through state-switches.

[36], Lebensohn and Needleman [95], Lebensohn et al. [96], Vidyasagar et al.
[176, 177]) is a natural choice in this framework. The unique association
of cells to grains, however, leads to sharp interfaces, which sine- and cosine
functions cannot reconstruct, ultimately causing ringing artifacts (Gibbs phe-
nomena). For a discussion of the application of FFT-based solvers in crystal
plasticity, the associated effects of discontinuities, and possible ways of miti-
gating them, we refer to Eisenlohr et al. [36], Shanthraj et al. [148], Vidyasagar
et al. [177].

• Again, due to the binary association of a cell to precisely one grain, the
discretization geometry heavily influences the migration behavior. This is not
necessarily an issue confined to cubical unit cells, as it can also occur, e.g.,
for tetrahedral elements. Ivasishin et al. [72] proposed a modification to (1.6),
in that they weighed the surface penalization term by a factor that depends
on the local geometry of the boundary. Taking into account this additional
shape factor helps to incorporate information corresponding more closely to
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the curvature. We note that the phase-field method readily accomplishes this
through the Laplacian in (1.4).

• Similar to the phase-field method, the instantaneous change of the inelastic
state in an environment subjected to high stresses can be challenging. Despite
the frequent employment in the modeling of recrystallization, to the author’s
best knowledge, the work of Adam et al. [1] is the only Monte-Carlo Potts
method capable of satisfying linear momentum conservation. Recrystallized
grains are, however, again not capable of undergoing further inelastic defor-
mation. Consequently, recrystallized grains grow without undergoing further
nucleation as the nucleation criterion does not account for the elastic contri-
bution to the stored energy term. This simplifying approach circumvents the
issue of the high stresses which cause difficulties for the update of the inelastic
variables but do not allow for the modeling of significant grain refinement as
the large equiaxed grains in their work show.

The Monte-Carlo Potts model provides a suitable environment for the modeling
of dynamic recrystallization including both migration and nucleation, along with
favorable conditions for the employment of an efficient FFT-based solver [1]. Rollett
et al. [138] achieved qualitative replication of recrystallization behavior in terms of
the strain-rate- and temperature-dependent transition from single- to multi-peak
flow. Concerning static recrystallization, Monte-Carlo Potts has helped to obtain
valuable insights into the different stages – from primary recrystallization up to the
evolution of large equiaxed grains, including information on the grain size [1, 184]
and texture evolution [1]. The inherent assumption that recrystallized grains do
not undergo subsequent nucleation, however, largely prevents the extension of this
model to dynamic recrystallization, despite its favorable properties.

1.3.4 Cellular automata
The Monte-Carlo method presents a numerical means of incorporating the stochas-
tic nature of recrystallization in an energy-based fashion. Cellular automata are an
alternative means of adopting a stochastic framework for the modeling of recrystal-
lization on regular grids. Although the differences are marginal, we introduce this
method as it complements the phase-field and the Monte-Carlo Potts model as one
of the more popular means to simulate recrystallization.

We consider the same energetic formulation as in a Monte-Carlo Potts method (1.5),
with a discretized equivalent (1.6). At every node Xi ∈ Ω∆ in the discretized spatial
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domain, we consider a state switch with a node belonging to the set of boundary
nodes S(Xi), for which a popular choice consists in the nearest neighbor model.
Using the most favorable change in energy related to every node Xi ∈ Ω∆, we
evaluate a corresponding grain boundary speed via

v(Xi) = ∆I(Xi). (1.8)

Since we endow each node with a discrete state, we cannot readily include the notion
of a continuous velocity. To circumvent this issue, we define a maximum velocity
as

vmax = max
Xi∈Ω∆

v(Xi), (1.9)

and use this maximum velocity along with the local velocity v(Xi to infer a threshold
of the form wth(Xi) = κGBMv(Xi)/vmax. Finally, we generate a random number
w(Xi) ∼ U([0,1]), based on which we accept the formerly hypothetical state change
at Xi if w(Xi) < wth(Xi) and reject otherwise.

Goetz and Seetharaman [55] were among the first to apply the concept of cellu-
lar automata to recrystallization. Using an exclusively dislocation-density based
material model, they were able to qualitatively capture necklace-like dynamic re-
crystallization behavior. Unlike numerous studies that assume recrystallized grains
to be final in the sense, that they do not undergo further recrystallization, they ap-
plied the same evolution law for the dislocation density of nuclei as for the initial
grains. This approach allowed them to confirm theoretical considerations from
Sakai and Jonas [143] in terms of the transition from single- to multi-peak flow
curves. They did, however, neither account for stress-equilibrium nor include a
notion of texture. Yazdipour et al. [191] demonstrated that dynamic recrystalliza-
tion can quantitatively capture experimental data at various temperatures and strain
rates. They further their approach closely to this particular loading scenario, as,
e.g., the evolution of the dislocation density followed a constant increment. Popova
et al. [127] were the first to address the satisfaction of linear momentum conserva-
tion. In their work on hot compression of the Mg alloy AZ31, they endowed basal,
prismatic and pyramidal slip systems with different hardening moduli and further
captured twinning. They used a finite element approach to obtain the distribution
of dislocation densities and obtained a considerable agreement with experimental
results involving dynamic recrystallization up to strains of 35%. However, unlike
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the two other methods we addressed, they did not allow recrystallized grains to
undergo further inelastic deformation of any kind, which explains the limitation of
their analysis to 35% strain.

In this short description of cellular automata, we have demonstrated the similarity to
the Monte-Carlo Potts model. We note that Monte-Carlo Potts methods historically
tended to use Glauber dynamics in close relation to atomic jump probabilities. Dif-
ferent to that, cellular automata generally build on a simple linear law regarding the
dependence of migration speed and stored energy difference. Cellular automata fur-
ther distinguish themselves from Monte-Carlo Potts methods through an increased
computational expense as all boundary nodes at each time-step require simultaneous
treatment. Given the minuscule differences and the simple translation between these
two schemes, in subsequent studies, we focus on state-switch based rules according
to the convention used in Monte-Carlo Potts methods without loss of generality.

1.4 Modeling of thermo-mechanical processes on the macroscale
Many of the above studies were constrained to the micro- or mesoscale, as either the
focus lay in the modeling of the recrystallization mechanisms on the (sub)granular
scale, or as the computational expense associatedwith these high-fidelity approaches
made integration into a macroscale simulation unfeasible. The urge for optimiz-
ing the design of thermo-mechanical processes, however, motivated various studies
dedicated fully or partially to the macroscale. We can divide these approaches
into two categories: One group of investigations aims towards a mostly qualita-
tive understanding of the influence of process and design parameters – particularly
on the strain and stress distribution – without explicitly accounting for the under-
lying microstructural evolution. Since, however, the softening induced through
slip-based deformation and recrystallization affects the macroscale stress response,
phenomenological power-law constitutive relations serve as crude approximations.
Applications include asymmetric rolling [77, 102], differential speed-rolling [78],
equal channel angular extrusion [4, 47, 63, 103], and high-pressure torsion [44]. The
results from these studies grant qualitative insights, e.g., into the influence of friction
[103], the strain homogeneity of the final sample [4, 77, 78] or the optimization of
processes to achieve such [47], but also into more quantitative aspects including the
force or torque required to perform the processing [44, 77].

The other group aims for an increasingly quantitative investigation of thermo-
mechanical processing, thus alleviating the assumption that the impact ofmicrostruc-
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tural changes on the macrostructure is negligible. The reach of these works ranges
from predominantly academic interest including contributions on non-uniform com-
pression [165] or plane-strain compression [125], to applications of industrial inter-
est, including cold rolling [61], hot rolling [110, 190], and equal channel angular
extrusion [150]. While some approaches hinge on a material point analyses before
and after processing [150], others rely on the notion of a grain size as a phenomeno-
logical concept without introducing grains as an individual entity with their own
set of (in)elastic states [61, 63]. In the idea of vertical homogenization, Pinna et al.
[125], Soho et al. [153], Yamaguchi et al. [190] coupled macro- and mesoscale
to allow for an analysis of texture evolution, while Takaki et al. [165] used this
approach to track the evolution of the average grain size.

The surmount part of recrystallization works draws from the well-established finite
element method (see, e.g., Figueiredo et al. [44], Hallberg et al. [63], Ji and Park
[77]). Yet severe plastic deformation processes inherently comprise large defor-
mations, which raises concerns regarding accuracy and stability of their respective
findings. In light of those shortcomings, mesh-free methods recently gained at-
tention in the modeling of process simulations as the absence of a mesh mitigates
the need to account for, e.g., rising error bounds with heavily distorted elements
or negative volume. The smooth particle hydrodynamics method has provided in-
sights into, e.g., equal channel angular extrusion [41, 89, 104] or extrusion processes
[129]. Despite its advantages, smooth particle hydrodynamic methods face other
challenges such as the inclusion of boundary conditions, which – to this end – they
solely achieve through restrictive, ad-hoc measures (see, e.g., Ma and Hartmaier
[104]). Alternative mesh-free methods that alleviate these shortcomings comprise
maximum information-entropy [75] based meshfree methods presented in Arroyo
and Ortiz [10], Kumar et al. [91], Sukumar [160], which yet remain to be tested in
the framework of severe plastic deformation techniques.

1.5 Outline of this thesis
In Section 1.3, we addressed four of the currently most prominent numerical meth-
ods on the mesoscale. From the late 20th century until today, the contributions to
this field showed tremendous advances, as initial studies – which mainly concen-
trated on a qualitative depiction of recrystallization – complement recent studies
aimed equally at a qualitative understanding. To this end, however, these meth-
ods imposed restrictions in ways that narrow down their applicability to individual
cases. In favor of a generalized depiction of dynamic recrystallization, we present
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a novel method, which naturally combines the stochastic nature of recrystallization
with the deterministic principles of crystal plasticity. Using this approach, which
we term Field-Monte-Carlo Potts method, we demonstrate the ability to track dy-
namic recrystallization in metals with moderate anisotropy, such as copper, but also
with severe anisotropic inelasticity including magnesium. We abandon the simpli-
fying assumption of small strains, which many adopt for convenience and provide
information on the evolution of flow stress, grain size, and texture. A common
shortcoming in this field of research consists in the lack of transparency concerning
the gain in accuracy of the ever-increasing fidelity. By providing two models that
derive from the Field-Monte-Carlo Potts method without including all of its details,
we attempt to enhance transparency. In order to concentrate on a comparison of
recrystallization kinetics, we fit the Field-Monte-Carlo Potts model and its deriva-
tives to experimental data for pure copper, as we have a good understanding of the
purely slip-based behavior for this particular metal. We use the results from this
analysis to assess in which cases computationally less expensive alternatives suffice
to capture the central measures of dynamic recrystallization, namely texture evo-
lution, grain refinement, and the homogenized stress evolution. Lastly, we benefit
from the availability of this computationally inexpensive alternative and provide a
novel multiscale framework for the analysis of severe plastic deformation processes.
Combining the micro-, meso-, and macroscale, this new model allows gaining in-
formation on the local evolution of the three central measures we mentioned above
across the processed sample. The new framework alleviates the restriction of previ-
ous works on severe plastic deformation (c.f. Section 1.4) and affords a framework
to realize one of the major goals of materials by design, namely the tailoring of
thermo-mechanical processes for individual applications.

The structure of the remaining parts of this thesis is as follows: In Chapter 2
we present the Field Monte-Carlo Potts model. We borrow the concept of state
switches from Monte-Carlo Potts models and extend them via physically-motivated
state switching rules for both the elastic and inelastic state variables. Using a novel
transient interpretation of recrystallization, we provide tools that allow for stable
handling of a broad spectrum ofmetals – isotropic and anisotropic – and demonstrate
the idea based on a finite-deformations, slip-twin-interaction model for pure Mg.
Chapter 3 validates the model from Chapter 2 using transient experimental data for
copper endowed with a face-centered cubic crystallography. We further introduce
a new computationally efficient Taylor model as the first grain-homogenized model
capable of simultaneously tracking grain refinement as well as stress and texture
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evolution. Using this, we identify the benefits and drawbacks of high-fidelity models
– represented by the Field Monte-Carlo Potts model – and propose a direction
for future research on the mesoscale modeling of dynamic recrystallization. In
Chapter 4, we employ the Taylor model as a material model within a macroscale
simulation of equal channel angular extrusion based on the meshfree maximum-
entropy method by Kumar et al. [91]. We address the computational challenges
arising through the shear induced at the bend and propose novel solutions that can
be employed without restriction in other multiscale simulations. With respect to key
performance indicators of processed billets, we use this framework to analyze grain
refinement, texture evolution, and strain homogeneity. Finally, we use Chapter 5 to
discuss the impact of these novel methods and the myriad insights from Chapter 2
to 4 and give a statement on past, current and future developments of the research
on dynamic recrystallization from the micro- to the macroscale.
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C h a p t e r 2

STOCHASTIC MODELING OF DISCONTINUOUS DYNAMIC
RECRYSTALLIZATION USING THE FIELD MONTE CARLO

POTTS METHOD – APPLICATION TO MAGNESIUM

A.D. Tutcuoglu, A. Vidyasagar, K. Bhattacharya, and D.M. Kochmann. Stochastic
modeling of discontinuous dynamic recrystallization at finite strains in hcp metals.
Journal of the Mechanics and Physics of Solids, 122:590 – 612, 2019. ISSN
0022-5096. doi: https://doi.org/10.1016/j.jmps.2018.09.032. URL http://www.
sciencedirect.com/science/article/pii/S0022509618303569.

Preamble
The author (A.T.) established the recrystallization model on the mesoscale and
conducted simulations for different scenarios, while A. Vidyasagar (A.V.) and A.T.
implemented the FFT-based solver.

2.1 Introduction
In Chapter 1, we provided a brief introduction into the currently available numeri-
cal models for the simulation of dynamic recrystallization at the mesoscale, which
varied greatly in terms of their objectives and assumptions. A significant number
of approaches refrained from solving for a deformation field, that satisfies linear
momentum conservation [30, 110, 113, 157, 164, 183, 184]. Instead, simplifying
models including the Taylor model [164], the Sachs model [105], the self-consistent
viscoplastic model [183], and the iso-work-increment assumption [30] – all of which
assume grainwise-constant states – govern the distribution of the deformation gradi-
ent across grains. These assumptions generally provide a reasonable approximation
so long as localized effects are not dominant. In the presence of strong anisotropy,
however, heterogeneities become increasingly important, especially at grain bound-
aries, where one grain is significantlymore favorably aligned for plastic flow than the
other. Alternatively – especially in early works using the Monte-Carlo Potts models
– several approaches assumed a phenomenological stored energy field independent
of the evolution of the deformation state. The exact distribution of these fields in
general followed a probabilistic distribution [72, 121, 158] or drew experimental data
from EBSD measurements [76]. Several approaches aimed to find a solution to the
conservation of linear momentum via the finite element method [15, 16, 134, 135]

http://www.sciencedirect.com/science/article/pii/S0022509618303569
http://www.sciencedirect.com/science/article/pii/S0022509618303569
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or FFT-based approaches [1, 28, 197, 198]. Although these works investigated both
static and dynamic recrystallization, they share the assumption that recrystallized
grains do not undergo inelastic deformation, which automatically impedes further
nucleation. Particularly for processes involving large strains, this assumption poses
a significant restriction to the modeling of dynamic recrystallization, as an entirely
recrystallized material can only accommodate strain via elastic deformation. Along
with several physical phenomena, which this approach cannot capture, the effective
stress-strain response inhibits a much stiffer response vis a vis experimental results
and multi-peak stress-strain behavior is entirely unrecoverable.

In like manner, the range of inelastic models employed in these studies covered var-
ious levels of fidelity. A number of approaches build on the Kocks-Mecking model
[106] for the evolution of the dislocation density [11, 32, 62, 122, 164]. This method,
however, hinders the analysis of metals that possess a strongly inhomogeneous set of
slip systems. The framework of finite strain crystal plasticity affords more involved
approaches [1, 28, 110, 127, 197, 198]. Models using this continuum level way of
capturing slip-based deformation generally hinge on power law updates with high
exponents to approximate the rate-independence inherent to slippage [69]. These
power laws, in return, render the inelastic updates vulnerable to instability, as the
large exponents require small timesteps to attain sufficient accuracy [85]. It is evi-
dent that the combination of a crystal plasticity model which is prone to instabilities
along with recrystallization kinetics – which involve nearly instantaneous changes
of the deformation state of the microstructure – poses a challenge. Consequently,
many of these models impose assumptions to cope with this short-coming which
generally include the perception of recrystallized grains deforming in an exclusively
elastic way or the renunciation from fully-resolved methods.

Early works on the numerical modeling of recrystallization primarily aimed for a
better fundamental understanding of the underlying mechanisms of grain boundary
migration and nucleation. In this context, it comes as no surprise that the material
models employed to capture the inelastic deformation due to slippage and other
strain-accommodating mechanisms were often either not representative of any par-
ticular metal (see, e.g., Peczak and Luton [122]) or only symbolic in the sense, that,
e.g., they used a single dislocation density to capture the evolution of slip on 12 slip
planes (see, e.g., Takaki et al. [164]). The set of methods relying on a crystal plastic-
ity framework belongs to a recent trend, in which the a quantitative description of,
e.g., the stress-strain relation, texture evolution, and microstructural evolution com-
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plements the qualitative understanding of recrystallization. While extensive work
exists on the analysis of materials with a face-centered cubic (fcc) crystallography
such as copper (see, e.g., Mellbin et al. [110], Zhao et al. [197, 198]), the work on
metals endowed with a hexagonal closed packed (hcp) crystallography currently has
limitations. To understand this circumstance, we note that the anisotropy inherent
to the hcp structure generally permits for a relatively simple activation of slip on the
basal plane, whereas strain accommodation on other planes is not as easy to accom-
plish. Although this discrepancy is not as pronounced at higher temperatures, at
room temperature, it yields poor formability. This class of metals would, therefore,
be predominantly subjected to die-casting and other casting methods [2, 115, 192],
which may not lead to the desirable ultra-fine grains, but which allow circumventing
the formability issues through elevated temperatures (c.f. Chapter 1). The lack of
dynamic recrystallization in this type of process therefore at least partially explains
the inertia in the numerical analysis of hcp metals. Among the most prominent met-
als that posses a hcp crystallography stands magnesium (Mg) and its alloys. With
a density below that of all other structure metal [195], favorable bio-degradability
[187] and damping properties [31] along with a competitive specific strength [189],
Mg alloys are a promising candidate to replace aluminum, titanium, and steel [192].
Pure Mg, however, suffers under poor corrosion resistance [38] and flammability
properties – shortcomings that could only recently be overcome by appropriate al-
loying with (expensive) rare-earth metals such as gadolinium, yttrium or zirconium
and to some extent using less expensive alternatives including calcium, tin, and
zinc [38, 100, 120, 192]. With an ever-growing spectrum of applications, however,
requirements on the processed metal alloys increase [195]. For the scales at which
medical devices operate, for example, a fine-grainedmicrostructure is indispensable;
further, the increase in strength through processing is more desirable compared to
the addition of (generally heavy) rare earth metals. Addressing this need for tailored
processing routes requires an improved numerical framework for the modeling of
dynamic recrystallization in hcp metals.

Asadi et al. [11] conducted pioneering work in this field by capturing dynamic
recovery and dynamic recrystallization in Mg alloy AZ91 using a 2D cellular au-
tomaton. However, the underlying material follows the approach from Mecking
and Kocks [106], which does not yield an accurate representation of the anisotropic
inelasticity in hcp metals. Furthermore, they assumed homogeneity within grains.
Still based on the assumption that flow stress is dependent on a single scalar variable,
Wang et al. [180] used the model of Estrin and Mecking [39] within a 2D cellular
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automaton to model dynamic recrystallization in Mg alloy ZM21; however, that
model neglected linear momentum conservation on the microscale and hence did
not capture the heterogeneous deformation within grains. Gentry and Thornton [52]
investigated recrystallization in titanium, a metal which also possesses hcp crystal-
lography at room temperature. Their model, however, does not capture twinning
and – similar to Chen et al. [28] – introduces nucleation in a simplified, numerically
convenient way (new grains emerge as spherical, dislocation-free regions and their
associated order parameters are held constant for a period of time to prevent the
interface energy from forcing the recrystallized grain to disappear). We note that
none of the above models provided the means to capture deformation twinning [29]
whose finite twinning shears are not representable by small-strain models. Popova
et al. [127] were the first to include a notion of a twin in the numerical simulation
of dynamic recrystallization of Mg. Using a crystal plasticity-based approach, they
incorporated the anisotropy between the various slip planes, without accounting
for the different hardening mechanisms, however (see, e.g., Chang and Kochmann
[26]). Further, they tailored the recrystallization model towards the capturing of
severe grain enlargement, with the average grain size rising from an initial value of
14 µm to 120 µm at the final tensile strain of 35 %.

a1

a2

a3

c

{0001}<1120>

basal

a1

a2

a3

c

{1011)<1012>

tensile twin

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ +

++

NCL: nucleation of new grains

GBM: grain boundary migration

extended crystal plasticity model

a1

a2

a3

c

{1011}<1120>

pyramidal

description on a discrete, regular grid

combining effects of 
slip and twinning

Monte-Carlo-Potts (MCP) model
of recrystallization

FFT-based 
solver

MCP
algorithm

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+

+

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+

Figure 2.1: Schematic overview of the presented model, which uses an extended
crystal plasticity formulation whose FFT-based discrete solution allows for the cou-
pling to a Monte-Carlo-Potts description of recrystallization.

A comprehensive model that simultaneously captures discontinuous dynamic re-
crystallization at finite deformations, accounts for the statistical nature of grain
nucleation as well as migration, and provides a suitable framework for the analysis
of extensive inelastic anisotropy is presentlymissing. The necessity for such amodel
is, however, high as we seek an improved understanding of the microstructural evo-
lution of hcp metals subjected to severe plastic deformation processes. The goal
of this chapter is to fill this gap. Figure 2.1 illustrates the key idea. We perform
fully resolved simulations of the plastic deformation in polycrystals using an ex-
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tended crystal plasticity model in conjunction with a Fast-Fourier-transform (FFT)
based solver. The fully resolved simulation allows us to capture the non-uniformity
of plastic deformation at the subgranular level and appropriately mimics the de-
terministic nature at the time-scale of interest. Simultaneously, we model grain
boundary migration and grain nucleation using a statistical MCP model. Since the
latter requires a regular grid, we use the FFT-based continuum mechanics solver
to blend the continuum and discrete approaches. Each grid point corresponds to
a particular grain and carries information about the crystallographic orientation as
well as elastic and plastic states. At each Monte-Carlo time step, we either migrate
the grain boundary or nucleate a new grain based on probabilities that depend on
the elastic and plastic states of the grid point. We subsequently update the elastic
and plastic states and iterate. For the time scale of interest, this allows us to couple
the deterministic nature of plastic deformation with the stochastic nature of grain
nucleation and migration. Representative of the highly anisotropic inelastic defor-
mation mechanisms in hcp metals, we choose an extended crystal plasticity model
for pure Mg Chang and Kochmann [26], Chang et al. [27], which includes twinning
in an effective, volume-fraction based sense.

The structure of the remainder of this contribution is as follows: Section 2.2 briefly
summarizes the constitutive model for Mg as a representative hcp material and
the FFT-based homogenization scheme which turns the continuum RVE problem
into a discrete grid-based problem. Within this framework, Section 2.3 introduces
the model for recrystallization, for which Section 2.4 provides a verification of
proper convergence and scaling of the numerical scheme. Once we have laid out
the theory and verified the numerics, we present simulations of the microstructural
evolution and resulting effective response of Mg during ECAE in Section 2.5. To
demonstrate the versatility of the model, Section 2.6 addresses the influence of its
various parameters on the material response. Finally, Sections 2.7 and 2.8 discuss
the findings and conclude our investigation, respectively.

2.2 RVE-level constitutive model and discretization
2.2.1 Finite-strain crystal plasticity continuum model
Plasticity in hcp metals emerges from the activation of a total of ns = 18 slip
systems: 〈c+a〉-pyramidal and 〈a〉-pyramidal systems each contribute six systems,
alongside basal and prismatic slip which each contribute three slip systems. The
significantly lower critical resolved shear stresses in the basal plane in comparison to
slip on non-basal planes results in the activation of alternative strain-accommodating
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processes, which in the case of hcp metals constitutes deformation twinning [29].
Although recent studies relying on density functional theory (DFT) suggest the
presence of eleven twin systems [161], we here constrain ourselves to the two most
easily activated systems, viz. compression and extension twins (with the respective
names referring to the loading along the c-axis). Also, we restrict our model to
the inclusion of the basal, prismatic and 〈c+a〉-pyramidal systems, while neglecting
〈a〉-pyramidal systems following the discussion in Chang and Kochmann [26]. The
notion of slip activities γ = {γ1, . . . , γns } ∈ R

ns quantifies plastic slip. To capture
hardening, we define the accumulated plastic slips ε = {ε1, . . . , εns } ∈ R

ns
+ via the

evolution law (with initial condition ε = 0)

Ûεα = | Ûγα | ∀ α ∈ {1, ...,ns}. (2.1)

Since twin lamellae may form on length scales far below the granular scale, we
follow the strategy of [3, 57, 67, 159, 193] and define the homogenized notion of
a twin volume fraction λ = {λ1, . . . , λntw} ∈ [0,1]ntw , capturing the local effective
volume fraction1 of the twinned crystal at any point on the polycrystallinemesoscale,
where ntw denotes the number of twin systems. We further impose the constraint∑ntw
β=1 λβ ≤ 1.

Following Kalidindi [81], we neglect the effect of kinematic interactions between
slip and twinning but instead include relaxation due to both slip and twinning into
F in so as to yield the multiplicative decomposition F = FeF in with F = Grad ϕ
denoting the deformation gradient. The additive decomposition of the velocity
gradient,

l = ÛFF−1 = le + l in = le + Fe l̃ in (Fe)−1 (2.2)

with
le = ÛFe (Fe)−1 and l̃ in = ÛF in(F in)−1, (2.3)

introduces the effects of slip and twinning via the inelastic velocity gradient with an

1The effective twin volume fractions λβ ∈ [0,1] capture only the effects of crystallographic reorien-
tations at the relevant mesoscopic scale in a homogenized sense (by reorienting the slip and twin
systems), without describing individual twin lamellae at lower scales. This model thus captures
stress concentrations at twin boundaries only in case of macro-twins on the level of the numerical
discretization (and analogous to GBs) while local concentrations near, e.g., nanoscale twin lamellae
are not accounted for explicitly.
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assumed additive decomposition as l̃ in = l̃p + l̃ tw [26] where

l̃p =
ns∑
α=1
Ûγα

©­«1 −
ntw∑
β=1

λβ
ª®¬ sα ⊗ mα +

ntw∑
β=1

λβ s
′
αβ ⊗ m′αβ

︸                                                    ︷︷                                                    ︸
≡pα

,

l̃ tw =
ntw∑
β=1

Ûλβγ
tw
β aβ ⊗ nβ.

(2.4)

Here, vectors (sα,mα) define slip system α, whereas (aβ, nβ) define twin system β

and γtwβ denotes the respective twinning strain. The two mirrored slip systems in the
twinned crystal result from a Householder mapping applied to the respective parent
slip system such that

s′αβ = Qβ sα, m′αβ = Qβmα, Qβ = I − 2nβ ⊗ nβ. (2.5)

We use a variational setting based on the Helmholtz free energy density given by
W = W(F,F in,ε,λ) which decomposes into elastic strain energy and plastic stored
energy due to slip and twinning according to

W(F,F in,ε,λ) = Wel

(
F

(
F in)−1

)
+Wsl(ε) +Wtw(λ). (2.6)

We further define the dual dissipation potential [118] as

Ψ
∗( Ûε, Ûλ) = Ψ∗sl( Ûε) + Ψ

∗
tw(
Ûλ), (2.7)

so that the principle of the minimum dissipation potential yields differential inclu-
sions of the form

0 ∈
∂

∂ Ûγα

(
ÛW + Ψ∗

)
= −|τ

p
α | +

∂Wsl
∂εα

+
∂Ψ∗sl
∂ Ûεα

∀ α ∈ {1, . . . ,ns},

0 ∈
∂

∂ Ûλβ

(
ÛW + Ψ∗

)
= −τtwβ +

∂Wtw
∂λβ

+
∂Ψ∗tw

∂ Ûλβ
∀ β ∈ {1, . . . ,ntw},

(2.8)

with the notions of resolved shear stresses τpα and τtwβ for slip and twin, respectively,
defined through

τ
p
α = Σ · pα and τtwβ = γ

tw
β Σ ·

(
aβ ⊗ nβ

)
(2.9)

where Σ = (Fe)TP(F in)T denotes the Mandel stress tensor, and the first Piola
Kirchhoff stress tensor is described through P = ∂W/∂F = ∂Wel/∂F.
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The elastic strain energy density is modeled using the isotropic compressible Neo-
Hookean energy density

Wel(F) =
µ

2

(
I1

J−2/3 − 3
)
+
λ

2
(J − 1)2 with I1 = tr

(
FTF

)
, J = detF (2.10)

with µ and λ denoting the shear and bulk modulus, respectively. The choice of an
isotropic model draws on the work of Chang and Kochmann [26] who showed that
anisotropic elastic models (see, e.g., Schröder et al. [146]) have negligible effects
on simulated results – due to the low elastic anisotropy in Mg – while increasing
computational costs.

The inelastic strain energy density due to slip comprises self- and latent hardening
contributions and adds to the plastic anisotropy inherent in hcp metals:

Wsl = Wsl,lat +Wsl,self =
1
2
ε · Hε +

ns∑
α=1

σ∞α

[
εα +

σ∞α
hα

exp
(
−

hαεα
σ∞α

)]
, (2.11)

whereVoce hardening [3, 57] captures the high resistance of prismatic and pyramidal
slip [67] with σ∞α and hα representing the ultimate stress and hardening rate on the
αth slip system, respectively. H is a symmetric matrix endowed with the hardening
moduli on its off-diagonals and a zero diagonal (which is positive-definite for all
sensible values of εα). For twinning, we assume quadratic hardening for both
self-induced as well as latent twin hardening, with self-hardening moduli hβ and
zero-diagonal endowed, symmetric latent hardening matrix K, yielding

Wtw = Wtw,self +Wtw,lat with


Wtw,self =

ntw∑
β=1

1
2

hβλ2
β

Wtw,lat =
1
2
λ · Kλ

. (2.12)

Following Ortiz and Stainier [119], we introduce power-law dissipation potentials
of the form

Ψ
∗
sl( Ûγ) =

ns∑
α=1

τ0,α Ûγ0,α

mα + 1

(
Ûγα
Ûγ0,α

)mα+1
and Ψ

∗
tw =

ntw∑
β=1

τ0,tw,β Ûλ0,β

mtw,β + 1

(
Ûλβ
Ûλ0,β

)mtw,β+1

, (2.13)

for plastic slip and twinning, respectively. The slip hardening exponent mα is
close to 0 to approximate rate independence without compromising the ability to
explicitly perform internal variable updates. Although recent findings suggest rate
independence for twinning [173], in the framework of explicit state updates, we
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follow Chang and Kochmann [26] and choose the above dissipation potential where
mtw,β, τ0,tw,β and Ûλ0,β represent the twin hardening exponent, critical resolved shear
stress, and reference twin rate for the βth twin system, respectively.

Even though implicit variational constitutive updates [119] allow for significantly
larger load/time steps as Chang and Kochmann [26] have shown for the present con-
stitutive model, we here favor explicit updates for the following reasons. Explicit
updates improve numerical stability and convergence for high numbers of slip and
twin systems as those described here. Also, recrystallization (discussed in Sec-
tion 2.3) will be treated in an explicit fashion and, at times, requires to be resolved at
time steps smaller than those characteristic of implicit updates. Therefore, we solve
the evolution laws for both slip and twin ratios explicitly,

Ûγα = Ûγ0,α

�������
(
|τ

p
α | −

∂Wp

∂εα

)+
τ0,α

�������
1

mα

sgn
(
τ
p
α

)
, Ûλβ = Ûλ0,β

�������
(
τ
p
β −

∂Wp

∂λβ

)+
τ0,β

�������
1

mβ,tw

, (2.14)

by explicit time integration using a forward-Euler scheme, provided mα,mβ,tw , 0.
In this context, (·)+ = max(0, ·) denote Macaulay brackets. Since the nearly rate
independence demands small hardening coefficients mα,p, small increments are
required to prevent the forward-Euler scheme from overshooting. All numerical
values of the model parameters are summarized in Table 2.1.

2.2.2 Polycrystal response and FFT-based homogenization
We employed the above crystal plasticity model within an RVE Ω that contains a
representative grain network at the mesoscale. Periodic boundary conditions on its
boundary ∂Ω enforce mechanical equilibrium in order to link the microstructural
fields to the effective material behavior at the macroscale, as observed in metal
forming processes. To this end, we follow concepts of classical homogenization
[51, 87, 112] where the macroscopic deformation gradient F∗ is imposed as the
RVE average, i.e., 〈F(X)〉 = F∗ where 〈·〉 = |Ω|−1

∫
Ω
(·) dV . Within the RVE,

we obtain the deformation mapping from quasistatic linear momentum balance,
Div P = 0, while the internal variables follow the inelastic evolution laws we
discussed above. The macroscopically experienced, effective stress equals the RVE
average P∗ = 〈P∗(X)〉. In the chosen applications we neglect body forces and
inertial effects.

With theMCPmodel inmind, we discretize the RVE into a regular grid and apply the
concepts of Moulinec and Suquet [116] to solve the governing equations in Fourier
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Table 2.1: Material parameters used in the extended crystal plasticity model for
Mg after Chang and Kochmann [26]. We note that parameter τ0, the critical
resolved shear stress, has been modified from the original model, since we used the
formulation of Chang and Kochmann [26] in an implicit context, whereas here we
use an explicit formulation that does not suffer from numerical complications by
introducing a hard threshold into the rate-dependent model (c.f. Chang et al. [27]).

basal slip

hα σ∞ hi j τ0 m Ûγ0
7.1 0.70 0 17.5 0.05 1.0

elastic Lamé moduli GPa MPa MPa MPa - s−1

λ µ
24.0 19.4 prismatic slip

GPa GPa hα σ∞ hi j τ0 m Ûγ0
9.0 85 20 17.5 0.05 1.0

extension twins GPa MPa MPa MPa - s−1

h0 ki j Ûλ0 γtw mtw
1.7 40 1 0.129 1 pyramidal 〈c + a〉 slip

MPa GPa s−1 - - hα σ∞ hi j τ0 m Ûγ0
30 150 25 17.5 0.05 1.0
GPa MPa MPa MPa - s−1

space (see also Eisenlohr et al. [36], Lebensohn and Needleman [95], Lebensohn
et al. [96]). To this end, the RVE is discretized into n = N3 grid points in 3D space,
with N denoting the number of grid points per side and X k, k ∈ {1, ...,n} referring
to the position of each grid point in the undeformed configuration. We denote the
discretized space including all nodes Ω∆.

Our numerical predictor-corrector iterative scheme starts with an initial guess
F0(X k) for the distribution of F(X k) in the RVE, which allows to evaluate the stress
tensor field P0(X k) = P(F0(X k)) and the stiffness tensor field C0 = C(F0(X k)).
We compute the average stiffness tensor Cavg,m ≡ 〈Cm(X)〉 at each iteration step m

by averaging over all grid points in the RVE. Based on the average stiffness tensor
as a linear reference medium2, we define a stress perturbation field τ(X) such that
at every point X ∈ Ω

τm(X) = Pm(X) − Cavg,mFm(X), (2.15)

2Although it was shown that choosing the average stiffness tensor as a reference may lead to
divergence, using Cavg leads to stable results in our framework, thus avoiding the need for a more
elaborated scheme as presented, e.g., by Kabel et al. [80].
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Substituting (2.15) into the linear momentum conservation equation yields

Div τm(X) + Div [Cavg,mFm(X)] = 0. (2.16)

Applying a discrete Fourier transform to (2.16) along with the definition of the
deformation gradient via F(X) = Grad ϕ(X) yields an explicit update rule for the
deformation gradient in Fourier space (with K k ∈ T denoting the wave vectors and
T the complete set of the n wave vectors in Fourier space), which becomes, using
indicial notation,

F̂m+1
jL (K

k) =


[
Am

i j(K
k)

]−1
τ̂m

iJ(K
k)K k

J K k
L for K k , 0,

F∗jL for K k = 0,
(2.17)

with the acoustic tensor components

Am
ik(K

k) = C
avg,m
iJkL K k

LK k
J . (2.18)

Starting with F0(X k), this provides an iterative update procedure which we solve
by fixed-point iteration: we compute F̂m+1(K k) in Fourier space, we transform it
into Fm+1(X k) in real space, which we use to evaluate Pm+1(X k), τm+1(X k) and
Cave,m+1. After Fourier transform, we use the resulting P̂m+1(K k) and τ̂m+1(K k) in
Fourier space for the next update, until we achieve convergence in the sense of the
discrete L2-norm of the stress perturbation τm.

Rather than applying the above FFT-based scheme directly, we use a finite-difference
approximation for all spatial derivatives before applying the Fourier transform [95,
117]. This approximation, applied to the related problem of small-strain inelasticity
in [176], uses a central-difference approximation and leads to the approximate
Fourier transform of a derivative

F

(
∂ f
∂xi

)
= −ihkiF ( f ) ≈ −

i sin(hki∆x)
∆x

F ( f ), (2.19)

which converges to the exact derivative with decreasing grid size (∆x → 0). A
major improvement, this finite-difference correction considerably mitigates ringing
artifacts and Gibbs phenomena associated with sharp gradients in material proper-
ties (such as those across grain or twin boundaries). Vidyasagar et al. [176] and
Vidyasagar et al. [177] successfully applied this correction to polycrystals of small-
strain ferroelectric ceramics and of finite-strain crystal plasticity inMg, respectively;
the reader is referred to those publications for further information.



33

We solve the above numerical scheme in a time-incremental fashion to find a se-
quence of mechanical equilibria, using a constant time step ∆t such that, here and
in the following, (·)α denotes3 a quantity evaluated at time tα = α · ∆t.

2.3 A stochastic model for recrystallization
Modeling recrystallization requires to account for both grain nucleation (NCL)
and migration (GBM), which is accomplished here by a stochastic model. In a
nutshell, each point inside the RVE is associated with a particular grain through
its crystallographic orientation (manifesting in the model through the slip and twin
system orientations, and potentially through elastic anisotropy). Here we refer to
the grain association of a material point as a its state. Consider an RVE containing
nG grains, so that each point has a unique integer state s ∈ [1,nG] describing its
crystallographic orientation (in the undeformed configuration). At any point in
time, a material point is allowed to undergo a state switch, i.e., to either nucleate
a new grain (with a fresh crystallographic orientation, raising nG by one) or, if in
the vicinity of a grain boundary (GB), to join a neighboring grain and adopt its
orientation. Whether or not such a state switch occurs depends on the current state
of the local elastic and inelastic fields as well as on temperature and deformation
history. Drawing inspiration from theMonte-Carlo-Potts (MCP)model [128] aswell
as the Monte-Carlo-Metropolis and Metropolis-Hasting algorithms [111, 114], the
probability of switching increases with the stored energy release upon a state switch.
The probability also increases with temperature through thermal fluctuations. We
exploit the crystal plasticity framework introduced in Section 2.2 to define state
switches and the related release of elastic and inelastic energy, and we exploit the
FFT-based grid discretization to apply theMCP scheme in a spatially and temporally
discrete fashion.

To this end, we will introduce an MCP model to define the probability of a state
switch (Section 2.3.1), lay out how a state switch affects the local elastic and
internal variables (Section 2.3.2), and integrate the time evolution of the thus-
obtained recrystallization model with the RVE-level mechanical boundary value
problem (Section 2.3.3). The overall incremental realization of the stochastic model
is illustrated in Figure 2.2.

3We use Greek indices for time steps to avoid confusion with classical index notation.



34
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+

+

+

+

+

+

+

+

+

+

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ +

+ + +
?

?

or or

or + ++

+

+

+

+ +

+ DS

DV

NCL

NCL
or

GBM

NCL

NCLGBMGBM

NCLGBM

?

NCL
or

GBM

Figure 2.2: Schematic view of the state switch procedure: nMC,GBM MCP sampling
points are chosen from only those grid points adjacent to GBs, and nMC,NCL sampling
points from all n grid points. For each chosen grid point, possible options for state
switches include the nucleation of a new grain (shown in yellow) or the adaption
of the grain orientation of one of the neighboring points across a GB. In the latter
case, the current energy I of each chosen sampling point is compared to its energy
Ĩ after a possible state switch, by adopting the orientation of a neighboring grid
point lying within an adjacent grain; the probability of switching depends on the
energy difference E = Ĩ − I. Shown is also the definition of volume element ∆V
and surface element ∆S.

2.3.1 Monte-Carlo-Potts model: probability of state switching
In order to capture the stochastic nature of state switches, we adopt an MCP-like
approach [7, 74, 128, 138, 156, 157]. Unlike the model of Ising [71] which restricts
the total number of states to two, our MCP model accounts for as many degenerate
states as there are grains present at any given time (and the number of grains, nG,
is allowed to change in case of the nucleation of new grains or the consumption
of existing grains). Instead of checking all n points inside the RVE for a potential
state switch, we randomly select nMC,GBM,nMC,NCL � n representative points for
GBM/NCL at each time step and check which of those will undergo a state switch
based on the criteria to be defined in Section 2.3.2. In a variation of the classicalMCP
model, we choose the nMC,GBM points exclusively from those grid points adjacent to
the GBs inside the RVE, whereas for the nMC,NCL points, we generally chose them
from the n grid points. For proper scaling, we choose nMC,GBM ∝ n2/3 to conserve
the number of MCP points chosen from the GBs. The specific choice of the ratios
mMC,i = n/nMC,i (with i = GBM or NCL) naturally introduces the characteristic
time scales of recrystallization. As shown in Section 2.4, the speed of migrating
GBs is preserved if we chose the discrete time step according to ∆t ∝ n−1/3 = N−1.
We further adopt the scaling for nMC,NCL ∝ ∆t to control the nucleation rate.

The driving force behind a state switch is the reduction of stored energy. The total
energy I of the RVE consists of mechanical (Helmholtz) energy stored within Ω
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(including elastic and inelastic contributions) and interface energy concentrated in
the GBs with surface energy density γ (and Γ denotes the collection of all GBs), so
that4

I =

∫
Ω

A
(
F(X),F in(X),ε(X),λ(X); s(X)

)
dV +

∫
Γ

γ(s+, s−)dS

≈ ∆V
n∑

k=1
A

(
Fk,F

in
k ,εk,λk ; sk

)
+ ∆S

nΓ∑
l=1

γ(sl+, sl−).

(2.20)

Here, we approximate the total energy in Ω by a discrete sum over all n grid points
inΩ∆ (each associated with a pixel volume ∆V), while the surface integral becomes
a discrete sum over all nΓ straight interface segments (each associated with a pixel
surface ∆S); see Figure 2.2. Note that the Helmholtz free energy is local and the
dependence on state s is implicit through the slip and twin system orientations. The
interface energy, in principle, depends on the two states sl+ and sl− on both sides of
a GB. For simplicity, we here assume a constant GB energy density γS which does
not depend on misorientation, e.g., à la Read and Shockley [136] or Wolf [188].
We note that our model can readily include misorientation-dependent GBmobilities
[185, 186] or more complex boundary energy formulations [72], although they are
neglected in this framework.

Consider a local state switch from sk to s̃k , i.e., grid point k change its grain
association, which comes with a change in crystal orientation as well as a change
of (Fk,F

in
k ,εk,λk) into some (F̃k, F̃

in
k , ε̃k, λ̃k). Owing to the form of the energy in

(2.20), the total change in energy due to this switch is local and given by

∆E =Ĩ − I

=∆V
[
A

(
F̃k, F̃

in
k , ε̃k, λ̃k ; s̃k

)
− A

(
Fk,F

in
k ,εk,λk ; sk

) ]
+ ∆S

∑
l∈Ik

γ(sk, sl),

(2.21)

where Ik denotes the set of the six nearest-neighboring grid points of point k and

γ(sk, s j) = γS δ(sk, s j) with δ(sk, s j) =


1 if sk = s j,

0 else,
(2.22)

so that only interfaces between neighboring grid points that relate to different grains
contribute GB energy.

4For conciseness, here and in the following we implicitly include the position dependence at position
Xk via subscripts (·)k , such that, e.g., Fk ≡ F(Xk), etc.
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In light of the above energy difference and in analogy to the well-established Glauber
dynamics [53], we define acceptance thresholds as

wGBM(∆E) =
1
2

[
1 − tanh

(
∆E − ∆Ecr,GBM

kBTs

)]
,

wNCL(∆E) =
1
2

[
1 − tanh

(
∆E − ∆Ecr,NCL

kBTs

)] (2.23)

with Boltzmann’s constant kB, an effective temperature Ts, and a constant ∆Ecr > 0.

Figure 2.3: Acceptance threshold w as a function of the (normalized) energy differ-
ence for various values of TS and ∆Ecr (normalized by some reference temperature
Tr

s ).

Given a potential energy release ∆Ek , we use the threshold from (2.23) to decide
whether or not a material point k switches state by either NCL or GBM. If any
of the nMC = nMC,GBM + nMC,NCL sampling points is identified to have ∆Ek < 0
for a possible state switch, we generate a random number ξ ∼ U[0,1] following a
uniform distribution U[0,1]. Ultimately, we accept the new state if the condition
ξ ≤ w(∆Ek) is met and reject if ξ > w(∆Ek). Since increasing ∆Ecr decreases
the threshold w(∆E) for a given ∆E (see Figure 2.3), ∆Ecr,GBM aims at capturing
the dissipative drag of GBM while ∆Ecr,NCL sets a nucleation threshold. Table 2.2
summarizes all MCP model parameters from subsequent simulationsf.

Table 2.2: MCPmodel parameters chosen for the subsequent simulations of dynamic
recrystallization, unless otherwise noted.

TS [K] γS [Jm−2] ∆Ecr,NCL [MJm−3] ∆Ecr,GBM [MJm−3]
386 0.38 −1.00 −0.60

2.3.2 Monte-Carlo-Potts model: state switches
The calculation of ∆Ek requires comparing the currently stored Helmholtz free
energy A(Fk,F

in
k ,εk,λk ; sk) to that of a hypothetical state A(F̃k, F̃

in
k , ε̃k, λ̃k ; s̃k) after
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a state switch from sk to s̃k . Our definition of the latter state draws on recrystallization
theory and experimental observations of grain nucleation and migration, and it is
based on the following assumptions: (i) while nucleation is widely accepted to be
predominantly driven by the reduction of elastic strain energy [155, 169], migration
is caused by various driving forces associated with the minimization of the total
stored energy [169], comprising interfacial as well as (in-)elastic bulk energy. (ii)
Nucleation is observed to result in pristine, dislocation-starved grains [5, 60, 68],
as imposed in the phase field model of Chen et al. [28]. (iii) While the literature
generally speaks of GBM as an advective process, we still know little about the
remains of existing dislocations interacting with migrating GBs [144]. Here, we
presume that any material point which joins an adjacent grain will adopt that grain’s
crystallographic orientation and slip and twin systems in the current configuration,
implying that not only the state s̃ is adopted but also the elastic and inelastic
deformation gradients, since, e.g., the slip system in the current configuration is
given by

(
Fes, (F in)Tm

)
. Overall, this motivates defining the state switch such that

F̃ in
k =


I

I
F̃e

k =


I

Fe,neighbor
ε̃k =


0

εneighbor
λ̃k =


0 (NCL)

λneighbor (GBM)
(2.24)

where the superscript (·)neighbor refers to a neighboring material point already asso-
ciated with grain s̃k . We note that this choice is the authors’ conclusion informed by
both physical as well as numerical considerations in lack of sufficiently insightful
experimental data. Section 2.3.4 discusses alternative approaches that we investi-
gated. Since this method differs from previous MCP models (where at most one
internal variable was subject to state switches), we refer to this model as a Field
Monte Carlo Potts (FMCP) model.

Importantly, we also aim to maintain the same total deformation for compatibility,
i.e., F̃k = Fk , which unfortunately renders the constraints (2.24) mutually exclu-
sive since F̃k = F̃e

k F̃
in
k = Fe,neighbor , Fk in general. Therefore, we modify the

deformation gradient decomposition by introducing a relative configuration Fr such
that

F = FeFrF in. (2.25)

Simo [149] already introduced the idea of a relative or residual deformation gradient
as the tangent map of a superposed spatial diffeomorphism to some deformation
mapping. Similarly, Asaro [12] used it to measure the reorientation of the lattice
with respect to some tensile axis.
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When using the decomposition (2.25), we can realize (2.24) by setting Fr = I in
the undeformed configuration at all material points and choosing

F̃r
k = (F̃

e
k )
−1F̃k(F̃

in
k )
−1 (2.26)

upon each state switch to satisfy compatibility. This also admits a physical inter-
pretation since upon GBM the material point now adopts the slip and twin system
orientations of the adjacent grain (in the current configuration).

(2.24) along with (2.25), (2.26) and F̃k = Fk, completely defines a local state switch
at a MCP sampling point k and admits calculating the potential energy differences
∆Ek (for every possible state switch considering the nearest-neighboring grid points
of k). Figure 2.4 illustrates the update process upon state switching, which the
following explains:
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Figure 2.4: Visualization of the update process for NCL (a-c) and GBM (d-f):
(a,d) selection of a sampling point k (marked in red) and – in the case of GBM –
its neighboring reference point j (marked in black) at time tα, (b,e) instantaneous
update of the inelastic variables at time tα, and (c,f) gradual update of Fr

k over
time [tα, tα+n∗] along with mechanical equilibration at each time step, resulting in
the matching of Fe

k of the chosen sampling point k with identity in the case of
NCL and that of the neighboring grid point j in the adjacent grain at the end of the
process in the case of GBM. Imposed changes are red, while changes resulting from
mechanical equilibration appear in blue.

2.3.3 Monte-Carlo-Potts model: Incremental realization of a state switch
An instantaneous switch of Fe

k → F̃e
k would result in considerable convergence

problems in the RVE-level boundary value problem (caused by sudden changes
in the elastic/inelastic fields and the associated resolved shear stresses), which is
why we have chosen the following gradual update protocol. In a nutshell, the
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instantaneous state switch is spread over a finite time window ∆t∗ – which is in line
with dynamic recrystallization being a continuous physical process5.

� elastic equilibration (spectral update):  DivP = 0

Dt

at each time step:

a+1 a+1
� internal variable update:  l ,�e

� recrystallization: select sampling points and check for nucleation/GB motion

* *Dt =n ×Dt

GB motion 
initiated (step b)

 egradual adjustment of F

Figure 2.5: Schematic illustration of the time stepping scheme: at each time step
the RVE is equilibrated, internal variables are updated, and nMC sampling points
are checked for grain nucleation or migration. If either is initiated (step b from
Figure 2.4), then the scheme of Figure 2.4 starts, including a gradual adjustment of
Fe through adjusting Fr over n∗ time steps.

We assume that the inelastic variables (F in
k ,εk,λk ; sk) – which are tied to the atomic-

level crystallographic configuration – change spontaneously and instantaneously into
(F̃ in

k , ε̃k, λ̃k ; s̃k). By contrast, the transition from Fe
k to F̃e

k is performed gradually,
since it is tied to the long-range elastic fields involving both the material point and
relaxation mechanisms in its vicinity. It is important to note that we cannot control
Fe

k directly (only through Fk , F in
k and Fr

k). Since F in
k → F̃ in

k instantaneously as
described above, we control Fr

k to adjust F
e
k → F̃e

k . Moreover, we gradually change
Fe

k into F̃
e
k over a time period∆t∗ through an incremental sequence of n∗ = d∆t∗/∆te

mechanical equilibria (where ∆t denotes the time step size of the simulation); see
the schematic in Figure 2.5. As the final state of this gradual update (starting at
same time tα and continuing over n∗ times steps), we must have Fe

k,α+n∗ = F̃e
k from

(2.24) – i.e., either Fe
k,α+n∗ = I for NCL, or Fe

k,α+n∗ = Fe
j,α+n∗ = F̃e,common

α+n∗ (which is
a-priori unknown at tα) for GBM, see Figure 2.4. In summary, this implies that the
selected MCP sampling point instantaneously adopts its new crystallography, then
experiences an elastic-plastic evolution over ∆t∗ to continuously adjust grid point k

to its target elastic state, thus achieving a relaxation of the stress state by continuous
equilibration in the neighborhood of point k.

In order to gradually change Fe in a physically sensible manner, we use the polar
decomposition theorem to write Fe = ReUe with rotation Re = Fe(Ue)−1 ∈ SO(3)

5Recrystallization experiments are usually conducted on time scales significantly larger than the
characteristic microscale relaxation times, which makes it difficult to extract information on the
exact time-dependent evolution mechanisms. Nonetheless, we here propose a continuous update
procedure for the microstructural states as a stable numerical scheme that simultaneously serves as
a reasonable hypothesis of the actual kinetic microstructural evolution.
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and principal stretch tensorUe =
√
(Fe)TFe ∈ GL(3). We accommodate the gradual

transformation from some given initial elastic deformation gradient Fe
k,α to the target

elastic deformation gradient F̃e,target
α+n∗ using an iterative adjustment of, individually,

stretch and rotation6.

If at time tα, we identify grid point k (with reference neighbor j in the case of GBM)
for a state switch, we carry out the gradual update over time steps β ∈ [α,α + n∗]

so that Fe
k,α → F̃e

k from (2.24). We introduce a translational deformation tensor F̂β
via

Fe
k,β F̂β =

{
I (NCL)

Fe
j,β (GBM)

, (2.27)

which decomposes into R̂β and Ûβ as follows to define the stretch and rotational
contributions to the elastic deformation mapping required to take point k towards
its target at any time step β:

F̂β = R̂β Ûβ, R̂β ∈ SO(3), Ûβ ∈ GL(3). (2.28)

We break n∗ down into (n∗ − nU) and nU time steps for adjusting the stretches and
rotations, respectively. Following the arguments outlined above, we recursively
define the update of the elastic deformation at point k at time step β + 1 as

Fe
k,β+1 =


Fe

k,βÛ
− 1

nU−(β−α)

β for β ∈ {α, . . . , α + nU − 1}

Fe
k,βÛ

−1
β R̂

− 1
n∗−(β−α)

β for β ∈ {α + nU, . . . , α + n∗ − 1},
(2.29)

This scheme ensures that Fe
k,α+n∗ equals its target value, viz. F

e
k,α+n∗ = I for NCL

and Fe
k,α+n∗ = Fe

j,α+n∗ = F̃e,common
α+n∗ ∈ GL(3) for GBM. We note that, while (2.29) is

being applied, mechanical equilibration including updates of the internal variables
is also enforced, so that all fields are continuously evolving. The choice of the
exponents in (2.29) is such that, in the hypothetical case of the absence of any
changes to Fe by mechanical equilibration, the incremental stretches and rotations
applied during each step are constant. (The physics-informed scheme (2.29) is
not restricted to recrystallization but can be applied in any constitutive framework
where instantaneous state switches are to be avoided.) An algorithmic summary of
the statistical model described in this section is provided in Table 1.

Recall that, although the elastic deformation gradient adjusts gradually according to
(2.29), the update of the inelastic deformation gradient occurs instantaneously at time
6Note that by definition, since detF in = 1 as well as detF > 0 and detFr > 0 by construction, Fe

is always invertible.
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step α. The same applies to the local orientation sk → s j (which is unproblematic
for elastic isotropy but may require special treatment for anisotropic elastic energy
densities).

2.3.4 Alternative definitions of state switches due to GBM
In Section 2.3.2 we presented a particular form of the local kinematic updates of
the elastic state (Fe) and the inelastic state (F in, ε, λ) associated with a state switch
due to GBM, as defined by (2.24) and complemented by (2.26). We note that this
choice is not unique. We considered and discarded various alternatives which are
briefly outlined here to justify the particular choices we ultimately adopted:

• Approach 1: It is possible to interpret a moving GB as a reconfiguration
front which leaves the region over which it has swept in a pristine, defect-free
state. In terms of the state variables used in this model, this implies ε̃ k = 0,
λ̃k = 0, F̃ in = I but F̃e = Fe and F̃r = (Fe)−1F, where the tilde denotes the
state after the state switch. Unfortunately, a pristine elastic state would lead to
excessively high local stresses which, in turn, translate into high flow stresses
on certain slip systems. The latter is physically questionable and also leads to
convergence failure of the crystal plasticity model employed here. Moreover,
although the passage of a GB is expected to dissolve existing defect structures,
the recovery of a completely pristine grain is physically unlikely.

• Approach 2: Adding a complete relaxation of the stress state can partially
overcome the above problem. In terms of the state variables this translates
into ε̃ k = 0, λ̃k = 0, F̃ in = I , F̃e = I , and F̃r = F. This, however, equates
migration to nucleation, which has little physical justification and implies that
severe local deformation gradients F may result in zero local stresses.

• Approach 3: In our approach, we assume that the inelastic state of a point
that is passed by a migrating GB is independent of its history before GB
arrival but affected by the plastic history and defect structure in the expanding
grain. This translates into the update laws (2.24). Specifically by assuming
that the elastic state of the neighboring grain is also adopted, we avoid the
aforementioned excessive stress increase and – in conjunction with the time-
continuous adoption process outlined in Section 2.3.3 – achieve numerical
stability.
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Algorithm 1 Incremental update algorithm applied at each time step α.

1. Update the macroscopic/average deformation gradient to F∗α+1

2. Application of the FFT-based method to solve the elastic RVE problem
(at fixed internal variables):

• compute Fk,α+1 = F(Xk, tα+1)∀ k ∈ {1, ...,n}

3. Update the internal variables (at fixed deformation gradients):
Denoting the sets of nodes that currently undergo a state change in the sense
of GBM and NCL by SGBM and SNCL, respectively (i.e., points that are
within their n∗ time steps to accommodate the state switch), then for all
k ∈ {1, . . . ,n}/(SGBM ∪ SNCL)

• compute εα+1(Xk), λα+1(Xk), F in
α+1(Xk)

• compute Fe
α+1(Xk) = Fα+1(Xk)

(
Fr
α+1(Xk)F

in
α+1(Xk)

)−1
,

4. Monte-Carlo-Potts acceptance/rejection:

• randomly select nMC,GBM and nMC,NCL grid points from the set of, respectively,
all GB-adjacent and all grid points (not considering those in SGBM ∪ SNCL)

• for each of the nMC,GBM grid points, consider all nearest-neighboring points:
– compute the minimal ∆EGBM < 0 and associated wthresh

GBM = wGBM(∆EGBM)

– generate a random number ξGBM
– if ξGBM ≤ wthresh

GBM : insert grid point into SGBM
• for each of the nMC,NCL grid points and a random orientation for the new grain:
– compute ∆ENCL and wthresh

NCL = wNCL(∆ENCL)

– generate a random number ξNCL
– if ξNCL ≤ wthresh

NCL : insert grid point into SNCL

5. Monte-Carlo-Potts updates: for each k ∈ SGBM ∪ SNCL:

• if point k has just been inserted during this time step α:
– if k ∈ SGBM: set s0,i ← s0,j and m0,i ← m0,j , where j denotes the
neighboring reference node whose grain association is being advected
– if k ∈ SNCL: set s0,i ← s0,new and m0,i ← m0,new for a new random
orientation of the nucleated grain

• update Fe
k,α → Fe

k,α+1 according to (2.29) by changing Fr
k,α → Fr

k,α+1,
if k ∈ SGBM: set εk,α+1 ← ε j,α+1 and λk,α+1 ← λ j,α+1, where j denotes the
neighboring reference node whose grain association is being advected

• if α is the n∗-th increment for grid point k (completing the state switch), then:
if k ∈ SGBM remove k from SGBM, else if k ∈ SNCL remove k from SNCL
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2.4 Verification of the numerical scheme: Scaling and Convergence
We first verify that our model is appropriate to yield results independent of grid
size as to demonstrate convergence with grid refinement, before proceeding to
polycrystalline benchmark simulations. This is particularly important due to the
statistical FMCP model for recrystallization: while the crystal plasticity setup is
size-independent and therefore expected to converge with h-refinement, the FMCP
model is based on randomly selecting nMC,GBM and nMC,NCL grid points for GBM
and NCL, respectively. Those parameters – together with the time step ∆t – affect
results when changing the grid resolution, so that it is necessary to scale their
values appropriately. To this end, Section 2.3.1 proposed a scaling aimed at proper
convergence of results, which is verified here.

In our simulations the grid spacing is set to ∆X = 2.55 µm. Stochastic models
such as the MCP model generally do not possess a physical length scale, so fitting
with experiments is required to relate their numerical length scale to a physical
one. Leaving the size of the RVE unchanged would result in ∆X ∝ n−1/3, which
in turn would influence the recrystallization kinetics due to changes in the balance
between bulk energy and interface energy (scaling as ∆V ∝ (∆X)3 and ∆S ∝ (∆X)2,
respectively). Therefore, when investigating different RVE resolutions in the fol-
lowing, we automatically imply a respective scaling of the RVE size to circumvent
the aforementioned issues. Motivated by the deformation a billet experiences dur-
ing the extrusion in ECAE, in subsequent benchmark tests we apply the average
deformation gradient F∗(t) = I + Ûγsht e1 ⊗ e3 with Ûγsh denoting the applied shear
rate.

2.4.1 Scaling of the number of MCP sampling points with changing grid size
for GBM

A proper rescaling of nMC,GBM, the number of sampling points for GBM, with the
total number of grid points, n, is essential to ensure convergence of the effective
GBM kinetics (e.g., GBM speeds) with RVE refinement. To test the chosen scheme,
we subject a bicrystal – having c-axis misorientations of ±π/16 with respect to the
[101] pole and a misorientation of π/8 to one another – to the controlled nucleation
of a new grain at the RVE center, whose c-axis aligns with the [101] pole (see
Figure 2.6). Suppressing any other nucleation, we test if the chosen scaling leads
to comparable results of the GBM kinetics by comparing nMC,GBM = 8, 18 and
32 on grids with, respectively, n = 323, 483 and 643 points (along with properly
rescaled ∆t) according to the scaling relations of Section 2.3.1. For accelerated
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albeit stable results in this example, we here use TS = 300K, γS = 0.31Jm−2 and
∆Ecr,GBM = −0.05Jm−3.

Figure 2.6 illustrates how the qualitative migration behavior is conserved across
the three grid resolutions, thanks to properly rescaled nMC,GBM and ∆t. While
the growing volume and surface of the new grain compare well between resolutions
(c.f. Figure 2.7), differences appear in terms of the non-smooth grain surface (despite
identical GB energy γS). The shape of the GB becomes smoother and more regular
with increasing n, especially at low strain levels. An increasingly similar migration
behavior towards higher strains both in terms of propagation velocity as well as
surface smoothness leads to the conclusion that the chosen scaling indeed leads
to mesh-independent results in the limit of negligible surface penalization effects,
which is approximately reached at higher strains, where the difference in Helmholtz
free energy dominate the effects of surface penalization.

z

y
x

Figure 2.6: Comparison of GBM for a newly nucleated grain (shown in blue)
embedded within a bicrystal (only one of the two original crystals is shown in red)
for n = 323 (top), n = 483 (center) and n = 643 (bottom), when using the scaling
relations introduced in Section 2.3.1. The five snapshots capture different average
strain levels, using the aforementioned simple shear setup.
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(a) Surface of the nucleus normalized by the RVE’s surface area

(b) Volume of the nucleus normalized by the RVE’s total volume

Figure 2.7: Quantitative comparison of the volume and surface area of the newly
nucleated grain in Figure 2.6, demonstrating grid size-independent GBM kinetics
across three different RVE discretizations with n = 323, 483, 643.

2.4.2 Scaling of the number of MCP sampling points with changing grid size
for NCL

Having verified proper scaling of the effective kinetics for GBM, we next study
the chosen MC scheme for NCL. As a benchmark, we investigate a polycrystal
composed of initially 128 grains with randomly distributed c-axis misorientations
within ≤ π/16 from the [101] axis. The choice of a [101]-biased texture is due
to relatively poor basal slip under the prescribed simple shear, which promotes
prismatic and 〈c + a〉-slip and thus showcases the full capabilities of the model
to treat severe inelastic anisotropy. Due to inconsequential observations about the
correlation between initial grain orientations and NCL during recrystallization, we
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consider the pseudo-random initial texture around the [101]-pole appropriate7.

We use the parameters of Table 2.2 and rescale nMC,GBM and nMC,NCL for three
different grid sizes n, as discussed in Sections 2.3.1 and 2.4.1. Figure 2.8 com-
pares the effective RVE stress–strain response for different choices of n, showing
convincing agreement. We observe deviations at larger strains predominantly for
the secondary recrystallization cycle. The reduction in peak stress for the relatively
coarse choice of n = 323 owes to the fact that, with increasing n, the nMC,NCL points
selected for potential NCL increasingly lie away from GB triple-junctions, which
are energetically preferable sites for nucleation but statistically less often sampled
with increasing n.

As a further illustration, the histograms in Figure 2.9 show the changes in the relative
grain sizes (measured as fractions of the RVE volume) for the three discretization
levels of Figure 2.8. As expected, recrystallization leads to a reduction in the average
grain size as well as to a spread in the grain size distribution. A stronger shift towards
smaller grain sizes with decreasing grid resolution emphasizes the aforementioned
increased nucleation activity at lower resolutions due to the increased probability
of selecting MCP points near triple-junctions. However, overall results – both the
effective stress–strain response and the microstructural changes – tend to converge
with increasing grid resolution.

2.4.3 Dependence of the homogenized behavior on statistical MCP sampling
Although our FMCP approach is stochastic and therefore expected to yield different
results when repeated even under identical initial conditions, we expect compa-
rable effective material behavior (i.e., evolution of both macroscopic stresses and
microstructural statistics) for sufficiently large RVEs and statistically similar initial
orientation distributions (e.g., chosen from a fixed range of orientations around a
given pole, as discussed above). As an ensemble study, we conducted four simula-
tions with identical initial microstructures, differing merely by the random seed we
used for the MCP point selection. Figure 2.10 illustrates the results of two different
examples, each having 128 initial grains but with their initial textures spread around
the [101]-pole by less than either π/16 or π/8. For both cases, the differences in the
homogenized stress–strain response between the four runs is small with the highest

7For example, Al-Samman and Gottstein [5] showed that for specific combinations of process
temperature and strain rate, texture randomization in Mg alloys could be observed, yet due to the
emergence of random textures (as opposed to highly textured microstructures) varied with initial
microstructure, we can conclude that there is no clear trend.
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Figure 2.8: Comparison of the average shear stress P∗13 = 〈P13〉 vs. average shear
strain F∗13 for n = 323, 483, 643, using the scaling of the number of MCP sampling
points with n as introduced in Section 2.3.1.

relative deviations in the stresses found around 3.5% and 4.2% for the scenarios
with, respectively, lower and higher misorientations. Based on the relatively low
amount of basal slip for grains with a rotation close to π/4 under this shear loading,
we observe a higher inelastic strain energy density due to increased prismatic and
particularly pyramidal slip. This accelerated rise of the inelastic energy density in
return causes nucleation at relatively low average strains. The shift in nucleation ini-
tiation of the individual recrystallization cycles thus ultimately causes the observable
difference in the number of cycles passed until the final strain of F∗13 = 0.05.

2.5 Results: Microstructural evolution and resulting stress–strain response
during ECAE

Motivated by the prevalent simple shear deformation in the process zone of ECAE,
the macroscopic load history for all examples in this and subsequent sections has
the form F∗(t) = I + Ûγsht e1 ⊗ e3, where Ûγsh denotes the shear rate (we chose
Ûγsh = 10−5 s−1 to mimic quasistatic conditions). The low strain rate allows us to
replicate the multi-peak stress–strain behavior characteristic of low-strain-rate/high-
temperature discontinuous dynamic recrystallization, in which we can distinguish
periods of pure inelastic deformation and of recrystallization, which, in turn, allows
us tomore cleanly inspect the effects of the variousmodel parameters. In conformity
with a classic ECAE setup endowed with a 90◦ turn, the extrusion direction (ED),
transverse direction (TD) and normal direction (ND) are in our setup, respectively,
the positive x-axis, positive y-axis and negative z-axis. We set the incremental time
step to ∆t = 0.5 s for the case of n = 643 (N = 64) and accordingly scale for all other
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Figure 2.9: Evolution of the grain size distribution shown as histograms of RVE
volume fractions of the grain volumes, thresholded by 0.10%, 0.25%, 0.50%, 1.0%,
and 2.0% for average shear strain levels of 1.80% (red), 2.35% (yellow), 3.25%
(green) and 3.90% (purple) as compared to the initial distribution (blue, on the top)
for n = 323 (left), n = 483 (center) and n = 643 (right).

discretizations. We conduct all investigations up to a maximum strain8. This allows

8We note that we set the simulation temperature for both GBM and NCL in such a way to observe
recrystallization at strains below those observed in experiments (which is beneficial for computa-
tional efficiency at such low strain rates). The reason for this choice lies in the nature of the material
parameters present in the Mg constitutive model, which were fitted to room-temperature data [26].
This is significantly below the temperatures at which dynamic recrystallization investigations are
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Figure 2.10: Illustration of the (negligible) influence of the random seed used for
MCP sampling point selection under otherwise identical conditions including the
same initial microstructure comprising 128 grains with two misorientation ranges of
the c-axis with respect to the [101]-pole, viz. π/16 (top) and π/8 (bottom). Each set
of four curves corresponds to four repeated runs (we have computed relative errors
with respect to a fifth run whose homogenized stress levels are referred to as 〈P†13〉).

us to exploit the simulation temperature for rescaling, which enables large-strain
effects at smaller strain levels of γsh,max = Ûγshtmax = 0.05.

We investigate a polycrystal with initially 128 randomly oriented grains with a
maximum misorientation of π/8 from the [101]-pole. Figure 2.11 illustrates the
evolution of the homogenized shear stress P∗13 = 〈P13〉 with the applied shear strain
F∗13. Following an initial phase of recrystallization-free elastic-plastic deformation,
we can identify the onset of nucleation by the stress decrease due to the nucleation
of new grains (near point B). The subsequent growth of those pristine grains by

conducted and thus only allows the underlying material model to function in a stable manner at low
strains. The inclusion of temperature-dependent models is, however, readily possible, in which case
recrystallization can be captured at the experimentally observed strain levels
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Figure 2.11: Evolution of the P∗13 = 〈P13〉 shear stress vs. the applied shear strain
F∗13. Markers denote the strains corresponding to the grain, shear stress and inelastic
strain energy density distributions across the RVE appear in Figs. 2.13, 2.12 and
2.14, respectively.

GBM alongside further NCL causes a continuing decrease of the homogenized
stress up to point D, where the nucleated grains consumed the entire RVE. The fully
recrystallized RVE then undergoes, again, elastic-plastic deformation resulting in
a rising average stress. When the inelastic strain energy is again sufficiently high
to increase the probability of nucleation, recrystallization results in another stress
reduction – overall thus resulting in the classical multi-peak stress–strain behavior
observed at low strain rates [60]. For higher strain rates, the distinction between
time periods in which recrystallization-free deformation is dominant vs. periods in
which NCL andGBMare prevalent vanishes gradually. This ultimately results in the
classic single-peak stress–strain behavior [18, 60, 139], which we can also capture
by the present model depending on model parameters and, which we will discuss in
Section 2.6.

To elucidate the underlying mesoscale mechanisms, Figs. 2.13, 2.12 and 2.14 illus-
trate the distributions of, respectively, the grains, the 〈P13〉 stress, and the inelastic
strain energy density (as a driving force for discontinuous dynamic recrystallization)
across the RVE. All three illustrations clearly support the identification of the indi-
vidual stages in which NCL vs. GBM vs. elastic/inelastic deformation is dominant
(labels in Figs. 2.13–2.14 correspond to the strain levels in Figure 2.11). The two
recrystallization waves become apparent in Figure 2.13 which illustrates the newly
nucleated grains. The onset of each wave corresponds to states of high stresses and
of high stored energy as seen in Figs. 2.12 and 2.14. In addition, a decrease of
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Figure 2.12: Evolution of the P13 shear stress distribution at the ten strain levels
marked in Figure 2.11. The initiation and completion of each recrystallization wave
agrees well with the, respectively, highest and lowest stresses found across the RVE.

the average grain size is observable throughout the two recrystallization cycles as
mentioned in Section 2.4.2 (c.f. the decrease in average grain size in Figure 2.9).

It is interesting to compare the above results with a classical model for dynamic
recrystallization frequently used in the literature. The JMAK relation [13, 79, 86]
approximates the evolution of the volume fraction of recrystallized material, which
we denote via ηRX ∈ [0,1], in the form

ηRX(t) = 1 − exp
(
−

∫ t

tRX
v(τ) ÛnNCL(τ) dτ

)
≈ 1 − exp(−A(t − tRX)p), (2.30)

where v(τ) and ÛnNCL(τ) define, respectively, the reference volume and nucleation
rate within previously unrecrystallized material at time τ. A, p ∈ R+ describe
constants dependent on both the material as well as the processing route; p is
commonly referred to as the Avrami coefficient. We define tRX as the time at
which recrystallization starts, which we set to the time at which 1.0% of the RVE
is recrystallized for a fair comparison with the JMAK model. In contrast to our
high-fidelity model, JMAK assumes simple GB kinetics (e.g., a constant nucleation
rate and a constant growth velocity, thus neglecting any local effects [133]). Since
JMAKhas been frequently used to infer recrystallization specifics [15, 72, 132, 133],
it is interesting to compare (2.30) to the results found here.
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Figure 2.13: Evolution of the grain distribution, shown at the strain levels marked
by points A through J in Figure 2.11: the color code emphasizes the microstructural
evolution from the initial grain structure (gray) through a first recrystallization wave
(new grains shown in red) and a second recrystallization wave (new grains in blue).
The observed recrystallization waves correlate well with the stress–strain behavior
of Figure 2.11.

Figure 2.15 plots the evolution of ηRX as obtained from the simulations in Section 2.5.
According to (2.30), we expect log [− log (1 − ηRX)] to scale linearly with t−tRX, and
the slope is identified as theAvrami coefficient p. The shown scaling in Figure 2.15 is
more complex than linear, aswe expect fromour high-fidelitymodel that circumvents
the various assumptions underlying JMAK theory. When computing the slope of the
obtained curve at t− tRX = 100s, 300s and 750s, we obtain coefficients p = 0.64, 3.0
and 5.3, respectively. Especially the obtained p-values at 300s and 750s (i.e., when
recrystallization is well underway) agree well with the range of previously reported
Avrami exponents of p = 4.0 [34] and p = 3.91 [15], both for 3D simulations.

2.6 Influence of the FMCP model parameters
The recrystallization kinetics in our model are governed by the probability of switch-
ing defined in (2.23). The latter depends on several model parameters whose influ-
ence is investigated in the following and shown to allow us to fine-tune the model
for other applications involving variations in temperature and strain rate.
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Figure 2.14: Evolution of the inelastic strain energy density W sl +W tw at the ten
strain levels marked in Figure 2.11. Each recrystallization wave relates to a decrease
in the accumulated stored energy density through the nucleation and growth of
grains.

2.6.1 Numerical temperature
Due to the lack of a suitable temperature-dependentmaterial model forMg, tempera-
tureTS introduced in the probabilistic recrystallization kinetics does not imply a true
process temperature. However, it is expected to qualitatively show the correct influ-
ence of temperature on the recrystallization kinetics through the thermally-activated
migration and nucleation kinetics governed by (2.23). Figure 2.16 illustrates the in-
fluence of changing TS on the multi-peak stress–strain behavior and indeed reveals a
reduction in peak stress and recrystallization wave period with increasing TS. Since
the underlying crystal plasticity model was calibrated for room temperature and
invariant to changes in temperature, the shown results underestimate the reduction
in peak stress with increasing temperature.

2.6.2 Critical nucleation and migration thresholds
Changes in the critical energy thresholds in (2.23) affect the recrystallization kinetics
and enable the transition from a multi-peak to a single-peak stress–strain behavior,
as shown in Figure 2.17. In general, we observe the transition from a serrated to
a single-peak flow stress behavior for increasing strain rates or decreasing temper-
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Figure 2.15: Evolution of volume fraction of recrystallized material as obtained
from the simulations in Section 2.5, shown both on a linear (left) as well as on
a double-logarithmic scale (right) with three representative slopes p computed at
t − tRX = 100s, 300s, 750s.

atures [18, 60, 139], which the gradual overlapping of individual recrystallization
waves causes due to accelerated inelastic deformation in the nucleated grains relative
to a decreased migration behavior.

For fixed nMC,GBM, nMC,NCL and TS we may interpret changes in ∆ENCL and ∆EGBM

by recourse to an empirical rule for the critical dislocation density for NCL [60, 137],

ρcr ∼

(
γS Ûε

p
eff

blmτ2

)1/3

, (2.31)

where b is the magnitude of the Burgers vector, l the dislocation mean-free path, m

the GB mobility, τ = µb2/2 the dislocation line energy, and Ûεpeff the phenomenolog-
ical notion of a macroscopic plastic strain rate. In addition, empirical laws predict
a variation of the nucleation rate ÛnNCL with process parameters such as temperature
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Figure 2.16: Influence of variations in the simulation temperature TS on the multi-
peak stress–strain behavior.

and strain rate according to the classical form [60, 123]

ÛnNCL ∼ Ûε
p
eff exp

(
Q
RT

)
, (2.32)

whereQ represents an activation energy, and R is the gas constant. Comparing (2.31)

and (2.32) yields ÛnNCL/ρcr ∼
(
Ûε
p
eff

)2/3
. We can therefore associate a relative decrease

in ρcr with respect to the nucleation rate ÛnNCL ∼ nMC,NCL/∆t with an increase in
Ûε
p
eff. Given ∆Ecr,NCL ∼ ρcr [110], the tendency towards a single-peak flow stress
evolution with decreasing ∆Ecr,NCL, as we observe in Figure 2.17, therefore agrees
well with increasing strain rates.

2.6.3 Number of MCP sampling points
The phenomenological relation for ÛnNCL in (2.32) captures the transition frommulti-
to single-peak stress–strain behavior with increasing strain rate and decreasing
temperature. It was previously employed in phase field models [164], cellular
automata [32] as well as MCP models [72], where the dependence on strain rate
was, in principle, included in a term measuring the Hamiltonian change through
nucleation. Practically, however, that Hamiltonian change was set to a constant,
thus eliminating the dependence on strain rate.

In our approach, we capture the Arrhenius-type dependence on temperature through
the modified Glauber dynamics, while the dependence on strain rate emerges nat-
urally from the rate-dependent constitutive model, and ÛnNCL relates directly to the
choice of the number of MCP sampling points, nMC,NCL. We examine the latter
relationship by increasing nMC,NCL, which, as Figure 2.18 shows, decreases the peak
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Figure 2.17: Effects of variations in ∆Ecr,NCL and ∆Ecr,GBM on the homogenized
stress–strain behavior (all energy densities given in units of GPa). Unless otherwise
indicated, we used the critical energy thresholds listed in Table 2.2.

stresses. This is explained through an increase in nucleation activity, not only by
shifting the NCL probability to lower strain levels but also by increasing the total
number of nuclei. At the same time, it does not significantly affect the multi-peak
character of the stress–strain curve. By contrast, increasing nMC,GBM yields the
expected more pronounced multi-peak stress–strain behavior, since an increased
migration speed promotes the completion of individual recrystallization waves, thus
making an overlap of recrystallization waves – as required for single-peak behavior
– less likely.
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Figure 2.18: Effects of variations in nMC,NCL and nMC,GBM on the homogenized
stress–strain behavior for high critical energy thresholds ∆Ecr,NCL = −10−3 Jm−3

and ∆Ecr,GBM = −6 · 10−4 Jm−3, and in like manner low critical energy thresholds
∆Ecr,NCL = −5 · 10−4 Jm−3 and ∆Ecr,GBM = −10−4 Jm−3.

2.7 Discussion
The previous sections demonstrated that the FMCP model introduced here provides
a high-fidelity, mesh-independent technique for modeling discontinuous dynamic
recrystallization at finite strains by NCL and GBM in a statistical fashion, whose
kinetics are controlled by the FMCP model parameters – capturing both single- and
multi-peak stress–strain behavior as well as qualitatively describing the influence of
process temperature. While previous approaches – some ofwhichwerementioned in
Section 2.1 – showed advances in replicating the characteristic single- and/or multi-
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peak flow stress response for this type of recrystallization seen in experiments (see,
e.g., Figure 2.19), to the best of our knowledge, no previous model has presented
a comparably general framework for arbitrary load paths and general, finite-strain
constitutive models including deformation twinning.

Figure 2.19: Evolution of the temperature-dependent single-to-multi-peak transition
for Mg alloy AZ61 (Mg-6.1Al-1.1Zn-0.18Mn (wt%)) subjected to hot isothermal
compression tests at a constant strain rate of 0.1 s−1 performed by a thermal sim-
ulation machine posterior to annealing conducted at 400◦C for 60 min; data taken
from Liao et al. [101].

In Section 2.6, we showed how the single- vs. multi-peak stress–strain behavior
depends on the FMCP model parameters. A refined model (particularly including a
temperature-aware crystal plasticitymodel) may hence be used to study the influence
of process parameters such as temperature, loading rate and path.

Early recrystallization models were based on single scalar fields capturing the mi-
crostructure (such as the dislocation density; see, e.g., Takaki et al. [164]), where
the temporal evolution was frequently governed by the phenomenological model of
Mecking and Kocks [106] or an ad-hoc generated, oftentimes time-invariant stored
energy field (see, e.g., Ivasishin et al. [72]). Recent work combined cellular automata
with crystal plasticity models to show how it is possible to integrate anisotropic in-
elasticity into the framework of recrystallization [127]. However, the way in which
nucleation was implemented in those models could not describe the emergence of
a second recrystallization wave and therefore restricted the simulations to a single
recrystallization cycle.

The model presented here went from a pure description of GBM to an FMCP
formulation that couples GBM and NCL, further using physically motivated state
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change definitions that take into account the full elastic and inelastic state of a
material point. This not only allows us to capture multiple recrystallization waves
but also leads to the convergence towards a steady state for rising strains as well
as a transition between single- and multi-peak stress–strain behavior dependent on
model parameters. Liao et al. [101] observed exactly this transition, dependent on
process temperature, for Mg alloy AZ61 (see Fig 2.19). The flexibility to capture
this phenomenon in the model is readily given; yet, we perceive the necessity
of a careful parameter fitting as well as a temperature-aware constitutive model.
Parameter identification is challenging when studying ECAE since stress–strain
data are hard to extract from experimental force-displacements curves corrupted by
friction in the device; therefore, alternative experimental setups may be preferable.

We point out that the particular combination of the FMCPmodel with the grid-based
FFT solver of the mechanical homogenization problem requires a careful treatment
of local state switches, which the gradual update procedure of Section 2.3.3 helped
achieve. Abrupt local changes would cause numerical instability due to enormous
jumps in the resolved shear stress on the individual slip and twin systems upon state
switching. Our time-continuous interpretation of state switches – accommodated by
individually adopting the new stretch and rotation – provides a physics-informed sta-
bilization of the underlying mechanical solver. The formulation we have presented
is sufficiently general to be applied to, in principle, arbitrary constitutive models that
involve sudden changes of the fields of deformation, providing increased numeri-
cal stability while mechanical compatibility and invertability of the deformation
gradient.

2.8 Conclusions
We presented a computational framework to model discontinuous dynamic recrys-
tallization at finite strains while accounting for strongly anisotropic inelasticity as
well as alternative strain-accommodatingmicrostructural mechanisms such as defor-
mation twinning in hcp metals. We combined an extended crystal plasticity model
for Mg with a Monte-Carlo-Potts approach to recrystallization. The latter treats
both grain nucleation and grain boundary migration in a statistical fashion, so that
the kinetics of discontinuous dynamic recrystallization are described in a natural
fashion that is based on the local energetics of the polycrystalline microstructure.
The mechanical homogenization problem is solved on the RVE-level by recourse to
an FFT-based solver whose regular spatial grids provides the natural basis for the
described coupling to the discrete, stochastic Monte-Carlo framework. In addition,
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the FFT efficiency admits simulations at high spatial resolution. Simulation results
showed that (i) the chosenMonte-Carlo protocol achieves convergence of the recrys-
tallization kinetics with grid resolution, (ii) results are (to a good approximation)
insensitive to the random selection of MCP sampling points, (iii) we can describe
single- andmulti-peak stress–strain behavior by a single model, depending onmodel
parameters that link to the microstructural mechanisms of recrystallization, (iv) the
qualitative influence of process temperature, (v) the typical reduction in average
grain size and an increasing spread in grain sizes is observed for ECAE simulations,
(vi) the obtained effective recrystallization kinetics agree well with JMAK theory
at sufficiently high strain levels (when recrystallization is well underway). The
presented model is sufficiently general to apply to other constitutive models and
can be coupled to temperature-aware constitutive models (beyond the scope of this
investigation).
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C h a p t e r 3

VALIDATION AND COMPARISON WITH
COMPUTATIONALLY INEXPENSIVE ALTERNATIVES –

APPLICATION TO COPPER

A.D. Tutcuoglu, Y. Hollenweger, A. Stoy, and D.M. Kochmann. High- vs. low-
fidelity models for dynamic recrystallization in copper. Under review, 2019.

Preamble
The author (A.T.) established the enhanced recrystallization model, implemented
the crystal plasticity model as well as the FFT-based solver on the microscale
and mesoscale, respectively, and conducted simulations for different scenarios. Y.
Hollenweger (Y.H.) concentrated on simulations for the Taylor model, while A.
Stoy (A.S.) provided the genetic algorithm used for retrieving the parameters in the
recrystallization model.

3.1 Introduction
In Chapter 1, we compared four numerical methods for simulating dynamic recrys-
tallization, which all differed in their computational cost. As the first attempt to
quantitatively describe the microstructural evolution during recrystallization stands
the JMAK model, which we introduced in Chapter 2. Based on the assumption of
a constant nucleation rate, it describes the volume fraction of recrystallized mate-
rial with time. Although the homogenizing assumptions inherent to this approach
neglect a multitude of microstructural phenomena, it is still a popular model both
for the assessment of new models – as we have seen in Chapter 2 or in the works of
Goetz and Seetharaman [55] and Ivasishin et al. [72] – as well as a material model
for large scale simulations (e.g., Irani and Joun [70], Kim et al. [84]). Continuum
models introduced the notion of an average grain size and derived computationally
inexpensive evolution laws based on both migration and nucleation and taking into
account discontinuous as well as continuous dynamic recrystallization [23, 63, 107].
These models grant an estimate on the final average grain size through equations of
the form

d = d(ε in) =

{
d0 − (d0 − df)

[
1 − exp

(
−kDRX(ε in − ε incr )

) ]
if ε in > ε incr

d0 if ε in ≤ ε incr
, (3.1)
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with initial average grain size d0, final or saturated average grain size df, a notion
of migration and nucleation speed kDRX as well as a scalar notion of accumulated
plastic slip ε in and a corresponding critical accumulated plastic slip ε incr , above which
the initiation of nucleation is possible. Apart from the immediate constraint of this
model to systems, where we can capture the plastic deformation using a single
scalar, the presence of a saturated grain size df – which, in general, is not a priori
known – is defiling the purpose of such simulations. Further, they do not include
any information on the effect of nucleation and migration on the average stress state,
or at most very approximate laws concerning the steady-state stress as in [107].
This makes it difficult to fit these models against experimental data and leaves their
application to highly specialized cases. The assumption of a constant strain rate (see,
e.g., Busso [23]) is a further constraint, that renders applications in the simulation of
thermo-mechanical processing impossible, as local strain rates generally experience
large spatial and temporal variations. Lastly, lacking the explicit notion of a grain,
these models do not grant any insight into texture evolution.

The models introduced in Section 1.3 include the notion of a grain, either through
explicitly resolving them in space – as in the case of the Monte-Carlo Potts method,
cellular automata or the phase field method – or through the phenomenological no-
tion of a volume fraction. Given the large spectrum of fidelity between thosemodels,
the question arises whether the gain in accuracy through enhanced fidelity justifies
the additional computational expense. Large grains, for example, only afford a rela-
tively small grain boundary area for nucleation. Additional nucleation sites through
the emergence of shear bands, subgrains or twin bands are, consequently, important
in the estimation of the effective nucleation rate. Heterogeneities within grains can,
in general, only be captured by finding a displacement field which satisfies linear
momentum conservation. This in return requires the application of solvers such as
the finite element method (see, e.g., Bernacki et al. [15, 16], Popova et al. [127])
or FFT-based methods, which are also frequently referred to as spectral methods
(see, e.g. Chen et al. [28], Zhao et al. [197, 198]). If, however, the initial grains
are sufficiently small and the temperature high, nucleation at existing grain bound-
aries and fast subsequent migration dominates the recrystallization process. In this
case, the capturing of heterogeneities becomes dispensable and a Taylor assumption
can provide a good estimation of the recrystallization process, assuming that the
material of interest exhibits largely isotropic behavior. For metals experiencing
severe anisotropy – as it is the case for, e.g., Mg – this assumption would, again,
not hold. A similar argumentation holds for recrystallization models based on a
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single scalar variable representing the entire inelastic deformation: for metals that
behave in a J2 plasticity fashion (see, e.g,. Ortiz and Stainier [119]) or any other
isotropic inelasticity model, this assumption is, by definition, appropriate. Due to
the presence of a finite number of slip systems, however, all metals have at least
some anisotropy inherent to them. Especially under large deformations, the accom-
modation of strain on different slip systems is integral and, therefore, the reduction
of the inelastic deformation state to only one scalar variable is contestable. Another
shortcoming consists in the assumption that recrystallized grains are pristine grains
that do not undergo further nucleation. Again, this assumption holds in the case of
static recrystallization, where the lack of continuous deformation leaves the recrys-
tallized grains in a pristine state so that recrystallized grains do not undergo further
nucleation. Also for dynamic recrystallization up to relatively small strain levels,
this can hold if the accumulation of inelastic strain energy density is sufficiently
slow. For processes undergoing large deformations, however, the negligence of
secondary nucleation cycles is inappropriate, as the recrystallized grains distort in a
plastic manner that allows them to overcome the inelastic energy threshold needed
for nucleation. This would not only lead to an overestimation of the average grain
size, but also to an excessively stiff stress response, as the softening effect due to
recrystallization weakens gradually in the absence of nucleation.

In this chapter, we aim to quantify the predominantly qualitative expectations from
above. For this, we require a constitutive model which we understand sufficiently
well to be able to identify recrystallization effects and distinguish them from, e.g.,
slip-based phenomena. We accomplish this using the finite strain crystal plasticity
model for pure Cu provided by Mellbin et al. [110] and experimental data on
dynamic recrystallization – again in pure Cu – by Blaz et al. [18]. Since Cu is
face-center cubic, we accept the limitation of the extent of our analysis to all topics
that do not address the impact of severe anisotropic inelasticity. Again, in the idea
of improved comparability, we introduce two derivative models based on the FMCP
model presented in the previous section. One of these two models distinguishes
itself from the FMCP model in that it replaces the governing equation of linear
momentum conservation through a Taylor model ansatz. This is representative of a
number of related approaches, e.g., by Takaki et al. [164] orMellbin et al. [110], who
imposed a grainwise constant strain in their phase-field approach. For simplicity, we
refer to the new model as FMCP×Taylor, whereas we term our original model from
Chapter 2 FMCP×FFT. To achieve yet another simplification of the FMCP×Taylor
model, we introduce a Taylor model, in which the notion of a volume fraction



64

Figure 3.1: Illustration of the optimized fitting process for informing high-fidelity
models through computationally inexpensive models.

entirely replaces the notion of the spatial resolution of a grain. This is similar to the
approach from Cram et al. [30], which we analyzed in Section 1.3.1.

Along with the quantitative comparison of different levels of fidelity, we also deliver
two new features with this study: on the one hand, we aim to verify that it is
possible to fit the model from Chapter 2 to experimental data despite the low
number of parameters contained in it. Further, by analyzing these three methods
in rising order of fidelity, we target to deliver a framework for informed fitting.
We initialize the fitting of higher fidelity methods drawing data from an informed
guess using the parameters found for the structurally closely related lower fidelity
model, which, in theory, reduces the overall computational effort. Lastly, with the
advent of machine-learning-based approaches, models that can generate large sets
of data for various ranges of parameters become increasingly popular. While the
high complexity of models like FMCP×FFT grant us insights into the complex
recrystallization effects, their computational expense inhibits them from being used
in practical applications. Simpler models like the Taylor model may then be adapted
based on the knowledge gained from these complexmodels to deliver similar results,
at least on the homogenized level.
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The following contribution is structured as follows: First, we introduce a copper
material model in Section 3.2. Section 3.3 follows with the presentation of the
Taylor model, for which we fit the recrystallization-related parameters based on
experimental data for uniaxial compression. Subsequently, we investigate the mi-
crostructural evolution during this process. We introduce the notion of space in
Section 3.4, where we present the FMCP×Taylor model in the framework of a
mesoscale representative volume element (RVE). Further, for both the FMCP×FFT
and the FMCP×Taylor method, we undertake small changes to the nucleation as
well as the migration model compared to their counterparts from Chapter 2. These
changes are made so that comparison with the Taylor model is facilitated, which in
return strengthens the idea of informed learning described before. To complement
the comparisons made throughout Section 3.3 and 3.4, Section 3.5 is devoted to an
evaluation of the necessity of higher fidelity models. Finally, Section 3.6 concludes
this contribution with an assessment of the different methods as well as an outlook
on future directions, especially for the Taylor model.

3.2 Crystal plasticity model for single-crystalline Cu
We here provide a brief overview of the material model for Cu used in subsequent
sections, whose basis was initially introduced by Mellbin et al. [108]. Cu comprises
a total of nS = 12 slip systems derived from its fcc crystal structure [92]. We
denote by s̃α and m̃α (α ∈ {1, ...,nS}) the αth slip direction and normal, respectively,
in the reference fcc-configuration. Depending on the crystallographic orientation
R ∈ SO(3) of the crystal, the slip and normal directions, measured in the global
reference frame, are sα = Rs̃α and mα = Rm̃α, respectively. The total deformation
gradient F ∈ GL+(3) decomposes multiplicatively into its elastic and inelastic
contributions, i.e., F = FeF in. As in classical crystal plasticity, the evolution of F in

follows from

ÛF in = l inF in where l in =

nS∑
α=1
Ûγα sα ⊗ mα (3.2)

denotes the inelastic velocity gradient, and Ûγα is the plastic slip rate on slip system α.
Owing to the pairwise orthogonality sα ·mα = 0 for all α ∈ {1, ...,nS}, evolution law
(3.2) ensures detF in = 1. Besides the inelastic deformation gradient F in, the plastic
deformation history at any point is captured by a measure g ∈ RnS representative of
the total accumulated plastic slip. For convenience, we refer to the set of all internal
variables as Z = {F in, g}. Thus, the Helmholtz free energy density, comprising
Neo-Hookean-type elastic strain energy and inelastic contributions stemming from



66

plastic work, is written as [108]

Ψ(F,Z) = We
(
F(F in)−1

)
+ W̃ in(g) (3.3)

where

We(Fe) =
µ

2

(
J−2/3tr Ce − 3

)
+
κ

2

(
J2 − 1

)
and W̃ in(g) =

1
2
gHg. (3.4)

Here, J = detF = detFe captures volumetric deformation, and µ and κ represent
the shear and bulk moduli, respectively, while Ce = (Fe)TFe is the elastic right
Cauchy-Green strain tensor. The inelastic energy density depends on the hardening
modulus tensor

Hαβ = Q
(
δαβ + q(1 − δαβ)

)
(3.5)

The accumulated slips gα for all slip systems increase with plastic slip according to

Ûgα = (1 − Bgα)
τα

G0 + Gα
Ûγα, Gα =

∂Ψ

∂gα
=

nS∑
β=1

Hαβg
β, (3.6)

where B serves as a saturation parameter, and Gα
r = G0 + Gα is the total slip

resistance, including the initial resistance G0 and the increased resistance Gα due to
plastic work. Finally, the plastic slips evolve according to

Ûγα = Ûγ0

(
|τα |

G0 + Gα

)m

sign(τα), α ∈ {1, ...,nS} (3.7)

with the reference slip rate Ûγ0, hardening parameter m, and the resolved shear stress
on system α computed as τα = sα · Σmα. Here, Σ = (Fe)TP(F in)T represents
the Mandel stress tensor with P = ∂ψ/∂F denoting the 1st Piola-Kirchhoff stress
tensor.

The above constitutive equations satisfy the Clauius-Duhem inequality for isother-
mal loading [58, 108], and the total dissipation reads

D = Σ · l in −
nS∑
α=1

Gα Ûgα ≥ 0. (3.8)

Consequently, the rate of change in stored energy due to inelastic deformation and
excluding dissipation is given by

ÛW in = Û̃W in − D =
nS∑
α=1

τα(1 − Bgα)
Gα

G0 + Gα
Ûγα. (3.9)
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Thus, even though W in is not known in closed form, we can incrementally integrate
(3.9) along a deformation trajectory to obtainW in after each time increment (starting
with W in = 0, F int = I , and gα = g0 for all slip systems in the virgin state). This is
important since, following Mellbin et al. [109] and the theory outlined in Chapter 2,
we assume that the driving force behind both grain nucleation and GB migration
during DRX does not include energy dissipated by heat but only depends on W in.
For conciseness, in the following we refer to the effective total stored energy density
as

W = We +W in. (3.10)

We calibrate the model by comparison to uniaxial compression experiments per-
formed by Blaz et al. [18], which were performed at a true compressive strain rate
of Ûε = −2.0 · 10−3s−1 up to a maximum true compressive strain of εmax = −1.
For numerical purposes, each compression test is broken into n equal time steps
of size ∆t = εmax

n Ûε up to a time tmax = n∆t. Time integration is carried out in an
explicit fashion (besides the inelastic evolution equations, the DRX treatment below
requires explicit updates). The experimental data by Blaz et al. [18] will also be
used to calibrate the below (Taylor and FMCP) models for DRX. This particular
set of Cu DRX data was chosen for its meaningful stress-strain data from uniax-
ial compression tests at multiple dinstics temperature levels. All model parameters
used in subsequent sections (unless otherwise specified) are summarized in 3.1. The
specific parameters for the above single-crystal Cu model are given in Table 3.1.
A detailed comparison of experimental and simulated data will follow below. We
stress that all subsequent simulations assume isothermal loading at a fixed process-
ing temperature, which is accounted for in the above crystal plasticity model through
the two temperature-dependent parameters Q and G0, governing the hardening and
initial slip resistance, as proposed by Mellbin et al. [110] (see Table 3.1).

3.3 Taylor model for polycrystalline Cu
3.3.1 Theory
We consider a set of Ng ∈ N grains, each endowed with a set of inelastic variables Zi

and a volume fraction ηi ≡ Vi/V0 based on the ith grain’s volumeVi and a total volume
V0. For convenience, we denote the set of all inelastic variables and volume fractions
as Q =

{
Zi, . . . ,ZNg ; ηi, . . . , ηNg

}
and the set of all crystallographic orientations as

R = {Ri, . . . ,RNg}. The Taylor approximation dictates that every grain i experiences
the same total deformation gradient, i.e., Fi = F for i = 1, . . . ,Ng. Consequently,
the deformation is compatible across grains but violates mechanical equilibrium in
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Table 3.1: Parameters defining the Cu material model introduced in Section 3.2 as
well as the two recrystallization constants from Sections 3.3 and 3.4.

Parameter Sym. Unit 725 K 775 K 875 K Source
Shear modulus µ GPa 35 34 32 [46]
Bulk modulus κ GPa 129 128 126 [97]
Init. shear res. conjugate G0 MPa 8.0 6.5 3.7 [110]
Plastic modulus Q MPa 40.2 37.0 32.0 [110]
Latent hard. multiplicator q - 1.4 [58]
Hard. exponent m - 26 [58]
Saturation factor B - 8 [58]
Init. shear res. g0 - 0.007 [58]
Reference slip rate Ûγ0 s−1 0.001 [58]
Crit. energy density thres. W in,cr MPa 0.669 0.424 0.159 [110]
Nucleation exponent d - 4.4 [197]

general; the Taylor approximation therefore leads to the well-known upper bound
of the average stress and stiffness. The total strain energy density of a polycrystal
follows as the weighted average over all grains:

E = E(F,Q,R) =
∑

i∈{1,...,Ng}

ηiWi(F,Zi) − ν
©­«

∑
i∈{1,...,Ng}

ηi − 1ª®¬ , (3.11)

where the Lagrange multiplier ν constrains the sum of all volume fractions to unity.
Here, we write Wi(·) to emphasize the dependence of the grain-wise strain-energy
density on the respective grain orientation Ri through the resolved shear stresses.
Consequently, the effective stress tensor follows as the weighted average

P =
∂E
∂F
=

∑
i∈{1,...,Ng}

ηi
∂Wi(F,Zi)

∂F
. (3.12)

In an extension of the classical Taylor model, we model the evolution of the volume
fraction using a gradient flow assumption:

Ûηi = −
1

κGBM

∂E(F,Q,R)
∂ηi

= −
Wi(F,Zi) − ν

κGBM
, (3.13)

where κGBM denotes the GB mobility during migration. This has the immediate
consequence, that for the evolution of microstructure posterior to loading – also
referred to as post-dynamic recrystallization [144] – in the hypothetical scenario of
t → ∞, almost surely (in the mathematical sense) only one grain survives. This is
unsurprising as (3.11) does not carry information about the contribution of surface
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energy. Keeping in mind that, in general, DRX is usually followed by a decrease
in process temperature, we accept this model’s constraint to realistic post-loading
process environments and note that an extension of the formulation in (3.11) by an
additional surface-penalizing term is straightforward.

Using the property
∑

i∈{1,...,Ng}
ηi = 1 and thus

∑
i∈{1,...,Ng}

Ûηi = 0, we infer from
(3.11) and (3.13) that

0 =
∑

i∈{1,...,Ng}

Wi(F,Zi) − Ngν ⇔ ν =
1

Ng

∑
i∈{1,...,Ng}

Wi(F,Zi). (3.14)

Substituting the above result for ν into (3.13) yields the kinetic evolution of the grain
volume fractions as

Ûηi = −
1

κGBM

©­«Wi(F,Zi) −
1

Ng

∑
j∈{1,...,Ng}

W j(F,Z j)
ª®¬ . (3.15)

After each load increment, (3.15) is used in a backward-Euler fashion to explicitly
update all grain volume fractions based on their energetics. We eliminate each grain
i whose ηi ≤ 0 during a given load step and prevent it from reappearing; we ensure
that the total volume fraction is reset to 1 in cases of ηi < 0 (any negative volume is
redistributed among the remaining grains).

The above framework is suitable for the growth and shrinkage of the Ng existing
grains, but it lacks capabilities for the nucleation of new grains. Nucleation of new
grains is more complex. We respect that the time and length scales of the underlying
atomic-level processes are well below the polycrystalline mesoscale of interest here
[197]. We therefore model nucleation as the spontaneous creation of a small nucleus
of (arbitrarily chosen) initial size η0 = 1/643 within a single load step1. With the
dependence of nucleation on thermal fluctuations in mind, we propose a stochastic
nucleation criterion2 which assumes the probability of nucleation to depend on the

1The choice η0 = 1/643 is motivated by the attempt to allow for a comparison with the FMCPmodel.
As introduced in Section 3.4 later, the RVE is chosen to have a resolution of 643, thus having a
voxel size and therefore a smallest volume fraction to be captured of 1/643.
2We note that, with similar intentions Zhao et al. [197] considered a sub-grid with significantly
smaller grid size compared to their continuum-level polycrystal, and every sub-grid point could in-
dependently undergo a phase transformation; nucleation at the larger-scale continuum was assumed
to occur only if a minimum number of sub-grid points transformed. This is quite analogous to our
nucleation model, assuming that the transformation of a local sub-grid point is represented by an
inhomogeneous Poisson process and that the dislocation density as the critical state variable for
nucleation can be replaced by the inelastic energy density, as done here.
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stored inelastic energy density as

wth(W in
i ) = η

c
i ∆t κNCL

1 − exp
−

(
W in

i

CW in,cr

)d
 , (3.16)

where the last term corresponds to a cumulative Weibull distribution. κNCL serves
as a nucleation rate, constant C allows shifting peak nucleation activities away from
W in,cr, and d is a nucleation exponent. For simplicity, we set c = 1, assuming
that the nucleation rate varies linearly with the parent grain’s volume available for
nucleation. A viable alternative, whichwe do not further investigate here, is c = 2/3,
which is results from assuming a linear dependence of the nucleation rate on the
available grain boundary area (although c = 2/3 leads to better model predictions
of the final average grain size, the predicted average compressive stress worsens
significantly, which motivated the choice c = 1).

For every grain i ∈ {1, . . . ,Ng} with W in
i > W in,cr at a given time step, we initiate

nucleation if
wi < wth(W in

i ) with wi ∼ U([0,1]), (3.17)

and reject otherwise (i.e., wi is obtained from a normal distribution). Concerning
the individual state switch rules, we follow the same strategy as in Chapter 2. The
only adaption consists in the update of the internal variables specific to this finite
strain crystal plasticity model, in that we set gα equal to g0 for all α = 1, . . . ,ns upon
nucleation.

In favor of a reduced number of model parameters, we assume a linear relation
between the critical dislocation density ρcr and the critical inelastic energy density
[110] according to

W in,cr =
µb2

2
ρcr, (3.18)

where b denotes Burgers’ vector (for Cu b = 0.259 nm). Hallberg et al. [64] tracked
the evolution of the dislocation density in Cu for the temperature levels of interest
and defined ρcr as the necessary minimum dislocation density for nucleation, which
is adopted here. This leaves us with only three material parameters to be obtained
from fitting to experimental data, viz. κGBM, κNCL and C.

3.3.2 Model calibration and convergence study without recrystallization
Before calibrating the DRX model, we verify that the crystal plasticity model (in
the absence of pronounced effects of DRX) matches experimental findings of com-
pression tests performed on polycrystalline Cu samples. Specifically, we consult the
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(a) T = 725 K (b) T = 775 K

(c) T = 875 K

Figure 3.2: Homogenized stress-strain behavior for a uniaxial compression test
up to 100% true compressive strain in 100,000 load steps for grain counts of
10 (blue), 50 (orange), 100 (yellow), 200 (red), and 1000 (green) and temperatures
of 725 K (left), 775 K (right), and 875 K (bottom). Each data point is based on 100
repetitions with each run characterized by a different random initial texture. The
one-sigma stress band correspond to the interval around themean (emphasized using
solid lines) with a total width of two standard deviations. Results are compared to
experimental data (dashed) from Blaz et al. [18]. (We note that results are plotted
up to slightly different maximum strain levels for better differentiability.)

experimental data from Blaz et al. [18] and assume that recrystallization only kicks
in at significant stress levels (so that the early elastic-plastic stress-strain response is
characteristic of the material behavior without recrystallization). As shown in Fig-
ure 3.2 the model reproduces the low-strain regime of the stress-strain data at each
temperature level reasonably well. (Although we do not fully capture the elastic and
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incipient plastic response, we observe a reasonable fit for the plastic slip-dominated
regime and consider the model appropriate for DRX simulations where plasticity
and the associated stored inelastic energy are the dominant driving forces.

The stiff Taylor approximation is understood to overpredict the stress evolution (we
set Ûηi = 0 and only perform the Taylor averaging without DRX). In addition, the
predicted response is expected to vary with the number of grains in the ensemble,
until convergence is achieved as Ng → ∞. We show that for sufficiently large
Ng a random texture3 in the Taylor model does show a converging stress-strain
response (see Figure 3.2). To achieve the initial texture, we adopt the approach
used in Mellbin et al. [110] and randomly generate the three Bunge-Euler angles
as φ1 = 2πr1, Φ = arccos(1 − 2r2), φ2 = 2πr3 with ri ∼ U([0,1]), i ∈ 1,2,3.
We analyze three different temperature levels (725K, 775K and 875K) and five
different grain counts (Ng ∈ {10, 50, 100, 200, 1000}). For every simulation, we
run 100 iterations to compute ensemble averages, each run endowed with a different
randomized orientation distribution across the equi-sized grains.

Figure 3.2 depicts the homogenized stress evolution visualized as a band representing
E[−σ33(t)] ±

√
Var[σ33(t)]. The standard deviation decreases monotonically, while

the mean increases due to the Taylor-type averaging (unlike in spatially resolved
RVE-based calculations as shown by Vidyasagar et al. [177]; increasing the number
of grains here does not offer avenues for stress relaxation by cooperative inter-grain
mechanisms and therefore leads to a stiffer response). We note that an initial grain
count of 48 (as used, e.g., in Mellbin et al. [110]) still experiences a significant
deviation from the experimental stress evolution in terms of its mean. Based on
Figure 3.2 and as a compromise between a sufficiently general representation and
computational efficiency, we set the initial number of grains for all remaining tests
to 200, unless otherwise indicated. To assess the grain refinement in subsequent
chapters where simulations include the notion of recrystallization, we further set
the initial volume fraction of every grain to ηi(t = 0) = 0.05. Although the
Taylor model does come with a characteristic length scale per se, we may define
a total initial volume V0 of the entire grain ensemble in order to match the initial
grain size in experiments based on the number of grains in the ensemble. Here,
we set V0 = 4.8 × 105 µm3, which yields an average initial grain size of 78 µm.
Consequently, we may also interpret changes in grain volume fractions as changes

3Absent of any information regarding texture, we consider the assumption of an initially fully
randomized texture to be valid.
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in grain size in the following. (We note that, in general, both the migration mobility
κGBM and nucleation mobility κNCL may depend on V0.)

3.3.3 Simulated material response with recrystallization

Figure 3.3: One-sigma band of the true compressive stress vs. true compressive
strain as obtained from our Taylor model with DRX (averaged over 200 random
initial textures), compared to experimental data from Blaz et al. [18] (dashed) and
numerical results fromMellbin et al. [110] (dash-dotted) for T ∈ {725,775,875} K.

Figure 3.3 illustrates the stress-strain response as obtained from our Taylor model
with DRX, compared to experimental data from Blaz et al. [18] as well as to
simulated data fromMellbin et al. [110] (this lattermodel is based on the same crystal
plasticity description for Cu as employed here but uses a vertex-based approach to
DRX instead of our Taylor setup). We used a genetic algorithm to fit the three DRX
parameters κGBM, κNCL, andC (at each temperature level), based on the experimental
stress-strain data. For temperatures of 725 K and 775 K, we observe an excellent
match between the experimental and simulated stress-strain data, which capture both
the single-peak response and the final steady stress state well. Deviations4 for these
two temperatures lie at 4.0% and 3.9%, respectively. The steady-state behavior is
also closely reproduced in the case of 875 K – however, as we fail to capture the
peak stress as well as the initial multi-peak behavior, the deviation of 5.2% is higher.
Apparently, this is one of the limitations of the relatively simple Taylor model. At
the two lower temperatures, we will show that not only does the stress-strain curve

4All deviations in this contribution correspond to the discrete l2-norm across the full strain range,
unless otherwise indicated.
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Figure 3.4: Evolution of the non-recrystallized volume fraction for all initial grains
(solid line) and for all grains nucleated within the outlined ranges of strains (dashed
lines) for temperatures of 725, 775 and 875 K. The initial average grain diameter
is at 78 µm in the experiments. The experimental and numerical final average
diameter at 875 K lie at 34 µm and 30 µm, respectively. Blue crosses for 775 K
denote the experimentally estimated fraction of material that has not yet undergone
recrystallization.

fit well to the experimental data, but the associated evolving microstructures also
match experimental observations.

A convenient metric to assess the microstructure evolution is the total volume
fraction of non-recrystallized material in the sample (or in the Taylor ensemble).
Figure 3.4 visualizes the evolution of the non-recrystallized volume fractions, show-
ing both simulation outcomes and experimental data5. Shown from our simulations

5We note that the methodology behind the experimental estimation of the non-recrystallized volume
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is the predicted total non-recrystallized volume fraction at two temperature levels as
well as the recrystallized volume fractions during each recrystallization wave, the
latter being defined as the total volume of all grains nucleated within certain strain
intervals. Already in the case of 725 K – where the stress-strain evolution showed
a single-peak behavior – recrystallized grains are subjected to further recrystalliza-
tion. This is made possible by the natural implementation of recrystallization in our
Taylor model: as we allow recrystallized grains to undergo plastic deformation, they
can again attain a state of sufficiently high inelastic energy to promote further grain
nucleation or to be consumed by other, lower-energy grains. In the case of 775 K,
we observe a stabilizing level of the total volume fraction of each recrystallization
wave at around 80% of the total volume. The convergence to this steady-state level
is closely related to reaching the steady-state stress, as seen in Figure 3.3.

All experiments started with an average initial grain size of 78 µm, while the final
measured grain sizes are included in Figure 3.4, as obtained from both experiments
and our Taylor model (of course, the Taylor ansatz has no notion of grain size;
however, it captures the relative change in grain volume fractions, so that assuming
an initial average grain size of 78 µm lets us predict the final average grain size).
Based on the set of active grains A – which we define as the set of all initial grains
with volume fraction greater than 0 and all recrystallized grains with grain ID greater
than the oldest recrystallized grain6 with volume fraction larger than 0 – we thus
compute the average grain diameter via ηavg(t) =

∑
i∈A ηi/|A|. Considering that

our genetic parameter fitting only involved the stress-strain data, the predicted final
average grain sizes for all three temperature levels are relatively close to the ones
reported by experiments.

The Taylor simulations also admit the observation of texture evolution. Figure 3.5
illustrates the evolving [111]-poles of all grains. To incorporate information on the
relative volume and age of every grain, we linearly scale the size of every grain

fraction is not sufficiently clear and may include errors due to postprocessing and inexact estimation
of the areas belonging to the newly nucleated grains. A perfect fit is therefore not expected,
particularly since a further source of errors may lie in the simplified crystal plasticity model for
Cu and its shortcomings in replicating the purely elastic part of the stress-strain response. Since
nucleated grains are initially pristine and therefore at a zero stress state, the steady-state stress is
influenced by the steady-state nucleation rate, which also explains that both are reached around the
same strain level.
6We note that this includes some grains that have already reached zero volume fraction. The reason
we still include them in the set of active grains is that, in general, the speed at which grains shrink
should decrease significantly before they are fully consumed by surrounding grains as the final
spherical shape promotes stability. Since we do not aim to make ad-hoc changes to the growth
model, we found this assumption to be a reasonable compromise.
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Figure 3.5: Pole figures of the [111]-pole forT ∈ {725, 775, 875} Kwith point sizes
scaled by the respective grain volume fractions at five different true compressive
strain levels εtrue. Colors indicate initial grains (red) and grains nucleated up to a
true compressive strain of 25% (bright-blue), 50% (purple), 75% (dark-blue), and
100% (bright-green).

in the pole figure with the respective grain’s volume fraction. We also marked
poles belonging to grains of the same recrystallization wave by the same color
(c.f. Figure 3.4). We observe the most pronounced texture formation at 725 K, while
a more diffuse texture develops at 775 K. This is attributed to the interaction of
shorter recrystallization wave cycles and the randomization of grain orientations.
We note that the respective texture for both 725 K and 775 K in Mellbin et al.
[110] is slightly more evident, which is unsurprising as their simulations defined
the initial misorientation of a recrystallized nucleus to 15◦ compared to its parent
grain at the time of nucleation, which causes a correlation between the texture of
already existing and recrystallized grains. We further point towards Lallit [92]
and Hallberg et al. [64], where 3D uniaxial compression tests were simulated with
similar emerging textures when considering the 〈111〉 pole family. Bronkhorst et al.
[22] demonstrated such textures in experimental compression tests.
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3.4 Field Monte-Carlo Potts Models
The Taylor model for DRX introduced above has reproduced the salient features
of DRX in Cu and provided a good account of the stress-strain response and the
microstructure evolution during severe compression testing, yet the accuracy –
especially at high temperature levels – could be improved. This is not surprising as
the Taylor assumption of uniform strains across grains and the lack of any spatial
correlation between grains prevents localized phenomena and many of the DRX-
related mechanisms originating at GBs or triple junctions. Therefore, we here
introduce a spatially-resolved model for DRX based on a polycrystalline mesoscale
RVE.

3.4.1 FMCP model for DRX
The FMCP model for DRX introduced here is an extension of the model presented
in Chapter 2 for DRX in Mg, which is why we briefly review that model to the
extent necessary for our purposes here. We define a cubic RVE Ω = [0, L)3 whose
homogenized mechanical response is obtained from imposing appropriate boundary
conditions. We discretize Ω into a regular grid with N grid points along each side
length and spatial increments ∆x = L/N , resulting in a total of N3 grid points. In
favor of a sufficiently high resolution we choose n = 64 in subsequent simulations,
which – for an initial grain count of 200 – yields an average of ca. 1,311 nodes per
grain.

In order to model DRX, we randomly select from within Ω at every time step a total
of nMC,GBM � n and nMC,NCL � n grid points as possible sites for GB migration or
grain nucleation, respectively. Since the number of MC points per total GB area is
to be conserved, we impose a scaling of the type

nMC,i(t) = ρMC,i × number of nodes on boundary at t, i ∈ {GBM,NCL}, (3.19)

where ρMC,GBM and ρMC,NCL denote the number of MC points for migration and
nucleation per total GB area, respectively.7 Following the selection of MC nodes,
we apply the state switch rules defined in Chapter 2: we compute the hypothetical

7The conservation of MC points per GB area constitutes a new feature compared to the model we
presented in Chapter 2. It becomes essential in capturing the migration behavior during strong grain
refinement, which is more pronounced in this contribution compared to theMg simulations reported
there. For nucleation, the differences are marginal, as nodes within the grain were significantly less
likely to nucleate compared to those at the GBs. By reducing the number of sampling points on the
GBs only, we thus reduce the total number of MC points while conserving the number of sampling
points per GB area. This change allows us to decrease the computational time without altering the
physics of the simulation.
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change in total elastic and inelastic energy for each grid point, assuming that it either
nucleated a new, pristine grain with a random orientation or – for MC points on
existing GBs – if it underwent GBmigration (thus adopting the same orientation and
internal state as the grid points on the respective other side of the GB). Responsible
for a state switch (i.e., either nucleation or GB migration) is a reduction in energy
∆E = Iafter − Ibefore where I denotes the total RVE energy before or after the state
switch (and its discrete numerical approximation computed over the set of all grid
points, Ω∆):

I =

∫
Ω

W dV +
∫
Γ

γS dS ≈ ∆V
∑

Xk∈Ω∆

W(Xk) + ∆S
nΓ∑
l=1

γS . (3.20)

For simplicity, we consider a constant, isotropic GB energy γS (nΓ denotes the
number of boundary segments), andwe assume that theGBmigration speed does not
depend on misorientation. Since the accumulation of defects causes the instability
inherent to grain nucleation and we do not want pure elastic deformation to cause
nucleation, we replace W by W in in the above total energy for nucleation only (we
note that the elastic strain energy density was found to be at most around 2% of the
inelastic strain energy density in our simulations, so that its effect is marginal).

Having identified potential grid points for state switches (grain nucleation or GB
migration) and having computed the hypothetical reduction in energy ∆Ek for each
such site Xk ∈ Ω∆ for both cases, we proceed with a statistical approach: we
generate a random number wk ∼ U([0,1]) from a uniform distribution, based on
which we accept the state switch if wk ≤ w(∆Ek) and reject otherwise, where the
threshold w(∆Ek) decreases monotonously with energy; i.e., a state switch becomes
more likely, the higher the resulting reduction in energy. For grain nucleation, we
employ the same criterion used for the Taylor model in Section 3.3, thus defining
the threshold as

wNCL(∆E) =


∆tκNCL

[
1 − exp

{
−

(
∆E/∆X3

CW in,cr

)d
}]
, if −

∆E
∆X3 > W in,cr

0, otherwise.

(3.21)

For GB migration we take a different approach for suitable for the continuum length
scales at play. We assume a linear relation between migration speed and driving
force in the form of the stored energy difference [175], thus defining a threshold

wGBM(∆E) = −
∆t
κGBM

∆E, (3.22)
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with a GB mobility κGBM. We note that this linear dependence is standard, e.g.,
in phase-field [155] and vertex [110] models. It is also closely related to the
gradient-flow approach in Section 3.4.2, which has the advantage of providing good
comparability between the two models. The factors ∆t ensures convergence under
temporal refinement. This linear relation is an alternative to the kinetics of Glauber
[53], which arewell established inMonte-Carlo Pottsmodels (see, e.g., Hallberg [60]
and the threshold function we used in Chapter 2) based on the inherent exponential
form of atomic jump probabilities.

The thresholds defined by (3.21) and (3.22) are used to accept or reject a state
switch at every chosen MC grid point. There are now two strategies to employ
this FMCP model for DRX, which differ in the way the mechanical boundary value
problem on the RVE-level is solved – as described in the following: Section 3.4.2
applies the statisticalmodel forDRXoutlined abovewhile violating localmechanical
equilibrium and deforming the RVE in an affine manner, following the Taylor
assumption of equal strains (FMCP×Taylor). By contrast, Section 3.4.3 applies the
above DRX model to a spatially resolved RVE whose mechanical equilibrium is
enforced through FFT-based periodic homogenization scheme (FMCP×FFT). The
temperature-dependent parameters used for both models are listed in Table 3.2.

3.4.2 FMCP model under the Taylor assumption (FMCP×Taylor)
Motivated by the reduced computational expenses, we first employ the FMCPmodel
for DRX in conjunction with the Taylor assumption of affine RVE deformation (ex-
pected to yield Voigt’s upper bound on the mechanical RVE response). Besides
demonstrating its (in)accuracy, we use this simplified framework to assess the im-
portance of the surface energy contributions in (3.20) especially towards grain
nucleation, which is frequently neglected [55, 72, 110]. In a direct comparison, Fig-
ure 3.6 demonstrates that the exclusion of surface contributions leads to an overly
fast adoption of the steady state compared to experimental results. Including sur-
face contributions naturally elevates GB junctions to preferential nucleation sites
and thus recovers the necklace formation characteristic for discontinuous DRX. This
behavior, in turn, leads to amore gradual convergence towards the steady stress state,
as the new grains must consume the initial grains in a circular, necklace-forming
fashion emanating from the GBs. This leads to the improved accuracy observed
in Figure 3.6. Deviations from the experimental data (in the discrete l2-sense) are
around 3.6% and 3.2% for 725 K and 775 K, respectively. Necklace-like structures
can also appear in approaches excluding surface contributions for nucleation. Most
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often, however, this is the result of ad-hoc approaches including the intentional
placement of nuclei at high-energy sites (see, e.g., Popova et al. [127]).

The overestimation of nucleation activity can also be observed in Figure 3.7, which
compares the recrystallized volume fractions. At 725 K, both simulations with
and without surface contributions experience a decrease in the total volume of a
recrystallization wave as soon as the next recrystallization wave initiates. Since a
further increase of the total volume would only be achievable through migration, the
above observation together with the discontinuity in the slope implies a substantial
contribution of nucleation as compared to migration. At small strains, this effect
is even more pronounced in the case without surface contribution, which – again –
stems from the overestimation of nucleation due to the non-preferential treatment of
grain boundaries or triple junctions. At larger strains, this difference is mitigated as
both cases experience an almost fully recrystallized microstructure, and effects due
to repeated necklace formations weaken. The 775 K case shows good agreement
with the estimated volume fraction of non-recrystallized material from Blaz et al.
[18]. Further, we note the precise (delayed) prediction of the onset of significant
DRX with surface contributions as opposed to the case without.

Figure 3.7 also reveals differences from the predicted recrystallized volume fractions
in the Taylor model (c.f. Figure 3.4). At 725 K, the total volume fraction of the indi-
vidual recrystallization waves experiences a smoother progression, thus implying a

Figure 3.6: Stress evolution captured by the FMCP×Taylor model including (solid)
and excluding (dotted) surface contributions within the energetic grain nucleation
criterion. We compare the results to experimental data fromBlaz et al. [18] (dashed)
and numerical results from Mellbin et al. [110] (dash-dotted).
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Figure 3.7: Volume fraction evolution of recrystallization waves defined in 20
% true strain intervals for T ∈ {725K,775K} including and excluding surface
contributions to the energetic nucleation criterion in the FMCP×Taylor model.
Crosses correspond to the estimated data from the experimental microstructure
evolution at 775 K reported by Blaz et al. [18]. Also reported in the diagrams are
predicted average grain diameters based on average grain volume fractions and the
total volume V0 we have introduced before.

more significant role of migration. The reason lies in the introduction of the notion
of space: while the FMCPmodel experiences circular necklace layers of new grains,
leading to an impediment of migration of earlier recrystallization waves, the Taylor
model sees interactions between all of its grains exclusively based on their respec-
tive energy states, as schematically shown in Figure 3.8. Although the values for
parameterC in the Taylor model served as a good initial guess for the FMCP×Taylor
model, the absence of interaction between grains partially explains the difference
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in the optimal C found for these two models (c.f. Table 3.2). At 775 K, however,
differences in the predicted recrystallized volumes are weaker, as the importance of
the necklace effect decreases and the role of migration increases. Owing to the sim-
ilarities in the energetic description of both Taylor and FMCP×Taylor approaches
concerning migration (c.f. (3.15) and (3.22)) and nucleation (c.f. (3.16) and (3.21)),
the efficient reduced-order Taylor model predicts a comparable DRX evolution as
the FMCP×Taylor model at this temperature level.

Figure 3.8: Illustration of the difference in migration behavior due to necklace
formation as obtained from the FMCP models and the Taylor model. Once a
nucleated grain (green) is surrounded by newly nucleated grains (red), that grain
experiences an impediment to GB migration despite a possibly lower energy state
compared to the original grains (white). On the contrary, in the Taylor model
(c.f. Section 3.2) a nucleated grain will grow as long as its energy density is lower
than the unweighted average energy density (see (3.15)) without any constraint from
neighboring grains.

Table 3.2: Further parameters used for the Taylor, the FMCP models (both
FMCP×Taylor and FMCP×FFT).

Taylor FMCP
Parameter Sym. Unit 725 K 775 K 875 K 725 K 775 K
GBM rate κGBM GPa·s 680 204 23.5 5.0 0.42
NCL rate κNCL s−1 61.8 57.4 54.4 110 50
NCL parameter C - 13.4 10.9 8.00 12 8.5
MCP density NCL ρMC,NCL 10−4

N.A. 1.6 1.6
MCP density GBM ρMC,GBM 10−3 1.2 1.2
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3.4.3 FMCP under full field simulation (FMCP×FFT)
The above assumption of affine deformations across the polycrystalline RVE does,
in general, not satisfy equilibrium (see, e.g., Khadyko et al. [83] or Shanthraj et al.
[148]). Therefore, to capture heterogeneity in the deformation, including shear bands
and stress localizations at GBs, we relax the assumption of affine deformations and
instead solve for mechanical equilibrium inside the RVE while imposing periodic
boundary conditions. The latter is done through a finite-strain FFT-based solver,
thus resulting in our FMCP×FFT model. The FFT scheme solves the mechanical
equations of quasistatic equilibrium in a computationally efficient manner (see, e.g.,
Moulinec and Suquet [116], Lebensohn and Needleman [95], and Vidyasagar et al.
[177]), exploiting the same regular grid required for our FMCP model of DRX.
Following the theory outlined in Chapter 2, we employ a discrete finite-difference
approximation of the Fourier transform F of a function f (x) with wave vectors k
and grid spacing ∆x according to

F

(
∂ f
∂xi

)
= −2πikiF ( f ) ≈ −

i sin(2πki∆x)
∆x

F ( f ), (3.23)

with the purpose of mitigating ringing artifacts associated with the Gibbs phe-
nomenon (a problem that is signifcant at the strain levels considered in this study.
The use of this improved FFT-based solver allows reaching high strain levels. To
illustrate the severe deformation and the various deformation mechanisms at play,
Figure 3.9 visualizes the deformed RVE at different strain levels up to 100% true
compressive strain; the shown simulations are for ten grains only (showing severely
heterogeneous deformation stemming from the grain orientations), for 200 grains
(showing a more homogeneous average deformation across the RVE), and for 200
grains with the FMCP-DRX model (showing an even more homogeneous defor-
mation due to the large strain-accommodating effects of DRX). Case c) with DRX
also instructively illustrates the nucleation of grains in regions of high stress con-
centrations near GBs and the typical necklace formation (see, e.g., εtrue = −0.4
in Figure 3.9c). Based on these results, we deem an initial number of 200 grains
sufficient for subsequent simulations.

Figures 3.10a and 3.10b reflect the average stress evolution as obtained from 20
independent simulations using the FMCP×FFT model without DRX. As expected,
the Taylor model provides an upper bound, while the FFT-based solver converges
from below with increasing numbers of grains. The apparent differences between
the mean stresses computed from both Taylor and FMCP×Taylor models for 200
grains are sufficiently small to retain the same material parameters for the Cu
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constitutive model, while using the three parameters for the FMCP model of DRX
from Section 3.4.2. Figure 3.10c demonstrates the evolution of the homogenized
stress over time with DRX. We overall observe convincing agreement, although the
total deviations increased to 4.4% and 4.0% as compared to 3.6% and 3.2% for
FMCP×Taylor 8.

8We note that a renewed fitting of the plasticity or DRX model parameters could lead to a better
match. However, since the precision of the measurements reported in Blaz et al. [18] is unclear
and because the primary focus of this paper is not on parameter fitting but on describing DRX with
varying levels of model fidelity, we choose to retain the parameters obtained from calibration in
Section 3.4.2

Figure 3.9: Evolution of the σ33 distribution over the deformed RVE across five
true strain levels for a) 10 grains, b) 200 grains as well as c) 200 grains including
recrystallization. We amplifiy local deviations from the affine deformation by a
factor of 100 for visualization purposes.
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(a) Comparison of FFT andTaylormodels (ex-
cluding DRX) to experiments at T = 725 K.

(b)Comparison of FFT andTaylormodels (ex-
cluding DRX) to experiments at T = 775 K.

(c) Results from the FMCP×Taylor model in-
cluding DRX vs. experiments.

Figure 3.10: Mean stress evolution from 20 RVE realizations of the FMCP×FFT
model (solid) compared to experimental data from Blaz et al. [18] (dashed). Con-
ducted with the original values for Q and G0 from Table 3.1 both without DRX at
a) 725 K and b) 775 K (in order to stress the over-approximation of stresses when
using the Taylor assumption) and c) with DRX (to elucidate the differences to the
results obtained in Figure 3.6).

Figure 3.11 summarizes the evolving 〈111〉 pole family (obtained usingMTEX [66]).
Since grains display heterogeneous orientation distributions in the FMCP×FFT
model, we do not show a discrete pole figure (as for the Taylor model in Figure 3.5)
but instead use orientation distribution functions [66]. The graphics still expose a



86

strong texture at both temperature levels (at lower temperature evenmore pronounced
than in the Taylor model). While all our models endow recrystallized nuclei with
randomorientations, it is the newgrains in the FMCP×FFTmodel that are influenced
by the stress state of their neighbors. This interaction in turn leads to a correlation
between the orientation of the already recrystallized grains and the new grains, thus
explaining the more pronounced texture in the FMCP×FFT model.

Figure 3.11: Pole figure of the 〈111〉-pole family for 725 K (top) and 775 K
(bottom), illustrated using a de la Vallée Poussin orientation distribution function).
We display the pole data from FMCP×FFT simulations at five different levels of
true compressive strain, viz. εtrue ∈ {−0.2,−0.4,−0.6,−0.8,−1.0}, and complement
them by the corresponding pole data for the Taylor model at εtrue = −1.0 for
comparison. The shown intensities (with blue and yellow values corresponding,
respectively, to the minimum and maximum intensities) were obtained by weighting
the orientation associated with (i) each grid point by 1/n in the FMCP model and
(ii) each grain by its volume fraction in the Taylor model.

We close by pointing out, although all three models presented here for DRX in
Cu focus on modeling discontinuous DRX through the nucleation and growth of
grains (which is the prevalent means of DRX for metals with low stacking fault
energy), the spatially resolved FMCP×FFT model also has capabilities to capture
continuous DRX through the formation of subgrains. Figure 3.12 illustrates such
an example, where a large, initially uniform grain through the course of severe
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Figure 3.12: Tracking the misorientation of the [111] poles with the compression
axis within a large grain inside the RVE (shown as two bodies due to the periodic
boundary conditions) reveals the formation of two subgrains within the grain. The
colors of the transparent grains do not refer to the misorientation – they solely
represent different grains.

compression breaks up into regions of approximately constant albeit distinct local
orientations. While the undeformed grain exhibits a uniform misorientation of the
[111] pole with the compression axis, the orientation takes two different paths in the
two subgrains whose final misorientation, at 100% true compressive strain, differs
by approximately 23◦. The latter may be interpreted as a high-angle GB. Such
subgrain formation is indeed feasible within the FMCP×FFP model given sufficient
spatial resolution to capture the underlying processes within grains.

3.5 Discussion
Both the Taylor and FMCP models in this contribution were calibrated based on
stress-strain curves, as these commonly constitute the sole available and reliable
source of continuous data for recrystallization processes (rather than pre- and post-
treatment data only). With deviations of 2 to 5% relative to the experimental stress
data recorded at 725 K and 775 K, all three models were able to find a good agree-
ment despite the low number of model parameters to fit, especially considering the
approximation of an inherently atomistic phenomenon on the continuum scale. Be-
ing not a part of the parameter identification process, the available experimental data
on the average grain size after compression was used to validate the microstructure
predicted by the FMCP model. The models further accurately capture the conver-
gence towards a steady stress state and the stress level at steady state, as well as the
final average grain size (except for the Taylor model at 725 K). Specific observations
like the formation of necklace structures prior to full recrystallization – as captured
by the FMCP schemes – are further observations made both experimentally (see,
e.g., Ponge and Gottstein [126], Sakai et al. [144]) and numerically (see, e.g., Hall-
berg [60], Mellbin et al. [110]). Experimental data on the estimated volume fraction
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of non-recrystallized material at 775 K are also well captured by the models, apart
from an offset of the initiation of visible recrystallization. At 775 K, the volume
fraction evolutions obtained from both the Taylor and FMCP×Taylor models show
compelling agreement. This increased similarity of the predicted volume fractions
is understood since the role of GB migration at 775 K is more pronounced than
at 725 K. The more dominant role of GB migration is related to lower hardening
moduli as well as lower initial slip resistance than at 725 K, which, in turn, acceler-
ates the accumulation of inelastic strain energy density at 775 K. Rising differences
in the inelastic energy between two grains relative to the effect of surface tension
further alleviate the disparities of the Taylor model and the spatially resolved FMCP
models.

As is apparent from Table 3.3, the Taylor model is significantly less expensive com-
putationally. A reduction of the wall time by a factor of 160 and 280 compared to the
two FMCP models (with and without Taylor assumption for the RVE deformation,
respectively) adds to the conclusion that the reduced-order Taylor model can be a
viable alternative for expensive high-fidelity models when interested in the evolving
microstructure and the homogenized stress-strain behavior. However, Sections 3.3
and 3.4 also showed that the Taylor model does deviate from experimental findings,
especially if the spatial distribution on the RVE-level matters; e.g., at 725 K, where
necklace formation of nuclei at GBs dominates DRX, the Taylor model fails to
replicate such radially propagating recrystallization fronts. This shortcoming stems
from the local grain interactions (see Figure 3.8 and Section 3.4.2) as well as from
the stabilizing effect of surface tension, both of which are not captured by the Taylor
model.

Although the resulting texture is generally well replicated by both Taylor and FMCP
models, the fully resolved model predicts a slightly more pronounced texture at
lower temperature while, again, at higher temperature these differences tend to
vanish. The observation that both models qualitatively capture the texture formation
is remarkable as newly nucleated grains are endowed with a random orientation and
a shorter life cycle compared to the initial grains but still manage to reorient to yield
a strong texture.

We also emphasize our strategy of identifyingmodel parameters in a computationally
efficient manner. More than a feasible alternative to higher fidelity models, the
Taylor model provided an excellent, informed initial guess for fitting the material
parameters of the FMCP×Taylor model (as compared to, e.g., Mellbin et al. [110]
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Taylor FMCP×Taylor FMCP×FFT

simulation time 6 min 16 h 28 h

Table 3.3: Difference in computational expenses for one simulation at 725 K, using
24 physical cores and description of the flow for the reduced-order based parameter
fitting.

who used a considerably more expensive vertex-model for fitting their temperature-
dependent parameters G0 and Q). Owing to the same functional form of the
nucleation criterion, the grain nucleation constant C found for the Taylor model
further helped us find the analogous parameter for the FMCP model. This left κGBM
and κNCL as the only fitting parameters of the FMCP model for DRX (used with
both the FMCP×Taylor and FMCP×FFT models).

Despite marginal differences in the homogenized stress-strain response between
the FMCP×Taylor and FMCP×FFT models, the former fails at capturing various
mesoscale deformationmechanisms such as the aforementioned necklace formation.
Importantly, we demonstrated that the FMCP×FFTmodel under severe plastic defor-
mation displays the formation of subgrains and high-angle GBs, which is impossible
for both Taylor and FMCP×Taylor models. Although we assumed discontinuous
DRX to be the dominant mechanism, our model also proved itself as a promising
candidate for future studies on metals with moderate to high stacking fault ener-
gies, where the simultaneous occurrence of continuous and discontinuous DRX is
observed. Blaz et al. [18] analyzed the importance of heterogeneous effects such
as subgrain growth and deformation bands, resulting in mechanical instabilities and
their associated flow softening effects, further acting as additional nucleation sites
– a phenomenon that can also occur during the necklace-like consumption of a
grain as described by Ponge and Gottstein [126]. This behavior, however, is more
pronounced for large initial grain sizes above 100 µm [18], which is almost 30%
above the average grain size analyzed here. In principle, continuous DRX can also
be included in the inexpensive Taylor model, however, this is challenging due to
the required assumptions describing the breaking up of grains into subgrains. Here,
insight gained from the higher-fidelty FMCP models can be essential. Similar in
spirit, Cram et al. [30] introduced the phenomenological notion of a subgrain size
fraction.
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3.6 Conclusions
We have shown how the effects of DRX during quasistatic hot compression of Cu
can be described by three models of varying levels of computational efficiency
and accuracy. Starting with a temperature-dependent, finite-strain crystal plasticity
model for Cu, we introduced three distinct avenues to model DRX: a most efficient
Taylor model, the FMCP×Taylor model (with an expensive description of DRX but
still inexpensive affine grain deformations), and the FMCP×FFT model (with ex-
pensive but accurate full-field resolution of both DRX and intra-grain deformation
mechanisms). Once calibrated, predictions from all three models showed convinc-
ing agreement with experimental data, both considering the effective stress-strain
response and the microstructure evolution. We specifically evaluated the homog-
enized stress-strain behavior up to 100% true compressive strain along with the
resulting grain size reduction, the resulting texture (starting from initially random
grain orientations), and the volume fraction of recrystallized material. To calibrate
the models, we first identified the parameters of the single-crystal Cu model by fit-
ting stress-strain data at low strains (below the onset of significant recrystallization).
Next, we found the three DRX parameters in the models (viz., κGBM, κNCL, and
C) by fitting the full available stress-strain data. Not a surprise, the fully resolved
FMCP×FFT model provided highest accuracy (i.e., best agreement of stress-strain
data, of grain size reduction and recrystallized volume fraction), the lower-fidelty
Taylor model and the rather expensive FMCP×Taylor model as a compromise be-
tween the former two revealed their merits. First, the Taylor model captured all
salient features and, especially at 775 K, provided good quantitative agreement at a
small fraction of the computation time (c.f. Table 3.3). Second, the Taylor model
provided a convenient means to identify model parameters: rather than carrying out
expensive fitting simulation feedback loops with the high-fidelity model, the inex-
pensive Taylor model served to identify good initial guesses through a least-square
fit; those initial guesses helped narrow down the high-fidelty model parameters
quickly and inexpensively. Surely, high-fidelity multiscale models are promising
candidates for predictive, bottom-up approaches to simulating DRX during severe
plastic deformation in metals. Yet, their computational expenses severely limit their
applicability and, as our study demonstrates, many salient features – from the mi-
crostructural evolution to the macroscale mechanical response – may be obtained
sufficiently accurately from inexpensive Taylor-type models (and we further point
out the beneficial feedback loops between the three models presented here which
may serve to calibrate and validate each model).
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C h a p t e r 4

MODELING THERMO-MECHANICAL PROCESSES
INVOLVING DYNAMIC RECRYSTALLIZATION –

APPLICATION TO ECAE

A.D. Tutcuoglu, S. Kumar, Y. Hollenweger, and D.M. Kochmann. A multiscale
meshfree approach to modeling ECAE. In Preparation, 2019.

Preamble
The work presented in this chapter is the result of a collaboration between the author
(A.T.) and S. Kumar (S.K.). While S.K. provided the numerical implementation
on the macroscale, A.T. established the numerical framework on the micro- and
mesoscale. S.K and A.T. conducted simulations for different scenarios.

4.1 Introduction
In previous chapters, we concerned ourselves with the numerical modeling of dy-
namic recrystallization on the micro- and mesoscale. We introduced a novel high-
fidelity model in the form of the Field-Monte-Carlo Potts method which allows cap-
turing dynamic recrystallization in hcp metals such as Mg in a qualitative manner.
Experimental data on Cu was used to validate the model. We further introduced the
computationally inexpensive Taylor model to investigate the influence of the notion
of space and linear momentum conservation in the modeling of dynamic recrystal-
lization. We used the experimental data on Cu to conduct meaningful comparative
analyses with the higher fidelity model and found, that – under specific processing
conditions – the Taylor model readily replicates the microstructural evolution as
well as the progression of homogenized measures such as the average true compres-
sive stress. The availability of a scheme that provides sufficient accuracy on the
micro- and mesoscale and at the same time ensures computational feasibility allows
extending the analysis to the macroscale.

In Chapter 1, we introduced severe plastic deformation techniques as a means to
achieve the inelastic deformation needed for nucleation, which can ultimately lead
to grain refinement and the associated increase in yield strength [59, 124]. One
of the central constraints of these methods lies in the size of workable samples.
High-pressure torsion belongs to the most studied severe plastic deformation tech-
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niques since it yields meaningful data on the internal stress state and readily provides
efficient grain refinement [40]. The maximum size of the samples it can treat, how-
ever, is heavily constrained, which compromises its use for large scale industrial
purposes. Equal channel angular extrusion (ECAE) mitigates this issue and further
affords a wide range of advantages compared to other thermo-mechanical processes.
The principles of ECAE lie in the shear deformation induced at the corner of the
channel. Shear deformation promotes inelastic deformation and, therefore, allows
to achieve ultra-fine grain refinement, i.e., a final grain size on the submicron scale
[73]. The primary advantages in this treatment of metals lie in the conservation of
the cross-sectional area, while simultaneously avoiding degradation through poros-
ity [73]. Although the apparatus is comparatively simple, repeated extrusions allow
for the treatment of different crystal structures [174]. A single extrusion can pref-
erentially activate specific slip systems based on the orientation of the processed
sample and the extrusion direction. Subsequent rotation of the sample between two
extrusions can shift this preferential treatment onto other slip planes. We distinguish
between four different types of rotations – commonly referred to as routes – including
route A (no turning), BA (alternatively turning by 90◦ in clockwise/anti-clockwise
orientation), BC (steadily turning by 90◦ in either clockwise or anti-clockwise orien-
tation), and C (turn by 180◦) [200]. Depending on the metal’s crystal structure and
the route, the activation of a high number of slip systems is possible. Along with an
efficient increase in inelastic deformation and the associated efficient grain refine-
ment, the rotations between passes provide a high level of isotropy and homogeneity
in the sample, both desirable properties in the procfessing of metals.

Despite the relatively simple apparatus, the combination of processing parameters
alongside possibly expensive samples raises the need for a numerical framework
that allows for the tailoring of ECAE processes. Factors of central interest in
this optimization process include microstructural properties such as the texture
or the average grain size. On the macroscale, we concern ourselves with the
strain homogeneity across the sample, as well as the evolution of the plunger force.
Previous attempts to model ECAE, therefore, cover a broad spectrum of fidelity.
In the work of Iwahashi et al. [73], the authors constrained their analysis to the
macroscale and derived an analytical form for the strain induced through various
passes. They assumed negligible effects due to friction and generalized their analysis
to cases with variable die channel and outer corner angles. Sivakumar and Ortiz
[150] used a material point approach to address microstructural evolution in the
sense of sequential lamination for the treatment of aluminum and copper under
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ECAE, which allowed them to obtain qualitative agreement with experimental data
in terms of texture and lamellar size. Their approach is useful for low temperatures,
at which the formation of (shear-)laminates dominates the grain refinement process;
however, it does not account for conditions under which grains nucleate through
discontinuous dynamic recrystallization. Higher fidelity approaches that extended
the analysis from a material point level to a full spatial resolution of the macroscale
primarily relied on the finite element method (FEM). Among the first attempts
stands the work of Luis et al. [103], who analyzed the impact of friction and inner
die channel angle. Their approach was, however, based on a purely elastic material
model as well as plane strain conditions. Apart from ECAE, they also analyzed
equal channel angular drawing (ECAD), which differs from ECAE in terms of the
boundary conditions: while ECAE generally refers to the pushing of a sample (i.e.
free surface conditions at the billet’s end), ECAD describes the drawing of the
sample through the channel (i.e., displacement conditions at the billet’s end). Fu
et al. [47] alleviated the constraint to a exclusively elastic model. They modeled
three different combinations of outer and inner channel angles and qualitatively
compared their results to experimental observations. Although they provided a
thorough description of the friction model, they were unclear as to which plastic
model they use. [4] attempted to reproduce experimental results, where – again –
a power law defines the material point level, with the objective of approximating
the plastic behavior of pure aluminum. They reported a good agreement based
on the values for the force exerted. However, since they do not specify how they
obtained parameters including the plastic exponent for the power law, it remains
unclear whether this agreement follows from the model accurately representing the
underlying physics or if parameters were merely fitted.

Multiscale simulation of ECAE also presents its challenges at the macroscale due to
the large distortion inherent to ECAE. Mesh-based modeling such as FEM [4, 33]
requires remeshing due to ill-deformed or entangled elements as the mesh deforms
around the corner. The application of remeshing, however, assumes interpolation
laws regarding the data at the quadrature points to map material point descriptions –
including information of all grains at each material point – from the old to the new
mesh. While simple plasticity laws based on the additive decomposition of elastic
and inelastic strains in a small strain framework can provide acceptable conditions,
crystal plasticity frameworks in finite deformations with a multiplicative decompo-
sition of the deformation gradient represent a more challenging environment.
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Meshfree methods have recently gained attention as an alternative to FEM with
the aim of circumventing the issue associated with large distortions. The primary
idea behind meshfree methods consists of the abandoning of a mesh from classic
FEM and to represent geometries via discrete mass points. Thanks to the local
interpolation based on mass points, it is possible to replicate the continuous field
without experiencing the deteriorating effects of distorting elements. In the context
of ECAE, Fagan et al. [41] provided an analysis of ECAE using SPH. Using a small-
strain framework, they applied a simple linear hardening law without accounting
for microstructural evolution effects through recrystallization. They compared their
results based on plane-strain conditions with those from classic FEMand found good
agreementwith deviations possibly stemming from the distortion-based inaccuracies
in the FEM model we mentioned earlier. Ma and Hartmaier [104] afforded a more
in-depth discussion. Aiming to capture anisotropic effects inherent to the face
center cubic (fcc) crystallographic structure, they were among the first to track the
(in)elastic deformation of copper using a crystal plasticity model instead of a linear
hardening model or an even simpler power law stress-strain relationship. Using
smooth particle hydrodynamics, they were able to identify the rotation of crystals in
specific regions of the working sample. These grains were on the same length scale
as the working sample, which constitutes an interesting scenario from an academic
perspective. From an industrial standpoint, however, there is little interest as the
texture evolution of a group of grains at individual points of the working sample
cannot be identified, consequently resulting in a lack of information on the local
texture evolution. They further conducted simulations in a dynamic framework,
which is a debatable assumption given the pronounced quasistatic nature of ECAE.

Although the main purpose of ECAE is the efficient refinement of grains, only a few
models capture the evolution of the microstructure due to dynamic recrystallization.
Saitoh and Ohnishi [142] as well as Hallberg et al. [63] incorporate grain refinement
in their constitutive model. Their approaches, however, do not include the notion
of individual grains, which is necessary to capture texture evolution and the impact
of nucleation and migration on the homogenized stress state. The challenge in
providing the means of modeling this multiscale problem lies in the computational
expense of currently established mesoscale recrystallization models, including cel-
lular automata, Monte-Carlo Potts and vertex methods. Using the Taylor model
from Chapter 3, we can accurately model the microstructural evolution, the texture
evolution as well as the homogenized stress response at significantly reduced compu-
tational costs for sufficiently high temperatures. In this chapter, we adopt a vertical
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Figure 4.1: Illustration of the vertical homogenization framework coupling max-ent
at the macroscale with the Taylor model at the mesoscale and a crystal plasticity
model on the subgranular microscale.

homogenization approach, in which we use the maximum-entropy (max-ent) based
meshfree method introduced by Kumar et al. [91] that affords enhanced stability
and a quasistatic updated-Lagrangian framework at the macroscale, coupled to the
Taylor model from Chapter 3 at the mesoscale as Figure 4.1 illustrates. To our best
knowledge, this constitutes the first multiscale simulation of ECAE in which every
grain at the mesoscale is endowed with an individual set of elastic and inelastic
states. In line with the large deformations inherent to ECAE, we adopt a finite
deformation framework and use quasistatic conditions to accurately replicate the
processing conditions.

The structure of the rest of the contribution is follows: In Section 4.2, we briefly
introduce the theory behind the maximum-entropy meshfree method. This method
constitutes the macroscale model in our simulation and we emphasize the communi-
cation with the meso- and microscale represented by, respectively, the Taylor model
and the Cu model, presented in Chapter 3. In Section 4.3, we address numerical
challenges including the numerical time-integration, the treatment of boundary con-
ditions as well as the mesh-generation. Section 4.4 addresses the results using this
multiscale approach to model the processing of pure Cu through ECAE. A conver-
gence analysis in Section 4.4.1 justifies the temporal resolution used throughout all
subsequent simulations. In Section 4.4.2, we investigate the strain heterogeneity in
the sample as this constitutes one of the major shortcomings of ECAE compared
to, e.g., high-pressure torsion. We benefit from the notion of individual grains at
the mesoscale and analyze the texture evolution due to reorientation of grains in
Section 4.4.3. As one of the central elements of thermo-mechanical processing,
we investigate grain refinement in Section 4.4.4 and further address the impact of
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recrystallization on the texture evolution in Section 4.4.6. Next, we influence the
impact of recrystallization on the plunger force and homogenized energy evolution
in Section 4.4.5. Section 4.4.7 introduces the notion of a multipass as an ideal-
ization of a repeated extrusion of the billet with particular attention to the texture
evolution after the second pass. Finally, Section 4.5 concludes with a comment on
our contribution as well as on previous and future works.

4.2 Max-ent and updated-Lagrangian
In Section 4.1, we addressed the shortcomings of the finite element method in
the framework of large deformations and proposed to employ a meshfree method
to mitigate issues associated with severely distorted elements. To this end, the en-
hanced max-ent meshfree approximation scheme and the stable updated-Lagrangian
formulation introduced by Kumar et al. [91] promise the best fit for simulating the
quasistatic boundary value problem associated with ECAE. In this section, we give a
brief overview over the structure of this scheme, how it overcomes the issues related
to finite elements, and how it circumvents limitations commonly faced in meshfree
simulations 1.

We introduce a macroscale domain Ω ⊂ R3. In close analogy to the discretization
of a finite element mesh into elements, we perform a discretization into a set
X = {xa ∈ R3, a = 1, . . . ,nn} of nn distinct nodes. We introduce a set of linearly
independent shape functions N = {Na : Ω → R, a = 1, . . . ,nn} subject to the
following constraints

Na(x) ≥ 0,
nn∑

a=1
Na(x) = 1,

nn∑
a=1

Na(x)xa = x, ∀x ∈ Ω. (4.1)

These constraints allow the interpretation of shape functions in a probabilistic/information-
theoretic fashion, ensure consistency under h-refinement, and provide exact inter-
polation of affine functions. We approximate the continuous displacement field
u : Ω→ R using a set of nodal displacements {ua ∈ R3, a = 1, . . . ,nn}:

uh(x) =
nn∑

a=1
uaNa(x), x ∈ Ω. (4.2)

We introduce a measure of non-locality or width as U = U[N, β] deriving from

1Since meshfree methods are not the focus of this thesis, we direct the interested reader to Kumar
et al. [91] for detailed derivations, algorithms, and references.
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the choice of shape functions N via

U[N, β] =
∫
Ω

nn∑
a=1

Na(x) ‖x − xa‖
2
β dV

=

∫
Ω

nn∑
a=1

Na(x)(x − xa)Tβ(x − xa)dV,

(4.3)

where the locality parameter tensor β ∈ Rd×d is positive-definite. As a measure of
the interference bias, we further introduce the information entropy via

H[N] = −
∫
Ω

nn∑
a=1

Na(x) ln Na(x)dV . (4.4)

Optimally, we aim for a compromise between the two, which we formalize through
a Pareto optimality condition of the form

Nβ = arg min
N
(U[N, β] − H[N]) s.t., (4.1), (4.5)

which admits a pointwise unique solution

Na(x) =
1

Z(x,λ∗(x))
exp

[
−‖x − xa‖2β + λ

∗(x), • (x − xa)

]
, a = 1, . . . ,nn, (4.6)

where

Z(x,λ) =
nn∑

a=1
exp

[
− ‖x − xa‖

2
β + λ

∗ • (x − xa)

]
, (4.7)

and λ∗ denotes the minimizer of the information entropy ln Z(x,λ). Using (4.6), we
can compute the strain via

(∇u)h (x) =
nn∑

a=1
ua∇Na(x), x ∈ Ω, (4.8)

and hence all strain-dependent states, such as stress or stiffness. Figure 4.2 illustrates
how different representations of β impact the support and the anisotropy of the shape
functions. This property is particularly important for the treatment of boundary
conditions as the above setup along with an appropriate choice of β allows to render
the interpolation at the boundary independent of internal nodes [91].

Again, in close analogy to the quadrature points in the finite element method, we
introduce a set of np material points located at {xp, p = 1, . . . ,np} for numerical
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(a) β =
(
5 0
0 5

)
(b) β =

(
5 0
0 30

)
(c) β =

(
5 0
0 500

)
Figure 4.2: Illustration of the influence of β on the support of the shape functions.
We randomly generated 7000 nodes in a two-dimensional space and endowed each
one with a shape function Na as per (4.6). The column at each node corresponds to
the value of the associated shape function at x = (0,0)T . The different choices in β
reflect growing levels of anisotropy starting from an isotropic approximation in (b)
to a severely anisotropic representation in (c).

integration. The distribution of the mass mp of every material point – and con-
sequently also its density ρp – follows from the discretization of the density field
via

ρ(x) =

np∑
p=1

ρpV pδ(x − xp) =

np∑
p=1

mpδ(x − xp), (4.9)

where V p denotes the volume of the material point at xp. Material points carry
a locality parameter βp, so that any integral involving shape functions or shape
function derivatives can be evaluated numerically. They are further endowed with a
constitutive model, which means they possess the notion of a strain energy density,
which – in our case – the energy formulation for the Taylor model in (3.11) provides.
Using this strain energy density along with a set of elastic and inelastic variables –
both of which we store at the individual material points – we can evaluate the local
stress and stiffness, which in return yields the forces acting on the nodes as well
as the global stiffness matrix. While the evolution of the elastic state follows from
the macroscale problem, the update of the inelastic state is generally dependent on
the communication with the mesoscale as outlined in Figure 4.1. Details on the
numerical time integration are provided in Section 4.3.

Among the primary reason for employing the meshfree method by Kumar et al.
[91] lies the updated-Lagrangian setting. The updated-Lagrangian setting affords a
solution through updating the reference configuration to the deformed configuration
from the last step, which outperformed the total-Lagrangian formulations in Kumar
et al. [91]. We introduce an incremental deformation gradientFn→n+1 as the gradient
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t0

. . .

tn+1

F0→1 Fn−1→n Fn→n+1

F1

Fn

Fn+1

Figure 4.3: Illustration of the differences between the total- and the updated-
Lagrangian formulation using the example of ECAE. Nodes and material points
are visualized by black and red points, respectively. In the total-Lagrangian set-
ting (dashed), the total deformation gradient Fn+1 is a mapping from the initial
configuration to the deformed configuration, while the updated-Lagrangian setting
interprets Fn+1 a mapping from the previous configuration (at time tn) to the current
configuration.

of the deformation mapping at step n+ 1, ϕn+1, with respect to the geometry in step
n via

Fn→n+1 =
∂ϕn+1
∂xn

= I + ∇n(un+1 − un), (4.10)

with un and un+1 denoting the deformation mapping at time tn and tn+1, respectively.
Assuming that the change in deformation gradient within one step is small, the total
deformation gradient at step n + 1, Fn+1, which we can approximate through

Fn+1 ≈
∂ϕn+1
∂x0

= Fn→n+1Fn. (4.11)

At every step, using the configuration at tn and the change in deformation gradient
Fn→n+1, we update the connectivity and shape functions. Further, we also evaluate
the volumetric weights at tn+1 viaV p

n+1 = det(Fn→n+1)V
p

n . By incrementally updating
the locality parameter as

βp
n+1 = (Fn→n+1)

−Tβp
n(Fn→n+1)

−1, p = 1, . . . ,np, (4.12)

we adaptively adjust the form of the shape functions, which again helps to deal with
large deformations. A summary of the idea of the updated-Lagrangian formulation
is illustrated in Figure 4.3.

Having established the max-ent framework, we can solve the governing equation of
quasistatic force equilibrium on the macroscale, which requires all nodal forces to



100

vanish via

f a
n+1 = 0, ∀a = 1, . . . ,nn, where

f a
n+1 =

np∑
p=1

V p
n

Jp
n
P(F

p
n+1,Q

p
n,R

p
n)F

p
n

T ∇nNa(x
p
n) − f a

ext,n+1 = 0.
(4.13)

Here, f a
ext describes the external force acting node a, whereas R = {Ri∈{1,...,Ng}}

and Q = {Zi∈{1,...,Ng}, ηi∈{1,...,Ng}} denote grain orientations and the set of internal
variables inherited from the mesoscale, respectively. The first Piola-Kirchhoff stress
tensor at material point p is given by P(F,Q) = ∂E(F,Q,R)/∂F.

4.3 Computational challenges in ECAE modeling
4.3.1 Time integration
Section 4.2 introduced the numericalmodeling on themacroscale level and described
its communication with the meso- and microscale using vertical homogenization.
Based on the quasistatic nature of severe plastic deformation processes such as
ECAE, we ignore inertial effects on the macroscale. Although we address changes
on the macroscale with time, the majority of this section concerns to the description
of the time-integration of internal variables on the meso- and microscale. Con-
cerning the time integration of the internal variables, implicit update schemes are
in general preferable as they allow to use larger time-steps. They do, however,
assume a variational structure and their computational benefit largely depends on
the optimization method employed to find the infimizer of the minimum dissipation
potential rule associated with the variational energy and dissipation formulation.
Since a variational formulation generally permits an analytical derivative, we for-
mulate this contribution based on explicit updates and mention, that the multiscale
structure allows for implicit time integration, too. We note that the opposite – i.e.,
the transformation of an explicit scheme into an implicit scheme – is, in general,
theoretically possible. As the case of the Cu-model presented in Section 3 shows,
finding a closed form concerning the dissipation potential is challenging, as the
denominator in the update law, itself, depends on internal variables.

We consider a continuous time field T = [0, tmax] with tmax denoting the final
time. Based on T , we introduce a discretization of T as T∆ = [0,∆t,2∆t...,N∆t]

with ∆t = tmax/N and N describing the incremental time step and the number of
timesteps, respectively. On the macroscale, stepping from tn ∈ T∆ to tn+1 = tn + ∆t

relates to changes in the boundary conditions. Section 4.3.2 lays out the specific
changes in boundary conditions in the ECAE setting. Using these new boundary



101

conditions and the meshfree approach we described in Section 4.2, we find Fn+1,
i.e., the deformation gradient at every material point at time tn+1. Based on the
Taylor assumption, every grain at a material point is associated with that same new
deformation gradient. As the remaining part of this section is devoted to the material
point level, we omit the superscript p as an association of the deformation gradient
to a specific material point. We use the total deformation gradient Fn+1 to evaluate
an intermediate version of the elastic deformation gradient (Fe

i,n+1)
∗ = Fn+1(F

in
i,n)
−1

for every grain i ∈ {1, . . . ,Ng}. Using (Fe
i,n+1)

∗ and F in
i,n, we find the resolved shear

stress on every slip system (cf. Section 3.2) and compute γi,n+1, gi,n+1, and F in
i,n+1

for every grain using forward Euler schemes.

The explicit integration scheme requires small time-steps for convergence, mainly
because of the power law in (3.7) and the relatively high magnitude of the hardening
exponent m (see, e.g., Knezevic et al. [85]). At each time step, the meshfree solver
performs computationally expensive operations that include assembling the consis-
tent stiffness matrix and solving the nonlinear equations (4.13). To permit for such
a small time-step on the microscale, while avoiding the increase in computational
time on the macroscale, we employ a multi-stepping approach based on the spectral
decomposition, which we borrow from the spectral decomposition-based ansatz in
Chapter 2. At every material point, we obtain the incremental deformation gradient
Fn→n+1 via Fn+1 = Fn→n+1Fn. Spectral decomposition of this transformation ten-
sor via Fn→n+1 = R̂Û , with principal stretch tensor Û =

√
(Fn→n+1)TFn→n+1 and

rotation R̂ = Fn→n+1Û
−1, allows decomposing the update into several steps through

Fn+m/(2nm) ≡

{
Û1/nmFn+(m−1)/(2nm) if m ≤ nm,

R̂1/nmFn+(m−1)/(2nm) if m > nm,
for 1 < m ≤ 2nm, (4.14)

with nm > 0 denoting the multi-step number. This results in a relatively large
timestep on the macroscale, while effectively reducing the timestep on the mi-
croscale to ∆t∗ = ∆t/(2nm). The updates from γi,n+(m−1)/(2nm), gi,n+(m−1)/(2nm),
and F in

i,n+(m−1)/(2nm)
to γi,n+m/(2nm), gi,n+m/(2nm), and F in

i,n+m/(2nm)
are conducted us-

ing the resolved shear stress evaluated using F in
i,n+(m−1)/(2nm)

and (Fe
i,n+m/(2nm)

)∗ =

Fn+m/(2nm)(F
in
i,n+(m−1)/(2nm)

)−1 for m ∈ {1, ...,2nm}. We note that Fn+1 does not
depend on internal variables specific to any of the grains, which is why the de-
composition in (4.14) only has to be computed once per macroscale material point.
Figure 4.4 provides a visualization of the above description.

The optimal choice of the multi-step nm to ensure a stable time-integration is inte-
gral in reducing the computational cost of the update of internal variables from tn
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Figure 4.4: Illustration of the time-integration on the macro-, meso- and microscale.
We note, that subscripts denoting the association of a grain with a macroscale point
were omitted everywhere but in the description of the first step in favor of improved
readability.

to nn+1. While the material undergoing severe shear deformation through the bend
in the channel requires higher multi-step numbers, imposing the same multi-step
number for material further away from the bend incurs unnecessary computational
overhead. Since this observation is closely related to the problem of exponen-
tiation we mentioned above, we leverage this information and tailor the number
of multi-steps depending on the evolution of the normalized flow stress, namely,
ταn+m/(2nm)

/Gα
r,n+m/(2nm)

. At the beginning of the simulation, i.e., at t0, we set nm

to some predefined lower bound nm,l . Using this first trial of nm,l , we compute the
evolution of the internal variables. At each of the 2nm steps, we evaluate the change
in normalized flow stress as

ξn+m/(2nm) = max
α∈{1,...,ns}

����� ταn+m/(2nm)
/Gα

r,n+m/(2nm)

ταn+(m−1)/(2nm)
/Gα

r,n+(m−1)/(2nm)

����� . (4.15)

High values of ξn+m/(2nm) indicate a higher susceptibility to instabilities due to the
high exponentiation. We define a critical threshold ξcr and consider the evolution
from tn+(m−1)/(2nm) to tn+m/(2nm) as stable if ξn+m/(2nm) < ξcr. If this condition is not
met, we restart the simulation from time tn and increase the number of multi-steps by
a factor of 2. If ξn+m/(2nm) < ξcr is satisfied throughout all multi-steps from tn to tn+1,
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we store nm. Since the incremental loading at every time step is relatively small, we
assume that the number of multi-steps needed for a stable evolution of the internal
variables does not change significantly from one time-step to another. Motivated by
this, we redefine nm at the new timestep as either half of the nm from the last time
step or nm,l , whichever is higher. We provide a summary of the adaptive choice of
the multi-stepping number nm with the help of a pseudo-code using Algorithm 2.

Algorithm 2 : Adaptive multi-step evolution of internal variables at a givenmaterial
point
Input at time tn :

- Number of multi-steps: nm (equal to nm,l if tn = t0)
- Total deformation gradient at material point: Fn
- Internal variables of each grain: {γi,n, gi,n, F

in
i,n}i∈{1,...,Ng}

1: ErrorFlag B true
2: while (ErrorFlag) do
3: ErrorFlag B false
4: for m = 1, . . . ,2nm do
5: Compute Fn+m/(2nm) using (4.14)
6: for i = 1, . . . ,Ng do
7: Compute (Fe

i,n+m/(2nm)
)∗ B Fn+m/(2nm)(F

in
i,n+(m−1)/(2nm)

)−1

8: Compute γi,n+m/(2nm) using (3.7)
9: Compute gi,n+m/(2nm) using (3.6)
10: Compute F in

i,n+m/(2nm)
using (3.2)

11: Compute ξn+m/(2nm) using (4.15)
12: if (ξn+m/(2nm) > ξcr) then
13: ErrorFlag B true
14: break
15: end if
16: end for
17: if (ErrorFlag) then
18: break
19: end if
20: end for
21: if (ErrorFlag) then
22: nm B 2nm
23: end if
24: end while
25: nm B max

{
nm/2, nm,l

}
4.3.2 ECAE process & boundary conditions
The updated-Lagrangian setting we described in Section 4.2 helps us to naturally
include boundary conditions where we consider them to be necessary. Since we
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operate in the context of the current configuration, we benefit from the ability to
update boundary conditions depending on their position. In that way, we can initially
subject nodes to Dirichlet boundary conditions in the sense of zero wall-penetration
without incurring issues as they pass through the channel bend. In a total Lagrangian
setting, this is not possible, as boundary conditions are formulated with respect to
the initial configuration.

Figure 4.5 illustrates the numerical setup of the ECAE process. We consider
a 3D billet to alleviate the plane strain assumption imposed in previous studies
(see, e.g., Hallberg et al. [63], Luis et al. [103], Ma and Hartmaier [104]) and
to allow for future investigations of different processing routes. The lateral walls
past the channel’s bend are modeled using cubic wall potentials that penalize the
orthogonal penetration. Furthermore, we included approximations of an inner and
outer channel arc by including chamfers of length w1 and w2 at the outer and inner
corner, respectively (see Figure 4.5). These chamfers are again incorporated using
the cubic wall potentials. In Section 4.3.1, we mentioned that the transient nature
of the ECAE process translates into our macroscale simulation by updating the
boundary conditions. With this, we refer to the plunger displacement at the top of
the billet in the form of Dirichlet boundary conditions, which we update following
a constant strain rate ε via utop = utop(t) = Ûε t. Here, utop denotes the negative
y-displacement of the upper face of the billet, as illustrated in Figure 4.5.

Previous studies attempted to include the effect of friction via a shear friction model
which took into account the shear strength of the billet and the friction coefficient
between wall and billet (see, e.g., Fu et al. [47]); these simulations, however,
were predominantly conducted under dynamic loading conditions, thus ignoring the
quasistatic nature of small strain rates. Although quasistatic friction can impact
the through-thickness heterogeneity of the deformed billet, we follow Luis et al.
[103], Saitoh and Ohnishi [142], and Fagan et al. [41] and assume that sufficient
lubrication of the channel (through, e.g., MoS2) allows constraining quasistatic
friction effects to a negligible level.

4.3.3 Simulation protocol
The parameters defining the micro- and macroscale follow directly from the param-
eters used for the Taylor model in Chapter 3 at 775 K, the temperature at which we
found a compelling agreement between the results from the Taylor model and the
experiment by Blaz et al. [18]. On the macroscale – unless otherwise indicated –
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Figure 4.5: Schematic depiction of the initial configuration of the billet along with
boundary conditions and dimensions. We used Dirichlet boundary conditions for
imposing the plunger displacement (1) and to constrain the nodes on all surfaces
with normal parallel to the in-plane z-component as well as the walls above the
chamfers (2). Further, we modelled the outer and inner chamfer with dimensions w1
and w2, respectively, using wall potentials. Wall potentials also describe the lower
and upper wall past the bend (3).

we employ the parameters from Table 4.1. Concerning the generation of the mesh,
we pursue the same procedure outlined in detail in Kumar et al. [91].

4.4 Results
4.4.1 Convergence
Although previous studies addressed the impact of resolution on the ability to capture
sufficiently the microstructural changes in the metal billet, there are no thorough
studies on the convergence behavior in the spatial or the temporal sense. In a
multiscale framework, where the interaction of different scales makes it difficult
to relate observations to specific sources, we aim to minimize these uncertainties.
Since the quasistatic nature of the meshfree approach on the macroscale requires
the choice of both a a temporal resolution dt as well as a spatial resolution – which
we define via the number of nodes we employ per unit length – we conduct spatial
and temporal convergence analyses.

Based on four different resolutions dt ∈ {0.4,0.2,0.1,0.05} s and first excluding re-
crystallization effects, we test temporal convergence. Again, for the lowest temporal



106

Parameter Symbol Unit Value
Temperature T [K] 775
Initial length of billet† l - 4
Lower-left chamfer dimension† w1 - 0.25
Upper-right chamfer dimension† w2 - 0.1
Initial max-ent locality parameter βp

0 - (3/hp2)I
Shape function cut-off tolerance εcut - 10−7

Initial connectivity cut-off region M
p
0 - −1/log(εcut) × βp

0
Time step ∆t s 0.2 s
Nodes per non-dimensionalized length - - 6
Plunger displacement per step† - - 2.0 × 10−4

Lower bound on multi-step number nm,l - 8
Multi-stepping criterion ξcr - 1.1

Table 4.1: Macroscale parameters defining the geometry, boundary conditions, and
the meshfree solver. Variables marked with a † refer to variables normalized with
respect to length. For a description of the shape function cut-off tolerance εcut and
the initial connectivity cut-off region M

p
0 , we refer to Kumar et al. [91].

resolution of dt = 0.4 s, we observe oscillations in the total energy, which are still
visible for dt = 0.2 s, but which disappear for lower resolutions. The origin for
these oscillations originates in the way we model the inner and outer channel walls
that causes these oscillations. In a quasistatic framework, we update the inelastic
state based on the change in deformation gradient from one step to the other. If the
timesteps are sufficiently small, the nodes achieve to follow the form of the chamfer
and the predominant loading type is shear, which is beneficial for inelastic deforma-
tion. If, however, the timesteps are large, the nodes fail to follow the exact form of
the chamfer leading to an increasingly compression-like behavior. The compressive
loading aggravates the ability for dislocations to slip and therefore initially leads to
an energetically less favorable elastic deformation. An overly elastically deformed
area can, however, incite an improved shear behavior of the material in the region
above. As the billet passes through, we initially observe a poor capturing of the
wall, which improves with time. The periodic occurrence of elastically deformed
zones together with the gradual improvement of the flow of nodes around the wall
explains, on the one hand, the oscillatory behavior and, on the other hand, the re-
laxation of the oscillations with time. Although the convergence in Figure 4.6a is
readily visible, we provide a logarithmic depiction of the total energy for the four
different resolutions at four discrete times to emphasize the convergent behavior.

Concerning the spatial convergence, we analyzed four different resolutions, namely
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(a) Transient energy development (b) Discrete energy values

Figure 4.6: Temporal convergence as depicted via four different timesteps dt ex-
cluding recrystallization. For comparison, we also provide the energy evolution for
the case that includes both migration and nucleation capabilities.

4, 5, 6 and 8 nodes per unit length. While the temporal convergence is heavily
dependent on the time-integration of the inelastic variables, the spatial convergence
is predominantly dependent on macroscale effects. As the focus of this thesis
comprises micro- and mesoscale concerns, we refer to Kumar [90] for an elaborate
spatial convergence analysis, which exposes six nodes per unit length as a sufficiently
accurate spatial resolution.

4.4.2 Strain homogeneity
Figure 4.7 presents the position of nodes and material points throughout the extru-
sion process. For an easier isolation of sources for observations, we first conduct
a simulation without recrystallization. Without explicitly illustrating strains, the
distortion grants a first insight into the homogeneity across the sample. Starting
with an initially uniform distribution of nodes and associated material points, the
intersection of the two channels causes a shearing behavior. Comparing an initially
horizontal line between two nodes in the initial configuration and the configuration
past the bend, we notice that the new connecting line adopts a value of 45◦. Turning
the frame of reference by 45◦ in the anticlockwise direction leaves us with a shearing
strain of close to 200%, which corresponds to theoretical considerations by Segal
et al. [147]. Apart from the shear zone, two more regions bear significance in this
analysis. The end of the billet does not undergo the same shearing motion as the
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center part of the billet. Instead, we note that the initial bottom nodes of the billet
stay at a close distance to the bottom wall. Furthermore, the region above the inter-
section experiences the highest density in nodes. We associate this behavior with
a compressive action, which constitutes a valuable insight, as theoretical consider-
ations are generally constrained to a purely shear-based deformation. Concerning
the shear distribution across the cross-section at the center of the final processed
billet, we observe a relatively homogeneous distribution. In this configuration, the
maximum observed shear strain magnitude is attained towards the center of the
sample with a value of F12,max = −1.05, while we find the lowest magnitude of the
shear strain close to the lower wall with a value of F12,min = −0.95. The qualitative
heterogeneity in the shear strain agrees well with both the numerical as well as
experimental findings from Bowen et al. [20].

Figure 4.7: Illustration of the deformation of the billet via the displacement of nodes
(red) and material points. The coloring of material points scales with the local in-
plane shear strain F12. The F12 distribution is further illustrated using a 2D view on
the xy-plane at z = 0.5 based on an interpolation using radial-basis function kernels
(rbf) at tmax/2 and tmax.
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In Segal et al. [147], the authors hypothesize that a decrease in the inner and outer
channel curvatures is directly related to a mitigation of the sample’s heterogeneity
away from the two ends of the billet. Although strain heterogeneity forms a central
concern in the optimization of ECAE processes, the focus of this thesis lies on meso-
and microscale developments. For a numerical study using our approach to test the
hypothesis from In Segal et al. [147], we refer to the Kumar [90].

4.4.3 Reorientation excluding recrystallization effects
We use orientation plots to interpret the nature of the local loading and the impact of
the position along the (initial) cross-sectional area. Figure 4.8 shows the evolution
of the 〈111〉 family of crystallographically equivalent poles with regards to the
underlying fcc structure at three material points which initially differ solely through
their x-coordinate in space and their randomized texture. The initial pressing of
the billet through the channel causes small changes in the texture. We associate
this reorientation with the compressive action in the region right above the shear
zone, which we previously addressed in Section 4.4.2. However, the short duration
of this compressive loading does not allow deducing distinct compression textures
as we obtained in Chapter 3. The subsequent shear the billet experiences, when
it passes through the bend, is more pronounced and leads to the characteristic six
preferred poles in the stereographic projection applied in this visualization. This
texture is in good agreement with the results from the numerical work of Sivakumar
and Ortiz [150] and the experimental investigation by Vogel et al. [179]. Although
this behavior repeats at all three material points, we observe a stronger texture
evolution with proximity to the outer channel wall. One possible origin for the
weaker texture of the material closer to the upper wall consists in tensile loading of
this region through the downwards bend of the end of the billet, which compromises
the effects due to shear. We note, that numerical reasons, too, can cause this
discrepancy. As the shearing process spreads to a finite space for non-zero chamfer
wall lengths, the time over which the shearing takes place determines the effective
timestep experienced by the lower scale inelastic update scheme. Since the chamfer
wall length is longer on the outer channel, the effective timestep felt by the inelastic
update near the inner corner is smaller compared to its equivalent on the outer edge.
This difference in the effective temporal resolution can explain a better capturing of
the evolution of inelastic variables and their influence on reorientation. Since we
based our choice of the temporal resolution for our simulation on the convergence
study from Section 4.4.1, the possibility of a predominantly numerical origin of this
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behavior is, however, unlikely.

4.4.4 Grain refinement
Although frequently ignored in previous literature, the central purpose of ECAE lies
in grain refinement. Figure 4.9 depicts the distribution of the average volume fraction
across the z = 0.5 plane after inclusion of recrystallization effects. Among the most
valuable observations lies the start of the recrystallization phase. Deviations of the
average volume fraction to the initial value first occur in a zone right before the bend.
We expect the compressive action on the material directly above the curve – which
we previously addressed in Sections 4.4.2 and 4.4.3 – to be responsible for the onset
of grain refinement above the region of severe plastic deformation, i.e., the bend.
The location of the material point with the smallest average volume fraction at the
intersection of the two channels is representative of the extensive local nucleation
activity.

After the billet shears into the horizontal part of the channel, the material continues
translating without significant deformation. In a process termed post-dynamic
recrystallization (c.f. Section 4.1), we experience a decrease in the average grain
volume. As we can see from the histogram, however, despite the final growth of
grains, the average grain size at the majority of material points ends up at a much
smaller size compared to the average volume fraction. We note that the absence of
curvature driven growth in a Taylor model leads to an exaggeration of the average
volume fraction in this case, as new grains grow so long as there is a non-zero
difference in stored energy to the already existing grains.

4.4.5 Plunger force and homogenized energy evolution
Using data fromECAEexperiments for fitting purposes is an ill-posed problem. Data
on themicrostructure is generally solely available in a priori and a posteriori form, as
the channel itself does not allow for continuous tracking of themicrostructure, which
by itself is challenging. The sparsity of data concerning themicrostructural evolution
is, however, an issue which is not confined to ECAE, as we have demonstrated
in Chapter 3. Processes including uniform compression or hot-pressure torsion
mitigate this issue by providing meaningful stress data in the sense that it is possible
to directly associate the stress we recorded with the internal stresses in the body. In
ECAE, this is not the case. A force versus displacement curve is generally readily
obtained by measuring the force recorded by the plunger; the contribution due to
friction effects, however, is unclear.
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Figure 4.8: Reorientation evolution of the 〈111〉 pole family illustrated via a stereo-
graphic projection onto the (001)-plane at 0, tmax/4, tmax/2, 3tmax/4, and tmax. The
blue and yellow labels next to each pole figure represent, respectively, the minimum
and maximum intensity. The reorientation evolution in each of the three columns
labelled A, B and C correspond to the associated material points marked in the
leftmost column. This analysis excludes recrystallization.
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Figure 4.9: Interpolation of the distribution of the average grain volume across the
z = 0.5 plane using radial-basis function kernels (rbf) at tmax/2 and tmax.

Despite this shortcoming, we conduct a qualitative analysis of the force that the
plunger exerts. Figure 4.10 illustrates the evolution of the area-normalized plunger
force. We included simulations with and without recrystallization capabilities to
elucidate the effect of dynamic strain softening through the nucleation andmigration
of pristine grains. In both cases, we see a comparable rise in the force stemming from
the progressive compression of the billet against the bottom wall of the channel. As
the billet bends into the horizontal part of the channel, both force curves transform
into an oscillatory behavior. This type of periodic evolution of the force is frequently
observed in ECAE processes, where the local texture allows for shear bands to
evolve. These shear bands, however, generally also impact the roughness of the top
surfaces of the processed billet. Given the smooth final billet in this framework
along with numerical oscillations observed in the energy plot, it is more likely that
this behavior – despite having justified the choice of time-step and spatial resolution
via Section 4.4.1 – are remnants of the insufficient temporal or spatial resolution.
This insufficient resolution, however, must be localized, as the size of oscillations is
more pronounced in comparison to those illustrated in Figure 4.6a.

We report good qualitative agreement between the force evolution curve without
recrystallization effects and the experimentally measured force evolution during
ECAE of 5083 aluminum alloy at room temperature by Pérez [130]. Following
an initial fast increase, both approaches experience a shallower slope, which again
rises until to the onset of the last section, where a moderate rise in plunger force
is registered. As the differences in underlying materials and process temperatures
render a quantitative comparison insignificant, we constrain our attention to this
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Figure 4.10: Evolution of the scaled plunger force via integration of the Cauchy
stress over the top surface for simulations including and excluding recrystallization.

compelling qualitative comparison.

In Figure 4.6, we previously conducted a convergence analysis concerning the
temporal resolution. We use the results for the case without recrystallization and
compare it to the case including recrystallization effects. Similar to (4.10), the total
energy corresponding to the case including recrystallization capabilities is lower
compared to the simulation based entirely on elastic and slip-based deformation.
Although oscillations are observable in this case, too, their amplitude is significantly
reduced. This observation in return backs up our previous hypothesis regarding the
distinct influence of the two corner regions onto the plunger force and the resulting
pronounced oscillations.

4.4.6 Reorientation including recrystallization
In Section 4.4.3 we investigated the texture evolution of the grains associated with
three material points without recrystallization. Since the orientation of a nucleus is
assumed to be random in our model, we are interested in the extent to which nucle-
ation and migration influence this development. A priori, we expect either a more
diffuse texture due to the randomness of orientation or an even more pronounced
texture in case the stress state of the already existing grains influences the newly
recrystallized grains. Figure 4.11 presents the evolution of the 〈111〉 pole family
of the grains at one material point in the billet with stereographic projection onto
the (001)-plane. For improved comparability, we included the texture at the same
material point without the influence of recrystallization.
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The simulation including nucleation and migration experiences a similar primary
deformation pattern representative of the shear loading at the intersection of the
two channels. At tmax/2, small differences between the two cases arise without
significant deviations in the intensity. We can relate these marginal differences
in local reorientation to the impact of an overall softer response in the case of
recrystallization due to material points that are already experiencing the decrease in
stress state following the emergence and migration of pristine nuclei. At 3tmax/4,
the texture in the case of recrystallization is mostly diffuse with the difference
between the highest and lowest intensity staying similar compared to the casewithout
recrystallization. This diffuse texture is testimony of the randomorientation of newly
nucleated grains. As soon as thematerial points pass past the shear region, nucleation
and particularly migration continue during the post-dynamic recrystallization phase.
Although the local deformation after the shear region closely resembles rigid body
motion and no further slip-based distortion occurs, the available inelastic strain
energy still partially allows for nucleation of new grains. The effects of post-
dynamic recrystallization are visible through the continued rise in intensity to a final
level of 1950 and 3000 for the lowest and highest intensity, respectively. Other than
at 3tmax/4, we notice a clear texture at tmax. We associate this more pronounced
texture with grainmigration favoring grains that are aligned energetically convenient
with respect to the small remnant loading due to the distortion of the billet as well
as the change of the material point’s stress state following recrystallization. The
former source of residual loading also explains why this texture possesses some of
the characteristics of a shear texture for fcc polycrystals despite the predominantly
diffuse texture at 3tmax/4.

We note that the final texture in neither case shows all six pronounced poles expected
for the texture of an fcc metal undergoing severe shear deformation (see, e.g., Vogel
et al. [179]). Given the distance of the material point of interest to the lower wall,
this observation is in line with the findings from Section 4.4.3, where the texture
of the processed billet was the least pronounced towards the upper wall, which we
related to the increasing role of alternative loading modes such as tension in these
regions.

4.4.7 Multipass
We aim to investigate multiple passes of the same billet. In general, this is performed
by first extracting the billet in its original form through the die, which corresponds
to the scenario we analyzed in previous sections. Next, the billet is turned around
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Figure 4.11: Reorientation evolution of the 〈111〉 pole family illustrated via a
stereographic projection onto the (001)-plane at tmax/4, tmax/2, 3tmax/4, and tmax
for scenarios excluding (top) and including (bottom) recrystallization effects. The
blue and yellow labels next to each pole figure represent, respectively, the minimum
and maximum intensity. The pole figures correspond to the current orientation of
all grains at the material point marked in red.

its axis, < the extrusion direction, in line with one of the routes we introduced
in Section 4.1. Following the turn, we extrude the already processed billet again
through the same die. Mainly for reasons of simplicity, we reinterpret this process:
Instead of pulling the sample analyzed earlier out of the die, we investigate a longer
sample and push it through a channel with two bends, the latter one of which we
embed in a fashion to approximate the route we try to simulate. In this case, we test
a sample of normalized length L = 7 subjected to route C. We idealize the notion
of a 180◦ turn, by providing a second bend, which again redirects the billet into the
negative y-direction.

Figure 4.12 illustrates the evolution of the material points as we extrude the sample
through the channel. For reasons of computational expense, we conduct this simula-
tion without recrystallization effects. Despite the inherent inelastic deformation, the
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sample managed to revert the strong shearing effect, as the distribution of material
points with time in the texture plots shows. At the point where the billet first comes
into contact with the wall of the channel corner, both shear and compression effects
are dominant. The orientation plots are testimony to these loading cases as we
discussed in Section 4.4.3. Similar to the results from Section 4.4.3, we observe a
texture after the first bend that is characteristic of fcc crystal structures undergoing
shear. At t = 5tmax/8 – just before the second pass – we can still observe some dif-
fuse texture towards the [001] pole. The reversal of the shear leads to a more diffuse
texture, which the decrease in the intensity range from tmax/2 to tmax indicates. This
reversal is one of the reasons why route C is unsuitable for the processing of metals
where the dominant catalyst of grain refinement is the formation of shear bands.
Zhu and Lowe [200] provides a discussion on the impact of different routes on the
efficiency of grain refinement for different classes of metals; a subject which to this
day is heavily debated.

4.5 Conclusion
Using a multiscale framework, we were able to provide a numerical framework to
investigate the principal factors inherent to the thermo-mechanical processing of
metals, namely the evolution of texture, homogenized stress as well as the average
grain diameter. Using the enhanced maximum-entropy based meshfree approach
on the macroscale coupled to the Taylor model at the mesoscale and the finite de-
formation crystal plasticity model for pure Cu at the microscale, we managed to
incorporate the nature of thermo-mechanical processes on all scales. Numerical
tools comprising the multistep method and the updated Lagrangian framework pro-
vided the necessary means to deal with the challenges associated with the large
deformations on the macroscale and the update of the inelastic state on the mi-
croscale. Using this model – which to our best knowledge is the first to provide the
above capabilities in a natural way – we were able to investigate the plunger force
evolution, the strain and stress distribution across the billet, the texture evolution,
as well as the influence of recrystallization capabilities on these measures and the
progression of the average volume fraction.

The softening effect of nucleation and grain migration resulted in the expected
impact on macroscale measures. We found both the homogenized energy as well
as the plunger force to be lower in magnitude compared to the case where the two
recrystallization phenomena are excluded. The severe plastic deformation induced
through the shear of the billet at the intersection of the two channels caused a grain
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Figure 4.12: Evolution of the material points during a multipass idealizing a 180◦
turn including the impact on the texture and of the 〈111〉 pole family in stereographic
projection onto the (001)-plane at tmax/8, tmax/4, 3tmax/8, tmax/2, 5tmax/8, 3tmax/4,
7tmax/8, and tmax. The blue and yellow label next to each pole figure represent,
respectively, the minimum andmaximum intensity, while the redmarking highlights
the material point to which the pole figure corresponds.
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refinement at the mesoscale. The onset of nucleation extended to the region above
the shear bend which we associated with a compressive action on this part of the
billet. During post-dynamic recrystallization, the average grain size experienced a
relative grain enlargement; the final average grain volume, however, was still smaller
than the initial one. In both cases, the deformation of the individual grains led to
a pronounced texture development, which is in good agreement with experimental
observations for fcc metals undergoing shear deformation.

Concerning the strain heterogeneities, we obtained good qualitative agreement with
both numerical and experimental results from Bowen et al. [20]. Quantitatively,
the magnitude of the heterogeneities close to the walls did not attain the levels
reported by Bowen et al. [20] or Pérez [130] who used a finite element approach.
Although the origin of the more pronounced heterogeneities in their case can lie
in the inaccuracies associated with severe mesh distortion, an insufficient spatial
resolution in our case can also hide these artifacts.

We approximated routes involving multiple passes through a modified channel de-
sign. Although this approach does not capture the effects associated with cooling
between two extrusions, it granted insights into the impact of multiple bends on
the texture evolution. For metals endowed with severe inelastic anisotropy, such as
magnesium (see, e.g., Suwas et al. [163]), consecutive passes and the associated
turning of the sample is vital to activate various slip systems. For the case of fcc
copper, however, the effect on texture was not as pronounced. While the reversal of
the shear strain after turning the sample by 180◦ resulted in a more diffuse texture,
the final texture still exhibited six pronounced poles characteristic of extensive shear
loading, which is related to the irreversible plastic deformation.

Applying the multiscale approach to ECAE allowed us to replicate findings from
previous work on both the numerical as well as the experimental domain. In some
instances, however, we challenged hypothesis from related numerical work based on
the finite element method. In future studies, we aim for a higher number of nodes
with the objective of identifying whether these discrepancies stem from a mitigated
susceptibility to large deformation or from insufficient spatial resolution.
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C h a p t e r 5

CONCLUSIONS & OUTLOOK

5.1 Summary
In Chapter 1, we summarized previous numerical works on dynamic recrystalliza-
tion, with particular emphasis on the mesoscale. These works granted valuable
insights into numerous aspects of recrystallization. The results were, in general,
of qualitative nature, although a number of contributions conducted comparative
analyses with experiments. Due to the limited computational resources as well as
the challenges associated with numerical stability, the assumptions inherent to these
approaches constrained their respective applicability to specific scenarios.

In Chapter 2 we proposed a novel scheme for the modeling of dynamic recrystalliza-
tion. The general structure of the Field-Monte-Carlo Potts model – which hinges
on the idea of interpreting both migration and nucleation in terms of energy-based
state switches – allowed to avoid previous constraints. Using a finite deformation
framework, we accounted for the challenges involved with metals experiencing se-
vere anisotropic inelasticity. We alleviated the Taylor assumption – which previous
works on the modeling of dynamic recrystallization have readily employed – to
account for cases with significant intra-granular heterogeneity or stress concentra-
tions near grain or twin boundaries and incorporated an FFT-based solver to satisfy
linear momentum conservation. Previous works already included linear momentum
conservation; however, they circumvented computational challenges associated with
the simultaneous change of the stress field due to recrystallization using simplifying
assumptions such as permanently pristine nuclei. To account for the possibility of
large strains, in which the capturing of inelastic deformation in nuclei is indispens-
able, we abandoned this ad-hoc measure. Using a transient interpretation of both
migration and nucleation, we accomplished to capture slip- and twin-based defor-
mation in recrystallized material and at the same time retain stability of both the
elastic and inelastic solver. We used a variational slip-twinning interactionmodel for
pure magnesium to prove the functionality of this new material model and analyzed
the influence of processing parameters on, e.g., the transition of single- to multi-
peak stress-strain curves. Since the parameters associated with Monte-Carlo Potts
methods are frequently grid-dependent, analyses on the convergence of the scheme
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under h-refinement are rare. We elucidated the stability of the Field-Monte-Carlo
Potts method by showcasing convergence under h-refinement, first only for grain
boundary migration and afterward including nucleation.

Owing to the lack of transient experimental data for dynamic recrystallization in pure
magnesium, in Chapter 3, we used data on the uniform compression of pure copper at
elevated temperatures to test whether our model can fit experiments. Particularly in
view of only three parameters to fit, the agreement in the sense of homogenized stress
as well as the microstructural evolution was compelling. Given the computational
expense associated with these fully-resolved simulations, however, we introduced
and investigated the low-fidelity Taylor model, which deprives grains of their notion
of space. Although these computationally inexpensive models fail to accurately
replicate the microstructural evolution for low temperatures due to the inability of
capturing phenomena such as necklace formations, they show good agreement at
higher temperatures. The Taylor model in its current form is not able to track
intra-granular heterogeneities such as continuous dynamic recrystallization. At
elevated temperatures –whenmigration effects are dominating nucleation effects – it
can, however, capture three central measures of dynamic recrystallization including
texture evolution, grain refinement as well as the homogenized stress evolution.

In Chapter 4 we benefited from the computational efficiency of the Taylor model
and extended our analysis to the investigation of large scale thermo-mechanical pro-
cesses. Using the enhanced maximum-entropy based meshfree method developed
byKumar et al. [91], we coupled themacroscale to the Taylor model at themesoscale
and the finite-deformation crystal plasticity model for pure copper at the microscale.
Owing to the severe distortion and the simultaneous change of the stress state due
to recrystallization at the lower scales, we used equal channel angular extrusion as
a challenging test case for this multiscale framework. The results were compelling
from both a qualitative as well as a quantitative point of view. On the one hand, the
texture evolution showed good agreement with experimental results. On the other
hand, the natural implementation of recrystallization in the Taylor model allowed to
incorporate both the initial grain refinement at the intersection of the two channels
as well as the subsequent post-dynamic recrystallization.

5.2 Future directions
The work presented in this thesis yielded two main accomplishments. On the
one hand, we provided the first generalized continuum level framework for the
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capturing of dynamic recrystallizations under finite deformations for metals that
possess a severe level of anisotropic inelasticity. On the other hand, we established
a computationally inexpensive model capable of providing information on the three
primary measures of dynamic recrystallization mentioned earlier. Despite these
advances, the modeling of dynamic recrystallization is by no means exhausted. In
this section, we aim to provide a collection of topics that require further treatment to
accomplish the final objective of materials by design. We note that this collection
solely reflects the author’s subjective assessment of the field and is not an exhaustive
list of future topics of research in dynamic recrystallization.

5.2.1 Retrieving parameters from the lower scale
Experimental data on the precise migration and nucleation behavior of metals is
sparse. Methods such as three-dimensional X-ray diffraction (3DXRD) granted
insights into the growth kinetics of individual grains (see, e.g., Lauridsen et al.
[94], Schmidt et al. [145]; however, these methods are still too complex for the
systematic investigation of specific grain boundaries. Inexpensive insights into
grain nucleation and grain boundary migration, therefore, necessitate lower scale
numerical models. Possible applications cover the assessment of the assumptions
we made in Section 2 concerning the state mappings associated with these two
recrystallization phenomena. More than a means of validation, it can also be useful
in fitting parameters for the Field-Monte-Carlo Potts model. Simple numerical
experiments on the lower scale – such as the migration of a flat grain boundary –
can yield information on continuum-level parameters including, e.g., the migration
rate κGBM. This in return circumvents the need for involved experiments to obtain
transient data necessary for fitting these parameters.

The work of Somekawa andMukai [154] provides insights into the range of capabil-
ities afforded by lower scale simulations. Using molecular dynamics, they captured
grain boundary migration for different types of grain boundaries (i.e., for different
misorientations) in magnesium. Moreover, they analyzed the influence of twinning
on grain boundary migration and showed that the addition of solute atoms impeded
grain boundary migration as well as the formation of twins. Since experimental data
is – in general – of homogenized nature, it is difficult to infer migration rates for spe-
cific grain boundary types, which becomes increasingly important with rising levels
of anisotropic inelasticity. Godiksen et al. [54] presents a similar approach to model
the boundary migration during recrystallization again using molecular dynamics.
They investigate flat boundaries, which corresponds to the test case we proposed
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earlier for a systematic fitting of larger scale parameters such as the migration and
nucleation rate in the Field-Monte-Carlo Potts method.

5.2.2 Coupling the Field Monte Carlo Potts scheme to a vertex method
In Chapter 3, we borrowed the Cumaterial model fromMellbin et al. [110], which it-
self concerned the study of dynamic recrystallization inCu. In their two-dimensional
analysis, they used a vertex model to control the emergence and movement of nodes
in the sense of both grain nucleation and grain boundary migration. This approach
allows eliminating the dependence of migration and nucleation on the mesh, which
constitutes a shortcoming in the Field-Monte-Carlo-Potts model. As the grid in
a vertex model is irregular and application of, e.g., a finite element method to
satisfy linear momentum conservation requires cumbersome remeshing and inter-
polation rules which are frequently unavailable, they adopted the simplifying Taylor
assumption. We propose a hybrid model that combines the benefits of the Field-
Monte-Carlo-Potts scheme and the vertex model in a hybrid method.

First, however, we provide a short introduction to vertex models. For simplicity, we
describe the 2D-case as employed by Mellbin et al. [110]. Given a space Ω ∈ R2,
we define a discrete set of nodes (or vertices) asΩ∆ ⊂ Ω. At every timestep, we aim
to capture the interaction of some node ri with all nodes r j from its neighborhood
Si. Based on ri j = ri − r j =

(
xi − x j, yi − y j

)T we compute the force acting on node
ri via

fi = −
∑
j∈Si

γi j
ri j

ri j



 − 1
2

∑
j∈Si

ni j


ri j



∆Wi j, (5.1)

with ni j denoting the normal to ri j and γi j measuring the surface energy, which can
vary with the misorientation between the two grains separated by ri and r j . ∆Wi j

denotes the difference in strain energy density as ∆Wi j = Wi −W j between the two
grains adjacent to the boundary outlined by ri and r j . We define a mobility tensor
as

Di j =
1

3mi j


ri j




[

y2
i j −xi j yi j

−xi j yi j x2
i j

]
, (5.2)

where mi j denotes the mobility between the two adjacent grains depending on their
misorientation. Using the mobility tensor, we can relate the velocity of the nodes to
the nodal forces via
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∑
j∈Si

Di j

(
vi +

1
2
v j

)
= fi . (5.3)

Since interpolation rules for a finite deformations crystal plasticity framework are
cumbersome, we refrain from using remeshing in our approach. Instead, we suggest
decoupling the discretization of space due to the vertex model and due to the elastic
solver. More precisely, we propose the inclusion of a regular grid following the
approach we adopted in Chapter 2, with grid points holding information on both
the elastic deformation as well as the inelastic state variables. Using those grid
points, we apply an FFT-based solver to find the deformation field which solves
linear momentum conservation. The coupling to the vertex model along with its
irregular grid is twofold. First, we define Wi from (5.1), namely the energy inherent
in a grain, as the volume average over the entire grain. This addendum to the vertex
method is integral, as the alleviation of the Taylor assumption eliminates the notion
of a homogeneous energy across the grain. Secondly, as soon as a grain boundary
sweeps over a node, we interpret this as migration and subject this node to a state
switch similar to the ones defined in Chapter 2.

Since the description of nucleation in the context of vertex models is more involved
than the above discussion on migration, we refer the interested reader to Mellbin
et al. [110]. We note, however, that a hybridized interpretation for nucleation is
straightforward and follows the same principle we pursued in the hybridization of
grain migration.

A comparison of the computational expense between this method and the FMCP
model fromChapter 2 is not trivial. The hybrid model incurs additional cost through
the computation of the average energy per grain, which is not required in the FMCP
model. However, the FMCP model involves the evaluation of energy-based state
switches at a possibly large number of points, which is why the hybrid model from
this chapter is not necessarily computationally more expensive.

5.2.3 Improved Taylor model
In Chapter 3, we analyzed the advantages and shortcomings of the Taylor model.
Although the absence of a notion of space is not per se an issue, the lack of
surface-penalization is. For future purposes – where, e.g., curvature driven growth
dominates growth due to gradients in free energy – we propose to amend the model
in the following way. Using the notation from Chapter 3, we extend the energetic
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formulation from (3.11) by a nonlinear term via

E = E(F,Q,R)

=
∑

i∈{1,...,Ng}

ηiW(F,Qi,Ri) +
∑

i∈{1,...,Ng}

γηcs
i − ν

©­«
∑

i∈{1,...,Ng}

ηi − 1.0ª®¬ ,
(5.4)

where γ denotes a surface penalization constant, and cs denotes the surface penal-
ization exponent. Using a gradient flow Ansatz yields

Ûηi = −
1

κGBM

(
W(F,Qi,Ri) + csη

cs−1
i − ν

)
(5.5)

and hence

Ng∑
i=1

ηi = 1⇒
Ng∑
i=1
Ûηi = 0⇔ ν =

1
Ng

Ng∑
i=1

[
W(F,Qi,Ri) + csη

cs−1
i

]
. (5.6)

The natural choice for penalizing surfaces is given by cs = 2/3. We note, however,
that this is not necessarily equivalent to the introduction of a stable grain size. As
we can see from the effective update law for the volume fraction

Ûηi = −
1

κGBM

©­­«W(F,Qi,Ri) +
2γ
3
η
−1/3
i −

∑Ng

i=1

[
W(F,Qi,Ri) +

2γ
3 η
−1/3
i

]
Ng

ª®®¬ , (5.7)

for grains that possess the same strain energy density but different initial volumes,
this scheme would force the initially largest grain to consume all other grains, as the
total surface is minimal in the case of one grain. The model can, however, avoid
the overapproximation of the average grain diameter in the process of post-dynamic
recrystallization. To this end, the sole driver of migration in the Taylor model, which
we presented in Chapter 3 is the reduction of stored energy, regardless of the volume
fraction of the individual grains. Including a surface term of the above form could
achieve an equilibrium between new grains and their low energy state on the one
side as well as large grains with their more favorable surface contribution on the
other side.
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