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ABSTRACT

The main objective of this thesis is to enable development of high performance
actuation for legged, limbed and mobile robots. Such robots need to support
their own weight, therefore, their actuators need to be light weight, compact, and
efficient. In addition, these actuators need to exhibit significant shock tolerance
and backdrivability due to the robots physical contact with the environment. A
dynamics analysis also shows that the actuators’ design may have significant impact
on a robot’s dynamics sensitivity. These consideration motivate improvements in
all actuator design aspects compared to current approaches.

First, the application-specific design of outer rotor motors with concentrated wind-
ings is considered for three main categories: electric vehicles, drones and robotic
joints. It is shown that an intrinsic design trade-off exists between a motor’s cop-
per loss, core loss and mass, which allows development of motors with superior
performance for each application. In particular, it is shown that outstanding torque
density may be reached with high pole count outer rotor motors and the design and
optimization of such motors is outlined in terms of robotic applications. Analytic
motor design scaling modes are also derived to highlight implementation challenges
of high torque motors in robotics.

Next, the design of gearboxes for robotic actuation is discussed. A novel type of
high reduction Bearingless Planetary Gearbox is introduced that allows a large range
of reduction ratios to be achieved in a compound planetary stage. In the concept, all
gear components float in an unconstrained manner as the planet carrier is substituted
with a secondary sun gear. This is achieved by introducing an additional kinematic
constraint that allows the planets to be uniform. The advantages of the Bearingless
Planetary Gearbox over current approaches in terms of improved robustness, load
distribution, manufacturability, and assembly are outlined.

Finally, analysis, design, and prototyping of rotary planar springs for rotary series
elastic actuators is described. Amodel based on curved beam theory that allows rapid
iteration and comparison between design parameters of rotary springs is developed.
Mass reduction techniques based on composite arm structures are introduced and
internal arm contact modeling is presented. Motivated by strain energy density
analysis, an optimization based spring design approach is developed that allows
significant increase in the torque and torque density.
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C h a p t e r 1

INTRODUCTION

1.1 Robotics Actuation
The majority of robotic systems are actuated using electric motors. Hydraulically
and pneumatically actuated robots also exist, however, these are rare due to their
control challenges, high cost and lower efficiency as a pump or compressor needs
to supply constant fluid pressure during operation. Furthermore, the usually high
pressures require regular maintenance and pose safety concerns during operation.
The design of a robot that features partial hydraulic actuation is described in [1]. A
pneumatically actuated bipedal is described in [2]. A classical comparative study
of robotics actuator technology is available in [3]. This thesis is concerned with the
design of robotic actuators featuring electric motors.

It is well known that electric motors with high power density that significantly
exceeds biological muscle may be readily designed. However, such power levels
are achieved only at very high rotational speed as motor torque density is quite low
[3, 4]. The electro-magnetic torque limitations of motors are fundamental, thus,
reaching the high torque levels needed for robotic joints requires the introduction of
a speed reducer between the motor and the load.

Outstanding torque amplification may be achieved with compact and light gearboxes
such as harmonic drives and cycloidal drives (their advantageous and disadvantages
are outlined in Ch. 4). Even though actuators consisting of electric motors coupled
with high reduction gearboxes are very common, they suffer from very high reflected
inertia and no backdrivability, therefore, these actuators may not tolerate unexpected
shocks, and robot impacts with the environment may lead to permanent damage.

A popular approach to increase the shock tolerance of an actuator that features a high
reduction gearbox is to include a compliant element between the gearbox output and
the load. The result is a series elastic actuator (SEA) [5]. Since the introduction of
the idea, many prismatic [6–8] and rotary [9–16] series elastic actuator designs have
been presented. Fig. 1.1 shows examples of prismatic and rotary SEA designs.

The rotation of the screw or gearbox output causes deformation of the elastic element
that may be measured using encoders, potentiometers, etc. Then, knowledge of the
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spring stiffness allows for an accurate estimation of the actuator force or torque to
be obtained so that joint level force control may be implemented. Furthermore,
significant energy may be stored in the elastic element deformation, thus, improving
the robot operational efficiency during cyclic motion. These advantages of SEAs
come at the price of significantly reduced achievable force or torque control band-
width, typically not exceeding 10Hz. SEA robot design, control, implementation

Figure 1.1: Examples of prismatic [8] ©2014 IEEE and rotary [17] ©2015 IEEE
series elastic actuator designs.

and prototyping are described in [6, 7, 18–29].

SEA humanoid robots are predominantly controlled under static equilibrium. High
performance controlled dynamic manipulation and locomotion using SEAs has not
been shown to date.

SEA quadruped robots are either controlled under static equilibrium, similar to SEA
humanoids, or using dynamic trot gaits where the feet placement accuracy is low
and the actuators inject energy every cycle to maintain a bouncing-like locomotion.

It is the author’s opinion that the SEA robot performance limitations are intrinsic
and related to increased dynamics sensitivity caused by the actuators’ elasticity,
which may not be overcome using advanced control strategies. Ch. 2 shows
how the actuator reflected inertia impacts the dynamic sensitivity of robots, and in
particular, shows that series elasticity eliminates its potential dynamics benefits.

Recently, an alternative approach to robot actuation design has been developed.
Rather than using small motors running at high speed coupled with high reduction
gearboxes, large torque-optimized motors are coupled with low to mid reduction
ratio gearboxes. The resulting actuators may have good gearbox transparency and
backdrivability with much higher bandwidth than SEAs. However, due to the
lower motor torque amplification, such actuators exhibit lower efficiency as they
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need to dissipate significantly higher amount of heat to deliver the same amount
of static torque compared to SEAs of the same size. As shown in Ch. 2, low to
mid reduction ratio geared actuators may also reduce a robot’s intrinsic dynamics
sensitivity to a minimum level. MIT’s Cheetah [4, 30] is an example of a quadruped
robot design which is actuated with low reduction gearboxes (one stage planetary)
coupled with high torque (off-the-shelf frameless) motors. Unmatched dynamic
capability with great robustness has been demonstrated with this robotic system. A
possibly improved actuator design that features mid reduction ratio gearbox (one
stage compound planetary) with high torque (off-the-shelf frameless) motors is
introduced in [31, 32].

Figure 1.2: Robosimina: NASA Jet Prop.
Lab. entry to DRC [33] ©2015 Wiley.

Ofmain interest in this thesis are limbed
or legged robots that have more than
two limbs so that some of the limbs are
used for manipulation or locomotion (or
both). The primary motivation is Ro-
boSimian (Fig. 1.2) which is DARPA
Robotics Challenge (DRC) entry of
NASA Jet Prop. Lab. RoboSimian has
28 degree-of-freedom (DOF) and four
limbs that are capable of both mobility
and manipulation [33]. All robot ac-
tuators are identical and each feature a
harmonic drive with 1 : 160 reduction ratio with no added elasticity. Thus, Ro-
boSimian is mainly designed for stable, quasi-static locomotion and manipulation
with limited shock tolerance and impacts with the environment may result in per-
manent damage. Furthermore, the harmonic drive nonlinearities and friction (Sec.
4.1) prevent implementation of joint-level force control. An objective of this the-
sis is to investigate alternative approaches to the actuation of multi-limbed robots
(such as RoboSimian) that feature improved shock tolerance and allow joint-level
force control so that dynamic locomotion and manipulation may be implemented on
systems of this complexity.
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1.2 Dual Robotic Actuation
The SEA shortcomings may be overcome by introducing a new robotic joint archi-
tecture that couples a low to mid reduction ratio geared motor to the SEA in parallel.
In the resulting dual actuator:

• the SEA would store energy, and produce static and low bandwidth torque
efficiently with low heat dissipation.

• the low to mid reduction ratio geared motor would produce high bandwidth
torque and reduce robot dynamics sensitivity. The high frequency torque
would generally be of lower amplitude, thus, the contribution of the low to
mid reduction ratio geared motor to the total loss is expected to be low, despite
its generally lower torque production efficiency.

The novel dual actuator can potentially preserve the shock tolerance of SEAs, pro-
vided the low to mid reduction ratio gearbox has high efficiency and backdrivability.

A dual actuation approach has been proposed in the past [34, 35]. In this previous
work, the SEA is positioned away from the robotic joint at the base and is cable
coupled in parallel to a direct drive joint motor. The main disadvantage of this
approach is that the direct drive motor does not contribute with reflected inertia, and
thus, does not reduce the robot dynamics sensitivity (see Ch. 2). Also due to the
lack of a gearbox, the direct drive motor may only deliver limited torque with high
energy dissipation.

The main motivation and goal of the work presented in this thesis is to enable the
development of high performance actuation for legged, limbed and mobile robots.
Due to the fact that such robots need to support their own weight, their actuators
need to be light weight, compact and efficient. Towards this goal high torque density
electric motors are developed in Ch. 3, a novel light weight and compact bearingless
planetary gearbox is introduced in Ch. 4 and torque density optimized SEA rotary
planar springs are developed in Ch. 5.
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1.3 Thesis Structure and Contributions
Ch. 2 provides an analysis of robot dynamics sensitivity and shows how actuator re-
flected inertia impacts it inmanipulators, and limbed and legged robots. The analytic
results motivate the proposed dual actuation approach. Open chain manipulators
(Sec. 2.2), and limbed/legged robots (Sec. 2.3) designed with geared actuators
are considered. Series elastic actuators are considered in Sec. 2.4. Example robot
models are analyzed in Sec. 2.5.

Ch. 3 is concerned with the design and prototyping of high performance per-
manent magnet motors. Sec. 3.2 discusses the application-specific motor design
requirements for electric vehicles (Sec. 3.2.1), drones (Sec. 3.2.2) and robotic joint
actuators (Sec. 3.2.3). Sec. 3.3 describes the structure of permanent magnet motors
and outlines the advantages of outer rotor motors with concentrated windings. Sec.
3.3.3 describes a flux linkage model for these motors which is used in the derivation
of the analytic design trade-offs and guidelines of Sec. 3.4. Sec. 3.4.1 describes
how a motor’s slot count affects its performance, Sec. 3.4.2 discusses high pole
count motors in the context of high speed applications, Sec. 3.4.3 introduced motor
design trade-offs characteristic of motors with high pole count and Sec. 3.4.4 dis-
cusses how the tooth width and area may be optimized to improve a motor’s torque
and torque density. Next, Sec. 3.5 provides electro-magnetic FEA verification of
the results of Sec. 3.4 and Sec. 3.6 describes the development and fabrication of
motor prototypes, designed according to the proposed guidelines and methodology.
Finally, Sec. 3.7 describes the possible motor scaling modes and discusses the
challenges and limitations related to the practical implementation of high torque
motors.

Ch. 4 is concerned with the design and prototyping of high torque, compact, and
lightweight gearboxes for robotic applications. Sec. 4.2 is concerned with the anal-
ysis, design and manufacturing of the Wolfrom Gearbox and introduces important
practical improvements. This gearbox is attractive due to its wide range of reduc-
tion ratios. Sec. 4.3 describes the development of a novel Bearingless Planetary
Gearbox which is the main contribution of the chapter. Detailed strength analysis
and manufacturing considerations are included in order to outline its advantages in
terms of torque, weight, compactness and manufacturing readiness. The gearbox is
unique for its floating components and lack of carrier and bearings.

Ch. 5 is concerned with the analysis, design, and prototyping of rotary planar
springs for robotics applications such as rotary series elastic actuators. Sec. 5.2
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proposes a systematic planar rotary spring modeling and analysis procedure. A
new mathematical model for multi-armed rotary springs with significant lattitude in
the arm design is presented (Sec. 5.2.2). Two methods for spring mass reduction,
based on composite materials or cutouts, are introduced (Sec. 5.2.4). The design,
manufacturing and testing of two spiral spring prototypes based on the proposed
analytical model are described (Sec. 5.2.6 and Sec. 5.2.7). Sec. 5.3 discusses
internal spring arm contacts. A systematic model of arm contacts is first introduced
(Sec. 5.3.1). Then, a complete spring torsional analysis algorithm that accounts for
arm contacts is presented (Sec. 5.3.2). Sec. 5.4 presents a consistent optimization-
based spring design procedure. The optimization-based approach is first motivated
(Sec. 5.4.1). Then, a complete optimization-based spring design algorithms is
presented (Sec. 5.4.2). Finally, the design, analysis and testing of an aluminum
spring prototype are described (Sec. 5.4.3).

Ch. 6 describes actuator prototypes that feature components developed according
to the approaches of Ch. 3, Ch. 4 and Ch. 5. Sec. 6.2 describes an actuator that
features a 1 : 10 reduction ratio bearingless planetary gearbox. Sec. 6.3 describes
a series elastic actuator that features a 1 : 101 reduction ratio bearingless planetary
gearbox and an elastic element designed according to Ch. 5. Sec. 6.4 describes a
series elastic actuator which is used in the tether management system of the Axel
rover developed at the NASA Jet Prop. Lab. [36].
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C h a p t e r 2

ROBOT DYNAMICS SENSITIVITY

2.1 Introduction
This chapter defines and analyzes the dynamics sensitivity of multi-limbed robots
and shows how their actuator designs impact this sensitivity. It is shown that the
reflected inertia of a multi-limbed robot’s actuators may improve the condition
number of the generalized mass matrix, thus, reducing its sensitivity to joint torque
errors. Both open chain manipulators (Sec. 2.2), and limbed/legged robots (Sec.
2.3) are considered and some important differences are outlined. These lead to
implications regarding robot designwith geared actuators and series elastic actuators
(Sec. 2.4). Example robot models are analyzed in Sec. 2.5.

A crucial design aspect that is usually neglected in robot design is the robot’s gen-
eralized mass matrix dependence on the actuators’ characteristics. This chapter
provides a brief derivation of a robot’s inverse dynamics using Newton-Euler re-
cursive algorithm. The classical result for an open chain manipulator [37–39], is
extended to a floating base dynamics formulation for limbed and legged robots.
The close form dynamics equations allow a natural robot generalized mass matrix
decomposition that reveals the dependence of its condition number on the actuator
properties, e.g. actuator reflected inertia.

The condition number of a robot’s mass matrix is of great significance for torque
controlled robots because it determines how joint torque errors are propagated to
joint acceleration errors. A high condition number signifies that relatively small
joint torque errors in a subset of the robot’s joints may lead to unexpected large
acceleration errors in a possibly different subset of joints. This is demonstrated in
Sec. 2.5, where mass matrix analysis is provided for a 12 DOF quadruped robot
model and for RoboSimian (see Sec. 1.1). In the case of high mass matrix condition
number, fast robot motion or heavy loading of its end effectors may lead to large
unstable oscillations that span most of the robot’s joints under closed loop control.
Therefore, a robot’s generalized mass matrix condition number provides a strong
indication of the robot’s dynamic capabilities.

The derivations begins with the assumption of geared motor type actuators, that is,
the gearbox output is rigidly connected to the output link with no added compliance.
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SEAs are considered in Sec. 2.4. Fig. 2.1 shows an example two-link robot
manipulator with joints driven by geared motors. The analysis of this section uses
screw theory and the notation developed in [40].

Figure 2.1: A two-link robot arm driven by gearmotors [37] ©2008 Springer.

2.2 Open Chain Manipulator Inverse Dynamics
First, an open chain manipulator that consists of rigid body links connected by
one-degree of freedom revolute joints is considered. Fig. 2.2 shows the structure

Figure 2.2: Open chain manipulator structure.

of such manipulator. There are n links, Ci is the frame fixed to link i such that its
z-axis is aligned with the ith joint axis, and Fi is the wrench between link i and link
i − 1. The base is denoted with index 0 and the end-effector is denoted with index
n + 1.
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The following definitions are used in the rest of the chapter:

• τi is the ith joint torque,

• gi−1,i is the rigid body transformation of frame Ci relative to frame Ci − 1,

• ξi is the ith joint twist,

• θi is the ith joint angle,

• Mi is the ith link generalized inertia matrix,

• Vi is the ith link velocity.

The base acceleration is defined as ÛV0 = Ag because in the case of a manipulator,
the base acceleration is used to account for gravity.

The Newton-Euler recursive dynamics algorithm is given by [37, 38]:

• Forward Recursion:

Vi = Adg−1i−1,iVi + ξi Ûθi

ÛVi = ξi Üθi + Adg−1i−1,i
ÛVi − adξi Ûθi (Adg−1i−1,iVi).

(2.1)

• Backward Recursion:

Fi = AdT
g−1
i,i+1

Fi+1 + Mi ÛVi − adT
Vi MiVi

τi = ξ
T
i Fi .

(2.2)

The adjoint transformation, Adgi, j transforms twists and wrenches from reference i

frame to reference frame j [40]. For a given twist ξ =
[
ν ω

]T
,

adξ =

[
ω̂ ν̂

0 ω̂

]
.

As shown in [39], the Newton-Euler recursive dynamics formulation may be written
in a matrix form:

Mdyn Üθ + K A0 + LFn+1 + C = τ,

where

Mdyn = ξ
T GTMGξ

K = ξT GTMGP0

L = ξT GT PT
t

C = ξT G(MG(P0 Ag + adξ ÛθP0V0 + adξ ÛθΓV) + adT
VMV).

(2.3)
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The various matrices in Eq. (2.3) have the following definitions:

V =


V1
...

Vn

 ∈ R6n, Ûθ =


Ûθ1
...

Ûθn

 ∈ Rn, F =


F1
...

Fn

 ∈ R6n, ξ =


ξ1 0 0

0 . . . 0

0 0 ξn

 ∈ R6n×n

P0 =


Ad−1

g0,1

0
...

0


∈ R6n×6, Pt =


0

. . .

0

Ad−1
gn,n+1



T

∈ R6×6n, τ =


τ1
...

τn

 ∈ Rn,

M =


M1 0 . . . 0

0 M2 . . . 0
...

...
. . .

...

0 0 . . . Mn


, G =


I 0 . . . 0 0

Ad−1
g1,2 I . . . 0 0
...

...
. . .

...
...

Ad−1
g1,n Ad−1

g2,n . . . Ad−1
gn−1,n I


,

Γ =


0 0 . . . 0 0

Ad−1
g1,2 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ad−1
gn−1,n 0


, adξ Ûθ =


−adξ1 Ûθ1

0 . . . 0

0 −adξ2 Ûθ2
. . . 0

...
...

. . .
...

0 0 . . . −adξn Ûθn


,

adT
V =


−adT

V1
0 . . . 0

0 −adT
V2

. . . 0
...

...
. . .

...

0 0 . . . −adT
Vn


,

(2.4)

whereM, G, Γ, adξ Ûθ and adT
V ∈ R6n×6n.

As discussed in [37], Eq. (2.3) can be very sensitive. This is demonstrated by
showing that 0.5% error on the joint torques may lead to more than 40% error on
the joint accelerations of an example 6 DOF planar arm that has identical joints
and links. This sensitivity may be explained by considering the manipulator’s
generalized mass matrix, Mdyn. Mdyn is a symmetric positive definite matrix [40]
that can have a very high condition number in some configurations, especially
for manipulators with many DOF. For symmetric positive definite matrices, the
condition number is defined as κ(Mdyn) =

σ1(Mdyn)

σn(Mdyn)
=

λmax(Mdyn)

λmin(Mdyn)
, where σj(Mdyn)

is the j th singular value, and λmin(Mdyn) and λmax(Mdyn) are the minimum and
maximum eigenvalues, respectively. Thus, if κ(Mdyn) is large, small torque errors
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may propagate to large acceleration errors, and in this case, Eq. (2.3) becomes an
ill-conditioned problem for the accelerations. In this case, injecting relatively small
magnitude torque in the joint space direction of the minimum eigenvalue of the mass
matrix may lead to very large accelerations in the same joint space direction.

In the derivation of Eq. (2.3), the actuator reflected inertia is neglected. In order
to introduce its dynamics effects, let Ii be the ith joint reflected inertia and I =

diag(I1, . . . , In). The updated backward recursion from Eq. (2.2) is given by:

Fi = AdT
g−1
i,i+1
(Fi+1 − Ii+1ξi+1 Üθi+1) + Mi ÛVi + ξi Ii Üθi − adT

Vi MiVi

τi = ξ
T
i Fi .

(2.5)

Thus, the updated mass matrix in Eq. (2.3) becomes:

Mrob = Mdyn + ξ
T Iξ = Mdyn + I . (2.6)

All robot joints are assumed to be either revolute or prismatic, otherwise ξT Iξ = I

is not valid. Next, of main interest is how I affects the condition number, κ(Mrob).
Due to the fact that both Mdyn and I are positive definite, the condition number of
Mrob is bounded by:

κ(Mrob) 6
λmax(Mdyn) +max

i
Ii

λmin(Mdyn) +min
i

Ii
. (2.7)

Eq. (2.7) suggests that the reflected actuator inertia may be used to modify the
condition number of the mass matrix, and thus, the sensitivity of the dynamics
problem described in Eq. (2.3).

For example, if one designs the actuators so that they all have the same reflected
inertia, which is equal to the maximum eigenvalue of the mass matrix (I1 = · · · =

In = λmax(Mdyn)), then κ(Mrob) 6 2. This condition may often be achieved using
geared motors with low to mid reduction ratio.

For manipulators with ”stiff” actuators, that, is actuators that feature high reduction
gearboxes, it is usually the cases that λmax(Mdyn) � min

i
Ii. Then, Mrob ≈ I and the

actuators’ reflected inertia overshadows the manipulator dynamics. This effect may
be used to explain the high positional accuracy of ”stiff” manipulators. Due to their
high reflected inertia, disturbances and unmodeled dynamics have little effect on the
joint acceleration, that is, the dynamics coupling between the joints is effectively
eliminated. Thus, high gain local joint controllers can be introduced that lead to
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high accuracy positioning control. However, the high actuator reflected inertia leads
to high impedance (Mrob ≈ I and I may be quite large), thus, the loading and forces
that results from contacts of the manipulator with the environment may be very high
and unexpected impacts may lead to substantial damage.

2.3 Limbed and Legged Robot Inverse Dynamics
This section considers limbed and legged robots that are constructed by attaching k

open chain manipulator limbs (legs and/or arms) to a central body (a floating base).
Most bipedal and quadruped robots may be modeled in this way. The equations of
motion for such robots may be derived by extending the backwards recursion in the
Newton-Euler algorithm to the floating base. For the j th limb, the variables and
matrices in Eq. (2.3) and Eq. (2.4) are given with superscript j. The floating base
acceleration is defined as ÛV0 = A0 + Ag so that gravity is again compensated for,
while A0 is the actual acceleration of C0. Let M0 be the generalized inertia matrix
of the central body. Then, extending the backward recursion to the floating base
leads to the Newton-Euler equation for the central body:

M0 A0 − AdT
V0

M0V0 +

k∑
j=1

Ad−T
g
j
0,1
(F j

1 − ξ
j
1 I j

1θ
j
1) + M0 Ag = 0. (2.8)

Expanding and rewriting leads to the robot dynamics equations:

(M0 +

k∑
j=1

M j
0 )A0 +

k∑
j=1

K j Üθ j +

k∑
j=1

L j
0F j

n+1 + C0 +

k∑
j=1

C j
0 = 0 (2.9)

(K1)T A0 + (M1 + I1) Üθ1 + L1F1
n+1 + Ci = τ1

...

(K k)T A0 + (M k + I k) Üθk + Lk Fk
n+1 + Ck = τk .

(2.10)

Where,

M j = (ξ j)T (G j)TM jG jξ j, K j = (P j
0)

T (G j)TM jG jξ j, L j = (ξ j)T (G j)T (P j
t )

T,

C j = (ξ j)T G j(AdT
V jM

jV j +M jG j(P j
0 Ag + Ad

ξ j Ûθ j
P j

0V0 + Ad
ξ j Ûθ j
Γ

jV j)

M j
0 = (P

j
0)

T (G j)TM jG j P j
0, L j

0 = (P
j
0)

T (G j)T (P j
t )

T,

C j
0 = (P

j
0)

T (G j)T (AdT
V jM

jV j +M jG j(P j
0 Ag + Adξ j Ûθ j P

j
0V0 + Adξ j Ûθ jΓ

jV j))

C0 = −AdT
V0

M0V0 + M0 Ag .
(2.11)
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Eq. (2.9) describes the actuated dynamics and Eq. (2.10) describes the unactuated
dynamics of the robot. Then, the robot’s generalized mass matrix is:

Mrob =


Mcen K1 . . . K k

(K1)T M1 0 . . . 0
...

...
. . .

...

(K k)T 0 0 . . . M k

︸                               ︷︷                               ︸
Mdyn

+


0 0 . . . 0

0 I1 0 . . . 0
...

...
. . .

...

0 0 0 . . . I k


,

(2.12)

where, Mcen = M0 +
∑k

j=1 M j
0 is the inertia matrix of the robot (all the links and

central body) in the given configurationw.r.tC0. Similar to open chainmanipulators,
the mass matrix Mdyn may have a very high condition number, κ(Mdyn). Let
K =

[
K1 . . . K k

]
, Mlim = diag(M1, . . . , Mk), Ilim = diag(I1, . . . , Ik). Mrob,

Mdyn, Mlim and Mcen are symmetric positive definite [40] and have complete set of
orthogonal eigenvectors that span their respective joint space. Then, Mrob can be
factored using the Schur decomposition:

Mrob =

[
Mcen K

KT Mlim

]
+

[
0 0

0 Ilim

]
=

[
1 0

KT M−1
cen 1

] [
Mcen 0

0 Mlim − KT M−1
cenK

] [
1 M−1

cenK

0 1

]
+

[
0 0

0 Ilim

]
=

[
1 0

KT M−1
cen 1

]
︸           ︷︷           ︸

YT

[
Mcen 0

0 Mlim + Ilim − KT M−1
cenK

]
︸                                     ︷︷                                     ︸

X

[
1 M−1

cenK

0 1

]
︸         ︷︷         ︸

Y

.

(2.13)

Defining X and Y matrices according to Eq. (2.13) leads to κ(Mrob) 6 κ(Y )2κ(X),
therefore,

κ(Mrob) 6 κ(Y )2
max(λmax(Mcen), λmax(Mlim + Ilim − KT M−1

cenK))

min(λmin(Mcen), λmin(Mlim + Ilim − KT M−1
cenK))

. (2.14)

Alternatively: [
1 0

−KT M−1
cen 1

]
︸             ︷︷             ︸

Y−T

[
Mcen K

KT Mlim + Ilim

] [
1 −M−1

cenK

0 1

]
︸           ︷︷           ︸

Y−1

=

[
Mcen 0

0 Mlim + Ilim − KT M−1
cenK

]
︸                                     ︷︷                                     ︸

X

.

(2.15)



14

Therefore:

κ(Mrob) > κ(Y−1)−2 max(λmax(Mcen), λmax(Mlim + Ilim − KT M−1
cenK))

min(λmin(Mcen), λmin(Mlim + Ilim − KT M−1
cenK))

. (2.16)

Eq. (2.14) and Eq. (2.16) provide upper and lower bounds for the robot mass matrix
condition number as a function of the actuator reflected inertia matrix Ilim. The
matrix K describes how the actuated dynamics in Eq. (2.9) affects the unactuated
dynamics in Eq. (2.10) and vice versa. Thus, the matrices M−1

cenK1 . . . M−1
cenK k

describe how joint angle accelerations of each of the limbs propagate to acceleration
of the total robot mass and inertia. Thematrices (K1)T M−1

cenK j . . . (K2)T M−1
cenK j . . .

(K k)T M−1
cenK j describe how the resulting accelerations of the total robot mass and

inertia, due to accelerations of the joints in the j th limb, map to torques in the joints
of all robot limbs. Therefore, for most robot designs that have at least two limbs and
significant fraction of their mass concentrated in their central base, one can expect
that ‖KT M−1

cen‖ and ‖KT M−1
cenK ‖ are low (in most cases ‖KT M−1

cen‖, ‖K
T M−1

cenK ‖ <<

1). Then, Eq. (2.14) and Eq. (2.16) suggest that the robot’s generalized mass matrix
condition number may be approximated as:

κ(Mrob) ≈
max(λmax(Mcen), λmax(Mlim + Ilim))

min(λmin(Mcen), λmin(Mlim + Ilim))
. (2.17)

Eq. (2.17) suggests that similar to open chain manipulators, a proper choice of the
actuators’ reflected inertia may improve a robot’s generalize mass matrix condition
number, κ(Mrob), by improving the condition number of the actuated dynamics
portion, which corresponds to the limbs. However, the portion of the mass matrix
that corresponds to the unactuated dynamics remains mostly unaffected by the
actuators. Thus, unlike manipulators, the condition number of the mass matrix of
limbed or legged robots always depends explicitly on the robot’s mechanical design
regardless of the actuators’ properties, and Eq. (2.17) suggests that the unactuated
dynamics portion of the mass matrix, Mcen, places lower bound, given by κ(Mcen),
on the robot mass matrix condition number, κ(Mrob). Furthermore, if the actuators’
reflected inertia is very high: max

i, j
(I j

i ) >> λmax(Mcen), λmax(Mlim), which is the case

with high reduction ratio "stiff" gearmotors, Eq. (2.17) suggests that the robot’s mass
matrix condition number κ(Mrob) may be quite high as in this case:

κ(Mrob) ≈

max
i, j
(I j

i )

λmin(Mcen)
.

Thus, unlike open chain manipulators, high actuator reflected inertia, may have
negative effect on the legged or limbed robot’s mass matrix condition number.
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This observation may be used to explain why humanoid or limbed robots built
with high reduction ratio harmonic drives are predominantly controlled under static
equilibrium.

In summary, the simple analysis of this section suggests that as far as the dynamics
of limbed or legged robots is concerned, the actuator reflected inertia has profound
implication on the achievable robot performance in dynamic applications. Unlike
open chain manipulators, both low and high reflected actuator inertia results in
increased dynamics sensitivity that may propagate and significantly amplify joint
torque errors. Furthermore, Eq. (2.17) suggests that for a given robot, the actuator
design may be tuned so that the robot’s generalized mass matrix condition number,
κ(Mrob), is minimized, and thus, the robot’s joint torque sensitivity is reduced to a
minimum. Thus, as far as geared motors are concerned, one should expect optimum
dynamic performance to be achieved with actuators that feature reduction ratios in
the low to mid range.



16

2.4 Robots with Series Elastic Actuators
As discussed earlier, series elastic actuators are typically constructed by attaching a
compliant element between the load and the output of a high reduction gearbox that
is driven by a small sized motor. The following definitions for the ith joint in the j th

limb are used in this section:

• µ
j
i is the joint friction coefficient,

• ζ
j

i is the actuator friction coefficient,

• Θ j
i is the actuator output angle,

• S j
i is the stiffness values of the compliant element.

The actuated robot dynamics of Eq. (2.1) and the unactuated robot dynamics of Eq.
(2.2) become:

(M0 +

k∑
j=1

M j
0 )A0 +

k∑
j=1

K j Üθ j +

k∑
j=1

L j
0F j

n+1 + C0 +

k∑
j=1

C j
0 = 0 (2.18)

(K1)T A0 + M1 Üθ1 + L1F1
n+1 + Ci = S1(Θ1 − θ1) − µ1 Ûθ1

...

(K k)T A0 + M k Üθk + Lk Fk
n+1 + Ck = Sk(Θk − θk) − µk Ûθk .

(2.19)

I1 ÜΘ1 + ζ1 ÛΘ1 = τ1 + S1(θ1 − Θ1)

...

I k ÜΘk + ζ k ÛΘk = τk + Sk(θk − Θk).

(2.20)

Eq. (2.18) describes the actuated dynamics and Eq. (2.19) describes the unactuated
dynamics of the robot, which is coupled to the actuator dynamics of Eq. (2.20)
through the elastic elements. In this case, the robot’s generalized mass matrix is
Mrob = Mdyn (Mdyn is defined in Eq. (2.12)), which suggests that the condition
number, κ(Mrob), is no longer affected by the actuator reflected inertia. Thus, as far
as the robot’s dynamics is concerned, the elastic elements effectively eliminate the
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actuators’ reflected inertia. As previously discussed Mdyn would normally have a
large condition number, especially in the case of high DOF robots. Therefore, one
should expect SEA robots to suffer from high sensitivity and significant dynamic
performance limitations due to joint oscillatory behavior under closed loop control,
which results from the SEA characteristic elasticity. Eq. (2.19) suggests that
improving a SEA robot’s dynamic performance may be achieved by:

• Increasing the SEA stiffness which may lead to reduced amplitude of oscilla-
tions. However, this also leads to degraded force control resolution.

• Increasing the joint friction which may lead to damping of oscillations. How-
ever, this also leads to increased losses and potential heating issues.

Dynamics sensitivity issues are reported in [15] regarding NASA-JSC Valkyrie
which is a series elastic actuated humanoid robot with 44 DOF. In the article, the
sensitivity of the robot’s control system to the dynamics model is attributed to low
friction of SEA joints. However, as shown in this section, the joint torque sensitivity
of the SEA robots is an intrinsic dynamics problem that may not be solved by the
addition of joint friction or SEA stiffness increase. These measure only "mask" the
fundamental dynamics limitations.



18

2.5 Example Robot Dynamics Calculations
This section provides examples of how the actuator reflected inertia affects a robot’s
generalizedmassmatrix condition number. A 12DOF quadruped is first considered,
followed by an analysis of RoboSimian’s mass matrix.

2.5.1 Quadruped robot example

Figure 2.3: Quadruped robot model.

In order to demonstrate how the re-
flected actuator inertia affects a limbed
robot’s dynamics, a simple dynamic
model of a 12 DOF quadruped robot
is considered. The schematic model is
shown in Fig. 2.3. The central body
is modeled as a solid box with mass of
20Kg and the leg links are modeled as
solid cylinders with mass 4Kg for the
upper link and 1Kg for the lower link,
thus 50% of the robot’s mass is concen-
trated in its legs. The condition number
of the mass matrix of the robot in the
configuration of Fig. 2.3 is κ(Mrob) = κ(Mdyn) = 2161 (if the reflected inertia of
the actuators is neglected). Such high condition number suggests that one should
expect high sensitivity: small joint torque errors will propagate to high acceleration
errors. Thus, "hidden" oscillatory dynamics modes may limit the robot dynamic
performance under close loop joint control. However, if one assumes that all joint
actuators are identical and have reflected inertia of I j

i = 2Kg/m2, the mass ma-
trix condition number becomes κ(Mrob) = 25.8. In this case the bounds from Eq.
(2.14) and Eq. (2.16) lead to 15.34 6 κ(Mrob) 6 32.85 and the approximation
of Eq. (2.17) leads to κ(Mrob) ≈ 22.4. If all joint actuators are again identical
but have reflected inertia of I j

i = 200Kg/m2, the mass matrix condition number
becomes κ(Mrob) = 109.1. In this case the bounds from Eq. (2.14) and (2.16)
lead to 74.47 6 κ(Mrob) 6 159.51 and the approximation of Eq. (2.17) leads to
κ(Mrob) ≈ 108.9. These results suggest that Eq. (2.17) closely approximates the
robot’s generalized mass matrix condition number and provides significant qual-
itative insight into the significance of the actuator reflected inertia for the robot
dynamic performance.

Fig. 2.4 shows some of the robot’s eigenvalues and their corresponding eigenvectors
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(a) No actuator reflected inertia.

(b) Actuator reflected inertia of 2Kg

m2 .

(c) Actuator reflected inertia of 200Kg

m2 .

Figure 2.4: Representative eigenvectors of the generalized mass matrix of the
quadruped robot model of Fig. 2.3 for different values of the actuator reflected
inertia. The corresponding eigenvalues are in the range from the smallest to the
maximum. All actuators are assumed identical.
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for three cases:

• actuators with no reflected inertia (see Fig. 2.4a).

• actuators with identical reflected inertia of 2Kg

m2 (see Fig. 2.4b).

• actuators with identical reflected inertia of 200Kg

m2 (see Fig. 2.4c).

As may be observed in Fig. 2.4a, when the actuators have no reflected inertia,
eigenvalues of the generalized mass matrix that are orders of magnitude smaller
than the maximum eigenvalue, have corresponding eigenvectors that span multiple
DOFs. Therefore, small magnitude torques (that may be due to commanded joint
torque errors) along these eigenvector directions in the joint space may lead to
high magnitude accelerations along the same direction in the joint space. These
joint space eigenvectors may cause oscillations and even instability under close-loop
control, thus, severely limiting the robot achievable performance, regardless of the
high and low level control strategies.

Fig. 2.4b shows that when the actuator reflected inertia is larger than the minimum
eigenvalue and smaller than the maximum eigenvalue of the unactuated robot mass
matrix, Mcen, the robot’s mass matrix condition number, κ(Mrob), is at minimum
and is determined solely by the robot design. Such reflected inertia levels may be
achieved with low tomid reduction ratio actuators (see Sec. 1.1). For this quadruped
example, a significant part of the robots mass is concentrated in the central body and
the distal links in the limbs are quite light which leads to a large condition number
of the actuated robot mass matrix, κ(Mcen), as the robot’s inertia (in all directions,
regardless of the configuration) is significantly smaller than its mass.

Finally, Fig. 2.4c shows that high actuator reflected inertia, characteristic with high
reduction ratio actuators, may still lead to large mass matrix condition number of
the robot. Therefore, one may expect whole body oscillations and instability if the
robot is close-loop controlled in dynamic locomotion because the robot dynamics
sensitivity is solely due to the robot unactuated dynamics. However, under quasi-
static control, the robot would work well as the unactuated dynamics is in stable
equilibrium, in this case. Furthermore, Fig. 2.4c suggests that the actuated dynamics
is quite decoupled due to the high reduction ratio actuators which is characteristic
for manipulators (see Sec. 2.2).



21

2.5.2 RoboSimian
This section considers RoboSimian’s (see Sec. 1.1) generalized mass matrix in
the configuration shown in Fig. 2.5 which corresponds to a quadruped locomotion
stance. Fig. 2.6 shows some of the robot’s eigenvalues and their corresponding
eigenvectors for three cases:

• actuators with no reflected inertia (see Fig. 2.6a).

• actuators with identical reflected inertia of 4Kg

m2 (see Fig. 2.6b).

• actuators with identical reflected inertia of 200Kg

m2 (see Fig. 2.6c).

Figure 2.5: RoboSimian locomotion
stance model.

If the actuators have no reflected iner-
tia, the robot’s generalized mass ma-
trix condition number is κ(Mrob) =

5.2 × 104 and the limbs mass matrix,
Mlim, has condition number, κ(Mlim) =

1030. Such high condition numbers
suggest extremely sensitive robot dy-
namics. Fig. 2.6a suggests that due
to the high number of links in each limb
(7 DOF), there are multiple joint space
eigenvectors of the mass matrix with
large number of non-zero DOF components that have very small corresponding
eigenvalues. Therefore, actuators with no reflected inertia, such as SEA, may be
unsuitable robot designs with such high complexity.

On the other hand, due to the large number of joints, it may not be possible to design
shock tolerant, backdrivable actuators with reflected inertia that is larger than the
minimum eigenvalue and smaller than the maximum eigenvalue of the unactuated
robot mass matrix, Mcen. Nevertheless, Fig. 2.6b suggests that the robot’s mass
matrix condition number may still be improved significantly (see Eq. (2.17)), if
actuators with identical reflected inertia of 4Kg

m2 are used, which may be achieved
with mid reduction ratio actuators. In this case, κ(Mrob) = 27.3.

Finally, Fig. 2.6c suggests that for robots with high number of joints in their
limbs, high reduction ratio actuators may lead to favourable generalized mass matrix
condition number. For actuator reflected inertia of 200Kg

m2 , κ(Mrob) = 24.1 for the
RoboSimian model in the configuration of Fig. 2.5.
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(a) No actuator reflected inertia.

(b) Actuator reflected inertia of 4Kg

m2 .

(c) Actuator reflected inertia of 200Kg

m2 .

Figure 2.6: Representative eigenvectors of Robosimian’s model generalized mass
matrix for different values of the actuator reflected inertia. The corresponding
eigenvalues are in the range from the smallest to the maximum. All actuators are
assumed identical.
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2.6 Conclusion
This chapter analyzes robot dynamics sensitivity and discusses how actuators may
impact it. It is shown that for both manipulators and multi-limbed robots, actuator
reflected inertia may reduce this sensitivity significantly by reducing the generalized
mass matrix condition number. Due the compliance in SEAs, actuator dynamics is
separated from the robot dynamics and the intrinsic robot dynamics sensitivity is
unaffected by the actuators. Even though, increasing the SEA stiffness and friction
may improve the performance, the sensitivity is not affected and the fundamental
performance limitations persist regardless of the control strategy. Therefore, the
analysis suggests that the low to mid reduction ratio geared motor in the dual
actuation architecture, which is proposed in Sec. 1.2, may be designed to minimize
the robot’s intrinsic dynamics sensitivity which may lead to significant dynamic
performance advantage compared to SEAs.
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C h a p t e r 3

DESIGN OF BRUSHLESS-DC OUTER ROTOR MOTORS WITH
DOUBLE-LAYER CONCENTRATED WINDING

3.1 Introduction
This chapter is concerned with the design and prototyping of high performance
permanent magnet motors. The dependence of a motor’s losses on its speed and load
motivate the formulation of application-specific design requirement, guidelines and
performance metrics. The three applications considered in this chapter are electric
vehicles, drones, and robotic joint actuation (which is of primary interest).

The advantages of outer rotor motors with concentrated widnings are outlined and
a flux-linkage model predicting their performance is derived. The analytic model
is used to gain insight into how the pole and slot count affect motor performance.
Next, the performance of high pole count motors is analyzed and motor design
trade-offs are introduced. These analyses motivate the formulation of application-
specific guidelines and performance metrics. The main objective of the chapter is
to introduce consistent methods for improving the motor torque and torque density,
primarily in terms of robotic joint actuation applications. Electro-magnetic FEA
provides verification of the analytic results presented in the chapter. Motor pro-
totypes are designed and machined in-house according to the proposed guidelines
and methodology. The prototypes’ performance is characterized, and the results
show good agreement with FEA predictions. The performance of the developed
prototypes is compared to high cost, off-the-shelf frameless motors.

Finally, motor scaling modes are described and analyzed in terms of outer rotor
motors with concentrated windings. These allow the performance of scaled version
of an existing design to be rapidly predicted without the usage of computationally
expensive FEA. The scaling modes discussion provides a complementary motor
design trade-offs analysis and outlines the challenges in implementing motors with
high torque and torque density in robotic applications.
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3.1.1 Permanent Magnet (PM) Synchronous Motors
Permanent magnet motors find increasing application by replacing induction motors
in numerous devices due to their weight, size and efficiency advantages. Further-
more, in some cases traction permanent magnet motors (or motors optimized for
toque production) may be used as a replacement of the complete geared induction
motor systems.

The two most widely used rotary motor types are the radial and axial ones. Coreless
(ironless) and slotless motors are not considered in this thesis due to their low torque
density resulting from their large air gap, and thus, low air gap flux. Such motors
are advantageous in high speed applications that involve high electrical frequencies
as they do not have stator core losses. Axial motors may have advantages in certain
applications but are still relatively rare mainly due to their manufacturing challenges
[41]. The axial flux flow in these motors requires circumferential lamination,
which is difficult and costly to manufacture [42]. A thorough review of the various
permanent magnet axial flux motor designs reported in literature may be found in
[43]. Axial motors may be designed in various configurations: one stator - one
rotor, two stators - one rotor, one stator - two rotors, etc. Radial flux and axial
flux (two stators - one rotor) motor structure comparison is described in [44]. It
is found that the axial flux motor is superior only when the ratio between motor
outer stator diameter and length is low, and when the ratio between the motor outer
diameter to inner diameter is high. A torus slotless axial motor which is designed to
be coupled directly to the wheel of EV scooter is described in [45]. The dual rotor
or dual stator configurations of axial motors pose severe structural requirements,
design constraints and may significantly affect robotic joint packaging. Therefore,
axial motors are not considered further in this thesis.

This chapter is concerned with the design of radial surface mount permanent mag-
net (SMPM) motors due to their modeling, analysis, simulation and manufacturing
readiness. Furthermore, the radial motors’ cylindrical shape is very attractive for
coupling to shafts, gearboxes, joints, etc (within typical robotic applications). The
main motor staror winding schemes are distributed and concentrated. In concen-
trated winding, the coils of each of the phases are concentrated around different
stator teeth, while in distributed windings, the coils are equally distributed in the
slots [46]. The design aspects of permanent magnet motors with concentrated wind-
ings are reviewed in [41, 47]. The theory of the operation of concentrated winding
motors, their advantages and challenges are discussed in [48–51]. The performance
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of motors with single and double layer windings are compared in [52]. Designs
with irregular distribution of slots are introduced in [50]. Design of motors with
concentrated windings for low speed applications is discussed in [53]. A design
study of low speed direct drive SMPM motors is presented in [54]. High speed
application of PM motors is discussed in [55]. Cogging torque minimization tech-
niques are described in [56, 57]. Torque ripple is discussed in [58]. PMmotors used
in hybrid electric vehicles (HEV) are reviewed in [59]. The design of permanent
magnet motors with concentrated windings in the context of electric vehicles (EVs)
is discussed in [60, 61]. Core (or iron loses) are discussed in [62–64], in the context
of PM motors in [65–67] and rotor core losses are considered in [68–70].

Interior permanent magnet (IPM) motors are attractive due to the possibility of
wide speed range of constant power operation [71–73]. The reason is the improved
flux weakening capability (driving a motor beyond its rated speed through injection
of direct current) of these machines due to their higher direct inductance and the
existence of reluctance torque (direct current torque) [71–73]. Flux weakening
and reluctance torque are outside of the scope of this thesis and are not further
discussed. IPMmotors suffer fromhighermass and rotor inertia due to the additional
amount of iron used in their rotors which makes them unattractive for dynamically
intensive applications like robotics. Nevertheless, higher air gap flux densities may
be achieved in IPM motors using flux concentration [54, 74, 75]. For this reason,
IPMmotors are only briefly considered in this chapter with the goal of showing they
have no significant torque and torque density advantages.

Finally, motor scaling rules are discussed in [76–78]. These may be quite useful in
predicting the performance of a scaled version of an existing motor design.

The aforementioned prior works are primarily concerned with the generic modeling
and design of motors for general application. In contrast, this chapter considers the
application-specific design and trade-offs of outer rotor motors with concentrated
windings. The objective is to show that given a particular application, one may
design such motors with superior performance compared to what is available off-
the-shelf, provided the intrinsic motor design trade-offs are leveraged. Of main
focus is motor design for robotic joint applications.
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3.1.2 Contributions and Chapter Structure
Sec. 3.2 discusses the application-specific motor design requirements for electric
vehicles, drone and robotic joint actuators. Sec. 3.3 describes the structure of
permanent magnet motors and outlines the advantages of outer rotor motors with
concentrated windings. Sec. 3.3.3 describes a flux linkage model for these motors
which is used in the derivation of the analytic design trade-offs and guidelines of
Sec. 3.4. Sec. 3.4.1 describes how a motor’s slot count affects its performance, Sec.
3.4.2 discusses high pole count motors in the context of high speed applications,
while Sec. 3.4.3 introduces motor design trade-offs characteristic of motors with
high pole count, and Sec. 3.4.4 discusses how the tooth width and area may be
optimized to improve a motor’s torque and torque density. Next, Sec. 3.5 provides
electro-magnetic FEA verification of the results of Sec. 3.4 and Sec. 3.6 describes
the development and fabrication of motor prototypes, designed according to the
proposed guidelines and methodology. Sec. 3.7 describes the possible motor
scaling modes and discusses the challenges related to the practical implementation
of high torque motors. Finally, Sec. 3.8 briefly describes motor failure modes.
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3.2 Application-specific Motor Design Consideration
This section provides a brief and simplified motor loss discussion that motivates
examining motor operating conditions in three distinct applications: electrical ve-
hicles or EVs (Sec. 3.2.1), drones (Sec. 3.2.2) and robotics (Sec. 3.2.3). Thus, the
objective of the section is to examine ways to improve motor performance w.r.t. a
particular application, especially robotic joint actuation.

Figure 3.1: Motor losses in terms of load
and speed.

Figure 3.2: Operating duty cycle of mo-
tors depending on the application.

In order to understand the basic trade-
offs in motor design, first motor oper-
ating losses need to be discussed. The
majority of the power losses in perma-
nent magnet motors may be attributed
to copper losses in the coils and core (or
iron) losses in the stator. Core losses are
due to changes of the magnetic field in
the stator electrical steel lamination (see
Sec. 3.3.3). Fig. 3.1 shows schemat-
ically the dependence of the losses on
the motor operating conditions. Dis-
regarding nonlinear, high-order effects,
copper losses are dependent only on the
motor loading (current in the windings)
while core losses are dependent only on
the motor speed. For some motor de-
signs, skin and proximity effects may
lead to significant copper loss increase
at high speeds and the armature reac-
tion may lead to core loss increase at
high loading. Depending on the motor
topology, rotor losses (due to harmonics
in the windings magnetomotive force)
may also be nontrivial (see Sec. 3.3.2).
Their significance is, however, not due to their size but due to the fact that they
occur in the rotor, which may not be readily cooled in some designs. Nevertheless,
the simplified loss relations described in Fig. 3.1 provide a sufficient loss compo-
nents dependence that may be advantageous in application specific motor design
consideration.
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The usefulness of this simple loss model may be demonstrated by considering three
general permanent magnet motor applications: electric vehicles (EV) propulsion,
airplane or quadrotor drone propulsion, and robotics actuation (for manipulators,
legged or limbed robots, etc.). In each of these applications the operating conditions
of the permanent magnet motors are characterized by different speed and load duty
cycles. That is, during a complete operation cycle, motors spend different fraction
of time at high load and high speed conditions. Fig. 3.2 shows a simplified plot of
the characteristic load and speed duty cycles for the three applications considered
in this chapter. In the context of this chapter, robotics refers to applications that
feature actuated joints, usually comprised of motors coupled with gearboxes, that
are characterized by their limited range of motion (typically less than a full rotation
of the gearbox output).

3.2.1 Motors Designed for EV Applications.
Depending on the terrain, EV motors may be loaded at any level and speed for an
arbitrary amount of time, and thus, they need to be equally efficient at:

• high load and at any motor velocity, which may occur when the vehicle is
climbing hills at different speeds.

• low load and at any motor velocity, which may occur when the vehicle is
traveling on level terrain at different speeds.

Therefore, EV motors need to perform well in both variable speed and variable
load conditions, independently. Comparing these requirements to the simplified
loss relations of Fig. 3.1 suggests that efficient EV motors need to have relatively
low core losses. That is, the motor may not dissipate excessive amount of power
(as heat) to simply run at no load or low load. The motor weight is generally a
small fraction of the vehicle’s mass (plus the payload), therefore, in the design of
EV motors, it is acceptable to trade-off motor size and mass in order to increase
the vehicle propulsion efficiency, and thus, its travel range. This argument may be
used to explain the relatively large size and mass of EV motors. The definition and
characterization of the mass vs. core loss design trade-off is one of the contributions
of this chapter (see Sec. 3.4).
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3.2.2 Motors Designed for Drone Applications.
During operation, the permanent magnet motors in electric airplanes and quadrotors
are responsible for sustaining the flight by overcoming air friction and gravity,
respectively. Thus, these motors are mostly operated at high speed and at high load
condition. As far as the performance is concerned, only the motor efficiency at high
power is important.

On the other hand, reducing the motor weight allows for direct increase of the vehi-
cle’s payload capability as the actuation system usually accounts for a large portion
of the total weight, therefore, the motor power density and high load efficiency are
crucial performance metrics.

This simple analysis suggests that an electric aircraft’s propulsion efficiency is
only dependent on the total motor operating losses rather than the individual loss
components. Therefore, high power density motor topologies that feature relatively
high core losses may significantly boost overall vehicle performance as long as their
efficiency is adequate at high power levels. Examples of such motors may be seen in
Fig. 3.3. Consulting the motors’ data sheets reveals that the core loss may account
for as much as 50% of the total loss at motor rated power for these designs. On
the other hand, at rated load these motors may achieve torque densities as high as
10 Nm

kg . Here torque density of a motor is defined as the rated torque divided by the
mass of the motor active components (stator lamination, magenets, rotor yoke and
windings). In this chapter, rated torque is defined in terms of rated copper loss at
stall and this torquemetric choice is motivated and further discussed in the following
section.

Figure 3.3: High efficiency permanent magnet motors by T-motor used for high
power, heavy lifting quadrotors and airplane drones [79].
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3.2.3 Motors Designed for Robotics Applications.
The final actuation category of Fig. 3.2 is of main interest in this chapter and this
thesis in general. The high torque density requirements in robotic actuation usually
leads to the coupling of permanent magnet motors with mid to high reduction ratio
gearboxes.

For robotic applications, the torque production efficiency and torque density are the
important motor characteristics. Both of these are somewhat ambiguous and need
concrete definition in the context of this chapter.

Conceptually, a torque production efficiency needs to quantify how well the motor
produces torque. In [4], this is achieved using the motor constant, which is defined
as the torque squared per unit ohmic or copper loss. The motor constant, according
to this definition, is sometimes included in motor datasheets.

This chapter adopts a slightly different approach that is motivated from the intended
use of the motors as part of enclosed robotic joints. For this application, a driving
motor is enclosed in a cover or housing and the amount of heat thatmay be sustainably
dissipated by the joint system is determined by the housing (and potentially a cooling
system), rather than the motor properties. Then, the maximum amount of heat that
themotor can generate is expected to be constrained to a particular value independent
of the motor design. Therefore, in the context of a robotics application, it is sensible
to compare motor candidates or design motors in terms of nominal or rated stall
copper loss, Pcu. This motivates the adoption of the following definitions in this
chapter:

• A motor’s rated torque is given in terms of a rated copper loss at stall, Pcu,
which is the torque that the motor delivers when the output is stationary and
Pcu power is dissipated as heat.

• Torque density is defined as the rated torque divided by the motor active mass
(the combined mass of the stator, rotor, magnets and copper in the motor).

Robotic joints generally have very limited range of motion (less than a full rotation
in most cases), therefore, the high speed duty cycle is quite limited and the core loss
contribution to the total loss, in themotor operating cycle, is expected to be relatively
small since the motors never operate continuously at high speed. In addition, higher
joint speeds are usually achievedwhile the joint is relatively unloaded. This situation
occurs, for example, throughout the swing phase in legged robot locomotion, as well
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as fast end-effector translations motions between object placement and object pick-
up in robotic manipulation. Therefore, increased AC copper losses (due to skin
and proximity effects) at high speed may also be acceptable in these applications.
This simple analysis suggests that increasing the permanent magnet motor torque
density at the expense of higher core losses at high speed may be quite advantageous
in applications where low mass and high compactness robotic actuation is desired.
Such applications may be found in limbed or legged robotics, manipulation, etc.
As discussed in Sec. 1.1, whole body manipulators such as RoboSimian are of
primary interest in this thesis. The torque and torque density (according to the
definition above) of the joint motors in these applications is of major importance.
For example, the maximum payload of a robotic manipulator at the end-effector may
be determined from the maximum stall torque that each of the joints can sustain and
the manipulator forward kinematic.

As discussed in Ch. 1 and Ch. 2, mid reduction geared actuators may have
significant advantages in terms of reducing a robot’s dynamics sensitivity. Such
actuators based on high torque density, compact motors may compete with the
traditional high reduction ratio harmonic drives coupled with small high speed
motors and ultimately replace them for robotic applications. The main advantages
of mid reduction ratio geared motors are:

• their improved backdrivability, that may allow high bandwidth and accurate
torque control without a dedicated torque sensor. In this case, the motor
load current may be used as a direct torque measurement. For example, in
the absence of singularities, the end-effector forces may be estimated using
the joint motor currents and the forward manipulator dynamics without any
additional sensors.

• in their improved dynamic responsiveness. The actuator’s significantly lower
reflected inertia, combined with the high actuator torque capability may im-
prove efficiency in high performance dynamic robotic applications. The sig-
nificance of the actuators reflected inertia for the robot dynamics sensitivity
is elaborated in Ch. 2.

• in their reduced actuator noise generation. The reduced gearing and motor
speeds may significantly improve the robotic system operational noise. This
is further discussed in Ch. 4.
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3.3 Outer Rotor BLDC Motors with Concentrated Winding.
A brushless permanent magnet (PM) motor is comprised by a stator (the stationary
part that contains the windings) and a rotor (the rotating part that contains the
magnets). This section begins with a consideration of radial inner and outer rotor
motors (Sec. 3.3.1), followed by discussion of the most widely used winding
schemes (Sec. 3.3.2). The advantages of outer rotor motors (outrunners) with
concentrated windings are discussed. Next, an analytic motor model (Sec. 3.3.3) is
outlined and used to gain useful motor design insights in Sec. 3.4.

This thesis is primarily concerned with the design of SMPM motors due to their
manufacturing readiness and simplicity. Furthermore, these motors have lighter
rotors with lower inertia, which is quite useful for robotic actuators featuring low
to mid reduction ratio gearboxes. Finally, their modeling is simplified due to their
nonsalient rotor structure. Salient machines (such IPM) have varying reluctance
depending on their rotor orientation [80]. IPM motors are only briefly considered
in Sec. 3.4.4 and it is shown theoretically that higher torque and torque density
may be achieved using magnet flux concentrated poles designs. Nevertheless, in
Sec. 3.5.4, it is shown that the higher rotor mass of such IPM motors offsets their
potential advantages for the applications considered in this thesis.

Only three-phase motors in star configuration subject to three-phase balanced cur-
rents are considered. Even though, the delta winding configuration has attracted
considerable attention in the drone industry due to its simplified manufacturing,
it is not considered in this chapter due to the possible occurrence of circulating
currents that cannot be controlled [42, 47]. Thus, the motors considered in this
chapter have windings that consist of three phases that represent the coils between
one of the motor terminals and a neutral point where the phases meet. Each phase
is characterized by its resistance and inductance, and generates back electromotive
force (back-EMF or bEMF) when the rotor spins.

3.3.1 Outer and Inner Rotor Motors.
The most widely used radial permanent magnet motors have are the inner rotor and
outer rotor (outrunner). Fig. 3.4 shows schematically the construction of inner and
outer rotor motors [81].

Provided the air gap thickness is small (distance between magnets and stator teeth),
the rotor in-plane thickness is significantly smaller than the stator in-plane thickness.
Therefore, for the same motor outer diameter, outer rotor motors have significantly
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higher torque than inner rotor motors. This follows from the fact that the produced
torque is approximately proportional to the square of the air gap diameter (see Fig.
3.4) as further discussed in Sec. 3.7. For both motor structures increasing the
length of the teeth (designated by lt in Fig. 3.6) or equivalently the slot depth
leads to decrease of the electrical resistance of the phases due to the increased
copper area of the slots. However, in the case of inner rotor motors, increasing the
slot depth also leads to air gap radius decrease, and thus, torque decrease. This
inherent trade-off between the slot depth and air gap radius which is characteristic
of inner rotor motors, does not apply in the case of outer rotor designs. Therefore,
high compactness motors with large torque capability are possible if the outrunner
construction is adopted.

Figure 3.4: Structure of surface mounted permanent magnet inner and outer rotor
motors [81]. The permanent magnets are coloured in red. Left: inner rotor motor.
Right: outer rotor motor (outrunner). The stator is constructed by teeth and slots
(between the teeth) that contain the winding conductors. See also Fig. 3.6.

From a manufacturing point of view, outrunner motors are advantageous as the
magnets may simply be glued to the rotor yoke even in high speed applications.
This is not the case with inner rotor motors, which usually require a non-magnetic
sleeve to retain the magnets and support the centrifugal magnet forces [55]. The
presence of a sleeve further deteriorates the produced torque due to the possibly
increased air gap thickness and motor rotor inertia. Therefore, for applications
where the motor inertia is to be minimized, outrunners have clear advantage (when
the size of the rotor is the same).

Finally, outer rotor motors with their fixed stator on the inside, allow for the intro-
duction of central support shaft that may be used for cabling and bearing support in
robotic joints. Sensors, like encoders may also be integrated in the stator interior.
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3.3.2 Motor Winding Types.
The windings of PM motors consist of coils made of magnet wire (copper or alu-
minum wire covered with enamel isolation). The most widely used winding config-
urations are the distributed, single layer concentrated and double layer concentrated
ones. Distributed winding represents the majority of industrial permanent magnet
synchronous motors. Fig. 3.5 shows a frameless motor with distributed windings
used in the MIT cheetah [30]. Fig. 3.3 shows double layer concentrated winding
motors designed for quadrotors. In double-layer winding all stator teeth have coils
around them, while in single layer windings only half of the teeth are wound. Single
layer winding is rare due to its more trapezoidal bEMF, greater axial length, higher
rotor losses, and lower slot fill factors (in case of cost effective manufacturing) [48,
49, 82, 83].

Figure 3.5: Stator of distributed winding
frameless motor [30] ©2015 IEEE.

Compared to double layer, single layer
windings have advantages in their
higher winding factor (the concept of
winding factor is fundamental for mo-
tors with concentrated windings and is
described in Sec. 3.3.3), higher induc-
tance and better fault-tolerance at the
cost of higher armature reaction (mag-
netic field generated by the current in
the coils), higher magnetomotive force
(MMF) harmonic content and may re-
quire substantially thicker stator yoke
[52, 82, 84]. For these reasons single
layer concentrated windings are not considered further in this thesis.

The main advantages of double layer concentrated windings compared to distributed
windings are [41]:

• higher power density, torque density, efficiency and compactness due to short
windings end turns and higher possible slot fill factor [48]. The conductors
in the slots of concentrated winding motors that correspond to a given phase
do not all produce maximum torque (this phenomena is quantified by the
winding factor, discussed in Sec. 3.3.3) [48, 49]. However, if the slot-
pole combination is selected according to the approach discussed in Sec.
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3.3.3, the corresponding torque reduction is significantly minimized and the
aforementioned advantages may be realized.

• lower manufacturing cost. Concentrated winding motors may be readily
wound using low cost fan winding machines (outrunners) and needle winding
machines (inner rotor motors).

• lower cogging torque due to the fractional number of slots per pole per phase.
[48, 49].

The key challenges characteristic of concentrated windingmotors are related to [41]:

• rotor losses due to MMF harmonics of the coils [51].

• vibrations and noise due to unbalanced magnetic forces [49].

The magnitude of the rotor losses generally comprise a small fraction of the total
loss, especially if rotor yoke lamination is used. Magnet eddy current losses may be
reduced through magnet segmentation [68]. Furthermore, rotor losses are generally
low in high pole count motors due to the relatively small magnet size and low
armature reaction (further discussed later in the section). The outrunner topology is
beneficial in allowing better rotor loss heat dissipation [48]. If motor topology with
slot symmetry is utilized, no unbalanced radial magnetic forces exist (slot symmetry
is described in Sec. 3.3.3). These considerations motivate interest in outer rotor
motors with concentrated windings and high pole count.

Outrunner permanent magnet motors with concentrated winding are also character-
ized with high manufacturing readiness even without specialized motor manufac-
turing equipment, which greatly facilitates prototyping. The coils may readily be
wound by hand if a reasonable winding fill factor is assumed, even when a higher
number of wire strands are used.

3.3.3 Double Layer Concentrated Winding Outer Rotor Motor Modeling
A large number of sources in the literature (see Sec .3.1.1) describe PM motor
modeling, however, these prior works present models that are usually quite general
and complex, and cannot be readily used to gain design insights for outer rotormotors
with concentrated windings. Thus, the objective of the derivation in this section is
to obtain a reduced order model that describes sufficiently well the characteristics of
outer rotor motors with double layer concentrated windings, and is simple enough
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to lead to clear analytic motor design trade-offs and practical motor design insights
(described in Sec. 3.4). Higher order effects that are ignored in this section are
either discussed in the following section or characterised using electro-magnetic
FEA in Sec. 3.5.

Concentrated winding outrunner motors are defined by the geometry shown in Fig.
3.6. As discussed in the previous section, the conductors comprising each of the
phases of motors with concentrated windings do not all produce maximum torque.
To model this effect, a motor winding factor, Cw, is typically introduced in the
literature. This winding factor quantifies the difference between the motor torque
produced by the conductors belonging to a phase with the torque that would have
been produced with the same number of conductors that carry the same amount of
current but all produce maximum torque. The derivation and modeling that leads to
the introduction and calculation of Cw is quite involved and is not required in order
to understand any of the concepts in this chapter, therefore, it is not included here
and the interested reader is encouraged to consult [48, 49, 51]. Clearly, in the case
of concentrated windings, Cw ≤ 1, and one’s goal is to maximize Cw. The value of
Cw is heavily dependent on the motor slot per pole per phase, Qpp. The closer the
value of Qpp is to 1

3 , the higher the winding factor [48, 49, 51]. As a comparison,
distributed windings have unit slot per pole per phase and Cw = 1. In the literature,
motors with Qpp that is not an integer are sometimes referred to as fractional-slot.

Figure 3.6: Structure of a permanent mag-
net outer rotor motor with concentrated
windings. The stator slots contain the
phase winding conductors.

Only magnetically balanced motors are
to be considered, therefore, a mini-
mum symmetry is required in the pole-
slot choice. Otherwise, the unbalanced
radial forces may cause increased vi-
bration and noise [49, 51, 81]. The
motors of interest in this chapter, fall
in the following general family that is
characterized with high winding factor
(Cw ≥ 0.933 [48, 49, 51]):

Q = 12 + kq6 P = Q ± 2

q = ksQ p = ksP,
(3.1)

where q and p are the motor slot and
pole count, respectively. Q and P are
the slot and pole count of the motor base
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topology ofminimum symmetry (defined by the non-negative integer kq in Eq. (3.1))
and the coefficient ks ≥ 1 is an integer that defines the motor symmetry. That is,
the motor can be split up in 2ks parts (like "cake" slices) and each of these parts
may produce torque independently. Motors with higher kq and lower ks have higher
winding factors and lower theoretical cogging torque as cogging torque is minimized
by maximizing the lowest common multiple of q and p [48, 49, 51]. However, [82]
suggests that motors with lower ks (or lower symmetry) also have higher rotor losses.

For initial design, the winding factor may be taken as constant (Cw = 0.94 [48, 49,
51]) for the motors featuring the topology described by Eq. (3.1). Even though,
other topologies with high winding factors exist (see Eq. (3.22)), the one in Eq.
(3.1) may be used as a representative for the analysis purposes of this section.

It is useful to define the motor rotor orientation in terms of mechanical degrees
(denoted by θm) and electrical degrees (denoted by θe) because in a singlemechanical
rotor rotation there are p

2 electrical cycles [42]. Therefore, θm =
p
2θe. This chapter

extensively uses the concept of electrical degree.

Motors with the construction of Fig. 3.6 and slot-pole combination described by
Eq. (3.1), exhibit sinusoidal bEMFwith few low-magnitude harmonics provided the
magnet width is around 120 electrical degrees. This corresponds to approximately
2
3 of the rotor surface being covered with permanent magnets, while approximately
1
3 of the rotor surface is equally distributed between the magnets to create physical
separation between them (see Fig. 3.6). Reducing themagnet width leads to reduced
torque and increased torque ripple. On the other hand, increasing the magnet width
towards 180 electrical degrees causes increasing flux leakage between adjacent
magnets and/or the tooth tips, which worsens the torque ripple with no significant
increase in the produced torque. The effect of the magnet width of the motor torque
performance is analyzed using FEA in Sec. 3.5.1. Once the other motor dimensions
are determined, the tooth tip width, wtip, may be optimized using electro-magnetic
FEA in order to minimize the cogging torque, torque ripple, etc, as shown in Sec.
3.6.1.

Flux-linkage model for motor torque and bEMF induced voltage

Let Nturns be the number of winding turns per stator tooth, assuming no parallel
paths. That is, the windings comprising a given phase are made of a single long
magnet wire that is wound around all the teeth belonging to the phase. Parallel paths
(magnet wires that belong to the same phase and travel around the teeth in parallel)
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are treated as wire strands, and thus, the phase magnet wires are modeled as a single
Litz wire. Therefore, in this chapter, the windings may not have parallel paths but
may have strands. This modeling approach is quite useful as it avoids introduction
of magnet wire gauge (measure of wire size) in the trade-off analysis.

The phase flux linkage (the flux linked by the coils of a motor phase winding) is
given by [80]:

ψ(θm) = −Ψcos(
p
2
θm)

Ψ =
q
3

NturnsCwBqcl lmwt,
(3.2)

where Ψ is the peak value of the phase flux linkage, Bq is the peak flux density
in the teeth, lm is the motor out-of-plane thickness, wt is the in-plane thickness of
the teeth (see Fig. 3.6) and cl is the lamination fill factor. For a given air gap, ag
(typically .5mm to 1mm), magnet thickness, tm, and magnet residual flux density or
remanence, Br , the maximum air gap flux density may be simulated using electro-
magnetic FEA or approximated using the models of [42, 85] (See Eq. (3.18)). Then,
assuming the rotor yoke thickness yr is sufficient so that the yoke is not saturated,
the air gap flux density may be used to choose wt so that Bq is in the range 1.6T to
1.8T (maximum value with no saturation) for the case of electrical steel laminated
stator.

The phase bEMF voltage may be found by differentiating the flux linkage in Eq.
(3.2) w.r.t. θm [80]. The phase induced voltage is then given by:

Vphase = Kphωmsin(
p
2
θm)

Kph =
Cw

6
pqNturnsBqcl lmwt,

(3.3)

where Kph in the phase bEMF constant and ωm =
dθm
dt is the motor mechanical

rotational speed. Then assuming balanced three-phase brushless-DC motor driving
(three-phase balanced sinusoidal phase currents), the motor torque may be found,
using the equivalence between the motor torque and bEMF constants [80]:

Tm = Kt Im =
3
2

KphaseIm, (3.4)

where Im is the motor synchronous current (which is equal to the peak of the slot
currents under the assumptions and definitions in this section) and Kt =

3
2 Kph is the

synchronous motor torque constant given by:

Kt =
Cw

4
pqNturnsBqcl lmwt (3.5)
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Eq. (3.5) describes how the motor structure determines its torque production per
unit synchronous current. From the geometry of Fig. 3.6, the slot area may be
approximated as:

Aslot =
π

q

( (dout

2
− ttip

)2
−

(din

2
+ ys

)2
)
− wt lt, (3.6)

where din and dout are the stator inner and outer diameters, respectively, ys is the
stator yoke thickness, ttip is the tip tooth thickness, and lt is the stator tooth length
(which is equal to the slot depth) and is given by lt =

dout
2 − ttip −

din
2 − ys.

The motor slot resistance is:

Rslot = N2
turns

σlm
c f Aslot

, (3.7)

where σ is the winding resistivity and c f is the bare copper slot fill factor (usually
in the range 0.3 − 0.4 for low cost manufacturing). The factor N2

turns appears in Eq.
(3.7) because in the slot there are Nturns magnet wires, connected in series, each
with Aslot

Nturns
area. Then, the motor phase resistance is:

Rphase =
4q
3

(
kc

2πrw
lmq

+ 1
)
Rslot, (3.8)

where kc is a winding coefficient that quantifies the winding end turns’ length [48]
and rw is the average radius of the windings and may be approximated as:

rw =
dout

2 − ttip +
din
2 + ys

2
. (3.9)

The synchronous motor resistance Rs and terminal resistance Rterm are:

Rs =
3
2

Rphase and Rterm = 2Rphase (3.10)

The terminal resistance, Rterm, is included here mainly because it is the resistance
parameter that can always be experimentally measured and is usually quoted in
motor datasheets.

Eq. (3.4) suggests that in order to calculate the motor output torque, one requires
the motor synchronous current, Im. As discussed in Sec. 3.2, motor torque is
defined w.r.t. the rated copper loss at stall, Pcu. This is particularly advantageous
for robotic applications (see Sec. 3.2). Furthermore, the performance of different
motor designs may be compared in a systematic way, provided the same copper loss
at stall, Pcu, is assumed. The synchronous current Im is:

Im =

√
Pcu

Rs
. (3.11)
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The phase currents are assumed to be balanced sinusoids with amplitude Im. Then,
the motor rated torque is:

Ts =
Cw

4
pqBqcl lmwt Nturns

√
Pcu

Rs
. (3.12)

Eq. (3.12) describes how the design parameters affect the produced motor torque
for a given value of copper loss at stall, Pcu, and is thus, extensively used in the rest
of the chapter.

The motor phase self-inductance is defined:

Ls f =

q
3 N2

turns

Rm + Rg

(3.13)

where Rm and Rg are the air gap and magnet reluctance, respectively, given by [42]:

Rm =
tm

µRµ0wmlm
and Rg =

ag
µ0wmlm

, (3.14)

where µ0 and µR are the permeability of free space and relative permeability of the
magnets, respectively. The phase self-inductance quantifies the the phase winding
MMF-generated flux that "travels" from the stator, through the rotor and back to
the stator in the closed magnetic circuit. On the other hand, the phase leakage
inductance quantifies the phase winding MMF-generated flux that "leaks" between
the teeth and may be approximately calculated using the method described in [42]
for the geometry in Fig. 3.6 by:

Lkg =
q2

3
N2

turns(µ0lm)
( ttip

2πdout − qwtip︸             ︷︷             ︸
due to tips of teeth

+
lt

2π(din + ys +
lt
2 ) − qwt︸                        ︷︷                        ︸

due to bodies of teeth

)
(3.15)

Then, the motor phase inductance is:

Lph = Ls + Lkg . (3.16)

In Eq. (3.16), the end turns contributions to the inductance are neglected which is
easily justified by the tightly packed end turns of outrunner motors (see Fig. 3.3).

The motor synchronous inductance is [80]:

Ls =
3
2

Lph. (3.17)
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Generally, motor inductance is not characterized as an important design parameter.
However, when motors with high pole count are considered, the motor inductance
may become a limiting factor. This point is further discussed in Sec. 3.4.2, where
important insights are gained regarding how themotor inductance components (self-
inductance versus leakage inductance) affect the high pole countmotor performance.
Eq. (3.16), Eq. (3.17) and Eq. (3.14) suggest that reducing the air gap and magnet
thickness and increasing the magnet width lead to inductance increase.

The reluctance expressions of Eq. (3.14) may be used to find the peak of the air gap
flux density [42, 85]:

Bg =
Rm

Rm + Rg
Br . (3.18)

The armature reaction, that is, the magnetic field flux and flux density in the air gap
at the tip of a stator tooth due to the current in its phase winding are characterized
by the following amplitudes [80]:

Φc =
Nturns Im

Rg + Rm

Bc =
(µRµ0lm)Nturns Im

tm + µRag
, respectively.

(3.19)

Eq. (3.19) is used in Sec. 3.4.2 to describe how the motor pole count affects
saturation and rotor losses.

For a rated bus voltage, Vrated , and rated speed, ωrated , determined by the desired
motor application, the number of turns per tooth may be calculated as:

Nturns =
Vrated

Cw

2
√

3
pqBqcl lmwtωrated

. (3.20)

Thus, the rated speed, ωrated , corresponds to the maximum theoretical speed at no
load. For a given magnet wire gauge, the strands may be calculated from the slot
fill factor and slot area:

Nstrands =
c f Aslot

Nturnsdwire
, (3.21)

where dwire is the bare copper wire diameter. Eq. (3.20) and Eq. (3.21) suggest
that in most cases Vrated , c f and dwire (or the magnet wire gauge) may need to
be modified so that Nturns and Nstrands are natural numbers corresponding to a
physically realizable motor design.
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Finally, additional motor designs similar to those defined by Eq. (3.1) may be
derived using:

Q = 9 + kq3 P = Q ± 1

q = ksQ p = ksP
(3.22)

For these motors ks ≥ 2, otherwise unbalanced radial motoring forces occur. How-
ever, designs with ks = 2 in Eq. (3.22) may also be derived using Eq. (3.1).
Therefore, for the purposes of initial design, it is sufficient to consider only the
motors defined by Eq. (3.1).

Space vector modulation (SVM) and field oriented control (FOC)

This chapter is only concerned with electro-mechanical design of high performance
motors and does not consider the design of the driver circuitry and its control.
However, it is useful to briefly restate some of the assumptions in this section in
terms of vector control for readers that are familiar with the concept. In this chapter,
three phase balanced motor driving refers to three phase sinusoidal currents with
zero direct-axis component of the current space vector. Thus, the synchronous
current, Im, corresponds to the quadrature direction current. Knowledge of SVM
and FOC is not necessary to understand the content of this chapter, therefore, these
concepts are not further described here. The interested reader is encouraged to
consult the excellent SVM and FOC reviews in [42, 74, 80].

Motor loss modeling

In addition to the copper loss at stall, Pcu, the velocity dependent core losses and AC
copper losses need to be taken into account. The core loss is traditionally separated
into hysteresis, eddy current and excess loss:

Pco = Ph + Pe + Pa = Kh f B2 + Ke f 2B2 + Ka f 1.5B1.5, (3.23)

where f is the sinusoidal excitation frequency and B is the corresponding flux
density amplitude. Kh, Ke, Ka are the hysteresis, eddy current and excess loss
coefficients. In the case of non-sinusoidal excitation, Fourier analysis techniques in
combination with Eq. (3.23) may be used to estimate the core loss [62]. In motors,
the shape of the excitation is heavily dependent on the motor construction and varies
significantly within the motor components. The magnetic excitation may also be
characterized by high order harmonics.
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Given the high order dependence of the core losses on the flux excitation amplitude
(see Eq. (3.23)), the core loss in the yoke may be reduced by an order of magnitude
compared to the core loss in the teeth, provided the stator yoke thickness ys in the
range of 1.5wt to 2wt . As one may observe in Fig. 3.7, for such designs, the flux
density levels in the yoke are reduced significantly as the flux from the teeth "splits
up" which is characteristic of motors with concentrated windings. In this case the
teeth account for the majority of the motor core loss, and thus, the core loss is
proportional to the teeth length, lt (or equivalently, to the slot depth).

Figure 3.7: Flux density distribution in
a motor. Darker colours correspond to
higher flux density.

Up to this point in the chapter, copper
losses are considered independent of the
motor speed. However, proximity and
skin effects may lead to a substantial
copper loss increase at higher speeds
in motors with high pole count. The
modeling technique of these effects de-
scribed in [42] is particularly useful for
the case of outrunner motors with con-
centrated windings. Without repeating
the analysis in [42], proximity and skin
effects are proportional to f 2

e , where fe
is the electrical frequency which is re-
lated to the mechanical rotational speed
ωm by:

fe = pωm/(2π). (3.24)

These parasitic losses may be sup-
pressed by reducing the magnet wire
gauge (and thus, increasing the number of strands) and decreasing the slot depth.

From motors perspective, the fundamental core loss frequency f in Eq. (3.23) is
given by the electrical frequency fe.

Rotor losses in motors with concentrated windings are significantly higher than
the rotor losses in motors with distributed windings due to the presence of MMF
harmonics [68–70]. The expressions for the armature reaction and MMF in Eq.
(3.19) are quite useful in determining how the motor design parameters affect the
rotor losses, as discussed in the following section.
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3.4 Motor Design Insights, Trade-offs and Guidelines
The analytic model of Sec. 3.3.3 may be used to gain valuable insight into the design
of outer rotor motors with concentrated windings. The objectives of this section
are:

• to determine how the critical outer rotor motor design parameters affect per-
formance (slot count in Sec. 3.4.1, pole count in Sec. 3.4.3 and teeth width
in Sec. 3.4.4).

• to show that no fundamental limitations prevent employing motors with high
pole count in high speed applications (Sec. 3.4.2).

• to formulate high level motor design trade-offs concerning motor torque,
torque density, compactness, efficiency, etc. in Sec. 3.4.3.

• to develop a set of application specific motor design guidelines, motivated by
the introduced design trade-offs, that may be beneficial for the development
of high performance actuators in Sec. 3.4.5.

• to motivate the choice of a design metrics that allows consistent motor perfor-
mance comparison in Sec. 3.4.6.

3.4.1 Effect of the Slot Count on the Motor Torque
Eq. (3.1) and Eq. (3.22) suggests that for a given number of poles, p, air gap size,
magnet size and grade, etc., multiple valid options for the number of slots, q, may
exist that lead to motor designs with high winding factor, Cw, and have the same
main dimensions (din, dout , ys, yr), teeth shape and size, etc. Prior motor design
works in the literature do not provide clear guidelines how the number of slots affects
a motor’s performance and suggest that only the winding factor and cogging torque
consideration suffices [49, 51]. This section introduces a novel geometry based slot
factor, Cq(q), which may be used to rapidly determine which value for q leads to the
outer rotor motor design with the highest torque. The analysis of this section leads
to useful trade-off insight related to choice of the motor slot count.

Starting with Eq. (3.6) and rearranging leads to:

Aslot = CAs

1 − CAqq

q
, (3.25)

where CAs = π
( ( dout

2 − ttip
)2
−

( din
2 − ys

)2
)
and CAq =

wt

(
dout

2 −ttip−
din
2 −ys

)
π

( (
dout

2 −ttip
)2
−
(
din
2 −ys

)2
) .
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Clearly, CAs > 0 and CAq > 0 for outer rotor motors with concentrated windings
(Fig 3.6). Next, combining Eq. (3.10) and Eq. (3.7), leads to:

Rs = CRN2
turns

(
1 + Ckcq

) 1
Aslot

, (3.26)

where CR =
4σkcπrw

cf
and Ckc =

lm
kc2πrw

= 0.171 lm
rw

for double layer concentrated
windings [48]. Clearly, CR ≥ 0 and Ckc ≥ 0. Then, combining Eq. (3.26) and Eq.
(3.25), leads to:

Rs = CRCAs N2
turns

q(1 + Ckcq)
1 − CAqq

, (3.27)

Finally, combining Eq.(3.27) and Eq. (3.12) leads to:

Ts = Cw

√
Cq(q)︸      ︷︷      ︸

function of q

×

√
Pcu

4
√

CRCAs

pBqcl lmwt︸                    ︷︷                    ︸
independent of q

(3.28)

where Cq(q) =
q(1−CAq q)
(1+Ckc q) .

Eq. (3.28) shows that Ts ∝ Cw

√
Cq(q), and therefore, the slot factor, Cq(q), may be

used to determine which motor would deliver most torque among the motors that
have the same main dimensions, teeth and pole count, p.

Further insight may be gained for motor designs characterized with high pole count
and reasonable out-of-plane thickness. These are of main interest in the later
sections of the chapter. For Neodymium Iron Boron (NdFeB) Magnets with energy
product larger than 32 MGOe (NdFeB magnets of grades higher than N32), and for
any reasonable choice of the motor slot depth, the following lower bound may be
derived from the geometry of Fig. 3.6 and Eq. (3.25):

CAq ≥
0.3
p
. (3.29)

Differentiating Cq in Eq. (3.28) w.r.t. q leads to dCq

dq =
1−CAq q(2+Ckc q)
(1+Ckc q))2 . Then,

substituting the lower bound from Eq. (3.29) shows that

1 − [CAqq(2 + Ckcq)]|q=p < 1 − 0.3(2 + 0.171
plm
rw
).

Therefore, dCq

dq |q=p < 0 provided plm
rw

> 7.8. This condition is satisfied for most mo-
tors with higher number of poles, reasonable width to diameter ratio and reasonable
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slot depth. Then, it may be concluded that for such motor designs, it is beneficial
to choose the motor designs with P = Q + 2 in Eq. (3.1) and P = Q + 1 in Eq.
(3.22), as these motors would deliver higher torque for the same rated copper loss,
Pcu. These motors would also have lower mass due to the usually low slot fill factor
and would be easier to manufacture due to the lower number of teeth to wound.

For the very rare case of thin motors with large diameter, low number of poles and
shallow slots, it might be the case that dCq

dq |q=p > 0. These motors could benefit
form having higher number of slots. However, such motors are of little practical
use due to their relatively high winding end turns resistance, which results in torque
disadvantage. In the rest of the chapter only motors whose design satisfies P = Q+2
in Eq. (3.1) or P = Q + 1 in Eq. (3.22) are considered.

This analysis also suggests that outrunner motors could benefit from higher sym-
metry (higher ks) due to the corresponding lower number of slots. On the other
hand, motors with lower symmetry (or lower ks) have lower cogging torque and
simpler manufacturing as the slots of a given phase “cluster” together [81]. Thus,
lower values of ks result in phase slot clusters that may be continuously wound.
This illustrates a fundamental motor design trade-off related to the motor cogging
torque requirements. In application such as robotics where low cogging torque is
usually desired, motors with lower symmetry may be preferred. On the other hand,
in application such as quadrotors the cogging torque is not important and higher
symmetry designs are advantageous.

The slot clusters associated with a given phase may be wound in parallel rather
than series. Thus, these motor designs are constructed from a number of identical
motor segments (or "cake" slices) that produce torque in parallel from electrical
stand point. The winding connections of such a motor construction are sometimes
referred to as parallel circuits in the literature. The maximum number of parallel
circuits possible is given by 2ks. Parallel circuits are useful as they allow reduction
of the number of strands or the gauge of the windings magnet wire in high power
motors wired for low voltage.

Provided the stator yoke, ys, is thick enough so that the flux levels in the yoke are
significantly lower than those in the teeth (see losses discussion in Sec. 3.3.3 and
Fig. 3.7), the majority of the core loss is generated in the teeth. In this case, the
core loss is proportional to the number of slots, q. Therefore, motors with lower slot
count may also benefit from lower core loss, and thus, better high power efficiency.
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Finally, Eq. (3.13), Eq. (3.17) and Eq. (3.20) suggest that Ls f ∝
1
q . Therefore,

motors with lower slot count also feature higher self-inductance, which may be
beneficial in some cases. Motor inductance is further discussed in the following
section.

3.4.2 High Pole Count Motors in High Speed Applications
Traditionally, motors with high pole count are considered suitable only for low
speed traction or direct drive applications [55, 60, 81]. However, there is no hard
limitation that prevents their use in high speed applications even when used with
BLDC drivers with 120◦ commutation.

To show this, consider the effects of changing the number of poles while the stator
outer diameter, teeth length and magnet thickness are fixed. First, Eq. (3.1) and
Eq. (3.22) suggest that approximately q ∝ p. From the geometry of Fig. 3.6, it can
be shown that the product qwt is approximately constant, therefore, wt ∝

1
q . Then,

Eq. (3.5) suggests the motor torque constant is Kt ∝ p. Next, Eq. (3.20) suggests
that the number of turns is Nturns ∝

1
p as the rated motor voltage, Vrated , and speed,

ωrated , are preserved. However, the combined magnet and air gap reluctance is
Rm + Rg ∝ p from Eq. (3.14) because wt ∝

1
q and approximately q ∝ p. Therefore,

substituting these in Eq. (3.13) suggests that approximately Ls f ∝
1
p2 . Also Eq.

(3.15) suggests that Lkg ≈ const, that is, increasing the number of poles does not
affect the phase leakage inductance. The characteristic structure of the outrunner
motor (see Fig. 3.6) suggests that at low pole count the motor phase inductance is
dominated by the self-inductance component, due to the rapidly increasing distance
between the teeth and the resulting large gap between the tooth tips. The scaling
of the inductance components with number of poles of the motor has important
implications, as discussed below.

The total phase slot area is approximately constant and the motor resistance is not
significantly affected by changing the pole count. In practice, Eq. (3.26) suggests
that the motor resistance decreases with increasing the number of poles due to
reduction of the windings end turns, however, this effect may be ignored for the
purposes of this discussion.
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The following conclusions may be drawn from the above analysis:

• increasing the pole count, p, up to a threshold value, pL , which is characterized
by Ls f = Lkg, improves the motor reactive power and power factor.

This follows from the fact that the inductive phase impedance at a motor
mechanical speed ωr is given by XL = 2πLph fe = 2π(Ls f fe + Lkg fe), and
Ls f ∝

1
p2 , while Lkg = const and fe ∝ p (see Eq. (3.24)). Therefore, XL

decreases for Ls f > Lkg. The reactive power decreases, while the active
power is approximately preserved, which leads to power factor increase.

On the other hand, if the pole count is further increased beyond pL , then
Ls f < Lkg and XL increases which deteriorates the motor reactive power and
power factor.

• increasing the pole count, p, leads to decrease of the motor electrical open
loop time constant, τe. This follows form the fact that τe =

Ls f +Lkg

Rph
. However,

increasing p beyond pL leads to asymptotic convergence of τe →
Lkg

Rph
. The

time constant is a crucial parameter determining the motor current and torque
ripple in 120◦ commutation, sometimes referred to as BLDC in the literature.
If the time constant is too large compared to the commutation switching
frequency, BLDC may lead to increased motor losses due to the open loop
commutation. In such cases, the motor inductance becomes a performance
limiting factor. However, if FOC is utilized instead, the time constant is not
of major importance due to the closed loop phase current control.

From practical motor design perspective, the tooth tip thickness scales with the
magnet size so that the flux density levels are preserved, therefore, the tooth tip
contribution to the leakage inductance in Eq. (3.15) scales with 1

p . Eq. (3.15)
suggests that the teeth body contribution to the leakage inductance may be reduced
by decreasing the length of the stator teeth and or (equivalently reducing the slot
depth). Therefore, motors of arbitrary high pole count may be designed to have
favourable reactive power, power factor and electrical open loop time constant
provided the leakage inductance is not dominant.

As demonstrated with the aid of electro-magnetic FEA in Sec. 3.5.3, torque degra-
dation occurs when flux leakage levels in the motor components increase due to
increasing of the motor pole count. The relative increase of the phase leakage
inductance compared to the phase self-inductance, is an indication of such increase
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in the flux leakage levels. Therefore, outer rotor motors that have relatively high
leakage inductance are not usually practical. The flux leakage issues and their
suppression are further discussed in Sec. 3.5.3.

Eq. (3.16), Eq. (3.14) and Eq. (3.18) suggest that the motor self-inductance, Ls f ,
may be increased by decreasing the air gap thickness, ag, without modifying the air
gap flux density, Bg, provided the magnet thickness, tm, is decreased correspond-
ingly. Thus, the motor self-inductance may be manipulated directly by changing the
air gap thickness and magnet thickness. Usually, the size of the air gap is chosen as
small as possible given the manufacturing and assembly tolerances.

This analysis also suggests that motors intended for high speed applications that
have high number of poles are characterized by high electrical frequency and low
inductance which are both challenging for the driver circuitry. The high electrical
frequency requires fast control, especially for FOC. The low inductance may lead to
large current ripple, and increased copper losses and requires high PWM frequency
and possibly additional filtering. Increasing the motor phase inductance may be
used to reduce PWM current ripple. On the other hand, reducing the motor phase
inductance may be used to reduce the motor time constant and improve the high
speed commutation.

The rotor yoke thickness, yr , (see Fig. 3.6) is determined by the magnet strength
and width so that the rotor yoke is not saturated, that is, the yoke reluctance does
not limit the airgap flux density. Therefore, for a given magnet grade, the motor
rotor inertia is proportional to the magnet thickness, tm. Thus, there are important
design trade-offs to consider in the choice of the air gap thickness, magnet grade,
thickness, width etc. in applications that benefit from lower motor inertia.

Finally, an important motor aspect that is usually overlooked in PM motors is the
armature reaction. The assumptions and approximations from earlier in the section
suggest that Nturns ∝

1
p and the motor delivers the same torque regardless of its pole

count, p, for a given values of the synchronous current, Im. Therefore, the windings
MMF is inversely proportional to p, and Eq. (3.19) leads to Φc ∝

1
p2 and Bc ∝

1
p .

Therefore, increasing the number of poles leads to significant reduction in the motor
armature reaction. Dynamic robotic applications that are characterized by the
occurrence of large forces due to impacts or contacts with the environment, such as
legged robots, require actuators that can sustain loads many times their rated torque
for short time intervals [30]. Under high winding MMF, the permanent magnets
of a SMPM motor may be partially demagnetized, which causes permanent motor
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damaged and loss of performance. Furthermore, magnetic saturation of the teeth
due to the windings MMF may cause increased torque ripple and reduced torque,
which limits the motor peak torque capability. The windings MMF also introduces
flux density harmonics in the teeth that may lead to a substantial contribution
to the motor core losses and especially to the rotor losses as previously discussed.
Therefore, it may be concluded thatmotors with high pole countmay have significant
advantages in terms of dynamic robotic applications due to their reduced windings
MMF or equivalently reduced armature reaction (see Eq. (3.19)). In fact, Bc ∝

1
p

suggests that the peak torque is Tpeak ∝ p. However, similar to the phase inductance
discussion above, increased levels of flux leakage may lead to deviation from this
analytic conclusion and lower than expected performance (see Sec. 3.5.1).

3.4.3 Performance Trade-offs Related to Motor Pole Count
Increasing the motor pole count, p, may lead to significant motor mass and rotor
inertia reduction. On the other hand, the motor electrical speed, fe, is proportional
to the number of poles, p, (see Eq. (3.24)), which suggests that motors with high
number of poles may suffer from excessive core losses (see Eq. (3.23)). This section
discusses this design trade-off from a practical perspective to motivate advantageous
high torque density motor designs.

Similar to the previous section, consider the effect of increasing the number of
poles p, while the motor inner and outer diameters, din and dout , are preserved (see
Fig.3.6), and the magnet grade, thickness and air gap remain the same. Following
the assumptions of Sec. 3.3.3, increasing the pole count, p, causes proportional
decrease of the magnets width, wm. Smaller magnets require thinner rotor yoke
so that the flux density levels in the yoke remain the same as suggested by the
flux density distribution in Fig. 3.7 . Therefore, the rotor yoke mass and inertia
proportionately decrease with increasing pole count, p. The magnet mass remains
the same as the total amount of magnet material is not reduced provided the air
gap thickness is preserved. Then, for a given motor size and magnet thickness,
increasing the pole count beyond some threshold value is expected to have limited
effect on the rotor mass and inertia.

The teeth width, wt , and teeth tip thickness, ttip, and width ,wtip, are determined
by the magnet width as discussed in Sec. 3.3.3. Therefore, these variables are
proportionately decreased with increasing pole count. Thinner teeth require thinner
stator yoke so that the flux density levels in the yoke are the same. The total
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teeth mass remains approximately the same provided the teeth length is unaltered.
However, the yoke mass is proportionately decreased with an increasing number of
poles. The thinner stator yoke and tooth tips also lead to higher slot area (Eq. (3.6)),
and thus, lower slot resistance (Eq. (3.7)). Therefore, increasing the motor pole
count may lead to significant torque density increase.

Figure 3.8: Plot of normalized motor sta-
tor mass against pole count.

The mass of the stator usually com-
prises a major part of the total motor
weight. To demonstrate the effect of
the pole count increase on the stator
mass, consider an outer rotormotor con-
struction with 14 poles that has 25% of
its stator mass contributed to the teeth.
Such weight distribution would be typ-
ical for low pole count motors. Fig. 3.8
show the stator mass reduction associ-
ated with increasing the motor pole count, p. The figure suggests that increasing
the motor pole count beyond a threshold value leads to small mass reduction in a
diminishing returns fashion. Further advantages of increasing the pole count are
related to the resulting thinner teeth tips and stator yoke which improves the motor
compactness, and shorter windings end turns which also improves the motor axial
length and reduces the motor resistance.

Increasing the motor pole count, however, leads to core loss increase. Eq. (3.23)
and Eq. (3.24) suggest that the core loss components scale by:

Ph ∝ p Pe ∝ p2 Pa ∝ p1.5 (3.30)

provided consistent flux density levels are achieved by all designs. The AC com-
ponent of the copper loss also scales quadratically with the electrical frequency as
shown in [42]. Thus, increasing the number of poles may significantly deteriorates
the core and copper losses. However, under the assumption that the stator yoke is
thick enough so that the majority of the core losses are generated in the teeth, high
efficiency motor designs with high pole count are still possible.

For example, consider a q = 12 slot, p = 14 pole motor that operates at 95%
efficiency at a given angular velocity with equal core and copper loss contributions
to the total loss. Eq. (3.30) suggests that if the motor poles are increased to p = 28,
themotor efficiency at the same speed and loadwould be at least 90%. However, Fig.
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3.8 suggests that the motor with p = 28 poles has almost 40% lower mass than the
p = 14 pole motor. Thus, depending on the application the p = 28 pole motor may
have considerable performance advantages as discussed in Sec. 3.2. Furthermore,
reducing the teeth length leads to proportional reduction in the motor core loss
which may be used as means to balance the copper and core loss contributions to
the total loss in order to maximize the motor performance.

3.4.4 Torque and Torque Density Dependence on the Shape of the Teeth
As described in Sec. 3.3.3, the width of the teeth is chosen so that the flux density
in the teeth is in the range of 1.6T to 1.8T . The function of the tooth tip is to realize
consistent air gap thickness along the magnet width and concentrate the flux in the
tooth to the desired flux density level as shown in Fig. 3.7. The air gap flux depends
on the magnet thickness, width, strength, etc. As shown in Sec. 3.5.1, magnet
flux leakage limits the maximum air gap flux density that may be realized. Thus,
there is a practical limit to the maximum flux in the teeth in the case of surface
mount permanent magnets. However, higher air gap flux density may be achieved
by flux concentration in some interior permanent magnet (IPM) rotor designs [54,
75]. Therefore, the analysis of this section assumes the desired flux density levels
may be achieved for arbitrary width of the teeth. The objective of this section is to
investigate how the width of the teeth affects the torque and torque density under
these assumptions. Thus, the analysis also implicitly provides insight into how the
magnet shape and strength affect the motor performance.

Combining, Eq. (3.7), Eq. (3.10) and Eq. (3.12) leads to:

Ts ∝
wt
√

Rs
∝ wt

√
Aslot ∝ wt

√
Atot − ltwt,

Atot =
π

q

( (dout

2
− ttip

)2
−

(din

2
− ys

)2
)
,

lt =
(dout

2
− ttip −

din

2
− ys

) (3.31)

where Atot is the combined area of the a slot and a tooth (the region, enclosed by
the yellow contour in Fig. 3.9). Then, dTs

dwt
=

2Atot−3ltwt

2
√

Atot−ltwt
and dTs

dwt
≥ 0 provided

karea = ltwt ≤
2
3 Atot , where karea is the ratio of the tooth body area to slot area.

Therefore, the maximum torque is achieved when the area of the tooth body is
approximately twice the area of the slot.

However, in order to preserve the desired flux density levels, teeth with wider body
require thicker stator yoke which both lead to mass increase as the mass density of
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the slots is much lower than the mass density of the teeth and the yoke (due to the
lower copper fill factor). Therefore, it is beneficial to consider how the motor torque
density is affected by varying the width of the teeth.

As discussed in Sec. 3.3.3 and visualized in Fig. 3.7, the rotor yoke thickness, tooth
tip width, tooth body width and stator yoke are all proportional to the magnet width
so that the prescribed flux density levels in these regions may be realized. Let k f e

be the ratio of the combined mass of the rotor, the stator teeth and yoke, to the mass
of the body of the teeth. Typically, k f e is in the range k f e = [2, 5], although higher
values are possible for low performance designs. Then, with the aid of Fig. 3.9 and
Eq. (3.7), the motor mass may be approximated as:

Mm ≈ q
(

kcuρcu(Atot − wt lt)︸                 ︷︷                 ︸
mass of windings

+ k f eρ f ewt lt︸       ︷︷       ︸
mass of steel and magnets

)
,

therefore,

Mm ∝ kcuρcu Aslot + (k f eρ f e − kcuρcu)karea

(3.32)

where kcu = (kc
2πrw
lmq + 1)c f , and ρ f e and ρcu are the densities of electrical steel and

copper, respectively.

Figure 3.9: Motor structure. The com-
bined area of a slot and a tooth body is
enclosed in the yellow contour. The com-
bined weight of the magnet and steel ma-
terial enclosed by the red contour scales
proportionally to the weight of the tooth
body.

The coefficient kcu takes into account
the mass of the winding end turns and
the slot copper fill factor. For the prac-
tical designs considered in this chapter,
kcu is in the range kcu = [0.3, 1.0]. The
lower values correspond to motors with
low slot fill factor, high number of poles
and high out-of-plane relative thickness.
The higher range of values correspond
to motors with high slot fill factor, low
number of poles and low relative out-
of-plane thickness. The motor torque
density is then:

Tρ ∝
karea
√

1 − karea

kcuρcu + (k f eρ f e − kcuρcu)karea
(3.33)

Fig. 3.10 shows plots of normalized
torque against karea for different values
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of k f e and kcu. The plots suggest that motors with low k f e benefit from having
stator teeth with wider bodies. Such motors usually have higher number of poles
and thinner stator yoke. On the other hand, motors with higher values of kcu, also
benefit from having stator teeth with wider body. However, these usually have low
number of slots, and thus, it is not readily possible to design motors with high value
of kcu and low value of k f e at the same time. Therefore, for most practical motor
designs the highest torque density would be achieved for karea in the range 0.3−0.4,
which may be readily realized with high strength surface mount rare earth magnets
and deep enough slots.

(a) kcu = 0.4

(b) kcu = 0.7

(c) kcu = 1.0

Figure 3.10: Plots of normalized motor
torque against karea for different values
of k f e and kcu

As discussed before, some IPM rotors de-
signs lead to air gap flux density increase
through flux concentration. The plots of
Fig. 3.10 suggest that these may be used
to achieve higher torque density with shal-
low slots, and thus, compact stator de-
sign. Furthermore, the analysis earlier in
this section suggests that these also could
have higher torque. However, in order to
achieve flux concentration, the magnets
in IPM rotors need to be radially oriented
rather than circumferentially oriented as
in SMPM rotors. The increased thick-
ness and mass of such IPM rotor leads to
increased motor outer diameter and out-
put inertia. Therefore, IPM motors are
not expected to practically have significant
torque and torque density advantages. To
this end, the performance of an IPM mo-
tor is compared to the performance of a
SMPM motor of same outer diameter in
Sec. 3.5.4.

Froma practical point of view, the analysis
of this section suggests that the slot depth
and teeth size may be optimized using the
model of Sec. 3.3.3 and iterative FEA for maxim torque density given motor design
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constraints.

3.4.5 Application Specific Design Guidelines
The motor performance trade-off analysis that was summarized above, motivates
the following general application specific design guidelines:

• For applications that are not weight sensitive such as EVs, motors with lower
pole count and deeper teeth are preferred because:

– They deliver higher torque for the same air gap diameter and stator axial
length. Thus, they require less electrical steel for their construction.

– They have low core and AC copper loss, and thus, are efficient at all
speed and load duty cycles.

– They have higher inductance and may be driven with cheaper and less
sophisticated off-the-shelf electronics due to the low electrical frequency.

• For applications that are weight sensitive and require operation at high load
and speed duty cycles such as drones, motors with higher pole count and
shallower teeth are preferred because:

– They have significantly higher torque densities with good efficiency
which offsets the required higher driver complexity and cost due to the
high electrical frequency.

– They have higher compactness at the cost of higher slot current density
due to the lower slot area. The increased void space in the stator may be
used for bearings, sensors, etc.

• For application that are weight sensitive but operate at low to high load and
low speed duty cycles such as robotics (see Sec. 3.2), motors with higher pole
count are preferred because:

– They have significantly higher torque densities which offsets the higher
driver complexity and cost.

– When packaging and compactness are crucial and higher torque with
lower air gap diameter is preferred, deeper slots may be used as the core
loss and AC copper loss contributions over a cycle may be quite limited.

– Shallower slots may be used so that space is available in the motor
interior for motor bearings, sensors, brake, etc.
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3.4.6 Motor Design Performance Metrics
The discussion in this section suggests the following application specific perfor-
mance metrics:

• EVs:

– Core loss at maximum rated speed and no load. The core losses in the
stator are primarily due to the motion of the permanent magnets and
the armature reaction contribution to the losses is, generally, low. The
motor idle current is, generally, a good measure of the motor core loss.

– Rated torque according to Eq. (3.12).

• Drones:

– Rated torque according to Eq. (3.12).

– Corresponding torque density.

– Efficiency at rated speed and rated torque.

• Robotics:

– Rated torque according to Eq. (3.12).

– Corresponding torque density.

– Cogging torque. In dynamic applications where backdrivability is im-
portant, the motor cogging torque may be a major design factor.
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3.5 Verification of the Analytic Model and Design Approach
This section provides verification of the analytic results of Sec. 3.3.3. First, Sec.
3.5.1 verifies one of the major flux linkage model assumptions related to how
the flux in the teeth varies when the rotor magnets width is varied. Next, Sec.
3.5.2 demonstrates the effectiveness of the slot factor in determining the motor that
produces the highest torque among all motors of same dimensions and number of
poles. Next, Sec. 3.5.3 discussed the trade-offs, characteristic of motor designs with
high pole count. The design guidelines of Sec. 3.3.3 are also verified. Sec. 3.5.4
compares the performance of an IPM motor and a SMPM motor that have the same
other diameter, in order to demonstrate that IPM motors do not have significant
advantages in terms of torque density.

Figure 3.11: Colour bar of mag-
netic flux density for all FEA sim-
ulations in this chapter.

For all motor designs, M15 electrical steel lami-
nated stators and rotors are assumed. The corre-
sponding lamination factor is cl = 0.95, which is
standard for .35mm thick lamination sheets. For
the windings, AWG 24 magnet wire with slot
fill factor, c f = 0.32, is assumed and NdFeB
magnets are assumed.

The 2D electro-magnetic FEA analysis results of
this section are generated with FEMM software
[86]. The generic motor geometry of Fig. 3.6 is
coded to allow rapid and parallelizable analysis.
Fig. 3.11 shows themagnetic flux density colour
bar corresponding to all electro-magnetic FEA simulations.

3.5.1 Magnet Width Effect on Motor Torque
This section uses electro-magnetic FEA to show how varying the magnet width
affects the motor phase bEMF. In the literature, it is often suggested that the motor
torque and bEMF are proportional to the total air gap flux. However, in the case of
outrunner motors, magnet flux leakage may lead to increased torque ripple and even
reduced torque when the magnet width approaches the pole pitch.

Eq. (3.2) is valid only if the flux linkage of the windings around each of the teeth is
approximately sinusoidal. Otherwise, the bEMF phase voltage waveform would be
distorted. When the motor is driven with three phase balanced sinusoidal currents,
useful torque is produced only by the synchronous (or fundamental) frequency
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harmonic of the bEMF phase voltage [42, 80]. The higher order harmonics produce
torque ripple and their amplitude should be minimized.

To see how the magnet width affects the motor performance, a motor with p = 20
poles, q = 18 slots and stator outside diameter of dout = 90mm is considered. The
air gap is set to ag = 0.5mm, and the magnet thickness is tm = 2mm. First, the
magnet width and tooth tip width are varied while the width of the teeth and yoke of
both the stator and rotor are constant and large enough so no saturation occurs even
for the widest considered pole magnets. Thus, the effect of increasing the magnet
width beyond 120 electrical degrees may be observed and analyzed.

Figure 3.12: Amplitude of the fundamental frequency (on left) and THD (on right)
of the motor phase bEMF for a range of values for the magnet width, wm, and tooth
tip width, wtip, both in mm.

Fig. 3.12 shows plots of the magnitude of the fundamental frequency harmonic
and total harmonic distortion (THD) of the bEMF phase voltage for a range of
values for the magnet width and tooth tip width. The plots show that increasing the

Figure 3.13: Amplitude of the fundamental frequency (on left) and THD (on right)
of the flux density in the center of a motor stator tooth for a range of values for the
magnet width, wm, and tooth tip width, wtip, both in mm.

magnet width beyond 120 electrical degrees (which in this case corresponds magnet
width of around wm = 9.4mm) leads to an increase in the amplitude of the bEMF
fundamental frequency with rapidly decreasing rate. The increased flux leakage
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between adjacent magnets, when their width increases and the gap between them
decreases, limits the maximum flux density in the stator teeth as shown in the plot of
the amplitude of the fundamental frequency harmonic of the flux density in center
of the tooth in Fig. 3.13.

Fig. 3.12 shows that the bEMF THD is minimized for magnet width of around
120 electrical degrees. The correlation between the THD plots in Fig. 3.12 and
Fig. 3.13 suggests that an increase of the flux density THD is responsible for
the increased bEMF THD characteristic of the motors with wider magnets. The

Figure 3.14: Motor phase bEMF (on left) and tooth flux density (on right) for a
range of values for the magnet width, wm, and tooth tip width, wtip, both in mm.

plots in Fig. 3.14 show that the maximum flux density at the center of the teeth
increases with increasing magnet width and tooth tip width, however, the distorted
flux density waveforms result into increasingly trapezoidal bEMFwhen the effects of
the individual phase windings are superimposed. From the equivalence between the
torque and bEMF constants, it may then be concluded that for three phase balanced
sinusoidal currents driving, increased bEMF THD causes increased torque ripple,
and thus, should be avoided.

Figure 3.15: Amplitude of the fundamental frequency (on left) and THD (on right)
of the motor phase bEMF for a range of values for the magnet width, wm, and
tooth tip width, wtip, both in mm. The body width of the teeth is chosen such that
saturation occurs.
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It is also beneficial to consider the effect of varying the magnet width and tooth
tip width when the tooth body width is such that saturation occurs when the mag-
net width is increased beyond 120 electrical degrees. Fig. 3.15 shows plots of
the amplitude of the fundamental frequency harmonic and total harmonic distor-
tion (THD) of the bEMF phase voltage for this case. The plots show that re-
ducing the magnet width below 120 electrical degrees leads to rapid reduction of
the phase bEMF constant and increase in the bEMF THD. On the other hand,

Figure 3.16: Motor phase bEMF (on left) and tooth flux density (on right) for a
range of values for the magnet width, wm, and representative tooth tip width, both
in mm. The body width is chosen such that saturation occurs.

due to the fact that saturation occurs, the bEMF THD is low when the magnet
width is increased beyond 120 electrical degrees. The effect of saturation on the
phase bEMF waveform and tooth flux density may be observed in Fig. 3.16.

Figure 3.17: Plot of phase bEMF har-
monic content of the motor design corre-
sponding to the yellow curves in the plots
of Fig. 3.15.

Fig. 3.15 and Fig. 3.16 suggest that ap-
proximately sinusoidal bEMF with low
THD may be achieved in motors with
full pitched magnets with no gap be-
tween them. Even though, such motors
would have heavy rotors with large iner-
tia, they may be advantageous because
of their simplified rotor manufacturing
and assembly, and their lower cogging
torque [57] due to the improved interac-
tion between the magnet edges and the
slots.

Finally, the yellow curves in the plots of
Fig. 3.16 correspond to a motor design
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with magnet width of 120 electrical degree and tooth tip width equal to the magnet
width. The bEMF harmonic content and FEA simulation of this design are shown
in Fig 3.18i and Fig. 3.17,respectively. The motor features quite sinusoidal bEMF
with a low amplitude third harmonic. Thus, this motor has advantages in its better
torque production, lower mass, lower inertia and lower amount of magnet material
used compared to the other motor designs.

(a) wm = 14, wtip = 14 (b) wm = 13.1, wtip = 13.1 (c) wm = 12.2, wtip = 12.2

(d) wm = 11.3, wtip = 11, 3 (e) wm = 10.4, wtip = 10.4 (f) wm = 9.6, wtip = 9.6

(g) wm = 14, wtip = 14 (h) wm = 14, wtip = 9.6 (i) wm = 9.6, wtip = 9.6
Figure 3.18: FEA simulations, showing the flux density levels in the motor for
different values for the magnet width, wm, and tooth tip width, wtip, both in mm.

Fig. 3.18 shows electro-magnetic FEA simulations of the flux density in some of
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the motor designs used in generating the plots of this section. The phase bEMF of
these motor designs are shown in Fig. 3.14 and Fig.3.16. One can clearly observe
how the flux leakage limits the flux density in the teeth regardless of the magnet
width: despite the different magnet widths, the motors in Fig. 3.18a, Fig. 3.18b,
Fig. 3.18c, Fig. 3.18d and Fig. 3.18e have almost the same flux density levels in
the teeth of their stators. The increased flux density in the rotors of motors with
wider magnets suggests that these motors require thicker yoke, and thus, would have
significantly higher inertia when optimized.

3.5.2 Slot Factor Analysis Verification
In Sec. 3.4.1, it is shown that the slot factor Cq(q) (see Eq. (3.28)) may be used
to rapidly compare the rated torque, Ts, (see Eq. (3.12)) of possible motor designs
that have the same pole count, main dimensions, teeth shape and size, slot copper
fill factor, etc. Furthermore, the analysis suggests that motors with lower number of
teeth (higher symmetry) may have torque and core loss advantages.

Property or dimension Low q motor High q motor
Rated power loss at stall, Pcu 100W 100W

Number of poles, p 28 28
Number of slots, q 24 30

Slots per pole, per phase, Qpp 0.286 0.357
Winding factor, Cw [48, 49] 0.933 0.951

Slot factor, Cq(q) 4.9 4.5
Cw

√
Cq(q) 2.065 2.017

Rated torque, Ts 5.56Nm 5.44Nm
Active total mass 593g 607g
Torque density 9.37 Nm

Kg 8.97 Nm
Kg

Table 3.1: Characteristics of twomotors that have the same number of poles, p = 28,
and main dimensions but different number of slots.

This section provides verification of the analytic slot factor results (Sec. 3.4.1) by
first considering two motors that have inner and outer stator diameters given by
din = 50mm and dout = 90mm, respectively and same number of poles, p = 28, but
different number of slots. One of the motors has q = 24 < p slots and the other has
q = 30 > p slots. For both motors, the air gap is set to ag = 0.5mm, and the magnet
width and thickness are given by wm = 7.25mm and tm = 2mm, respectively. Table
3.1 summarizes the characteristics of the two motor designs and Fig. 3.19 displays
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FEA simulations of the two motors that show the flux densities in the various parts
of the motors. The motor rated torque in Table 3.1 corresponds to the average torque
produced by the motor over a complete electrical rotation at Pcu = 100W copper
loss.

The values for the slot factor Cq(q) and the values for Cw

√
Cq(q) of the two motors

suggest that the motor with q = 24 slots would delivers more torque than the motor
with q = 30 slots even though the motor with q = 24 slots has lower winding factor.
The FEA simulation results confirm this prediction. The motor with q = 24 slots
also has slightly lower mass, and thus, better torque density as predicted by the slot
analysis of Sec. 3.4.1.

Figure 3.19: Electro-Magnetic FEA simulation of the two motors of Table 3.1. The
motor with q = 24 slots is shown on the left and the motor with q = 30 slots is
shown on the right.

The lower winding factor for the motor with q = 24 slots is due to the higher
symmetry of this design (ks = 2 in Eq. (3.1)) compared to the motor with q = 30
slots (ks = 1 in Eq. (3.1)). The symmetry differences are evident in the flux density
distributions of Fig. 3.19. The teeth comprising a phase are concentrated in two
regions for the motor with q = 30 slots and in four regions for the motor with q = 24
slots. Consequently, the motor with q = 24 may have more parallel circuits. On the
other hand, due to the higher number of teeth, the motor with q = 30 would have
shorter winding end turns and shorter axial length and lower cogging torque due to
the minimum symmetry.

Fig. 3.20 slows a plot of the flux density at the center of a stator tooth for both motors
for a complete electrical cycle of 360 electrical degrees. As can be observed from
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the plot, the flux densities in the teeth of the two motors have the same amplitude
and very similar shape, therefore, the core loss generated by a single tooth in either
motor would be similar for a given rotor speed. Furthermore, Fig. 3.19 suggests
that the flux density levels in the stator yoke would also be similar. Therefore, the
motor with q = 24 slots would have substantially lower (approximately 20%) core
loss than the motor with q = 30 slots.

Figure 3.20: Flux density at tooth center for the
two motors with q = 24 and q = 30 slots.

For completeness, two motors
with high pole count of p = 56
that again have the same inner
and outer diameters but differ-
ent number of slots are also
considered. Unlike the pre-
vious example, however, both
motors have q < p. Table 3.2
summarizes the characteristics
of the two motor designs and
Fig. 3.21 displays FEA simulations of the two motors that show the flux densities in
the various parts of the motors. The values for the slot factorCq(q) and the values for

Property or dimension Low q motor High q motor
Rated power loss at stall, Pcu 100W 100W

Number of poles, p 56 56
Number of slots, q 48 54

Slots per pole, per phase, Qpp 0.286 0.321
Winding factor, Cw [48, 49] 0.933 0.954

Slot factor, Cq(q) 9.57 9.44
Cw

√
Cq(q) 2.89 2.87

Rated torque, Ts 8.57Nm 8.51Nm
Active total mass 710g 713g
Torque density 12.06 Nm

Kg 11.93 Nm
Kg

Table 3.2: Characteristics of twomotors that have the same number of poles, p = 56,
and main dimensions but different number of slots. Flux lines are not shown due to
the small stator tooth size.

Cw

√
Cq(q) successfully predict the torque characteristics of the two motors. In this

examples, the two motors have almost identical rated torques and torque densities,
however, the motor with lower number of teeth has lower (approximately 12%) core
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losses, while the motor with higher number of teeth has lower cogging torque.

In conclusion, this section verifies the slot count analysis of Sec. 3.4.1 and demon-
strates a practical design trade-off related to the motor core losses and cogging
torque.

Figure 3.21: Electro-Magnetic FEA simulation of the two motors of Table 3.2. The
motor with q = 48 slots is shown on the left and the motor with q = 54 slots is
shown on the right. Flux lines are not shown due to the small size of the teeth.

3.5.3 Design Trade-offs Verification
In Sec.3.4.3, the trade-offs related to high pole count motors are discussed. This
section provides electro-magnetic FEA verification that high torque density, high
efficiency motors may be achieved, provided high pole count designs are adopted.
However, it is shown that magnetic flux leakage limits the motor performance when
the number of poles is increased beyond some threshold value.

Similar to the previous sections, different motor designs with the same outer stator
diameter, dout = 100mm, and magnet width of 120 electrical degrees are considered.
All designs also feature the same magnet thickness and air gap thickness, and
therefore, the same amount of permanent magnet material. Using FEA, the torque,
torque density and efficiency of the motor designs with pole-slot configurations
given by Eq. (3.1) are estimated, while the pole count, p, and stator inner diameter,
din, are varied.
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Core losses are estimated by:

• recording the flux values in all FEA mesh elements in the iron components
for a range of values of the rotor rotational angle.

• finding the flux frequency content in these elements using FFT.

• adding the contributions of the flux harmonics in these elements to the total
core loss contributions according to the frequency domain loss approach of
[62, 66]. The values for the loss coefficients, Kh, Ke and Ka of Eq. (3.23) are
taken from [62].

Magnet eddy current losses are estimated following the approach of [70]. AC copper
losses are estimated following the approach of [42]. Rated torque is defined in terms
of Pcu = 100W power loss at stall. The rated motor speed is 4000RPM .

Fig. 3.22 shows the FEA simulation results. Fig. 3.22a and Fig. 3.22c show that
increasing the motor pole count, p, up to a threshold value that depends on the
motor inner diameter leads to motor torque and torque density increase, however,
increasing p beyond this threshold leads to a torque and torque density decrease.
The model of Sec. 3.3.3 fails to predict this torque reduction due to the fact that
magnetic flux leakage is ignored. The two main sources of flux leakage are:

• between the magnets, and between the magnets and the stator teeth. This leak-
age increases with increasing p while the stator outer diameter is preserved,
because the distance between the magnets decreases relative to the magnet
and air gap thicknesses, and leads to reduction of the total magnet air gap
flux, and thus, also leads to reduction of the flux density in the teeth (see Fig.
3.22b).

• between the bodies of the teeth. As p increases while the stator inner diameter
is preserved, the distance between the teeth decreases and the magnet leakage
out of the teeth bodies increases which leads to decreasing flux density in the
teeth towards the stator yoke. This tooth flux decrease can be clearly observed
in Fig. 3.22b which shows the magnetic flux distribution in a motor design
with high pole count and deep slots. While tooth body flux leakage occurs in
all motors, when p is low, the distance between the teeth is large and the flux
reduction along the stator teeth is limited (around 4% near the stator yoke for
the motor in Fig. 3.22d)
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(a) Torque plot. (b) p = 62, q = 60, din = 40mm.

(c) Torque density plot. (d) p = 20, q = 18, din = 30mm.

(e) Efficiency plot. (f) p = 38, q = 36, din = 60mm.

Figure 3.22: FEA simulation results comparing motors that have the same stator
outer diameter. The plots on the left show how the number of poles affects the motor
torque, torque density and efficiency for different stator inner diameters. The figures
on the right show the flux density distribution in representative motor designs.
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The torque density plot in Fig. 3.22c and the efficiency plot in Fig. 3.22e show
that high torque density, high efficiency motor designs are possible even with high
number of poles, provided the slot depth is reduced so that the tooth flux leakage is
limited. An example of such motor design is shown in Fig. 3.22f. It has mass of
0.509Kg and rated torque of 5.72Nm at Pcu = 100W , and thus, has torque density
of 11.25 Nm

Kg .

Figure 3.23: Motor losses as a function of
motor speed for the design of Fig. 3.22f.

At rated speed of 4000RPM and rated
torque, the motor efficiency is 91.2%.
Fig. 3.23 shows a plot of the motor
losses as a function of the motor speed.
As may be observed from the plot, at
rated speed around 50% of the total
losses may be attributed to core losses.
The increase of the copper losses due to
proximity and skin effect is also evident
at higher speeds. As discussed in Sec.
3.4.2 and Sec. 3.3.3, the magnet and
rotor core losses are quite low as the rotor is laminated and the stator armature
reaction of motors with high pole count is small.

Figure 3.24: Motor normalized induc-
tance as a function of the pole count for
different values of the motor inner diame-
ter.

Fig. 3.24 shows how the motor induc-
tance varies with increasing pole count.
It may be observed that themotor induc-
tance converges to a given value which
corresponds to the leakage inductance.
Furthermore, increasing the stator in-
ner diameter leads to a decrease of the
length of the stator teeth which causes
reduction of the leakage inductance.
Therefore, the FEA simulation results
confirm the phase inductance analysis
of high pole count motors in Sec. 3.4.2.
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3.5.4 FEA Comparison of SMPM and IPMMotors
This section uses FEA to compare the performance of an IPM motor and a SMPM
motor that have the same outer diameter, and number of poles and slots. The slot
depth of both motors is FEA optimized for highest torque density following the
approach of Sec. 3.4.4. Table 3.3.3 summarizes the characteristics of the two
motors and Fig. 3.25 shows FEA simulations of the flux density distribution in the
motors.

Property or dimension SMPM IPM
Rated power loss at stall, Pcu 100W 100W

Number of poles, p 32 32
Number of slots, q 30 30
Rated torque, Ts 11.16Nm 11.01Nm
Active total mass 1044g 1048g
Torque density 10.69 Nm

Kg 10.50 Nm
Kg

Stator mass 799g 707g
Rotor mass 245g 341g
Rotor inertia 0.0011Kg

m3 0.0014Kg

m3

Table 3.3: Characteristics of a SMPM motor and IPM motors that have the same
outside diameter, and pole and slot count. The slot depth of each motor is FEA
optimised for maximum torque density (see Sec. 3.3.3).

The two motors have similar performance, even though the air gap diameter of the
SMPM motor is higher and the flux levels in the teeth of both motors are identical
as can be observed in Fig. 3.25. Furthermore, the mass of the stator of the IPM
motor is lower (13%) than the mass of the stator of the SMPM motor. As shown in
the tooth width analysis of Sec. 3.4.4, this is due to the fact that the teeth of the IPM
motor are wider.

However, the rotor of the IPM motor is significantly (30%) heavier than the rotor
of the SMPM motor. As may be observed in Fig. 3.25, the amount of iron used in
the rotor of the IPM motors is minimized as much as possible. In fact, physically
practical design of the rotor of the IPM motor would be heavier as additional
structural support material would be required to constrain the magnets and steel
segments. On the other hand, the SMPM motor rotor is significantly easier to
manufacture and does not require further structural support apart from epoxy to fix
the magnets to the yoke. The reason for the significant difference in the mass of the
rotors of the two motors is related to the difference in the flux paths. At most half
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of a pole magnet flux passes through the yoke section of the SMPM rotor. On the
other hand, in the IPM rotor the flux of two magnets is concentrated in the iron pole
segment between them. Therefore, the amount of iron is significantly increased in
the IPM rotor, in addition to the increased amount of magnetic material which is
required to increase the airgap flux. Furthermore, the magnet leakage in the case of
the IPM rotor is also substantially higher as shown in Fig. 3.25.

Figure 3.25: Electro-magnetic FEA simulations of a SMPM motor and an IPM
motor that have the same outer diameter. The characteristics of the motors are
compared in Table 3.3.

In conclusion, the FEA simulations of this section show that the intrinsically higher
mass and size of IPM rotors offsets the potential torque advantageous due to the
higher possible air gap flux in such motors. In addition, similar torque density levels
may be achieved with identically sized SMPMmotors that have significantly lighter
rotors. Therefore, IPM motors offer no advantageous w.r.t. the design goals and
intended applications considered in this thesis.
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3.6 Motor Prototypes
This section discusses the design of SMPM motor prototypes according to the
approach described in Sec. 3.4. The first set of motors, described in Sec. 3.6.1,
is intended for EV applications. A 60 pole motor prototype that has very high
torque density and is designed for drone and robotics applications is described in
Sec. 3.6.2. The performance of the designed motors is compared to high end
off-the-shelf frameless motors in Sec. 3.6.3.

For all motors:

• Neodymium Iron Boron (NdFeB) Magnets are used for the rotor poles.

• 29 gauge M15 electrical steel is used for the rotor and stator lamination.

• laminations were cut using abrasive water jet machining.

• 24 gauge magnet wire used for the windings.

• 6061 aluminum is used for any non-active motor components.

3.6.1 EV Prototypes
This section describes EVbrushless dcmotor prototypes designed andmanufactured
in-house. Unlike [60, 61], the motors are not designed for direct drive application,
but are intended to be coupled with a gearbox. The maximum desired speed of the
motors is set to 4000RPM . Due to the intended use of the motors, the cogging
torque is to be minimized, otherwise, the gearbox amplification of the cogging
torque would lead to significantly reduced backdrivability of the actuator.

Early prototypes

The first set of prototypes use the 20 pole - 18 slot motor configuration with 90mm

outer stator diameter [48, 49]. This configuration is chosen due to its intrinsically
low cogging torque and high winding factor. The pole magnet size is 20mm ×

10mm × 2mm with air gap of 0.5mm. Both motors have no parallel circuits. Fig.
3.26 shows the first prototype. Fig. 3.27 shows the second prototype which has
improved compactness as the bearings are installed in the stator interior. The rotor
of the second prototype (see Fig. 3.27) has poles consisting of segmented magnets.
This leads to substantial reduction of the magnet eddy currents associated with
concentrated winding motors [68]. However, circumferential pole segmentation
represents a magnetically unstable configuration which leads to manufacturing and
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reliability issues. Thus, the intrinsic mechanical stability characteristic of outer
rotor motors may not be sufficient and the rotor might require a retaining sleeve.

Figure 3.26: First EV motor prototype.

Figure 3.27: Second EV motor prototype.
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Compared to FEA performance predictions, both prototypes exhibit lower bEMF
constants (around 10%) and higher resistance (around 8%) due to:

• lower lamination factor caused by burrs at the edges (similar issues with wa-
terjet machined laminations are reported in [87]), inability to achieve uniform
pressure, excessive glue build-up, etc.

• longer winding end turns due to irregularity of turns.

• low manufacturing and lamination assembly accuracy.

• excessive varnish (covering the sharp edges on the stator), required to prevent
stator phase shorting.

The idle current (measure of no load losses, and thus, very good indication of the
core losses) of both motors is around 2.3A (around 100W of power loss at 44V)
and is somewhat higher that FEA loss predictions shown in Fig. 3.28. This may
be caused by reduced resistance between the lamination layers due to the waterjet
burrs, which leads to increased eddy currents. Also the measured loss includes
friction due to air resistance and the bearings.

Figure 3.28: Early EV prototype FEA losses prediction as a function of motor speed
at load of 5.5Nm.
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Final prototype

In order to improve the motor axial compactness, reduce core loses and increase
the motor inductance without deteriorating the torque performance, an alternative
motor design is adopted:

• a 14 pole - 12 slot configuration is used to reduce electrical frequency.

• the outer motor diameter is increased and axial length decreased to preserve
torque level.

• the motor is FEA optimized to minimize the cogging torque.

Techniques for minimizing the motor cogging torque are presented in [56, 57].
Due to the corresponding manufacturing complexity and performance trade-offs,
skewing, variable pole arcwidth, magnet shifting, notches (auxiliary slots), auxiliary
teeth, etc. are not used. Instead the pole pitch and tooth tips width are chosen so
that the cogging torque is as small as possible. Due to the fact that no hard motor
overall diameter constraints need to be met for the intended application, the pole
pitch may be varied while the magnet width is preserved by modifying the stator
outside diameter. This approach has the advantage that the tooth width may be
determined directly from the magnet width so that the flux in the tooth body is at
the desired levels.

Figure 3.29: Motor cogging torque plots for a range of values for the stator outer
diameter, dout , and the tooth tip width, wtip, both in mm. The right plot focuses on
a design region of lower cogging torque.

The pole magnets have the following dimension: 3/4in × 1/2in × 1/8in. Fig. 3.29
shows plots of themotor cogging torque as a function of the stator outer diameter and
tooth tip width. Consistent regions of minimum cogging torque may be identified
in the plots. The higher resolution plot of Fig. 3.29 may be used to select the motor
design with lowest cogging torque.
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Figure 3.30: Motor average torque (on left) and motor torque ripple (on right) for a
range of values for the stator outer diameter, dout , and the tooth tip width, wtip, both
in mm.

Figure 3.31: Motor torque density for a
range of values for the stator outer diame-
ter, dout , and the tooth tip width, wtip, both
in mm.

Fig. 3.30 shows a plot of themotor rated
torque (for Pcu = 100W) and torque rip-
ple as functions of the stator outer diam-
eter and tooth tip width. The torque rip-
ple plot shows that the designs of low
cooging torque in Fig. 3.29 also have
low torque ripple. The approximately
linear torque increase with increasing
stator outer diameter that may be ob-
served in the average torque plot of Fig.
3.30 is due to the approximately linear
slot area increase. However, as shown
in Fig. 3.31, the torque density of the
motor actually decreases slightly with increasing stator outer diameter. This is
expected, as the total air gap flux is the same for all motors.

The motor design of minimum cogging torque in Fig. 3.29 is chosen and proto-
typed. Fig. 3.32 shows photographs of the prototype. Improved lamination, cutting
and finishing largely eliminate the practical manufacturing issues of the early EV
prototypes, discussed in the previous section. The sheets are glued together to form
the lamination first and waterjet cut afterwards. CNC machining is used to chamfer
the sharp edges so that lower amount of varnish may be applied.

The prototype’s cogging torque is around .08Nm which is low but significantly
higher than the FEA prediction. Furthermore, there is significant variation in the
magnitude of the cogging torque with the rotor orientation. The discrepancy is
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most likely due to manufacturing inaccuracies caused by the light rotor aluminum
structure which flexed during machining. The rotors of future prototypes will be
designed with improved structural rigidity and accuracy. At speed of approximately
4000 RPM the motor has 1.8A no load current which suggests low core loss which is
one of the main design objectives. The author believes that a prototype of improved
mechanical design and better accuracy on the components would have even lower
no load current The resistance is 0.041Ω which is 3% higher compared to the FEA
prediction.

Figure 3.32: Final EV motor prototype that uses the 14 pole - 12 slot configuration
to improve the motor core losses.

Fig. 3.33 shows comparison of FEA simulation and experimental data for the
phase-to-phase bEMF voltage of the motor at approximately 3500RPM . Due to the
tight packaging the neutral point phase connection is not available for oscilloscope
measurement. As may be observed from the plot the experimental measurements
agrees to around 98% with the FEA prediction. These experimental result confirm
the validity of the analytic modeling and FEA simulation of this chapter.
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Figure 3.33: Phase-to-phase bEMF voltage wave form for the motor of Fig. 3.32 at
3500RPM . FEA simulation prediction is compared to measured experimental data.

Figure 3.34: Robotics motor prototype that has 60 poles and 54 slots.

3.6.2 Drone/Robotics Prototype
This section describes a robotics/drone brushless dc motor prototypes designed and
manufactured in-house. To demonstrate the torque density advantages of high pole
count motor designs, the prototype has 60 poles and 54 slots. The stator outer
diameter is 142mm and the pole size is 20mm × 5mm × 2mm.
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Figure 3.35: Robotics motor prototype
FEA losses prediction as a function ofmo-
tor speed at load of 11Nm.

Fig. 3.34 shows photographs of the pro-
totype. The prototype was manufac-
tured in a similar fashion to the early EV
prototypes of the previous section and
also exhibits lower bEMF constants (see
Fig. 3.36) and higher resistance (around
8%). The idle current at 2200RPM is
around 4.6A with 1.3A due to friction
in the assembly. This suggest core loss
of around 150W , which is higher than
FEA loss prediction shown in Fig. 3.35
for that speed. Similar to Sec. 3.6.1, the increased loss may be caused by reduced
resistance between the lamination layers due to the waterjet burrs, which leads to
increased eddy currents.

Fig. 3.36 shows comparison of FEA simulation and experimental data for the
phase-to-phase bEMF voltage of the motor at approximately 1000RPM . Due to the
tight packaging the neutral point phase connection is not available for oscilloscope
measurement. As may be observed from the plot the experimental measurements
shows 8% lower bEMF constant than the FEA prediction similar to the early EV
prototypes of the previous section.

Figure 3.36: Phase-to-phase bEMF voltage wave form for the motor of Fig. 3.34 at
1000RPM . FEA simulation prediction is compared to measured experimental data.

The motor prototype of this section is used as a proof of concept to motivate further
development of high pole count motors for robotic applications.

3.6.3 Comparison with Commercially Available Motors
This section shows comparison of the motor prototypes, described in this section,
with off-the-shelf high performance frameless motors. To provide a more complete
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representation of the available motors, high performance drone motors are also
included. In calculating the motor torque density, only the mass of the motor’s
active components is taken into account (magnets, rotor back iron, stator iron core
and windings). In order to achieve full consistency, the motors are compared by
their torque and torque density at stall power loss of 100W . Fig. 3.37 shows a plot
of torque density against torque of the considered motors. As may be observed, the
EV motors of this section have performance similar to the best available off-the-
shelf frameless motors. However, the EV motors of this section have significantly
lower manufacturing cost due to their concentrated windings outer rotor design as
discussed in Sec. 3.3. On the other hand, the robotics motor exhibits unmatched
torque density which demonstrates the main advantage of high pole count motor
designs.

Figure 3.37: Performance comparison of the motors (square symbol) developed in
this section with off-the-shelf high performance frameless motors.

As may be observed in the plot, the commercial motors follow a trend of decreasing
torque density with increasing motor torque (motors with higher torque also have
larger size). The following section explains this trend by considering the possible
motor scaling modes. It is shown that radial and axial scaling of a motor design
always lead to torque density decrease and the introduced pole scaling represents
the only means of increasing both the torque and torque density of a motor design.
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3.7 Scaling Modes of PMMotors with Concentrated Windings
This section discusses motor scaling in terms of outrunner motors with concentrated
windings. The fundamental scaling modes discussed in [76–78] are simplified and
focused to outrunner motors with concentrated windings using the model of Sec.
3.3.3. An additional motor scaling mode (briefly discussed in [4]) is also described
and compared to the classical ones.

In [76–78], the effects of phase rewinding, and axial and radial scaling on the
PM synchronous motor properties and performance are described. Rewinding
(Sec. 3.7.1) refers to changing of the number of turns and wire strands so that the
motor bEMF constant may be modified while the wire gauge and slot fill factor are
preserved. Axial scaling (Sec. 3.7.2) represents consistent variation of the out-
of-plane thickness of all motor components, while the in-plane motor dimensions
are preserved. Radial scaling (Sec. 3.7.3) represents proportional change of all
in-plane motor dimensions, while the motor out-of-plane thickness is preserved. An
alternative radial-type scaling mode (discussed in [4]) represents modification of
the motor pole count while the motor out-of-plane thickness, and the teeth shape
and dimensions are preserved. This scaling mode (Sec. 3.7.4) is defined to as pole
scaling in this thesis. Fig. 3.38 show the geometrical effect of the three scaling
modes.

Figure 3.38: Motor scaling modes. The referent motor is a 20 pole-18 outer rotor
motor. The pole scaled motor has 40 pole-36 slot motor configuration, which is
quite popular in the drone industry (see Fig. 3.3.)



82

The main objective of this section is to describe how the scaling modes affect the
motor torque performance (defined in terms of rated copper loss at stall, Pcu) and
motor core loss. The results are appoximate and allow the performance of a scaled
version of an existing outer rotor motor to be approximately predicted without the
use of electro-magnetic FEA, which may be quite useful in the early design stage of
a motor, actuator or even a whole robotic system. For the motors considered in this
chapter, especially when driven with three phase balanced currents, core saturation
due to excessive load is unlikely to occur due to the low armature reaction. Therefore,
unlike [76–78], in this chapter, the scaled motor flux is not necessarily the same as
the referent (unscaled) motor flux in all motor components.

In addition, as discussed in Sec. 3.2, this chapter aims to motivate and enable the
substitution of high gear ratio actuators with torque-optimized high performance
motors coupled with low to mid reduction ratio gearboxes in dynamic robotic appli-
cations. To this end, the motor bEMF constant, and thus, rated voltage are preserved
in all scaling modes. The challenges of driving the resulting high torque motors are
described in Sec. 3.7.6.

In the following analysis, the values associated with the referent (unscaled) motor
are designated with square brackets ([∗]).

3.7.1 Motor Rewinding
Rewinding refers to the consistent modification of all teeth windings so that the
slot fill factor is preserved. Motor rewinding generally occurs when an application
requires changing the motor rated voltage. In this thesis, the rewinding factor kW is
defined as:

kW =
Nturns

[Nturns]
. (3.34)

As discussed in Sec. 3.3.3, parallel paths are treated as strands, and thus, the number
of strands does not appear in Eq. (3.34). For the rewound motor, the synchronous
resistance and inductance are [77]:

Rs = kW
2[Rs] Ls = kW

2[Ls]. (3.35)

The teeth flux linkage and back-emf constant (both implicit function of the rotor
position) are [77]:

Ψ = kW [Ψ] KE = kW [KE ]. (3.36)
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When operating at the rated copper loss the rewound motor has current and torque
[77]:

Is =
(PCu

Rs

)1/2
=

1
kW
[Is] Ts = KE Is = [Ts]. (3.37)

The results of Eq. (3.35), Eq. (3.36) and Eq. (3.37) may be readily derived using
the model of Sec. 3.3.3. The mass, iron losses and torque density are the same
in the referent and rewound motors. While, rewinding does not affect the motor
performance, it has profound effect on the driver system. For example, rewinding a
motor so that it may achieve twice its rated speed at the rated bus voltage requires
kW = 0.5. Eq. (3.35) suggests that the rewound motor has synchronous inductance
and synchronous resistance four times lower than the referent machine. Therefore,
the inverter needs to operate at twice the PWM frequency to ensure similar current
ripple levels (same percentage of rated current). Furthermore, lower phase resistance
increases the danger of catastrophic failure of both the driver and motor under fault
conditions (such as miscommutation or short circuit).

For the axial, radial and pole scaling below, rewinding is extensively used so that
the motor rated voltage (bEMF constant) is preserved in the scaling.

3.7.2 Axial Scaling
Axial scaling refers to the consistent variation of all motor active components in
the out-of-plane direction with a coefficient kA, while the in-plane geometry is
preserved:

kA =
lm
[lm]

. (3.38)

Let kW be the rewinding factor. Then for the scaled motor, the peak phase flux
linkage and bEMF constants are [77]:

Ψ = kW kA[Ψ] KE = kW kA[KE ]. (3.39)

Eq. (3.39) may be derived using Eq. (3.2) and Eq. (3.5) and suggests that the motor
bEMF constant is preserved if kW =

1
kA
. Combining Eq. (3.16), Eq. (3.17), Eq.

(3.14) and Eq. (3.35) leads to:

Ls =
1
kA
[Ls]. (3.40)

Let Csc =
2πkc[rw]
[lm][q]

, then combining Eq. (3.7), Eq. (3.8), Eq. (3.10) and Eq. (3.35)
leads to:

Rs =
1
k2

A

(Csc + kA

Csc + 1

)
[Rs]. (3.41)
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Then, the scaled motor current and torque are given by (see Eq. (3.12) and Eq.
(3.11)):

Is = kA

√
Csc + 1

Csc + kA
[Is] Ts = kA

√
Csc + 1

Csc + kA
[Ts]. (3.42)

Finally, the mass, iron losses and torque density are:

Mm ≈ kA[Mm] Jm = kA[Jm]

Pco = kA[Pco] Tρ ≈

√
Csc + 1

Csc + kA
[Tρ].

(3.43)

The mass, inertial and core losses increase proportionately due to the geometry of
axial scaling. Eq. (3.42) and Eq. (3.43) suggest that when kA > 1 (the motor
axial length is increased), the motor torque is increased, however, the motor torque
density is decreased. Furthermore, given that Csc ∝

[rw]
[lm][q]

, motor axial thickness
increase is most favourable for thin, radially large motors with low pole count.

3.7.3 Radial Scaling
Radial scaling refers to the proportional variation of all motor active component
dimensions in the plane with coefficient kR while no variation occurs in the out-of-
plane direction (lm = [lm]).

kR =
dout

[dout]
=

din

[din]
=

wt

[wt]
=

rw
[rw]
=

tm
[tm]
=

ag
[ag]
= ... (3.44)

Let kW be the rewinding factor. Then for the scaled motor, the peak phase flux
linkage and bEMF constants are [77]:

Ψ = kW kR[Ψ] KE = kW kR[KE ]. (3.45)

Eq. (3.45) may be derived using Eq. (3.2) and Eq. (3.5) and suggests that the motor
bEMF constant is preserved, provided kW =

1
kR
. Eq. (3.14) suggests that for radial

scaling Rm = [Rm] and Rg = [Rg]. Then, combining Eq. (3.16), Eq. (3.17) and Eq.
(3.35) leads to:

Ls =
1
k2

R

[Ls]. (3.46)

In radial scaling Aslot = k2
R[Aslot]. Then, combining Eq. (3.7), Eq. (3.8) and Eq.

(3.10) leads to:

Rs =
1
k4

R

( kRCsc + 1
Csc + 1

)
[Rs]. (3.47)
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Then, the scaled motor current and torque are given by (see Eq. (3.12) and Eq.
(3.11)):

Is = k2
R

√
Csc + 1

KRCsc + 1
[Is] Ts = k2

R

√
Csc + 1

KRCsc + 1
[Ts]. (3.48)

Finally, the mass, rotor inertia, iron losses and torque density are:

Mm = k2
R[Mm] Jm ≈ k3

R[Jm]

Pco = k2
R[Pco] Tρ =

√
Csc + 1

kRCsc + 1
[Tρ].

(3.49)

The mass, inertial and core loss scaling in Eq. (3.49) follow from the geometry of
radial scaling, that is, the areas of all motor regions (slot, stator teeth, stator yoke,
magnets, rotor yoke, etc.) are proportional to k2

R.

Eq. (3.14) suggests that if the air gap and magnet thickness are preserved rather
than scaled, then Rm =

1
KR
[Rm], Rg =

1
KR
[Rg] and the scaled self-inductance is:

Ls f =
1
kR
[Ls f ]. (3.50)

Eq. (3.50) suggests that the scaling of the motor self-inductance may be improved
if the air gap and magnet thickness are preserved in radial scaling. However, the
leakage inductance remains unaffected as Eq. (3.15) is independent of the magnet
shape and air gap thickness. The scaled rotor inertial may be approximated by
Jm ≈ k2

R[Jm] as the magnet thickness and rotor yoke thickness are also preserved
in this case. Therefore, the motor torque per unit inertia may be approximately
preserved in radial scaling provided the magnet thickness and air gap thickness
remain constant rather than scaled. However, as discussed in Sec. 3.5.3, if the
air gap is comparable to the width of the gap between the poles, increased magnet
leakage may lead to torque reduction. Therefore, in the case of constant air gap, the
scaling results of this section are valid provided the flux leakage is not significantly
changed due to the scaling.

3.7.4 Pole Scaling
In pole scaling the teeth shape, air gap size and pole shape are preserved while
the number of poles is modified. Let kP be the pole scaling coefficient such that
p = kP[p], (clearly p is an even non-negative integer, which constrains the possible
values of kP). The motor out-of-plane thickness remains unaltered (lm = [lm]). As
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before, let kW be the rewinding factor. The geometry of pole scaling suggest that
the magnet flux leakage levels are identical in both the referent and scaled motors.
Then, assuming the motor winding factor and the slot per pole per phase number,
Qpp, are approximately preserved, Eq. (3.5) suggests that:

Ψ ≈ kW k2
P[Ψ] KE ≈ kW k2

P[KE ], (3.51)

as q ≈ kp[q] (see Eq. (3.1) and Eq. (3.22)). Then, the bEMF constant is preserved
if kW =

1
k2
P

. The slot area and the length of the windings end turns are also
approximately preserved, therefore, Eq. (3.8) suggest that Rphase ≈ kW kP[Rphase].
Then the synchronous resistance is approximately:

Rs ≈
1
k3

P

[Rs]. (3.52)

Similarly, Eq. (3.16) and Eq. (3.17) suggest that:

Ls ≈
1
k3

P

[Ls]. (3.53)

Then, the scaled motor current and torque are given by (see Eq. (3.12) and Eq.
(3.11)):

Is ≈ k3/2
P [Is] Ts ≈ k3/2

P [Ts]. (3.54)

From the geometry of pole scaling (also see Fig. 3.6), it can be shown that the motor
mass, rotor inertia and torque density approximately scale as:

Mm ≈ kP[Mm] Jm ≈ k2
P[Jm] Tρ ≈

√
kP[Tρ]. (3.55)

Eq. (3.55) provides an alternative view point to the advantages of motors with
high pole count. Unlike the other motor scaling modes, in the case of pole scaling
the comparison between the referent and scaled motor core losses is quite difficult
due to the differences in the frequency dependence of the core loss components.
Nevertheless, Eq. (3.23) suggests that the scaled motor core losses may be upper
bounded by:

Pco ≤ k3
P[Pco] (3.56)

The equations in this section are approximations and are valid only under the
assumptions of Sec. 3.3.3.
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3.7.5 Scaling Laws Discussion
Eq. (3.43), Eq. (3.49) and Eq. (3.55) demonstrate and quantify the limitations
characteristic to designingmotors that have both high torque and high torque density.
Increasing the motor size by radial or axial scaling leads to torque density decrease.
This trend may be clearly observed in Fig. 3.37. Eq. (3.43) and Eq. (3.49) suggest
that radial scaling is more favourable for motors with high pole count and axial
scaling is more favourable for motors with low pole count as Csc ∝

1
q . Which

may be explained by the fact that axially scaling up a motor, reduces the resistance
of the windings end turns relative to the overall motor resistance (see Eq. (3.41))
while radially scaling up a motor, increases the resistance of the windings end turns
relative to the overall motor resistance (see Eq. (3.47)).

Only pole scaling may be used to increase both the torque and torque density of an
existing motor design. However, Eq. (3.55) suggests that the higher torque density
comes at the price of increased core losses. Therefore, the scaling analysis of this
section confirms the analysis and conclusions of Sec. 3.4.3.

The geometry of Fig. 3.6 suggests that pole and radial scaling lead to motors with
the same air gap diameter provided the scaling coefficients are the same (kR = kP).
Comparing Eq. (3.48) and Eq. (3.54) suggests that radial scaling leads to higher
torque in this case. Therefore, it is beneficial to compare the torque of radially scaled
motor with a pole scaled motor with the same airgap diameter which is also axially
scaled so that the two motors have identical mass. From Eq. (3.43), Eq. (3.49) and
Eq. (3.55) the mass of the two motors is:

Mm = k2
R[Mm] for the radially scaled motor and

Mm = kAkP[Mm] for the pole/axial scaled motor.
(3.57)

If kP = kR > 1 then kAkP = k2
R, provided kA = kR. Then from Eq. (3.43) and Eq.

(3.55) the torque of pole/axial scaled motor is:

Ts = k2
R

√
Csc + 1
Csc

kR
+ 1
[Ts] (3.58)

Comparing, Eq. (3.49) and Eq. (3.58) suggests that pole/axial scale motor has√
kRCsc+1
Csc
kR
+1

higher torque which is solely due to the shorter windings end turns of

motors with higher pole count. This coefficient may be used to determine the
benefits of pole scaling compared to radial scaling when the scaled motor size is
constrained. Due to the fact that Csc ∝

1
q , the toque advantage of pole scaling

diminishes as the pole count of the referent motor increases.
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By visually comparing the windings end turns of the prototypes of Fig. 3.32 and
Fig. 3.34, one can readily appreciate the significance of Eq. (3.58).

3.7.6 Challenges Related to Robotics Application of High Torque Motors.
As previously discussed, the majority of current robotic systems feature relatively
small sized, high speed motors coupled with high reduction gearboxes. The scaling
modes analysis of this section, is helpful to outline the challenges in substituting
current robotic actuators with high torque motors coupled with low to mid reduction
gearboxes.

In this context, consider substituting an actuator that consists of a small motor
coupled with a high reduction gearbox, for example a harmonic or a cycloidal drive
(see Sec. 4.1.1) with reduction ratio higher than 1 : 100. Eq. (3.49) and (3.43)
show that increasing the motor’s torque ns times by axial and/or radial scaling
results in a motor of high mass and size (at least ns times higher). On the other
hand, decreasing the reduction ratio of a gearbox ns times does not necessarily lead
to substantial reduction of its mass, if any. This follows from the fact that the output
of the low to mid reduction gearbox substitute needs to support identical loads as the
high reduction gearbox. Thus, it is clear that it is not really possible to achieve the
same torque and torque density levels of high reduction actuators with low reduction
gearboxes coupled with large motors of regular design. Nevertheless, Eq. (3.55),
the analysis of Sec. 3.4.3, FEA simulations of Sec. 3.5.3 and prototype of Sec.
3.6.2 show that high pole count motors may be designed to achieve torque densities
substantially higher than the motors that are currently available off-the-shelf (see
also Sec. 3.6.3).

The bus voltage in legged and limbed robotic systems is usually limited due to
safety reasons and battery size limitations. Eq. (3.41), Eq. (3.40), Eq. (3.47) and
Eq. (3.40) suggest that large motors wired for low voltage are also characterized
with small inductance and resistance which are both challenging from a drivers
perspective. Furthermore, Eq. (3.52) and Eq. (3.53) suggest that high pole motors
have substantially lower resistance and inductance than low pole motors of the same
size. These observations are confirmed by the FEA simulations of Sec. 3.5.3 and
the characteristics of the prototypes of Sec. 3.6. Therefore, novel motor driver
systems may be necessary to fully realize the potential of high pole count motors.
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3.8 Failure of PM Outer Rotor Motors with Concentrated Windings
This section briefly discusses the main causes of motor failure, which may be either
mechanical or electrical in nature.

3.8.1 Mechanical Motor Failure
Motor mechanical failure may occur when one or more of its components are
mechanically damaged.

Presence of relatively small particles in the air gap may lead to magnet surface
scratches and even magnet cracks. On the other hand, relatively large particles may
lead to rotor jamming, magnet detachment and permanent stator and rotor damage.
Motors with high pole count have narrow magnets, and thus, relatively small air gap
in order to minimize the magnetic flux leakage between the magnets, and between
the magnets and the teeth (see Sec. 3.5.3). Therefore, these motors are susceptible
to damage due particles and should be shielded from the environment.

Excessive motor heating may lead to thermal motor failure. This may be caused
by motor overload, insufficient heat dissipation or failure of the driver circuitry.
Temperatures exceeding 150◦ may cause:

• separation of glued components, e.g. failure of the bond between the stator
aluminum support and stator core, laminations separation (in the case of
glued laminates), magnet detachment from rotor back iron, failure of the bond
between the rotor back iron and rotor aluminum support, etc.

• electrical failure caused by magnet wire isolation melting (see below), e.g.
phase shorting, shorting of conductors in the slots, etc.

• magnet demagnetization caused by operation at increased temperature.

Motor bearing failure in robotics joint actuators is rare. Provided a minimal sym-
metry exists in the motor pole - slot combination (see Sec. 3.3.3), no unbalanced
motor radial forces exist. Manufacturing inaccuracies may still lead to small radial
and axial forces caused by the interaction of the magnets with the teeth and the
coils, however, these usually have very small magnitude and may not lead to bearing
failure. On the other hand, in some applications such as drone actuation, motor
bearings may need to support significant loads that are external to the motor, such
as axial force due to propeller thrust, etc. These applications require careful motor
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bearing design to ensure premature motor failure does not occur due to excessive
motor bearing loads.

3.8.2 Electrical Motor Failure
Electrical motor failure usually results from mechanical damage or thermal motor
failure (discussed above) and is characterized by a substantial change of the resistance
and bEMF of some of the phases due to occurrence of an undesired electrical
connection. For example, melting of the magnet wire enamel insulation could
cause detrimental shorting between two phases in a slot. Motors with single layer
concentrated windings have an advantage, as the coils belonging to different phases
are electrically insulated [82]. On the other hand, mechanical damage or melting
of the stator core varnish insulation could lead to shorting between the phases
through the stator core. Such phase shorting leads to significant motor performance
degradation characterized by increased current consumption, excessive heating,
noise due to current ripple, etc.

Motor electrical failure may also occur due to demagnetisation of the permanent
magnets. This may be caused by overload (excessive current in the coils) or mo-
tor driver failure. Higher motor operational temperature increases the chance of
demagnetization especially for high grade NdFeB magnets [42]. As discussed in
Sec. 3.4.2, motors with higher pole count have lower armature reaction, thus, can
deliver safely significantly higher peak torque without danger of demagnetization or
magnetic saturation of the stator core.

Finally, as shown in Sec. 3.7.6, high torque motors have low resistance and induc-
tance. For such motors, miscommutation or failure of the driver circuity may lead to
excessive current that causes demagnetization of the permanent magnets or thermal
motor failure. Therefore, drivers for large torque motors require improved safety
features and robustness.
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3.9 Conclusion
This chapter is concerned with the design of application-specific high performance
motors with the focus on robotic joint actuation. Based on a flux-linkage model,
valuable insights are gained regarding how the motor design parameters affect its
performance, and in particular, its torque, torque density, efficiency, etc. The
analysis shows that:

• magnet width of 120◦ leads to minimum bEMF total harmonic distortion or
equivalently minimum torque ripple. Increasing the magnet width beyond this
value leads to little increase in the bEMF fundamental harmonic amplitude
due to increased magnet leakage.

• for a given motor pole count, multiple valid values may exist for the slot
count. Lower values for the slot count may lead to slightly increased torque
and torque density, significantly reduced core losses and allow higher number
of parallel circuits. Higher values lead to motor designs of lower cogging
torque. Also the slot count analysis suggests that motor designs with higher
slot than pole count have no advantages and should be avoided.

• increasing the pole countmay lead to significantmotor torque density increase.
Provided the stator yoke is thick enough, the majority of the core losses
are generated in the teeth, and thus, high efficiency high pole count motor
designs with shallow slots are possible. A pole count analysis shows that
no fundamental limitations prevent the use of such motors for high speed
applications.

• the motor torque density may be maximised by adjusting the motor slot depth.
A motor tooth width analysis shows that the performance of SMPM motors
may not be significantly exceeded by IPM motors in terms of the applications
considered in this thesis.

The validity and limitations of the analytic results are demonstrated using FEA and
performance characterization of manufactured prototypes.
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These insights allow the formulation of clear motor design performance trade-offs,
guidelines and metrics which may be quite beneficial in the development of high
performance actuators:

• Motors of electric vehicles should be designed with lower pole count and
longer stator teeth. Such motor designs deliver higher torque and have lower
core losses.

• Drone and robotic joint motors should be designed with higher pole count and
shorter teeth. Such motors have significantly higher torque density and good
high power efficiency.

Finally, motor design scaling modes are described, analyzed and compared, in order
to provide useful tools for rapid scaled motor performance prediction. These scaling
modes also provide clear outline of the challenges related to the application of high
torque motors in robotic applications. The analysis shows that motors that have both
high torque and high torque density may be achieved only by using high pole count.
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C h a p t e r 4

ANALYSIS AND DESIGN OF THE BEARINGLESS
PLANETARY GEARBOX

4.1 Introduction
As discussed in Ch. 1, high performance legged and mobile manipulating robotic
platforms require light weight actuators with high torque density, efficiency, and
accuracy. The size, weight, cost, and capabilities of these robotic systems are
heavily influenced by the characteristics of their actuators. Furthermore, the ac-
tuators’ dynamics may have a profound effect on the robot’s achievable controlled
performance. This chapter introduces a new type of high reduction Bearingless
Planetary Gearbox which is motivated by the Wolfrom Gearbox, and can achieve a
wide range of reduction ratios in a single composite stage. Even though, the novel
gearbox is developed primarily with consideration of the intended use in robotics,
it is suitable for any demanding application that requires mid to high reduction ratio
speed reducers (e.g. 10-300). The practical issues which limit the applicability
of the Wolfrom Gearbox are discussed and used to motivate the innovations in the
chapter. Several advantages of the Bearingless Planetary Gearbox over current ap-
proaches in terms of improved robustness, load distribution, manufacturability, and
assembly are described. A detailed strength analysis of the Bearingless Planetary
Gearbox demonstrates its torque and toque density advantages. In the concept, all
gear components float in an unconstrained manner, which is achieved by introduc-
ing an additional kinematic constraint that allows the planets to be uniform. With
this novel design the planet carrier can be substituted with a secondary sun gear.
The resulting gearbox can be readily integrated into compact robotic joints. Its
few lightweight components can be manufactured with high accuracy with standard
machining techniques.

4.1.1 Speed Reducers Commonly Used in Robotic Applications
The torque density of electric motors is quite low compared to the actuation re-
quirements characteristic of robotic manipulators, mobile manipulation and limbed
robotics, etc. To overcome this limitation, high reduction gearboxes are usually em-
ployed to achieve high output actuator torques with electric motors. Next, the most
widely used speed reducers in robotic applications are reviewed and their advantages
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and disadvantages are outlined.

Harmonic drives

Figure 4.1: Harmonic drive [88] ©2003
IEEE.

Harmonic drives (Fig. 4.1) are widely
used in robotic applications that require
high torque density, high compactness
and positioning accuracy. They have
virtually no backlash and have a great
advantage in environmentally challeng-
ing conditions, such as in space applica-
tions, due to the possibility of hermitic
sealing [89], [90]. Even though, these
gearboxes have only three components,
the drive must be manufactured with high accuracy, using complex machining pro-
cesses. Thus, customdesigns of such drives are difficult and expensive to implement.
The efficiency is around 70% to 80%, and heating due to friction between the gear
teeth, usually limits the performance [90]. Furthermore, intrinsic kinematic errors
[91], load hysteresis [92], dry and velocity dependent friction, nonlinear torsional
compliance [93], [94], vibration and resonance losses [91], [93], [94], all lead to
performance degradation. Thus, nonlinear behavior, instabilities and unexpected
fatigue failure are of concern in dynamic applications of harmonic drives with high
gain feedback loops.

Cycloidal drives

Figure 4.2: Cycloidal drive [95] ©2012
IEEE.

Cycloidal drives, like harmonic drives,
have high reduction ratios and compact
size (see Fig. 4.2). Cycloidal drives
permit higher operational torque and ef-
ficiencies with lower noise and vibra-
tion because the torque is transmitted
by roller bearing and only compres-
sive stresses are involved [96]. How-
ever, even with precision machining
tolerances, backlash and torque ripple
caused by reduction ratio fluctuation are
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common and unavoidable [96–98]. Thus, custom design with high accuracy for high
performance robotic application are both expensive and difficult tomanufacture [98].

Single stage planetary gearboxes

Figure 4.3: One-stage planetary gearbox
[99] ©2011 IEEE

Single stage planetary gearboxes (Fig.
4.3) are attractive for their high linear-
ity and efficiency [90]. Gears are stan-
dardmechanical components, thus, cus-
tom high accuracy gearing can readily
be manufactured. However, low back-
lash or backlash-free epicyclic gearing
requires high manufacturing accuracy
for all components which can be quite
costly. The reduction ratio of the one-
stage planetary gearbox is practically
limited to the range of 1 : 3 up to 1 : 8
[90]. If higher ratios are desired, then
multiple stages can be concatenated. However, the overall size and weight of the
gearbox increases substantially in this case. Since the sun gear is typically a small
size pinion, the maximum torque that can be generated by a planetary stage is limited
by the pinion size, as the other gear components carry much lower loads. This fact
explains why planetary gearboxes usually have substantial mass and size, especially
in high torque applications.

Single Stage Compound Planetary Gearboxes

Figure 4.4: Single stage compound planetary gear-
box examples ([31] ©2018 IEEE on left and [32]
©2017 IEEE on right).

Compound epicyclic gearing
finds vast application in vehi-
cle actuation systems (differen-
tials, transmissions, etc.) and
mechanical machinery (speed
reducers). A modification of
the classical planetary gearbox
of Fig. 4.3, that has gained re-
cent popularity in the literature,
is shown in Fig. 4.4. This sin-
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gle stage compound planetary gearboxes consists of a driving sun gear, a stationary
ring gear and compound planets supported by a carrier which is the output. The
main advantage of this gearbox is that low to mid reduction ratios can be achieved
in a single compund stage. The high linearity and efficiency associated with plan-
etary gearing further promote the gearbox attractiveness. However, achieving high
reduction ratios still requires the concatenation of multiple stages. The main dis-
advantages of this gearbox are related to the higher manufacturing complexity and
tolerance requirements associated with the compound planets and the carrier as-
sembly. Furthermore, with higher reduction ratio designs, the planet gears meshing
with the ring gear would be pinions and would determine the gearbox load rating.
Therefore, the gearbox strength is again determined by a pinion gear’s strength, and
thus, the gearbox is expected to be disadvantaged in weight and size, for high torque
applications.

4.1.2 Contribution and Chapter Structure
The goal of this chapter is to develop a high torque, compact, and lightweight
speed reducer that can be efficiently integrated into robotic joints. Of main interest
are mid to high range of reduction ratios for application in mid reduction ratio
actuators and SEAs (see Ch. 1). The gearbox efficiency, dynamic stability, and
positioning accuracy are also of crucial importance for the intended use in robotic
actuation. The disadvantages of harmonic and cycloidal drives (described earlier in
the section) combined with their prohibitive prototyping cost, makes then unsuitable
for the objective of integrating the motor and gearbox into a compact custom design.
On the other hand, the planetary gearboxes described in Sec. 4.1.1 are disadvantaged
in size, weight and compactness especially when used in high reduction applications.

To achieve the aforementioned design goals, a new type of high performance plane-
tary gearbox is developed, which is based on the Wolfrom Gearbox concept. It has
several advantages for robotic applications in terms of torque performance, weight,
compactness and manufacturing. While the novel planetary gearbox is suitable for
conventional inner rotor motors, some of the designs and prototypes, described in
the chapter, are heavily oriented towards outer rotor motors or "outrunner" (see Ch.
3). As discussed in Ch. 3, outer rotor motors have considerable advantages and
probably have not had an impact in robotics due to the practical difficulties related
to their use with off-the-shelf speed reducers.

The chapter is organized as follows. Sec. 4.2 is concerned with the analysis, design



97

and manufacturing of the Wolfrom Gearbox and introduces important practical
improvements. Sec. 4.3 describes the development of the Bearingless Planetary
Gearbox which is the main contribution of this chapter. Detailed strength analysis
and manufacturing considerations are included in order to outline its advantages in
terms of torque, weight, compactness and manufacturing readiness.

4.2 Analysis of The Wolfrom Planetary Gearbox
This section analyzes the Wolfrom planetary gearbox, and introduces a practical
improvement to the design so that the planets may be uniform (Sec. 4.2.2). This
uniformity is key for the removal of the gearbox carrier and the introduction of the
Bearingless Planetary Gearbox in Sec. 4.3. Brief strength analysis (Sec. 4.2.3)
and manufacturing discussion (Sec. 4.2.4) are also included. These motivate the
interest in the Wolfrom gearbox and the development of the Bearingless Planetary
Gearbox in Sec. 4.3.

4.2.1 Kinematic Layout
TheWolfromGearbox is a planetary gearbox that consists of a one sun gear, two ring
gears and multitude of planets assembled in a carrier. The concept is first introduced
in [100]. The planets, called gear clusters or compound gears [90], consist of two
rigidly connected gears. The sun gear is the gearbox input, one of the ring gears
is stationary and the other ring gear represents the gearbox output. Fig. 4.5 shows
the gearbox layout [90] and a CAD rendering showing the components. Detailed

Figure 4.5: Wolfrom planetary gearbox layout [90] ©2009 Springer and CAD
rendering.

kinematic description of this layout and similar layouts is presented in [90] and
[101]. This gearbox is very attractive as a very wide range of reduction ratios can be
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achieved in a single composite stage [90]: from about 1:8 to 1:500 and beyond for
some designs. The higher reduction ratios in this range may require a small driving
sun gear.

In Fig. 4.5, za is the number of teeth of the sun gear, zb is the number of teeth of the
stationary ring gear, ze is the number of teeth of the output ring gear, and h refers
to the planet carrier. The planet gears have zg and z f teeth (see Fig. 4.6). The
planets must be radially supported by bearings (usually in the carrier). A detailed
discussion of bearing units and gearbox bearing design is presented in [90]. To
simplify the exposition, the same symbol is used to denote the gear components and
their tooth number, as shown in Fig. 4.5. The reduction ratio between the sun gear
(gearbox input) and output ring gears is given by [90]:

Rae =
(1 + zb/za)

[1 − zbz f /(zezg)]
. (4.1)

Generally, the two gears locked together in one planet do not have the same number
of teeth z f , zg. If ze < zb and z f < zg, the planet carrier and output ring gear
have the same direction of rotation. In this chapter, the gearbox design is restricted
to have all gears with the same module, m. Designs with different gear module
in the gearbox stages are harder to manufacture and do not necessarily have any
advantages. From Fig. 4.5 one can see that meshing of all gearing components
requires:

zg =
1
2
(zb − za)

z f = ze − (za + zg).
(4.2)

Let pn denote the number of planets. Then the sun gear cannot mesh with the planet
gears unless [90]:

(za + zb) is divisible by pn. (4.3)

In order to mesh pn planets without physical interference the following condition
also needs to be satisfied:

zg + 2 < (za + zg) sin
( π

pn

)
. (4.4)

The gearbox reduction ratio (Eq. (4.1)) may be split into two components:

Rae = RapRpe, where

Rap = 1 +
zb

za
,

Rpe =
zezg

zezg − zbz f
.

(4.5)
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Rap is the reduction ratio from the sun gear to the planets (or carrier) and corresponds
to the reduction ratio of a single stage planetary gearbox. Rpe is the reduction ratio
from the planets (or carrier) to the output ring gear. If zb ≈ ze, e.g. zb = ze − 1, Rpe

may be quite large and lead to high reduction ratio alone. Therefore, high reduction
ratios (roughly up to 1 : 200) may be achieved, even when the sun gear number
of teeth za is relatively large, that is, the sun gear is large in diameter relative to
the ring gears. This is in contrast with the single stage and single stage compound
planetary gearboxes (see Sec. 4.1) where the sun gear is a pinion. Therefore, a
practical advantage of the Wolfrom Gearbox is that an outrunner motor (see Ch. 3)
may be incorporated inside the driving sun gear, housed completely in the gearbox
interior. Following this approach, gearmotors (the complete system of the gearbox
and a motor) with significant compactness and weight advantage may be designed
(see Sec. 6.2 and Sec. 6.3).

Fundamental limitations arise in the assembly and manufacturing of the planets.
If no additional requirements are imposed, in general, it is not possible to mesh
the planet gears z f and the output ring gear ze if the planets are identical and are
symmetrically positioned. In this case, for assembly it is required that all planets
have their gears displaced with respect to each other at a specific angle that reflects
their position around the sun gear. For example, let ze = zb − 1, then if there are
pn = 5 planets, the first planet’s gears have an aligned tooth, the second planet’s
gears are displaced by 1

5 tooth compared to the first one, the third one has its gears
displaced by 2

5 tooth and so on. A further complication is caused by the fact that
the two gears of each planet have a different number of teeth, therefore, all planets
have to be precisely oriented upon assembly, otherwise the ring gear ze cannot be
meshed with the planet gears z f . Thus, the planets need assembly features such as
alignment holes. These will be further discussed in Sec. 4.3.

4.2.2 Design Requirement for Uniform Planets
In order to significantly improve the manufacturing and assembly of the gearbox, a
novel requirement is introduced that allows all planets to be the same:

zezg − zbz f

g
is divisible by pn (4.6)

where g is the greatest common divider of zezg − zbz f and zg. If this requirement is
met, then pn planets can be symmetrically positioned around the sun gear za. Eq.
(4.6) physically means that if a planet in the carrier is meshed with the sun gear
and the ring gears, it must be possible to rotate the carrier s × 360

pn
degrees for some
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integer s and mesh another planet by just inserting it in the carrier with the same
orientation that the first planet had before the carrier was rotated. If it is possible to
do this pn times, all planets can be successfully meshed and the gearbox assembled.

Alternatively, the numbers zezg−zb z f
g and za+zb can be used to find the planet positions

for unsymmetrical planet configurations. The factorization of za+zb describes every
possible planet count in symmetric configuration around the sun gear so that the
sun gear can be meshed with the planet gears zg. Similarly, the factorization of
zezg−zb z f

g describes every possible planet count in symmetric configuration around
the sun gear so that the output ring gear ze can be meshed with the planet gears z f .
The common possible planet counts in these two sets implicitly indicate all possible
planet positions around the sun gear so that the gearbox may be assembled and all
gearing components meshed. Then, uniform planets may be inserted in any of these
positions. Therefore, a wide range of designs are still possible despite the additional
requirement for uniform planets. Initial planets alignment upon assembly is still
required. Planet alignment is discussed in Sec. 4.3.

4.2.3 Strength Analysis

Figure 4.6: Forces in Wolfrom Gearbox.

Detailed metallic gear strength analysis
is available in [90, 102, 103]. Detailed
discussion regarding planetary gears de-
sign and analysis is given in [90]. For
the gearbox layouts shown in Fig. 4.5,
the carrier h provides radial support for
the planets and the radial loads and mo-
ments due to the meshing of the planet
gears with the sun and ring gears are
balanced by the carrier. Fig. 4.6 shows
the meshing forces acting on the planets: Fg is due to the meshing between zb and
zg, Ff is due to the meshing between z f and ze, Fa is due to the meshing between zg
and za. The torque that the sun gear za carries is low compared to the load carried
by the planet gears z f and zg due to the high reduction ratio, therefore, Fa is much
smaller than Fg, Ff in magnitude. Also Ff > Fg if z f < zg (unidirectional rotation
of the sun gear za and the ring gear ze) and at equilibrium: Ff = Fg + Fa. Then,
as far as the strength analysis is concerned, it is enough to consider the meshing
between the planet gear z f and the ring gear ze, as the meshing loads between the
planet gear zg and the ring gear zb would be lower in this case. Therefore, it is
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sufficient to analyze the planet gear z f for the gearbox strength calculation as the
stress in an external gear (sun and planet gears) is larger than the stress in an internal
gear (ring gears) due to their meshing [90].

Given an output torque Te for pn planets, the force, Ff , and torque, T f , applied on
the planet gear z f are:

Ff =
2Te

mpnze
T f =

Tez f

pnze
. (4.7)

The Hertz stress, σH , and bending stress, σF , of the teeth of the planet gear z f are
given by [90]:

σH = CH

√
Te(ze/z f − 1)

pm2zez f b(ze/z f )

σF = CF
Te

pm2zeb
,

(4.8)

where CH and CF are factors that depend on the loading, material, manufacturing
and tooth shape [90] and b is the gear thickness (Fig. 4.6). Let ue f =

ze
z f
, de = mze

and d f = mz f . From Eq. (4.8) it can be seen that:

σH = CH

√
1
d f

(ue f − 1
ue f

) ( Te

pnbde

)
σF = CF

( 1
m

) ( Te

pndeb

)
.

(4.9)

Eq. (4.9) describes the dependence of the Hertz stress and bending stress on the
gear size, module and thickness. The choice of the gear module has little effect on
the Hertz stress, while the planet gear diameter, d f , has little effect on the bending
stress.

For a given material choice and manufacturing, the maximum admissible Hertz
and bending stresses given by σ[H] and σ[F] can be determined (see [90, 103,
104]). Then, the gearbox will not fail in its design lifetime, provided σH ≤

σ[H] and σF ≤ σ[F]. In robotic applications, a combination of the peak and
continuous torque failure criteria may be an appropriate choice because throughout
its life, the gearbox may not be subject to enough maximum loading cycles for
fatigue failure to occur. Then Eq. (4.8) leads to:

Te ≤

(σ[H]
CH

)2 ( ue f

ue f − 1

)
d f (pndeb)

Te ≤
σ[F]

CF
m(pndeb)

(4.10)
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Eq. (4.10) suggests that Te ∝ (pndeb), and thus, reveals a major load advantage
of this gearbox layout compared to the conventional one-stage planetary gearbox.
Since the output of the gearbox is a ring gear and the output torque is proportional
to its size, high torques may be supported, as the size of this ring gear may be quite
large. In most designs, the value of the module m may be adjusted so that the gear
tooth bending strength is not the limiting strength factor. In this case, the maximum
gearbox torque is:

Te =
(σ[H]

CH

)2 ( ue f

ue f − 1

)
d f (pndeb) (4.11)

Unlike the single stage compound planetary gearbox of Sec. 4.1.1, the planet
gears of the Wolfrom gearbox are not pinions. Thus, the Wolfrom gearbox may
have multiple times higher load caring capability than the single stage compound
planetary gearbox. In addition, the Wolfrom gearbox feature a single additional ring
gear, therefore, its torque density may also be significantly higher.

With the aid of Eq. (4.9) and Eq. (4.10) one can employ a simple iterative general
gearbox design procedure. Given a particular application, the gearbox design goals
such as maximum torque, speed, weight, etc. and design constraints such as:
physical size, motor speed and size, bearings availability, materials (σ[H],σ[F]),
manufacturing, lubrication, etc. are first defined. Then iteratively, one can optimize
the gear ratio and gear size from the Hertz strength, and optimize the module and
gear face width from the bending strength, given the goals and constraints.

4.2.4 Manufacturing and Gearbox Characteristics

Figure 4.7: Compound planet side
view.

The manufacturing of the ring gears and the
sun gears involves standard techniques. The
main difficulties are related to the planet
manufacturing. Fig. 4.7 shows a side view
of a planet. The distance between the planet
gears is denoted as the planet gap. The
planets would be conventionally machined
through shaping. A review of gear manufac-
turing is available in [90, 103, 104]. Gear
cluster design andmanufacturing is also dis-
cussed in detail in [90]. The planet gap plays
an important role in the manufacturing pro-
cess [90]. For the purposes of packaging and weight compactness, the gap size
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should be kept as small as possible. Finishing operations, such as grinding follow-
ing carbonizing, place additional constraints on gap size selection.

If the gears are cut to their nominal shape, it is very unlikely that it would be possible
to assemble the gearbox. To solve this problem, gear profile correction is used [103,
104]. The shaping tool applies a negative shift by cutting deeper (towards the
center) in the gear blanks. The resulting gears have pitch diameters that are smaller
than the standard values for the given number of teeth. Thus, the meshing center
distances are reduced and the resulting radial backlash makes it possible to assemble
the gearbox. A measure of backlash is always required for successful meshing of
gears, but high performance designs require low or reduced backslash [103, 104],
otherwise anti-backlash mechanism must be introduced.

For high reduction applications, one would choose ze = zb − 1 to maximize the
reduction ratio and, thus, z f = zg − 1. In this case, the planets need four criti-
cal machining operations: bearing hole drilling, alignment feature machining and
shaping of the two gears plus possible gear grinding. The machining errors from
each step could add-up to a relatively large overall error, requiring a relatively large
shift profile to accommodate the errors. These effects lead to an increase in the
gearbox noise, backlash, friction and, a drop in efficiency due misalignment and
reduction of meshing contact ratio [103]. In general, efficiencies in the range of 0.7
(for high reduction designs) to 0.9 (for low reduction designs) are to be expected
[90]. Furthermore, due to the backlash and the fact that the planets are constrained
in the carrier, the load is generally not distributed evenly across the planets. In
fact, no more than three or four planets carry the load [90]. On the other hand, the
manufacturing cost of high precision planets would significantly increase the overall
gearbox cost. Thus, similarly to harmonic and cycloidal drives, custom high perfor-
mance gearbox designs of the type described in this section may also he expensive
and difficult to manufacture for robotic applications.

4.2.5 Application in the Gear Bearing Drive
An application of the Wolfrom Gearbox layout in the Gear Bearing Drive is de-
scribed in [101], [105] and [102]. Fig. 4.8 shows the schematic structure of this
design. In the concept, the planets have additional cylindrical extrusions that extend
outwards from both planet gears and function as roller bearings. The sun gear
and the ring gears have similar roller extrusions. The gears’ rolling surfaces in
combination with roller rings perform the function of the carrier. However, due
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to the fact that the planets, the sun gear and the ring gears are both gears, and
bearing rollers, their radial positions are fixed with respect to each other. None
of the gear components float, and thus, the planet load distribution can be quite
uneven and catastrophic failure could occur at loads much lower than the rated ones.
Furthermore, unavoidable eccentricity and angular misalignment due to manufac-
turing tolerance would require higher gear backlash to even assemble the gearbox.

Figure 4.8: Gear Bearing Drive [101]
©2018 Springer.

Extensive backlash in the meshing
could lead to a significant drop in effi-
ciency due to internal forces and mis-
alignments. Using the gearbox as a
joint raises addition concerns as side
loads and moments are supported by
the planets, therefore, friction and ef-
ficiency could significantly vary with
the joint bearing load. Finally, the gear
bearings require high machining accu-
racy and are quite difficult to manufac-
ture as the roller surfaces also require
hardening and grinding otherwise the
gearbox life could be substantially reduced. Due to these possibly severe practical
limitation of the gear bearing drive, it is not considered further in this thesis.

4.2.6 Modifications of the Wolfrom Gearbox
This section discusses novel modifications to the Wolram gearbox layout described
in Sec. 4.2.1. The first gearbox variant features profile corrected gears and is
advantageous when very high reduction ratios are desired. The second variant may
be suitable for low reduction application with large size motors.

Very High Reduction Double Planetary Row Gearbox

Very high reduction ratios may be achieved if the planetary layout shown in Fig. 4.5
is modified so that z f = zg and ze = zb ± 1. In this case, Rpe =

ze
ze−zb

= ∓ze, while
Rap remains the same. Therefore, the gearbox reduction ratio is given by:

Rae = ∓ze(
za + zb

za
). (4.12)

Eq. (4.12) suggests that reduction ratios beyond 1 : 1000 are possible.
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However, meshing of all gearing components requires the ring gears and the sun
gear to be corrected so that the center distance between the planet gears z f and the
ring gear ze is the same as the center distance between the planet gears zg and the
ring gear zb. Corrected gears have pitch diameter that is larger or smaller than the
standard value. This may be achieved by modifying the center distance between the
blanks and the cutter (shaper, hobber, etc.) from the standard value for uncorrected
gears, while the gear is being produced. Details regarding gear profile correction
may be found in [103, 104].

For this gearbox design the planets cannot be uniform and the planet gears need to
be displaced with respect to each other at a specific angle that reflects their position
in the carrier, as described in Sec. 4.2.1. In addition, the requirement of Eq. (4.3)
has to be satisfied, otherwise the sun gear za cannot be meshed with the planet gears
zg. However, due to the fact that z f = zg, the planets do not need to be aligned upon
assembly and can simply be inserted at their respective positions on the carrier.

Fig. 4.9 shows a 3-D printed prototype of aWolfromGearbox that features corrected
gears and has reduction ratio of 1 : 419.2. All gears have module m1.

Figure 4.9: Example gearbox design with tooth correction. Left: CAD rendering.
Right: 3D printed prototype.

Designs Without a Sun Gear

Wolfrom derived gearbox design without a sun gear is also possible. In this case, the
motor drives the planet carrier directly. The physical coupling between the motor
and the carrier may be realized in many way. Fig. 4.10 show a CAD rendering and
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Figure 4.10: Example gearbox design without a sun gear. Left: CAD rendering.
Right: 3D printed joint prototype that features the gearbox.

a 3D printed prototype of an early concept design that features a gearbox with no
sun gear. It is intended to use an outrunner motor (see Sec. 3.3) to drive the carrier
through involute splines. Designs without a sun gear are suitable for low reduction
application as well as in some special cases for high reduction applications, provided
tooth profile correction is used as described in the previous section. The gearbox
reduction ratio is given by Rpe (see Eq. (4.5)). The angular velocity of the planets
is:

ωzg = ωmot
zb − zg

zg
, (4.13)

where ωzg is the motor angular velocity. Eq. (4.13) suggests that for such designs
the planet speed ωzg may be multiple times the motor speed ωmot if the ring gear zb

has a lot more teeth than the planet gears zg. On the other hand, high gear tangential
velocities may cause increased noise and vibration, lubrication issues and limitation,
increased wearing, etc. [103, 104]. Therefore, designs that do not feature a sun gear,
and have relatively small number of teeth on the planet gears, may not be suitable
for use with high speed motors.
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4.3 Bearingless Planetary Gearbox
This section introduces a novel bearingless planetary gearbox which is based on
the Wolfrom gearbox layout of Sec. 4.2. Sec. 4.3.1 provides an overview of the
gearbox structure and advantages. Sec. 4.3.2 provides a detailed strength analysis
and Sec. 4.3.3 discusses the possible elimination of the gearbox assembly features.
Sec. 4.3.4 describes bearingless planetary gearbox designs with assembled planets.

4.3.1 Kinematic Layout of the Bearingless Planetary Gearbox
In the conventional one stage planetary gearbox, the carrier is the output link and
is of critical importance. However, in the planetary layout of Fig. 4.5 the carrier
only provides radial and torsional support for the planets and does not transmit any
load. The unbalanced radial and torsional loads are mainly due to the meshing
forces associated with the planet gears and the ring gears. The carrier assembly
consists of many components, some of which can require complex machining and
tight tolerances [90]. Furthermore, it adds substantial mass to the gearbox and
complexity to the planet design as discussed earlier. Bearing availability for a given
design also imposes design constraints. These factors motivate the development of
a novel bearingless planetary gearbox.

Figure 4.11: The Bearingless Planetary Gearbox kinematic layout (one left) and
CAD rendeing (on right).

Fig. 4.11 shows the kinematic layout and example CAD rendering of a bearingless
planetary gearbox design. The carrier is eliminated and a secondary sun gear zl is
introduced to provide the necessary support of the gear clusters. This modification
can always be done if the planets are identical, which may be realized with the
design constraints discussed in Sec. 4.2.2. To show this, let ze = zb − k and assume
that it is possible to mesh pn planets. Then pn is a factor of za + zb and zl = za + k.
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Therefore, zl + ze = za + zb, and thus, pn is a factor of ze + zl and the gears of the
planetary stage, given by zl , z f and ze, may be meshed.

Eliminating the carrier and introducing the second sun gear, zl , has the following
consequences:

• The planets float freely: they are not constrained in the radial direction except
by their meshing with the sun and ring gears. Thus, the load distribution of
the planets is improved. The gearbox load rating may also be increased by
adding more planets.

• The manufacturing complexity of the planets is reduced, as no bearings are
required tomount the planets in a carrier. Therefore, gear cutting and finishing
is the only critical step.

• The mass is significantly reduced as all gear components can be constructed
with thin sections (see Fig. 4.11).

• The gearbox can be designed with reduced backlash.

• The assembly procedure is significantly improved. The planets can be inserted
one by one instead of assembled simultaneously as part of a carrier.

• Designswith cheaper, moderately accurate gears are also possible (for example
manufactured using injection molding, sintering, etc.). Applications that are
not backlash sensitive, such as those that do not involve bi-direction gearbox
driving, may benefit from low a cost bearingless planetary gearbox.

The improved gearbox compactness makes it ideal for integration into robotic joints
so that the output ring gear is attached directly to the joint rotor. The possibly
large sun gear diameter allows efficient mechanical coupling with the output of
high performance outer rotor motors (see Sec. 3.3). Furthermore, the possible
introduction of a central joint support shaft with central cabling holes may allow
lighter and more compact joint structure.

Fig. 4.12 shows a bearingless planetary gearbox prototype. The gears are made of
4140 steel, have module m1 and out-of-plane thickness of 10mm. All gears were
machined on a CNC slotting machine in-house. The gearbox has eight planets and
a reduction ratio of 1:101.
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Figure 4.12: Bearingless planetary gear drive prototype. Right: prototype showing
the floating nature of all components. Left: prototype in 3D printed case that axially
constraints the motion of the gears. The gearbox diameter and width are 170mm
and 23.175mm, while the driving sun gear diameter is 90mm. The weight is 1.1 Kg.

The bearingless planetary gearbox consists of two planetary stages that share the
same gear cluster planets. A single planetary stage may have efficiency in the
range of 0.96-0.98 [90]. Thus, depending on the manufacturing and gearbox design
characteristics, it is expected that high efficiencies ≥ 0.9 may be achievable in
practice. No experimental data confirming this is currently available and the gearbox
efficiency characterization is subject of future research.

Figure 4.13: Left: CAD rendering showing the planet alignment. Right: assembly
alignment part for the prototype show in Figure 4.12.

Eliminating the carrier does not remove the need for planet alignment. Fig. 4.13
shows a CAD rendering of the prototype shown in Fig. 4.12. All planets have the
same orientation. In order to achieve this, an alignment part (Fig. 4.13) is used
which places the planets in the correct position and orientation during assembly.
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4.3.2 Bearingless Planetary Gearbox Strength Analysis
Unlike the Wolfrom gearbox of Sec. 4.2, the bearingless planetary gearbox does
not feature a carrier, thus, the sun gears have to balance the radial and out-of-plane
torsional loads from the meshing of the planet and ring gears. Hence, new strength
analysis and design guidelines are necessary and are provided in this section.

Support of the unbalanced planet radial and torsional loads

In the bearingless planetary gearbox, similar to the Wolfrom gearbox, the largest
tangential forces, Fg and Ff , are due to the meshing of the planet gears with the ring
gears (see Fig. 4.6) and Fa is much smaller than Fg, Ff in magnitude. Due to the
planets’ floating nature, the radial loads due to the meshing of a planet gear with
a ring gear is supported by the meshing of that planet gear with the corresponding
sun gear. Therefore, the planet gears are pushed towards the sun gears and two

Figure 4.14: Left: plane gear forces due to meshing with ring gear and sun gear in
the bearingless planetary gearbox. F is the tangential meshing force (corresponding
to Fg or Ff ) and α is the gear pressure angle. Middle: two sided contact between a
planet gear and a sun gear. Right: clearance in the meshing between the ring gears
and the sun gears due to gearing backlash.

sided tooth contact occurs between the sun gears and the planet gears as shown in
Fig. 4.14. This two sided contact provides the radial support of the planet gears
and the existing gearing backlash manifests into the development of clearance in the
meshing between the planet gears and the ring gears as shown in Fig. 4.14. Thus,
the number of planet gear tooth faces in contact at the sun gear is twice the number
of faces in contact at the ring gear, which suggests that the additional radial load
supported by the sun gears should not be sufficient to cause premature failure or
extensive wearing. However, in the absence of a carrier, the meshing forces Fg, Fa

and Ff (see Fig. 4.6) give rise to an unbalanced out-of-plane couple which has to be
balance by the meshing of the planet’s gears with the ring gears and the sun gears.
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To understand themechanics of this, two contact models are first considered: uneven
one-sided meshing contact between the planet gears and the ring gears, and uneven
double-sided contact between the planet gears and the sun gears. Regardless of their
distributions, the total meshing contact forces of the planet gears with the sun and
ring gears are the same for a given gearbox load and working conditions. Thus,
the meshing load between the planet gears and the ring gears may be modeled as
the meshing tangential forces, Ff and Fg, applied at the mid-plane of the planet
gears and concentrated couples, τ f and τg, of unknown magnitude (see Fig. 4.15).
Similarly, the meshing contact between the planet gears and the sun gears may be
modeled by concentrated couples, τa and τl . The sun gear meshing tangential force,
Fa is ignored as it it is much smaller than Fg and Ff in magnitude, and thus, the sun
gear stresses resulting from it, may be neglected. Then, from equilibrium: Ff ≈ Fg

(see Fig. 4.6). Due to the two sided contact at the sun gears, the balancing radial
forces may be ignored for the purposes of this analysis, provided the sun gears are not
smaller than the planet gears. Fig. 4.15 shows the relevant forces and moments due

Figure 4.15: Planet meshing contact loads of the bearingless planetary gearbox.

to the gearing measing contacts. There are four unknown couples: τg, τ f , τa and τl .
As far as solid deformation is concerned, the teeth of all gearing components have
similar shape and dimensions, thus, their strain response would be quite similar if
subject to the same bending and torsional loads. If gears with less than 12 to 15 teeth
are used, this assumption may not be valid due to substantial teeth root undercut.
Without loss of generality, assume all gears have more than 18 teeth so there is no
undercut. Therefore, the principle of super position combined with the principle
of minimum potential energy suggests that τ f ≈ τ f ≈ τa ≈ τl ≈

(Fg+Ff )b
8 =

Ff b
4 ,

as Fg ≈ Ff . Eq. (4.7) and Eq. (4.8) suggest that σH ∝

√
Te
b ∝

√
Ff

b . Then,
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neglecting the effect of the planet gap, one should expect the contact pressure
distribution, shown in Fig. 4.16, between the planet gears and the ring gears.

Figure 4.16: Contact pressure distribution
in the meshing between the planet gears
and the ring gears in the bearingless plan-
etary gearbox, neglecting the effect of the
airgap. The peaks of the two distributions
for the planet gears z f and zg are

2Ff

b and
2Fg

b , respectively.

The maximum value of the distribution
(Fig. 4.16) is twice the value of the
contact pressure between a planet gear
and a ring gear in the equivalent Wol-
from gearbox that has the same planets,
ring gears and driving sun gear, and is
subject to the same load. Therefore, for
a bearingless planetary gearbox design:
σH ≈

√
2σw

H , where σ
w
H is the maxi-

mum gear Hertz stress in the equivalent
Wolfrom gearbox. This simple analysis,
suggest that the bearingless planetary
gearbox may require Hertz stress load
derating of more than 30%. In a similar
fashion the effect of the meshing cou-
ples on the gear bending strength may
be analyzed. However, as discussed in
Sec. 4.2.3, in most designs, the gear
module, m, may be chosen so that the
Hertz stress determines the gearbox strength. Therefore, the effect of the meshing
couples on the gear bending strength is not further considered analytically.

The analytic strength considerations of this section provide rough approximations
and FEA modeling is used as the primary tool for determining the bearingless
planetary gearbox strength as discussed in the following section. Nevertheless, the
simple analysis provides qualitative understanding of the causes of the uneven stress
distributions and how one could improve them. For example, design with ring gears
of thin out-of plane thickness may be employed as shown later in the section. Future
development of the bearingless planetary gearbox and similar floating component
gearboxes will be centered at reducing and eliminating the unbalanced out-of-plane
coupling load.
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FEA-based strength analysis

The goal of this section is to establish consistent procedures for estimating the
bending and Hertz stresses in the bearingless planetary gearbox under load. The
bending and Hertz stress expressions in Eq. (4.8) are empirical, therefore, FEA
results may not be used directly in these formulas.

This section proposes the introduction of derating constants in Eq. (4.8) that are
estimated using FEA so that Eq. (4.8), Eq. (4.9) and Eq. (4.10) may be used with a
bearingless planetary gearbox design. First, for a reasonable load, the bending and
Hertz stresses in the bearingless planetary gearbox design are FEA estimated. Next,
the bending and Hertz stresses in the equivalent Wolfrom gearbox design under
the same load are also FEA estimated. Finally, the approximate derating bending
and Hertz stress coefficients for the bearingless planetary gearbox are estimated by
comparing the FEA results for the two gearbox designs.

This procedure is demonstrated for the gearbox design of Fig. 4.13. Fig. 4.17
shows FEA simulation model and mesh for both the bearingless planetary gearbox
design and for the equivalent Wolfrom gearbox design. Mesh control is used to
significantly reduce the element size in the areas where tooth contact may occur.

Fig. 4.18 show the FEA simulation results for the stresses in the contact areas
between the ring gears and the planet gears for both gearboxes. As expected,
uneven contact occurs that causes increased Hertz and bending stresses in the case
of the bearingless planetary gearbox. The maximum bending and Hertz stresses
for the Wolfrom gearbox are given by approximately σF = 70MPa and σH =

260MPa, respectively. Themaximumbending andHertz stresses for the bearingless
planetary gearbox are given by approximately σF = 105MPa and σH = 400MPa,
respectively. Therefore, one may introduce derating coefficients for the bending and
Hertz stresses, given by ηF = 0.65 and ηH = 0.65, respectively.

Fig. 4.19 show the FEA simulation results for the stresses in the contact areas
between the sun gears and the planet gears for the bearingless planetary gearbox.
The couples τa and τl lead to uneven two sided contact. The figure also shows
exaggerated deformation renderings which confirm one sided contact at the ring
gears under load and show the resulting torsional planet deformation due to the
unbalanced load couple.
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Figure 4.17: FEA model and mesh of Wolfrom gearbox (on left) and bearingless
planetar gearbox (on right). For both gearboxes, the sun and ring gears are con-
strained to rotate around their centers. A load of 25Nm is applied to both gearbox
ring gears (supported by only one planet). The planet of the bearingless planetary
gearbox is floating while the planet of the Wolfrom gearbox is constrained so that it
may only rotate around its axis.

Figure 4.18: FEA simulation results for the stress distribution in the planet gears due
to the meshing with the ring gears for the Wolfrom gearbox (on left) and bearingless
planetary gearbox (on right). A load of 25Nm is applied to both gearbox ring gears
(supported by only one planet). The stress in the ring gears is not shown because it
is lower than the stress in the planet gears, as predicted by the analysis of Sec. 4.2.3.

In the case of the bearingless planetary gearbox, Eq. (4.9) and Eq. (4.10) become:

σH =
CH

ηH

√
1
d f

(ue f − 1
ue f

) ( Te

pnbde

)
σF =
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ηF

( 1
m

) ( Te

pndeb

)
.

(4.14)
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Figure 4.19: FEA simulation results for the stress distribution in the planet gears due
to the meshing with the sun gears for the bearingless planetary gearbox (on right).
Exaggerated FEA simulation views of the deformation are shown in the middle and
on the right.

and

Te ≤ ηH

(
[σH]

CH

)2 ( ue f

ue f − 1

)
d f (pndeb)

Te ≤ ηF
[σF]

CF
m(pndeb),

(4.15)

respectively. The derating coefficients, ηF = 0.65 and ηH = 0.65, are somewhat
larger than expected. This is due to the large planet gap of 0.125in (3.175mm).
Reducing the planet gap to 0.1mm (which is an unrealistically small value) leads
to stress reduction of as much as 10%. Therefore, in the design of the bearingless
planetary gearbox one should try to minimize the size of the planet gap as much as
possible.

Eq. (4.15) allows one to estimate the maximum torque that the gearbox of Fig.
4.13 may sustain, assuming the load is distributed evenly between all the planets.
For refined C 45 steel (σ[H] = 430MPa and σ[F] = 356MPa), the maximum
torque is Te ≈ 125Nm, calculated from the Hertz stress and Te ≈ 360Nm from the
bending stress. On the other hand, face hardened 4340 steel (σ[H] = 1160MPa and
σ[F] = 705MPa) leads to maximum torque of Te ≈ 830Nm, calculated from the
Hertz stress and Te ≈ 720Nm from the bending stress. It is important to note that
these are continuous torque ratings without a safety factor or consideration of the
working conditions such as maximum speed, lubrication, load distribution, etc. In
general, the peak torque ratings would be significantly higher.
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Designs with thinner ring gears

The FEA simulation results from the previous section suggest that due to the unbal-
anced couple, the gearbox load is supported by only part of the faces of the ring gears
because of the uneven meshing contact with the planet gears. Therefore, the ring
gear out-of-plane thickness may be reduced while the thickness of the other gearing
components is preserved, without deteriorating the gearbox torque performance.
As previously discussed (see Fig. 4.6), the ring gears support the gearbox output
torque, and thus, large tangential forces occur in the meshing between them and the
planet gears. Therefore, the ring gears require a relatively large in-plane-thickness
and their mass may account for a large portion of the total gearbox mass. Then,
reducing their thickness may lead to significant gearbox torque density increase.
Fig. 4.20 shows FEA simulation mesh and stress distribution for the bearingless
planetary gearbox design of Fig. 4.13 with ring gears of half out-of-plane thickness.
In generating the FEA stress distribution in Fig. 4.20, the same torsional loading

Figure 4.20: FEA simulation model and mesh (on left), and simulation results (on
right) for the stress distribution in the planet gears due to the meshing with the ring
gears for the bearingless planetary gearbox with thinner ring gears.

is used as for the FEA results of Fig. 4.18. Comparing the stress distributions in
Fig. 4.20 and Fig. 4.18 shows that reducing the ring gear out-of-plane thickness by
half does not lead to planet bending or Hertz stress increase. Therefore, the FEA
simulation results confirm that advantageous bearingless planetary gearbox designs
with thinner ring gears are possible.

Choice of number of planets

If the planets are more than four, there is no guarantee that the load will be equally
distributed between themdespite the advantages of the bearingless planetary gearbox
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and regardless of the accuracy of the gears [90]. Nevertheless, even if the load is
not evenly distributed, additional planets do increase the life of the gearbox. Then,
a lower number of planets with equal load distribution can be assumed at the
design stage and the gear material maximum admissible stresses updated to reflect
the introduction of more planets [90]. Therefore, the floating nature of the planets
would certainly lead to a significant load rating increase if a larger number of planets
is utilized.

Furthermore, a higher number of planets is also desirable because they provide
the support of the floating components and in the case of thin section sun gears,
infinitesimal deformations could lead to improved load distribution as well. The
planet performance requires experimental characterization which is subject of future
research.

Gear Tangential Velocity

An important gearbox design aspect that has not been discussed yet, is related to
the gears’ rotational speed. The tangential (or circumferential) velocity of the gears
is an important factor that may determine the required manufacturing accuracy for
smooth and quiet gearing [90, 103]. In the case of the bearingless planetary gearbox,
the sun gear za and the planet gear zg have the same tangential velocity which is the
highest gear tangential velocity in the gearbox and is given by:

νa =
(mza)ωa

2
(4.16)

where ωa is the angular velocity of the sun gear. For example, spinning the sun gear
of the gearbox prototype of Fig. 4.13 at 4000RPM , results in νa ≈ 20m/s. Full
load, smooth and quiet operation at this rotational speed require gearing of extra
accuracy (class 6) [90, 103].

As far as most robotic applications are concerned, actuators rarely operate at maxi-
mum power, even for short amount of time as discussed in Ch. 3. Fast manipulation
of relatively light objects or limb swinging in legged robots, are example appli-
cations where joints carry minimum loads at high angular speed. On the other
hand, slow manipulation of heavy objects or standing and walking in legged robots,
are example applications where joints carry excessive loads at low to mid angular
speed. Therefore, peak tangential gear velocities exceeding the maximum value for
the particular gear class can be allowed in robotic applications provided the peak
power and noise levels are acceptable.
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However, dynamically challenging and highly repetitive robotic motions, such as
running, may involve short time intervals where the actuators are fully loaded at high
angular speed so that sufficient energy can be injected into the systemwhile the robot
is in contact with the ground. For such applications that require highly repetitive,
short peak power intervals, lower gear tangential velocities may be required to avoid
excessive gearbox wear and noise.

Therefore, in the case of the bearingless planetary gearbox, the maximum tangential
gear velocity can enforce important gearbox design constraints and trade-offs. For
example, choosing a design with a large sun gear za allows incorporating a high
torque outer-rotor motor inside the gearbox that directly drives the sun gear za.
However, in this case the maximum motor speed may be limited by the condition
that the tangential velocity (Eq. (4.16)) should not exceed a maximum allowable
value. Alternatively, costly manufacturing or finishing may be required to achieve a
successful design.

4.3.3 Removal of the Planet Assembly Features
The planet design of the prototype of Fig. 4.12 has assembly features comprised of
holes in the planet interior which serve two purposes:

• they align the planets to their correct orientation w.r.t. each other upon
assembly, using the assembly jig of Fig. 4.13.

• they ensure that the orientation of the two planet gears is consistent among all
planets (up to the given manufacturing tolerance). E.g. the two planet gears
have an aligned tooth which is precisely oriented w.r.t. the holes.

Due to the removal of the carrier, the planets need not be simultaneously aligned
and assembled in the gearbox. Thus, as long as the orientation of the two planet
gears is identical (up to the given manufacturing tolerance) and an alignment tooth
is consistently indicated on each of the planets, they may be correctly oriented and
assembled by inspection.

As far as manufacturing is concerned, the planets do not require assembly features
if both planet gears can be machined without removal of the blank midway. If
|z f − zg | ≥ 5 the two planet gears may be cut consecutively from the same side.
Thus, the planet blanks do not need to be turned in order to cut both planet gears.
However, this is not true if |z f − zg | ≤ 4. Nevertheless, it is still possible to cut both
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planet gears without rotating the blank, provided each gear is cut from a different
direction, e.g. the top gear is cut from above and the bottom gear is cut from below.
Such double-sided shaping may be realized by attaching two shaper cutters as shown
in Fig. 4.21. In this case, the bottom cutter is used to shape the top gear while the
top cutter is used to shape the bottom gear.

Figure 4.21: Compound planet manufac-
turing using double-sided shaping.

Therefore, if the gear teeth are large
enough (m ≥ 1mm) so that the planets
may be aligned by inspection upon as-
sembly, they need no assembly features
provided the aforementioned manufac-
turing techniques are adopted. Fig. 4.22
shows bearingless planetary gearboxes
which are used in actuator prototypes
(see Sec. 6.2 and Sec. 6.3) and are
designed, manufactured and assembled
without planet assembly features. The
average gear normal backlash of the pro-
totypes’ components is around 0.03mm.
Normal backlash is calculated by mea-
suring the distance between a specific
number of teeth which depends on the
gear size and comparing it to tabulated
standard values.

4.3.4 Bearingless Planetary Gearbox Designs With Assembled Planets
The planets need not be comprised of a single solid piece. Instead the two gears may
be assembled either directly to each other or mounted on a support part using keys,
splines, press fit, frictional joint, etc. The advantages of these alternative planet
construction methods are:

• the two planet gears are individually cut and finished which reduces the
manufacturing cost and complexity.

• the planets may either be assembled individually using an assembly jig that
aligns the two gears to their correct orientation w.r.t each other or rigidly
connected once the planet gears are meshed with the ring and sun gears in the
formed two planetary stages.
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• for some gearbox designs with assembled planets, gears of lower backlashmay
be used which promotes better contact ratio, leading to smoother meshing and
lower wearing as the unavoidable orientation error characteristic of solid
planets need not be compensated for.

Figure 4.22: Prototype of the bearingless planetary gearbox with no planet assembly
features. The gearbox on the left is a remake of the gearbox of Fig. 4.12 with
substantially lower backlash and is used in the actuator prototype of Sec. 6.3. The
gearbox on the right has reduction ration of 1 : 10 and is used in the actuator
prototype of Sec. 6.2.

In addition to the aforementioned advantages, assembled planet designs promote
rapid gearbox prototyping which may be quite useful at the early prototyping stages
of novel complex actuation systems. Manufacturing of low quantity custom design
gears is quite costly and usually has long lead times. On the other hand, commer-
cially available gears have large and inconsistent normal backlash. This motivates
investigating techniques for backlash-free gearbox prototyping with commercial
gears.

Backlash removal in bearingless planetary gearboxes with assembled planets

The amount of backlash in the meshing of two gears may be controlled by adjusting
their center distance. Therefore, the backlash in one or a small set of planets
contained in a small region around the sun gear may be significantly reduced or
effectively removed, if first, the sun gears are displaced so that the center meshing
distances between the gears of these planets and the sun and ring gears is minimized
(see Fig. 4.23). Once this is done, the gears in each of these planets are rigidly
connected to each other using one of the aforementioned methods, e.g. using a
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frictional joint. Next, the gears in each of the remaining planets are displaced w.r.t.
each other so that half of these planets supports torque with no backlash in one
of the gearbox rotational directions while the other half supports torque with no
backlash in the other direction. Once this is done, the gears of these planets are
rigidly connected to each other.

In this bearingless gearbox variant, the planets of minimummeshing center distance
ensure that the backlash of the gearbox output is eliminated, while the two sets
formed by the rest of the planets ensure constancy of the meshing distances of all
gearing components, regardless of the rotational direction.

Figure 4.23: Schematic construction of a backlash-free bearingless planetary gear-
box with five assembled planets.

Fig. 4.23 shows a schematic construction of a backlash-free bearingless planetary
gearbox with five assembled planets. The planets may be split in two set: one
that supports torque in the clockwise (CW) direction and one that supports torque
in the counter-clockwise (CCW) direction. The two sets share the planet that has
minimum gear meshing center distances. The gear meshing center distances of the
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rest of the planet gears are larger, and thus, they have lower contact ratio [103]. Too
low contact ratio (≤ 1.2) may lead to increased gear wearing, which poses an upper
bound on the maximum gearing backlash that may be compensated. Furthermore,
three planets that are positioned in irregular fashion around the sun gear share
the load in either direction, therefore, one of the planets may end up supporting
higher loads than the rest, and thus, wear out faster. Such irregularity is typical
for gearboxes with compensated backlash. For these reasons, bearingless planetary
gearboxes constructed in this fashion using commercial gears are only suitable for
proof of concept prototyping.

As shown by the purple circle in Fig. 4.23, due to the different planet gears meshing
center distances, the centers of the sun gears follow a circular orbit around the
centers of the ring gears. This eccentricity is particularly important for the driving
sun gear which should be coupled to the motor using a flexible coupling to ensure
smooth gearbox operation.

Prototype of a beringless planetary gearbox with assembled planets

Fig. 4.24 shows pictures of a bearingless planetary gearbox prototype with assem-
bled planets that features the construction of Fig. 4.23. The gearbox is used as part of
SEA tether management system of the Axel rover developed at the NASA Jet Prop.
Lab. [36] (see Sec. 6.4). The gearbox has 1 : 36 reduction ratio and excellent back-

Figure 4.24: Prototype of a bearingless planetary gearbox with assembled planets.
It is used in the actuator prototype of Sec. 6.4

.

drivability. Commercial SDP-SI gears featuring in-house modifications were used
for the prototype construction. Fig. 4.25 shows a section view of the planet design.
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Figure 4.25: Assembled bearingless plan-
etary gearbox planet design.

A belleville washer provides compres-
sion force ensuring a constant frictional
coupling between the two gears. The
planet is axially constrained by a thrust
bearing.

Despite the large commercial gears’ nor-
mal backlash in the range from 0.08mm

to 0.16mm, the gearbox is backlash-
free. This is achieved by assembling
the gearbox utilizing a fixture that con-
strains the sun and ring gears so that one
of the planets meshes without backlash with the sun and ring gears as discussed in
the previous section. The backlash of the rest of the planets is then removed by
displacing the gears in each planet with respect to each other by manually pushing
while tightening the nut and flattening the belleville washer.

Thus, the main advantage of this bearingless planetary gearbox variant is that it
can be constructed backlash-free with standard gearing components with small post
purchasemodifications. The planetsmass is, however, significantly higher compared
to the thin section design of Sec. 4.24. Therefore, the main disadvantages of such
designs are the increased gearbox mass and inertia due to the additional planet
components and the possibly higher wearing and noise due to the lower contact ratio
and increased load on some of the planet gears.

A three-piece flexible coupling connects the driving motor rotor to the driving sun
gear. In general, such three-piece couplings are designed to tolerate large shaft
misalignment, and are thus, ideal for interfacing the gearbox sun gear with its
eccentric motion.
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4.4 Conclusion
Motivated by the shortcomings of existing speed reducers used in robotic application,
this chapter introduces a novel Bearingless Planetary Gearbox. The concept is
based on the Wolfrom Gearbox which is first analyzed to demonstrate potential
torque density advantages and allow practical design improvements. The novel
bearingless planetary gearbox does not feature a carrier and all gearing components
float, therefore, its advantages may include improved robustness, load distribution
and assembly. The gearbox features low number of light, readily manufacturable
components that may be integrated compactly into robotic joints. The chapter
concludes with detailed strength analysis and modifications that further improve the
gearbox manufacturing readiness and suitability for prototyping of novel actuators
and mechanisms.
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C h a p t e r 5

ANALYSIS AND DESIGN OF PLANAR ROTARY SPRINGS

5.1 Introduction
The chapter is concerned with the analysis, design, and prototyping of rotary planar
springs for robotics applications such as rotary series elastic actuators. Such springs
may be suitable for applications that require efficient mechanical energy storage,
torsional passive compliance of any kind, misalignment tolerant flexible coupling
of components, etc. The first key contribution of this chapter is the development
of a mathematical model, based on curved beam theory, that allows rapid design,
analysis, and comparison of rotary springs that have arbitrary arm shape. The
model may be used to formulate a search algorithm for optimal spring design given
a predetermined arm shape. Two spring mass reduction methods via composite arm
structures, or arm cutouts are also introduced. The second key contribution is a
complete analysis algorithm that allows for rapid spring torsional loading response
simulation with possible internal contacts between the spring arms. Typically over-
load spring protection is achieved by the addition of hard stops which limit the spring
maximum displacement. The chapter introduces an alternative approach to overload
protection based on arm contacts. The third key contribution is the development
of an optimization-based design methodology which maximizes the springs’ over-
all torque density through optimization of the arm profile. The proposed design
approach is theoretically motivated and alternative ways of spring optimization are
considered. The proposed design and analysis algorithms are validated through
nonlinear FEA and mechanical testing of manufactured prototypes.

5.1.1 Previous SEA Rotary Spring Designs
The main job of SEAs is to implement force control and compliance with a pre-
scribed rotary stiffness in order to achieve actuator performance goals (see Sec. 1.1).
The compliant elements of rotary SEAs should be able to tolerate small misalign-
ments and side loadings like mechanical flexible couplings. Commercially available
couplings are designed to connect an input shaft (e.g., a motor) to an output shaft
(e.g., a ball screw rod), and are not designed for applications that require high torque
capabilities and lower stiffness.
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A great variety of SEA springs can be found in the literature. Fig. 5.1 shows
rotary spring designs based on linear springs. In these designs the springs are
prestressed to ensure uniformity. As the figure suggests, they also feature high
complexity. Rough performance calculations suggest that high torque, low stiffness
requirements needed for SEA applications result in linear spring designs that require
excessively large and massive assemblies.

Figure 5.1: Linear springs based designs. Left [10] ©2009 IEEE and right [9]
©2005 Springer.

Fig. 5.2 show spiral-based spring designs developed in previous research efforts.
The spring shown in Fig. 5.2a is a single spiral wound from a steel strip while the rest
of the spiral springs aremanufactured from a high grade steel plate through electrical
discharge machining. The springs in Fig. 5.2b and 5.2c are based on Archimedean
spirals. All the springs in Fig. 5.2a, Fig. 5.2b and Fig. 5.2c are designed using
principles of elementary spiral torsion spring theory [106]. The modeling and
analysis framework presented in Sec. 5.2.2 is a substantial improvement over these
classical, and highly simplified, design models. The spring in Fig. 5.2c is designed
by iterative optimization of the shape using Finite Element Analysis (FEA). The
springs shown in Fig. 5.2e and Fig. 5.2f are based on the same principle. In
these prior works, a spring geometry is chosen, and then modeled in an FEA
system. The FEA analysis is iterated in an ad hoc way, with small changes to
design parameters, until a design which meets performance criteria while satisfying
packaging constraints is determined. Among the various designs presented in the
literature, of most interest are the planar rotary springs machined from a solid plate,
due to their manufacturing advantages.
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(a) [107]©2011 IEEE (b) [12] ©2010 IEEE (c) [13] ©2010 IEEE

(d) [108] ©2012 IEEE (e) [15] ©2015 Wiley (f) [109] ©2017 IEEE

Figure 5.2: Previous Spiral Spring Designs.

In robotic applications, the actuator torque density is a crucial performance factor.
Actuators’ weight contributes for a significant portion of a robot’s overall weight.
Furthermore, mobile and limbed robots need to support their own weight, which
poses considerable actuator challenges. SEA compliant elements can have consid-
erable mass, therefore, improving their torque density, by lowering their mass, can
substantially impact the overall robotic system performance. In [110], the compliant
element shape is FEA-optimized so that its volume utilization or form coefficient is
improved. The arm profile thickness variations that can be observed in Fig. 5.2e
and Fig. 5.2f, suggest a similar optimization approach, however, no design details
are provided in [15] and [16]. To the best of the author’s knowledge, no systematic
spring design procedure or consistent performance optimization algorithms have
been previously introduced in the literature.
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5.1.2 Contributions and Chapter Structure
Sec. 5.2 proposes a systematic planar rotary spring modeling and analysis proce-
dure. A new mathematical model for multi-armed rotary springs with significant
lattitude in the arm design is presented (Sec. 5.2.2). Two methods for spring mass
reduction, based on composite materials or cutouts, are introduced (Sec. 5.2.4). By
reducing the spring mass, these methods improve the torque density. This is the first
rigorous methodology to minimize rotary SEA spring mass without compromising
its performance. The design and manufacturing of two spiral spring prototypes
based on the proposed analytical model are described (Sec. 5.2.6 and Sec. 5.2.7).
The validity of the mathematical model is confirmed through mechanical torsional
testing of the prototypes.

Sec. 5.3 discusses internal spring arm contacts. A systematic model of arm contacts
is first introduced (Sec. 5.3.1). Then, a complete spring torsional analysis algorithm
that accounts for arm contacts is presented (Sec. 5.3.2).

Sec. 5.4 presents a consistent optimization-based spring design procedure. This is
the first rigorous method to optimize SEA spring performance. The optimization-
based approach is first motivated (Sec. 5.4.1). Then, a complete optimization-based
spring design algorithms is presented (Sec. 5.4.2). Finally, the design and analysis
of an aluminum spring prototype are described (Sec. 5.4.3). The validity of both
the analysis algorithm of Sec. 5.3 and the optimization-based design algorithm are
confirmed through FEA and mechanical prototype testing.
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5.2 Planar Rotary Spring Modeling
The section begins with a definition of the spring design goals and constraints (Sec.
5.2.1). Next, a mathematical model for rapid analysis and simulation of planar
rotary springs is introduced (Sec. 5.2.2). The spring arms may be of an arbitrary
shape. A brief discussion of out-of-plane buckling is also provided (Sec. 5.2.3).
Next, modeling of composite arm designs is presented (Sec. 5.2.4). The section
concludes with a model specialization to spiral arms (Sec. 5.2.5) and the design,
and testing of two spring prototypes (Sec. 5.2.6 and 5.2.7).

5.2.1 Spring Structure

Figure 5.3: Planar rotary spring structure.

Fig. 5.3 shows a general planar rotary
spring structure, consisting of arms that
meet at inner and outer circles. The
arms need not assume a spiral shape.
The arm ends can be either pinned or
fixed at the inner and outer circles.
These attachments can be physically re-
alized in many ways ( e.g., the arms can
be joined to a solid material center and
a solid outer rim). The spring action is realized when the outer circle rotates relative
to the inner circle (while their centers remain concentric).

A spring design starts with the choice of the inner (with radius Rin) and outer (with
radius Rout) circles. Their sizes are typically a function of mechanical packaging
constraints. Next the arm shape (e.g., a spiral) and arm material are determined. A
significant portion of the chapter’s later sections is devoted to the arm shape design.
The stiffness of a planar rotary spring is linearly proportional to its out-of-plane
thickness t and can be scaled to satisfy other constraints.

5.2.2 Spring Mathematical Model
The section introduces a mathematical model that is the basis for the planar rotary
spring design and analysis methods described in this thesis. Previous planar rotary
spring designs utilize elementary spiral spring theory [106] or employ iterative FEA
techniques. Instead this section develops a model based on curved beam theory.

The model uses the Euler-Bernoulli theory of elasticity and assumes that the spring
material obeys Hooke’s law. “Small” deformation strains are also assumed. The
spring incorporates n planar arms. Without loss of generality, it is assumed that
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n ≥ 2, and that the arms are arranged in a rotationally symmetric way so that there
are no unbalanced radial forces. All the arms are also assumed to be uniform so that
it is sufficient to consider only one of them. If this is not the case, the ODE described
in Eq. (5.13) can be specialized for each arm. The arm geometry is defined in polar
coordinates: R(θ) for θ ∈ [θmin, θmax] describes the location of the arm’s centroid
surface, as shown in Fig. 5.3.

The arm is modeled as a thin curved beam with rectangular cross section, as shown
in Fig. 5.4, and assumed to be slender. Next, it is necessary to find the neutral
surface and eccentricity of the beam. To do so, first the radius of curvature of the
beam’s centroid surface is found, which is given by:

rc(θ) =
(R(θ)2 + (R(θ)′)2)3/2

|R(θ)2 + 2(R(θ)′)2 − R(θ)R(θ)′′|
(5.1)

where the derivatives in Eq. (5.1) are taken with respect to θ. Let d(θ) =

b(θ) − a(θ) be the beam’s in-plane thickness. From Sec. 5.2.1, recall that t is
the beam’s out-of-plane thickness (see Fig. 5.4). The inner and outer curvature
radii of the beam are a(θ) = rc(θ) − d(θ)/2 and b(θ) = rc(θ) + d(θ)/2. The
radius of curvature rn of the neutral surface and the eccentricity e(θ) are [111]:

Figure 5.4: Curved beam kinematics
[111] ©2011 Springer.

rn(θ) =
A(θ)∫ ∫

A(θ)
dA(θ)

r

e(θ) = rc(θ) − rn(θ)

(5.2)

where A(θ) is the cross-sectional area of
the beam. In the case of a rectangular
cross section [111]:

rn(θ) =
b(θ) − a(θ)

ln(b(θ)/a(θ))
. (5.3)

The coordinates of the centroid surface
in the plane are:

xc(θ) = R(θ)cos(θ)

yc(θ) = R(θ)sin(θ).
(5.4)

Then, the coordinates of the neutral surface in the plane are:

xn(θ) = xc(θ) − e(θ)
yc(θ)

′√
xc(θ)′2 + yc(θ)′2

yn(θ) = yc(θ) + e(θ)
xc(θ)

′√
xc(θ)′2 + yc(θ)′2

.

(5.5)
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Combining these formulae, it can be shown that the arc-length parameterization, s,
and tangent angle, α(s), of the arm’s neutral surface are:

s(Θ) =
∫ Θ

0

√
(xn(θ)′)2 + (yn(θ)′)2dθ

α(s) = atan2(yn(Θ)
′, xn(Θ)

′)

(5.6)

where atan2(∗, ∗) is the four quadrant arctangent. The derivatives in Eq. (5.5)
and Eq. (5.6) are taken with respect to θ. Assuming that the neutral surface is
inextensible, the longitudinal and shear strains can be ignored. This is justified as
these strains are in general quite low and the resulting stresses and displacements
do not strongly affect the arm’s behavior [111].

Figure 5.5: Spring arm kinematics.

The kinematics of a generalized arm are
shown in Fig. 5.5. Let E be Young’s
modulus of the spring material and L

be the length of the arm (with respect
to the neutral surface). Clearly, the
arm’s cross-sectional area, A, and in-
plane thickness, d, need not be constant
and are functions of s. Of interest is the
deformed shape of the spring arm under
loading, specified by the forces Fx and
Fy acting on the arm end, as shown in
Fig. 5.5. The constitutive relation for the deformation of the arm is [111]:

M(s) = (A(s)Ee(s)rn(s))
dγ
ds

(5.7)

where γ(s) is the displacement of the arm’s neutral surface as shown in Fig. 5.5.
From the load balance laws:

dM
ds
= −N(s) (5.8)

where N is the shear force due to the loading. From the geometry of Fig. 5.5:

N(s) = −Fxsin(α(s) + γ(s)) + Fycos(α(s) + γ(s)). (5.9)

Substituting Eq. (5.9) and Eq. (5.8) into Eq. (5.7), leads to the governing equation
for the displacement angle γ(s), which defines locally how the arm deforms along
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its length:

d2γ

ds2 =
[Fxsin(α(s) + γ(s)) − Fycos(α(s) + γ(s))] − d(A(s)Ee(s)rn(s))

ds
dγ
ds

A(s)Ee(s)rn(s)
,

s ∈ [0, L].

(5.10)

A concrete solution to Eq. (5.10) requires boundary conditions. It is assumed
that the proximal end of the spring arm (at θ = θmin, or equivalently s = 0) is
stationary and subject to either a pinned or a fixed boundary condition. For the fixed
boundary condition, γ(0) = 0, and for the pinned one, dγ(0)

ds = 0. ∆β is defined
as the displacement angle of the arm’s distal tip, as shown in Fig. 5.6. Then the
displacement (xdis, ydis) of the arm at its end, θ = θmax (or equivalently s = L), is
given by:

xdis = Rncos(β0 + ∆β)

ydis = Rnsin(β0 + ∆β)
(5.11)

where Rn =
√

xn(L)2 + yn(L)2 and β0 = atan2(yn(L), xn(L)). Thus, this arm end is
rotated at an angle ∆β around the spring’s geometric center.

Figure 5.6: Kinematics of the spring
arm’s deformation.

If the distal end of the arm is fixed (i.e.,
its rotational displacement is given) as
shown in Fig. 5.6, then γ(L) = ∆β.
Here, without loss of generality, the ro-
tary displacement of the spring is taken
to be equal to the rotational displace-
ment of the distal end. If instead, the
distal end is pinned, the boundary con-
dition becomes dγ(L)

ds = 0. In the de-
formed configuration:

xdis =

∫ L

0
cos(α(s) + γ(s))ds

ydis =

∫ L

0
sin(α(s) + γ(s))ds.

(5.12)
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Eq. (5.10), and its boundary conditions, define an ODE boundary value problem
for the deformation of the arm:

d2γ

ds2 =
[Fxsin(α(s) + γ(s)) − Fycos(α(s) + γ(s))] − d(A(s)Ee(s)rn(s))

ds
dγ
ds

A(s)Ee(s)rn(s)

γ(0) = 0 or
dγ(0)

ds
= 0

γ(L) = ∆β or
dγ(L)

ds
= 0∫ L

0
cos(α(s) + γ(s))ds = Rncos(β0 + ∆β)∫ L

0
sin(α(s) + γ(s))ds = Rnsin(β0 + ∆β)

s ∈ [0, L].

(5.13)

Eq. (5.13) describes a very general problem with unknowns given by: Fx , Fy, ∆β
and the initial condition (which depends on the boundary conditions).

The stress in the arm interior at the point with radius of curvature r is given by [111]
(see Fig. 5.4):

σ(s, r) = E
(
1 −

rn(s)
r

)
rn(s)

dγ
ds

for r ∈ [a(s), b(s)]. (5.14)

Then, the stresses at the convex (cx) and concave (cv) arm bending surfaces are
respectively given by:

σcx(s) = E
(
1 −

rn(s)
a(s)

)
rn(s)

dγ
ds

σcv(s) = E
(
1 −

rn(s)
b(s)

)
rn(s)

dγ
ds
.

(5.15)

The maximum stress in the arm occurs at the convex arm surface (see Sec. 5.4.1):

σmax = max
s
(|σcx(s)|) for s ∈ [0, L]. (5.16)

Design experiments suggest that the use of fixed boundary conditions generally
results in a stiffer spring design. Furthermore, when both arm ends are fixed, there
are no moving parts and the spring is easier to manufacture.

Eq. (5.13) can be solved to find the initial condition ( dγ
ds (0) or γ(0) depending on

the boundary condition at s = 0) and forces, Fx and Fy, that must be applied at
the arm’s end, s = L, to achieve ∆β angular displacement of the spring, given the
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boundary conditions. Unfortunately, Eq. (5.13) cannot be solved analytically, thus,
a numerical shooting method is required.

Once Eq. (5.13) is solved, one can calculate the spring torque and stiffness at the
given angular displacement ∆β, assuming that there are n identical arms:

τ(∆β) = n{[xdisFy − ydisFx]︸               ︷︷               ︸
deformation forces

+ [A(L)Ee(L)rn(L)]
dγ
ds
(L)︸                          ︷︷                          ︸

b.c. couple

}

K(∆β) =
τ(∆β)

∆β
.

(5.17)

Eq. (5.17) suggests that the spring torque is due to the arm deformation forces Fx

and Fy, and a boundary condition couple. If the distal arm end at s = L is pinned,
then dγ(L)

ds = 0 and the boundary condition couple is zero, therefore, in this case the
torque is only due to the arm deformation forces. On the other hand, if this end is
fixed, then the spring structure needs to support the deformation boundary condition
couple [A(L)Ee(L)rn(L)]

dγ
ds (L) at the outer circle. Thus, unlike FEA approaches,

this mathematical model allows one to gain significant design insight into the arm
loading characteristics.

5.2.3 Out-of Plane Buckling
Out-of-plane buckling can be a concern for springs with a small out-of-plane thick-
ness. Increasing the out-of-plane thickness of the spring minimizes the chances of
a buckling failure, but does increase its stiffness. Design experiments suggest that
assemblies of thin higher stiffness springs could have lower mass compared to thick
springs with the same overall stiffness and maximum loading torque. Therefore,
buckling failure prevention poses a design trade-off.

To allow rotary springs to also serve as flexible couplings which can handle small
misalignments, the introduction of complex out-of-plane mechanical spring con-
straint elements is to be avoided. Due to the fact that modeling buckling in curved
beams is quite involved and requires additional assumptions [112], buckling is ig-
nored at the modeling stage. However, as rule of thumb the spring’s out-of-plane
thickness should be approximately the same or larger than the spiral’s in-plane
thickness. To ensure no buckling occurs, nonlinear buckling FEA can be used at the
final design stage. In general, a failure of non-linear static FEA analysis is also an
indication of possible buckling problems [113].
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5.2.4 Mass Reduction Techniques
This section introduces two different approaches to minimize the deployed mass of
a rotary spring. The goal is to significantly reduce the weight of the spring with-
out compromising its characteristics in terms of stiffness and maximum allowable
loading. Both approaches are based on the observation that the arm material near
the neutral surface does not experience high bending loads.

Composite Material Arms

The use of a sandwich structure (Fig. 5.7) in the arm can lead to significant weight
reduction. Practically, a slot along the centroidal surface is cut out and filled with a
lighter secondary material. The secondary material experiences low bending load,
and primarily ensures that the arm’s deformation kinematics remains the same. The
trade-off is that the flexural rigidity of the arm slightly decreases.

Let E , ρ and Es, ρs be the stiffness and density of the primary and secondary
materials, respectively. Without loss of generality, assume that the two primary
layers have the same thickness, given by ∆d(s) (see Fig. 5.7). Let ds(s) be the
thickness of the secondary material layer. For the bending analysis, the transformed
section approach [114] is employed, and thus, instead of the composite arm, a
homogeneous primary material arm is constructed so that it has the same flexural
rigidity as the composite arm. The transformed arm has the same profile and a new
cross-section which is the transformed section, shown in Fig. 5.7.

Figure 5.7: Composite material spring arm. The sandwich structure on the left, its
cross-section in the middle and its transformed section on the right.

The transformed arm thickness is tr =
Es

E t. If the new cross-section is symmetric
(which is always true if the primary layers thickness is the same), rc(s) remains the
same, otherwise the new centroidal surface has to be found and rc(s) recalculated.
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For the transformed arm [111]:

A(s) =
∑

i

Ai(s), rn(s) =
A(s)∑

i

∫ ∫
Ai(s)

dA
r

(5.18)

where Ai(s) is the area of the discrete regions in the transformed cross section,
shown in Fig. 5.7. For the structure shown in Fig. 5.7, Eq. (5.18) simplifies to:

A(s) = t(
Es

E
(d(s) − 2∆d(s))) + 2∆d(s))

rn(s) =
Es

E (d(s) − 2∆d(s))) + 2∆d(s)

ln( b(s)
b(s)−∆d(s) ) +

Es

E ln( b(s)−∆d(s)
a(s)+∆d(s) ) + ln(a(s)+∆d(s)

a(s) )
.

(5.19)

Eq. (5.19) allows us to use the arm of Fig. 5.7 with the model of Sec. 5.2.2.

Without loss of generality, assuming d and ds are constant along the arm, let ks =
ds
d .

Then, introducing the sandwich composite structure achieves fractional reduction
in the mass of the arm given by:

∆M ≈ (1 −
ρs

ρ
)
ds

d
= ks(1 −

ρs

ρ
). (5.20)

Therefore, ks represents the design trade-off between mass reduction and stiffness
reduction. From elementary beam theory one can also approximate the fractional
decrease in the flexural rigidity of the arm by :

∆E ≈
(1 − Es

E )(d − 2∆d)3)

d3 ≈
1 − Es

E

(1 − ρs
ρ )

3∆M3. (5.21)

Eq. (5.21) and Eq. (5.21) provide basic quantification of the trade-off between
mass decrease and flexural rigidity decrease, and thus, can be used to determine
the size of the secondary material layer. However, in practice a minimum thickness
for the primary layers is determined once the manufacturing method and machining
tolerances are determined.

The coefficient (1 − Es

E )/(1 −
ρs
ρ )

3 in Eq. (5.21) can be used as secondary material
performance metric and should be maximized at the material choice design stage.

Arm Cutouts

The bond between the primary and secondary layers in the sandwich structure are
loaded in shear, and thus, are susceptible to failure due to overload or fatigue at
loads lower than the primary material rated ones.
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Figure 5.8: Spring arm cutouts.

As an alternative to the sandwich com-
posite structure, one can introduce
cutouts in the arm profile (see Fig. 5.8).
Support material must be left between
the cutouts so that the kinematics of the
bending displacement is enforced. The
sandwich structure of Fig. 5.7 can be
used to approximate the arm with the
cutouts by taking Es = 0 and ρs = 0.
Then:

A(s) = 2t∆d(s), rn(s) =
2∆d(s)

ln[( b(s)
b(s)−∆d(s) )(

a(s)+∆d(s)
a(s) )]

, ∆M ≈
d − 2∆d

d
= ks,

(5.22)

∆E ≈
(d − 2∆d)3

d3 = k3
s ≈ ∆M3. (5.23)

Without loss of generality, d and ds are assumed constant along the arm inEq. (5.23).
The fact that ∆E ≈ ∆M3 demonstrates the effectiveness of the cutouts in reducing
the spring mass without significantly compromising its stiffness. Again, ks =

ds
d

represents the design trade-off between mass reduction and stiffness reduction.

Due to their manufacturing advantages and superior performance, weight reduction
cutouts are utilized for some of the spring prototypes discussed later in this chapter.

5.2.5 Archimedean Spiral Arm Spring Designs
This section shows how the model developed in Sec. 5.2.2 can be used to design
springs with Generalized Archimedean spiral arms of constant thickness.

All n ≥ 2 arms spiral around the spring’s geometric center in a rotationally sym-
metric way (see Fig. 5.3). The proximal spiral ends, where θ = θmin, are connected
to the inner circle with radius Rin and the ends, defined by θ = θmax , are positioned
at the outer circle with radius Rout . The radii Rin and Rout typically depend on
the packaging requirements for the spring within the overall system design. The
equation of the undeformed spiral centerlines is given by:

R(θ) = cθq + Rin θ ∈ [θmin, θmax]. (5.24)

In most cases, the desired spring performance specification is given in terms of max-
imum torque, τdes, and stiffness ,Kdes. Then, the maximum spring displacement
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can be calculated by ∆βmax =
τdes
Kdes

. Next, the spring material with density ρ and
maximum allowable stress [σ] is chosen. If a composite arm design is used, the
secondary material layer properties also need to be chosen and arm bending prop-
erties determined according to Sec. 5.2.4. The maximum arm stress at maximum
displacement, ∆βmax , is σmax = [σ] (Eq. (5.16)).

The goal is to find the best spring design that conforms to the packaging constraints.
Therefore, given an arbitrary out-of-plane thickness t, the spring with maximum
load at spring displacement ∆βmax is desired. Once the in-plane design is finalized,
t can be scaled to achieve the desired spring stiffness.

Next follows a summary of the spring design parameters and guidelines for their
choice:

• The choice of θmin is arbitrary, however, it affects how the spiral arms meet at
the inner circle. The value of θmin should be large enough to avoid significantly
reduced radius of curvature of the arm’s profile in the vicinity of the inner
circle. Larger values could deteriorate spring performance.

• Fixed or pinned boundary conditions of the arm ends at the inner and outer
circles. All prototype designs presented here use fixed boundary conditions
at both ends due to their high manufacturing readiness.

• The coefficient c in Eq. (5.24) is determined by the condition R(θmax) = Rout .

• The coefficient q in Eq. (5.24) controls how the spacing between the arms
changes along their profiles. The value of q heavily impacts the spring’s
potential to self-intersect during large displacements. As shown in Fig. 5.9, as
the spring deflects in either the clockwise or counterclockwise directions, the
spiral arms eventually intersect at a particular angle. These intersections limit
the largest practical rotation achievable by the design. Design experiments
suggest that the spring’s performance is maximized if the intersection angles
are the same in both rotational directions.

After selecting the parameters described above, two free parameters remain: θmax

and the in-plane thickness d. The system in Eq. (5.13) can be solve for a given
choice of these parameters with ∆β = −∆βmax for clockwise and ∆β = ∆βmax for
counterclockwise spring deformation. In this formulation the unknowns are the
deformation initial condition dγ

ds (0), arm end forces Fx and Fy. The solutions yield a
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specific design, whose rotary torque at maximum spring deflection is quantified (see
Sec. 5.2.2). In this way, the (θmax ,d) parameter space can be searched to find the
springwhich can support the highest torque at maximum displacement. Designs that
result in maximum bending stress σmax higher than [σ] or spiral intersections (as
shown in Fig. 5.9) are discarded. Thus, the performance of all possible springs that
have the chosen arm shape andmeet at the inner and outer circles is compared to find
the one that can carry the highest torque under the given maximum displacement.
Other optimality criteria are also possible.

Figure 5.9: Deformations of the spring that cause the arms to intersect.

5.2.6 AR500 Steel Spring Prototype
This section describes the design, manufacturing, and experimental testing of a
planar rotary spring that was built to validate the model presented in Sec. 5.2.2,
and the mass reduction techniques of Sec. 5.2.4. The section concludes with a
comparison of the model and FEA predictions, and the experimental results.

Design

Since the spring spirals are loaded in bending, the arm material’s yield strength is of
the greatest importance (together with its fatigue strength or endurance limit). For
the prototype, TEMco AR500 steel [115] was chosen. AR500 is a quenched and
tempered, through hardened, wear-resistant grade steel. The typical yield strength
is 1289MPa or 187ksi. The spring design was based on a maximum allowable
bending stress of [σ] = 1100MPa, so as to include a safety factor.

The inner and outer radii are chosen as Rin = 18mm and Rout = 74mm so that the
spring can be mated with other components in an actuator prototype (see Sec. 6.3).
The value θmin = 0.2rad was taken in order to allow enough physical space for
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four spirals without intersection at the spring center. For the given dimensions, the
parameter q = 0.9 in Eq. (5.24) allows good symmetry in the spring deformation
under loading in both directions.

The design target was set to stiffness of Kdes ≈ 600 Nm
rad and maximum allowable

torque of τdes = 200 Nm
rad . This results in maximum allowable angular displacement

of ∆βmax = 20◦. Two spirals (n = 2) with ∆d ≈ 2mm are used in order to reduce the
amount of machining time and to limit the dependence of the spring performance
on the machining tolerances, thus, ensuring enough spring rigidity.

Figure 5.10: Spring design search Results. Left: torque at maximum displacement
∆β. Right: maximum bending stress at maximum displacement ∆β.

Figure 5.11: AR500 spring profile.

As described in Sec. 5.2.6, the free de-
sign parameters are θmax and arm in-
plane thickness, d. Eq. (5.13) is solved
over a grid of these free parameters in
a physically meaningful range, and re-
sulting designs with maximum bending
stress higher than [σ] are discarded.
Fig. 5.10 plots the maximum real-
ized torque versus the free parameters
(d, θmax). From the plot one can choose
a spring spiral profile for which that the
maximum bending stress is [σ]max at
the maximum displacement ∆β.
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Fig. 5.11 shows the chosen spring profile. The corresponding in-plane thickness
is d = 10.7mm. This design can carry the highest load in the family of all spring
designs that conform to the same constraints and material choice, and have the same
out-of-plane thickness. All designs that can carry higher loads are infeasible due to
spiral intersection at maximum displacement, as depicted in Fig. 5.9. Eq. (5.22)
predicts that the spiral weight reduction due to the cutouts is around 60%.

In applications, spring displacements larger than the maximum allowable displace-
ment ∆βmax should be prevented (by introducing hard stops) as they would likely
result in overload failure in designs like these. Material with thickness t = 9.525mm

(or 3/8′′) is used for the prototype manufacturing to meet the required torque and
stiffness values.

Figure 5.12: Spring torque loading com-
ponents vs. displacement.

As described earlier, the mathemati-
cal model of Sec 5.2.2 predicts the
magnitude of the torque components at
the outer circle, particularly the impor-
tant boundary condition couple of Eq.
(5.17). Fig. 5.12 shows the magni-
tude of this design’s loading compo-
nents. As can be observed, the bound-
ary condition couple has a substantial
value, therefore, the spring mounting
elements at the outer rim need to be de-
signed so that they can support it.

At the final design stage, the chosen pro-
file is imported in a CAD software for the design of the spring mounting elements
and introduction of the weight reduction cutouts. Fig. 5.13 shows the spring de-
sign. Mounting holes are introduced at both ends of the spirals. The high boundary
condition couples motivate the design of the outer mounting holes.

Prototype Manufacturing

Unlike the majority of planar spring prototypes described in the literature, abrasive
water jet machining (AWJM) instead of EDM (electrical discharge machining) is
used for the prototype manufacturing. AWJM is a grinding process that involves
cutting by small particles in a high speed water flow [116] and has the following
advantages [116], [117]:
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Figure 5.13: AR500 Spring design.

• Little fixturing is required due to low cutting forces.

• No heat affected zone (HAZ) and residual stresses are produced, as all of the
generated heat is absorbed by the cutting fluid. This is the main advantage
of AWJM compared to EDM, laser cutting, plasma cutting, flame cutting,
etc. The spring performance heavily depends on the surface properties of
the cut faces, as they carry the highest bending stress. The microcracking,
embrittlement, thermal stresses [118], and possible chemical embrittlement
[119] that can be introduced at the cut surface by EDM may substantially
decrease the spring’s fatigue strength and result in premature failure. None of
these occur with AWJM.

• No start holes are required. This is very important for this design, as the
weight reductions cutouts would require substantial prior machining for wire
EDM. Furthermore, heavy restrictions may need to be imposed on the cutouts’
shape and size due to available tooling.

A main drawback of AWJM is the occurrence of kerf taper on the cut faces. This
taper cannot be completely eliminated without a multi-axis cutting head, but can be
minimized using strategies described in [117], [120]. Kerf taper is of concern for
the spring manufacturing because taper on the spiral out-of-plane faces can cause
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unexpected side loads and deformation under spring loading. To reduce the kerf
taper, a low stand-off and a submerged machining process with an elongated nozzle
was employed. The spring surfaces were also cleaned through sand-blasting.

The spring prototype, machined on a Flow Mach-2b waterjet machine [121], is
shown in Fig. 5.14. The arm width difference between the top and bottom of
the kerf is around 0.1mm. Due to manufacturing inaccuracies there is significant
variance in the thickness of the spiral profiles that reaches 0.1mm at some locations
in addition to the kerf. The arm cutouts thickness also varies by up to 0.1mm. The
mounting holes were cut with increased accuracy by reducing the jet speed (0.03mm

kerf).

The mass of the spring is 616g. The CAD estimate of the mass of the spirals is 424g
with the cutouts and 828g without the cutouts. Thus, the cutouts lead to 49% spiral
weight reduction which is very close to the model predictions.

Spring Performance Analysis Using The Modeling of Sec. 5.2.2

Figure 5.14: AR500 spring prototype.

To estimate the spring’s stiffness
in the allowable deformation range,
Eq. (5.13) can be solved with
the prototype’s design parameters for
a range of values for the dis-
placement ∆β: −∆βmax,−∆βmax +

δβ, . . . , 0, . . . ,∆βmax + δβ,∆βmax for
some δβ. Then Eq. (5.17) can be used
to find the torque and stiffness corre-
sponding to each displacement value.
The maximum stress at each displace-
ment can be estimated using Eq. (5.16).
Model prediction for the torsional re-
sponse of the prototype shown in Fig.
5.14 are plotted in Fig. 5.18 and Fig.
5.19 and compared to FEA simulation and experimental testing results.

FEA Analysis

Non-linear static FEA with Autodesk Nastran [113] is used to simulate the spring
torsional loading and predict the spring stiffness in the allowable deformation range.
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The FEA model uses 2.2 million linear elements, and displacements are introduced
by keeping the outer spiral mounting slots fixed, while applying remote forces at
the center holes to simulate torque loading. Fig. 5.15 shows FEA simulation of
the spring at maximum loading. Non-linear buckling FEA with substantially higher
torque load (400Nm) is also used to ensure no buckling occurs.

Further nonlinear FEA simulations suggest that the spring can also support moderate
axial loadswithout significant effect on the torsion performance. Therefore, the FEA
analysis confirms that the spring can also act as a flexible coupling.

Figure 5.15: FEA AR500 spring simulation results at maximum spring torsional
loading. Counterclockwise loading on the left and clockwise loading on the right.
The colour bar units correspond to stress in MPa.

Experimental Testing

An ADMET mechanical testing machine is used to characterize the torsional prop-
erties of the spring prototype. Fig. 5.16 shows the experimental set-up. The
machine’s capacity does not allow for testing the spring at the maximum design
loads. However, it is used to characterize the spring’s torsional properties over a
wide range of loading conditions.

Comparison of Results and Discussion

Fig. 5.17 shows the experimental data from a torsional test. The loading curve is
shown in the right plot. The torque against displacement plot shows that the response
is quite linear (over 98%). There is barely noticeable hysteresis that is quite difficult
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Figure 5.16: AR500 spring experimental testing set-up. A close view of the spring
on the right and the ADMET testing machine on the left.

Figure 5.17: AR500 spring mechanical torsion test experimental data. A plot of
torque against angular displacement on the left and a combined plot of torque and
angular displacement against time on the right.
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to quantify due to measurement noise. Therefore, the spring mechanical stiffness is
quite uniform. The loading curve plot also suggests that the deformation is stable
and symmetric. There is less than 1% difference in the stiffness levels depending
on the loading direction which is consistent with the analytic model predictions and
FEA simulations.

Figure 5.18: Torque against displacement plot for the AR500 spring.

Figure 5.19: Stress against displacement plot for the AR500 spring.

The FEA simulation and experimental results confirm the validity of the analytic
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model of Sec. 5.2.2. Fig. 5.18 compares the torque against the spring’s rotational
displacement results from the experimental data with the predictions of the model
and FEA.

The FEA results completely agree with the model predictions. The experimental
testing results show slightly lower stiffness levels around 560 Nm

rad compared to the
predicted 600 Nm

rad by the model (less than 7% error).

Fig. 5.19 plots the maximum bending stress vs. displacement. The plot suggests
that the FEA and the mathematical model predictions agree to a very high extent.
No experimental strain measurements are available to confirm these values.

From elementary beam theory, the flexural rigidity of the arm is proportional to
d3. Therefore, the spring’s torsional performance can be very sensitive to the arm
profile width d, given that the arms are loaded in bending. The high surface slope
in the torque plot of Fig. 5.10, graphically confirms this observation.

The arms’ reduced profile width, enlarged cutouts and kerf in some regions, due
to the manufacturing inaccuracies discussed earlier are expected to be largely re-
sponsible to the small discrepancy between the predictions and the experimental
results. Therefore, the manufacturing accuracy and tolerances may affect the spring
torsional performance significantly and should be considered at the spring design
stage. Further design and experimental issues related to the arm boundary condition
enforcement, clamping and attachment of the springs, calibration, etc. may also con-
tribute to the discrepancy between the theoretical predictions and the experimental
results.

5.2.7 3D-printed Titanium Spring Prototype
A 3D printed titanium spring is designed following the approach of Sec. 5.2.5 and
similarly to the AR500 spring design of Sec. 5.2.6. The target stiffness is 100 Nm

rad

with maximum load of 50Nm, which results in maximum desired displacement of
28.6◦. The spring is used as part of SEA tether management system of the Axel
rover developed at the NASA Jet Prop. Lab. [36] (see Sec. 6.4).

Severe packaging constraints motivate a novel dual spring design. The spring
consists of two planar rotary springs that share the same solid cylindrical core
and are connected in series. Thus, each of the two springs has stiffness twice the
desired SEA stiffness. Fig. 5.20 shows the 3D printed titanium prototype and its a
cross-sectional view.
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Figure 5.20: Titanium spring prototype on the left and its half section view on the
right.

Throughout the design of the spring prototype of Sec. 5.2.5, the central mounting
holes’ size and their radial positions were identified as a major design constraint
driving the spring radial size. Therefore, the main advantage of the novel dual
spring design is that the spring arms attach much closer to each other at the spring
central axis compared to the arms of designs that have central mounting holes. All
mounting holes are instead on the spring circumference as shown in Fig. 5.20.
This leads to significantly improved compactness in the radial direction. A further
advantage of this design is that all mounting screws carry little shear load, thus,
smaller screw sizes can be used.

The titanium spring prototype is designed for maximum admissible stress at max-
imum displacement, given by the Ti-6Al-4V fatigue strength of 510MPa. FEA
simulations confirm the design’s mechanical properties with an error of ≤ 1% on
both the stiffness and the stress values, which is identical to the FEA results of Sec.
5.2.5.

No torsional experimental testing data that characterizes the performance of the
prototype of Fig. 5.20 is available. However, the experimental testing results of
the tether management system that utilizes the prototype suggest that its stiffness
is around 94% of the expected value [36]. The lower prototype measured stiffness
is expected to be due to manufacturing inaccuracies and additional unmodeled
compliance of some of the system components.
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5.3 Modeling, Simulation and Analysis of Spring Arm Contacts
Under substantial torsional loads, the spring deformation can lead to contacts be-
tween the arms as shown in Fig. 5.9. Up to this point, the maximum torsional
displacement of the springs is assumed to be constrained so as to avoid such con-
tacts. For instance, this can be achieved by the introduction of mechanical hard
stops. This section considers the possibility that allowing such contacts can be
advantageous.

If the maximum spring displacement is not limited, the spring arms may contact
each other under loads higher than the rated loads without the occurrence of a
catastrophic failure, provided the maximum arm stress does not exceed the material
yield strength, σy. Thus, if [σ] < σy and the spring is designed so that the arms
contact each other at [σ], the spring could support significantly higher unexpected
overload torque without failure, provided σmax never exceeds σy along the arm.
This is particularly useful when [σ] corresponds to the material fatigue (endurance)
strength, for instance.

The titanium spring prototype of Sec. 5.2.7 is designed in this way. The maximum
arm bending stress upon arm contacts is given by the materials fatigue limit. Thus,
the spring can support overload torques without the need of hard stops.

The implementation of hard stops usually requires the introduction of additional
mechanical components and usually imposes unfavourable design constraints, which
both may lead to unnecessary actuator size and mass increase. Furthermore, when
the actuator is heavily loaded and the spring displacement is close to the maximum
allowable displacement, ∆βmax , substantial actuator performance degradation may
be observed due to sudden shocks caused by engaging of the hard stops. This can
be avoided without compromising the actuator performance by designing the spring
so that under torsional overload, it enters a different deformation mode which is
characterized by the occurrence of arm contacts.

The section introduces an arm contact model (Sec. 5.3.1) which is then used in the
development of an arm analysis algorithm that can detect and simulate arm contacts
(Sec. 5.3.2).

5.3.1 Arm Contact Model
The model introduced in Sec. 5.2.2 assumes that the only external loads applied to
the arm are the end forces Fx , Fy and the boundary condition couple. This section
shows how to model the effects of arm contacts (see Fig. 5.9 or Fig. 5.21) and how
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to include them in the boundary value problem given by Eq. (5.13).

Figure 5.21: Contacting spiral arms.

As before, the arms are assumed to de-
form in bending only, and when they
contact each other, the convex profile of
one of the arms contacts the other’s con-
cave profile. If the radius of curvature
of the concave surface at the contact is
larger than that of the convex surface
in the considered loading spring range,
the contact between the arms can be
modeled by a frictionless point contact.
This assumption is especially useful if
some form of lubrication is provided.
Alternatively, friction can be included
by rotating the contact force at an an-
gle arctan(µ), where µ is the coefficient of friction. To simplify the discussion,
frictionless point contact between the arms is assumed.

Figure 5.22: Spring arm loading forces.

These assumptions are suitable for spi-
ral arms as their radius of curvature
rapidly increases along the profile start-
ing from the spring center. A set of
conditions for a general arm shape that
ensure two point contacts per arm are,
however, difficult to derive. Fig. 5.21
shows the contact points in a two spiral
arm example. Without loss of gener-
ality, springs with two spiral arms are
considered in this section.

These assumptions allow the boundary value problemgiven byEq. (5.13) to describe
the arm deformation when arm contacts occur. However, in this case, the forces Fx

and Fy need to be modified, that is, they are no longer the arm end forces as in Sec.
5.2.2. Instead, Fx and Fy are functions of s and represent the more general arm
loading.

Fig. 5.22 shows the arm external forces. Following the frictionless assumption, the
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forces at the contact points are given by:

Nc


− sin(α(s1) + γ(s1))

cos(α(s1) + γ(s1))

 at s = s1

Nc


sin(α(s2) + γ(s2))

− cos(α(s2) + γ(s2))

 at s = s2.

(5.25)

The contact forces are internal to the spring, therefore, their magnitudes are equal
and given by Nc (see Fig. 5.22).

From the geometry of Fig. 5.22, the arm loading forces are given by:


Fx

Fy

 =



Nc


− sin(α(s1) + γ(s1)) + sin(α(s2) + γ(s2))

cos(α(s1) + γ(s1)) − cos(α(s2) + γ(s2))

 +

Fend

x

Fend
y

 if s < s1

Nc


sin(α(s2) + γ(s2))

− cos(α(s2) + γ(s2))

 +

Fend

x

Fend
y

 if s1 ≤ s < s2


Fend

x

Fend
y

 s2 ≤ s

(5.26)

where Fend
x and Fend

y are the arm end forces (see Fig. 5.22). The spring has n = 2
symmetrically arranged arms, therefore, a contact normals symmetry exists which
leads to:

α(s1) + γ(s1) = π + α(s2) + γ(s2). (5.27)

This observation is used in solving for the contact forces in Sec. 5.3.2. Combining
Eq. (5.13) and Eq. (5.26) forms the governing boundary value problem for arm
deformation with arm contacts.

5.3.2 Planar Rotary Spring Analysis with Possible Arm Contacts
As shown in Sec. 5.2.5, the analytic model of Sec. 5.2.2 allows for rapid prediction
of planar spring torsional properties. Sec. 5.3.1 discussed arm contact modeling,
which can be used to augment the planar rotary spring analysis of Sec. 5.2.5, so that
arm contacts can be detected and included in the analysis and prediction of torsional
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spring performance. The rest of this section assumes that a complete spring design
has been achieved and the goal is to characterize its torsional properties with the
possible occurrence of arm contacts under load.

When the arms do not intersect, Eq. (5.13) can be readily solved employing a
numeric shooting method. However, when there are arm contacts, a simple shooting
method implementation can fail. To avoid this, the section formulates a search
algorithm combined with a non-linear optimization problem for the analysis of the
arm deformation under contacts. The goal is to find arm end forces Fend

x and Fend
y

and initial condition dγ
ds (0) that result in a given spring displacement ∆β. However,

in addition to the these unknowns, Nc is also unknown and needs to be determined
in order to characterize the spring torsional performance.

Initial solution and contact detection

Figure 5.23: Spring arm interference and
contacts initial guess.

First, Eq. (5.13) is solved, assuming
no arm contacts occur. As discussed
in Sec. 5.2.2, this can be done using
a shooting method. Next, the distances
between the arms’ profiles is calculated
to detect any interferences. Fig. 5.23
shows an arm profile interference ex-
ample. If no interferences are detected,
the solution is valid and the algorithm
terminates. Otherwise, the correspond-
ing interference regions on each of the
profiles are identified (shown in yellow
in Fig. 5.23). The mid points (shown
in blue in Fig. 5.23) of the interference
regions along the arm profile are deter-
mined and saved as a variable Ncoord . This value for Ncoord is to be used as the
initial guess for the arm contact locations. Also, one of the normals at these points
(shown in green in Fig.5.23) is saved as a variable Ndir . This value for Ndir is to
be used as the initial guess for the contact force direction. The arm contact forces
depend on the deformation angle γ(s) (see Eq. (5.25)), therefore, the initial guesses
Ncoord and Ndir are not the true arm contact points and contact force direction. The
correct values for Ncoord and Ndir are found iteratively.



153

Solution with arm profile contacts

The approach is based on the assumption that the two contact forces (see Fig. 5.22)
act at Ncoord locations along the arm profile in the Ndir direction. Under these
assumptions, the arms need to be in contact at the Ncoord locations and the contact
force, Nc, can only be positive (the contact force can only act to push the arms away
from each other). Therefore, the value for Nc can be determined by finding the
smallest contact force that results in no arm interference or separation at the Ncoord

locations along the arm profile.

For a given spring displacement, ∆β, and current values of the Ncoord and Ndir

variables, the following non-linear optimization program can be solved:

minimize
dγ(0)
ds ,Fend

x ,Fend
y ,Nc

|Nc |

subject to feq(
dγ(0)

ds
, Fend

x , Fend
y , Nc) = 0

fin(
dγ(0)

ds
, Fend

x , Fend
y , Nc) ≤ 0.

(5.28)

Solving Eq. (5.28) gives a valid solution of Eq. (5.13) (with Fx and Fy given by Eq.
(5.26)) for the arm displacement γ(s) (for s ∈ [0, L]) and the torsional loading that
results in spring displacement of ∆β (see Eq. (5.17)).

In calculating the equality constraint function, Eq. (5.10) can be integrated with
initial conditions γ(0) = 0, and current iteration values for dγ

ds (0), Fend
x , Fend

y and Nc

to find γ(s) for s ∈ [0, L]. The constraint function is used to enforce the boundary
conditions and is given by:

feq(
dγ(0)

ds
, Fend

x , Fend
y , Nc) =


γ(L) − ∆β∫ L

0 cos(α(s) + γ(s))ds − Rncos(β0 + ∆β)∫ L
0 sin(α(s) + γ(s))ds − Rnsin(β0 + ∆β)

 . (5.29)

In a similar fashion, the inequality constraint fin(
dγ(0)

ds , Fend
x , Fend

y , Nc) ensures that
the contact forces are physical (the arms cannot pull each other) and that the arms
profiles touch at the contact points Ncoord .

Iterative solution and stopping criteria

Once the solution of Eq. (5.28) is found, the possibly new arm interference regions
are located. The corresponding contact points and contact force direction are saved
in Ncoord

updated and Ndir
updated , respectively. The solution to Eq. (5.28) is accepted if
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there are no arm interferences. This can be numerically achieved by terminating the
algorithm if the minimum of Eq. (5.28) is reached and the following convergence
criteria is satisfied:

|Ncoord − Ncoord
updated | ≤ δ

coord

|Ndir − Ndir
updated | ≤ δ

dir
(5.30)

for some integer δcoord and real constant δdir . Otherwise, Ncoord and Ndir are
updated according to:

Ncoord = f coord(Ncoord − Ncoord
updated)

Ndir = f dir(Ndir − Ndir
updated)

(5.31)

where f coord and f dir are discrete filters. The use of filters is required to ensure the
stability and smoothness of the iterative contact approximation. Both FIR and IIR
filters may be used, however, IIR filters are used in generating the spring contact
analysis results in this thesis (Sec. 5.4.3).

Once Ncoord and Ndir are updated, Eq. (5.28) is solved again for the updated
contacts in an iterative fashion until the contact points and contact direction converge
(condition (5.30) is satisfied) or a maximum number of iterations is reached.

Implementation

The algorithm can be implemented using Matlab’s fmincom. The algorithm robust-
ness can be significantly improved by utilizing the arm centroidal surfaces to check
and update the contact conditions rather than using the arm profiles. This approach
allows both coarse and fine arm discretization to be used without unnecessary and
costly interpolation.

Validation

The presented algorithm is validated through FEA and torsional load testing of a
prototype. The results are presented and discussed in Sec. 5.4.3.
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5.4 Optimization-based Design of Planar Rotary Springs

Figure 5.24: FEA torsional simulation of
the titanium spring prototype of Sec. 5.2.7

The section describes a novel approach
to the design of planar rotary springs
which unites the previous armmodeling
with nonlinear constrained optimiza-
tion. The goal is to design the spring
with the highest torque density, such
that required specifications are met.

Sec. 5.4.1 motivates the optimiza-
tion approach, Sec. 5.4.2 develops a
novel optimization-based design algo-
rithm and Sec. 5.4.3 describes the de-
sign of a spring prototype that validates
the novel design approach.

5.4.1 Motivation
Fig. 5.24 shows the FEA torsional simulation of half of the Titanium spring proto-
type of Sec. 5.2.7. The colours represent stress levels with blue, green, yellow and
red corresponding to regions with progressively higher stresses.

The mechanical energy stored in the spring due to the loading is equal to the total
strain energy due to the solid deformation. Therefore, regions in the arms that
experience lower stresses contribute less to the spring torsional performance. This
observation suggest that the spring torque density can be improved by increasing
the spring strain energy density. Or equivalently by increasing the stress in areas of
lower stress.

Fig. 5.24 shows that the area around the neutral surface carries little stress. This
observation was used in Sec. 5.2.4 to motivate the effective weight reduction
techniques based on composite arm structure and cutouts.

Tracing the stress levels at either of the two arm profiles shows that the red regions
(high stress) are concentrated in relatively small regions. Depending on the spring
design, these regions can be as small as 10% to 20% of the total profile length. This
observation suggests that significant spring torque density increase is possible if the
bending stress along the arm profiles is uniform in all regions.

The section begins with a consideration of the arm strain energy and energy density.
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Composite arms are also revisited. The section concludes with discussion of the
ways to optimize the arm’s shape in order to improve the spring performance.

Arm strain energy density

This section analyzes the arm strain energy and energy density of a torsional spring
of the type considered above. It is shown that given an arm deformation gradient
dγ
ds , the strain energy and energy density of the arm are maximized if the stress on
the convex arm surface, σcx , is equal to the maximum admissible stress, [σ]. This
principle is clear, in the case of a straight beam. However, unlike straight beams,
for curved beams the centroid surface does not coincide with the neutral surface
[111]. Furthermore, the difference between the stresses on the convex and concave
arm surfaces increases with increasing the in-plane thickness, d, of the arm (shown
below).

In this analysis, the arm’s neutral surface is given and the goal is to investigate how
varying the in-plane thickness, d, affects the strain energy. This set-up is slightly
different from that of Sec. 5.2.2, where the centroidal surface was assumed to be
given. The explicit dependence of the variable on s is dropped in the rest of the
section to promote clarity. However, derivatives with respect to s are explicitly
denoted.

Figure 5.25: Spring arm differential ele-
ment along the neutral surface.

The radius of curvature of the neutral
surface rn can be calculated using Eq.
(5.1). Fig. 5.25 shows the arm differ-
ential element along the neutral surface
arc-length s. For a rectangular cross-
section [111]:

a =
d

e
d
rn − 1

b = a + d.
(5.32)

Eq. (5.32) describes how changing the
value of d affects the radii of curvature
of the convex and concave surfaces, a

and b, respectively, so that the arm neu-
tral surface shape is preserved. That is the radius of curvature of the neutral surface,
rn, is unaffected when the arm thickness, d, is varied. The cross-sectional area and
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radius of curvature of the centroid surface are given by:

A = (b − a)t

rc =
b + a

2
,

(5.33)

respectively. The strain energy of the differential element, corresponding to dγ
ds is

given by:

U =
1
E

∫ b

a
[σ2(r)rt]drdφ = AErne

(dγ
ds

)2
ds (5.34)

where dφ = ds
rn

(see Fig. 5.25). The mass of the differential element of Fig. 5.25 is:

dm =
(b2 − a2

2
t
)
dφ =

( A(b + a)
2rn

)
ds. (5.35)

By combining Eq. (5.32), Eq. (5.34) and Eq. (5.35), and simplifying the result, it
can be shown that the strain energy density, Um, is given by:

Um ≡
U
dm
=

2Er2
n e

(
dγ
ds

)2

b + a
=

Er2
n

(
e

d
rn − 1

) (
d
2 − rn +

d

e
d
rn −1

) (
dγ
ds

)2

d(e
d
rn + 1)

. (5.36)

Let kd =
d
rn

be the arm scaled thickness: clearly kd > 0 for d > 0. Then
differentiating Eq. (5.36) w.r.t d gives:

U′m =
Er3

n

(
e

2d
rn − 1 − 2( d

rn
)e

d
rn

) (
dγ
ds

)2

d2(e
d
rn + 1)2

=
Er3

n

(
dγ
ds

)2

d2

( e2kd − 1 − 2kdekd

(ekd + 1)2
)
. (5.37)

It can be shown that e2kd − 1 − 2kdekd > 0 for kd > 0 by differentiating w.r.t to kd .
Therefore,U′m ≥ 0 for d > 0. Therefore, it can be concluded that given a deformation
gradient dγ

ds , the strain energy density of the arm increases with increasing d. From
Eq. (5.32):

a′ =
(1 − d

rn
)e

d
rn − 1

(e
d
rn − 1)2

=
(1 − kd)ekd − 1
(ekd + 1)2

, (5.38)

where a′ is the derivative of a w.r.t. d. It can be shown that (1 − kd)ekd − 1 < 0 by
differentiating w.r.t. kd . Then, a′ < 0, or increasing d leads to a reduction in the
value of the variable a. However, σmax ≤ [σ] and from Eq. (5.15) and Eq. (5.16):

a =
Er2

n
dγ
ds

Ern
dγ
ds + σcx

≥
Er2

n
dγ
ds

Ern
dγ
ds + [σ]

≡ amin (5.39)
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where amin is the minimum allowable value for a. Therefore, the energy density is
maximized if a = amin or equivalently if σcx = [σ].

In a similar fashion, it can be shown that U′ > 0 for kd > 0, where U′ is the
derivative of U w.r.t. d. Therefore, the strain energy also increases with increasing
d, and thus, for a given deformation dγ

ds , the strain energy is maximized if σcx = [σ].

Next, consider the sum of the stresses on the convex and concave surfaces:

σcx + σcv = E(2 −
(a + b)rn

ab
)rn

dγ
ds
= 2E(

kd − sinh(kd)

kd
)rn

dγ
ds

(5.40)

It can be shown that kd − sinh(kd) < 0. Therefore, |σcx | > |σcv |. Similarly, it
can be shown that (σcx + σcv)

′ < 0 (derivative with respect to d), and therefore the
difference between the stresses on the convex and concave surfaces increases with
increasing d.

In conclusion, this section showed that the arm strain energy and strain energy
density are maximized if the arm in-plane thickness is maximized, or equivalently
if the convex arm surface is subject to the maximum allowable bending stress.

Composite arm modeling

Figure 5.26: Spring composite arm struc-
ture.

This section supplements composite
arm analysis of Sec. 5.2.4 so that
composite arms may be used with the
optimization-based design algorithm of
Sec. 5.4.2.

Fig. 5.26 shows the structure of a gen-
eral composite arm. The primary ma-
terial (gray) and the secondary material
(green) have stiffness, density and out-
of-plane thickness given by E , ρ, t and
Es, ρs, ts, respectively (similar to Sec.
5.2.4).

The arm in-plane thickness is again given by d = b − a and the in-plane thickness
of the secondary material layer is ds = bs − as as shown in Fig. 5.26. For the
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composite arm cross-section shown in Fig. 5.26:

a =
d

e
d
rn − 1

b = a + d

as =
ds

e
ds
rn − 1

bs = as + ds .

(5.41)

The transformed section approach is used in the derivation of Eq. (5.41) (see Sec.
5.2.4). The cross-sectional area, A, and radius of curvature of the centroid surface,
rc, are:

A =
[
d −

(
1 −

Ests

Et

)
ds

]
t

rc = a + t
(as−a)2

2 + (
Ests
Et )(bs − as)(

bs+as
2 − a) + (b − bs)(

b+bs
2 − a)

A
.

(5.42)

Eq. (5.34) remains unaltered, while the differential element mass is now given by:

dm =
( (b2 − a2) − (1 − tsρs

tρ (b
2
s − a2

s ))

2rn
tρ

)
ds. (5.43)

As described in Sec. 5.2.4, ks ≡
ds
d represents the trade-off between mass reduction

and stiffness reduction.

Approaches to maximizing the strain energy density

Combining Eq. (5.15) and Eq. (5.32) leads to:

σcx(s) = E
(
1 −

rn(s)(e
d(s)
rn(s) − 1)

d(s)

)
rn(s)

dγ
ds
. (5.44)

As shown earlier in the section, the strain energy and energy density are maximized
if σcx(s) = [σ] for s ∈ [0, L] or along the arm profile. The two design variables in
Eq. (5.44) are rn(s) and d(s). The arm neutral surface curvature radius, rn(s), can
be modified by changing the arm shape. The nonlinear dependence of the curvature
radius on the curve coordinates and their first and second derivatives (see Eq. (5.1)),
suggests that this modification cannot be achieved locally. Therefore, the entire arm
shape needs to be altered, in order to adjust rn(s) in a region along the arm profile.
Note that Eq. (5.1) shows how the radius of curvature of the centroidal surface
can be calculated, however, the same equation can be used for the neutral surface,
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provided its curve is given in polar coordinates. Unlike the variable rn(s), the arm
in-plane thickness, d, can be modified directly. The value of the variable d(s) may
be adjusted in any region while preserving the arm shape, as discussed earlier in
the section (see Eq. (5.32)). The dependence of the arm flexural rigidity given by
(A(s)Ee(s)rn(s)) on rn(s) and d(s) in Eq. (5.10) suggests that changing either of the
two parameters would have a non-linear effect on dγ

ds . However, in order to calculate
dγ
ds along the length of the arm, one needs to solve Eq. (5.13) first. Therefore, the
effects of changes in the values of rn(s) and d(s) on the convex arm stress σcx in Eq.
(5.44) along the arm cannot be predicted unless Eq. (5.13) is solved. Then it can be
concluded that optimizing either rn(s) or d(s) in order to maximize the strain energy
and energy density would require solving a nonlinear optimization program. Next
the optimization of rn(s) and d(s) is considered separately.

Modifying the neutral surface curvature radius, rn(s), while maintaining constant
d(s) is equivalent to modifying the shape of a constant in-plane thickness arm.
Using a modified version of the algorithm of Sec. 5.4.2, the arm shape can be
optimized so that the stress on the convex surface is maximized while d(s) = const.

This approach has the following disadvantages:

• The selection of an arbitrary inner circle spring diameter is not possible.
For a given outer circle diameter, the optimized arm inner circle diameter is
determined by the optimization. Thus, the spring design is significantly less
flexible.

• Multiple arms cannot be used due to arm intersections.

Figure 5.27: Optimized spring shape. The
curves trace the arm neutral surfaces.

Fig. 5.27 shows the optimized shape
of a two arm spring. The arm shape is
determined only by the spring outer cir-
cle and material maximum admissible
stress. The curves trace the arm neutral
surfaces. As can be observed from the
figure, the shape of the arms causes in
arm interference and the planar spring
cannot be manufactured. Furthermore,
if the spring in-plane thickness is large
enough, the arm might self-intersect,
thus, even one arm spring might be unrealizable.
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On the other hand, if the in-plane thickness, d(s), is modified while rn(s) remains
unaltered, the arm shape would be preserved. Thus, if the arm neutral surface is
designed so that multiple arms can be positioned symmetrically around the spring
center without interference, the arms in-plane thickness may be optimized without
the occurrence of arm interference. For example, this is the case for spring arms
with spiral neutral surfaces. For this reason, the approach of optimizing d(s) rather
than rn, is adopted in the rest of this work.

5.4.2 Optimization-based Design Algorithm
The section describes a design algorithm that optimizes the arm in-plane thickness
so that the arm strain energy density is maximized. The section begins with a brief
description of the spring specifications and design procedure. Due to fundamental
limitations, the arm performance cannot be independently maximized for rotations
in both displacement directions. The optimization algorithm with its bidirectional
variant is described in detail, followed by implementation discussion.

Spring Performance Specification and Design Procedure

Similar to Sec. 5.2.5, the spring design starts with a performance specification. As
before, desired maximum torque, τdes, and stiffness, Kdes, are determined. Then,
the maximum design spring displacement can be calculated ∆βmax =

τdes
Kdes

. Next,
the spring material is chosen. If a composite section design is employed both
the primary and secondary materials need to be determined. The maximum arm
stress at maximum displacement, ∆βmax (given by σmax in Eq. (5.16)), needs to be
σmax ≤ [σ]. The size of the inner and outer circles (see Sec. 5.2.2) are assumed to
be determined from packaging constraints.

The arm geometry is fully determined by its neutral surface and in-plane thickness.
The spring design beginswith the choice of the armneutral surface shape and number
of arms, n. In most cases, especially in high torque and low stiffness applications,
the arms are chosen to be spiral as discussed in Sec. 5.4.1. Spirals allow for
efficient symmetric spring design, since n arms conveniently ”spiral” around each
other without interference. Given the inner and outer circle, a spiral neutral surface
is designed (see Sec. 5.2.5). Unlike Sec. 5.2.5, however, the arm’s neutral surface
is specified instead of the arms centroidal surface. This approach is motivated be
the arm strain energy analysis of Sec. 5.4.1. The rest of the section, assumes that
the spring arm neutral surface has been chosen, and is arc-length parameterized (by
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s and α). The radius of curvature, rn(s), is also calculated (see Sec. 5.2.2). Next,
the arm in-plane thickness, d(s), is optimized so that σcv(s) = [σ], and thus, the
arm’s strain energy is maximized at ∆βmax .

Arm In-plane Thickness Optimization

The goal is to optimize the arm profile thickness, d(s), so that the torque and torque
density are maximized at the maximum displacement, ∆βmax . This can be achieved
by maximizing the strain energy density or equivalently optimizing d(s) so that the
stress at the convex surface is |σcx(s)| = [σ], as shown in Sec. 5.4.1. Themotivation
here is similar to [110], where the shape of a leaf spring is optimized using FEA so
that the stress distribution uniformity is improved. However, as will be demonstrated
in Sec. 5.4.3, the intuitive approach of reducing d(s) along regions of lower stress,
suggested in [110], is found to be inappropriate for the planar springs considered
here.

The arm in-plane thickness can be optimized throughmaximizing the energy density
by solving a non-linear optimization program given by:

minimize
dΓ(0)
ds ,F,din

f
(dΓ(0)

ds
, F, din

)
subject to geq

(dΓ(0)
ds

, F, din

)
= 0

gin

(dΓ(0)
ds

, F, din

)
≤ 0.

(5.45)

Eq. (5.45) is defined in similar fashion to Eq. (5.3.2). Before describing the
optimization variables, and the cost and constraint functions, an important practical
distinction needs to be made. For the rest of the section, Eq. (5.45) is termed
unidirectional optimization if the performance of the spring is optimized at the
maximum displacement ∆βmax only. I.e., spring performance is optimized for
displacement in only one of the two torsional directions. The performance of the
spring in the other direction is often degraded as shown in Sec. 5.4.3. On the other
hand, Eq. (5.45) is termed bidirectional optimization when the torque density is
maximized for both displacements ∆βmax and −∆βmax . This directional distinction
is important because the torque density of the arm can readily be maximized in the
unidirectional case by optimizing d(s) so that |σcx(s)| = [σ] everywhere on the
convex profile at displacement ∆βmax , however, this is generally not possible in the
case of bidirectional optimization.
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In the following, the unidirectional optimization version of Eq. (5.45) is first
described. Then, the necessary modifications for the bidirectional optimization are
discussed. A brief implementation overview is also provided.

The unidirectional optimization variables are: the deformation angle gradient
dΓ(0)

ds =
dγ(0)

ds at the inner circle, the arm end forces, F = [Fx Fy]
T , at the outer

circle and the in-plane arm thickness at a number of discreet points, din(sk) for
k = 1, ..., Nmax . Without loss of generality, arm contacts are not considered here.
Therefore, Fx and Fy are the arm end forces similar to Sec. 5.2.2. In this implemen-
tation, din is an uniform discretization of d(s), however, other discretization schemes
are also possible. The solution of Eq. (5.45) for dγ(0)

ds is the initial condition for γ(s)
in Eq. (5.13) that satisfies the boundary conditions for the arm end forces F, and
thus, leads to spring displacement ∆βmax . The in-plane arm thickness d(s) along
the arm profile is found by interpolating the discrete values of din for s ∈ [0, L].

In calculating the equality constraint function, geq(
dΓ(0)

ds , F, din), first the profile
curvature radii a and b are evaluated using Eq. (5.32) o Eq. (5.41) for the current
din. Next A and rc are evaluated using Eq. (5.33) or Eq. (5.42). Eq. (5.10) can be
integrated with the initial conditions γ(0) and dγ

ds (0) to find γ(s) for s ∈ [0, L]. The
constraint function is used to enforce the boundary conditions and is given by:

geq(
dΓ(0)

ds
, F, din) =


γ(L) − ∆βmax∫ L

0 cos(α(s) + γ(s))ds − Rncos(β0 + ∆βmax)∫ L
0 sin(α(s) + γ(s))ds − Rnsin(β0 + ∆βmax)

 . (5.46)

Thus, the nonlinear equality constraint, geq(
dΓ(0)

ds , F, din) = 0, ensures that γ(s) is a
valid solution of Eq. (5.13).

Attempting to directlymaximize the spring torque and torque density or strain energy
and energy density may lead to an unfavorable local minimum. This motivates the
strain energy consideration of Sec. 5.4.1. The stress on the convex surface, σcx ,
is maximized instead, which may be calculated using Eq. (5.15). The objective
function may be defined by:

f (
dΓ(0)

ds
, F, din) =

∫ L

0
(|σcx | − [σ])

2ds. (5.47)

Therefore, f ( dΓ(0)ds , F, din) = 0, ensure that the strain energy and energy density are
maximized (Sec. 5.4.1). Other cost function definitions are also possible, however,
Eq. (5.47) proved to be very stable in implementation with off-the-shelf non-linear
solvers.
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The nonlinear inequality constraint function gin(
dΓ(0)

ds , F, din) ensures that the stress
in the arm is less than the maximum allowable stress, [σ]. The constraint can also
be used to reduce the stress at the arm ends if stress concentrations are of concern,
as discussed in Sec. 5.4.3. In some cases the nonlinear inequality constraint can be
omitted in unidirectional optimization especially if the cost function is defined as in
Eq. (5.47).

The optimization problem in Eq. (5.45) may be readily solved with off-the-shelf
optimization software such as Matlab’s fmincon, provided a good initial guess is
used. A suitable choice for the initial guess is the solution of Eq. (5.13) for ∆βmax

with some d(s) = const such that σmax ≈ [σ]. Such a solution may be obtained
using a shootingmethod and the approach described in Sec. 5.2.5. Once the solution
is obtained, the corresponding values for dΓ(0)

ds , F and din can be used to initialize
the optimization solver.

The solver performance depends on both the initial guess and the discrete numerical
resolution. To improve the speed and accuracy, Eq. (5.45) is consecutively solved
with progressively finer discretization using the coarser previous solution as the
initial guess. This approach allows one to efficiently find the optimal thickness d(s)

such that σcx(s) = [σ] for s ∈ [0, L] in the unidirectional case.

Bidirectional Optimization

Bidirectional optimization seeks to maximize spring performance considering both
rotational directions. The optimization variables are dΓ(0)

ds = [
dγ1(0)

ds
dγ2(0)

ds ]
T and

F = [F1
x F1

y F2
x F2

y ]
T , where dγ1(0)

ds and dγ2(0)
ds are the deformation angle gradi-

ents at the inner circle, corresponding to spring displacements ∆βmax and −∆βmax .
Similarly, F1

x , F1
y and F2

x , F2
y are the arm end forces corresponding to displacements

∆βmax and −∆βmax , respectively. In this case the constraint function is given by:

geq(
dΓ(0)

ds
, F, din) =



γ1(L) − ∆βmax

γ2(L) + ∆βmax∫ L
0 cos(α(s) + γ1(s))ds − Rncos(β0 + ∆βmax)∫ L
0 cos(α(s) + γ2(s))ds − Rncos(β0 − ∆βmax)∫ L
0 sin(α(s) + γ1(s))ds − Rnsin(β0 + ∆βmax∫ L
0 sin(α(s) + γ2(s))ds − Rnsin(β0 − ∆βmax)


. (5.48)

The nonlinear equality constraint function, geq(
dΓ(0)

ds , F, din) = 0, ensures that γ1(s)

and γ2(s) are valid solutions of Eq. (5.13), corresponding to ∆βmax and −∆βmax
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displacements, respectively. Like the unidirectional case, the nonlinear inequality
constraint ensures that arm stresses do not exceed the maximum admissible stress
[σ].

In Sec. 5.4.1, it was shown that the strain energy density is maximized if σcx = [σ]

everywhere along the arm profile. However, this cannot be achieved in bidirectional
optimization and the inequality constraint becomes quite important.

5.4.3 7075 Aluminum Spring Prototype
This section demonstrates the effectiveness of the optimization-based spring design
approach of Sec 5.4.2 by designing a high performance 7075 − 651 aluminum
spring prototype. The validity of the spring analysis algorithm of Sec. 5.3.2 is also
confirmed through FEA and experimental prototype mechanical testing.

Spring Prototype Design

The yield strength of 7075 − T651 aluminum is approximately 500MPa. A maxi-
mum allowable stress of [σ] = 200MPa is chosen, which is slightly higher than the
material’s endurance limit.

The inner and outer circles have dimensions Rout = 50mm and Rout = 15mm. For
manufacturing and demonstration convenience, the out-of-plane thickness of the
spring is t = 10mm. The maximum design spring displacement is ∆βmax = 20◦.

Figure 5.28: Spring shape with
constant in-plane thickness.

Figure 5.29: Spring arm bending stress at
displacement β.

The design begins with finding a spiral spring of constant in-plane thickness d(s),
such that the maximum stress in the arms is given by [σ] at displacement ∆βmax .
Fig. 5.28 shows the spring profile. Fig.5.29 shows the stress along the arm profile
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at displacement ∆βmax . For this initial design, the arm bending stress is indeed
suboptimal. The torque supported at spring displacements ∆βmax and −∆βmax is
given by τ∆βmax = 9.4Nm and τ−∆βmax = −9.5Nm, respectively (see Eq. (5.17)).
The arms’ mass is calculated at Marms = 103g.

First, the profile in-plane thickness is optimized using the uni-directional optimiza-
tion algorithm of Sec. 5.4.2.

Figure 5.30: Uni-directionally
optimized spring shape.

Figure 5.31: Uni-directionally optimized
in-plane spring arm thickness d.

The spring is optimized only for ∆βmax displacement. Fig. 5.30 shows the uni-
directionally optimized spring profile. Fig. 5.31 shows the uni-directionally op-
timized spring in-plane thickness. The torque supported at spring displacement
∆βmax is given by τ∆βmax = 23.5Nm (see Eq. (5.17)). The arms’ mass is calculated
at Marms = 147g. Thus, the torque and torque density of the arms for displace-
ments ∆βmax are increased approximately by 150% and 78%, respectively due to
the optimization of the in-plane thickness d(s).

Fig. 5.32 shows the arm profile stresses at maximum displacements ∆βmax and
−∆βmax for the uni-directionally optimized arm. The figure confirms that in uni-
directional optimization, the arm in-plane thickness can readily be optimized so that
the bending stress along the convex surface is σcx = [σ] for displacement ∆βmax .
However, at displacement −∆βmax there are regions along the arm profile where σcx

is substantially higher than [σ]. Thus, maximizing the spring performance using the
uni-directional optimization leads to an optimal spring torque and torque density in
the optimization direction at the expense of deteriorated performance in the other
displacement direction.
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Figure 5.32: Spring arm bending stress for uni-directionally optimized spring at
displacements ∆βmax and −∆βmax .

Next, the profile in-plane thickness is optimized using the bi-directional optimization
algorithm of Sec. 5.4.2. Fig. 5.33 shows the bi-directionally optimized spring
profile. Fig. 5.34 shows the bi-directionally optimized spring in-plane thickness.

Figure 5.33: Bi-directionally
optimized spring shape.

Figure 5.34: Bi-directionally optimized
in-plane spring arm thickness d.

The shapes of the uni-directionally optimized and bi-directionally optimized springs
are very similar (compare Fig. 5.30 and Fig. 5.33). However, close examination of
Fig. 5.31 and 5.34 reveals that the bi-directional spring is slightly thinner in some
regions along the arm profile. The increased arm in-plane thickness around the arm
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ends for the bi-directionally optimized spring (observed in Fig. 5.34) is a stress
concentration prevention measure, which is further discussed later in the section.

Figure 5.35: Spring arm bending stress for bi-directionally optimized spring at
displacements ∆βmax and −∆βmax .

Fig. 5.35 shows the arm profile stresses at maximum displacements for the bi-
directionally optimized arm. Unfortunately, bidirectional optimization cannot yield
bending stress equal to the maximum allowable stress everywhere on the convex
arm surface. Tracing the convex stress curves in Fig. 5.35 suggest that a directional
performance trade-off exists. That is, if the stress in a region along the profile is
maximized for spring displaced ∆βmax , the stress in the same region is lower for
spring displaced −∆βmax .

The optimization inequality constraint discussed in Sec. 5.4.2 can be modified so
that the stress is reduced at the arm ends as demonstrated in Fig. 5.35. Thus, the
potential performance limiting stress concentrations at the arm ends can be readily
reduced to an acceptable level. This ability to modify the stress in particular regions
is quite beneficial from practical design point of view.

The model predicts that the torque carried by the bi-directionally optimized arms
at spring displacements ∆βmax and −∆βmax are given by τ∆βmax = 20.6Nm and
τ−∆βmax = −19.9Nm, respectively (using Eq. (5.17)). The optimized arms mass
is given by Marms = 140g. Thus, the torque and torque density of the arms are
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increased approximately by 100% and 60%, respectively due to the bi-directional
optimization of the in-plane thickness, d.

Figure 5.36: 7075 Al spring prototype.

In order to verify the optimization-
based design approach, the spring
design which is bi-directionally op-
timized is selected for manufactur-
ing. The final design step is to add
supporting material at the inner and
outer circles and provide mounting
holes, similar to the prototypes of
Sec. 5.2.6 and Sec. 5.2.7. The alu-
minum spring prototype was CNC
machined in-house and is shown in
Fig. 5.36.

Spring Analysis and Experimental Validation

Figure 5.37: 7075 Aluminum spring pro-
totype torsional testing.

The remaining part of the section val-
idates the spring design of Sec. 5.4
and spring analysis algorithm from Sec.
5.3. The design loading conditions for
the prototype described in Sec. 5.4.3
are simulated through non-linear FEA
with approximately 1.7 million linear
elements. However, due to computa-
tional resource limitations, contacts are
not simulated with such a fine mesh.
Instead a coarser mesh with approxi-
mately 170 thousand linear elements is
used for the contact simulation. The
thickness and loadings are significantly
scaled down to improve the accuracy in
both FEA simulations.

Fig. 5.38 shows FEA simulations of the spring torsional design loading which
correspond to spring displacements ∆βmax and −∆βmax , respectively. The FEA
simulated stress levels on the arm surfaces completely agree with the model pre-
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diction of Fig. 5.35. Furthermore, comparing the FEA simulation results of Fig.
5.24 and Fig. 5.38 reveal the significant advantage of the optimization-based spring
design algorithm of Sec. 5.4.2.

Figure 5.38: FEA simulation results at design spring torsional loading. Counter-
clockwise loading on the left and clockwise loading on the right. The colour bar
units correspond to stress in MPa.

The torsional properties of the prototype, shown in Fig. 5.36, were characterized
with an ADMET mechanical testing machine, similar to Sec. 5.2.6. Fig. 5.37
shows the experimental set-up. Grease was added to decrease the friction between
the arms so that the frictionless contact assumption of Sec. 5.3.1 is justified.

Figure 5.39: Spring torque against displacement plot.

The experimental results and FEA simulation results are compared with the model
predictions in Fig. 5.39 and Fig. 5.40.
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The fine mesh FEA simulation agrees with the model prediction with a maximum
error of around 1% in both the stiffness and stress values. The coarse mesh FEA
simulation agrees with the model prediction with a maximum error of around 5.5%
in stiffness and 7.5% in stress values.

The experimental results show around 6% lower stiffness levels in the design region
(where no arm contacts occur) compared to the model prediction. These results
are similar to what is observed in Sec. 5.2.6. The discrepancy is probably due to
lower manufacturing accuracy and experimental issues related to the arm boundary
condition enforcement, clamping and attachment of the springs, calibration, etc.

With arm contacts at higher loading, the experimental results show around 8% and
12% lower stiffness levels depending on the loading direction. The higher errors
(12%) are probably caused by difference in the arm contact conditions at the outer
circle in the prototype compared to the modelling. This is unavoidable as the fixed
boundary conditions at the outer circle need to be enforced in the prototype. The
added material at the outer circle probably causes the contact point to move away
from the prediction along the profile.

Figure 5.40: Maximum arm bending stress against displacement plot.

In summary, the results of this section, which are analogous to those of Sec. 5.2.6,
show the validity of the presented spring optimization-based design and analysis.
Furthermore, the arm contact analysis provides ameans for rapid spring approximate
torsional response prediction under overload conditions. This is quite advantageous
because FEA with contacts is quite computationally expensive and can be quite
inaccurate as Fig. 5.39 suggests.
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Optimization-based design discussion

Comparing Fig. 5.29 with Fig. 5.31 and Fig. 5.34, suggests that the optimal solution
for d(s) is quite counter intuitive. As discussed in [110], elementary beam theory
suggests that reducing d(s) along regions of low stress, should increase the stress in
these regions. Fig. 5.31 and Fig. 5.34 show that this need not be the case. In fact,
d(s) increases in the areas of lower stress in Fig. 5.29. This observation demonstrates
the main advantage of the optimization-based design approach introduced in Sec.
5.4.2. Furthermore, the nonlinear relationship between the stress and the in-plane
thickness, d(s), may be a significant challenge for the iterative FEA-based planar
spring optimization procedures previously used in the literature (see Sec. 5.1) and
may be the reason why optimal designs such as those presented here, have not been
introduced before.

The design example also suggests that both the uni-directional and bi-directional
optimization have certain advantages. If the spring is intended for applications
that involve loading only in one direction, the uni-directional design optimization
allows higher achievable torque and torque density. On the other hand, if the spring
is intended for applications where bi-directional loading occurs, the bi-directional
design optimization achieves directionally symmetric loading capability.
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5.5 Conclusion
The chapter develops a novel mathematical model, based on curved beam theory,
that can be used to rapidly design and analyze rotary springs, which are commonly
used in SEA systems, as well as mechanical couplings. Techniques and analysis for
spring mass reduction through composite structure and cutouts are also introduced.
An improved performance analysis algorithm that allows for rapid spring loading
response prediction with possible arm contacts is developed. A novel planar spring
optimization-based design algorithm which is based on the mathematical model is
described. The spring torsional performance is significantly improved through arm
profile thickness optimization. A number of mechanical prototypes are designed,
analyzed and manufactured according to the novel algorithms and techniques. The
proposed design and analysis techniques are validated through FEA and experimen-
tal prototype mechanical testing.
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C h a p t e r 6

ACTUATOR PROTOTYPES

6.1 Chapter Structure and Contributions
This chapter presents actuator prototypes that feature high torque densitymotors (Ch.
3), bearingless planetary gearboxes (Ch. 4) and planar rotary springs (Ch. 5). Sec.
6.2 describes an actuator that features a 1 : 10 reduction ratio bearingless planetary
gearbox. Sec. 6.3 describes a series elastic actuator that features a 1 : 101 reduction
ratio bearingless planetary gearbox and an elastic element designed according to
Ch. 5. The bearingless planetary gearboxes of Sec. 6.2 and Sec. 6.3 are both driven
by high torque density outrunner motors that are incorporated into the gearbox
interior. These prototypes demonstrate the weight and compactness advantages that
may be achieved with custom designs of the bearingless planetary gearbox. Sec.
6.4 describes a series elastic actuator which is similar to the actuator shown in Sec.
6.3 and is used in the tether management system of the Axel rover developed at the
NASA Jet Prop. Lab. [36].
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6.2 Low Reduction Actuator Prototype
A low reduction bearingless planetary gearbox that has no assembly features (see
Sec. 4.3.4) is shown in Fig. 6.1. It is used in the robotic joint prototype of Fig.
6.2. The outrunner motor, driving the prototype is a modified of-the-shelf, high

Figure 6.1: Low reduction (1 : 10) bearingless planetary gearbox on left and
modified driving outer rotor motor on right. The motor rotor is incorporated into
the gearbox driving sun gear.

performance drone motor that has 40 poles and 36 slots (see Fig. 6.1). As shown
in Ch. 3, high pole count outer rotor motors with concentrated windings have
substantially higher torque density than conventional servo motors used in robotics.
In particular, in Sec. 3.5.3 it is shown using electro-magnetic FEA that motors of
this particular size and design have optimal torque and torque density at around 40
poles (see Fig 3.22).

Figure 6.2: Low reduction actuator prototype. On left: complete assembly. On
right: with output case removed.
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Fig. 6.3 shows CAD section views of the prototype. The unique structure of the
bearingless planetary gearbox allows the rotor of the motors to be incorporated
into the driving sun gear (see also Fig. 6.1), which promotes significant actuator
compactness. The two joint support bearings and the motor bearing are the only
bearings in the prototype. The output gearbox ring gear is coupled directly to the

Figure 6.3: Section views the low reduction actuator prototype.

joint output rotor. The large central shaft provides support for the bearings and may
be used to guide cables, etc.

The prototype has been tested using off-the-self driver electronics and exhibits
excellent backdrivability with minimum backdriving torque of 1.2Nm which is
mostly due to the amplified motor cogging torque. At 3000RPM the motor no load
current is 3.2A. At this speed the motor idle current is around 1.7A according to the
motor data sheet. Therefore, there is around 70W power loss due to gearbox friction.
Furthermore, at higher speeds the gearing noise levels increase significantly. The
most likely cause for the loss and increased noise are the high tangential speeds of
the planet gears due to the large sun gear.

At 3000RPM the sun gear tangential speed is around 15m
s and as discussed in Sec.

4.3.2, smooth and quiet operation at such high rotational speed requires gears of
extra accuracy (class 6) [90, 103]. However, the gears of the prototype shown in



177

Fig. 6.2 are machined in-house and are of much lower class (probably class 9).
Therefore, future prototypes should either have gears of better quality or should be
designed to have significantly lower gear tangential speeds by:

• reducing the motor and sun gear size and possibly increasing the number of
planets and the gearbox reduction ratio to preserve the actuator rated torque.

• reducing the sun gear size and moving the motor outside of the gearbox.

The prototype shown in this section serves as a proof of concept and improved future
prototypes will be extensively tested to verify efficiency, robustness and dynamic
loading capability of mid reduction ratio geared actuators based on the bearingless
planetary gearbox of Ch. 4. The rated motor torque and the bearingless planetary
gearbox strength analysis of Sec. 4.3.2, suggest that if the prototype of Fig. 6.2
is developed with high quality components, it could deliver more than 55Nm of
continuous torque.
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6.3 Bearingless Series Elastic Actuator
A high reduction bearingless gearbox that has no assembly features (see Sec. 4.3.4)
is shown in Fig. 6.4. It is used in the bearingless series elastic actuator prototype

Figure 6.4: High reduction (1 : 101) bearingless planetary gearbox. Similar to Fig.
6.1 the rotor of the driving outrunner is built-in the driving sun gear.

shown in Fig. 6.5. The same outer rotor motor is used for the prototype of this
section as the one used in Sec. 6.2 and shown in Fig. 6.1.

Figure 6.5: Bearingless series elastic actuator prototype. Fig. 6.6 shows the actuator
schematic structure.

Fig. 6.6 shows the schematic structure of the actuator. The actuator has no bearings
except for the motor bearing. In the design both ring gears are floating. Thus,
the gearbox is utilized as a differential: the sun gear determines the relative dis-
placement of the two ring gears. The stator of the driving outrunner motor is
stationary, while the rotor is rigidly connected to the sun gear as shown in Fig.
6.4. One of the ring gears is the gearbox output and the other ring gear is connect
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to the elastic element which is constructed by two of the springs of Sec. 5.2.6,
connected in series. The other end of the elastic element assembly is stationary.

Figure 6.6: Bearingless series elastic ac-
tuator structure.

The advantage of this approach is that
it allows for direct measurement of the
spring displacement using an encoder
or potentiometer (see Fig. 6.6). Most
of the SEA designs, reported in the lit-
erature (see Sec. 1.1), place the elas-
tic element between the gearbox output
and the load. In this case, to measure
the elastic element deformation requires
two encoder of high resolution. There-
fore, the bearingless series elastic actua-
tor design shown in Fig 6.6 has substan-
tial practical advantages as it allows for
a more robust and simple way to mea-
sure the elastic element deformation.

The prototype has been tested using off-the-self driver electronics. At 2000RPM

the motor no load current is around 4A. This suggests increased power loss of
around 150W . This is most likely due to the low machining accuracy of the springs,
discussed in Sec. 5.2.6. Small eccentricity in the spring mounting holes causes
distortion of the gearbox floating structure that creates pressure and misalignment in
themeshing of the planets with the ring gears and the sun gears. In future prototypes,
this issue may be avoided by flexibly mounting the motor stator so that the driving
sun gear also floats. Alternatively, the spring mounting holes may be machined on a
CNCmill after the arm profiles are cut using a waterjet machine, in order to improve
their accuracy.

Similarly to Sec. 6.2, the gearbox of this section is also subject to high gear tangential
speed issues which should be addressed in future prototypes.

The prototype shown in this section serves as a proof of concept and future bear-
ingless SEA prototypes will be developed with full SEA functionally (closed loop
force control, position control, etc.) and fully tested. The rated motor torque and
the bearingless planetary gearbox strength analysis of Sec. 4.3.2, suggest that if the
prototype of Fig. 6.6 is developed with high quality components, it could deliver
more than 550Nm of continuous torque.



180

6.4 Series Elastic Actuator of Axel Tether Management System
The bearingless planetary gearbox prototype with assembled planets shown in Fig.
4.24 (Sec. 4.3.4) and the titanium dual spring prototype of Fig. 5.20 (Sec. 5.2.7)
are developed for the series elastic actuator of the tether management system of the
Axel rover (see Fig. 6.7) developed at the NASA Jet Prop. Lab.

Figure 6.7: Axel rover at field tests. The tether managements system is highlighted
in the red circle (middle picture).

Fig. 6.8 show CAD section views and photographs of the primary tension module
that houses the bearingless SEA.

Figure 6.8: Axel primary tension module. Top: CAD section views of mechanism
[36] ©2018 IEEE. Bottom: Photographs showing the components.
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This section only provides a brief overview of the SEA structure and operation. A
complete description of Axel and its tether management system with experimental
verification is available in [36].

Figure 6.9: Axel SEA structure.

Fig. 6.9 shows the actuator schematic
structure which is analogous to the SEA
of Sec. 6.3. However, the hard pack-
aging design requirements motivate the
novel dual spring design so that it may
be compactly positioned in the capstan
interior. Similar to the SEA of Sec.
6.3, the differential nature of the bear-
ingless planetary gearbox is exploited in
the SEA design of Fig. 6.9 as none of the ring gears are stationary. One of the
ring gears is attached to the capstan and the other ring is coupled to the spring. The
sun gear (driven by the motor) controls their relative displacement. The simplified
structure allows for direct measurement of the spring displacement (similar to Sec.
6.3) because one of its ends is stationary as shown in Fig. 6.9.

The tension management system has been extensively tested for hundreds of hours
both using a bench-top test set-up [36] and in field tests (after it was installed
on the Axel rover) which provides experimental verification of the performance
and robustness of the bearingless planetary gearbox and the rotary planar springs,
introduced in this thesis.
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C h a p t e r 7

CONCLUSION AND FUTURE WORK

The aim of this thesis is to develop high performance robotic actuation for multi-
limbed robots, with possibly high number of degrees of freedom.

A dynamic analysis of such systems (Ch. 2) reveals that the actuators’ design, and
in particular their reflected inertia, may have significant impact on the robot’s dy-
namics and control sensitivity, which is usually neglected at the robot design stage.
The analysis suggests that SEA robots may be subject to fundamental dynamics
performance limitation due to the effectively eliminated actuator reflected inertia.
It is shown that the SEA springs separates the actuator dynamics from the robot
dynamics, thus, the actuator reflected inertia no longer directly affects the robot’s
generalized mass matrix. On the other hand, the dynamics analysis show that robots
that have low to mid reduction ratio actuators at their joints may have substantial dy-
namics performance advantage compared to robots featuring SEAs, high reduction
ratio actuators, etc. The reflected inertia of such actuators may minimize the robot’s
generalized mass matrix condition number, and thus, reduce the robot dynamics
sensitivity to a minimum.

However, the analysis does not exhaustively cover the topic of limbed robot dynamics
sensitivity. Future work should include:

• individual actuator design optimization for minimized robot dynamics sensi-
tivity (or maximum robustness).

• robot structure design optimization (link design, actuator placement, etc.).

The shortcomings of existing robotic actuation technologies motivate at least two
possible solutions. The first is a novel dual actuation approach, which is proposed
in Sec. 1.2, and features a series elastic actuator coupled in parallel with a low
reduction geared actuator. However, incorporating two rotary actuators in a single
high performance robotic joint requires development of novel high torque density
motors (Ch. 3), compact light weight gearboxes (Ch. 4) and weight-optimized
rotary springs (Ch. 5). The second solution is a high torque density motor coupled
with low-loss, transparent mid-range gearbox.
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Ch. 3 is concerned with the design and prototyping of high performance permanent
magnet outer rotor motors with concentrated windings. The chapter begins with a
discussion of application-specific motor requirements for EVs, drones and robotic
joints. The analysis suggests that proper understanding of the motor loss trade-
offs may enable the development of motors that have superior performance for a
particular application, as compared to available off-the-shelf motors. A flux-linkage
based motor model is developed, leading to the derivation of application specific
design trade-offs and guidelines with consideration of the motor pole and slot count,
slot design, magnet design, etc. Electro-magnetic FEA is used to verify the analytical
results. A number of motor prototypes are designed, manufactured and tested to
demonstrate the advantages of designingmotors optimized for a specific application.
The chapter concludes with a description of the possible motor scaling laws and a
discussion of the challenges related to the practical implementation of high torque
motors.

Ch. 3 argued that interior permanent magnet designs have no advantages compared
to surfacemountmagnet designs for the considered applications. However, they have
certain advantages in applications that benefit from field weakening (a technique that
allows higher than rated motor speed by injection of direct current) and specialized
applications that benefit from large air gap. Therefore, interior permanent magnet
motors warrant future analysis, development and optimization using the approach
of Ch. 3.

Ch. 3 describes how high torque and torque density motors may be designed, and
outlines themajor issues with suchmotors related to their low inductance, resistance,
and high electrical frequency. However, the chapter provides no solution to driving
such motors. This is a major issue that needs to be addressed in future work, as a
brushless permanent magnet motor is useless without its driving circuitry. To this
end, the author began developing a pulse amplitudemodulation (PAM) driver system
which consists of a DC-DC buck converter that regulates the voltage of an inverter
that is responsible for the motor phase commutation. The resulting system may be
capable of driving motors of very low inductance. However, it was found that such
driver designs are disadvantaged due to their size: the buck converter stage needs to
be designed for maximum theoretical power, even though themotor in a robot joint is
not expected to reach this power level even for a short amount of time. Furthermore,
the inverter drives the motor with voltage pulses (sometimes referred to as BLDC
commutation in the literature) which is sub-optimal for the motors considered in
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Ch. 3 due to their sinusoidal bEMF waveform. In order to fully take advantage
of such motors, field oriented control (FOC) should be utilized. However, using
FOC with PAM drivers leads to significantly increased driver losses. Therefore, it is
concluded that PAM driver designs are disadvantaged in driving motors for robotic
joint applications. Nevertheless, PAM drivers may be advantageous for high power
applications such as drone actuation.

Similar to the analysis regarding motors in Ch. 3, it is possible to formulate
application specific motor driver design requirements and trade-offs that could
motivate driver designs of superior performance for a given application. Therefore,
future motor development work should be focused on application specific motor
driver development.

Ch. 4 introduces a novel bearingless planetary gearbox. The development is
motivated by the shortcomings of the speed reducers currently used in robotic joint
actuators. The novel gearbox has substantial compactness and weight advantage due
to its unique floating structure: all gearing components float unconstrained. This
is achieved by substitution of the carrier in the classical Wolfrom gearbox with a
secondary sun gear. Detailed strength analysis and manufacturing considerations
are also provided which outline the gearbox advantages. A major issues for the
bearingless planetary gearbox is the existence of an unbalanced planet couple that
leads to substantial max gearbox torque derating (more than 30%), and may cause
increased noise, wear, etc.

Regardless, of this issue the manufactured gearbox prototypes (Ch. 6) demonstrate
the significant advantages and potential of floating component gearboxes such as the
bearingless planetary gearbox. Therefore, future development should be focused
on gearbox topology modifications that lead to substantial reduction or complete
removal of the unbalanced loading.

Ch. 5 is concerned with the analysis, design, and prototyping of rotary planar
springs for SEAs. Amathematical model based on curved beam theory is developed
to rapidly predict the spring torsional response. Spring mass reduction techniques,
based on composite materials or cutouts, are introduced. Most of the spring designs
that have been previously reported in the literature have dead stops that prevent
arm contacts. Ch. 5 proposes an alternative design approach that utilizes spring
deformations beyond arm contacts as an overload regime. A systematic model of
internal spring arm contacts is developed that allows for rapid prediction of the
spring torsional response under contacts. The main contribution of the chapter is
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the development of a consistent optimization-based spring design procedure which
is motivated by spring arm strain energy consideration. Multiple spring prototypes
are designed, manufactured and tested, demonstrating the validity of the described
spring analysis and design techniques.

The presented strain energy density approach to the design of the springs may be
used in the design of any structural component that is subject to a finite prescribed
deformation or prescribed loading that leads to finite deformation. While the spring
design methodology is complete, future work could extend the design methodology
to novel mechanical coupling components.

Finally, proof of concept actuator prototypes are presented in Ch. 6 to demonstrate
the advantages and the potential of the thesis contributions for future development
of high performance SEAs and mid reduction geared actuators.

The advances in the design of high torque and high torque density motors of Ch.
3, combined with the high torque, compact and lightweight bearingless planetary
gearboxes of Ch. 4, suggest that mid reduction geared actuators may be developed
to match the high torque and efficiency of high reduction geared actuators that are
currently used in the majority of the robot designs presented in the literature. Such
mid reduction ratio actuators may also have significant advantages for limbed or
legged robots application in their dynamic performance, especially compared to
SEA (see dynamics analysis of Ch. 2). Therefore, future actuator development
should be focused on development of high performance systems featuring high
torque density outrunners and bearingless planetary gearboxes.
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