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Abstract 

A newly constructed crossed molecular beams apparatus has been used 

to measure total (elastic plus inelastic) differential cross sections for collisions 

between rare gas atoms and methane and chlorine molecules. The total 

differential cross sections were then used in an iterative trial and error potential 

fitting program to determine the interaction potentials between these species. 

In the rare gas-methane study (Chapter 2), the methane molecule has been 

approximated as being a spherical entity, and the standard equations and 

techniques have been applied to simulate the laboratory scattering distributions 

from an assumed isotropic potential. The isotropic potentials determined in 

this manner are compared with some recently proposed anisotropic potentials 

for these systems. In the rare gas-chlorine study (Chapter 3), anisotropic 

potentials have been determined using the infinite order sudden approximation 

and a Legendre parameter expansion of a central field potential. The resulting 

potentials compare rather favorably with what is known about these potential 

surfaces from photodissociation experiments. 
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1.1 Introduction 

The forces of interaction between atoms and molecules have long been a 

subject of intense interest. These forces are fundamental in the analysis of the 

structure and properties of all matter, and yet for all but a small fraction of 

the simplest two body interactions, they have not been fully quantified. One 

of the best and most generally applicable methods for the determination of 

intermolecular forces is the measurement of collision cross sections using the 

crossed molecular beams technique. Although this technique is some 52 years 

old, 1 it has only come to fruition within the past quarter century. The crossed 

molecular beams technique employs two beams of atoms or molecules which 

intersect each other at a well defined angle. The scattering of the particles in 

one beam by the particles in the other beam is measured as a function of the 

angle through which those particles are scattered. This type of measurement, 

known as a differential cross section, is very sensitive to the potential energy 

function between the two particles and can be used to quantitatively analyze 

that potential. The actual analysis of experimental differential cross sections 

is difficult, although well defined, even for the simple atom-atom interactions. 

A significant number of atom-atom interaction potentials of very high quality 

have been reported in the past 15 years.2- 4 Recently, however, most efforts 

have been directed towards the understanding of the interaction of molecules 

with atoms or other molecules. The analysis of these experiments is inherently 

more complicated because the interparticle potential depends not only on the 

separation of the two particles but also on the relative orientations of the 
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molecules. In addition, inelastic scattering processes in which relative kinetic 

energy is transferred to or from the internal states of the molecules are also 

possible in the collision. In the studies described in this thesis, we have examined 

several atom-molecule interaction potentials using a simplistic extension of the 

well developed theories and methods 2•4 - 6 of the elastic scattering of atoms. 

For the initial experiment on our newly constructed apparatus, we desired 

to undertake a study which would be relatively straightforward from an 

experimental viewpoint and yet would be topical. The determination of 

total (elastic plus inelastic) differential cross sections for methane with neon, 

argon and methane was just such an experiment. Methane potentials are 

of great interest because of their application in the theoretical modeling 

of the inter- and intramolecular interactions of larger organic molecules. 7 •8 

Also, the determination of total differential cross sections for an anisotropic 

system is equivalent experimentally to the well developed methodology for 

the measurement of elastic atom-atom differential cross sections. These total 

differential cross sections can be used to determine either effective spherical 

potentials9 - 11 or estimates of the complete anisotropic potential surface. 12 - 14 

In the case of methane, most of the approximate methods available for the 

calculation of differential cross sections from anisotropic potentials are not 

valid, and thus it would be necessary to use a computer intensive close-coupled 

calculation to determine the anisotropic surface. Since methane is somewhat 

spherical anyway, it was felt that effective spherical potentials would be sufficient. 

As an added attraction, an argon-methane potential had recently been reported 
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by Buck et al. 15 which would be very useful in our initial attempts to model our 

data. The results of the neon-methane and argon-methane studies are presented 

in Chapter 2 while the methane-methane results have been presented elsewhere. 16 

Our inability to determine the anisotropic potential energy surfaces for 

methane was not very intellectually satisfying. Thus, we decided to undertake 

a determination of a complete anisotropic potential for some system. Once 

again, we desired the atom-molecule potential be of some dynamical interest. 

In addition, it was required that the use of a simplifying approximation to the 

full quantum mechanical theory be a tenable treatment. For the past ten years 

there has been considerable interest in the photodissociation of van der Waals 

molecules of halogen molecules and rare gas atoms. 17 These systems have been 

used as simple models in the study of dynamical effects in the intramolecular 

redistribution of energy. Recently, Brinza et al. 18 , 19 have observed evidence of 

metastable, vibrationally excited neon-chlorine van der Waals molecules. This 

observation gives credence to the energy gap theory of Beswick and Jortner20 

and the momentum gap theory of Ewing. 21 Unfortunately, these theories cannot 

be tested or utilized to their fullest extent because very little information is 

known about the potential energy surfaces of either the ground or the excited 

state van der Waals molecule. To rectify this situation we have measured 

total differential cross sections for both neon-chlorine and helium-chlorine and 

determined anisotropic potential surfaces for each using the infinite order sudden 

(IOS) approximation. The preliminary results of these studies are presented in 

Chapter 3. 
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In the remainder of this chapter the fundamental aspects of the measurement 

of total differential cross sections and their use to determine both isotropic and 

anisotropic potentials will be discussed. Section 1.2 deals exclusively with the 

theory of intermolecular collisions. The apparatus which was constructed and 

utilized to perform these experiments is discussed extensively in Section 1.3, and 

in Section 1.4, the methodology used to determine laboratory differential cross 

sections and to extract knowledge of the intermolecular potential from those cross 

sections will be reviewed. 

1.2 Molecular Collision Theory 

Most of the details of molecular collision theory have been known for more 

than half a century,22 and have been presented in great detail elsewhere. 2 •4 - 6 

The intention of this section is to systematically present those terms, concepts, 

and equations that are necessary for the comprehension of the studies detailed 

in the following chapters. Much attention has been paid to the theory of elastic 

scattering from isotropic potentials (Subsections 1.2.1 and 1.2.2) because the 

analysis of the methane systems of Chapter 2 was done exclusively in this 

manner. In addition, the IOS approximation used for the chlorine systems 

reduces the anisotropic potential problem to a sum over differential cross sections 

computed for isotropic potentials at fixed intermolecular orientations. The IOS 

approximation and conditions on its effectiveness will be examined in more detail 

in Subsection 1.2.3. 
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1.2.1 Classical Dynamics of Elastic Scattering 

Although classical theory is not very useful for the actual quantitative 

determination of an intermolecular potential from elastic scattering, it is very 

helpful in examining elastic scattering from a qualitative viewpoint. In this 

section, the classical theory will be examined briefly with the emphasis on those 

features, such as "rainbow" scattering, which are more comprehensible in classical 

theory than in the quantum approach. 

The collision between two particles of mass mi and m2, movmg with 

velocities VI and v2, is illustrated by a velocity vector or Newton diagram such 

as in Figure 1. Conservation of momentum and energy allow the problem to 

be separated into two parts, one a particle of mass M = mi + m2 traveling at 

constant velocity, Vcom = (miVI + m2v2)jM, and a particle of mass f.L = mm/+m,;_
2 

of constant energy, ~ f.LV;el where Vrel = lVI - v2i· An observer traveling with 

the particle of mass M at velocity Vcom would be in a reference frame of zero 

momentum, i.e., mi iii = -m2u2 where Ui is the velocity of particle i in this 

center of mass reference frame. Within the center of mass frame, calculating the 

dynamics of the encounter reduces to determining the trajectory of a particle of 

mass f.L moving with initial velocity Vrel subject to a force field originating at 

the center of mass. The force field is simply the interparticle potential energy, 

U ( i), where r is the vector connecting the center-of-mass of each particle. In this 

subsection and the following one, we will consider only those potentials which 

depend solely on the magnitude of r, i.e., isotropic potentials. 
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Figure 1. Newton diagram for methane (m1,vl) scattered from Argon (m2,v2). 

The i.J;, are laboratory velocity vectors and the il;, are the corresponding center­

of-mass velocity vectors. The primes denote the final velocities of the scattered 

particles. e is the laboratory angle which corresponds to scattering through 

the center-of-mass angle, fJ. For elastic scattering, 1~1 = lil;,l and the product 

velocity vectors are constrained to lie on the Newton circle of radius liZ;, I centered 

on the tip of the center-of-mass velocity vector Vcom· A section of the Newton 

circle is represented by the dashed arc. 



- 8-

To illustrate some of the terms to be introduced, a one particle trajectory 

is shown in Figure 2. The deflection angle, x, is related by simple geometry to 

the orientation angle, Bo, of the classical turning point, ro, by x = 1r- 2Bo. The 

total energy of the system at any point on the trajectory is just the sum of the 

kinetic and potential energies: 

E = ~I' ( ( ~~ r + r 2 
( ~: )') + U ( r). (1) 

For a realistic potential energy function (U(r) ---+ 0 as r---+ oo), the asymptotic 

value of E at infinite separation is just ~J.LV;el · Similarly, the asymptotic value 

of the angular momentum of the system is L = J.LVrelb where b is the orbital 

impact parameter defined as the distance of closest approach in the absence of 

a potential. Conservation of angular momentum allows us to eliminate the () 

dependence of Equation (1) by replacing the angular momentum, L = J.Lr 2 ~~, 

with its asymptotic value as in Equation (2). 

1 (dr) 2 
£2 E = -J.L - +-+ U(r) 

2 dt 2J.Lr2 
(2) 

The last two terms of Equation (2) are generally grouped together as an effective 

potential, V(L, r). The centrifugal term, 2~;2 , is always repulsive and when 

coupled with the attractive part of the the potential it has the effect of producing 

a centrifugal barrier in the effective potential. Thus, if the collision energy is low 

enough that the classical turning point lies on the centrifugal barrier, then the 

scattering is very sensitive to the attractive region of the potential. Conversely, 

when the collision energy is greater than the centrifugal barrier, the repulsive 

"hard wall" portion of the potential is sampled. Consequently, 
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J.LVrel 

Figure 2. A classical trajectory for a particle of mass J.l. and initial velocity 

Vrel under the influence of a realistic intermolecular potential. b is the orbital 

impact parameter, r 0 and (}0 are the distance and orientation angle of the classical 

turning point (where ~~ = 0), and x is the deflection angle. 
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molecular beam elastic scattering experiments can provide detailed information 

about the complete potential energy surface. 

This information can be extracted from the elastic scattering data in the 

form of the classical deflection function, x(b, Vrez). It can be shown using 

Equation (2) and other relationships expressed in this text that 

l oo L [2 ( 1 b2 )]-
1
/2 x(b,Vrel) = 11'- 2 -2 - E- -p,v;el2- U(r) dr. 

ro p,r P, 2 r 
(3) 

However, this relationship in itself is not sufficient to experimentally determine 

a potential since it is impossible to select the impact parameter of a collision. 

Instead, we must look at the contribution to scattering at angle 0 = lxl from all 

values of b. The quantity of interest then is the differential cross section which 

is defined as 

d(J (O E) = # of scattered particles/unit time/unit solid angle (
4

) 

dw ' # of incident particles/unit time/unit area ' 

or in this case, 

(5) 

where the summation is over all values of b that can lead to scattering into the 

same angle. An important feature of the classical differential cross section is its 

inverse dependence on sinx and dx/ db. At values of x where either of those 

quantities are zero there will be a singularity in the differential cross section. 

Those places where sinx = 0 are responsible for the "glory effect," the principal 

manifestation of which is the glory oscillations in measurements of the energy 

dependence of the integral cross section. More relevant to our studies is the angle 
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Xr at which dx/ db = 0. At this angle, many values of b project onto the same 

value of x leading to infinite intensity at that angle. Thus, the angle Xr is called 

the rainbow angle because of the analogy to the optical rainbow caused by the 

turning point in the internal reflection of light rays in water droplets. The value 

of the rainbow angle is inversely proportional to the reduced collision energy, 

E* = ~JWrez 2 je, where f. is the well depth of the potential. Thus, if the collision 

energy is known, the well depth of the potential can be determined from the 

rainbow angle. 

In practice, the rainbow effect does not lead to a singularity in the 

differential cross section but merely a broad area of enhanced intensity. This 

is partially a consequence of the Heisenberg uncertainty principle since it is 

impossible to determine both the impact parameter and the deflection angle 

to an accuracy of better than tlbtl.x ~ h/ J.I.Vrel· Principally, however, the 

failure of classical mechanics arises from the summation over intensities resulting 

from multiple trajectories as in Equation (5). These multiple trajectories lead 

to interference effects in the form of oscillatory features, superimposed on the 

classical differential cross section, which can only be explained in a quantum 

mechanical treatment. 

1.2.2 Quantum Theory of Elastic Scattering: Isotropic Potentials 

The quantum mechanical approach begins, as in the classical treatment, 

with the separation of the problem into a particle of mass M moving with a 

constant velocity Vcom and a particle of mass J.£ with initial velocity Vrel· The 
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center of mass motion can be disregarded (until we wish to compare calculations 

with experiment) and the problem is then reduced to one particle of mass J.L 

interacting with a central potential. However, instead of having a well defined 

trajectory described by r(t) and P(t) as in the classical approach, we have only a 

wavefunction w(r, t) with its associated expectation values. 

As in all quantum mechanical problems, this treatment begins with the 

Schrodinger equation, 

-li
2 

V 2 w(T: t) + U(r)w(r, t) = i!i
8
8 

w(r, t). 
2J.L t 

(6) 

Since the Hamiltonian does not explicitly depend on time, i.e., the potential is 

invariant in that coordinate, the wavefunction for a monoenergetic beam can 

be assumed to be of the form 'W(T: t) = Wk(r)e-iEtfli. Substitution of this 

relationship into Equation (6) yields the time-independent Schrodinger equation 

which is presented in Equation (7), rearranged to a more convenient form. 

(7) 

where k = J.LVrez/li. In a field free space, i.e., U(r) = 0, the most general solution 

of this equation is a plane wave, i.e., 

(8) 

Thus, we would expect that the asymptotic behavior of the wavefunction of 

Equation (7) would be an incoming plane wave coupled with an outgoing radial 
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wave centered on the origin with an amplitude that varies with angle. The total 

wavefunction can then be represented: 

r--+ oo (9) 

where f(8) is called the scattering amplitude, and the r- 1 factor accounts for 

the necessary r- 2 decrease in intensity with increasing r to conserve flux. The 

particle flux density of the incoming wave is 

(10) 

and similarly the particle flux density of the scattered wave is 

(11) 

Now, since the differential cross section is defined as in Equation (4) of Section 

1.2.1, the quantum mechanical differential cross section becomes 

da = l/(8)12. 
dw 

(12) 

Thus, to obtain the differential cross section we need only solve Equation (7) for 

the scattering amplitude. 

This task is not as formidable as it would seem since Equation (7) is a one 

particle, central force problem (somewhat analogous to the well documented one 

electron atom problem). In the central force problem it is useful to separate 

the wavefunction into its radial and angular parts. Beginning with the incoming 

plane wave, the wavefunction can be written, 

'llp(r, 8) = R(r)E>(8) , (13) 
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where the 0(0) are the Legendre polynomials, Pz(cosO), and R(r) is a solution of 

(14) 

Solutions to Equation (14) are called the spherical Bessel functions, Jz(kr). The 

asymptotic value of the spherical Bessel functions is found by neglecting terms 

which vanish more rapidly than r- 1 , and is found to be: 

(k ) 
sin(kr- l1r /2) 

Jl r - kr ' r-oo. (15) 

Now, combining R(r) and 0(0) we have 

Wp,l(r, 0) = JzPz(cosO), (16) 

and in general 
00 

'Ifp(r, 8) = eik-r = L ClJz(kr)Pz(cosO). (17) 
l=O 

The cz are constants whose values can be found by multiplying both sides of 

Equation (17) by Pz ( cosO)dcosO and integrating. The ez are found to be equal to 

(2l + 1)i1, and therefore 

00 

Wp(r,O) = L(2l + 1)i1Jz(kr)Pz(cos8). (18) 
l=O 

A similar solution can be found for Equation (9) using the same means. Since 

the potential is dependent only on r, the angular function is once again equal to 

the Legendre polynomials. At large r, the potential vanishes and the solution of 

the radial equation must be similar to the Bessel functions. In particular, the 

radial part of the total wavefunction is 

Rz(kr) _ sin(kr- l1r /2 + m), 
kr 

r-oo (19) 
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where the 'r/l are called the phase shifts (for obvious reasons). Thus, the partial 

wave expansions of 'if P and 'if P +'if 8 can be substituted into Equation (9) to solve 

for f(O) . The scattering amplitude is then found to be 

1 00 

f(O) = -. L(2l + 1)(e2 i'7z - 1)P1(cosO). 
2zk l=O 

(20) 

The differential cross section resulting from a given potential is then completely 

determined by k and the rJI. The rJl are determined by solving the radial equation 

for each value of l. For the systems of interest here, several hundred rJl contribute 

significantly to the differential cross section and solving the radial equation for all 

those values of l would be very time consuming. In order to increase computing 

efficiency, the phase shifts are usually calculated using the semi-classical JWKB 

approximation. 23 Phase shifts calculated in this manner have been found to be 

accurate for most systems to wit,h.in about 0.1 %. 24 

Having determined the phase shifts, let us turn our attention to the 

qualitative aspects of the semi-classical scattering in the vicinity of the rainbow. 

As in the classical case, the intensity measured at some angles results from several 

values of l (b in the classical treatment) and is therefore related to the sum of 

the scattering amplitudes for all contributing values of lin equation (20). Figure 

3 shows the relationship between x, rJ and l for the argon-methane potential of 

Chapter 2. It can be seen from Figure 3 that for lxl < lxrl, three values of l 

contribute to the intensity at (), i.e ., 

f(O) = !a(O) + /b(O) + !c(B). (21) 
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100 
l ~ kb 

Figure 3. The phase shifts, 71, resulting from the argon-methane potential of 

Chapter 2 and a collision energy of 400 K are shown as a function of the 

angular momentum quantum number, l. The semi-classical deflection function, 

x, calculated from TJ(l) is also shown to illustrate that several values of l can 

contribute to the scattering amplitude at an angle fJ = lXI· 
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The differential cross section, however, is equal to lf(O) 12 and thus there are cross 

(or interference) terms in the differential cross section. 

By using the stationary phase approximation 5 to solve for the scattering 

amplitudes, it can be shown that 

~ (0) ~ (0) ~ !_ ( 211'lr) 1/2 Ai(x) iSr 
Jb + Jc k . 1/3 e ' smx q 

(22) 

where Ai(x) is the Airy function, 25 x = (x- Xr)q- 113 , q = (82x/Bl 2 )z=lr, 

and Dr = 2TJr + lrx- 371'/4. The Airy function has the effect of producing a 

broad oscillatory behavior in the differential cross section. The maxima of the 

oscillations are called the "rainbow maxima." The actual rainbow angle is the 

outermost inflection point in the Airy function, occuring just beyond the first 

or "primary rainbow maximum." The maxima at lower angles are called the 

"supernumerary rainbow maxima." These features are strongly correlated to the 

attractive region of the potential and can provide information about the well 

depth, shape and to some extent the range of the potential. 

When the contribution from fa(O) is taken into account it is found that a 

higher frequency oscillation is superimposed on the rainbow structure. These 

rapid or diffraction oscillations have a period4 

(23) 

Since the impact parameters, b, are related to the radius of the potential, the 

period of the oscillations is inversely proportional to the diameter of interaction. 

Thus, experimentally observed quantum oscillations and rainbow maxima 

are so sensitive to the potential that the differential cross section can be inverted 



- 18 -

to determine the potential. 26 - 28 Although we resolved those features in most of 

our differential cross sections, we could not use inversion procedures as they are 

only applicable to spherically symmetric potentials. 28 However, those features 

remain sensitive tools for elucidating the potential surface. 

1.2.3 Anisotropic Potentials 

For intermolecular potentials which depend not only on the intermolecular 

separation but also on the relative orientation of the molecules, such as those 

examined in Chapters 2 and 3 of this thesis, the problem of calculating cross 

sections is inherently more complicated. The potential is no longer only a 

function of internuclear separation, but also a function of the orientation of the 

molecules. In addition, those collisions which induce a transfer of energy to (or 

from) the internal modes of the molecule must be considered. To completely 

elucidate the potential energy surface, one would normally need to measure 

state-to-state differential cross sections for inelastic scattering. 29 Even with 

this detailed information, elaborate computer intensive calculations are required 

to determine the potential. Fortunately, approximate techniques have been 

developed which allow analysis of the total differential cross section (elastic plus 

inelastic) which is determined in the same manner as the elastic differential cross 

sections discussed in the previous sections. The most common of these techniques 

is the infinite order sudden approximation which we have used to analyze the rare 

gas-halogen potentials of Chapter 3. The infinite order sudden approximation 

will be breifly outlined in the following paragraphs. The reader is referred to 

several excellent articles 13 ,30 and texts4 ' 5 '31 for more detailed information. 
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Consider the scattering of a closed shell atom, A, by a diatomic molecule, 

BC, as shown in Figure 4. To completely describe the scattering we must solve 

the Schrodinger equation, 

{ 
-h2 d2 £2 } 

E'I!= -d
2
r+--

2
+HBc+U(r,R,"f) 'I!, 

2p,r r 2p,r 
(24) 

where L is the angular momentum operator of the atom relative to the diatomic, 

U(r, R, 1) is the orientation dependent potential energy function with the 

coordinates described as in Figure 4, and HBc is the Hamiltonian of the isolated 

diatomic molecule, 

(25) 

where J is the molecular orbital angular momentum operator. In this 

approximation, we simplify the Hamiltonian, by replacing the angular momentum 

operators with their eigenvalue forms, i.e., L 2 = h2 l(l + 1) and J 2 = h 2
)(] + 1) 

where r, J denote an average quantum number of the initial and final states. 

The substitution of the eigenvalue form of L into equation (24) is known as 

the centrifugal sudden approximation. It is expected to be a valid approximation 

when the relative kinetic energy is sufficiently large that the precise value of 

the centrifugal potential is unimportant. If the scattering is dominated by the 

repulsive "hard wall" of the potential, then the classical turning point (where 

the relative kinetic energy is a minimum) is virtually independent of the value 

of l and the above condition is satisfied. Kouri et al. 32 have determined a useful 

energy criterion for sufficiency of the approximation. The criterion is that the 

relative kinetic energy for both the initial and inelastically scattered particles 
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,--
1 

@- - - - - -r- - - - - - L - Center-of-Mass 
ofBC 

Figure 4. Pictorial representation of the coordinates of an atom-diatom 

interaction. R is bond length of the molecule BC, r is the distance between 

A and the center-of-mass of BC, and I is the relative orientation angle between 

ii and r. 
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be greater than the well depth of the potential. This condition assures that 

there is no scattering from a centrifugal barrier in either the entrance or exit 

channels (the classical turning point varies rapidly with l for scattering from the 

centrifugal barrier). 

The substitution of the eigenvalue form of J in Equation (25) is known as the 

energy sudden approximation. The energy sudden approximation is considered 

valid when the relative velocity of the atom with respect to the molecule is much 

greater than the velocity of the atoms within the molecule, e.g., the rotational 

velocity. The validity constraint has actually been quantified by Top and Kouri33 

who found the approximation good if 

(
2p,Be) 1/2 IUU + 1)]1/2- [i'U' + 1)Jli2J 
11-Bc [2E- BeUU + 1) + i'U' + 1))]I/2 < 

1 
' 

(26) 

where Be is the rotational constant of the diatomic. It is evident from Equation 

(24) that this approximation is more useful for light atoms (small p,) scattered 

by heavy molecules (large /1-bc) with small rotational constants. 

When both the energy sudden and the centrifugal sudden approximation 

are used together, the resulting analysis is called the infinite order sudden 

(IOS) approximation. The name "infinite order" derives from the fact that 

the equations that result from the IOS approximation include the effects of all 

terms of the potential to all orders, i.e., no approximation has been made to 

the potential. The end result of using these approximations is that all of the 

operators that depend on the angle 'Y have been removed and 'Y only appears in 

Equation (24) as a parameter. If we also pick l to be the initial value, which 
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accounts well for the large elastic contribution, then Equation (24) can be solved 

for fixed 1 with the resulting scattering amplitudes projected for all I · Using 

these approximations the total differential cross section can be shown to be 

111 I(v' +- v,O) =- I(v' +- v,1,0)dcos1, 
2 -1 

(27) 

where I(v' +- v,1,0) is the just the differential cross section for vibrationally 

inelastic scattering from an isotropic potential. If, as in the experiments in 

Chapter 3, the relative kinetic energy is insufficient to "open" the vibrational 

excitation channels, the diatomic molecule can be approximated as a rigid rotor 

and Equation (27) reduces to 

111 1(0) = - I(T, O)dcos1. 
2 -1 

(28) 

Thus, the total differential cross section can be determined by calculating the 

differential cross section for an isotropic potential at fixed 1 and performing a 

numerical integration over all values of I · 

1.3 The Crossed Beams Apparatus 

In order to perform elastic scattering exeriments, it is necessary to have: 

1) a means of producing a collision between two particles with a well defined 

initial relative velocity, Vrel = iJ1 - iJ2 (see Figure 1 in Section 1.2.1), 

2) a means of determining the angular distribution of the scattered molecules 

and of differentiating between the two molecules when detected, and 

3) a means of assuring that there will be no collisions with other atoms or 

molecules after the collision of interest. 
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These requirements can be fulfilled by having: 

1) two well collimated molecular beams whose dimensions and speed 

distributions are well characterized, 

2) a detector which rotates with respect to the molecular beams and 

incorporates a mass filtering device, and 

3) the beam sources, collision region and detector within a vacuum enclosure. 

One versatile implementation which accounts for the criterion listed above is 

the universal crossed beams apparatus of Lee et al. 34 We have constructed a 

high resolution version of that apparatus which is nearly identical to the version 

described extensively by Sparks. 35 Essentially, the apparatus as shown in Figure 

5 consists of two supersonic beam sources which are fixed in orientation relative 

to the main vacuum chamber, and a quadrupole mass spectrometer detector 

which rotates about the intersection point of the two beams (these two facets 

will be described in turn in the following paragraphs). 

The supersonic molecular beams36 are formed by the expansion of high 

pressure gas from a stagnation region through a small (,...,. 75JLm) aperture into a 

vacuum chamber. During the expansion, the gas is adiabatically cooled to very 

low temperatures (~ 10 K) with the heat being converted into directional flow. 

The speed of the directional flow is 

(29) 

where m is the mass of the gas, Cp is its constant pressure heat capacity, Ti is 

the temperature of the gas within the stagnation region and Tf the temperature 

of 
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Figure 5. Cross section through the universal crossed beams apparatus. 
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the molecules within the beam. For a rare gas beam, Cp = SR/2 and Equation 

( 29) reduces to 

_ (SR(Ti- TJ)) 
112 

Vss-
m 

(30) 

The distribution of speeds about the flow speed in the beam is described well 

by the Maxwell distribution for the temperature T1. Thus the speed distribution 

of the beam is found to be 

(31) 

where {3 = m/2RT,. The quantity, s = v88{3 112 , is a dimensionless number 

known as the speed ratio (of the flow velocity to average relative velocity in the 

flow). Typical speed ratios range from about 7 for neat beams of polyatomics 

to 20 or more for rare gases. The flow velocity and speed ratio of the beams 

are determined experimentally using the time-of-flight (TOF) technique. In this 

technique, a rotating wheel with a narrow slit is placed in front of the detector. As 

the slit passes the detector aperture, a sample of the beam is allowed to pass into 

the detector opening and the time profile of the sample is detected downstream. 

The time distribution can then be converted to a speed distribution using the 

proper Jacobian, ldvjdtl = (v 2 /L) (Lis the flight length) and the parameters 

of Equation (31) determined by a least squares fit. The program used to fit the 

distributions along with a much more detailed account of the TOF technique 

have been presented elsewhere. 37 

An interesting aspect of Equation (30) is that by varying the beam source 

stagnation temperature, one can adjust the velocity of the beams and select 
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the relative kinetic energy of the encounter. We have taken advantage of this 

relationship by employing liquid nitrogen cooled beam sources to: 

1) displace the rainbow to higher angles and increase the period of the 

diffraction oscillations by lowering the collision energy, and 

2) record differential cross sections at several energies thereby increasing the 

uniqueness of the derived potential. 

The temperature of the stagnation region was controlled to ± .5°C by a 

thermocouple temperature controller coupled to resistive heaters clamped to the 

bottom of the copper block which defined the stagnation region. A cross section 

of the beam source is shown in Figure 6. By varying the composition or length of 

the threaded rods, any desired thermal conductance can be realized. This makes 

the beam source operable from 77 K to above 300 K. 

The direction of the beams is predetermined by aligning the beam source 

apertures along axes defined by scribe marks on the main vacuum chamber. 

These scribe marks are located on the beam ports which have been precision 

machined such that the beam axes are perpendicular and intersect each other 

within 75 J.Lm. The beams are spatially defined by a skimmer as they pass into 

a differential pumping region and then by a rectangular collimating aperture as 

they enter the scattering chamber. The intersection of the two beams defines 

a parallelepiped whose sides are typically about 2 to 4 mm. The scattering 

chamber is kept at < 10-7 torr (1 torr = 1 mm Hg) at which pressure collisions 

with moleucles other than those in the other beam are infrequent (the mean free 

path for air at this pressure at room temperature is approximately 3 km). 



Gas Inlet 

Beam Source 
Chamber 
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Differential 
Chamber 

lin 

Figure 6. Cross section of the liquid nitrogen cooled, temperature controlled 

beam source. Cooling is provided by a liquid nitrogen reservoir in the upper 

copper block. The beam stagnation region is cooled by thermal conductance 

through the threaded rods. A temperature controller monitors the stagnation 

temperature via a thermocouple and regulates the temperature by controlling the 

current through the resistive heaters clamped to the bottom of the stagnation 
region. 
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Thus, we have accounted for the first and third conditions presented 

originally and now we turn our attention to the rotatable detector. The detector 

chamber rests on a large diameter (35 inch) bearing and is rotatable using a 

chain and sprocket assembly. The angular positioning is repeatable to less than 

5 minutes. The bearing is mounted in a precision machined diameter on the 

main vacuum chamber. That diameter is parallel to the plane defined by the 

two beams and its axis intersects the two beam axes within 75 p,m. The detector 

vacuum housing consists of three ultra high vacuum (UHV) chambers (I, II and 

III in Figure 5) which provide the necessary low pressure conditions required for 

particle detection. The construction process and the geometries of these three 

chambers have been significantly altered from the original design of Sparks35 to 

increase the pumping speed in regions I and II and to obviate the necessity of 

purchasing special order ion pumps. In the present design the three Perkin-Elmer 

220 ls- 1 ion pumps can fit directly over their respective regions significantly 

increasing their effective pumping speed in the aperture region. The same care 

was used in selecting only UHV compatible materials as was espoused by Sparks, 

but to avoid the need for vacuum brazing, we used some external welds. 

A schematic of the detection system is shown in Figure 7. It consists of an 

electron impact ionizer, a quadrupole mass spectrometer and an ion detector. 

The ionizer, based on the design by Brink38 consists of a tho ria ted tungsten 

filament between an electron reflecting shield and a cylindrical grid held at a 

positive voltage (200 V). The electrons emitted by the filament (2 to 8 rnA) are 

accelerated into the volume defined by the grid where they oscillate many times 
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Figure 7. Schematic of the universal particle detection system as described in 

the text. Modulation.signals from the 150Hz tuning fork chopper are processed 

by the timing-gating module which uses the processed signal to alternately gate 

the two CAMAC scalers. 
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before striking the grid and being collected. The grid itself would normally have 

been taken from an electron tube, however, with the passing of the "electron tube 

era" it was impossible to find a suitable grid and one had to be constructed. The 

ionizer is situated such that the product beam passes through the ionizer and 

the electric field of the electrons. A small fraction of the beam is ionized and 

the ions drawn out of the ionizer by an extracting lens located downstream. The 

ions are accelerated by the potential difference between the grid (which floats 

at +70 V above ground) and the differential vacuum chamber wall and are then 

focused before entering the Extranuclear Laboratories quadrupole mass filter. 

The quadrupole ejects all ions except those with the selected mass-to-charge 

ratio leaving only the species of interest. Upon leaving the quadrupole, the ions 

are once again focused and pass into the Daly type ion detector. 39 In the ion 

detector, the ions are accelerated transverse to the beam axis by an aluminum 

coated electrode held at -27 kV. As the ions strike the electrode they eject 6 

to 8 electons which are accelerated in the -27 kV field and strike an aluminum 

coated plastic scintillator (the aluminum coating reduces stray light and prevents 

sublimation of the scintillator material while still transmitting the electrons and 

providing electrical conductivity) . The scintillator produces 3 to 6 photons per 

incident electron and the photons are detected by an external photomultiplier. 

Pulses from the photomultiplier are then discriminated to eliminate the single 

photon event (from stray light and dark current) before being counted. The 

actual counting procedure and hardware will be discussed in the next section. 
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1.4 Experimental Method and Analysis 

Now that both the theoretical aspects of elastic (and inelastic) scattering 

and the apparatus used to measure scattering intensities have been discussed, 

all that remains is the actual measurement of the laboratory differential cross 

section and its use to determine the intermolecular potential. In this section 

the method of measurement is reported (Subsection 1.4.1) and the procedure for 

determination of the potential from the laboratory differential cross section is 

examined (Subsection 1.4.2). 

1.4.1 Determination of Laboratory Angular Distributions 

The measurement of the laboratory angular distribution involves many 

factors. For instance, at each collision energy: 

1) the speed distribution of each beam must be determined and optimized, 

2) the directional quality of each beam must be verified, 

3) the angular distribution is measured while accounting for any possible drift 

in detection sensitivity, and also for any angle dependent background, and 

4) some estimation of the uncertainty in each data point must be made. 

The determination of the magnitude of the beam velocities and the 

distribution of those velocities was done using the time-of-flight technique 

discussed in the previous section. An attempt was made to optimize the beam 

velocity distributions, i.e., make them narrower, by increasing the stagnation 

pressure of the precursor gas. Two factors limited the ultimate distribution that 

could be achieved. At some pressure, Ptp, the throughput of the nozzle would 

become so great that the beam source chamber vacuum pumps would "choke," of 
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course this effect could be eliminated by going to a smaller beam orifice diameter, 

but since the throughput is proportinal to d~rificeP2 
,
40 a fractional change, ~' 

in the orifice diameter would have to be followed by a x2 increase in pressure to 

maintain the same throughput and, to a first approximation, the beam intensity. 

Since we wanted to operate the low temperature nozzles close to the condensation 

point of methane (at 1 atmosphere), high pressures were not desirable, and since 

we wanted to maintain maximum throughput, the nozzles were constructed with 

75 p,m orifices that could not be varied. The second limiting factor was a necessity 

to minimize cluster formation in the beam expansion. The presence of clusters in 

the beam is undesirable since it will degrade the measured angular distributions. 

The stagnation pressure was adjusted upward until at some pressure, Pc, the 

dimer signal was .25% of the monomer signal. The final pressure used was just 

the lesser of Ptp and Pc. 

The directional quality of the beams was verified by scanning through the 

beams with a small pinhole placed in front of the detector. Each beam was 

found to be within a quarter of a degree of its nominal position. In addition, 

the assumed beam velocities (both magnitude and direction) were checked by 

measuring the laboratory scattering distribution for neon-methane on either side 

of the primary beam and transforming those distributions to the center-of-mass, 

using the assumed velocities, and comparing the results. The two differential 

cross sections are shown in Figure 8 and can be seen to be equivalent within the 

accuracy of the measurement. By this method, it can be postulated that the 
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Ne-CH4 

637 K 

t t 

10°~----~----~----~----~----~--~ 
10 12 14 16 18 

lol 
Figure 8. Center-of-mass differential cross sections measured at -0 (-) and (} ( o). 

The error bars represent the sum of the estimated errors in both measurements. 

The cross sections have been scaled by the isinOI to enhance the diffraction 

oscillations. 
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cumulative error in the laboratory to center-of-mass transformation is less than 

a quarter of a degree (the distance between successive points). 

The scattered intensity at any given angle was measured by detecting 

the total counts at that angle for a given period of time and subtracting the 

background counts (by blocking the target beam) for an equal amount of time. 

This was done automatically by modulating the target beam at 150 Hz with 

a tuning fork chopper. When the chopper blocked the beam, only ambient 

background from the primary beam source was detected, and when the chopper 

swung out of the beam, both background and the scattered signal could be 

detected. This technique allows the background counts to be unambiguously 

subtracted out of the total counts leaving only the scattered signal. The total 

counts for each of these two channels (opened and closed) were accumulated by 

two CAMAC scalars which were gated synchronously to the tuning fork chopper. 

The CAMAC modules were interfaced to a laboratory microcomputer which read 

the data from the scalers and performed all manipulations on the raw data. 

To obtain an angular distribution, a reference angle was selected (usually 

10°) and then the other angles were scanned while periodically returning to the 

reference angle. The intermediate angles were then normalized to the reference 

angles and scaled to reflect any drift in the reference intensity. While this may 

seem like a crude method for accounting for changes in the beam intensities 

or detector sensitivies, etc., there was no obvious method which was any less 

ambiguous for accounting for the drift. In normal operation, the reference 

intensity drifted by only small amounts (1-2%) and the approximation was 
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probably adequate. Each angle was measured several ( 4 to 8) times and any 

anomolously low or high values were investigated. The values for each angle 

were then averaged with the averaged values being those used in Chapters 2 and 

3. 

The estimated uncertainties in the averaged values were calculated in two 

ways. When counting large numbers of pulses , the theoretical standard deviation 

of the final number counted is the square root of that number. Since each 

datum was determined by the difference between two large numbers of counts, 

the standard deviation of each datum is expected to be the square root of the 

sum of the two large numbers. By this method, if a datum is determined n times 

at a given angle then 

n 
(32) 

Standard deviations were estimated in this manner for both the rare gas-methane 

scattering of Chapter 2 and the rare gas-chlorine scattering of Chapter 3. 

However, for the rare gas-chlorine studies, the confidence limit for replicate 

measurements41 was also calculated. The two estimated uncertainties were 

compared and the larger of the two was used for that datum. For laboratory 

angles less than 5o from the primary beam, the method of Pack et al. 42 was used 

to estimate the error bars. 

1.4.2 Data Analysis 

The procedure used to fit the data was an iterative "trial and error" fitting 

method. In this method, an analytical form of the potential is chosen and its 
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parameters adjusted until the laboratory scattering distribution predicted by 

the potential are in good agreement with the experimental data. To predict 

the laboratory scattering distribution, it is necessary to calculate the center-of-

mass differential cross section as in Section 1.2.2 then transform that data to 

the laboratory frame while accounting for the finite resolution of the apparatus. 

A computer program,37 supplied by Professor Yuan Lee while at Caltech as a 

Fairchild Scholar, was used as the basis for the code we would eventually use 

to perform these calculations. Many errors and inefficiencies were detected in 

the original code which we have corrected in the present version. Some of the 

improvements we have made will be discussed where appropriate. The remainder 

of this section outlines the basic procedures used in the calculation of laboratory 

scattering distributions. 

The number of primary beam particles scattered into an element of 

laboratory solid angle, dO, at center-of-mass angle, () , per unit time is just the 

product of the average number of target molecules in some collision volume, 

V, the flux of the primary beam, the center-of-mass differential cross section, 

and the proper Jacobian for the center-of-mass to laboratory transformation. In 

equation form this amounts to 

(33) 

where E> is the laboratory angle corresponding to (), ni is the number density of 

beam i, and I~~ I is the Jacobian. It can be shown43 that the Jacobian for elastic 

scattering is just 

~ (v')2 J-1-1-1 1 I - dO - (ui)2cos8 ' 
(34) 
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where v~, u~, and 8 are defined as in Figure 1 in Section 1.2.1. 

However, since the differential cross section is a function of the center-of-

mass energy, it is also a function of the velocities of both beams and their collision 

angle. To account for the spread in beam velocities and the finite resolution of 

the apparatus we must integrate equation (33) over all possible beam velocities, 

the volume of the collision region and the solid angle sub tended by the detector. 

Equation (33) then becomes 

1(0) = f f f f f f n 1 (vl)n2 (v2)IV1 - v2l ~ (0, E)J dO dx dy dz dv2 dv1. 1 v1 J v2 1 z 1 y J z J nd . 

(35) 

The multiple integral of Equation (35) may seen formidable, but numerical 

methods have been developed which greatly simplify the calculation.44 For 

instance, the integration over the velocity spreads of both beams can be done 

using the assumed velocity distribution of the beams (Equation 31 in Section 1.3) 

and some sort of numerical integration. Because of the e-(v-vo)
2 

dependence of 

the velocity distribution, Gauss-Hermite integration is particularly well suited 

for this problem. The Gauss-Hermite formula is25 

(36) 

where Xi is the ith zero of the Hermite polynomial of degree n, and Wi is the 

weighting factor associated with Xi. The number of the quadrature points, n, 

that are used depends on the behavior of the function, f(x), and the accuracy 

desired. 



- 40-

The collision volume integral is performed in a similar fashion. The first step 

is to assume a number density distribution across the beam width and height. 

Since our beams have been collimated to have very small angular divergence, 

we assume a uniform distribution across their widths and heights. The collision 

volume integral can then be reduced to a weighted sum over discrete values as in 

Equation (36), but because there is no exponential dependence, Gauss-Legendre 

integration is used. The Gauss-Legendre formula is25 

rb b n 

Jn f(y)dy = ~a L wd(yi) ' 
a i=l 

(37) 

where 2yi = (b- a)xi + (b +a), Xi is the ith zero of the Legendre polynomial of 

degree n, and Wi is the weighting factor associated with Xi. 

The integration over the solid angle subtended by the detector is also 

performed using Gauss-Legendre numerical integration with the detector 

acceptance function assumed to be constant. The inclusion of this integration 

scheme was a major improvement over the Simpson's Rule integration routine 

that was originally in the Berkeley code.37 For a calculation using only apparatus 

averaging in the plane defined by the two beams, Gaussian integration with three 

quadrature points reduced the computation time by a factor of three over the 

original code while achieving equivalent results. Using less than three quadrature 

points led to erroneous results. 

Incorporating all three of these numerical integration routines reduces the 

integrals of Equation (35) to the sum of sums expressed in Equation (38), 

I( vi) J(v2 ) K(z) L(y) M(z) N(Oct) d 

1(0)= L L L L L L WijklmniVi-Vjj~(Vi,V,·,O)J, (38) 
i=l f=l k=l l=l m=l n=l 
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where Wijklmn is the product of all the individual weights from the various 

integrations and also includes f(xi) and f(x;) from Equation (36). The integrals 

have thus been replaced by a sum over I x J x K x L x M x N center-of-mass 

differential cross sections. In practice, we have found the laboratory scattering 

to be relatively insensitive to any integration over the "out of plane" beam 

(K(z) = 1) or the detector height (N(Od) = N(E>d)). Also, for the experiments 

in this report, the primary beam was so narrow that no integration was required 

over its width (M(x) = 1)). The effect of the summation in Equation (38) is best 

demonstrated by comparing I( 8) for I = J = K = L = M = N = 1 and for 

a reasonable amount of velocity, collision volume and detector averaging. Two 

laboratory differential cross sections calculated in this manner from the same 

potential are compared in Figure 9. 

Modeling the experimental laboratory scattering intensity has thus been 

found to be a tractable problem, but it is still necessary to determine the 

parameters of the potential which produce the best fit to the measured scattering 

intensity. This was done using an iterative routine which adjusted the parameters 
' 

of the potential until the overall dimensionless root mean square deviation was 

minimized. The overall dimensionless rms deviation as defined by Pack et al.42 

lS 

s = [~ t s;] 1/2 ' 

]=1 

(39) 
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ANGLE <DEGREES) 

Ne-CH4 

375 K 

50 

Figure 9. Laboratory scattering intensities as a function of laboratory angle. 

The o are experimental values,--- indicates the calculated intensity for infinite 

resolution, and - indicates the intensity calculated from the same potential but 

accounting for finite resolution. 
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where n is the number of data sets (collision energies and bulk properties), and 

8j is the dimensionless rms deviation for the Ph experiment. 8J is defined as 

n · 
2 1 ~ -2( )2 8i = ~ L- tl.ii Pji - Pii , 

1 i=l 

(40) 

where ni is the number of data points for the jth experiment, tl.ji is the 

experimental uncertainty at the ith datum, and Pji and Pii are the calculated 

and experimental values of the ith datum. The minimization routine was started 

with several sets of initial parameters to assure the uniqueness ofthe determined 

potential. 

With these methods, based on the theory and apparatus described in 

previous sections, we have measured laboratory scattering intensities as a 

function of angle and collision energy for several atom-molecule systems. In 

the next chapter, an isotropic approximation has been used to model the 

pseudo-spherical interactions of methane with neon and argon, and in the final 

chapter the infinite order sudden approximation has been utilized to determine 

anisotropic interaction potentials for chlorine with helium and neon. 
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Abstract 

Total differential cross sections have been measured at three collision energies 

each for N e-CH4 and Ar-CH4 using the crossed molecular beams technique. The 

differential cross sections were used along with literature viscosity and second 

virial coefficient data to determine reliable isotropic interaction potentials. The 

Ne-CH4 potential has a well depth of 66 ± 4 K and an intermolecular separation 

of 3.68 ± .02 A at the minimum while the Ar-CH4 potential has a well depth of 

170 ± 8 K and an intermolecular separation of 3.85 ± .04 A at the minimum. The 

Ne-CH4 is significantly different from the spherical part of the potential proposed 

by Buck et al. The well depth of that potential is about 16% shallower and the 

intermolecular separation about 4% larger than in our potential. Their potential 

does not reproduce our total differential cross sections within reasonable uncertainty 

limits. 

* Contribution # 7223 
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2.1 Introduction 

Techniques for determining interatomic potentials from elastic scattering of 

crossed molecular beams are well developed and many such potentials have 

been reported. 1 However, applications of atom-atom potentials are somewhat 

limited and attention has been shifted towards the determination of atom-molecule 

and molecule-molecule potentials. These potentials and their determination are 

considerably more complicated because the potential depends not only on the 

internuclear distance but also on the orientation of the molecules. Exact quantum 

mechanical scattering calculations on complex anisotropic systems are not as yet 

practical, and common approximate techniques such as the infinite order sudden 

approximation are only valid under restricted circumstances . For those molecules 

for which approximate methods are not well developed, effective isotropic potentials 

can be determined using the same procedures successfully applied to atom-atom 

scattering. 2 This spherical approximation is particularly appealing when applied to 

pseudo-spherical molecules such as methane. 

Recently, studies on anisotropic potentials for . argon and krypton with SF 63 

and for several atom-diatom systems4 have shown that total differential cross 

sections (DCS) and bulk properties, such as viscosities and interaction second virial 

coefficients, for these systems can be reproduced by the spherical limit of the true 

anisotropic potential but not as well by the spherical average of that potential. 5 

This implies that a spherical potential fit to an anisotropic system would be closely 

related to the spherical limit of the true potential. In addition, the work of Buck et 

al. indicates that for argon-methane6 and helium-methane 1 the difference between 
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the effective isotropic potential and the spherical average of the anisotropic potential 

is not significant enough to preclude the use of the isotropic potential as a good first 

approximation to the spherical average for those systems. These results indicate 

that the use of a spherical approximation to determine isotropic intermolecular 

potentials for methane with neon and argon could be quite successful. These 

potentials would be particularly useful to theoreticians attempting to model inter­

and intramolecular interactions of larger molecules containing methyl groups and 

atomic8 or molecular9 species that can be modeled by neon and argon. 

In the present study, we have measured total DCS's at three collision energies 

for methane scattered from neon, argon and methane. The DCS's for all 

three collision energies were then used along with viscosity 10 and second virial 

coefficient 11 data to determine the parameters of a Morse-Morse-spline-van der 

Waals (MMSV) potential for each interacting pair. In addition, each individual 

collision energy was fit along with the bulk data to determine reasonable bounds 

on the potential fit to all three energies. Details of the methane-methane potential 

determination have been presented elsewhere. 12 

The use of DCS's measured at three collision energ1es should produce a 

more accurate potential for two reasons. First, data from the different collision 

energies are sensitive to somewhat different areas of the potential energy surface 

and therefore are complimentary in the determination of that surface. This is 

particularly useful for these anisotropic systems where sensitivity to different areas 

of the potential surface can help to determine the effect of anisotropy on the DCS 's. 
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Second, the use of several data sets minimizes the effects of uncertainties in the 

determination of the instrumental parameters. 

2.2 Experimental 

The crossed molecular beams apparatus used in this experiment is nearly 

identical to the high resolution version 12 of the standard design of Lee et al. 13 In 

the apparatus, two supersonic molecular beams are crossed at 90° and scattered 

molecules are detected using a quadrupole mass spectrometer with an electron 

impact ionizer. The detector, with a 1 o aperture, rotates in the plane defined by 

the two beams. Detector aperture dimensions and beam dimensions are described 

in Figure 1. Methane beams (primary beams) were scattered off target beams 

of neon and argon (secondary beams) and the intensity of the scattered methane 

was detected as a function of angle measured with respect to the primary beam. 

Laboratory scattering distributions were measured at three collision energies each 

for the neon-methane and argon-methane systems. 

The collision energy was altered by adjusting the flow velocity of the molecular 

beams. This was accomplished by varying the temperature of the gas in the 

stagnation region of the beam source. Room temperature beams were produced 

by expansion of the pure gases through quartz nozzles, while lower temperatures 

were achieved using the liquid nitrogen cooled, temperature controlled beam sources 

described in Chapter 1. All beam sources had .075 mm diameter orifices and were 

doubly differentially pumped. Velocity distributions of the beams were measured 
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Figure 1. Schematic showing the geometry of the molecular beams apparatus 

used in the DCS measurements. Dimensions shown are in centimeters. The 

primary beam collimating slit is 0.38 mm wide (in plane) and 0.89 mm high (out 

of plane). The secondary beam collimating slit is 1.0 mm wide and 2.0 mm high. 

All of the detector aperatures are 4.0 mm square. 
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using time-of-flight techniques. The distributions were then fit to the functional 

form, 

(1) 

to determine the best values of s, the speed ratio, and vo, the flow velocity. 

Convenient beam source temperatures were selected and then gas pressures in the 

stagnation region were varied to maximize beam intensities while maintaining the 

signal of van der Waals dimers at less than .25% of the monomer signal. Beam source 

temperatures, stagnation pressures, velocities and speed ratios for each collision pair 

and each collision energy are shown in Tables 1 and 2. Laboratory angles of the 

beams were verified by scanning through the beams with a .150 mm aperture placed 

in front of the detector. Center of mass scattering distributions on either side of 

0° were also compared for the low temperature, well resolved neon-methane data 

(see Figure 8, Chapter 1). All beams were found to be within±~ o of their nominal 

positons . 

Intensity distributions of the scattered methane were obtained by repeated 

scans through the angles reported while periodically returning to a fixed reference 

angle (usually 10°) to account for long term drift in operating conditions. The 

secondary beam was modulated with a 150 Hz tuning fork chopper to account for 

background from the primary beam source. Data was collected by high speed 

pulse counters which were gated synchronously with the tuning fork chopper. 

The counters were interfaced with a laboratory minicomputer which performed 

background subtraction and data averaging. Total counting times ranged from six 

minutes at small angles to seventeen minutes at large angles. The measured 
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Table 1: Beam source characteristics for neon-methane at three collision energies. 

collision energy 
characteristics 1010 K 637 K 375 K 

gas CH4JJNe CH4JJNe CH4JJNe 

stagnation pressure( torr) 780JJ1530 920JJ1400 320JJ1000 

stagnation temperature(K) 303JJ303 19911199 118JJ118 

velocity(104 em/sec) 11.25JJ7.90 8.84JJ6.41 6.79JJ4.90 

speed ratio 7.6JJ20.3 9.8JJ20.1 9.4JJ17.0 

Table 2. Beam source characteristics for argon-methane at three collision energies. 

collision energy 
characteristics 1081 K 678 K 400 K 

gas CH4JJAr CH4JJAr CH4JJAr 

stagnation pressure( torr) 800JJ1430 920JJ700 320JJ600 

stagnation temperature(K) 303JJ303 199 JJ 199 118JJ118 

velocity(104 em/sec) 11.25JJ5.58 8.84JJ4.55 6.79JJ3 .50 

speed ratio 7.6JJ22.0 9.8JJ18 .5 9.4JJ15 .2 
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distributions with estimates of the corresponding uncertainties are tabulated m 

Appendix B. 

2.3 Analysis 

Although direct inversion of DCS data to yield a numerical potential is possible 

for some simple atom-atom scattering pairs, 14 the rare gas-methane DCS's are 

affected by the anisotropy of the potential and it was felt that a reliable potential 

could not be determined by inversion. Instead, to determine an effective spherical 

potential for these systems we chose to use a trial and error method. In this 

method, an analytical form for the potential is chosen and its parameters are 

estimated. Laboratory scattering intensities, viscosities, and interaction second 

virial coefficients are calculated from that potential. The calculated quantities are 

compared with the experimental results, potential parameters are changed, and 

the procedure is repeated in order to minimize the deviation of the calculated 

quantities from the experimental data. The analytical potential form, the details 

of the calculations using that form, and the fitting procedure are presented in the 

following sections. 

2.3.1 Potential 

The potential form used in these calculations is a peicewise analytical Morse­

Morse-spline-van der Waals (MMSV) function. The first Morse function is joined 

to the second at r = a, the point at which the potential crosses zero, as in the 

potential used by Keil et a/. 15 The MSV portion of the potential is like that used 
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by Siska et al.I6 Written in reduced form (x = rfrm, f(x) = U(x)je, where rm is 

the radius of the potential minimum and e its depth), the potential used is 

if x < 1- .B2Iln 2 
if 1- f32Iln 2 ~X< XI 
if XI< X< X2 

if X2 ~X 
(2) 

where w = (.BI -ln2)/(.82 -ln2), and Ci = Ci/er:n. The Ci are the long range van 

der Waals dispersion coefficients. The spline coefficients, bi, are determined by the 

constraints that the potential and its first derivative be continuous at XI and x 2 • 

2.3.2 Differential Cross Sections 

The laboratory scattering intensities were determined usmg a previously 

published computer codei7 which was modified to suit our requirements. In brief, 

the program calculates the center of mass differential cross sections using the 

standard formulae for elastic scattering. IS It then transforms them to the laboratory 

reference frame accounting for the finite resolution of the experiment by integrating 

over the velocity and angular spreads of the two molecular beams and the detector 

width. It was found that inclusion of the scattering out of the plane defined by 

the two beams produced only minor improvements in the calculated distributions, 

and thus for computing efficiency, we considered only the "in plane" scattering. 

The calculated cross sections are then scaled to minimize the sum of the squares 

of the differences between the experimental and calculated values divided by the 

experimental uncertainty. For methane scattered from neon, it was necessary to 

include contributions to the scattering intensity from both 20 Ne (91% natural 

abundance) and 22 Ne (8.8%). The computational methods for performing these 



-57-

simulations of the laboratory scattering intensities have been discussed in detail in 

Chapter 1 and will only be briefly reviewed below. 

Averaging over the velocity spreads of both beams was accomplished by using 

Gauss-Hermite quadrature. The functional form of the velocity distribution that 

was used in the quadrature scheme was already presented in Equation (1). The 

number of quadrature points varied depending on the velocity and the speed ratio 

of the beam. In general, 6 or 7 quadrature points were used for the methane beams, 

and 4 or 5 for the rare gas beams. 

The angular spread of the beams was accounted for by assuming a flat density 

distribution across the width of the beams and using Gauss-Legendre quadrature 

to sample the collision area. Three point quadrature was used across the secondary 

beam width (0.174 em in the collision region) while the narrow width of the primary 

beam (0.075 em) made the use of more than one point integration unnecessary. 

The JWKB approximation and eight point Gauss-Mehler quadrature were used 

to calculate the phase shifts for the partial wave analysis. 19 The phase shifts were 

calculated at each collision energy determined by the velocity quadrature points 

from the velocity averaging routine. Since the velocity spreads of the beams were 

in general larger than the angular spreads, the phase shifts were not recalculated at 

each collision area quadrature point. At each collision energy, 200(300) partial waves 

were used in the neon(argon)-methane calculations. It was found that calculating 

the phase shifts at only ten energies and using four point Lagrange polynomial 

interpolation to determine the phase shifts at the desired energies produced almost 

equivalent results and this procedure was used in some of the fitting . 
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Finally, the detector width averaging was accounted for by assuming a fiat 

detection sensitivity across the entire width and using Gauss-Legendre quadrature 

to integrate the intensity. Even for the highly structured neon-methane data, three 

point quadrature was found to be sufficient. 

2.3.2 Viscosities 

Mixture viscosities were calculated usmg the first order Chapman-Enskog 

approximation. 20 The necessary calculation of phase shifts, generalized cross 

sections and collision integrals were carried out following the procedures of Parker 

and Pack. 21 Specifically, phase shifts were calculated at 20 energies logarithmically 

spaced between 50 and 10,000 K. (K has been chosen as the unit of energy 

throughout this paper. By multipling by kB, the Boltzmann constant, one can 

easily convert to any unit of energy.) Below 100 K an exact quantum routine was 

used while above this energy JWKB phase shifts were employed. The maximum 

partial wave used was given by 50+12k where k is the wave number in atomic units. 

The generalized cross sections obtained at the 20 energies were used along with four 

point Lagrange interpolation and ten point Gauss-Laguerre quadrature to calculate 

the necessary collision integrals. The calculated viscosities were compared with data 

reported by Kestin and Ro at four mole fractions and five temperatures for both 

the neon and argon systems. 10 The necessary viscosities of pure methane, argon 

and neon where taken from a critical compilation of viscosities by Maitland and 

Smith. 22 The uncertainties used for the mixture data were those given by Kestin 

and Ro plus the uncertainties in the calculation introduced by the uncertainties in 

the viscosities of the pure components. 
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2.3.3 Second Virial Coefficients 

Interaction second virial coefficients (ISVC) were calculated from the reduced 

form of the intermolecular potential using the formula: 20a 

(3) 

where Bel (T) is the classical value of the ISVC, 

Bq1 (T) is the first order quantum correction to the classical ISVC, 

NA is Avagadro's constant, h is Planck's constant, p, the reduced mass, and 

x = rfrm is the reduced intermolecular distance. The analysis of these integrals 

and the sensitivity of the ISVC to the intermolecular potential are reviewed in 

great detail in Appendix A. An outline of the analysis is presented in the following 

paragraphs. 

Integration over the classical integral was performed using the method outlined 

by Pack et al.23 except that the regions over which analytical integration was 

performed were x = 0 to Xa and from x = Xb to oo, where Xa is the point at 

which U(x) ~ 1.0 x 104 K and Xb is the largest value of x such that U(x) ~ -1.0 

K. The quantum correction integral was divided into four parts. At small values 

of reduced internuclear distance (x ~ .6) the value of the integrand is typically 

fifty or more orders of magnitude less than the average value in the region of the 
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potential well and can therefore be neglected. Similarly, at large values of reduced 

internuclear distance the integrand once again approaches zero and can be neglected. 

The intermediate region is divided in two at x = 1.0 and the integral evaluated using 

ten point Gaussian integration for x < 1.0 and thirty two point Gaussian integration 

for x > 1.0. 

Experimental values for B 12 (T) for argon-methane were obtained from a 

compilation of individual data sets of other authors by Dymond and Smith. 11 The 

large discrepancies in the reported argon-methane coefficients made it necessary 

to increase the error in their estimated accuracies. Error bars used were ± 10 

cm3 /mol for T < 110 K, ± 8 cm3 /mol for 110 K~ T < 145 K, ± 6 cm3 /mol for 

145 K~ T < 400 K, and± 4 cm3 /mol forT 2: 400 K. No virial coefficient data was 

used for neon-methane. 

2.3.5 Fitting and Uncertainties 

The potential parameters were chosen as those that gave the "best" fit to 

the experimental data. This "best" fit was taken to be that which minimized the 

dimensionless mean square deviation as defined by Pack et al. 23 (see Equation 39, 

Chapter 1) . For each scattering pair, this was done simultaneously for all three 

sets of scattering data, the viscosity data and the second virial coefficient data. In 

addition, each set of scattering data was fit individually with the bulk data in order 

to determine a range for the uncertainty in the potential. 

The fit was performed by allowing all potential parameters to vary in a least 

squares fitting program with the following exceptions. The spline parameters, x1 

and x2 , were restricted so that there were no oscillations in the potential in the 
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spline region. In the argon-methane analysis, C6 and C 8 were initially chosen as 

those values used by Buck et al. 6 and only allowed to vary after the other parameters 

had been optimized. For neon-methane, the value of C6 was initially chosen as that 

of Dalgarno24 and the value of C8 was chosen such that the C8 to C6 ratio was the 

same as for argon-methane. As with argon-methane, these van der Waals coefficients 

were only allowed to vary after the other parameters had been optimized. 

2.4 Results 

The potential parameters determined from the least squares fit to the data are 

presented in Table 3 for neon-methane and Table 4 for argon-methane. In both 

tables, the parameters for the best fit to all the data (Potential A) are shown along 

with parameters for the best fit to each individual collision energy with the bulk 

property data (Potentials B-D). Potential ANe is shown in Figure 2 and Potential 

AAr is shown in Figure 3 along with estimated limits of uncertainty. The upper and 

lower bounds of the uncertainty were chosen such that for each system, Potentials 

A-D would lie completely within those limits. 

The dimensionless rms deviations of each data set for each potential along with 

the overall dimensionless rms deviation for each potential are presented in Table 

5 for neon-methane and Table 6 for argon-methane. Tables 5 and 6 also include 

those deviations calculated using the spherical potentials of Buck et al. for neon­

methane25 (Potential ENe) and argon-methane6 (Potential EAr)· From inspection 

of these tables it is clear that all of the potentials with the exception of those of 

Buck et al. reproduce the viscosity data very well. The anomalous behavior of the 

Buck et al. potentials is understandable since no viscosity data were used in their 
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Table 3. MMSV potential parameters for neon-methane overall best 
fit and best fit to each individual collision energy. Parameters are in 
reduced units unless specified otherwise. 

Pot ANe Pot BNe Pot CNe Pot DNe 

:2arameters overall 375K 637K 1010K 

E(K) 65 .9 66.4 61.9 64.9 
rm(A) 3.676 3.676 3.694 3.670 

X1 1.026 1.022 1.062 1.070 
X2 1.32 1.32 1.42 1.58 

!31 4.00 4.00 4.65 6.70 

!32 7.42 7.42 7.18 6 .50 
C6 1.228 1.219 1.270 1.260 
cs .475 .471 .487 .489 

Table 4. MMSV potential parameters for argon-methane overall best 
fit and best fit to each individual collision energy. Parameters are in 
reduced units unless specified otherwise. 

Pot AAr Pot BAr Pot CAr Pot DAr 

:2arameters overall 400K 678K 1081K 

E(K) 169.6 162.5 170.6 177.6 
rm(A) 3.850 3.815 3.815 3.815 

X1 1.05 1.04 1.05 1.07 
X2 1.59 1.77 1.42 1.52 

!31 4.15 6.75 4.30 4 .10 

!32 7.50 7.60 7.61 7.40 
C6 1.182 1.358 1.327 1.192 

cs .4456 .4305 .4831 .4690 
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Table 5. Comparison of calculated and experimental properties of neon­
methane. Rms deviations for data sets with potentials from Table 3 and 
potential of Buck et al. (Pot ENe)· 

Data Set Pot ANe Pot BNe Pot CNe Pot DNe Pot ENe 

1010K 2.01 1.88 3.46 1.30 5.29 
637K 4.44 4.68 3.94 5.53 7.62 
375K 3.71 3.55 6.88 6.78 12.0 
Vis . 0.48 0.52 0.26 0.30 5.84 
Total 3.07 3.10 4.33 4.43 8.13 

Table 6. Comparison of calculated and experimental properties of argon­
methane. Rms deviations for data sets with potentials from Table 4 and 
potential of Buck et al. (Pot EAr) · 

Data Set Pot AAr Pot BAr Pot CAr Pot DAr Pot EAr 

1081K 3.95 8.83 4.20 1.09 3.18 
678K 1.87 6.79 1.28 5.82 2.54 
400K 4.72 2.63 5.50 8.56 7.69 
Vir. 0.85 0.94 0.87 0 .80 0.90 
Vis . 0.88 0.32 0.26 0.29 1.56 
Total 2.93 5.13 3.17 4.67 3.97 
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determination, however, this does indicate a deficiency in those potentials. The 

virial data is fit well by all the potentials, but this is not surprising given the large 

uncertainties involved in the data (see Appendix A). Considering the total neglect 

of anisotropy in the potential surface, the scattering data is also reproduced well 

by the potentials fit to all of the data sets. 

The bulk properties predicted by our best overall potentials (Potentials ANe 

and AAr) are presented in Figures 4 to 6 along with the literature values for those 

properties. The laboratory DCS's calculated from the best overall potentials are 

shown superimposed on the experimental data in Figures 7 and 8. In addition, 

the calculated laboratory DCS's corresponding to the best fit to each individual 

data set of argon-methane are presented in Figure 9. The corresponding figure 

for neon-methane has been omitted because it was not significantly distinguishable 

from Figure 7. 

For neon-methane, the diffraction (or rapid) oscillations are well resolved for 

the two lowest collision energies (the staircase like structure in the DCS's of Figure 

7) and distinguishable in the 1010 K data, but a complete rainbow maximum was 

only resolved in the 375 K data (the rainbow maximum, which can be seen by scaling 

the DCS's by () 713 , is at approximately E> = 7°) . Both the diffraction oscillations 

and the rainbow maximum have been reproduced very accurately by Potential ANe· 

The uncertainty in the neon-methane potential (see Figure 2) is due almost entirely 

to the potential derived from the 1010 K data set in which there is no rainbow 

maximum and the diffraction oscillations are not prominent. 
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Figure 4. Neon-methane mixture viscosity as a function of temperature for four 

different mole fractions of methane. The experimental points are from reference 
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different mole fractions of methane. The experimental points are from reference 
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Figure 8. Argon-methane laboratory scattering distributions for all three collision 

energies as a function of laboratory angle, e. Solid lines are calculated using 

Potential AAr· 
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respectively. 
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In the argon-methane DCS's, diffraction oscillations were only resolved in the 

400 K data in the area of the supernumerary rainbow maximum (....., 8°) . The 

principal rainbow maxima are easily visible, however, at approximately 7°, 12°, 

and 20° for the 1081, 678, and 400 K scattering data respectively. Each of these 

features has been reproduced accurately by Potential AAr · 

2.5 Discussion 

It is evident from Figure 9 and Table 6 that the scattering from a single collision 

energy for argon-methane can be reproduced well, but not without sacrificing 

the fits to the other energies. This is probably caused by the anisotropy of the 

potential. Anisotropy in intermolecular interactions has been shown to damp the 

rainbow maxima and diffraction oscillations (these will hereafter be referred to 

as the "principal features") in the scattering compared to the calculated scattering 

from the spherical limit of the potential. 4a• 26 In fitting each individual DCS we have 

forced our best spherical potential to fit those damped features, which may not be 

realistic behavior for either the spherical limit or the spherical average potential. 

Although we do not know quantitatively how large the well depth anisotropy 

is, qualitatively we would expect the maximum anisotropic deviations from our 

spherical potentials to be roughly proportional to the well depth of the potentials. 

The neon-methar.e scattering exhibits less damping because the collision energies 

are large relative to the well depth of the potential (the 375 K neon-methane data 

has roughly the same ratio of collision energy to well depth as the 1081 K argon­

methane data). The relationship between the damping of the principal features 

and collision energy is easily observed in the argon-methane DCS's. As the collision 
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energy is decreased, the damping of the principal features is increased and the DCS's 

become more difficult to fit with a spherical potential. This implies that there is 

significant information about the anisotropy of the potential in this data, especially 

the 400 K argon-methane DCS. By using three DCS's to determine the potentials, 

we have avoided trying to fit the damped features of each individual DCS and 

concentrated on the correct positioning of the principal features of all three DCS's. 

We believe that this treatment gives a more accurate representation of the effective 

isotropic potential along with realistic estimates of the error involved. 

The validity of the use of a spherical approximation for these systems has 

not been completely resolved. In the neon-methane case, the determined spherical 

potential reproduces all the data sets very accurately and therefore we feel that 

the spherical approximation is valid for this system. The fits to the DCS data of 

argon-methane are somewhat less pleasing, but the purpose of this paper is not 

to present a new isotropic argon-methane potential since an anisotropic potential 

has already been determined for this system. 6 Instead, the argon-methane result is 

presented mainly for comparison with the neon-methane, methane-methane, 5 and 

helium-methane2 potentials. However, if the spherical approximation is adequate 

for a particular application, we feel that the argon-methane potential presented 

here is more accurate than previous isotropic potentials for the reasons to discussed 

above. 

The improved accuracy of our potentials is evidenced by the deviations listed 

m Tables 5 and 6 for the previous best argon-methane potential and the neon­

methane potential which has been determined by Buck et al. since the conclusion of 
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this study. The laboratory DCS's calculated using the spherical potentials of Buck 

et al. have also been presented in Figures 10 and 11 for neon-methane and argon­

methane respectively. While the argon-methane data is represented reasonably well 

by the Bucket al. potential, major discrepancies are visible in the predictions of their 

neon-methane potential. These discrepancies cannot be attributed to the use of only 

the spherical part of their potential. The spherical part of their helium-methane 

and argon-methane potentials agree well with the effective spherical potential of 

Slankas et al. 2 for helium-methane and the effective spherical potential determined 

for argon-methane in this study. These potentials have been summarized in Table 

7. It is clear that the Buck et al. value of E for neon-methane is underestimated 

by roughly 16%. Considering that their data were all measured at energies of 

approximately 1000 K, this is not surprising since at that high an energy they could 

not resolve the rainbow maximum. However, their value of rmin is also significantly 

different from ours even though they have resolved diffraction oscillations. The 

period of the diffraction oscillations at that collision energy is such that a small error 

in rmin does not produce significant error in the positioning of the oscillations. In 

addition, the steep slope of the DCS caused by the underestimated well depth affects 

the diffraction oscillations by making their apparent maxima and minima shift to 

higher angles. This can be seen very clearly in Figure 10 in which their potential 

adequately reproduces the diffraction oscillations of the high energy data, but fails 

miserably as the period of those oscillations increases in the lower energy DCS's. 

A smaller value of rmin would increase the period of the oscillations predicted by 

their potential and align those oscillations with our experimental data. 
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Figure 10. Neon-methane laboratory scattering distributions for all three 

collision energies as a function of laboratory angle, 9. Solid lines calculated 

using the potential of Buck et al. 6 
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using the potential of Buck et al. 6 
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Table 'T. Comparison of helium-, neon- and argon-methane. 

He-CH4 

Ne-CH4 

Ar-CH4 

a Reference 2 

b Reference 7 

c This study 

d Reference 25 

e Reference 6 

effective spherical 
potential 

Tmin (A) E (K) 

3.85 ± .o5a 25.5 ± 2.3a 

3.68 ± .02c 66±4c 

3.85 ± .Q4C 170 ± 8c 

spherical part of 
anisotropic potential 

Tmin (A) E (K) 

3.84b 25.5b 

3.83d 55.7d 

3.85e 170.6e 
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Thus, we feel that our potential is a more reliable estimate of the spherical part 

of the isotropic potential, and that our potential should be incorporated into their 

anisotropic potential for further study. 

2.6 Conclusions 

In this paper we have reported total differential cross sections determined at 

three collision energies each for the neon-methane and argon-methane systems. We 

have used these data along with literature data for viscosities and second virial 

coefficients to determine effective isotropic potentials for those systems. The neon­

methane data is accurately reproduced by our spherical potential although poorly 

fit by the spherical part of the anisotropic potential reported by Buck et al. The 

argon-methane data, although affected by the anisotropy of the potential, is also 

well fit by a spherical potential. The deviation of the calculated scattering from 

the experimental scattering gives some indication of the anisotropy of the potential. 

This could eventually be used along with the energy loss spectra of Buck et al. 

to better determine the complete anisotropic potential, but until then, we present 

accurate isotropic potentials to use in modeling other, more complex interactions. 
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Chapter 3 

Helium-Chlorine and Neon-Chlorine 
Anisotropic Interaction Potentials 

from 
Total Differential Cross Sections 
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3.1 Introduction 

One of the ultimate goals of Chemical Physicists is the understanding of 

the processes by which energy is redistributed within a molecule. Knowledge of 

these processes is important if techniques such as laser selective chemistry are 

ever to become viable. The nature of chemical bonds is such that the amount 

of energy required to rupture one bond in a molecule is normally in a regime 

in which the number and density of available internal states is too large for 

the actual dynamics of the dissociation to be theoretically treatable or even 

experimentally discernable. More mechanistic information can be gained by 

observing the dissociation of very weak bonds such as those found in van der 

Waals molecules. 

A simple model system used in recent years to study intramolecular energy 

redistribution is the photodissociation of molecular complexes comprised of a 

rare gas atom bound to a diatomic molecule.1 In particular, the rare gas­

halogen van der Waals molecules have received much attention because of their 

rich visible and near-UV absorption spectra. The original studies on helium­

iodine2 and the successful prediction of many of the observed phenomena by 

the "energy gap" 3 and "momentum gap" 4 theories imply that investigations of 

energy redistribution in these systems is tractable and can be fruitful. One 

of the major predictions of these theories is that some van der Waals species 

should have unusually long lifetimes with internal energies well in excess of the 

van der Waals bond strength. 3 •4 Recently, Brinza et al. 5 have confirmed this 

prediction with the observation of the long-lived metastable neon-chlorine van 
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der Waals molecule. This qualitative agreement between experiment and theory 

suggests that more quantitative treatments should be attempted. Unfortunately, 

quantitative treatments are hindered by the lack of knowledge about either the 

ground or the excited state potential energy surfaces of these species. 

To assist in the complete understanding of these systems, we have used 

crossed molecular beams total differential cross sections and the infinite order 

sudden (IOS) approximation to determine anisotropic potential energy surfaces 

for ground state chlorine (1 E9+) with helium and neon. These total differential 

cross sections have been shown to be sensitive to the anisotropy of the potential 

through the damping of the quantum oscillations.6 The observed damping 

was considerably more extensive than the amount of damping which could be 

attributed to finite apparatus resolution. Thus, we expect our data to place 

significant constraints on the complete potential surface. 

The IOS approximation and conditions for its validity have been discussed in 

Chapter 1. For the IOS approximation to be acceptable, the conditions of validity 

for both the energy sudden (ES) and centrifugal sudden (CS) approximations 

should be met. At the collision energies used in this study, the CS approximation 

will be valid for !:l.j ~ 32 for neon-chlorine collisions and !:l.j ~ 29 for helium­

chlorine collisions. The validity of the ES approximation can be tested using 

Equation (26) of Chapter 1. For the worst case, neon-chlorine at 464 K collision 

energy, !:l.j is restricted to be less than about 30. Since we have only sampled 

the total differential cross section at relatively small center-of-mass angles, these 
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conditions are expected to be maintained although perhaps only marginally at 

the wider angles. 

3.2 Experimental 

Total differential cross sections for neon-chlorine and helium-chlorine were 

measured using the crossed molecular beams apparatus described extensively in 

the previous chapters. The detector aperture, the beam collimating apertures 

and the overall layout of the beam sources was left unaltered from the previous 

experiment and are summarized in Figure 1 of Chapter 2. The total differential 

cross sections were measured at two collision energies for each scattering pair. 

The chlorine beam was produced by the expansion of pure chlorine (UHP) 

through a quartz nozzle with a 75 p,m orifice. The forelines of both the beam 

source and differential chambers required in-line liquid nitrogen traps to prevent 

contamination of the mechanical pump oil. The stagnation pressure of the 

chlorine within the nozzle was adjusted until the percentage of dimers (mass 

142 ± 2 amu) in the beam was less than .25. 

The rare gas beams were produced by utilizing the liquid nitrogen cooled 

beam source described in Chapter 1. For both helium and neon, two stagnation 

temperatures were used to create different collision conditions. The velocity 

distributions of both the rare gas and the chlorine beams were measured using 

the time-of-flight technique. Experimental velocity distributions were then fit to 

the functional form, 

(1) 
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to determine the best values of s, the speed ratio, and v0 , the flow velocity. The 

values of s and v0 determined in this manner, along with the known values of 

the stagnation temperature and pressures, are summarized in Tables 1 and 2 for 

helium-chlorine and neon-chlorine respectively. 

Laboratory angular intensity distributions were measured by detecting the 

scattered rare gas beam. For neon-chlorine, the quadrupole mass filter was set to 

pass only 20 Ne obviating the need to account for 22 Ne in the calculations. The 

intensity at each angle was measured relative to a chosen reference angle. By 

returning to that reference angle after 5 to 10 other angles have been measured, 

any possible long term drift in intensity can be accounted for. The reference angle 

normalized scattering intensity was measured 4 to 8 times at each angle and the 

resulting normalized intensities were averaged. The measured distributions with 

estimates of the corresponding uncertainties are tabulated in Appendix C. 

3. 3 Analysis 

The determination of an anisotropic potential energy surface from total 

differential cross sections can only be accomplished using a trial and error 

fitting procedure. This entails selection of a functional form for the potential 

which has several adjustable parameters and the calculation of the center-of-mass 

differential cross sections that would result from that potential. The center-of­

mass differential cross sections are then transformed to the laboratory reference 

frame, while accounting for the finite resolution of the apparatus, so that they 

can be compared directly with the experimentally measured laboratory scattering 

intensities. The potential parameters are then adjusted until good agreement 
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Table 1: Beam source characteristics for helium-chlorine at two colli­
sion energies. 

characteristics 

gas 

stagnation pressure( torr) 

stagnation temperature(K) 

velocity(104 cmjsec) 

speed ratio 

collision energy 
340 K 511 K 

Hell Ch Hell Cl2 

1225111120 

11911303 

11.14115.02 

15.1117.0 

1225111100 

19511303 

14.12115.02 

11.7117.0 

Table 2: Beam source characteristics for neon-chlorine at two collision 
energ1es. 

characteristics 

gas 

stagnation pressure( torr) 

stagnation temperature(K) 

velocity ( 104 em/ sec) 

speed ratio 

collision energy 
464 K 612 K 

1225111120 

11911303 

4.92115.02 

16.4117.0 

1225111100 

19511303 

6.33115.02 

16.8117.0 
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is found between the calculated and experimental quantities. Where possible, 

parameters which have been determined by some other means are not adjusted 

in the fitting procedure. For instance, the van der Waals dispersion terms were 

fixed at their theoretical estimates. The formulation of the anisotropic potential, 

the calculation of the dispersion constants, the details of the calculation of 

laboratory total differential cross sections from an anisotropic potential, and 

the procedure used to determine the potential parameters are presented in the 

following sections. 

3.3.1 Potential 

The exact form of the complete anisotropic potential energy surface 1s 

not understood, but a cut through that surface at any given angle, /, 1s 

expected to produce a potential function similar in form to those for central 

field potentials. Therefore, it is not unreasonable to assume that the anisotropic 

surfaces can be approximated by a linear combination or expansion in terms 

of central field potential forms. Many such potentials have been proposed7 

including multicenter potentials, Legendre expansions of isotropic potentials, i.e., 

V(r,1) = L::::::o Vn(r)Pn(cosl) and Legendre expansions of the parameters of 

isotropic potentials. 

Multicenter potentials, in which equivalent isotropic potentials are centered 

on each of the two chlorine atoms were tried initially because the number of 

parameters used in this form is invitingly small (equivalent to one isotropic 

potential). However, these two center potentials were not flexible enough to 

reproduce the scattering results and it became clear that a third center, located 
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on the bond, would have to be added. Unfortunately, the third center would 

double the number of adjustable parameters, and it was decided that other more 

convenient and flexible forms should be tried first. The Legendre parameter 

expansion was thought to be the most flexible (for the same number of adjustable 

parameters) of the remaining two forms and was used exclusively in the remainder 

of the investigation. 

In the Legendre parameter expans10n, an analytical form of a central 

potential is selected and its parameters are then expanded in terms of the 

Legendre polynomials for the cosine of the orientation angle between the atom 

and the diatom (I in Figure 4 of Chapter 1). For example, the well depth, ~:, is 

expanded as 

(1) 

where the expansion has been truncated after P2, and only the even terms are 

included because of the symmetry of the potential. The analytical form of the 

isotropic potential was initially chosen to be the Morse-Morse-spline-van der 

Waals (MMSV) potential form discussed in the previous chapter. However, since 

there were no bulk property data to fit simultaneously, and it was found that 

the laboratory scattering intensities were insensitive to the repulsive wall Morse 

function, the form was reduced to an MSV Potential. 8 

Although the MSV works well for isotropic potentials, the introduction of 

anisotropy often produced unphysical undulations in the spline at some values of 

I · To avoid these undulations, we introduced an alternative formulation which 

replaced the spline with a damped average of the Morse and van der Waals 
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functions. Written in reduced form (x = r/rm, f(x) = U(x)je, and f3 =arm), 

the Morse potential is 

the van der Waals dispersion potential is 

f ( ) -6 -8 v x = -c6x - cax , 

and the Morse-damped average-van der Waals (MDV) piecewise potential is 

{ 
fm(x) 

f(x) = fv(x) + [fm(x)- fv(x)] e-p(:~:,-:~:r' 
if X:::; Xi 

if X> Xi , 

(2) 

(3) 

(4) 

in which p is the damping factor usually kept at 3 or 4, and Xi= 1 + f3- 1 ln 2 is 

the inflection point of the Morse potential. In Equation (3), Ci = Ci/eri,., where 

the Ci are the long range van der Waals dispersion coefficients whose estimation 

is described in the next subsection. Each of the parameters, e(l), rm(l), f3(1), 

C6(/) and Ca(l) have been expanded as in Equation (1). In some potentials, an 

additional r4 P4 (cos'"'f) term was included in the expansion of rm(l). 

3.3.2 Estimation of Anisotropic Dispersion Terms 

The long range dispersion forces between molecules are well understood and 

can be calculated rather accurately. This is fortunate because most laboratory 

differential cross sections are measured in energy · regimes in which they are 

relatively insensitive to the long range dispersion forces. Accurate calculation 

of the dispersion forces requires knowledge of the energies of transition from 

the ground to all excited electronic states for both particles and the oscillator 
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strengths for those transitions. 9 In practice, approximate methods are generally 

used to estimate these numbers. 

An estimate of C6(1) for an atom-diatom interaction can be derived using 

the Drude oscillater model and is found to be, 10 

(5) 

where 

(6) 

and 

3 eh aRall 
B11 = 2 m!/2 (aR/NR)l/ 2 + (aii/Ncz)11 2 

(7) 

In Equations (6) and (7), a1. and all are the perpendicular and parallel 

polarizabilities of the diatom, aR is the polarizability of the atom, and N, is 

the number of valence shell electrons for species i. The similarity of Equation 

(5) to the Legendre parameter expansion, 

(8) 

allows US to determine C60 and C62 by equating the coefficients of COS
2

/ in 

Equations (5) and (8). The result is that 

(9) 

The values of C60 and C62 calculated in this manner are tabulated in Table 3 

along with the ai, N, and B, used in their determination. 



- 92-

Table 3: Anisotropic dispersion terms: C6 

ak (A3) 

N R 

aj_ (A3) 

a IT (A a) 

Ncl 2 

B1 (kcal/mol A 6 ) 

B 2 (kcal/mol A 6 ) 

c6o (kcal/mol A 6 ) 

c62 (kcal/mol A 6 ) 

t Reference 11 

* Reference 12 

He-Cl2 

.205 

2 

3.62 

6.60 

14 

324.5 

487.0 

379 

54 

Ne-Cb 

.395 

8 

3.62 

6.60 

14 

663 .7 

1039 

789 

125 
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Formulas for the approximation of Ca(i) are not nearly as well developed, 

but fortunately the measured scattering intensities are virtually unaffected by 

the value chosen for Ca 0 or Ca2 •
13 Thus, since any reasonable estimate would 

suffice, the simplistic two-level oscillator formula has been used; 12 

(10) 

in which I P;, is the ionization potential for particle i . Values of Cal. and Ca
11 

were calculated from Equation (10) using O!J.. and all respectively. Those values 

were then used to estimate an effective Ca0 and an upperbound on Ca2 • By 

comparison with the more accurate C6 terms, Ca2 was felt to be overestimated 

by this procedure and was reduced by the ratio of the C6 , term, determined as 

before, to the c6, term determined using a similar two-level oscillator formula. 

The values of Ca0 and Ca2 calculated using this model are tabulated in Table 4 

along with the ionization potentials and the actual Ca 2 used in the differential 

cross section calculations. 

3.3.3 Total Differential Cross Sections 

Laboratory scattering intensities were calculated using the computer 

program described in Chapter 1 which was modified to utilize the IOS 

approximation for anisotropic potentials. The IOS formula for total differential 

cross sections is 

111 1(0) = - 1(1, O)dcos1 , 
2 -1 

(11) 
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Table 4: Anisotropic dispersion terms: Ca 

IPRgt (kcal/mol) 

IPch t (kcal/mol) 

Ca.L (kcal/mol A a) 

Ca
11 

(kcal/mol A a) 

Ca 0 (kcal/mol A a) 

Ca2 (kcal/mol A a) 

Ca 2 * (kcal/mol A a) 

t Reference 14 

+ Reference 15 

* Value selected for use. 

He-Cl2 

565 

265 

1810 

5774 

3131 

2643 

900 

Ne-Cl2 

497 

265 

3480 

10820 

5927 

4893 

3000 
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in which I(l, fJ) is the differential cross section for an isotropic potential formed 

by taking a section through U(r,1) at angle/· This integral can be evaluated 

efficiently using Gauss-Legendre quadrature, i.e., 

(12) 

m which li = cos- 1 Xi and Xi and Wi are the usual quadrature points and 

weights for Gauss-Legendre integration. 16 The number of quadrature points 

used in Equation (12) was varied until an increase in n produced no change 

in I( fJ) . Convergence was found to occur at 12 quadrature points. Because of the 

symmetry of the diatomic, it was only necessary to calculate the center-of-mass 

differential cross sections at 6 values of I· The only modification to our existing 

simulation program was the addition of a "do loop" over the angular quadrature 

points in which first U(r, li) was determined and then the laboratory scattering 

intensities were calculated for that potential as in Chapter 1. 

Since the sensitivity of the total differential cross section to the anisotropy 

of the potential is in the form of damping of the rainbow and diffraction 

oscillations,6 great care was taken to assure that we could distinguish between 

the damping due to the apparatus resolution and the damping as a result of the 

anisotropy. The number of quadrature points in the velocity, collision volume 

and detector acceptance integrations were all adjusted independently until I( fJ) 

was converged for each. The number of phase shifts that were used in the partial 

wave analysis was determined in a similar convergence test. The actual number 

of phase shifts that were used along with the apparatus resolution quadrature 

values are tabulated in Table 5. 
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Table 5: Number of phase shifts and quadrature points. 

He-Cl2 Ne-Cl2 
340 K 511 K 464 K 612 K 

Tlmax 
a 150 120 200 200 

I(vrg)b 7 7 5 5 

J(vcz2)c 5 5 5 5 

L(y)d 3 3 3 3 

M(x)e 1 1 1 1 

N(Od)f 3 3 3 3 

a Tlmax is the number of phase shifts used. 

b I( Vrg) is the number of quadrature points for the rare gas velocity 
distribution. 

c J ( vcz2 ) is the number of quadrature points for the chlorine 
velocity distribution. 

d L(y) is the number of quadrature points across the width of the 
chlorine beam. 

e M(x) is the number of quadrature points across the width of the 
rare gas beam. 

I N(Od) is the number of quadrature points across the detector 
width. 
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For each differential cross section, the phase shifts were calculated using 

the JWKB approximation and eight point Gauss-Mehler quadrature. The phase 

shifts were calculated at 10 energies equally spaced from the lowest to the highest 

values of the relative kinetic energy as defined by the beam quadrature points. 

Four point Legendre interpolation was then used to estimate the phase shifts 

at the desired values of the relative kinetic energy. For helium-chlorine, the 

results of this method were compared with the laboratory scattering intensities 

predicted using an exact quantum mechanical phase shift calculation and found 

to be equivalent within the experimental uncertainty. 

The phase shifts were not recalculated for the different collision volume 

points. For each collision volume point the phase shifts for the relative kinetic 

energy of the most probable collision volume point were used. After all the 

laboratory differential cross sections were calculated and summed, the calculated 

intensities were scaled to minimize the sum of the squares of the differences 

between the calculated and experimental values divided by the experimental 

uncertainty. 

3.3.4 Fitting and Uncertainties 

One of the major disadvantages of any trial and error cross section fitting 

routine is that even isotropic potentials determined in this manner are not 

necessarily unique. 17 This problem is aggravated by the inclusion of anisotropy 

in the potential form because in the resulting parameterization, the potential 

parameters are invariably strongly correlated. When using only one kind of 

information (total differential cross section, etc.) the determined potential may 
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fit the data very well but not be an accurate representation of the true potential. 

Thus, it is usually advantageous to force constraints on the potential by including 

data from other types of measurements. 

There are several sources of additional information about the neon-chlorine 

potential. High resolution spectroscopic studies of the photodissociation of 

the neon-chlorine van der Waals molcule have determined that the expectation 

value for r(90°) is 3.565 ± 0.035 A for the X,v"=l state of chlorine. 18 This 

expectation value should not be confused with the actual value of rm(90°) which 

is expected to be slightly smaller. Preliminary results of a concurrent study on 

the inelastic scattering, energy loss spectra of neon-chlorine indicate a value of 

~rm = rm(0°) -rm(90°) of approximately 1.5 A for a realistic potential function. 

However, these energy loss spectra are really only sensitive to the difference in r 

for the anisotropic potential in the region of U(r)=tJ.w;el' and the value of ~r in 

that region is also affected to some extent by the well depth and shape anisotropy. 

Indeed, Hoffbauer et al. 19 have estimated the anisotropy of the argon-chlorine 

potential using a purely classical rigid ellipsoid model to be ~rre=.95 A. At 

first glance ~rm=l.5 A and ~rre=.95 A may seem inconsistent, but the realistic 

potential used to determine ~rm=l.5 A actually has a ~r value of approximately 

1 A for equipotential contours near the reduced collision energies used in both 

studies. Also, while one might expect that the anisotropy would be determined 

by only the chlorine molecule and be independent of the rare gas atom, studies 

of the anisotropic potential surfaces of methane20 and sulphur hexafl.uoride21 

with a series of rare gas atoms indicate that for those systems the anisotropy is 
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dependent on the rare gas atom. However, in each of those cases the observed 

trend indicates that the variation in the anisotropy depends on the ability of the 

atom to "fit" in between the three atoms comprising a face of the molecule. The 

chlorine molecule is not expected to exhibit a large variation in the anisotropy of 

its interaction with the various rare gases because it has no size selective sites. 

Thus, we felt justified in restraining the anisotropy in all of our chlorine potentials 

to remain close to ~rm ~1.5 A. 

With both rm(0°) and rm(90°) (through ~rm) both fixed, we introduced 

an additional r4 P4 (cos1) term in the parameter expansion of r(i). This allowed 

the potential to be more flexible at those value of 1 between 0° and 90°. For the 

initial fits, only r2 was allowed to vary independently with r 4 being determined 

by the values of ~rm and r2, e.g., 

(13) 

With these constraints on r(i), the parameters E, €2, r2, a (= {3/rm) and a2 

(= {32 /rm) were adjusted in a least squares fitting program until the dimensionless 

mean square deviation as defined in Chapter 1 had been minimized. The values 

of rm(0°) and ~rm were then fine tuned by allowing one, the other, or both to 

vary along with the other parameters. The dispersion terms remained fixed at 

their theoretical estimates at all times. 

For helium-chlorine, the constraints were somewhat more tenuous. Low 

resolution spectroscopic studies are reproduced equally well by expectation values 

of r(90°) anywhere from 3.4 A to 4.0 A. 22 Also, no energy loss spectra are 
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available to obtain a value of ~rm. However, as discussed above, the anisotropy in 

r is expected to be similar to neon-chlorine. Thus, rm (90°) and ~rm were initially 

constrained to be 3.6 A and 1.5 A respectively. The remaining parameters with 

the exception of the dispersion terms were optimized before allowing rm(90°) to 

vary. 

In addition, the standard method was employed to determine another 

estimate of the potential. This "standard" method involves using the parameters 

from an isotropic potential fit to the total differential cross sections as a first 

approximation of the zero order terms of the Legendre parameter expansion. 

The anisotropy parameters, E2, r2, and {32, are then allowed to vary until the 

dimensionless deviation has been minimized. Finally, all of the parameters are 

allowed to vary to produce the best fit. This method essentially constrains the 

potential parameters to find a minimum in the x2 hypersurface in the vicinity 

of the isotropic potential. In the absence of any other information about the 

potential surface, e.g., energy loss spectra, state-to-state cross sections, etc., this 

method is the only acceptable way to determine an anisotropic potential from 

total differential cross sections. 

3.4 Results 

3.4.1 Isotropic Potentials 

In order to obtain qualitative estimates of the zero order terms in the 

Legendre parameter expansion, the total differential cross sections were initially 

fit using an isotropic MDV potential. In these fits, the Cio dispersion terms were 
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kept fixed at their theoretical values, the ci2 terms were set to zero, and p was 

held at 4. The potential parameters which produced the minimum dimensionless 

deviations were: 

1) €=54.9 K, rm=4.113 A, and a=2.90 A - 1 for helium-chlorine, and 

2) €=77.5 K, rm=4.156 A, and a=2.19 A - 1 for neon-chlorine. 

The laboratory scattering intensities calculated using these potentials are shown 

in Figures 1 and 2. Although the periods of the calculated diffraction oscillations 

are correct in each data set, the amplitude of those oscillations is significantly 

larger than the experimentally observed amplitude. The principal rainbow 

maxima are well positioned in the fit to the neon-chlorine data, but no rainbow 

maxima have been resolved and for helium-chlorine and the well depth appears 

to be too deep in comparison to the neon-chlorine well depth. Neither set of 

experimental cross sections is fit well by the isotropic potentials. To improve the 

fit it is necessary to introduce anisotropy into the potential. 

3.4.2 Neon-Chlorine 

The anisotropic MDV potential parameters, including a three-term 

expansion of r('-y) (see Equation 13), are presented in Table 6 for the four 

potentials which best fit the data within the constraints outlined in 3.3.4. In 

each case, those parameters which were not allowed to vary in the least squares 

fit are highlighted by stars. The rms dimensionless deviations which resulted 

from these potentials are tabulated in Table 7. Potential DNe produced the 

lowest overall rms deviation and is therefore assumed to be our most accurate 

representation of the complete anisotropic potential. A contour plot of Potential 
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Figure 1. Helium-chlorine laboratory scattering distributions for both collision 

energies as a function of laboratory angle, 0. Solid lines are calculated using the 

best isotropic potential. 
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collision energies as a function of laboratory angle, e. Solid lines are calculated 

using the best isotropic potential. 



- 104-

Table 6. MDV potential parameters determined for neon-chlorine. 

Pot ANe Pot BNe Pot CNe Pot DNe 

€o (K) 71.5 72.3 76.0 77.4 
€2 (K) -56.9 -55.4 -50.3 -48 .8 
rm(90°) (A) 3.54* 3.54* 3.488 3.484 
r2 (A) 1.43 1.50 1.49 1.61 
Ar (A) 1.50* 1.64 1.50* 1.76 
ao (A - 1 ) 1.72 1.72 1.66 1.66 
a2 (A- 1 ) - .325 -.383 
p 4 4 4 4 

* Parameter not allowed to change from initial estimate. 

Table 7. Rms dimensionless deviations for the neon-chlorine potentials 
of Table 6. 

8 (464 K) 
8 (612 K) 
8 Total 

1.37 
0.87 
1.15 

1.37 
0.87 
1.15 

1.16 
0.87 
1.01 

1.12 
0.85 
0.99 
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DNe is shown in Figure 3, and sections through that potential at Q0 and 90° 

are shown in Figure 4 along with the best fit isotropic potential. The laboratory 

total differential cross sections calculated using this potential are shown with the 

experimental data in Figure 5. Each has been scaled by 0 713 to accentuate the 

rainbow maxima and the diffraction oscillations. 

All of the best fit potentials accurately reproduce the rainbow maximum at 

each collision energy and the diffraction oscillations which are only well resolved 

in the 612 K collision energy data. The only real difference is in the quality of the 

fit to the large angle (0 ~ 20°) scattering. However, those angles are the most 

affected by the velocity defect from the inelastic processes and probably should 

not be used to differentiate between potentials. Also, the comparison of contour 

plots for each of the potentials indicates that the differences in the potentials are 

mainly in the region of small/. In this region, the total differential cross sections 

are nearly insensitive to changes in the potential. 

3.4.3 Helium-Chlorine 

The anisotropic MDV potential parameters, including a three-term 

expansion of r( 1), are presented in Table 8 for the three potentials which best fit 

the data within the following constraints. Potential AHe was formed by keeping 

~Tm fixed at the value of 1.5 A. Since the potential which produced the lowest 

deviation for neon-chlorine had ~ r m = 1. 76 A, this value was fixed while the other 

parameters varied to produce Potential BHe· In Potential CHe all the parameters 

were allowed to vary from their values in Potential BHe· Also included in Table 

8 is Potential DHe which was determined with the initial constraint that the zero 
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Figure 3. Neon-chlorine intermolecular potential. Equipotential contours of 

Potential DNe in units of K. 



6 4 2 

6 

N
e-

C
l2

 

..
-
-
_

_
+

 
+

 

\ 
0 

I 
I 

I 
I 

4 
2 

0 
2 

~
 

6 
In

te
rm

o
le

cu
la

r 
S

e
p

a
ra

ti
o

n
 

(A
) 

~
 

0 ~
 



- 108 -

25 

0 

.... 
0 
.... -50 -c f- Isotropic 
C1.l -0 

0.. 

-75 

-100 

3 4 5 6 
Intermolecular Separation (A) 

Figure 4. Neon-chlorine intermolecular potential. Sections through Potential 

D N e at 1 = 0° and 90°. The best isotropic potential is also shown. 
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Table 8. MDV potential parameters determined for helium-chlorine. 

Pot AHe Pot BHe Pot CHe Pot DHe 

t:o (K) 32.7 33.2 33.7 59.9 
t:2 (K) -7.0 -5.0 -11.6 -7.5 
rm(90°) (A) 3.806 3.845 3.838 3.612 
r2 (A) 1.070 1.235 1.803 0.656 
Ar (A) 1.50* 1.76* 2.737 1.5r2 
ao (A - 1) 2.13 2.19 2.283 11.04 t 
a2 (A-1) 1.35 1.46 1.448 -4.55t 
p 4 4 4 4 

* Parameter not allowed to change from initial estimate. 

t These values are dimensionless, i.e., /3(1) = a(l)rm(l). 

Table 9. Rms dimensionless deviations for the helium-chlorine poten­
tials of Table 8. 

8 (464 K) 
8 (612 K) 
8 Total 

1.03 
1.09 
1.06 

0.93 
0.92 
0.92 

0.74 
0.81 
0.77 

1.52 
0.99 
1.29 
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order terms be equivalent to the parameters of the best isotropic potential. The 

rms dimensionless deviations which resulted from these potentials are tabulated 

in Table g_ 

Although Potential CHe had the lowest rms dimensionless deviation, the 

value of ~rm for that potential is not reasonably close to the value from the 

energy loss experiments. Potentials AHe and BHe also have unphysical behavior 

at the wide angles caused by the large positive values of a 2 • The value of a(goo) 

becomes much larger than is reasonable and although ~rm has the expected 

value, ~r for an equipotential curve at higher energy actually becomes larger 

than ~rm. This is illustrated in Figure 6 by the sections through Potential BHe 

at 1 = 0° and 1 = goo . A contour plot of Potential BHe is also presented in 

Figure 7. Conversely, Potential DHe would appear to underestimate the value 

of ~rm. Sections through Potential DHe at 1 = 0° and 1 = goo are shown in 

Figure 8 and a contour plot is presented in Figure g_ 

In can be seen that Potential DHe is consistent with the best isotropic 

potential while Potential BHe (Figure 6) has a significantly shallower average 

well depth. Both potentials accurately reproduce the data from both collision 

energies. The laboratory total differential cross sections calculated using both 

potentials are displayed in Figure 10 along with the experimental data. The 

major difference in the quality of fit is found at the large angles ( 0 > 20°). The 

calculated cross sections are expected to be a little low at these angles because of 

neglect of contributions from inelastic scattering processes to the measured cross 

sections. Although the IOS approximation accounts for the inelastic transitions 
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Figure 6. Helium-chlorine intermolecular potential. Sections through Potential 

B He at 1 = 0° and 90°. The best isotropic potential is also shown. 
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Figure 1. Helium-chlorine intermolecular potential. Equipotential contours of 

Potential BHe in units of K. 



6 
+

 
+

 
-2

 
+

 
+

 

4 
+

 

2 
+

 
+

 

6 
4 

2 
0 

2 
~
 

In
te

rm
o

le
cu

la
r 

S
ep

ar
at

io
n

 
<A

> 

H
e-

C
b 

6 

.....
. 

.....
. ""'"
 



40 

20 

_.. 
lS 
.... -20 -c 
Ql -0 
n. 

-40 

-60 

- 115-

'\. Isotropic 

+-- U(r, 90°) 

He-Ch 

3 4 5 6 
Intermolecular Separation (A) 

Figure 8. Helium-chlorine intermolecular potential. Sections through Potential 

DHe at 1 = 0° and 90°. The best isotropic potential is also shown. 
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Figure 9. Helium-chlorine intermolecular potential. Equipotential contours of 

Potential DHe in units of K. 
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in general, the error arises in the transformation of the center-of-mass differential 

cross sections to the laboratory reference frame as elastic scattering cross sections. 

Since the calculated scattering is expected to be slightly in error, it is not clear 

that there can be any distinction between these potentials on the basis of the 

dimensionless deviations alone. 

3.5 Discussion 

3.5.1 Neon-Chlorine 

One of the important facets of the IOS total differential cross section formula 

in Equation (11) is that the cross sections for the individual 1 are effectively 

weighted by sin1 (since dcos1 = -sin1d1). Thus, the differential cross section 

for 1 = 0° has no effect at all on the total differential cross section. In fact, 50% of 

the contribution to the total differential cross section is from 60° :::; 1 :::; 90°. Our 

only knowledge of the potential at small1 is from extrapolation of the assumed 

potential form fit essentially to the large I· A true representation of the potential 

surface would require a larger number of Legendre parameter expansion terms, 

but there is not enough information in the data to justify using more than 5 or 

6 adjustable parameters. As a result, U(r,1) for small/ is never well defined by 

this type of experiment alone. 

The differences in the potentials listed in Tables 6 are largely a result of 

variations in the small 1 region of the potentials. For instance, although the 

values of Eo and E2 for neon-chlorine vary by as much 6 K and 8 K respectively, the 

value of E(90°) = Eo- !E2 is constant within 2 K. Thus, as long as the use of these 
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potentials is restricted to the area about 1 = goo, the neon-chlorine potentials 

should be reasonably accurate. Since this is the region of the potential surface 

which is assumed to be the most important in the photodissociation studies, 

the neon-chlorine potential determined in this study should make a significant 

contribution to the elucidation of the dynamics involved in that dissociation. 

Of the potentials listed in Table 6, Potentials CNe and DNe probably have 

the most accurate values of rm(goo). The initial guess of rm(goo) = 3.54 A 

significantly underestimated the difference between the actual expectation value 

of r for v = 0 and the position of the well minimum. A one-dimensional 

Schrodinger equation solver was used to calculate a hypothetical vibrational 

wavefunction along U(r, goo). This approximation gives a value of (r)u=O of 

3.585 A for Potential DNe and (r)u=O of 3.642 A for Potential ANe· The value 

of (r)u=O for Potential DNe agrees very well with the measured value of Evard 

et al, 18 3.565 ± .035 A. 

The well depths of the potentials are also in good agreement with what 

IS known about similar potentials from spectroscopic studies. Blazy et al. 23 

measured the binding energy of neon-iodine(3II0+) van der Waals molecules by .. 
observing the closing of the / 2 Llv = -1 dissociation channel, i.e., at which 

value of v the energy of one vibrational quantum in the iodine bond is smaller 

than the van der Waals bond energy. They then used other features of their 

spectra and many assumptions to estimate the binding energy, D 0 , and the well 

depth, De, of the ground state complex at 1 = goo. The values they reported 

are 73.5 ± 1.2 cm- 1 (106±3 K) for Do and 85.5±1.0 cm- 1 (123±2 K) for 
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De. In a similar manner, Swartz et al. 24 estimated Do for neon-bromine(3TI
0
+) .. 

and used that value to estimate Do for the ground state complex. The binding 

energy of neon-bromine(1L: 0+) was found to be nearly identical to that of neon-
g 

iodine although no estimate of the well depth could be made. These values are 

compared with the well depth determined in this study for 1 =goo in Table 10. 

Also included in Table 10 are the known well depths for the interaction of neon 

with the rare gases, Ar, Kr, and Xe, which, to a first approximation, correspond 

to the halogen atoms, Cl, Br, and I, respectively. It has been popular to assume 

that the potential for R-X 2 could be approximated by the two center sum of the 

corresponding R- Rx potential, where R is the rare gas atom, X2 is the halogen 

diatom, and Rx is the rare gas atom which corresponds to the halogen atoms. 

Table 10 clearly shows that this procedure would lead to well depths which would 

be much too large for all of the neon-halogen van der Waals molecules with the 

well depth for neon-chlorine being overestimated by as much as 40%. However, 

the overall trend in well depth as a function of atomic number does follow the 

corresponding rare gas-rare gas trend. 

3.5.2 Helium-Chlorine 

Unlike the neon-chlorine potentials, the helium-chlorine potentials are not 

all similar at 1 = goo. In fact, ~:(goo) is almost a factor of two larger for Potential 

DHe than for Potential BHe · The range of these two potentials are also quite 

different, with Potential BHe having a rm(goo) of 3.845 A and a ~rm of 1.76 A 

and Potential DHe having a rm(goo) of 3.612 A and a ~rm of o.g84 A. Both of 

these values of rm(goo) are in qualitative agreement with the spectroscopic value 
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Table 10. Comparison of neon-halogen well depths (i =goo) in units 
ofK. 

Dot De~ 

Ne-I2 106a 123a 

Ne-Br2 105C 
Ne-Cl2 101.5d 

t Well depth minus zero point energy. 

:1: Well depth at 1 =goo (e(goo)). 

Erg 
~ 

75.0b 
74.5b 
72.0b 

P Well depth for neon with Xe, Kr, and Ar corresponding to I2 , 
Br2, and Cl2. 

a Reference 23 

b Reference 25 

c Reference 24 

d This study 
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of Cline et al., 22 with the smaller value being more centrally located within 

the range of values they have determined. However, it should be noted that 

their values were determined assuming that the helium-chlorine van der Waals 

molecule is a rigid rotor with the helium located on the perpendicular bisector 

of the chlorine bond. The small amount of anisotropy in the well depth of either 

of our potentials (see Figures 7 and 9) indicates that there should be significant 

freedom of motion for the helium atom and a rigid rotor is probably not a very 

good model. Thus, the range of values of Cline et al. should not be used to 

differentiate between these potentials. 

The correct value of Llrm is equally ambiguous. In Potential BHe, Llrm was 

fixed at the same value of Llrm as the best neon-chlorine potential, but the value 

of a 2 makes that potential have too large an anisotropy at higher energies on the 

potential surface. Potential DHe has a value of Llrm which is 37% smaller than 

the original value estimated from the neon-chlorine energy loss spectra and this 

value becomes much smaller at higher energy (see the +500 K contour of Figure 

9). Thus, neither potential has a similar range anisotropy to the neon-chlorine 

potential, but as was stated in the neon-chlorine discussion, the total differential 

cross sections are insensitive to the potential in the region about 'Y = 0° so either 

potential could still be accurate about 'Y = 90°. 

Similarly, the disparate values for the well depth are difficult to explain. The 

well depth of the helium-chlorine potential is impossible to determine conclusively 

from the experimental data because a well defined rainbow maximum (like those 

in the neon-chlorine data of Figure 5) cannot be resolved at these energies. One 
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possible way to differentiate between the two values is by comparison with other 

potentials. A comparison of our potentials at "' = goo with the helium-iodine 

results of Blazy et al. 23 and the helium-nitrogen and helium-oxygen potentials 

of Keil et al. 26 yields mixed results. The well depths at "' = goo for helium with 

nitrogen, oxygen, and iodine are 31.3, 37.5, and 31.g K respectively. The E(goo) 

values of Kiel et al. would seem to be in better agreement with the well depth 

of Potential DHe (63 .7 K) . This can be seen by scaling E(goo) for the potentials 

of Keil et al. by the ratio of the well depth of helium-argon (24.2 K) 27 to the 

well depth of helium-neon (14.3 K). 27 The value of the well depths scaled in 

this manner would be 52.9 K and 63 .5 K for nitrogen and oxygen respectively. 

This qualitative agreement is not all that surprising since these potentials were 

determined using a procedure that was similar to that used to determine Potential 

DHe· 

Conversely, m relation to the well depth reported by Blazy et al., even 

our shallower well depth is too large. However, the E (De) values for the 

iodine complexes are only estimates and there may be significant error in their 

assignment. For instance, the Morse range parameter that Blazy et al. used to 

determine De from their experimental value of Do yields a potential in which 

even at 2 A intermolecular separation, U(r) is only a factor of 3 greater than 

the well depth, De . This type of behavior is unparalleled in any interatomic 

or intermolecular potential ever determined. Recently, Schwenke and Truhlar28 

calculated the short and long range forces for the helium-iodine potential and 

combined them using a suitable damping function to obtain a more reasonable 
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intermolecular potential for 1 = goo. Their results confirmed that the range 

parameter used by Blazy et al. was much too small. Unfortunately, they chose 

their damping function such that it would reproduce the value of De of Blazy et 

al. It would have been more appropriate to try to match the experimental value 

of D0 • Thus, we know that the value of De for helium-iodine is not accurate, but 

the value of Do (27.3 K) is probably accurate and would suggest that the well 

depth of Potential BHe is closer to the correct value. 

3.6 Conclusions 

Anisotropic potential energy surfaces have been determined for helium­

chlorine and neon-chlorine using total differential cross sections and the IOS 

approximation. The neon-chlorine potential is felt to be accurate within the 

region of 1 = goo ± 50°. This angular range should be increased by the inclusion 

of the inelastic scattering energy loss spectra into the potential determination 

process. In the region of 1 = goo, this potential is found to agree fairly 

well with what little information is known about the potential surface from 

photodissociation experiments. 

Two distinctly different helium-chlorine potentials have been determined 

which both reproduce the experimental data. There is some indication that 

Potential BHe is more appropriate even though the value of to for that potential 

is only about 60% of the well depth of the best isotropic potential for this system. 

However, the level of agreement between this experiment, intuition and results 

from similar systems is insufficient to justify any claims of accuracy for either 
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proposed helium-chlorine potential. Both of these systems, neon-chlorine and 

helium-chlorine, merit further investigation. 
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Appendix A 

Second Virial Coefficients 
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A .l Introduction 

Before molecular beams were used to probe the forces of interaction 

between molecules, scientists had determined the relationships between certain 

macroscopic observables and the intermolecular potential. Potentials determined 

from macroscopic properties were not unique however, and great uncertainty 

persisted about the quantitative values of these potentials. As the use of 

differential cross sections measurements for potential determination matured, 

it was found to be desirable to include the macroscopic observables in the 

potential determination as they were often sensitive to different areas of the 

potential energy surface. Among the macroscopic observables used in this way are 

properties such as viscosity, thermal conductivity, diffusion, and the deviations of 

a gas from ideal behavior. 1•2 The deviations from ideal behavior, or imperfections, 

are the focus of this appendix. 

Many equations of state have been proposed to account for gas imperfections, 

but none is more generally applicable or closely related to the intermolecular 

potential than the virial equation of state. 

PV B(T) C(T) 
- = 1 + -~- + -~- + .. . 
RT V V2 

(1) 

This equation, generally attributed to Kammerlingh Onnes, is relatively easily 

derived from statistical mechanics via either the canonical partition function3 

or the grand canonical partition function. 4 The coefficients in the power series 

in density (-.l) in Equation (1), B(T),C(T), etc., are known as the second, 
v 

third, etc. , virial coefficients. The terms, and thus the coefficients, in the power 
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ser1es are related to the interactions between two (B(T)), three (C(T)), etc. 

molecules in the gas . Each of the virial coefficients can be explicitly related to 

the intermolecular potential, but only the second virial coefficient can be readily 

determined experimentally with the kind of accuracy necessary for estimation of 

an intermolecular potential. 

Experimentally, virial coefficients can be determined by simultaneously 

measuring the temperature and density of a gas at several pressures. The 

compressibility factor ( ~~) can then be fit to a polynomial in density ( ~) with 

the coefficients of the polynomial approximating the virial coefficients (evaluating 

a polynomial of infinite order would be necessary for equality between the 

coefficients). The second virial coefficient, B(T), can normally be determined 

in this manner over a broad temperature range of approximately kBT IE = 0.5 

to kBT IE= 5.0 where E is the well depth of the interaction. 

In the following section, the relationship of the second virial coefficient to 

the intermolecular potential will be examined, and the details of the calculation 

of second virial coefficients from a given potential discussed. In the final section, 

the FORTRAN subroutine for calculating second virial coefficients which was 

used in the determination of the argon-, and methane-methane potentials will be 

presented. 

A.2 Calculation 

A.2.1 The Classical Second Virial Coefficient 

The classical form of the second virial coefficient can be shown 2 to be related 
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to the intermolecular potential by the following equation. 

(2) 

The part of the integrand in Equation (2) which is dependent on r only through 

the intermolecular potential, namely e-U(r)/kaT - 1, is commonly called the 

Mayer function. For clarity of the discussion which follows, the Mayer function 

(multiplied by -2rr N Ar~in) is plotted as a function of the reduced internuclear 

distance ( _r_-) for several temperatures in Figure 1. It is evident from Figure 1 
r "'"' 

that the Mayer function is essentially constant at both small and large values of 

the internuclear distance. In both of these regions, Equation (2) can be evaluated 

analytically (as in the discussion that follows). 

At small internuclear separations, U(r) » kBT and the exponential term in 

Equation (2) becomes many orders of magnitude less than unity. Neglecting the 

exponential, the integral can be performed analytically. 

[e-U(r)/kaT- l]r2 dr ~ -r2 dr = --r~ l r.. lr.. 1 

0 0 3 
(3) 

In Equation (3), ra is chosen such that e-U(r .. )/kaT ~ 1. In the calculations 

used for our methane studies, ra was chosen as the point at which U(ra) = 20 

kcaljmol which in the worst case, the highest temperature datum (600 K), makes 

e-U(r .. )/k8 T ~ 5 X 10-8. 

At large internuclear distances, U(r) ~ kBT and the exponential can be 

expanded in a power series. 

(4) 
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Figure 1. The Mayer function, e-U(r)fkT -1, is plotted as a function of reduced 

separation (r/rmin) for two temperatures: 6.- 100 K, 0- 500 K. The reduced 

intermolecular potential (-- -) from which the functions were calculated is also 

shown to illustrate the sensitivity of the Mayer function to the potential. 
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Since in this region only the van der Waals dispersion terms ( C n r-n, n = 6, 8, .. . ) 

contribute to the potential, the integral can once again be performed analytically. 

l oo [( U(r)) ] 2 1 {C6 _3 Cs _5 } 1 - -- - 1 r dr = -- --rb + -rb + · · · r,. kBT kBT 3 5 
(5) 

In Equation (5), rb is chosen such that Equation (4) is valid and can be 

approximated by its first two terms. This point was selected to be the maximum 

value of r at which U(r) ~ -.002 kcal/mol. At that value of U(r), the lowest 

temperature datum (100 K) would have the third term of the expansion in 

Equation (4) less than .5% of the second term. 

The remainder of the integral, from r0 to rb was performed using Gaussian 

integration for an arbitrary interval:5 

rb b n 
Ja f(y) dy = ; a L wd(Yi) , 

0 i=l 

(6) 

where Yi = (b;a)Xi + b~a. Equation (6) transforms . the integral, which 

cannot normally be performed analytically, into a sum in which the integrand 

is evaluated at standard quadrature points (xi = the ith zero of the Legendre 

polynomial of degree n, Pn(x)) and multiplied by a weighting factor (wi = 

2/(1 - xt)[P~(xi)] 2 ) . The number of quadrature points used depends on the 

nature of the function and the degree of accuracy desired. For these calculations 

we have used 10 point quadrature for r < rmin and 32 point quadrature for 

r > r m i n · This amount of quadrature was found to be more than sufficient 

but was not decreased because the overall elastic scattering program spent a 

negligible amount of time in the virial subroutine. 
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A.2 .2 The Quantum Correction 

In order to fully quantify the second virial coefficient, the quantum 

mechanical nature of the interacting particles must be considered. This 

is normally accomplished using the semi-classical approach of Wigner6 and 

Kirkwood7 in which B(T) is expanded in a power series in ~. 

(7) 

The term Bperfect is a statistical correction for either Bose-Einstien(-) or Fermi-

Dirac(+) particles; however, this symmetry correction has been shown to lead to 

erroneous results8 and should not be used. In fact, exact phase shift calculations 

have shown that even for very low molecular weight Bose-Einstien or Fermi-

Dirac gases such as 3He or 4 He the deviation in B from Boltzman statistics 

(Bper feet = 0) is insignificant above ""' 7 K (it is the dominant term at 0 

K as would be expected) 8 although the actual value of Bperfect might not be 

insignificant. 

The coefficients, Bqi, in the expansion in Equation (7) are each related to 

the potential and its derivatives. For the gases of interest here, all but the first 

quantum correction term are negligible at all temperatures for which second virial 

coefficient data were available. The first quantum correction represents ""' 3% 

of the total second virial coefficient for methane at low temperature and must 

be included in the calculation. Figure 2 illustrates the difference between the 

classical values and the two term Wigner-Kirkwood values of the second virial 

coefficient of methane. Equation (8) shows the relationship between Bq1 and the 
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Figure 2. Delta B = Bexpt - Beale is shown for both the classical second 

virial coefficient ( 6) and the semi-classical second virial coefficient (D). Each 

is calculated from the methane-methane "Potential A" of Reid et al. 9 The 

experimental values with error bars are from Dymond and Smith. 11 
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intermolecular potential. 

(8) 

This correction can be evaluated in a manner similar to the classical second virial 

coefficient. In regions of small and large internuclear separations the integrand 

is many orders of magnitude less than its value in the region of the potential well 

and can therefore be neglected. This behavior is shown pictorially in Figures 3 a 

and b in which the logarithm of the integrand of Bq1 (for the methane-methane 

potential9 is plotted as a function of reduced separation (-r.-). For the smallest 
rm,n 

value of reduced separation shown in Figure 3 a (-r.- = .83) the integrand is 
rmtn 

already six orders of magnitude below its peak value and decreasing at a rate of 

approximately 120 orders of magnitude per reduced unit of separation. Similarly, 

at a reduced distance of 2.2, the integrand is once again six orders of magnitude 

smaller than its peak value and decreasing four orders of magnitude per reduced 

unit. Thus, we only need to evaluate the integral from about _r.- = .6 to 
r,.un 

_r.- = 10. The actual integral evaluation is done using Gaussian integration 
rm.n 

(Equation (6)). For simplicity, the same number of quadrature points were used 

as in the classical calculation. 

A.2 .3 Sensitivity to the Potential 

The second virial coefficient data, while not nearly as sensitive to the 

intermolecular potential as our differential cross sections, 10 adds more constraints 

to our multiparameter potentials. In particular, the high temperature data 

(Figures 1 and 3 b) are almost exclusively influenced by the position and slope 
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Figure 3a. The logarithm of the integrand of the first quantum correction to 

the classical second virial coefficient as a function of reduced intermolecular 

separation is displayed for a temperature of 100 K. The reduced potential used 

in the calculation of the integrand is also shown (- - -). Note: the kinks in 

the integrand are at those values of the reduced separation where the piecewise 

functions of the MMSV potential are joined together. 
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Figure 3b. The logarithm of the integrand of the first quantum correction to 

the classical second virial coefficient as a function of reduced intermolecular 

separation is displayed for a temperature of 500 K. The reduced potential used 

in the calculation of the integrand is also shown (- - -). Note: the kinks in 

the integrand are at those values of the reduced separation where the piecewise 

functions of the MMSV potential are joined together. 
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of the "hard wall" of the potential. In the MMSV potential used in Chapter 

2, this data would then affect the value of the Morse wall shape parameter, {31 • 

The low energy differential cross sections by themselves are not overly sensitive 

to the value of that parameter and therefore, the second virial coefficient data is 

necessary to determine a reliable value of that parameter. 

The low temperature data (Figures 1 and 3 a) are sensitive to the well width 

as a function of its depth, 2 and therefore mainly influence the Morse well shape 

parameter, {32 , since the depth of the well is fixed by the rainbow maxima of the 

differential cross sections. 

A.2.4 Mixtures 

Second virial coefficients for mixtures of gases are determined by finding the 

coefficients of the power series in density (Equation (1)) for a known composition 

mixture and for those of the pure gases. The interaction second virial coefficient, 

B 12 (T), is then determined using the following combination rule, 

n n 

Bmi:e = LLXiXjBij, 
i=l j=l 

(9) 

in which Xi is the mole fraction of component i. The interaction second virial 

coefficient for a binary mixture, can then be related to the intermolecular 

potential between component gases in the same manner as B(T) for pure gases. 

The only difference in the equations presented earlier is that in Equation (7), 2p,, 

where p, is the reduced mass, should be substituted form. There is significantly 

more uncertainty associated with determining B 12 since it is affected by the 

cumulative uncertainties in B 11 and B 22 in addition to the uncertainty in Bmi:e· 
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The effects of this compounded uncertainty are evident in the displacement of the 

data sets of different investigators 11 in the argon-methane second virial coefficient 

data used in the potential determination of Chapter 2. These investigators 

each quoted error bars of 1-2 cc/mol while the agreement between authors was 

often worse than 20 ccjmol. For this reason, it was necessary to increase the 

uncertainties used to determine "best fits." The argon-methane interaction 

second virial coefficients are presented, by investigator, as the difference from 

the calculated values in Figure 4. 

A.3 FORTRAN Subroutine 

The following is a FORTRAN subroutine used to calculate second virial 

coefficients from an intermolecular potential provided by the user. The potential 

is generated within the program by calls to a subroutine, POT, which is a 

user supplied subroutine that calculates an analytical potential from parameters 

passed to the subroutine in array A{l=1 to 15}. The input data, such as the 

experimental values of the second virial coefficient and the associated errors are 

passed to the subroutine from the calling program through the common block, 

COMMON/VIR. The calculated second virial coefficients are then passed back 

to the calling program in that same common block. The units of the second virial 

coefficients on both input and output are the traditional units of cm3 /mol. 
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Figure 4. Delta B = Bcalc-Bexpt is exhibited for the argon-methane second virial 

coefficient data used in the argon-methane potential determination of Chapter 

2. Delta B = 0 would be perfect agreement with the potential from Chapter 2. 

The experimental data is presented by investigator: 0- Ref. 12, 0 -Ref. 13, 

/:::,.-Ref. 14, +-Ref. 15, x -Ref. 16, 0- Ref. 17. 
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SUBROUTINE VIRIAL(A,BTCHI) 
c ........................................................................... . 
C SUBROUTINE TO CALCULATE SECOND VIRIAL COEFFICIENTS 
C FROM POTENTIAL SUPPLIED. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

CALCULATION IS SIMILAR TO THAT DISCUSSED IN PACK,et al. 
JCP,77(11) ,p.5479. 

QUADRATURE POINTS AND WEIGHTS ARE FROM Handbook of 
Mathematical Functions ed. by Abramowitz and Stegun, 
Dover Publications, New York, (1965) pp.887,888,916,917. 

*****INPUT DATA***** 
NVIR= # of virial coefficient data points 
NVFLG= 0 :no virial coefficient data(no calculation) 

1 :virial coefficient data exists( calculation) 
DEGK(I)= the temperatures, in degrees Kelvin, to which 

data corresponds 
BTDAT(I)= the expt. virial coef. in units of cubic 

centimeters per mole 
BTERR(I)= the error associated with BTDAT(I) 
NC6= the index of the c6 term in array A 
NC8= the index of the c8 term in array A 
NC10= the index of the clO term in array A 
XI(I)= zeros of the Legendre polynomials( quad points) 

for integral over r<rmin 
WI(I)= weights for Gaussian integration at XI(I) 
X2I(I) = zeros of the Legendre polynomials 

for integral over r>rmin 
W2I(I) = weights for Gaussian integration at X2I(I) 
RM= reduced mass in amu 
A(I)= potential parameters 

A(1) is always the well depth in Kcal/mol 
A(2) is always the position of the well minimum 

in Angstroms 
********************** 

C **** OUTPUT DATA***** 
C BTCHI= the normalized chi square error 
C BT(I)= the calculated virial coefficients at the 
C temperature DEGK(I). In cubic em/mol 
c ********************** 
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c 
C **** SUBROUTINES ***** 
C POT(X,A,V,VP,L,RM)-calculates potential at L values 
C of the reduced internuclear separation, X(I), 
C and returns the reduced potential and its 
C reduced derivative in V(I) and VP(I). 
c ********************** 
c ............................................................................. . 

DIMENSION A(15),X(10),V(10),VP(10) 
DIMENSION Xl(5), WI(10), YI( 10) ,RI( 10) ,RI2 (10) ,VI( 10) 
DIMENSION X21(16), W21(32),Y21(32) ,R21(32) ,R212(32) ,V21(32) ,Y2(8) 
DIMENSION QYI(10),QRI(10),QRI2(10),QV(10),QVI(10),QVPI(10) 
DIMENSION QY21(32),QY2(8),QR21(32),QR2I2(32) 
DIMENSION QV21(32),QVP2I(32) 
DATA (XI(I) ,I=1,5) I .14887 4,.433395,.679410,.865063,.973907 I 
DATA (WI(I) ,I=1,5) I .295524,.269267,.219086,.149451,.0666711 
DATA (X2I(I) ,I=1,16) I .04831,.1444 7,.23929,.33187 ,.42135, 

& .50690,.58772,.66304,. 73218,. 79448,.84937,.89632,.93491, 
& .96476,.98561,.997261 
DATA (W2I(I) ,1=1,16) I .09654,.09564,.09384,.09117 ,.08765, 

& .08331,.07819,.07235,.06582,.05868,.05100,.04284,.03427' 
& .02539,.01627,.007011 
DATA BOLTZ,PI,AVAGIL98717E-03,3.14159,6.02205E+23I 
DATA CONST,TOPINI1.9367E+14,3.784E+24I 
COMMON IVIRINVFLG,NVIR,DEGK(100) ,BTD AT(100), 

& BTERR(100),BT(100),NC6,NC8,NC10,RM 
c ............................................................................. . 

IF(NVFLG.EQ.O) GOTO 200 
RMIN=A(2)*1.E-08 

C ******* CLASSICAL CALCULATION ******* 
C DIVIDE POTENTIAL INTO 3 SEGMENTS. CALCULATION CAN 
C BE PERFORMED ANALYTICALLY AT SMALL(LESS THAN X1) 
C AND LARGE(GREATER THAN X2) VALUES OF REDUCED R. 
C X1 AND X2 ARE CHOOSEN SUCH THAT THE POTENTIAL AT 
C X1 >20 KCALIMOL AND AT 
C X2 >-.002 KCALIMOL(V1 & V2). 
c 
C *******QUANTUM CORRECTION******* 
C DIVIDE POTENTIAL INTO 4 SEGMENTS. INTEGRAL CAN BE 
C IGNORED AT X<.6 AND AT X>10. REMAINING VALUES 
C OF X ARE INTEGRATED FOR R<RMIN (TEN POINT 
C QUADRATURE) AND R>RMIN (THIRTY TWO POINT 



- 145-

C QUADRATURE). INITIALLY, THE NAT. LOG OF THE 
C VARIOUS COMPONENTS OF THE INTEGRAL ARE 
C CALCULATED TO AVOID OVER(UNDER) FLOWS. 
c 

c 

V1=20./ A(1) 
V2=-.002/ A(1) 

C INITIAL QUESS AT X1 AND X2 
c 

X1=.6 
X2=2.5 
L=2 
DO 10 M=1,50 
X(1)=X1 
X(2)=X2 
CALL POT(X,A,V,VP,L,RM) 
X1=X(l)+(Vl-V(l)) /VP(l) 
X2=X(2)+(V2-V(2)) /VP(2) 
IF(ABS(X1-X(1)).GT.l.E-02*X1) GOTO 10 
IF(ABS(X2-X(2)).LE.l.E-02*X2) GOTO 20 

10 CONTINUE 
c 
C CALCULATE QUAD POINTS (&POTENTIAL AT THOSE PTS.) 
C FOR R<RMIN- TEN POINT QUADRATURE 
C Q*** APPLIES TO QUANTUM CORRECTION 
c 
20 DELX=(l.-X1)/2. 

SUMX=(l.+Xl)/2. 
DO 30 I=1,5 
YI(I) =DELX*XI(I) +SUMX 
QYI(I)=.2*XI(I)+.8 
J=I+5 
YI(J)=SUMX-DELX*XI(I) 
QYI(J)=.8-.2*XI(I) 
WI(J)=WI(I) 

30 CONTINUE 
L=10 
CALL POT(YI,A,V,VP,L,RM) 
CALL POT(QYI,A,QV,VP,L,RM) 
DO 40 I=1,10 
RI(I) = YI(I) *RMIN 
RI2 (I) =RI(I) *RI(I) 
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VI(I)=V(I)* A(1)/BOLTZ 
QRI(I)=QYI(I) *RMIN 
QRI2(I)=2. * ALOG(QRI(I)) 
QVI(I)=QV(I)* A(1)/BOLTZ 
QVPI(I)=2.* ALOG(ABS(VP(I)* A(1)/RMIN)) 

40 CONTINUE 
c 
C CALCULATE QUAD POINTS (&POTENTIAL AT THOSE POINTS) 
C FOR R>RMIN- 32 POINT QUADRATURE 
C Q*** APPLIES TO QUANTUM CORRECTION 
c 

DELX2=(X2-1.)/2. 
SUMX2=(X2+1.)/2. 
DO 50 I=1,16 
Y2I(I)=DELX2*X2I(I)+SUMX2 
QY2I(I)=4.5*X2I(I)+5.5 
J=I+16 
Y2I( J) =SUMX2-D ELX2*X2I(I) 
Q Y2I( J) =5.5-4 .5 *X2I(I) 
W2I( J) = W2I(I) 

50 CONTINUE 
L=8 
DO 80 I=0,3 
DO 60 J=1,8 
Y2(J)=Y2I(J+I*8) 
QY2(J)=QY2I(J+I*8) 

60 CONTINUE 
CALL POT(Y2,A,V,VP,L,RM) 
CALL POT(QY2,A,QV,VP,L,RM) 
DO 70 J=1,8 
K=J+I*8 
R2I(K)= Y2I(K) *RMIN 
R2I2(K)=R2I(K)*R2I(K) 
V2I(K)=V(J)* A(1)/BOLTZ 
QR2I(K)=QY2I(K)*RMIN 
QR2I2(K)=2.* ALOG(QR2I(K)) 
QV2I(K)=QV(J)* A(1)/BOLTZ 
QVP2I(K)=2.* ALOG(ABS(VP(J)* A(1)/RMIN)) 

70 CONTINUE 
80 CONTINUE 
c 
C INTEGRAL OVER REGION 1 - R LESS THAN X1 
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c 
R1=X1*RMIN 
BT1=2.*PI* AVAG*R1 **3/3. 

c 
C PART OF REGION 3 INTEGRAL INDEPENDENT OF TEMP. 
c 

c 

R2=X2*A(2) 
C6=A(NC6) 
C8=A(NC8) 
C10=A(NC10) 
PROD=C6/ (3. *R2**3)+C8/ (5. *R2**5)+C10/ (7. *R2**7) 
BT3T=-TOPIN*PROD*l.E-24/BOLTZ 

C TEMPERATURE DEPENDENT INTEGRALS 
c 

BTCHI=O. 
DO 110 I=1 ,NVIR 
BT3=BT3T /DEGK(I) 
BT2=0. 
BT22=0. 
QBT1=0. 
QBT2=0. 
DO 90 J=1,10 
BT2=BT2+ WI(J) *(EXP(-VI(J) /DEGK(I))-1.) *RI2(J) 
QBT1=QBT1+WI(J)*EXP(QVPI(J)+QRI2(J)-QVI(J)jDEGK(I)) 

90 CONTINUE 
DO 100 J=1,32 
BT22=BT22+ W2I( J) * (EXP (-V2I( J) /D EG K (I) )-1.) *R2I2 ( J) 
QBT2=QBT2+W2I(J)*EXP(QVP2I(J)+QR2I2(J)-QV2I(J)/DEGK(I)) 

100 CONTINUE 
BT2=(BT2*DELX+BT22*DELX2)*RMIN*(-TOPIN) 
QBT=(CONST/DEGK(I)**3/RM)*RMIN*(.2*QBT1+4.5*QBT2) 
CBT=BT1 + BT2+ BT3 
BT(I)=QBT+CBT 
BTCHI=BTCHI+((BT(I)-BTDAT(I))/BTERR(I))**2 

110 CONTINUE 
BTCHI=BTCHI/NVIR 

200 CONTINUE 
RETURN 
END 
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Neon-Methane and Argon-Methane Data 

It has become customary to publish the raw data obtained from scattering 

experiments. This data can then be used with more sophisticated analysis or 

new information to obtain more realistic potentials. It is conceivable that the 

data from this experiment could be used by someone adept at close-coupling 

calculations to produce an improved anisotropic potential for argon-methane or 

a more realistic anisotropic potential for neon-methane. 

The neon-methane data is found in Tables 1-3 for the 375, 637, and 1010 K 

collision energies respectively. The argon-methane data is reproduced in Tables 

4-6 for the 400, 678, and 1081 K collision energies respectively. In each table, 

e is the laboratory scattering angle and .6. is the estimated uncertainty in the 

datum measured at angle 0. For these systems, ~.6. was estimated as in Equation 

(26) of Chapter 1, except for angles less than 5° where the method in Reference 

42 of Chapter 1 was used. 
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Table 1: Neon-methane {975 K) 

e Signal .6. e Signal .6. 

2.50 1611.47 85.99 13.50 42.32 1.00 
2.75 1629.21 78.51 13.75 39.63 1.02 
3.00 1464.31 63.27 14.00 37.96 0.96 
3.25 1307.32 50.30 14.25 33.89 0.98 
3.50 1021.16 34.81 14.50 32.21 0.94 
3.75 854.32 25.44 15.00 28 .23 0.92 
4.00 689.40 17.61 15.50 26.75 0.88 
4.25 649.74 13.55 16.00 25.93 0.88 
4.50 628.84 9.89 16.50 23.06 0.88 
4.75 659.74 6.94 17.00 21.50 0.88 
5.00 627.00 3.52 17.50 19.40 0 .88 
5.25 586.35 3.58 18.00 18.33 0.88 
5.50 488.64 3.46 18.50 17.60 0.86 
5.75 421.18 3.48 19.00 16.63 0.86 
6.00 341.14 3.34 19.50 16.04 0.86 
6.25 315.06 3.36 20.00 15.34 0.86 
6.50 295.92 3.22 21.00 13.92 0.84 
6.75 311.52 3.24 22 .00 13.50 0.84 
7.00 304.02 2.56 23.00 12.61 0.84 
7.25 287.81 2.54 24.00 11.97 0.82 
7.50 255.82 2.12 25.00 11.58 0.82 
7.75 216.17 2.44 26.00 10.91 0.82 
8.00 179.94 2.04 27.00 10.66 0.82 
8.25 158.54 2.32 28.00 10.49 0.80 
8.50 147.55 1.94 29.00 9.97 0.80 
8.75 148.69 2.22 30.00 9.09 1.98 
9.00 146.52 1.86 31.00 8.65 0.84 
9.25 144.67 2.10 32.00 8.67 0.64 
9.50 131.37 1.76 33.00 9.11 0.56 
9.75 113.09 1.96 34.00 8.18 0.52 

10.00 100.00 2.00 35.00 8.32 0.50 
10.25 86.49 1.82 36.00 7.89 0.48 
10.50 76.88 1.54 37.00 7.48 0.48 
10.75 74.87 1.68 38.00 7.23 0.48 

- continued-
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Table 1: continued 

e Signal .6. e Signal .6. 

11.00 74.61 1.44 39.00 6.96 0.48 
11.25 74.74 1.54 40.00 7.03 0.42 
11.50 . 72.15 1.32 41.00 6.89 0.42 
11.75 67.22 1.40 42.00 6.83 0.42 
12.00 59.75 1.20 43.00 6.92 0.42 
12.25 53.40 1.26 45 .00 6.29 0.42 
12.50 47.37 1.10 47.00 6.06 0.42 
12.75 45.24 1.14 49.00 5.75 0.44 
13.00 42.42 1.04 51.00 6.15 0.44 
13.25 42.01 1.08 
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Table 2: Neon-methane {697 K} 

e Signal ~ e Signal ~ 

3.00 2248.69 92.53 12.25 42.98 1.32 
3.25 1885.23 68.40 12.50 42.40 1.26 
3.50 1762.99 55.20 12.75 40.22 1.20 
3.75 1636.74 43.13 13.00 39.61 1.12 
4.00 1437.32 30.89 13.25 36.87 1.10 
4.25 1127.26 18.97 13.50 36.40 1.06 
4.50 875.36 10.75 13.75 35.44 1.04 
4.75 709.05 5.51 14.00 34.18 1.00 
5.00 639.53 3.82 14.25 32.76 0.98 
5.25 618.04 3.82 14.50 32.39 0.96 
5.50 576.08 3.80 14.75 31.53 0.96 
5.75 491.43 3.76 15.00 30.42 0.94 
6.00 391.88 3.72 15.50 28.51 0.92 
6.25 304.82 3.64 16.00 27.20 0.92 
6.50 260.22 3.60 16.50 24.96 0.90 
6.75 244.06 3.54 17.00 24.91 0.90 
7.00 239.39 3.50 17.50 25.03 0.92 
7.25 223.73 3.38 18.00 23.34 0.92 
7.50 191.25 3.32 18.50 23.64 0.92 
7.75 153.01 3.28 19.00 23.16 0.90 
8.00 129.82 3.20 19.50 21.94 0.90 
8.25 112.64 3.12 20.00 20.67 0.90 
8.50 106.38 3.04 21.00 19.75 0.76 
8.75 107.70 2.94 22.00 18.73 0.76 
9.00 100.17 0.60 23.00 18.16 0.74 
9.25 89.81 2.30 24.00 17.06 0.74 
9.50 73.79 2.20 25 .00 16.44 0.72 
9.75 66.18 2.12 26.00 15.97 0.74 

10.00 63.57 2.06 28.00 14.65 0.72 
10.25 60.19 1.98 30.00 14.23 0.72 
10.50 59.50 1.90 32.00 13.53 0.72 
10.75 58.21 1.80 34.00 12.92 0.72 
11.00 53.13 1.72 36.00 12.39 0.72 
11.25 50.72 1.62 38.00 11.24 0.72 
11.50 46.44 1.54 40.00 10.80 0.72 
11.75 43.72 1.48 42.00 10.42 0.72 
12.00 44.16 1.44 44.00 10.72 0.72 
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Table 3: Neon-methane {1010 K} 

e Signal A e Signal A 

2.50 608.70 43.57 17.00 5.44 0.38 
3.00 440.90 29.20 18.00 4.82 0.37 
3.50 272.90 18.74 19.00 4.75 0.37 
4.00 165.90 13.18 20.00 4.58 0.37 
4.50 132.90 10.78 21.00 4.15 0.26 
5.00 84.24 0.80 22.00 4.08 0.26 
5.50 56.82 0.80 23.00 3.80 0.25 
6.00 46.14 0.89 24.00 3.76 0.25 
6.50 31.57 0.74 25.00 3.62 0.25 
7.00 24.29 0.71 26.00 3.22 0.25 
7.50 21.33 0.79 28.00 3.08 0.24 
8.00 16.39 0.76 30.00 3.13 0.24 
8.50 13.57 0.74 32.00 2.88 0.24 
9.00 12.39 0.71 34.00 2.65 0.24 
9.50 10.94 0.68 36.00 2.69 0.25 

10.00 10.00 0.60 38.00 2.44 0.25 
11.00 8.88 0.51 40.00 2.43 0.25 
12.00 8.18 0.45 42.00 2.36 0.25 
13.00 7.14 0.41 44.00 2.42 0.26 
14.00 7.06 0.39 46.00 2.12 0.26 
15.00 6.51 0.38 48.00 2.33 0.26 
16.00 6.03 0.38 50.00 2.33 0.26 
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Table 4: Argon-methane {400 K} 

e Signal .6. e Signal .6. 

3.50 769.67 29.71 16.00 42.38 1.42 
3.75 668 .15 23.28 16.50 43 .20 1.42 
4.00 602.57 18.29 17.00 40.38 1.40 
4.25 527.69 14.10 17.50 42.05 1.40 
4.50 487.39 10.65 18.00 42.76 1.38 
4.75 454.24 8.19 18.50 41.93 1.38 
5.00 436.68 5.74 19.00 41.42 1.38 
5.25 409.31 5.86 19.50 39.84 1.36 
5.50 384.06 5.56 20.00 40.14 1.38 
5.75 342.13 5.78 21.00 38.83 1.18 
6.00 325.76 5.54 22.00 36.57 1.18 
6.25 293.61 5.62 23.00 35.20 1.16 
6.50 279.44 5.22 24.00 33.26 1.14 
6.75 268.06 5.44 25.00 29.55 1.14 
7.00 252.22 5.16 26.00 26.89 1.14 
7.25 241.45 5.30 27.00 25.16 1.12 
7.50 214.67 4.86 28.00 22.22 1.10 
7.75 201.05 5.14 29.00 20.61 1.10 
8.00 186.84 4.80 30.00 18.35 1.10 
8.25 172.70 4.04 31.00 16.63 0.86 
8.50 160.58 4.46 32.00 14.75 0.90 
8.75 152.20 3.86 33.00 12.58 0.86 
9.00 142.75 4.04 34.00 12.15 0.90 
9.25 132.93 3.66 35.00 10.31 0.86 
9.50 117.58 3.70 36.00 10.85 0.90 
9.75 111.02 3.46 37.00 9.22 0.86 

10.00 100.00 3.36 38.00 9.97 0.88 
10.25 94.10 3.26 39.00 8.52 0.86 
10.50 86.49 2.62 40.00 8.48 0.88 
10.75 82.12 3.02 41.00 7.15 0.90 

- continued-



- 157-

Table 4: continued 

E> Signal ~ E> Signal ~ 

11.00 74.35 2.42 42.00 7.10 0.88 
11.50 65.27 2.20 43.00 6.90 0.90 
12.00 59.10 2.00 44.00 6.82 0.88 
12.50 55.47 1.82 45.00 7.01 0.92 
13.00 49.27 1.70 46.00 6.15 0.88 
13.50 49.71 1.60 47.00 6.62 0.90 
14.00 45.38 1.54 48.00 5.72 0.88 
14.50 45.22 1.50 49.00 4.89 0.92 
15.00 42.12 1.48 50.00 6.02 0.88 
15.50 42.24 1.44 
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Table 5: Argon-methane (678 K} 

E> Signal ~ E> Signal ~ 

2.50 1929.63 103.5 14.50 72.03 1.53 
3.00 1240.31 55.62 14.75 69.14 1.21 
3.50 902.89 32.55 15.00 65.08 1.49 
4.00 667.58 18.49 15.25 64.80 1.18 
4.50 441.17 9.28 15.50 60.69 1.45 
5.00 321.83 4.76 15.75 58.48 1.16 
5.50 240.28 4.72 16.00 56.98 1.44 
6.00 175.00 4.62 16.25 54.03 1.16 
6.50 138.15 4.45 16.50 51.57 1.44 
7.00 119.00 4.29 16.75 48.78 1.16 
7.50 107.41 3.38 17.00 46.52 1.30 
7.75 104.03 3.30 17.25 44.79 1.08 
8.00 100.81 3.26 17.50 41.96 1.29 
8.25 99.62 3.16 17.75 41.03 1.08 
8.50 95.93 3.10 18.00 38.23 1.31 
8.75 98.56 3.00 18.25 36.72 1.08 
9.00 97.43 2.91 18.50 35.41 1.31 
9.25 97.54 2.81 18.75 33.26 1.08 
9.50 99.58 2.75 19.00 31.43 1.32 
9.75 99.42 2.66 19.25 29.89 1.09 

10.00 100.00 0.84 19.50 27.33 1.33 
10.25 100.79 2.49 19.75 27.80 1.09 
10.50 101.52 2.98 20.00 25.75 1.09 
10.75 104.04 2.28 21.00 22.09 1.34 
11.00 100.85 2.69 22.00 16.73 1.82 
11.25 101.22 2.07 23.00 16.00 1.80 
11.50 98.21 2.42 24.00 13.21 1.78 
11.75 96.28 1.86 25.00 11.24 1.76 
12.00 96.30 2.19 26.00 10.21 1.22 
12.25 92.09 1.67 28.00 8.42 0.70 
12.50 91.14 1.97 30.00 7.37 0.70 
12.75 89.94 1.51 32.00 6.68 0.70 
13.00 86.23 1.78 34.00 6.46 0.71 
13.25 85.01 1.38 36.00 5.98 0.73 
13.50 82.43 1.66 38.00 6.10 0.72 
13.75 80.43 1.29 40.00 5.73 0.74 
14.00 77.79 1.57 42.00 5.67 0.71 
14.25 74.49 1.25 44.00 4.60 0.70 
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Table 6: Argon-methane {1081 K} 

E> Signal .6. 0 Signal .6. 

2.50 1134.09 63.63 18.00 12.19 0.78 
3.00 637.10 31.48 19.00 10.37 0.78 
3.50 416.38 17.99 20.00 9.01 0.52 
4.00 318.43 11.57 21.00 7.80 0.54 
4.50 267.84 7.64 22.00 7.21 0.54 
5.00 239.16 4.16 23.00 7.02 0.54 
5.50 223.89 3.94 24.00 6.75 0.54 
6.00 210.81 3.84 25.00 5.65 0.50 
6.50 201.62 3.66 26.00 5.64 0.52 
7.00 184.65 3.54 27.00 5.10 0.50 
7.50 175.18 2.76 28.00 4.80 0.50 
8.00 161.04 2.48 29.00 5.03 0.50 
8.50 142.47 2.36 30.00 4.90 0.46 
9.00 126.85 2.26 32.00 4.17 0.48 
9.50 113.90 2.16 34.00 4.60 0.50 

10.00 100.02 1.80 36.00 3.65 0.48 
11.00 74.22 1.50 38.00 3.78 0.48 
12.00 57.26 1.32 40.00 3.77 0.48 
13.00 44.13 1.16 42 .00 3.95 0.48 
14.00 31.41 1.10 44.00 3.60 0.48 
15.00 23.84 0.92 46.00 3.31 0.48 
16.00 18.09 0.80 48.00 3.03 0.48 
17.00 14.41 0.78 50.00 3.12 0.48 
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Appendix C 

Helium-Chlorine and Neon-Chlorine 
Experimental Data 
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Helium-Chlorine and Neon-Chlorine Data 

It has become customary to publish the raw data obtained from scattering 

experiments. This is especially important in this case since this data is part of 

an ongoing study by another investigator. In addition, in light of my lack of 

satisfaction with the helium-chlorine potential, more extensive investigations are 

in order. 

The helium-chlorine data is found in Tables 1 and 2 for the 340, and 511 

collision energies respectively. The neon-chlorine data is reported in Tables 3 

and 4 for the 464, and 612 collision energies respectively. In each table, 0 is 

the laboratory scattering angle and~ is the estimated uncertainty in the datum 

measured at angle 0. For these systems, ~ is the 90% confidence limit for 

replicate measurements as in Reference 41 of Chapter 1. 
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Table 1: Helium-chlorine (340 K) 

E> Signal A E> Signal A 

5.00 1287.70 179.34 16.50 98.19 10.52 
5.50 1085.22 43.97 17.00 94.89 6.75 
6.00 1153.16 115.54 17.50 90.03 7.31 
6.50 1028.51 38.39 18.00 80.12 10.64 
7.00 943.60 88.04 18.50 72.01 7.34 
7.50 694.93 26.82 19.00 58.10 6.20 
8.00 523.13 42.05 19.50 62.17 6.48 
8.50 362.91 13.33 20.00 56.43 6.04 
9.00 285.17 25.94 21.00 58.06 6.30 
9.50 231.04 13.19 22.00 48.59 6.67 

10.00 267.25 12.23 23.00 45.94 7.95 
10.50 274.50 11.05 24.00 47.14 6.45 
11.00 298.65 12.72 25.00 45.28 10.30 
11.50 274.86 8.32 26.00 42.69 8.89 
12.00 260.37 10.78 27.00 41.44 7.69 
12.50 209.77 10.53 28.00 39.26 8.78 
13.00 170.40 7.54 29.00 35.53 7.99 
13.50 131.31 11.35 30.00 36.36 6.17 
14.00 116.56 7.57 31.00 33.80 7.45 
14.50 94.27 6.23 32.00 32.04 6.21 
15.00 100.00 7.00 33.00 31.01 6.48 
15.50 98.85 7.27 34.00 37.15 6.28 
16.00 100.77 8.42 35.00 32.45 6.31 
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Table 2: Helium-chlorine (511 K) 

e Signal ~ e Signal ~ 

5.00 537.56 24.10 16.50 26.20 2.38 
5.50 447.72 15.96 17.00 24.89 2.37 
6.00 335.57 6.44 17.50 24.40 2.33 
6 .50 232.73 10.01 18.00 23.20 2.33 
7.00 150.82 6.80 18.50 20.52 2.33 
7.50 115.94 4.64 19.00 19.67 2.32 
8.00 102.80 4.88 19.50 18.03 2.49 
8.50 112.86 4.43 20.00 19.80 2.29 
9.00 114.96 4.99 21.00 16.49 2.67 
9.50 114.13 4.24 22 .00 17.00 2.55 

10.00 100.00 4.00 23.00 16.46 2.55 
10.50 75.61 4.00 24.00 13.15 2.60 
11.00 58.56 3.63 25.00 14.97 3.33 
11.50 45 .92 2.72 26.00 14.82 3.41 
12.00 39.43 2.70 27.00 14.75 2.54 
12.50 38.31 2.68 28.00 13.63 2.46 
13.00 42.87 3.12 29.00 12.90 2.45 
13.50 42.54 3.05 30.00 12.51 2.46 
14.00 38.80 3.34 31.00 12.10 2.39 
14.50 37.48 2.55 32.00 10.34 2.57 
15.00 31.26 2.57 33.00 14.00 2.39 
15.50 28.55 2.40 34.00 14.08 2.82 
16.00 27.64 2.38 35.00 11.22 2.39 
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Table 3: Neon-chlorine (464 K) 

e Signal .6. e Signal .6. 

4.00 371.58 9.42 16.50 31.24 0.94 
4.50 294.27 3.58 17.00 28.32 0.68 
5.00 240.78 3.74 17.50 25.39 0.84 
5.50 202.92 2.34 18.00 23.70 0.76 
6.00 186.00 2.27 18.50 21.69 0.68 
6.50 169.37 4.23 19.00 19.48 0.79 
7.00 155.16 2.02 19.50 17.82 0.56 
7.50 144.71 1.79 20.00 16.96 0.80 
8.00 135.53 2.15 21.00 14.75 0.76 
8.50 124.62 2.59 22.00 13.04 0.95 
9.00 114.57 2.41 23.00 11.12 0.51 
9.50 109.89 1.84 24.00 10.38 0.56 

10.00 100.00 2.00 25.00 9.16 0.69 
10.50 93.27 2.35 26.00 8.51 0.68 
11.00 86.61 2.16 27.00 7.79 0.49 
11.50 80.25 1.63 28.00 8.04 0.49 
12.00 72.88 1.21 29.00 7.30 0.54 
12.50 67.56 0.96 30.00 6.92 0.48 
13.00 61.80 1.51 31.00 6.72 0.48 
13.50 56.68 1.25 32.00 6.35 0.48 
14.00 51.17 0.99 34.00 6.69 0.48 
14.50 46.34 0.95 36.00 5.78 0.48 
15.00 42.03 0.81 38.00 5.91 0.52 
15.50 36.85 0.83 40.00 5.58 0.48 
16.00 34.77 0.84 
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Table 4: Neon-chlorine {612 K) 

e Signal ~ e Signal ~ 

4.50 354.49 2.85 14.25 32.88 0.52 
4.75 325.36 2.32 14.50 30.77 0.62 
5.00 309.16 2.21 14.75 29.26 0.83 
5.25 297.32 1.59 15.00 27.79 0.50 
5.50 284.77 1.57 15.25 26.18 0.58 
5.75 265.80 2.66 15.50 24.66 0.47 
6.00 245 .04 1.76 15.75 23.25 0.47 
6.25 231.61 1.39 16.00 21.86 0.57 
6.50 222.94 1.95 16.25 20.73 0.54 
6.75 214.94 2.00 16.50 19.49 0.54 
7.00 205.26 1.51 16.75 18.73 0.42 
7.25 191.62 1.18 17.00 17.55 0.51 
7.50 178.33 2.03 17.25 17.02 0.54 
7.75 167.23 2.69 17.50 16.27 0.69 
8.00 160.18 1.77 17.75 15.31 0.42 
8.25 154.53 1.37 18.00 14.61 0.37 
8.50 144.44 1.38 18.25 14.22 0.53 
8.75 136.04 1.13 18.50 13.84 0.37 
9.00 125.47 1.14 18.75 12.94 0.42 
9.25 118.04 1.38 19.00 12.79 0.37 
9.50 111.57 1.86 19.25 12.03 0.58 
9.75 106.35 1.48 19.50 11.80 0.37 

10.00 100.00 1.00 19.75 11.11 0.56 
10.25 93.33 0.68 20.00 11.04 0.78 
10.50 86.24 0.62 21.00 9.65 0.51 
10.75 80.43 0.65 22.00 8.97 0.80 
11.00 76.41 0.76 23.00 8.27 0.40 
11.25 71.52 0.83 24.00 7.89 0.40 
11.50 67.60 0.55 25.00 7.22 0.93 
11.75 63.29 0.58 26.00 7.07 0.39 

- continued -
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Table 4: continued 

E> Signal A E> Signal A 

12.00 59.19 0.76 27.00 6.50 0.50 
12.25 55.25 0.54 28.00 6.72 0.38 
12.50 51.93 0.67 29.00 6.01 0.38 
12.75 48.82 0.66 30.00 6.22 0.38 
13.00 45.50 0.52 32.00 5.38 0.69 
13.25 43.00 0.86 34.00 5.60 0.38 
13.50 39.87 0.61 36.00 5.39 0.50 
13.75 37.38 0.47 38.00 5.16 0.38 
14.00 35.19 0.60 40.00 4.63 0.47 


