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ABSTRACT

The global economy has been transformed by the introduction of online platforms in
the past two decades. These companies, such as Uber and Amazon, have benefited
and undergone massive growth, and are a critical part of the world economy today.
Understanding these online platforms, their designs and how participation change
with anticipation and uncertainty can help us identify the necessary ingredients for
successful implementation of online platforms in the future, especially for those
with underlying network constraints, e.g., the electricity grid.

This thesis makes three main contributions. First, we identify and compare com-
mon access and allocation control designs for online platforms, and highlight their
trade-offs between transparency and control. We make these comparisons under a
networked Cournot competition model and consider three popular designs: (i) open
access, (ii) discriminatory access, and (iii) controlled allocation. Our findings re-
veal that designs that control over access are more efficient than designs that control
over allocations, but open access designs are susceptible to substantial search costs.
Next, we study the impact of demandmanagement in a networked Stackelbergmodel
considering network constraints and producer anticipation. We provide insights on
limiting manipulation under these constrained networked marketplaces with nodal
prices, and show that demand management mechanisms that traditionally aid system
stability also help plays a vital role economically. In particular, we show that demand
management empower consumers and give them “market power” to counter that of
producers, limiting the impact of their anticipation and their potential for manipu-
lation. Lastly, we study how participants (e.g., drivers on Uber) make competitive
real-time production (driving) decisions. To that end, we design a novel pursuit
algorithm for making online optimization under limited inventory constraints. Our
analysis yields an algorithm that is competitive and applicable to achieve optimal
results in the well known one-way trading problem, and new variants of the original
problem.
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C h a p t e r 1

INTRODUCTION

Before the insurgence of platforms, the world for decades was dominated primarily
by “pipeline businesses” with linear value chains. Manufacturers in the past buy
rawmaterials, add value by inventively combining them, and selling the end product
at a significantly higher cost than the constituent raw materials. The value chain
adds value and creates a competitive advantage through five primary activities, (i)
inbound logistics, (ii) operations, (iii) outbound logistics, (iv) marketing and sales,
and (v) service. Traditional firms carefully manage their production quantity and
prices to maximize profits.

A lot has changed since then. The emergence of platforms has led to a new paradigm
of online marketplaces. These platforms, unlike traditional retailers or providers,
often do not need to produce on their own or store physical goods, but instead, play
the role of a matchmaker. The “raw materials” that these platforms bring together
are the groups of participants that they bring together, and not something they can
necessarily buy or put through a value chain. Unlike their earlier counterparts,
platforms cannot just manage production and prices. Instead, they need to consider
network effects, i.e., an idea that the incremental benefit gained by an existing user
grows with each new user that joins the network. As an extreme example, if no
one else in your social circle had telephones, then neither owning a phone nor the
telephone network bring any value. Only when at least one of your contacts is on
the telephone network is there a benefit in you being on the system, and this benefit
grows as more of your social circle is on the system.

Example 1.1. As a ridesharing platform, Uber does not employ any of their drivers
but instead aim to matchmake drivers and riders and help price these rides. A large
rider pool means that drivers get ride requests faster, take a shorter time to get to
their matched riders, and consequently earn more money. A significant driver pool
implies that passengers have minimal waiting time for a ride to be served. According
to a recent Bloomberg article (Newcomer, 2017), Uber is reporting that revenue
growth is outpacing losses, despite its investors paying 2 billion dollars annually to
subsidize rides.
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A recent estimate of the market value of some of these platforms alone in 2016
is US$4.3 trillion as reported in (P. C. Evans and Gawer, 2016), representing a
significant proportion of the US$56.8 trillion market value of the Top 2000 Valued
Companies globally according to a recent Forbes report (Forbes, 2018). However,
starting a platform is not straightforward. First, it requires a solution to the platform
design “chicken-and-egg” problem: How do you convince one side of the market to
join if the other side is empty? The platform needs to reach a critical mass to benefit
from the so-called network effects. Platforms need to subsidize at least one side
of the market to achieve this critical mass. Evans and Schlamansee dedicate their
popular science book Matchmakers: The New Economics of Multisided Platforms
to those who may have failed in the process:

“To all the pioneers who tried to cross the critical mass frontier.” (D. S.
Evans and Schmalensee, 2016)

Thesematchmakers ormultisided platforms are not new. The oldest recorded auction
house is the Stockholms Auktionsverk, or Stockholm’s Auction House, founded in
1694. On the other hand, popular auction platform eBay was founded about three
centuries after in 1995. Meanwhile, newspaper advertisements started in the 18th
Century, while Google introduced Search in 1998, and began monetizing it through
ads in 2000. While thesemultisidedmatchmaking platforms have existed in different
forms for a long time, dramatic advances in technology have driven the platform’s
recent popularity and profitability. Online retail platforms have almost zeromarginal
cost for display and storage. The zero marginal cost means that items which were
once less in demand and therefore not displayed or sold in traditional stores can now
be displayed, sold and delivered. In other words, the long-tail of demand can be met
by online platforms through technology.

Example 1.2. The popular online platform eBay has the reach of over 100 million
active users per quarter. However, antique sellers today may still rather pay a
hefty 10-30% seller’s premium to have it auctioned at an Auction House, which
professionally appraises, advertises and ship your item. They do so because the
number of items sold on eBay also means that objects in such niche areas may
not have the chance to meet the right buyer. eBay, on the other hand, thrives on
small and newer items, which often have both ample supply and demand. Unlike
traditional auctioneers, eBay can have multiple auctions occurring at the same time
and for a more extended period.
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Example 1.3. The matchmaking platform Tinder today have an average of about 4
million active users. Unlike its pre-technology predecessor, usually known as Singles
Club, Tinder reduces (i) the barrier for information, (ii) the cost of interaction, and
(iii) the cost of an actual physical location. Tinder can also easily segment markets
by age ranges, distance, and sexual orientation. Recently, Tinder also introduced
Tinder U, a new feature that makes it easier to connect with other students around
you in 4-year, accredited, not-for-profit schools. Tinder U is a good example where
access control, i.e., further limiting the matches on each side, can improve social
welfare. In particular, Tinder U allows for safer interactions between students from
the same college, and can also potentially serve a purpose beyond dating, e.g., study
groups.

Example 1.4. Amazon, the most valuable company in the world, and coincidentally
also a platform, started as a single-sided firm. It began in 1994 as a bookseller,
buying books from publishers and reselling them to consumers. There were no
connections between publishers and consumers, and no network effects. Even so,
Amazon did manage to provide a vast selection with more than 2.5 million titles as
of 1997. Consumers then already no longer needed to leave their homes and had
access to more titles than a bookstore could offer. Shifting to a platform in 2000 with
the launch of Amazon Marketplace, Amazon exercises an exact amount of control,
imposing rules against bad behavior. One such way Amazon does this is through its
Buybox, which is the default seller for an item. This default seller is picked based
on item price, customer reviews, stock availability and return policy.

The rise of the platform economy brings with it a wide variety of engineering,
economic and social challenges. Historically, markets have been slow to evolve
and finding the “right” trading partners has been a daunting task. However, the
integration of networks and information technology into marketplaces has led to
complicated platforms that facilitate matches among participants. There is now an
unprecedented level of control over the operation of these markets. Companies are
engineering platforms to control the flow of information, recommend matches, and
enforce prices and terms of trade. As such, the decisions made in the design of the
platforms create complex and subtle interactions between computational constraints,
network constraints, and market outcomes.
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1.1 Online Platform Design
In a seminal work to understand two-sided markets, (Rochet and Tirole, 2003) built
a model of platform competition with two-sided markets. In that work, they unveil
the determinants of price allocation under a two-sided market model. They also
compare the outcome from different governance structures, e.g., profit-maximizing
versus not-for-profit organizations. This groundbreaking work contributed heavily
towards Tirole’s Nobel Memorial Prize in Economic Sciences in 2014.

Besides different governance structures, there are many other factors to consider
in designing a successful platform, including matching, access control, pricing,
trust and transaction costs. The online marketplace platform Amazon carefully
studies each design component before becoming what it is today. In allowing buyers
to purchase from any seller on the platform, Amazon displays its transparency
and fairness to all sellers. However, because open access may incur substantial
search costs, Amazon works around it by its Buybox, which is a product’s default
seller. Some guidelines that Amazon has for Buybox winners are professional
selling accounts, good reputation and transaction history, refund flexibility and
competitive prices. By doing so, Amazon limits access and promote competitive
pricing, reducing search costs and building trust. About 80% of consumers on
Amazon do not look beyond the default seller in Buybox.

To perform well on Amazon, a seller needs to win the Buybox. To win the Buybox,
sellers have started employing an automated mechanism termed as algorithmic
pricing, which set prices dynamically based on current conditions, e.g., competitor’s
selling price and inventory levels. For a single item, prices can change up to hundreds
of times a day (L. Chen, Mislove, and Wilson, 2016). Since prices have to be valid
for multiple consumers with varying valuations over a different subset of items,
obtaining optimal pricing is hard (Guruswami et al., 2005), but good approximations
to the problem are actively studied (Chawla, Hartline, and Kleinberg, 2007).

Today, driven by the desire to understand what makes them successful, there is
an increasingly large literature on online platforms and multi-sided market design.
These works consider individual design components, e.g., pricing by (L. Chen,
Mislove, and Wilson, 2016), matching by (Akbarpour, S. Li, and Oveis Gharan,
2017), and access control by (Banerjee, Gollapudi, et al., 2017). Recent studies
have also moved towards balancing trade-offs between conflicting designs. An
example of this is (Dinerstein et al., 2018), which studies how guiding consumers
to their most desired product often weaken sellers’ incentives to offer low prices.
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At the heart of platform design is the design of the matching algorithm that deter-
mines matches between firms (sellers) and consumers (buyers). Platforms today
have a wide variety of approaches for matching. Some platforms, such as Etsy,
Airbnb and eBay follow an open access model – they provide information on all
candidate matches, allowing the sellers and the buyers to make their own decisions
freely. On the other extreme, platforms like Uber adopt a controlled allocation
model — they provide no information about the candidate matches, only presenting
a specific opportunity for a pairing. In between, there are discriminatory access
platforms, such as Amazon, which impose constraints on the firms limiting which
markets they can enter through Buybox; e.g., only sellers with low enough prices
and excellent reviews are eligible to be shown in the Buybox, the default seller on
a product’s front page. Since about 80% of consumers do not look beyond the Buy
Box, in effect, they are only accessible to the eligible sellers. Beyond these designs
which applywidely tomost platforms, there are also practical considerations specific
to different industries and settings.

One such consideration is search cost. Search costs are one form of consumer
transaction cost involved in searching for better alternatives. Without a thorough
understanding of the trade-offs between the objectives mentioned above with con-
siderations like search costs, and carefully balancing them, one can end up in a
situation where these costs overwhelm consumers. For example, an open access
platform design may not be a good idea for ridesharing platforms, since the number
of producers (e.g., drivers) in such platforms is significant, resulting in substantial
search costs for consumers. By contrast, successful ride-sharing platforms show
only prices and do not offer alternatives, eliminating any search cost involved.

Another practical consideration of interest is network constraints, e.g., transmission
line flow constraints in electricity markets. The electricity market is a classic exam-
ple of a networked marketplace, where options available to individual participants
are varied, complex and highly constrained. At peak levels, demand on the elec-
tricity market compels the use of generators with a more considerable marginal cost
of production. To counter this, mature networked constrained systems such as the
electricity market are usually already equipped with mechanisms, such as demand
response, that help ensure stability or reduce the supply-demand imbalance. Since
the marginal generating unit determines clearing price for all load, these mecha-
nisms allow for a more stable and reliable network, and can also serve as a check
against the exercise of market power by generators (Walawalkar et al., 2010).
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Another critical component of online platformdesign is information. A single signal,
e.g., locational marginal prices in electricity markets or surge price multipliers in
ridesharing platforms, condenses the information in these massive platforms. The
underlying information structure of the platform determines practical considerations
such as anticipation and decision making under uncertainty. Platforms often make
allocation decisions on behalf of the producing participants, but the anticipation
of the platform allocations may change the competition entirely and affect the
resulting efficiency. Also, sound decisions are often notmade under full information,
and participants often have to make decisions sequentially under tight inventory
constraints. Usually, an optimal one-shot choice can be very different from a
competitive decision in uncertain markets over some time.

Example 1.5. Independent system operators (ISO) serve as a platform over the
multi-sided market for electricity. Without electricity, none of the previously men-
tioned platform examples can function. Above and beyond attaining conditions for
platform success, e.g., reaching critical mass, the ISO has to first and foremost
maintain safety and security of the power network. Constraints are governing how
electricity flows over the power network, e.g., Kirchhoff’s Laws provide govern-
ing equations over the current and voltages across the grid. While conventional
generators (or producers) can overwork beyond their set-point (frequency), signifi-
cant (frequency) deviations can lead to automatic generator shutdowns, which then
causes additional strain on the network. The stress on the system may consequently
cause a different generator to be overworked, and cascading failure of the power
network may occur, leading to large-scale blackouts.

Typically, to ensure that the network remains stable, the ISO collect producer bids
and computes locational marginal prices based on demand forecast. The locational
marginal prices are often calculated based on a social welfaremaximization problem
constrained on physical laws governing the power network. Both consumers and
generators on the system pay and paid based on this locational marginal price.

However, with large fluctuating loads and renewable generation, net demand forecast
may not always be accurate. To curb with this shortfall or oversupply, ISOs design
mechanisms such as demand response, where consumers can reduce their load
in exchange for certain rewards. These consumers often have a limited battery
capacity to utilize or flexible loads that they can shift and they may want to use them
strategically to obtain maximal rewards.
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1.2 Design Challenges
There are multiple challenges for an online platform designer both in starting a new
platform and improving a current one. In this thesis, we consider three such problems
that help shed light on recent transformation and changes to multisided platforms.
Our first consideration concerns the trade-off between transparency and control in
platforms, with a focus on access and allocation control. The second challenge is to
analyze the negative impact of practical physical network constraints, anticipation
and manipulation under networked competition, and then design mechanisms to
prevent them. The final challenge for platform design we tackle is to understand
how individuals with inventory constraints sell under uncertainty or incomplete
information. We dive deeper into each of the problems here.

Access and Allocation Control for Online Platform Designs
Our first focus is on access and allocation control designs with regards to tradeoffs
between transparency and control. Platforms have very diverse access and alloca-
tion control designs even within the same industry. For example, within ride-sharing
platforms, Didi requires confirmation of pick-up and drop-off locations before al-
lowing drivers to pick rides in an open access design while Uber assigns or allocates
each trip to the nearest driver. Some marketplaces like eBay have an open access
design and seek to lower producer entry cost and increase competition, but may end
up suffering from high consumer search cost. On the other hand, Amazon combines
the scale of a populated marketplace with carefully differentiated access through
their Buybox designs in a discriminatory access design. In each example, both
platforms have similar aims but apply very different models to get there.

This motivates a variety of critical open questions with regards to the design of
access and allocation control. Firstly, what is the worst case efficiency loss of
platforms under these designs? In other words, how do selfish decisions propagate
under each platform design? Secondly, what is the impact of allocation control, and
further considering recent collusion and manipulation in ridesharing platforms, are
there any unintended incentives for strategic behavior that might decrease market
efficiency? Lastly, is there a sweet spot between open access and controlling
allocations that balances transparency and control, and limits efficiency loss? Are
there any limitations or difficulties with a balanced design?
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Practical Considerations for Online Platform Design
In the first part, we show that practical considerations such as search cost can
be critical in online platform designs, e.g., open access designs for ridesharing
might cause user dissatisfaction and cause a reduction of demand on the system.
Anticipation is another consideration that is an essential tool that can instead be
abused by producers to improve their profit and hurt the system as a whole. As
an example of such manipulation, the work of (Ruhi et al., 2018) has shown that
strategic curtailment by aggregators for renewables can improve profits by causing
an increase in locational marginal prices. Whenever possible, market manipulation
takes place and are especially prevalent in networked constrainedmarketplaces, such
as the electricity market.

Platform designs that are robust to anticipation and manipulation are critical. To
that end, we answer some crucial questions in the second part of this thesis. Firstly,
how does network constraints over allocations affect the efficiency of an online
platform? Secondly, what is the impact of producer anticipation on the efficiency
of the platform and the stability of the network? Lastly, are there any economic
implications to mechanisms that are already used to upkeep the physical stability
and security of the system?

Competitive Participation in Real-time Uncertain Markets
Networked markets are often large and complex. As such, individual firms may have
to make decisions under uncertainty or without full information, in pursuit of some
form of optimality. It is critical first to learn how an individual makes decisions
under uncertainty before trying to understand the entire system under uncertainty.
Examples of these uncertainties include electricity markets where generators may
not know the bid of other generators or advertisement companies who may not know
what future demand of advertisement.

We consider the problem of participation in real-time uncertain markets under an
inventory constraint. The main question in this challenge is the following: Is there
an optimal (in terms of competitive ratio) way to participate in real-time uncertain
markets? We find that this problem is a variant of the classical one-way trading
problem. Consequently, we aim to design an algorithm that generalizes to the
original problem with price elasticity.
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1.3 Main Contributions and Overview
In this thesis, we aim to understand online platforms better. Our first result focuses on
the trade-offs between transparency and control in online platform designs. Next, we
look into practical platform designs, taking into consideration network constraints,
anticipation, and the impact of existing mechanisms such as demand response.
Another practical platform design consideration is that users make decisions under
uncertainty, and may seek to do so in an optimal way. To that end, we study how
producers make selling decisions under uncertainty, e.g., how drivers decide when
to drive in a day. We make three main contributions in this thesis, summarized here.

In Chapter 3, we first analyze the worst case efficiency loss of online platform
designs under a networked Cournot competition model. Inspired by some of the
largest platforms today, the platform designs considered are three different ways
to balance the trade-off between transparency and control. They are (i) open ac-
cess, (ii) controlled allocation and (iii) discriminatory access designs. Our results
show that open access designs incentivize increased production towards perfectly
competitive levels and limit efficiency loss, while controlled allocation designs lead
to producer-platform incentive misalignment, resulting in low participation and
unbounded efficiency loss. We show that discriminatory access designs strike a
balance between transparency and control, and achieve the best of both worlds,
maintaining high participation rates while limiting efficiency loss. We also study a
model of consumer search cost to include this practical consideration which further
distinguishes the three designs described.

In Chapter 4, we include other practical considerations in platform design such as
network constraints and anticipation, and study the economic impact of demand
management on strategic networked competition with producer anticipation. We
consider these in a networked Stackelbergmodel that bears similarity to an electricity
market and is a leader-follower version of the networked Cournot model where firms
submit quantity bids and the platform balances supply and demand over the network
subject to network constraints in a socially optimal manner. We also show that
efficient anticipatory competition in the networked Stackelberg model is fragile, and
known conditions, e.g., homogeneous price intercepts, are often impractical. Our
main result is that demand response can play an additional role economically, and
in particular, (i) have bounded efficiency loss in the absence of network constraints,
(ii) is not often binding at equilibrium, and (iii) binding network constraints do not
significantly worsen the efficiency of the system.
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In Chapter 5, we study how individual producers make selling decision under un-
certainty and inventory constraints. A practical example relating to platforms is
how drivers decide how much and when to participate in ridesharing apps in a day.
We formulate an online optimization problem with inventory constraints, where a
producer has a fixed amount of inventory to sell, and irrevocable decisions are nec-
essary for revenue functions which appear sequentially. While online optimization
is a well-studied topic, versions with inventory constraints have proven to be more
complicated. We consider a formulation of inventory-constrained optimization that
is a generalization of the classic one-way trading problem and has a wide range of
applications. We present a new algorithmic framework, CR-Pursuit, and prove that
it achieves the optimal competitive ratio among all deterministic algorithms (up to a
problem-dependent constant factor) for inventory-constrained online optimization.
Our algorithm and its analysis not only simplify and unify the state-of-the-art results
for the standard one-way trading problem, but they also establish novel bounds for
generalizations including concave revenue functions. For example, for one-way
trading with convex price elasticity, which corresponds to concave inverse demand
functions, CR-Pursuit achieves a competitive ratio within a small additive constant
(i.e., 1/3) to the lower bound of ln θ + 1, where θ is the ratio between the maximum
and minimum base prices.

In Chapter 6, we also include lessons and insights from each section that serves as a
quick overview and conclusion of the thesis. In each of these chapters, we begin with
a more detailed overview of the contributions and a review of the relevant literature.
We append proofs of our results after a conclusion to this thesis to encourage a
smoother read.

Our analysis throughout this thesis builds on the networked Cournot competition
model, which we first will introduce in Chapter 2. We include the history and work
related to the model, prior known results on existence and uniqueness of equilibria,
equilibrium computational costs, and other critical relevant concepts.
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C h a p t e r 2

NETWORKED COURNOT COMPETITION FOR ONLINE
PLATFORMS

Having observed competition in a spring water duopoly, Antoine Augustin Cournot
first outlined his theory on quantity competition in his 1838 volume Recherches
sur les Principes Mathematiques de la Theorie des Richesses. Cournot theorized
that production quantity affects prices in a simple way, i.e., the more the aggregate
production, the lower the price.

“The cheaper an article is, the greater ordinarily is the demand for it.
The sales or the demand (for to us these two words are synonymous, and
we do not see for what reason theory need take account of any demand
which does not result in a sale)—the sales or the demand generally, we
say, increases when the price decreases.” (Cournot, 1838)1

Cournot’s theory for quantity competition yielded prices and quantities that are
between monopolistic and competitive levels. Additionally, equilibrium prices are
larger than marginal costs. It has since been generalized to consider multiple firms,
and is known to retain similar results.

Almost half a decade later, Joseph Bertrand developed a model for competition
based on price instead of quantity. In that model, producers report a selling price
that they are willing to commit to, and the market share goes to the producer with
the lowest selling price. If the market is not monopolized by a single producer,
the equilibrium market price is equivalent to marginal cost. However, the Bertrand
model for competition was also met with its own set of criticism. For example, the
“winner-takes-all” model is unable to account for capacity constraints, which are
relevant to producers that may not benefit from economics of scale.

Neither model is necessarily “better” than the other, but perhaps a model can be
more appropriate to use in a particular modeling of competition. They are best used
when applied to the right industry, Cournot when firms choose quantities, e.g., oil
and gas markets, electricity markets, and Bertrand when firms choose prices, e.g.,
electronics market.

1A translation by Nathaniel T. Bacon.
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The Bertrand and Cournot competition models have both been well-used for models
of competition for electricity markets, e.g., (Bunn and Oliveira, 2003; Hobbs, 2001;
Oren, 1997), and energy markets, e.g., (Salant, 1982; Golombek, Gjelsvik, and
Rosendahl, 1995).

Recently, with globalization, increased connectivity and technological breakthroughs,
networked generalizations of both the Cournot competition (Abolhassani et al.,
2014; Bimpikis, Ehsani, and Ilkilic, 2014) and Bertrand competition (Chawla and
Roughgarden, 2008; Guzmán, 2011; Anshelevich and Sekar, 2015) have also been
introduced to meet the needs of an increasingly networked marketplace setting.

In these networked models, there is more than one market, and firms are connected
via a bipartite graph to a subset of the markets. Besides these models, there are also
networked generalizations of bargaining games where agents can trade via bilateral
contracts over a network that determines the set of feasible trades, e.g., (Abreu and
Manea, 2012; Elliott, 2015; Nava, 2015; Nguyen, 2015).

The networked Cournot competition model inherits many of the nice equilibrium
results from its vanilla counterpart, e.g., if costs are convex and the inverse demand
function is concave, then a unique equilibrium exists. The required computation
time to find these equilibria is reported in (Abolhassani et al., 2014), and is also
included in this section. The equilibrium quantities under this model is also shown
to be related to network centrality (Ilkilic, 2009).

Meanwhile, the networked Cournot model also have applications in many areas,
e.g., electricity markets in (Bose et al., 2014) and demand-side management in
smart grids, a.k.a. demand response in (Motalleb et al., 2017).

2.1 The Networked Cournot Competition Model
We describe the competition in online platforms using the networked Cournot com-
petition model introduced in (Abolhassani et al., 2014) and (Bimpikis, Ehsani, and
Ilkilic, 2014). As a generalization of the classical model of Cournot competition,
the networked Cournot model captures settings in which firms compete to produce a
homogeneous good inmultiple markets, where eachmarket is potentially only acces-
sible by a subset of firms. Firm’s decisions are connected across markets through an
aggregate (convex) production cost while decisions across firms are connected via
a single price from the markets, depending on the aggregate demand. We formally
develop this model in the following subsections.
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Network Model and its Variants
The network specifying the connections between firms and markets is described
according to a directed bipartite graph (F, M, E). Here, we denote by F := {1, . . . , n}
the set of n firms, M := {1, . . . ,m} the set of m markets, and E ⊆ F × M the set of
directed edges connecting firms to markets where (i, j) ∈ E if and only if firm i has
access to market j.

An alternative specification more relevant to electricity markets is described ac-
cording to a graph G = (V, E), and each node i ∈ V in the graph correspond to
a co-located firm and market. In the electricity market example, the graph then
constrains the reallocations made by the independent system operator to optimize
social welfare. This alternative will be explored in Chapter 4. There, we con-
sider an anticipatory setting where firms know how the platform reallocates, and a
non-anticipatory setting where the platform competes with a reallocation.

In general, the efficiency of such marketplaces depend on the structure of the
underlying graph, which restricts the set of markets to which each firm has access.
A crucial role that the platform might, therefore, play in this setting is the selection
of markets that are made available to each firm. An alternative would be to dictate
the amount passing through each edge, essentially deciding the allocations for each
firm’s production. In Chapter 3, we examine three important classes of platform
designs: open access platforms, controlled allocation platforms and discriminatory
access platforms. In Chapter 4, we further consider platforms with and without
anticipation.

Producer Model
Each firm i ∈ F decides its producing quantity qi j ∈ R+ to each market j ∈ M ,
where qi j = 0 if (i, j) < E. We let qi := (qi1, . . . , qim) ∈ R

m
+ denote the supply

profile from firm i, and denote this feasible set of quantities for firm i as Qi(E), and
Q(E) =

∏
i∈F Qi(E). We let si be the aggregate production of firm i ∈ F, given by

si :=
m∑

j=1
qi j . (2.1)

The resulting production cost of firm i is defined by Ci(si). We assume that the cost
function Ci is convex, differentiable on (0,∞), and satisfies Ci(x) = 0 for all x ≤ 0.
Since the cost is convex, decisions across markets are coupled since the marginal
cost for each firm is constant across markets. Finally, we define C := (C1, . . . ,Cn)

as the cost function profile.
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Market Model
We model price formation according to an inverse demand function in each market.
Similar to (Bimpikis, Ehsani, and Ilkilic, 2014), we restrict our attention to linear
inverse demand functions throughout this thesis. Specifically, the price in each
market j ∈ M is determined according to p j(d j) := α j − β j d j, where d j denotes the
aggregate quantity supplied to market j, given by

d j :=
n∑

i=1
qi j . (2.2)

Here, α j > 0 measures consumers’ maximum willingness to pay, and β j > 0
measures the price elasticity of demand.

Social Welfare
Wemeasure the performance (or efficiency) of a platform according to social welfare.
For platforms, the pursuit of social welfare benefits both buyers and sellers, and in
the long run, promotes their expansion. For example, Amazon (in its Buybox design)
believes that welfare measures such as availability, fulfillment, and customer service
ultimately lead to increased customer satisfaction, and thereby, promote its growth
in the long run (L. Chen and Wilson, 2017).

We adopt the standard notion of social welfare defined as aggregate consumer utility
less total production cost. Specifically, the social welfare associated with a supply
profile q and a cost function profile C is defined according to

SW(q,C) :=
m∑

j=1

∫ dj

0
p j(z)dz −

n∑
i=1

Ci(si), (2.3)

where si and d j are defined in Eqs. (1) and (2), respectively. We define the efficient
social welfare associated with the cost function profile C and an edge set E as:

SW∗(E,C) := sup
q∈Q(E)

SW(q,C). (2.4)

It is straightforward to check that the above supremumcan be attained, and that the set
of efficient supply profiles is non-empty. The optimal social welfare associated with
the cost function profileC is the efficient social welfare at the edge set corresponding
to the complete bipartite graph F ×M . One can show that the optimal supply profile
can be attained if a social welfare maximizing platform controls both production of
firms and their allocation to the different markets, while losing control of either may
lead to inefficiency.
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The platform designs and practical considerations in Chapters 3 and 4 aim to max-
imize the social welfare at the equilibrium of the resulting game. In particular, the
metric of performance we consider is the price of anarchy, which is the worst case
(multiplicative factor) efficiency loss due to selfish behavior.

Before formally defining the price of anarchy, we first define the networked Cournot
game, as defined by (Abolhassani et al., 2014; Bimpikis, Ehsani, and Ilkilic, 2014).
The platform designs corresponding to access control directly applies to the net-
worked Cournot game in that the open access design corresponds to the full bipartite
graph F × M while discriminatory access correspond to the bipartite graph maxi-
mizing equilibrium social welfare.

Networked Cournot Competition
With all the economic models in hand, we now describe the equilibrium of the
market specified for the open access and discriminatory access designs according
to Nash, where no producers can deviate to obtain a better outcome. We consider
profit maximizing firms, where the profit πi of a firm i, given the supply profiles of
all other firms q−i = (q1, .., qi−1, qi+1, .., qn), is given by

πi(qi, q−i) :=
m∑

j=1
qi j p j(d j) − Ci(si), (2.5)

where p j is a price formed based on the total demand at node j, coupling the
decisions made between different producers. We denote by π := (π1, . . . , πn) the
collection of payoff functions of all firms. The triple (F,Q(E), π) defines a normal-
form game applicable for the open access and discriminatory access designs, which
we refer to as the networked Cournot game associated with the edge set E. Its Nash
equilibrium is defined as follows.

Definition 2.1. A supply profile q ∈ Q(E) constitutes a pure strategy Nash equilib-
rium of the game (F,Q(E), π) if for every firm i ∈ F,

πi(qi, q−i) ≥ πi(qi, q−i), for all qi ∈ Qi(E).

Under the assumptions of convex cost functions and affine inverse demand functions,
(Abolhassani et al., 2014) has shown that the networked Cournot game is an ordinal
potential game. Additionally, it admits a unique Nash equilibrium that is the unique
optimal solution to a convex program. We summarize the most related result in the
following lemma, and provide time complexity results in Table 21.
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Lemma 2.2. (Abolhassani et al., 2014) The game (F,Q(E), π) admits a unique
Nash equilibrium qNE(E) that is the unique optimal solution to the following convex
program:

maximize
q∈Q(E)

SW(q,C) −
n∑

i=1

m∑
j=1

β jq2
i j

2
. (2.6)

Table 21: Equilibrium Computation Complexity (Abolhassani et al., 2014)

Cost Functions Inverse Demand Function Time Complexity Technique

Convex Linear O(E3)
Convex Optimization,
Ordinal Potential Game

Convex Strongly Monotone
Marginal Revenue Function

Poly(E) Reduction to Linear
Complementary Program

Convex,
Separable

Concave O(n log2 Qmax)
Supermodular
Optimization

In general, the supply profile at the unique Nash equilibrium of the networked
Cournot game differs from the efficient supply profile. This efficiency loss is
commonly also known as the price of anarchy of the game first introduced in
(Koutsoupias and Papadimitriou, 1999). In the rest of this thesis, we use worst case
efficiency loss and price of anarchy interchangeably.

Definition 2.3. The price of anarchy associated with the edge set E, the cost function
profile C, and the corresponding networked Cournot game (F,Q(E), π) is defined
as

ρ(E,C) :=
SW∗(EC,C)

SW
(
qNE (E),C

) .
where EC refers to the complete bipartite graph and we set ρ(EC,C) = 1 if
SW∗(E,C) = 0 and SW(qNE (E),C) = 0. Note here that comparisons are always
made against the optimal social welfare, i.e., the optimal social welfare attained
with the complete bipartite graph, and control over the productions and allocations
of supply.

In general, for games with possible multiplicity of Nash equilibria, the price of
anarchy is defined as the ratio of the efficient social welfare over that of the Nash
equilibrium with the worst social welfare, and is always greater than 1. The price
of anarchy is defined similarly for Nash equilibrium in Stackelberg games, or Stack-
elberg equilibrium.
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Insights on Supply Paths, Mergers and Expansions
Beyond existence and uniqueness, the analysis from (Ilkilic, 2009) and (Bimpikis,
Ehsani, and Ilkilic, 2014) also identify connections between equilibrium outcomes
and supply paths in the underlying network structure. Additionally, they study the
impact of changes in competition structure (or graph structure) either due to firms
merging or expanding into new markets, on their profits and consumer welfare.

First focusing on games with identical production technology and consequently
same cost functions C, and markets with identical demand slopes β, a weighted
adjacency matrix can be defined as follows:

wi1k1,i2k2 =


2c if i1 = i2, k1 , k2

β if i1 , i2, k1 = k2

0 otherwise.

This weighted adjacency matrix is not on the original graph of nodes, but instead
defined on its corresponding line graph, where the links from the original graph
are now nodes. Links exist between nodes on the line graph if two links are either
incident on a firm or a market, and is respectively weighted 2c or β. One way
to understand the non-zero entries of W is that the values represent the change in
marginal profit corresponding to a firm-market pair that results from an infinitesimal
increase in the quantity corresponding to another firm-market pair.

Given the matrix W , we restate the following theorem characterizing the Nash
equilibrium of such a game, which yields interesting insights on the relationship
between the degree of strategic substitutability or complementarity between the
actions of firms in two markets with the supply paths that connect them.

Theorem 2.4 (Theorem 1 (Bimpikis, Ehsani, and Ilkilic, 2014)). The unique Nash
equilibrium of the symmetric game is given by

q∗ = [I + γW]−1γα,

where γ = (2(c + β))−1 and α is a vector with the length number of edges, where
each entry correspond to the α value relating to the market incident on that edge.
Furthermore, if λmax(γW) < 1,

q∗ =
[
∞∑

k=0
(γW)2k −

∞∑
k=0
(γW)2k+1

]
γα
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Informally, we obtain the “the enemy of my enemy is my friend” intuition. More
formally, the even (odd) power-ed terms correspond to paths of even (odd) length.
The matrix W can also be shown to be closely related to a centrality measure known
as the Katz-Bonacich centrality of the nodes in the network, defined as follow.

Definition 2.5. Given a weighted adjacency matrix W and a scalar ρ, the Katz-
Bonacich centrality of the nodes in the network is defined as the following vector

b(W, ρ) =

∞∑
t=0
(ρW)t1.

It is then trivial to see that when markets have the same maximal willingness to pay
α, we obtain the following corollary.

Corollary 2.6 (Corollary 1 (Bimpikis, Ehsani, and Ilkilic, 2014)). Suppose that
λmax(γW) < 1, then the unique Nash equilibrium profile of the symmetric game is
given by

q∗ = b(W,−γ)γα

Beyond equilibrium analysis, the matrix W also have a role in the effects of changes
in the structure of competition among firms on their profits and consumer welfare.
The main focus in this section is on highlighting the role of the underlying network
structure and the differences between traditional single market analysis to a setting
with significant network effects.

Before proceeding on to the impact of the structure of competition, we first define
the following |E | ×m matrix Λ, which can be understood as a measure of the firms’
market power.

Λik,l = −β
∑
j∈Ml

ψ jl,ik

ψik,ik
, ∀(i, k) ∈ E and Ml ∈ M,

where Ψ = [I + γW]−1. Essentially, entry (ik, l) of matrix Λ is the change in market
ml’s price that results from amarginal increase in the production that firm fi supplies
to market mk . This allows a description of how firms react to quantity shocks from
other firms.

Proposition 2.7 (Proposition 1 (Bimpikis, Ehsani, and Ilkilic, 2014)). Consider an
exogeneous shock dqik . Other firms adjust their quantities according to:

dqil =
ψik, jl

ψik,ik
dqik .
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This means that a change in one firm-market quantity can have ripple effects on the
entire network. Since Ψ is a symmetric, positive semidefinite matrix with positive
entries, firms i and j view their actions in markets k and l respectively as strategic
complements or substitutes depending on the sign of ψik, jl .

Beyond understanding these equilibria and supply paths, (Bimpikis, Ehsani, and
Ilkilic, 2014) also considers expansions into new markets and horizontal mergers.
In this thesis, we will instead proceed with understanding platform designs with
regards to access and allocation control.
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C h a p t e r 3

ACCESS AND ALLOCATION CONTROL DESIGNS FOR
ONLINE PLATFORMS

In this chapter, we aim to study the trade-offs between transparency and control under
the networked Cournot competition model. We model and analyze three different
platform designs, (i) open access, (ii) controlled allocation and (iii) discriminatory
access designs, and provide worst case efficiency loss bounds for each of them. We
study these designs of access and allocation control using the model of networked
Cournot competition, introduced in Chapter 2. Our analysis provides new results
on efficiency loss and illustrates the trade-off between transparency and control in
the design of online platforms. We further distinguish the three designs through a
model of search costs.

The first platform design we consider is the open access design (Section 3.3),
exemplified by online marketplaces like eBay and Etsy. The advantages of an
open access platform design are its fairness, transparency and low producer entry
cost, and the “increased market competitiveness” driven by such attributes. This
design also increases competition among producers, which usually lead to large sales
volume and lower prices for consumers. We show that under the networked Cournot
competition model, open access platform designs preserve a large proportion of the
optimal demand fulfilled in eachmarket. This participation plays a significant role in
limiting efficiency loss in the system where we prove a 3/2 worst case multiplicative
guarantee (Theorem 3.5).

An integral piece of that result is a novel argument that the convex cost functions
that maximize efficiency loss are linear ones, a generalization of the results from
(R. Johari and J. N. Tsitsiklis, 2005) for single market Cournot competition. This
fact also allows us to obtain worst case efficiency loss bounds as a function of the
degree of asymmetry in producers’ cost functions. Together, these results show
that open access promotes sales volume, has a small efficiency loss when firms have
symmetric cost, and retains a large proportion of the system’s optimal social welfare.
We do not frequently see open access platform designs in online platforms today.
Instead, designs which control the flow of each quantity supplied is increasingly
utilized in new platforms.
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Given the efficiency loss in open access designs, one may intuitively posit that
the efficiency loss in open access platforms is due to poor allocation of supply to
consumers. This intuition is one of the many motivating factors towards consid-
ering a controlled allocation platform (Section 3.4). These platforms control the
allocation over each transaction, to carefully allocate supply from all producers to
all consumers. Many modern platforms use designs of these forms, e.g., drivers in
ride-sharing platforms like Uber decide when to drive but not who to fetch. Given
the prominence of these designs, one might expect them to be efficient.

In contrast, we show that the worst case efficiency loss can grow linearly in the
number of markets even when the controlled allocation platform optimizes for social
welfare (Theorem 3.11). This highlights that controlled allocation platforms may
end up being inefficient in spite of their good intentions. Additionally, we show
that the controlled allocation platform under the networked Cournot competition
model results in a networked Stackelberg game1, where neither the existence nor
uniqueness of Nash equilibrium can be guaranteed. We conclude Section 3.4 with a
general result (Theorem 3.14) on the worst case efficiency loss under different market
clearing mechanisms. Specifically, we consider the setting in which the platform
is allowed to choose its market clearing mechanism via the choice of its objective
function used. We also show that any such function that is a convex combination of
consumer surplus and social welfare has the same unbounded worst case efficiency
loss result while allocations that are more aligned to individual producers (such as
revenue maximizing allocations) result in a smaller worst case efficiency loss.

The efficiency loss under controlled allocation designs suggests that the platform’s
allocation incentivizes decreasing production levels to a point where the optimal
allocation of produced good cannot offset the efficiency loss associated with reduced
production. On the other hand, the result on incentivizing production in open access
platforms motivates us to carefully restrict producer-consumer pairs in a way that
strikes a balance between transparency and control to improve the allocation while
maintaining large proportions of demand fulfilled. Such a design is similar to what
Amazon’s Buybox attempts to do by first presenting a seller determined by Amazon
based on various performance measures2, and then presenting the possibility of
looking at all possible sellers.

1We study the settingwith constraints over transportation or rebalancing inmore detail in Chapter
4.

2The performance measures include competitive pricing, excellent reviews, flexible return poli-
cies, and short response time.
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Motivated by this, we propose a new platform design called discriminatory access
which optimizes over the edge set to increase the social welfare at the Nash equi-
librium of the resulting networked Cournot competition. We show that while the
guaranteed preserved proportion of optimal demand fulfilled may not be as large
as the transparent open access platforms, the improved allocations as a result of
controlling the network allows for an improved 3/4 worst case guarantee on social
welfare retention for discriminatory access platforms (Theorem 3.15). Similar to
the open access platform results, we further explore the impact of cost asymmetry
on the worst case efficiency loss. Specifically, when the production cost functions
of firms are close to identical, it would be desirable to choose an open access design
which maximizes the extent of competition between firms. On the other hand, if
firms have substantially different cost functions, it would be desirable to choose
a discriminatory access design, in which the platform picks out firms with lower
production costs.

A careful design over the connections in the discriminatory access platform is also
often not trivial, andwe show that the optimal network design problem can bewritten
as a mathematical programwith equilibrium constraints, and can be difficult to solve
both analytically and computationally. However, under the restriction to linear cost
functions—which were shown previously to yield the largest loss of efficiency in
open access platforms—we propose and prove the optimality of a greedy algorithm
that yields an optimal worst case network design (Theorem 3.17).

One factor for platform design that we have ignored to this point is search cost.
Search costs are one form of consumer transaction cost involved in searching for
better alternatives. Without a careful understanding of the trade-offs between the
objectives as mentioned above with search cost and carefully balancing them, one
can end up in a situation where search costs overwhelm consumers. For example,
an open access platform design for a ride-sharing platform is not ideal, since there
are many drivers, which results in substantial consumer search costs. On the other
hand, ride-sharing platforms such as Uber eliminate any search cost involved. To
understand the impact of search costs, we introduce a simple search cost model in
Section 3.6 that yields important contrasts. In particular, since welfare losses from
search costs can outweigh the benefits from open access, the worst case loss of open
access platforms may no longer be bounded. On the other hand, the discriminatory
access platform design remains efficient in the face of search costs and can be further
optimized to balance search costs with the efficiency of the matching.
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3.1 Literature Review
The recent growth of online platforms has led researchers to focus on identifying
design features common to successful platforms. Earlier works in this area started
by introducing different models of two-sided platform markets, e.g., (D. S. Evans
and Schmalensee, 2016) modeled the cross-network externalities between the two
or more groups while the renowned work of (Rochet and Tirole, 2003) considered
a model whereby pricing structure affects volume of transaction. They posit that
price structure matters through (i) transaction costs existing between different sides,
and (ii) constraints on types of transaction costs imposed by the platform. Other
definitions and models are found in many other work, such as (Hagiu and Wright,
2015; Rysman, 2009), and various platform designs are suggested in other works.
We focus first on access and allocation control.

Open access is touted in (Boudreau, 2010) to increase competition among partici-
pants and shown in (Parker andVanAlstyne, 2017; Schor, 2016) to be often designed
to cope with issues such as fairness and openness. The classical example studied
for open access is the online marketplace eBay studied in (Chircu and Kauffman,
2001), which has been shown in (Gross and Acquisti, 2003; Hui et al., 2016) to
depend much on reputation and regulation. Lastly, (Heylighen, 2006) shows that
open access thrives on information symmetry, openness and transparency.

Contrastly, an intuitive way of exert control in the platform is to assume that pro-
ducers make socially inefficient decisions and instead decide allocations on their
behalf, e.g., Uber as studied in (Hall, Kendrick, and Nosko, 2015). Dependent
on how well the producers understand allocation decisions, (Rosenblat and Stark,
2016) showed there may be various outcomes. For example, it is well known and
reported in (J. Y. Chen, 2017) that drivers on ride-sharing platforms collaborate and
reduce their production to cause demand spikes in the system, often resulting in
better individual payoff but worse performance for the platform. (Scheiber, 2017;
A. Lu, Frazier, and Kislev, 2018; Z. Fang, Huang, and Wierman, 2018; Banerjee,
Riquelme, and Ramesh Johari, 2015) look at other platform means, e.g., through
subsidies and incentives, to make sure that drivers participate actively and on only
one platform. (Banerjee, Freund, and Lykouris, 2016) showed an approximation
algorithm to find the optimal allocation and prices to a variety of objective functions.
Recent work by (Afeche, Liu, and Maglaras, 2018) characterize drivers’ incentive
compatibility conditions for repositioning decisions, and provide new insights on the
interplay between admission control and drivers’ strategic repositioning decisions.
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More recently, (Ma, F. Fang, and Parkes, 2018) also considered setting prices that
are smooth both in space and time in a spatio-temporal pricing mechanism.

Another possible way to improve on open access is through discriminatory access,
where it is studied in (Banerjee, Gollapudi, et al., 2017; Kanoria and Saban, 2017;
Akbarpour, S. Li, andOveisGharan, 2017) that platforms can restrict access between
certain producers and markets in a bid to improve market outcomes. A significant
amount of effort has been placed into what is known in the literature, e.g., (Chawla,
Hartline, and Kleinberg, 2007; Chawla, Hartline, Malec, et al., 2010; L. Chen and
Wilson, 2017), as algorithmic pricing, which is most well known to be exemplified
by Amazon’s Buybox as studied in (L. Chen, Mislove, and Wilson, 2016), where
they highlight one seller for each item to every consumer that is looking for it.
Another example of discriminatory access is Airbnb’s Superhost program studied in
(Liang et al., 2017), which highlights certain renters through badges and have been
shown to vastly improve revenue on the peer-to-peer rental platform.

One of the starting objectives of onlinemarketplaces or platforms as stated in (Bakos,
1997) was to reduce search costs — that is, to reduce the amount of effort to acquire
information on sellers and the quality of their goods. (Diehl, Kornish, and Lynch
Jr, 2003) showed that lower search costs leads to an increase in price sensitivity.
However, it has also been shown in (Branco, Sun, and Villas-Boas, 2015) that
too much information revealed in online platforms can instead result in increasing
search costs from the consumers’ point of view. (Nishida and Remer, 2018) showed
that reducing search costs can lead to higher prices and profit while (Gamp, 2016)
showed that amonopolist may impede information acquisition to improve her profits.
In a more recent work, (Dinerstein et al., 2018) studies the tradeoff between guiding
consumers to their most desired product while also strengthening seller incentives
to offer low prices.

Besides access and allocation control, work in this area has also covered a variety
of possible design factors, including pricing in (Weyl, 2010), competition in (Arm-
strong, 2006), reputation in (Nosko and Tadelis, 2015; Tadelis, 2016; Luca, 2017),
thickness in (Ashlagi et al., 2018), and also dynamic models for kidney exchange in
(N. Agarwal et al., 2018). Recent empirical studies in (Einav et al., 2015; Bimpikis,
Candogan, and Saban, 2016) also reveal significant price dispersion in online and
spatial marketplaces, causing platforms to differentiate products in order to create
distinct consumer markets as in (Dinerstein et al., 2018). In particular, these results
highlight the need to study platforms in using models of networked competition.
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3.2 Model and Preliminaries
In this section, we will concisely present the networked Cournot competition model
and the platform designs considered. The reader is referred to Chapter 2 for further
details and relevant literature on networked markets.

The network specifying the connections between firms and markets is described
according to a directed bipartite graph (F, M, E), where F := {1, . . . , n} denotes the
set of n firms, M := {1, . . . ,m} the set of m markets, and E ⊆ F × M the set of
directed edges connecting firms to markets where (i, j) ∈ E if and only if firm i has
access to market j.

Producer Model
Each firm i ∈ F decides its producing quantity qi j ∈ R+ to each market j ∈ M ,
where qi j = 0 if (i, j) < E. We let qi := (qi1, . . . , qim) ∈ R

m
+ denote the supply

profile from firm i, and denote this feasible set of quantities for firm i as Qi(E), and
Q(E) =

∏
i∈F Qi(E). We let si be the aggregate production of firm i ∈ F, given by

si :=
m∑

j=1
qi j . (3.1)

The resulting production cost of firm i is defined by Ci(si). We assume that the cost
function Ci is convex, differentiable on (0,∞), and satisfies Ci(x) = 0 for all x ≤ 0.
Since the cost is convex, decisions across markets are coupled since the marginal
cost for each firm is constant across markets. Finally, we define C := (C1, . . . ,Cn)

as the cost function profile.

Market Model
As is standard in Cournot models of competition, we model price formation ac-
cording to a linear inverse demand function in each market. The price in each
market j ∈ M is determined according to p j(d j) := α j − β j d j, where d j denotes the
aggregate quantity supplied to market j, given by

d j :=
n∑

i=1
qi j . (3.2)

Here, α j > 0 measures consumers’ maximum willingness to pay, and β j > 0
measures the price elasticity of demand.
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Social Welfare
Wemeasure the performance (or efficiency) of a platform according to social welfare.
We adopt the standard notion of social welfare defined as aggregate consumer utility
less total production cost. Specifically, the social welfare associated with a supply
profile q and a cost function profile C is defined according to

SW(q,C) :=
m∑

j=1

∫ dj

0
p j(z)dz −

n∑
i=1

Ci(si), (3.3)

where si and d j are defined in Eqs. 3.1 and 3.2, respectively. We define the efficient
social welfare associated with the cost function profile C and an edge set E as:

SW∗(E,C) := sup
q∈Q(E)

SW(q,C). (3.4)

The optimal social welfare associated with the cost function profile C is the efficient
social welfare at the edge set corresponding to the complete bipartite graph F × M .

Networked Cournot Competition
We now describe the equilibrium of the market specified for the open access and
discriminatory access designs according to Nash. We consider profit maximizing
firms, where the profit πi of a firm i, given the supply profiles of all other firms
q−i = (q1, .., qi−1, qi+1, .., qn), is given by

πi(qi, q−i) :=
m∑

j=1
qi j p j(d j) − Ci(si), (3.5)

where p j is a based on the demand at node j. We denote by π := (π1, . . . , πn) the
collection of payoff functions of all firms. The triple (F,Q(E), π) defines a normal-
form game applicable for the open access and discriminatory access designs, which
we refer to as the networked Cournot game associated with the edge set E. Its Nash
equilibrium is defined as follows.

Definition 3.1. A supply profile q ∈ Q(E) constitutes a pure strategy Nash equilib-
rium of the game (F,Q(E), π) if for every firm i ∈ F,

πi(qi, q−i) ≥ πi(qi, q−i), for all qi ∈ Qi(E).

Under the assumptions of convex cost functions and affine inverse demand functions,
(Abolhassani et al., 2014) has shown that the networked Cournot game is an ordinal
potential game. Additionally, it admits a unique Nash equilibrium that is the unique
optimal solution to a convex program. We summarize the most related result in the
following lemma.
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Lemma 3.2. (Abolhassani et al., 2014) The game (F,Q(E), π) admits a unique
Nash equilibrium qNE(E) that is the unique optimal solution to the following convex
program:

maximize
q∈Q(E)

SW(q,C) −
n∑

i=1

m∑
j=1

β jq2
i j

2
. (3.6)

In general, the supply profile at the unique Nash equilibrium differs from the efficient
supply profile. This efficiency loss is commonly also known as the price of anarchy
of the game first introduced in (Koutsoupias and Papadimitriou, 1999). In the rest of
this thesis, we use worst case efficiency loss and price of anarchy interchangeably.

Definition 3.3. The price of anarchy associated with the edge set E, the cost function
profile C, and the corresponding networked Cournot game (F,Q(E), π) is defined
as

ρ(E,C) :=
SW∗(EC,C)

SW
(
qNE (E),C

) .
where EC refers to the complete bipartite graph and we set ρ(EC,C) = 1 if
SW∗(E,C) = 0 and SW(qNE (E),C) = 0. Note here that comparisons are al-
ways made against the optimal social welfare, i.e., that attained with the complete
bipartite graph.

In general, for games with possible multiplicity of Nash equilibria, the price of
anarchy is defined as the ratio of the efficient social welfare over that of the Nash
equilibrium with the worst social welfare, and is always greater than 1.

Open and Discriminatory Access Platforms
The open and discriminatory access platforms are choices of networks on the original
networked Cournot competition model. The open access platform corresponds to
the complete bipartite graph F ×M , while the discriminatory access platform seeks
the optimal set of connections between firms and markets.

Controlled Allocation Platforms
In contrast, the controlled allocation platform is a platform with anticipated clearing
mechanism. Instead of producing directly to connected markets, firms produce
and allow this aggregating platform to allocate the aggregate supply through a
pre-defined clearing mechanism.
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In Section 3.4, we focus our attention on platformsmaximizing social welfare, which
keeps prices across markets constant3. The set of markets becomes equivalent to an
“aggregated” inverse demand function that is piecewise linear, convex4.

Given an allocation function A, the profit of a firm i producing si can be written
under the platform allocation A as

π(si, s−i, A) = si p j(A j(
∑

i

si)) − Ci(si), (3.7)

where p j is equivalent across markets with positive demand fulfilled under a so-
cial welfare maximizing controlled allocation platform. Similar to the networked
Cournot game, we denote by π := (π1, . . . , πn) the collection of payoff functions of
all firms. Here, the feasible set of production for each producer is just R+. The
triple (F, A, π) defines a normal-form game applicable for the controlled allocation
design, which we refer to as the networked Stackelberg game. The equilibrium,
which we term a Stackelberg equilibrium, is defined as follows.

Definition 3.4. A supply profile sSE ∈ Rn
+ constitutes a Stackelberg equilibrium of

the game (F, A, π) if for every firm i ∈ F, π(sSE
i , sSE

−i ) ≥ π(si, sSE
−i ), ∀si ≥ 0.

3.3 Efficiency of Open Access
Open access platforms such as eBay and Etsy thrive on transparency and offer
buyers/consumers access to all possible sellers. This platform design is usually
accompanied by lower entry costs that typically improve competition between pro-
ducers, thereby boosting transaction volume, and oftentimes lead to socially efficient
markets by fairly presenting similar opportunities to every participant.

In this section, we aim to provide tight bounds on the loss of welfare due to selfish
behavior in networked Cournot games under open access platform designs. The
main theorem in this section provides a (tight) efficiency loss bound of a networked
Cournot game governed by an open access platform with respect to the number of
firms n.

3We also extend our analysis beyond social welfare clearing mechanisms, in which case prices
across markets may not be equivalent, but we assume that the platform averages prices such that it
remains equivalent for all producers

4Consequently, the inverse demand function is no longer necessarily concave. This means that
previous existential and uniqueness results from (Abolhassani et al., 2014) no longer applies, and
the controlled allocation platform can have multiple equilibrium or suffer market failure, i.e., no
equilibrium exists.
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Theorem 3.5. The worst case efficiency loss associated with a cost function profile
C and the corresponding open access networked Cournot game (F,Q(F ×M), π) is
upper bounded by

ρ(F × M,C) ≤
3
2

(
1 −

1
3n + 6

)
.

The bound is tight if markets have the same maximal willingness to pay, i.e., α1 =

α2 = · · · = αm. Precisely, for any choice of n, there exists a cost function profile C,
such that

ρ(C) =
3
2

(
1 −

1
3n + 6

)
.

This result generalizes those in (R. Johari and J. N. Tsitsiklis, 2005) from a single
market case to the networked setting, succinctly presented in the following corollary
to Theorem 3.5.

Corollary 3.6. Open access platforms have worst case efficiency loss of at most 3/2.

In the remainder of this section, we prove Theorem 3.5 first by proving a critical
result in Lemma 3.8 that the cost functions maximizing the worst case efficiency
loss are linear ones, a result presented in (R. Johari and J. N. Tsitsiklis, 2005) for
the case without a network. That means that given a game with any set of convex
cost functions, we can find a corresponding set of linear cost functions that increase
the worst case efficiency loss. Applying Lemma 3.8, bounds on efficiency loss are
developed for both the symmetric and asymmetric costs setting in Proposition 3.9
(Section 3.3) and Theorem 3.5 (Section 3.3) respectively.

The result in Theorem 3.5 (for firms with asymmetric costs) is potentially counter-
intuitive since an increase in the number of firms n (presumably increasing competi-
tion) results instead in a larger worst case efficiency loss. To shed more light on this,
we further develop worst case efficiency loss bounds on networked Cournot games
under open access platforms with linear cost functions and bounds on asymmetry,
presented later in Proposition 3.10. Additionally, in the symmetric cost case, in
Proposition 3.9 we see that it is indeed that as the number of perfectly competing
firms increase, the worst case efficiency loss decreases.

We present in the following lemma that demand fulfilled at the Nash equilibrium of
the networked Cournot game for any market is at least half of the fulfilled demand
under a socially optimal allocation.
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Lemma 3.7. For any market j ∈ M , the demand fulfilled at Nash is at least half of
the demand fulfilled at the social optimal allocation.

The lemma underlines one of the critical reasons open access platforms perform
well—that open access platform designs preserve a large proportion of production.
However, open access platforms still suffer from selfish behavior that manifest in
the misalignment between optimal allocations and Nash allocations. Contrasting to
this, in the next section, we explore an aggregator platformwhich allocates perfectly.

Identifying the Worst-case Cost Function Profile
The following lemma reveals that theworst case efficiency loss of networkedCournot
games are maximized at a cost function profile consisting of cost functions that are
linear over the non-negative real numbers, demonstrating that any cost function
profile C as specified in Section 2.1 can be correspondingly re-designed to construct
a piecewise linear cost function profile C, resulting in an increased worst case
efficiency loss. In light of this result, in designing efficiency loss bounds guaranteed
to hold for all cost functions belonging to the family specified in Section 2.1, it
suffices to consider cost functions that are linear on (0,∞).

Lemma 3.8. Given a cost function profile C, define the cost function profile C =

(C1, . . . ,Cn) according to

Ci(si) =
©«∂+Ci

©«
m∑

j=1
qNE

i j (F × M)ª®¬ · si
ª®¬
+

for i = 1, . . . , n, where ∂+Ci denotes the right-derivative of the function Ci. It holds
that ρ(F × M,C) ≤ ρ(F × M,C).

We provide some intuition here behind the proof of Lemma 3.8, while the full proof
can be found in the Appendix. The social welfare achieved at a Nash equilibrium
depends on the underlying cost function profile only at the marginal cost at Nash
equilibrium, which follows from the fact that each firm’s profit is a concave function
of her own supply profile. By replacing the original convex cost functions by linear
cost functions which have the same marginal cost at Nash equilibrium, the resulting
Nash equilibrium has identical production quantities and a worse-off social welfare
compared to the original one. A careful reader may notice here that the efficient
social welfare may also decrease, but one can show that the decrease in the efficient
social welfare is guaranteed to be larger than that of the social welfare at Nash
equilibrium.
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Efficiency Loss in Open Access Platforms
The characterization of the worst-case or optimal cost function profile in Lemma
3.8 is crucial to the derivation of tight upper bounds on the worst case efficiency
loss bounds for networked Cournot games. One example of this simplification is
that under linear cost function profiles, the networked Cournot game can essentially
be decoupled into m many different Cournot games with a single market since the
marginal cost of each firm remain constant. In what follows, we examine the role
played by (a)symmetry in linear cost functions in determining platform efficiency.

Before proving Theorem 3.5, we prove a result for the case where firms have
symmetric costs. This help us show that the intuition that increased competition
does indeed lead to less efficiency loss is indeed correct given the right assumptions.
In proving Theorem 3.5, we devise worst case asymmetric cost functions compared
to the single one utilized in the optimal case. Intuitively, since the optimal solution
would only utilize the firm with the smallest marginal cost, the worst case family of
cost functions should consist of one firmwith a low cost and the remaining with high
costs. As we increase the number of firms in this scenario, the set with high costs
increase, leading to a slight increase in competition which however is inefficient.
Another way to approach the counter-intuitive result is that the additional firm can
always be designed to have arbitrarily large marginal cost, such that it does not
participate, and therefore maintains the efficiency loss without its participation.

The above worst case efficiency loss bounds exhibit distinct behaviors in terms of
their monotonicity in the number of firms n. We thus further explore as to how the
degree of asymmetry between firms’ cost functions affect efficiency loss in open
access platforms. In doing so, we characterize tight worst case efficiency loss bounds
when the underlying cost functions are restricted to be linear over (0,∞), and whose
slope lies within a bounded interval [cmin, cmax] ⊆ R+.

Symmetric Cost Functions

Our analysis begins with the setting where firms have identical cost functions,
representing producers with similar technology. We establish a tight upper bound on
the worst case efficiency loss under this setting in Proposition 3.9 thatmonotonically
decreases in the number of firms, and converges to 1 as the number of producers
grows large. This conforms with the intuition that increasing suppliers strictly
increases competition, and thereby reduce the extent to which any producer might
exert market power, improving efficiency as selfish behavior becomes restricted.
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Proposition 3.9. For firms with symmetric costs, i.e., Ci = Cj, ∀i, j ∈ F, the
efficiency loss associated with the corresponding open access networked Cournot
game (F,Q(F × M), π) is bounded above by

ρ(F × M,C) ≤ 1 +
1

(n + 1)2 − 1
.

In addition, this bound is tight, i.e., for any choice of n, there exists a symmetric cost
function profile with a corresponding worst case efficiency loss equal to the upper
bound.

In proving Proposition 3.9, a direct application of Theorem 3.8 reveals that the
worst-case symmetric cost function profile consists of n identical cost functions that
are linear on (0,∞). The details of the proof are deferred to the Appendix.

Arbitrary Asymmetric Cost Functions

We now consider the more general setting in which firms have arbitrary asymmetric
cost functions satisfying the assumptions in Section 2.1, summarized inTheorem3.5,
where we establish a tight upper bound on the efficiency loss that is monotonically
increasing in the number of firms. In this case, it may seem counterintuitive that a
perceived increased competition instead lead to efficiency loss.

This seemingly counterintuitive result can occur if an expensive firm enters the
market. First, note that the entry of this new firm results in an increase in aggregate
supply at Nash equilibrium, because of increased ‘competition’ in the market. How-
ever, its entry takes away production from its (cheap) competitors. This manifests in
a reduction in social welfare if the increase in production cost exceeds the increase in
consumer utility. Such a phenomenon is known as the “excess entry theorem” in the
economics literature, e.g., (Suzumura and Kiyono, 1987; Mankiw and Whinston,
1986; Lahiri and Ono, 1988), and reveals the possibility that a new firm’s entry can
lead to a reduction in social welfare.

Additionally, taking the number of firms n→ ∞ yields a worst case efficiency loss
bound that is valid for any number of firms, and any number of markets, presented
in Corollary 3.6. This recovers the 3/2 worst case efficiency loss or price of anarchy
bound first established by (R. Johari and J. N. Tsitsiklis, 2005) for a singlemarket. In
fact, under this generalized characterization, one can obtain both the previous result
in their work, and for a networked market of any size with open access platform
design.
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Linear Cost Functions with Bounds on Asymmetry

The efficiency loss results in Proposition 3.9 and Theorem 3.5 appear contradictory
at first sight. Namely, the efficiency loss bound is decreasing in n if producers have
symmetric cost functions but it is increasing in n if producers are allowed to have
asymmetric cost functions. In what follows, we explore how the efficiency loss
depends on the asymmetry between firms’ cost functions, providing more intuition
towards this counter-intuitive result, by restricting ourselves to cost functions that
are linear on (0,∞), and whose slopes lie within [cmin, cmax] ⊆ R+.

L(cmin, cmax) :=
{
C0 : R→ R+

��� C0(x) = (cx)+ , c ∈ [cmin, cmax]
}
.

WewriteC ∈ Ln(cmin, cmax) if the cost function profileC satisfiesCi ∈ L(cmin, cmax)

for each firm i ∈ F. It will be convenient to define a non-dimensional parameter γ j ,
which measures the degree of (a)symmetry between firms for each market j ∈ M .
Specifically, for each market j ∈ M , define

γ j := 1 −
cmax − cmin
α j − cmin

.

It holds that γ j ∈ (−∞, 1] if cmin < α j . Clearly, γ j is increasing in consumers’
maximum willingness to pay α j , and decreasing in the maximum cost cmax. It
follows that a value of γ j close to one implies a small degree of asymmetry between
firms’ cost functions relative to consumers’ maximum willingness to pay in market
j.

The following proposition provides a tight bound on the worst case efficiency loss
bound when firms have linear cost functions with a bounded degree of asymmetry.

Proposition 3.10. Let C ∈ Ln(cmin, cmax), and assume that cmin < max j∈M α j (that
at least one firm would be willing to produce to one market). The worst case
efficiency loss associated with the corresponding open access networked Cournot
game (F,Q(F × M), π) is upper bounded by

ρ(F × M,C) ≤

∑m
j=1
((αj−cmin)

+)
2

βj∑m
j=1

(
2n+4
3n+5 + δ(γ j, n)

)
((αj−cmin)+)

2

βj

,

where the function δ(γ, n) is defined according to

δ(γ, n) =


0 if γ < 2n+3
3n+5,

(n−1)(3n+5)
(n+1)2

(
γ − 2n+3

3n+5

)2
otherwise .

The bound is tight if α1 = α2 = · · · = αm.
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The worst case efficiency loss bound specified in Proposition 3.10 depends on the
degree of (a)symmetry between firms’ cost functions only through the terms δ(γ j, n)

for j = 1, . . . ,m. In particular, as δ(γ, n) is non-decreasing in γ, a reduction in the
degree of asymmetry between firms’ cost functions manifests in a reduction in the
worst case efficiency loss bound.

With the positive worst case efficiency loss results from open access platform de-
signs, together with the result in Lemma 3.7 that open access platform designs
preserve a good proportion of demand fulfilled, we explore in the next section
the platform design that controls allocations on behalf of the participating firms,
allowing them to only decide their production quantity.

3.4 Inefficiency of Controlled Allocation Designs
Despite preserving large production rates, the open access platform design suffers
from some efficiency loss through misaligned allocations. We study controlled
allocation platforms that aggregate production and perfectly allocate to various
markets in hope that this control circumvents the misaligned allocations. Unlike
the open access platform described in Section 3.3, a controlled allocation platform
allocates the production to different markets in a socially optimal way for any given
aggregate production quantity.

However, controlled allocation platforms are not as simple to optimize as they
seem. In particular, the control over allocations exerted by the platform may create
unintended incentives incentives for firms to withhold production, as empirically
shown in (J. Y. Chen, 2017) for the ride-sharing platformUber. Though firms cannot
strategically choose prices or matches, they retain control over their participation in
the platform. In the networked Stackelberg setting, this takes the form of strategic
choices of production levels, with the platform only allocating on their behalf to
maximize a certain quantity, e.g., social welfare.

Our main result in this section highlights that distorted incentives in controlled
allocation platforms can lead to inefficient market outcomes.

Theorem 3.11. A controlled allocation platform maximizing social welfare can
have unbounded price of anarchy. In particular, there exists a family of networks
where the Stackelberg equilibrium is unique and the worst case efficiency loss is
Ω(m), i.e., there exists sSE and cost functions C such that:

ρ(C, M) ≥ Ω(m)
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The contrast between Theorem 3.11 for controlled allocation platforms and Theo-
rem 3.5 for open access platforms is stark. While open access platforms preserves
at least 2/3 of the optimal social welfare regardless of market parameters, con-
trolling allocations can lead to reactive producer behavior which drives efficiency
preservation rates possibly all the way to 0. In this section, we first prove Theorem
3.11. Additionally, we provide a generalization of Theorem 3.11 in Theorem 3.14,
which shows that controlled allocation platforms remain inefficient for a variety of
platform objective functions in clearing the market, spanning between social welfare
and consumer surplus.

Social Welfare Maximizing Controlled Allocation Platforms
Given the results from Section 3.3, one may intuitively think that perfect allocation
can lead to improved efficiency loss bounds. In Theorem 3.11, we show that such
a platform, even with the best intentions, i.e., maximizing social welfare, can lead
instead to an unbounded efficiency loss. On the other hand, allowing for an open
access design and not controlling allocations lead to a bounded worst case efficiency
loss as in Section 3.3.

Note that the networks constructed to prove Theorem 3.11 are simple. They use a
single firm with costless production. The construction begins with a single market
and then, as markets are added one by one to the system, the parameters of each
new market are such that the firm has no incentive to increase production due to
the reallocation under the controlled allocation, whereas the socially optimal (non-
Nash) production level does increase, as does the optimal welfare. Note that, when
a firm has no production cost, the socially optimal production is always to produce
until the price in every market is driven to 0.

Theorem 3.11 is proven using a construction which highlights that an efficient
platform should prevent firms from withholding production, which may be achieved
by modifying the market clearing mechanism appropriately. This begs the question:
Can the platform do better by optimizing a different quantity? We now show that
the efficiency loss in controlled allocation platforms remain unbounded when the
platform chooses a family of alternative objective functions in clearing the market.
In particular, such a family of objective functions are given by convex combinations
of social welfare and consumer surplus.
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Consumer Surplus Maximizing Controlled Allocation Platforms
Before attending to the family of objectives, we first consider the corner case in
consumer surplus, which helps give some intuition as towhy theworst case efficiency
loss can grow large. Given a fixed supply, the consumer surplus is defined as follows.

Definition 3.12. Specifically, the consumer surplus associated with a supply profile
q is defined according to

CS(q) :=
m∑

j=1

∫ dj

0
p j(z)dz − d j p j(d j), (3.8)

where d j is defined in Eq. (2).

In fact, the worst case efficiency loss is unbounded under the objective of consumer
surplus. For two markets with different willingness to pay α and the same price
elasticity to demand β, an equal quantity in each market produce the same consumer
surplus. To some extent, by considering consumer surplus, the platform becomes
agnostic towards consumers’ maximal willingness to pay.

Proposition 3.13. A controlled allocation platform maximizing consumer surplus
have infinitely large price of anarchy. In particular, even under a two market, one
firm setting, the price of anarchy is∞.

The idea behind the two node construction which proves the proposition is simple:
Maximizing consumer surplus implies that the platform is agnostic to the maximal
willingness to pay, whereas rational producers consider that. A simple example
of this is a one firm, two market network has the firm with linear cost cs, and the
markets have parameters

α1 = c + ε, β1 = ε/2, α2 = c − ε, β2 = ε,

which results in the platform allocating fully to the second market before accessing
the first market. It is trivial to show that being forced to participate in the whole
of the second market, the firm would rather not produce anything at all. On the
other hand, the optimal allocation has 2 units in the first market and none in the
second, resulting in a positive social welfare, and therefore an unbounded worst case
efficiency loss.
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A General result on Controlled Allocation Platforms.
The control over allocations is delicate, and explicitly not optimizing (as in the open
access case) is more efficient than optimizing either social welfare or consumer
surplus. To understand how the worst case efficiency loss is affected by different
objective functions, we now extend the analysis of the social welfare case to consider
an objective OBJ(λ) to be a convex combination of consumer surplus and revenue,
parametrized by λ:

OBJ(λ) =
∑
j∈M

[
λ

(∫ dj

0
p j(q)dq − d j p j(d j)

)
+ (1 − λ)

(
d j p j(d j)

) ]
For example, when λ = 1, the above objective is consumer surplus whereas λ = 0
gives revenue, and when λ = 0.5, the resulting objective is half of consumer welfare,
which is equivalent to a social welfare objective. In particular, we are able to provide
a lower bound on the worst case efficiency loss for the controlled allocation platform
maximizing the convex combination of objective functions.

We present a more general version of the previous results on consumer surplus
(λ = 1) and social welfare (λ = 1/2), where worst case efficiency loss is infinitely
large and growing linearly in the number of markets respectively. This result is
presented in the following theorem.

Theorem3.14. Theworst case efficiency loss ρ(k) of controlled allocation platforms
optimizing various objective functions (characterized by σ = 2−3λ

1−λ ) satisfies:

ρ(σ) ≥


∞, if σ ≤ 0.

Ω(m), if 0 < σ ≤ 1

max{ 2
3
√

1
σ (1−

1
σ )
, 3

2 }, otherwise.

This means that the construction developed to prove Theorem 3.11 also can be used
to show that any objective between consumer surplus and social welfare leads to
similar results to the social welfare case in Theorem 3.11 and that past social welfare,
the upper bound for worst case efficiency loss decreases towards a nice constant,
which corresponds to the open access result.

When considering linear inverse demand functions and assuming d j ≤ α j/β j , the
above objective can be simplified to the following after dividing by a constant
(1−λ) assuming λ , 1 (having dealt with the consumer surplus case in the previous
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subsection),

OBJ(λ) =
∑
j∈M

[
λ

2(1 − λ)
β j d2

j + (α j d j − β j d2
j )

]
Observing the stationarity conditions with respect to d j , we find that the platform
maximizing such an objective would keep the following quantity constant across
markets:

δOBJ(λ)
δd j

= α j −
2 − 3λ
1 − λ

β j d j,

which confirms that as λ approaches 1, the emphasis on the maximal willingness
to pay α j decreases, and becomes potentially inefficient. Increasing past the point
λ = 2/3, the optimization function also changes from a concave maximization
problem to a convex one, i.e., the problem ends up being a (nonconvex) Quadratic
Program (QP). This also reveals that whenever a new market is accessed (regardless
of λ < 1), that the following relationship is preserved for any new additional supply
q j, qk , β jq j = βk qk,with the parameter λ basically dictating when the next market is
accessed. For example, when λ = 0.5, prices are kept constant for each participated
market.

The issue with controlled allocation platforms is that the platform’s market clearing
mechanism is agnostic to underlying cost functions. While this action seemingly
makesmuch sense under this setting, we showabove that having thewrong objectives
can yield (in the extreme) unbounded or infinitely large price of anarchy, preserving
close to or none of the optimal social welfare. It should be clear through the section
that such a strategy of controlling allocations potentially leads to undesirable and
reactive producer behavior. As such, an alternative market clearing mechanism is
necessary.

3.5 Efficiency of Discriminatory Access
Open access designs preserve large productions but suffer from misaligned allo-
cations, while controlled allocation designs lead to undesirable and unintended
incentives for the producers to curtail production. Recently, some platforms have
started shifting from open access platform designs towards more delicate designs
which aim to both retain the incentive to produce in open access platforms and exert
some control over allocations. Results from this section show the promise of some
of these changes. We design such a platform to be similar to mechanisms such as
Amazon’s Buybox and Airbnb’s Superhost, which highlights particular sellers or
renters while hiding others.
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In the setting of our model, such access control corresponds to the specification of
the edge set of the bipartite graph that connect firms to markets, with the goal of
maximizing social welfare at the unique Nash equilibrium of the resulting networked
Cournot game. This platform is referred to as a discriminatory access platform.
Unlike the controlled allocation platform, the efficiency of discriminatory access
platforms is guaranteed to be no worse than open access platforms, as open access
is a valid choice of access control.

Our work on discriminatory access design culminates in the following theorem,
highlighting the bounded efficiency loss from discriminatory access platforms at
the optimal network design. We prove a complementary result in Theorem 3.17
that this optimal network design problem can be computed for the worst case cost
functions via a greedy algorithm presented later in the section.

Theorem 3.15. Assume that each firm’s cost function is linear over (0,∞), and
assume that E∗ is an the optimal network design for the discriminatory access
platform. Let C ∈ Ln(cmin, cmax), and assume that cmin < max j∈M α j . The efficient
social welfare associated with the edge set E∗ satisfies

SW∗(E∗,C) = SW∗(F × M,C).

The efficient social welfare can be attained at the edge set E∗. Moreover, the worst
case efficiency loss associated with the discriminatory access networked Cournot
game (F,Q(E∗), π) is upper bounded by

ρ(E∗,C) ≤

∑m
j=1
((αj−cmin)

+)
2

βj∑m
j=1 max

k∈{1,..,n}

{ 2k+4
3k+5 + δ(γ j, k)

} ((αj−cmin)+)
2

βj

,

where the function δ(γ, n) is defined in Proposition 3.10, and serves as a measure
of the degree of asymmetry between firms’ cost functions.

The above bound is tight if α1 = α2 = · · · = αm.

The functions that maximize worst case efficiency loss in networked Cournot games
are linear cost functions. Therefore, the bounds in Theorem3.15 also applies to cases
where firms have general convex costs. Additionally, choosing the number of firms
n = 1 yields a worst case efficiency loss bound of 4/3 for (optimized) discriminatory
access platforms with any number of firms and markets, improving upon the 3/2
price of anarchy bound for open access platforms established in Corollary 3.6. The
result is formally stated as follows.
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Corollary 3.16. Assume that each firm’s cost function is linear over (0,∞). Dis-
criminatory access platforms have worst case efficiency loss of at most 4/3.

In general, we show that choosing an optimal edge set that maximizes social welfare
atNash equilibriumamounts to amathematical programwith equilibriumconstraints
(MPEC), and is, in general, computationally intractable.

The Optimal Network Design Problem
The optimal network design problem amounts to the selection of an edge set E,
which maximizes social welfare at the unique Nash equilibrium of the resulting
networked Cournot game. Formally, Lemma 3.2 provides a characterization of
the supply profile at the unique Nash equilibrium of the game (F,Q(E), π) as the
unique optimal solution to a convex program. Therefore, the optimal network design
problem admits a formulation as the following MPEC:

maximize SW(q,C)

subject to E ⊆ F × M

q ∈ arg max
x∈Q(E)

SW(x,C) −
m∑

j=1

n∑
i=1

β j x2
i j

2


(3.9)

Here, the decision variables are the edge setE and the supply profile q. The challenge
in solving the above problem stems from the equilibrium constraint on q, and the
presence of the discrete decision variable E. (An equilibrium constraint requires
that a vector be an optimal solution to a optimization problem. In general, this leads
to a nonconvex and disconnected feasible region for MPECs. See (Luo, J.-S. Pang,
and Ralph, 1996) for a more detailed discussion.) In what follows, we show that,
considering linear cost functions which represents the worst case efficiency loss, the
above problem can be solved using a greedy algorithm.

Greedy Algorithm for Optimal Worst-case Network Design
In this section, we restrict ourselves to cost functions that are linear on (0,∞), i.e.,
the ones maximizing worst case efficiency loss. Specifically, we assume that the
cost function of each firm i ∈ F satisfies Ci(si) = (cisi)

+, where ci ≥ 0. Leveraging
on this assumption, we propose a greedy algorithm for solving the optimal network
design problem (9) in Algorithm 1. For each market j ∈ M , the greedy algorithm
visits firms in ascending order of marginal cost, and provides each firm it visits
access to market j if its inclusion in that market increases social welfare.
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Algorithm 1 The Greedy Algorithm
Require: c1 ≤ · · · ≤ cn.
1: Initialize edge set E ← ∅.
2: for j = 1 to m do
3: Initialize firm index i ← 1.
4: Initialize edge set Ẽ ← E.
5: repeat
6: Update edge set E ← Ẽ.
7: if i ≤ n then
8: Set edge set Ẽ ← E ∪ (i, j).
9: Set firm index i ← i + 1.
10: end if
11: until SW(qNE (Ẽ),C) ≤ SW(qNE (E),C).
12: end for
13: return E.

Clearly, Algorithm 1 yields an edge set E∗, whose corresponding Nash equilibrium
has a social welfare that is no smaller than that of the open access platform.

Theorem 3.17. If E∗ is an edge set obtained from Algorithm 1, then (E∗, qNE (E∗))

is an optimal solution to (3.9), that is, the greedy algorithm achieves the optimal
network design.

Theorem 3.15 reveals the advantage discriminatory access platforms have over open
access ones in reducing the efficiency loss at Nash equilibrium, while Theorem
3.17 guarantees we can find such an edge set when optimizing over the worst case
network design. Namely, when the edge set is chosen to be an optimal solution of
the network design problem (9), the discriminatory access platform is guaranteed
to have a tight bound on the price of anarchy that is no larger than that of the
open access platform. Moreover, this price of anarchy bound is guaranteed to be
non-increasing in the number of firms n.

We observe under ourmodel that sacrificing transparency and discriminating choices
of firms for different markets allow for a slight improvement in the worst case social
welfare preserved, or a slight improvement in efficiency. In what follows, we present
a simple search cost model to study the impacts of consumer search cost on platform
design, and further demonstrate the flexibility of the discriminatory access platform
design to consider search costs.
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3.6 Search Costs and its Implications
The model and analysis presented thus far considers production costs but not other
costs which can also be on the consumer side, and may be monetary, e.g., trans-
portation and communication, or non-monetary, e.g., search costs. Platform designs
center around lowering entry costs for producers, oftentimes leading to increased
production and competition, and lowering search costs for consumers. In this sec-
tion, we present a simple search cost model which highlights the ability of the
discriminatory access design to also consider search costs, and the distinction be-
tween open access and discriminatory access designs.

As we are working in the networked Cournot setting where demand is aggregated,
we must use a simple model for search costs. We define a search cost for each
consumer market j, r j , on the consumers as a product of their consumer surplus
(taking care of the simple assuring assumption that markets are rational and that
search costs can never be more than their surplus) and a discount factor f (n) which
monotonically increases with the number of firms n, and lastly, a market-specific
parameter θ highlighting potentially different market segments with differing search
costs, defined as follows:

r j = θ f (n)CSj, 0 ≤ θ ≤ 1,

where function f has the following properties:

f (1) = 0, lim
n→∞

f (n) = 1, f monotonically increasing

This search cost model ensures that (i) search cost penalties can never exceed
consumer surplus—an assumption that search cost can never cause the market to
receive negative utility, (ii) differentiation can be made through θ for low and high
search cost participants, and that (iii) search cost increases in the number of firms
exposed to - the effort or cost has to increase as the number of choices increase.

Remark 3.18. Since controlled allocation platforms essentially make all decisions
on allocation, the search cost is 0 for consumers but continue tomaintain its previous
negative result from Section 4, implying that search costs has no effect on controlled
allocation platforms.

In light of the difficulty to analyze without a further parametric form of f (n), we
assume hereafter that f (n) assumes the form of f (n) = n−1

n+1 , fulfilling the preceding
properties we listed.
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Open access designs, by definition, presents all possible choices to consumers, al-
lowing them to make production and allocation decisions, but also thereby incurring
large search costs. In the following theorem, we highlight the impact of search costs
on open access platforms.

Theorem 3.19. Open Access Platforms with search costs defined with f (n) = n−1
n+1

have worst case efficiency loss Ω(n).

On the other hand, referring to Corollary 3.16, where the price of anarchy is 4
3

at n = 1 (which coincidentally incurs zero search cost) for discriminatory access
platform designs, they maintain its worst case constant bound price of anarchy under
linear cost functions and search costs.

Prior to this section, it seems that the performance guarantees attained by open
access and discriminatory access platform designs are similar. This section presents
a preliminary look at the impact of search cost on platform design, in particular
highlighting the potentially post-search unbounded worst case efficiency loss result
for open access platforms, and the flexibility of the discriminatory access platform
design to consider search costs. It remains important to study this further, e.g., to
find out how to optimize network design with search costs, or how computation or
other costs involved may affect the performance of discriminatory access designs
too.

Concluding Remarks

This chapter presents trade-offs between transparency and control in online platform
design. We present three platform designs under a networked Cournot competition
model that resembles some of the more popular platform designs today. They are
open access, controlled allocation, and discriminatory access designs. Open access
designs transparently allow full access, while controlled allocation designs make
allocation decisions for producers. Discriminatory access designs seek a balance
between transparency and control, by controlling over the firm-market access.

The driving force behind the significant results in this work is the insight in Lemma
3.8 that linear costs are the worst among convex cost functions for minimizing
efficiency loss. This result implies that for analyzing worst case efficiency loss
bounds, a networked competition model is only as complex as a competition model
with a single market since linear production costs imply constant marginal cost,
which decouples decisions across markets.
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From that, we show that open access designs preserve a significant proportion of
production and alignment to social welfare. Further, we show that open access
designs have a worst case efficiency loss bound of 3/2. Complementing that, we
also include bounds for when firms have symmetric and asymmetric cost functions,
which reveals a well-known result that an increase in competitors leads to improved
efficiency, butwhat is surprising is that this does not hold in the casewith asymmetric
costs. Such a result is because increasing the number of competitorswith asymmetric
costs in that case only reduce competition in the worst case. However, when further
considering a simple search cost model, we find that the worst case efficiency loss
for open access designs can be large, and can grow in the number of firms.

Next, we show that controlling allocations to maximize social welfare cause suf-
ficient misalignment in incentives with producers for them to curtail production
significantly. We show that the platform keeps prices constant across active mar-
kets, and also show that the resulting game is equivalent to a Cournot game with
convex inverse demand, as studied in (John N Tsitsiklis and Yunjian Xu, 2014). We
show that this results in a worst case efficiency loss lower bound that grows in the
number of markets. We present a generalization of that result to platform objectives
or market clearing mechanisms beyond social welfare.

Lastly, we show that discriminatory access platforms can achieve improved worst
case efficiency loss bounds of 4/3. The optimal network design problem is for-
mulated as a mathematical program with equilibrium constraints, highlighting its
complexity. We find an optimal greedy algorithm for the case when firms’ produc-
tion costs are linear, representing an optimization over the worst case cost function.
We also show that discriminatory access platforms can balance efficiency and search
costs, retaining its 4/3 bound even in the presence of search costs.
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C h a p t e r 4

DEMAND MANAGEMENT IN ONLINE PLATFORMS

We witnessed in Chapter 3 how practical considerations like search cost affect the
efficiency of different platform designs. This chapter aims to study another practical
implementation in platforms known as demand management.

Demand management refers to signals and rewards designed to incentivize cus-
tomers’ demand reduction from nominal consumption patterns. It has been utilized
in multiple different areas, e.g., electricity markets and ridesharing platforms. It
manifests as load-side demandmanagement (a.k.a. demand response) and locational
marginal prices (LMPs) in electricity markets and surge pricing in ridesharing plat-
forms. They are known to be useful in promoting the interaction and responsiveness
of consumers, guiding short term impacts for the market to improve stability, ensure
supply meets demand while meeting certain network constraints.

Demand management can take on very different forms. LMPs (similarly, surge pric-
ing) provide prices across a congested network that reflect the marginal price of de-
mand at each location, to minimize supply-demand imbalances. Demand Response,
on the other hand, rewards consumers for reducing their nominal demand. Depen-
dent on how demand management is set up, producer manipulation can instead turn
it on its head, leading to significant inefficiencies in these markets. Manipulations
in the electricity market and ridesharing platforms evidence these inefficiencies,
e.g., Enron during the California Energy Crisis in 2000 costing US$40-45 Billion
(Weare, 2003), JPMorgan Ventures Energy Corp in 2012, coordinated logging off
from Uber applications by drivers to induce surge pricing. By anticipating these
demand management tools, producers have the power to manipulate prices in these
markets for their gains.

The markets that require strict governance are networked, firstly in that there are
multiple producers and consumers, but also in a sense that there are often constraints
on how demand can be allocated or transported across the network. For example,
drivers on ridesharing platforms usually prefer to drive within their geographical
location if prices and demand allow for it. Meanwhile, transferring electricity from
one node to another on the electrical grid depends on power and line flow constraints,
driven by the physical laws of electricity transportation.
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Beyond considering networked marketplaces, a complete study on the impact of
demand management must also include the potential for anticipation and manip-
ulation. To that end, we introduce a novel model of networked competition that
takes into account producer anticipation on platform allocation, designed to be a
leader-follower version of the networked Cournot competition model with a plat-
form, where producers choose production quantity to maximize individual profits
while the platform rebalances across the network to maximize social welfare. In this
networked Stackelberg game, producers compete against each other knowing (in
anticipation of) the platform market clearing mechanism, i.e., all producers know
how the platform rebalances across the network, as in Section 3.4. In contrast, with-
out knowledge (and anticipation) of the clearing mechanism, the producers compete
against each other and the platform simultaneously in the networked Cournot com-
petition together. Under these models, we can gain new and interesting insights on
anticipation and demand management in networked markets.

Example: Electricity Markets
Behind the success of the grid is an electricity market governed by an independent
system operator (ISO), who ensures that the right prices across the grid are set such
that (i) supply meets demand, (ii) social welfare is maximized, and (iii) network
flow physics and constraints are considered. To do this, the ISO usually receives
quantity bids from producers and estimates demand over the grid, and optimizes
rebalancing constrained on network flow and physics, resulting in prices that serve
as optimal incentives for producers at each node to generate the right amount.

If producers cannot anticipate allocations of the ISO, then this set-up is indeed
optimal given truthful quantity bids and demand. However, market clearing mecha-
nisms and network constraints may be known to producers. This knowledge can lead
to price manipulation when entities obtain sufficient “market power”, e.g., Enron
in the California Energy Crisis. As such, it is critical that we consider producer
anticipation when studying electricity markets under a governing platform.

Thankfully, mature electricity markets have developed mechanisms to circumvent
some of these problems. One of them is known as load-side demand management,
a.k.a. demand response. It helps alleviate binding constraints on the grid, conse-
quently aiding with network stability and can help with the increasing amount of
renewable energy on the grid. We show in this chapter that demand management
mechanisms can also help curb manipulation caused by producer anticipation.
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Example: Ridesharing Platforms
Ridesharing platforms have revolutionized transportation in cities and change the
ways car ownership is viewed today. Behind the success of ridesharing are platforms
who carefully set prices for rides andmatch riders to drivers. These platforms (i) pro-
vide sufficient incentives for driver participation, (ii) ensure reasonable waiting time
for passengers, and (iii) carefully subsidize the short side to improve engagement
further and hopefully thrive on network effects in these networked marketplaces.

Unlike electricity, there is a cost involved for the drivers to be relocated without a
passenger, in terms of opportunity and movement cost. To circumvent this problem,
recent changes in surge pricing promise an additive bonus for re-locations, priced
carefully to cover the mentioned costs.

Information through ridesharing platforms is explicitly designed so that individual
drivers (alongwith their corresponding production constraints) do not have sufficient
“market power” individually. This design is also the reason why manipulation on
ridesharing platforms require coordinated cooperation, e.g., drivers synchronizing
their logging out of ride-sharing applications to cause a supply-demand mismatch,
activating surge pricing. This manipulation again compels studying anticipation in
these networked marketplaces.

As ridesharing platforms mature, it will be critical that they prevent such collusion
andmanipulation due to the anticipation ofmarket clearing and pricingmechanisms.
We propose that like demand response for electricity markets, demand management
reduces the market power and impact of manipulation for drivers.

Our Contributions
In this chapter, we show that demand management is a powerful tool in preventing
producer manipulation. We show that beyond what others usually associate demand
management with, it further limits manipulation, but does so in a unique manner. In
particular, we posit that demand management mechanisms empower consumers and
allow them to provide back “non-strategically”, essentially handing “market power”
to consumers to counter that which producers may have. We first introduce a leader-
follower or Stackelberg version of the well-studied networked Cournot competition
model. We call this model the networked Stackelberg model, where producers
jointly act as the leader, and a controlling platform who rebalances quantity over
the network follows. Alternatively, producers without anticipation participate in a
simultaneous networked Cournot game with the platform.
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In Section 4.2, we present our competition models1 and define the corresponding
equilibrium concepts. We also describe the constraints over rebalancing allocations
and present a characterization of platform allocations. We design the network such
that each producer is co-located with a consumer, where nodal pricing results from
binding constraints over allocations.

Our first result seeks to understand the impact of anticipation in these networked
marketplaces. We find in Proposition 4.2 that the networked competition where
producer do not understand the market clearing mechanism leads to inefficiency
even in simple networks. On the other hand, we find in Section 4.3 conditions
for successful and efficient anticipatory competition in networked marketplaces. If
price intercepts are homogeneous across an unconstrained marketplace, then the
networked Stackelberg game yields a unique equilibrium with bounded multiplica-
tive worst case efficiency loss of 3/2. However, we show by construction that the
conditions listed are “almost necessary”, i.e., taking away either will remove the
existence of equilibria or the bounded worst case efficiency loss.

Our aim in the final part of this work is to highlight the potential of load-side demand
management beyond its traditional benefits in also improving economic efficiency.
We develop a simple model of demand response under the networked Stackelberg
model and show that under the absence of network constraints, a unique equilibrium
exists, againwith aworst case efficiency loss bound of 3/2. To supplement this result,
we further provide conditions such that demand response serves as a threat that does
not get activated at equilibrium. We exhibit the efficacy of demand response by
applying it to one of the previous examples and highlight its ability to discourage
equilibria with lower production levels. Lastly, we show that equilibria with binding
network constraints do not suffer significant losses when consumers participate in
demand management. More specifically, we show that the worst case loss can be
split into two parts: (i) the original multiplicative 3/2 bound, and (ii) an additive
loss bounded by the revenue passing through constrained lines, which we see as a
price of congestion. This result means that if constrained lines do not carry too
much revenue, then the equilibrium remains efficient. More notably, if none of the
constraints are binding, then we retrieve the original 3/2 multiplicative efficiency
loss bound.

1The main difference between the controlled allocation platform in Chapter 3 and the one
considered here is the co-location of a firm with each market, and the network constraints over the
rebalancing. The co-location allows for a manifestation of nodal prices. In the controlled allocation
platform design, there were no constraints over rebalancing.
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4.1 Literature Review
Our focus in this work is the impact of demand management mechanisms in net-
worked marketplaces where producers anticipate the actions of the governing plat-
form or market maker. This work lies in the intersection of platform design and
demand management in networked competition, but such work has traditionally
also been mostly studied for applications in electricity market analysis. We present
here related literature from electricity market load-side demand management, while
related literature for networked competition and platform design can be found in
Chapters 2 and 3 respectively.

The idea of demand management is not new, and have been widely used in electric-
ity markets, and studied as early as the 1980s (Gellings, 1985). Electricity market
demandmanagement promotes the interaction and responsiveness of customers, and
may offer a broad range of potential benefits on system operation and expansion and
on market efficiency (Siano, 2014). Additionally, by improving the reliability of the
power system and, in the long term, lowering peak demand (L. P. Qian et al., 2013),
demand response reduces overall plant and capital cost investments and postpones
the need for network upgrades. Today, innovative enabling technologies and sys-
tems, such as smart meters, energy controllers, communication systems, decisive
to facilitate the coordination of efficiency and demand response in a smart grid.
(Huang, Walrand, and Ramchandran, 2012) also devised lightweight algorithms to
solve for optimal energy and load-side demand management.

Beyond stability, load-side demand management strategies can also help with delay-
ing investment on new generation capacity from renewable resources and improve
operation of existing installed capacity (Pina, Silva, and Ferrão, 2012). An impli-
cation of this is that increased demand response can help us utilize an increased
amount of renewable energy, which can be cheaper, but more critically, less harmful
to our environment. A study on the practical implementation of secure and private
load-side demand management can be found in (Palensky and Dietrich, 2011), and a
study on real-time implementation can be found in (Conejo, Morales, and Baringo,
2010).

To the best of our knowledge, this work is the first to consider economic impact in
terms of economic stability and reduction in market power.
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4.2 Model & Preliminaries
In this chapter, we focus on the impact of demand management in a networked
marketplace. We model the interaction of a collection of strategic firms and a
governing platform P that can transport a commodity over a network. We begin by
describing the marketplace and the competition model below.

Modeling the marketplace
Consider M markets labeled 1, . . . , M that are connected via a network. A single
strategic firm Fm supplies at market m. A firm in our model can only supply to its
local market. The platform P provides transport, thereby reallocating goods across
markets. Firm Fm decides its supply quantity qm ≥ 0 for which it incurs a cost
of cm(qm). Assume that supply costs of all firms are continuously differentiable
increasing convex functions with zero investment costs (cm(0) = 0). Denote the
supply profile across the markets by q := (q1, . . . qM)

ᵀ. Define q−i as the same
profile save the i-th one.

Consider an aggregate price-taking consumer atmarketm characterized by an inverse
demand function of the form

pm(dm) := αm − βmdm.

Here, αm > 0 denotes the maximal price the consumers are willing to pay and βm

denotes the price elasticity in market m.2 Let d ∈ RM denote the demands across
all markets.

Platform P provides transportation of the commodity over a network joining the
markets. Denote by rm, the amount that P allocates to market m. Collect them
across all markets in

r = d − q ∈ RM .

The transport is constrained by the capabilities of the network, modeled as Ar ≤ b
in the sequel with b ≥ 0 and 1ᵀr = 0, where 1 ∈ RM is a vector of all ones. Such
a model ensures that P may choose not to reallocate (r = 0 is feasible) and no
supply is wasted during the reallocation process. This model for the network is
inspired by electricity markets where generators produce and loads consume power
at their respective buses of an electric power network. A system operator clears the
market in a way that the power injections across the network respect the engineering
constraints of the grid. Decisions in electricity markets are often made based on a

2Our results mostly generalize to the case with general concave decreasing inverse demands.
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linearized lossless power flow model known as the DC-approximation Stoft (2002)
and Purchala et al. (2005). Under this popular approximation, the (directed) power
flows on N transmission lines become H(−r) for power injections −r across the
network, which is assumed to be no larger than the production q. The matrix
H ∈ R2N×M is the so-called injection shift-factor matrix. The directed power flows
respect the transfer capabilities of the transmission lines, modeled as H(−r) ≤ f
with f ∈ R2N

+ . Using A := −H and b = f with the lossless assumption reduces the
set of possible reallocations to

X(q) := {r ∈ RM | Ar ≤ b, 1ᵀr = 0, q + r ≥ 0}. (4.1)

Owing to Kirchhoff’s laws, power flows over transmission lines in an electric power
network are completely determined by nodal power injections. Therefore, trans-
portation constraints can be directly modeled by constraints on nodal power injec-
tions −r. Such a model does not apply to transport networks for other commodities.
For such networks, denote the transport frommarket m to its adjacent market m′ ∼ m

by tmm′. Then, the reallocation to market m is given by

rm =
∑

m′∼m

(tm′m − tmm′),

collectively denoted as r = Bt. Denote the directed transports on all N edges of the
network as t ∈ R2N . Then, the network constraints can be written as

X′(q) := {(r, t) ∈ RM+2N | r = Bt, 0 ≤ t ≤ b, 1ᵀt = 0, q + r ≥ 0}. (4.2)

As long as one can find matrices A (and respectively B) that are pseudo-inverse to
the other, then the set of reallocations X and X′ are equivalent. We proceed with
network constraints modeled as X for simplicity; our conclusions continue to hold
for that in X′.

Modeling Competition
Present models of networked competition study simultaneous games between all
participants, firms and platform alike, as in the networked Cournot competition
in (Cai, Bose, and Wierman, 2017). Our focus on demand management under
a governing social planner necessitates the consideration of producer anticipation
on these platform rebalancing allocations. We do this under a model of networked
Stackelberg competition, where firms act as joint leaders and platformP follows. We
formally introduce both models after we define each participant’s payoff functions.
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Given rebalancing quantities r, the utility for producer m is its profit πm, i.e.,

πm(qm, rm) := qmpm(qm + rm) − cm(qm),

which it aims to maximize over its production constraints qm ≥ 0. The platform P
plays the role of a socially benevolent planner, seeking to maximize social welfare
of the system. It is a well-studied objective, e.g., (Ramesh Johari and John N
Tsitsiklis, 2004), and is also used for the optimization of electricity markets. Further,
optimizing social welfare minimize variance of prices across the distinct markets in
a network. Social welfare is defined as aggregate consumer welfare less producers’
total cost, and equivalently, the sum of consumer, producer and merchandising
surplus, first defined by:

CS(q, r) :=
M∑

m=1

(∫ qm+rm

0
pm(wm)dwm − (qm + rm)pm(qm + rm))

)
,

PS(q, r) :=
M∑

m=1
(pm(qm + rm) − cm(qm)) , MS(q, r) :=

M∑
m=1
(rmpm(qm + rm)) .

By maximizing the platform payoff function ΠP(q, r), i.e., social welfare, or

ΠP(q, r) := SW(q, r) =
M∑

m=1

(∫ qm+rm

0
pm(wm)dwm − cm(qm)

)
,

over its constraint set r ∈ X, the platform aim to balance objectives of the various
parties in the marketplace. Such a market clearing mechanism defines a reaction
function ρ : Rm

+ → X, which determines the platform’s reallocation r for each set
of supply quantity profile q submitted by the producers. This reaction function ρ is
determined by the following optimization:

ρ(q) = arg max
r

M∑
m=1

(∫ qm+rm

0
pm(wm)dwm − cm(qm)

)
,

subject to r ∈ X(q),

which admits an efficient (convex programming) solution for common choices of
cost functions, e.g., linear and quadratic production cost.

The critical distinction between the two competitionmodels is whether the producers
consider this reaction function, or equivalently, how the platform reallocation r
changes, with a change in production quantity q. Since the reallocation r is decided
based on the supply profile of all firms, firms in the networked Stackelberg game
are actually aware of the competition they are in with other firms in the system.
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Non-anticipatory competition (Cournot)

In the non-anticipatory competition, producers and the platformP participate simul-
taneously. A profile (qC, rC) is a generalized Nash-Cournot (or non-anticipatory)
equilibrium if

πm(qC
m, qC

−m, rC) ≥ πm(qm, qC
−m, rC), ∀qm ≥ 0,

for each producer m, and

ΠP(qC, rC) ≥ ΠP(qC, r), ∀r such that r ∈ X(qC).

for the platform P whose strategy set depends on the firms’ productions. A careful
reader may notice that the profit of each firm can be written in the form πm(qm, rm),
i.e., each firm plays a game only with the platform P, since each firm does not
anticipate reallocations of the platform. At the generalized Nash equilibrium of the
Cournot competition, neither the producers nor platform P can unilaterally deviate
to obtain improved utility. By showing that these are concave games, one can prove
the existence of this (generalized Nash) equilibrium by applying (Rosen, 1965).

Anticipatory Competition (Stackelberg)

When all producers anticipate platform rebalancing, they participate in a simul-
taneous game only against the other producers. The platform P follows with a
rebalancing allocation that is known to all producers which depends on the quan-
tity bids from each of them, effectively making firms aware of the coupling across
production quantities at different nodes.. In other words, the producers account for
the response of P’s actions in its quantity offer in this game, as in a Stackelberg
(leader-follower) game. We model competition based on complete information, and
while this represents idealized conditions in real-life settings, this model is rich
enough to bear insights on the impact of anticipatory behavior of producers in such
marketplaces.

We define a production and rebalancing allocation profile (qS, rS) to be a Stackelberg
equilibrium or an equilibrium in the networked Stackelberg competition if,

πm(qS, ρ(qS) ≥ πm(qm, qS
−m, ρ(qm, qS

−m)), ∀qm ≥ 0,

i.e., no producer can unilaterally deviate with anticipation of rebalancing allocations.
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Modeling Demand Management
In contrast to the original consumer model, we allow in Section 4.4 for fulfilled
demand dm at some markets to be negative, which corresponds to load-side demand
management. Concave quadratic consumer utilities yield linear inverse demand,
indicating prices one iswilling to pay for demand. In particular, pm(dm) = αm−βmdm

corresponds to utility

Um(dm) =

∫ dm

0
αm − βmx dx = αmdm −

βm

2
d2

m. (4.3)

We assume that there is already nominal demand Dm fulfilled at each node, and that
the above utility functions model that of residual demand. Extending to the negative
domain of pm implies that consumers are willing to curtail its nominal demand Dm

at a particular payment rate, incurring a utility U(d) which is negative when d is as
well. In return, these consumers will be paid −qmpm(dm) as a reward.

A Two-node Illustrative Game
While networked marketplaces with platforms as described in our paper are abun-
dant, we provide here a two-node illustrative game, with a producer and consumer
in each and a link joining them with flow constraints. We do not constrain this
example game to be for a particular application, but use it to illustrate results that
we will prove in this work.

F1 F2

d1 d2

r1 r2

Figure 41: Two-node illustrative example defined as G(α, β, c, f ).

In this two-node network, we simplify the line constraints by a simple line capacity
f . At each node m = {1, 2}, let pm(dm) = αm − βmdm with cost cm(qm). Whenever
we present an example of this two-node game, we use G(α, β, c, f ) to describe it. 3

3We will find throughout this chapter that while simple, this two-node game will be useful for
illustrating and contrasting the different settings with regards to the existence of equilibria and its
corresponding efficiency with/without anticipation and/or demand management.



55

4.3 Anticipation in Networked Markets
We model producer anticipation in these markets by an understanding of how the
platform allocates demand over the network, e.g., power flow allocations in elec-
tricity markets. Recent events on anticipation and manipulation in electricity and
ridesharing markets motivate our model and analysis including anticipation.

In this section, we prove the following result on conditions under which competition
in these networked Stackelberg setting can be efficient and inefficient.

Theorem 4.1. Assume that price intercepts of markets are homogeneous, i.e., αm1 =

αm2 for all markets m1, m2, with no network restrictions for the platform P on
reallocation, i.e., f = ∞, then there is a unique equilibrium (qS, rS) to the networked
Stackelberg game, and its worst case efficiency loss is bounded, i.e.,

SW(q∗, r∗) ≤ 3
2

SW(qS, rS).

Otherwise, the networked Stackelberg game, in general, can also have either (i)
no equilibrium or (ii) multiple equilibria. Even when an equilibrium exists, the
networked Stackelberg game have unbounded worst case efficiency loss, i.e., there
exists a family of networked Stackelberg games such that (qS, rS),

SW(q∗, r∗) ≥ Ω(M)(SW(qS, rS)),

i.e., worst case efficiency loss grows linearly in the number of nodes M in the
network.

To contrast the efficiency in the first part of this result, we first show using the
two-node game G([1, 1]T, [1, γ]T, [γq2, q2]T,∞) that the Cournot equilibrium can be
arbitrarily inefficient as γ grows, summarized concisely in the following proposition.

Proposition 4.2. The networked Cournot game have worst case efficiency loss
arbitrarily large, i.e., for any K ∈ R+, there exists a γ > 0 such that the generalized
Nash equilibrium (qC, rC) of the game G([1, 1]T, [1, γ]T, [γq2, q2]T,∞) has efficiency
loss at least K , i.e.,

SW(q∗, r∗) ≥ K(SW(qC, rC)).

Note that the unbounded line flow is not actually necessary. In fact, any bounded line
flow larger than 1/3 is sufficient for the result above to hold. Having the unbounded
line flow allow us to easily contrast against results from the first part of Theorem
4.1.
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In the rest of this section, we first discuss the potential of anticipation in improving
efficiency when networked markets are “hard to manipulate”, providing intuition
to the efficiency loss bounds in the theorem. In contrast to the arbitrarily large
efficiency loss in networked Cournot competition (Proposition 4.2), we show that
a large class of games remain efficient in the presence of producer anticipation. In
fact, the illustration for Proposition 4.2 would be efficient if the producers anticipate.
An essential part of the proof involves showing the equivalence of the networked
Stackelberg game with conditions as described in the first part of the theorem to a
single market Cournot competition with linear inverse demand and applying known
results to the single market Cournot competition yield the results on existence and
uniqueness of equilibrium and the corresponding efficiency loss.

However, we next show that the conditions listed, i.e., homogeneous price intercepts
and no network restrictions on transportation, in the first part of Theorem 4.1 are
“almost necessary”. These networked games with anticipation can easily lead to
either non-existence of equilibria or arbitrarily large losses and can be caused by
dropping either of the two conditions, highlighting the “almost necessary” nature of
these conditions. Without network constraints, we show that the networked Stack-
elberg game is, in general, also equivalent to a single market Cournot competition
but with convex, piecewise linear, inverse demand.

Efficient Anticipation in Networked Markets
By anticipating, producers understand the impact of their decisions better, and also
become aware of how their actions couple with the production quantities of the
other firms. The first part of Theorem 4.1 is an example where anticipation in
these games only serve as the knowledge that platform P couple the markets in the
network, consequently reducing producer “market power”.

A key ingredient in proving the first result in Theorem 4.1 is to show that under
such properties, the platform is allowed to keep prices constant across nodes in the
network perpetually. This effectively couples the price elasticity to demand at every
node, reducing the impact of manipulation on prices, and anticipation in this setting
only serves to help producers understand their inability to price manipulate. To be
precise, suppose the platform’s allocation is not constrained and that price intercepts
across markets are homogeneous, i.e., α j = αk for all nodes j, k, then the networked
Stackelberg game is equivalent to a single Cournot competition with the same price
intercept α but with a price elasticity to demand β = (

∑
j β
−1
j )
−1.
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It is hard not to notice the semblance of this harmonicmean to the effective resistance
of resistors placed in parallel. This means that in the absence of network constraints,
the homogeneous price intercepts allow for the platform to increase the “effective
resistance” to price manipulate in these markets.

Such an “aggregation” also implies that participating in such a networked market
is equivalent to participating in a single Cournot competition, with linear inverse
demand, as studied previously in (Ramesh Johari and John N Tsitsiklis, 2004).
We state an important result from the literature that is directly applicable to the
networked Stackelberg game described in the first part of Theorem 4.1.

Theorem 4.3. Consider a Cournot oligopoly with linear inverse demand functions
and where producers have convex cost. The corresponding Cournot game admits
a unique Cournot equilibrium qC with bounded worst case efficiency loss of 3/2 as
compared to the social optimal profile q∗, i.e.,

SW(q∗) ≤ 3
2

SW(qC).

Additionally, the worst case cost functions when optimizing for worst case efficiency
loss are linear. Precisely, for any game with arbitrary convex costs, there exists a
Cournot game except with linear cost functions that have efficiency loss no less than
the original game.

Since the networked Stackelberg game in question is equivalent to a single market
Cournot oligopoly with linear inverse demand, a straightforward application of
Theorem 4.3 yields the uniqueness and existence of equilibria result, and the desired
efficiency loss bound.

Additionally, since theworst case producer cost functions under this setting are linear
ones, analysis over linear cost functions also extend to all convex cost functions.
Also, our results derived in Chapter 3, e.g., the worst case efficiency loss bounds for
(a)symmetric cost functions, can also be applied under these settings.

When platform actions are easy to understand, like in this setting, anticipation does
little to no harm. In fact, when platforms retain sufficient “market power”, then
anticipation only serve to remind the producers of it. By contrast, Proposition 4.2
showed that when producers fail to understand platform allocations and incentives,
the networked market can instead be arbitrarily inefficient.
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We show in the next subsection that the above results on bounded worst case
efficiency loss do not extend beyond this setting, i.e., there are many settings where
platforms no longer hold on to sufficient “market power”, and opportunities for
anticipation andmanipulation arise. The conditions listed in the first part of Theorem
4.1 are “almost necessary” in the sense that dropping either conditions will lead to
results that are significantly different.

To be precise, we show in the following subsection that if there are network con-
straints, then neither existence nor uniqueness of equilibria necessarily holds. On
the other hand, if the price intercepts across markets are not homogeneous, then the
worst case efficiency loss is unboundedly large4. Wewill illustrate these in two-node
examples of networks without either of the two conditions. These games will show
the “almost necessary” nature of the conditions in the first part of Theorem 4.1.

Inefficient Anticipation in Networked Markets
In this part, we show that the results obtained from the first part of Theorem 4.1 in the
previous section do not hold for networked competition with anticipation in general.
In fact, these networked Stackelberg games have unbounded worst case efficiency
losses. Further, as compared to networked Cournot games studied by (Bimpikis,
Ehsani, and Ilkilic, 2014; Abolhassani et al., 2014) which exhibits tractable analytic
properties in uniqueness and existence of equilibria and bounded efficiency loss as
shown in Chapter 3, the networked Stackelberg games are similar to the controlled
allocation platforms in Section 3.4, where there may not be an equilibrium, and is
significantly more challenging to analyze and understand.

Even in caseswhere an equilibrium exists and is unique, theworst case efficiency loss
can still be unboundedly large, as in Section 3.4. Further, anticipatory competition
can also lead to non-existence of equilibrium. Our main result in this part is that
the equilibrium of these games can be fragile, and that worst case efficiency losses
are unboundedly large. We carefully construct the following two-node illustrative
games to simultaneously illustrate the “almost necessary” nature of the conditions in
the first part of Theorem 4.1 and the possibility of no equilibria, multiple equilibria,
and unbounded worst case efficiency loss. In the case with no equilibria, we observe
cycles under simple best-response dynamics. We adopt a simple best response
dynamics where at each round, the firms first make decisions simultaneously under
a fixed platform reallocation quantity, and the platform responds.

4We use a set-up similar to that in Section 3.4.
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Figure 42: A plot of best-response dynamics for market demand fulfilled of the game
G([1, 1]T, [1, 1]T, [2q2, 1q2]T, f ) for f = 1/15 (left) and f = 1/20 (right), where the
bounds of f for non-existence of equilibria are 1/19 < f < 4/59 respectively. The
x-axis (resp. y-axis) represents the demand fulfilled at the first market d1 (resp. d2).

Consider the two-node illustrative game G([1, 1]T, [1, 1]T, [c1q2, c2q2]T, f ) further
illustrated in Figure 42. We show that if flow constraint f is constrained within the
following lower and upper bounds (corresponding to thresholds for (non-)existence
of equilibria on a binding or non-binding constraint respectively), i.e.,

c1 − c2
4c1c2 + 3c1 + 3c2 + 2

< f <
4(c1 − c2)

16c1c2 + 8c1 + 8c2 + 3
,

then no equilibrium exists in the corresponding networked Stackelberg game. Note
that the left plot in Figure 42 depict the scenario where ( f = 1/15) and no equilibria
exists, leading to a cycle in the graph. Such behavior is common when equilibria
does not exist. The right plot has an equilibrium with flow constraints, where ( f =
1/10). This illustration shows that even when price intercepts are homogeneous, the
presence of network constraints can potentially cause a non-existence of equilibrium.

Onemay perhaps then suggest that if there are no network constraints, that networked
competition is efficient with anticipation. We show this is not the case. We first
show that the networked Stackelberg game without network constraints but not
necessarily with homogeneous price intercepts, is equivalent to a single market
Cournot oligopoly, except with convex (piecewise linear) inverse demand function,
previously studied in (J. N. Tsitsiklis and Y. Xu, 2012). We formally prove the
following result.
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Proposition 4.4. A networked Stackelberg game with linear inverse demands {αm−

βmdm}
M
m=1 with α1 ≥ α2 ≥ · · · ≥ αM is equivalent to a piecewise linear (convex)

inverse demand function that links the following points: (0, α1), (
α1−α2
β∗1

, α2), (
α1−α2
β∗1
+

α2−α3
β∗2

, α3), . . . , (
∑m−1

j=1
αj−αj+1

β∗j
, αm), . . . , (

∑M−1
j=1

αj−αj+1

β∗j+
αM
β∗
M

, 0), where β∗m is the harmonic

mean of all prior price elasticity β including its own, i.e.,

β∗m =
1∑m

j=1
1
βj

.

Despite showing the equivalence to convex inverse demand functions, one cannot
simply apply bounds derived in (J. N. Tsitsiklis and Y. Xu, 2012) since they are
upper bounds to efficiency loss, and are not necessarily tight. Unlike the bounds in
that work which are for Cournot candidates and therefore not necessarily tight for
equilibrium, our results on efficiency loss are constructive. This implies that any of
the losses we claim come with a precise construction of an equilibrium exhibiting
that loss. In particular, when we consider a networked Stackelberg game without
network constraints, the bounds in (J. N. Tsitsiklis and Y. Xu, 2012) say that “the
game cannot be too inefficient”, while our results show that “the game is at least
this inefficient in the worst case”.

Inspired by the controlled allocation platforms studied earlier, we construct a family
of networked Stackelberg games to exhibit an efficiency loss that similarly increases
linearly in the number of nodes. We present a two-node illustrative game that
exhibits the necessary features, and an extension to a larger system with greater
efficiency losses dependent on the number of nodes will also be described.

Consider the two-node illustration G([1, 1
1+λ ]

T, [1, λ2

1−λ2 ]
T, [0, (1 + ε)q]T,∞) for any

λ ∈ (0, 1/2), further illustrated in Figure 43. The zero-cost producer is indifferent
between participating such that only one market or both are served because the
market parameters are selected such that profit is 1/4 in both cases. On the other
hand, since there is a zero-cost producer, the optimal social welfare is obtained
when all demand is fulfilled. As markets are added, the optimal social welfare
increases, whereas the one at equilibrium remains the same. Contrasting to that,
the (1 + ε)q cost producer will never participate in any of the equilibrium nor in
the social optimal since its marginal cost is always greater than that of the maximal
willingness to pay in any of the markets. We design the market parameters in a
particular manner such that the trapezoids under each piecewise linear region yield
the same area (social welfare) even as we add more markets.
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Figure 43: (Left) Profit or utility function of the producer in the two-node illustrative
game G([1, 1

1+λ ]
T, [1, λ2

1−λ2 ]
T, [0, (1 + ε)q]T,∞) in red with axis on left.

Observe in Figure 43 that the profits at both peaks in the left plot are equivalent
at 1/4, and the producer is indifferent between the two. Resulting inverse demand
function that is piecewise linear, and convex, of the game, in blue with axis on right.
Notice that the homogeneous intercepts scenario on the right plot is equivalent to
a single market Cournot competition model with linear inverse demand. One may
also make comparisons with the Cournot competition under this setting; in that
case, the equilibrium depends on the position of the generator in the network, i.e.,
its co-located market. For example, if the generator is co-located with the market
with largest (resp. smallest) willingness to pay, then the equilibrium is at the first
(resp. last) peak.

In this section, we provide intuition on how we prove Theorem 4.1. We first show
that under the conditions listed in the theorem, the networked Stackelberg game is
equivalent to the well studied single market Cournot competition, providing us the
existence and uniqueness of equilibria, and efficiency loss results. The conditions
in Theorem 4.1 are idealized and inhibit producer “market power”, and anticipation
serves as a reminder to producers of this limitation. However, these conditions
fail to capture the setting of interest where network constraints affect prices and
allocations. Further, we show through precise constructions in the second part of
Theorem 4.1 that networked competition with anticipation is open to manipulation.
This highlights the “almost necessary” nature of the conditions listed for efficient
networked competition with anticipation.

In the next section, we show the impact of demand management both in limiting
efficiency loss and in mitigating manipulations. It does so by allowing consumers
to produce to other consumers, giving them “market power” to counter that of
producers, revealing a new side to demand management.
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4.4 Economic Value of Demand Management
In the previous section, we show how producer anticipation of a controlling platform
or social planner can lead to various outcomes, dependent on how much “market
power” is held by the platform. In this section, we explore the impact of load-
side demand management, a.k.a. demand response in electricity markets, under
platforms for networked marketplaces with producer anticipation. Recall that when
consumers participate in demand management, the platform is no longer bound by
the qm + rm ≥ 0 constraint in each market m.

In this section, we prove the following theorem, which is the key result in this chapter,
essentially bounding the worst case efficiency loss independent of price intercepts,
even in the presence of binding network constraints, as long as consumers participate
in demand management. It also provides conditions under which these reduction in
demand is not actually necessary at equilibrium, but serve purely only as a threat to
counter the “market power” of the producers.

Theorem 4.5. Consider a networked Stackelberg game with demand management.
Denote the set of edges with binding constraints at a Stackelberg equilibrium (qS, rS)

by IS. For each edge (i, j) ∈ IS, let fi, j denote its edge constraint. The worst case
efficiency loss at the Stackelberg equilibrium is bounded, i.e.,

SW(q∗, r∗) ≤ 3
2

©«SW(qS, rS) +
∑
(i, j)∈I

pS
i fi, j

ª®¬ ,
where pS

i is the price at the outgoing node i at the Stackelberg equilibrium.

If the network is unconstrained, a unique equilibrium exists, and if weighted pair-
wise differences between consumer price intercepts αm and αM = minm αm are
smaller than aggregate demand, i.e.,

1∑
m

1
βm

M∑
m=1

αm − αM

βm
≤

M∑
m=1

qS
m + rS

m,

then demand management is unnecessary at the Stackelberg equilibrium, i.e., qS
m +

rS
m ≥ 0, ∀ j.

We first show that when there are no network constraints on the platform allocation,
the networked Stackelberg game with demand management has small efficiency
loss. Essentially, this result follows the spirit to the first part of Theorem 4.1, first
revealing its equivalence to a single market Cournot oligopoly, where the platform
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retains the bulk of the “market power”, manifested in the decreased and coupled
price elasticity to demand across markets in the network. From there, results for
existence and uniqueness of equilibria, and its worst case efficiency losses follow
similarly as in Section 4.3. In addition to that, we provide conditions such that
demand management plays the role of a threat but is not necessary at equilibrium,
and highlight the impact on a two-node illustrative game.

Lastly, we conclude this chapter by showing that demand management in these net-
worked games with anticipation is robust against network constraints. In particular,
we show that these constraints at equilibrium have limited impact on its worst case
efficiency loss. This also means that if network constraints exist but are not binding
at equilibrium, then we retrieve the original 3/2 worst case efficiency loss bound.
To show this, we first convert the networked Stackelberg game to a set of smaller
networked Stackelberg games with properties that are easier to analyze. This con-
version comes at a cost, manifested in the second term of the efficiency loss bound,
which can be thought of as a price of congestion. Post-conversion, the smaller
networked Stackelberg games, albeit with binding constraints, can be shown to each
have a worst case efficiency loss of 3/2. We include another two-node illustrative
game with an equilibrium that has binding line constraints to illustrate this.

Efficiency of Demand Management
It is well known that demand management tools like demand response in electricity
markets help reduce supply-demand imbalance and allow for additional flexible
generation or production in the network. In this section, we show that demand
management has an important and critical role to play economically, both in terms
of improving efficiency but also to discourage manipulations. In particular, we
show that without network constraints, networked competition with anticipation
and demand management have small worst case efficiency loss. This is because
platforms again can increase the "resistance" of price manipulation in markets.
Further, we provide conditions where demand management may be unnecessary at
the equilibrium, and only serve as a threat against strategic curtailment.

Our first step is to show that networked competition with anticipation and demand
management is again equivalent to a single market Cournot oligopoly. Suppose that
the platform is social welfare maximizing with no network constraints. Without loss
of generality, let α1 = maxm αm. If consumers participate in demand management,
then the system is equivalent to a single Cournot competition with maximal willing-
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ness to pay α =
(
α1 −

∑
m
α1−αm
βm

)
, and price elasticity to demand β = 1∑

m
1
βm

. The
maximal willingness to pay has decreased, and the ability to couple the price elas-
ticity to demand across markets leave little room for anticipation and manipulation,
with anticipation again serving as knowledge to the power of the platform.

Here, this implies that engaging Theorem 4.3 again provides similar results for
uniqueness and existence of equilibria, and efficiency loss. The underlying idea
is that demand management, in the absence of network constraints, couples the
markets’ price elasticity to demand, and reduces the impact and incentives for
manipulation. Demand management is just a different way to allow for prices to
remain constant across the markets when there are no network constraints. The case
with constraints binding will be discussed in the following subsection, where we
also develop worst case bounds there.

Oftentimes, platforms often would rather not have to engage demand management.
The second part of Theorem 4.5 provide conditions under which demand manage-
ment remains a threat that is not necessary at equilibrium. We show that if weighted
pairwise comparisons of price intercepts α j with the minimum over price intercepts
αM is not larger than aggregate demand, then demand management is not needed at
equilibrium, i.e., d j ≥ 0, ∀ j.

To illustrate this, we apply demand management on the construction in Section 4.3
with multiple equilibria, which initially suffered unbounded loss without demand
management. Keeping all else constant, demand management essentially forces
the producer to opt for the “highest production” equilibrium since the once “low-
est production” equilibrium now yields a lower revenue and will no longer be an
equilibrium. In particular, instead of a loss that grows linearly in the number of
nodes, the loss here with demand management is 1 − 1

m , which decreases in m.
One can observe that at the extreme (m → ∞), the original networked Stackelberg
gamewith anticipation incurs an unbounded loss, while the same gamewith demand
management attains optimal social welfare.

In Figure 44, observe that the original profits at both peaks are equivalent at 1/4,
and the producer is indifferent between the two. Similarly, the resulting piecewise
linear, and convex inverse demand function of the game is in blue with the axis on
the right. With demand management (dotted lines), the producer is now forced into
the good equilibrium. One can compute that demand management is not active but
serve as a threat against manipulation at the equilibrium.
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Figure 44: Profit or utility function of the producer in the two-node illustrative game
G([1, 1

1+λ ]
T, [1, λ2

1−λ2 ]
T, [0, (1 + ε)q]T,∞) in red with axis on left.

This hints towards another impact of demand management—demand management
reduces the number of (less favorable) equilibria. We posit that it does so by giving
more “market power” to consumers, resulting in an effective decrease in “market
power” on the producer side. Recently, two ridesharing giants Uber and Lyft also
agreed to allow Google to display a price comparison on its Maps applications.
Besides the fact that they rely on the Google Maps API heavily, we believe this
comparison also serves as a form of “demand management” and a check against the
“market power” of the drivers, consequently limiting their ability to manipulate in
these markets.

Congestion in these systems though manifested in binding network constraints, can
potentially lead to inefficiencies. Recall through the example of the non-existence
of equilibrium that one can show that even in the homogeneous price intercept case,
cases with network constraints can be hard to study. Can we then similarly quantify
the efficiency loss due to binding network constraints with consumers participating
in demand management? Can demand management also curb manipulation and
limit efficiency loss in the presence of these network constraints?

Impact of Network Constraints
The positive results of demand response thus far assume that there are no network
constraints binding. However, in practical scenarios, network constraints bind regu-
larly, as is the case in electricity markets. In our previous two-node illustration with
the non-existence of equilibrium, the lower bound dictates whether an equilibrium
exists where constraints are binding. To deal with network constraints efficiently,
platforms often resort to nodal pricing, e.g., locational marginal pricing, which fur-
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ther incentivizes manipulation and exacerbates the loss. Additionally, none of our
results thus far provide satisfactory performance with binding network constraints.

To prove the second part of Theorem 4.5, we reconstruct a set of subsystems
(networks of smaller sizes each with constraints only on edges incident on one
leaf node) that are equivalent to the system with these binding constraints. The
set of subsystems have both an equilibrium and an optimal social profile with
welfare slightly larger (the difference is bounded by the revenue passing through
the constrained line.) but only have binding edges on leaf nodes. We show that
these edges are bound for both the Stackelberg equilibrium and the optimal social
profile, and the multiplicative worst case efficiency loss for each subsystem is 3/2.
The additive loss is due to the change in welfare when we break the system down
into subsystems and can be seen as a price of congestion. For the Stackelberg
equilibrium, we show that the previous profile must remain an equilibrium, while
such conversions only lead to an increased optimal social welfare.

This result implies that the market remains efficient when network constraints are
not binding on large transmission lines. Alternatively, if the social welfare obtained
in the entire system is large relative to the revenue flowing through constrained
lines, then there is room to accommodate some loss from these binding network
constraints.

To illustrate this, consider again the two-node game G([1, 1]T, [1, 1]T, [c1, c2]
T, f )

used to illustrate the non-existence of equilibria. One can show that if the flow
constraint f is constrained within

f <

1
4

(
(c1+1)−(c2+1)
(c1+1)(c2+1)

)
1 − 1

4

(
1

c1+1 +
1

c2+1

) ,
then an equilibrium exists in the networked Stackelberg game, but is constrained.
For concreteness, consider c1 = 2, c2 = 1, then the bound above is 1/19.

Suppose f = 1/20, then we can compute the equilibrium to be qS
1 =

19
120, qS

2 =
21
80 ,

and rS
1 =

1
20 = −rS

2 , and prices at the equilibrium are p1 =
19
24, p2 =

63
80 .

Our new result allow us to bound the loss in such situations by

SW(q∗, r∗) ≤ 3
2

(
SW(qS, rS) +

63
3200

)
.

A nice and potentially important corollary to the theorem though is that if network
constraints exist but is not binding at an equilibrium, then it preserves the efficiency
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results from the no network constraint case. The intuition behind the above result
is that such an equilibrium would also be an equilibrium in the case whereby the
network constraints X is removed. If that is the case, then in the case without
network constraints (where the socially optimal solution can only be larger), the
price of anarchy is 3/2. Since the optimal social value can only decrease with
network constraints, the price of anarchy without any of the network constraints
binding is also 3/2.

We have seen that demand management circumvents many of the shortcomings
faced when competition is purely anticipatory. By offering "market power" to
consumers, demandmanagementmechanisms effectively reduce the “market power”
of producers. Beyond securing and stabilizing the power network, we show that
demand management can also play a big role in terms of economic efficiency,
reducing the multiplicity of equilibria and potentially serving as a threat against
manipulation and a check against “market power”. Additionally, efficiency loss
remains bounded in networked Stackelberg games with demand management even
in the presence of binding network constraints.

Concluding Remarks
Demand management has been extensively used in electricity markets and is known
to decrease variance in locational marginal prices (or shadow prices), improve stabil-
ity of the electricity grid by reducing supply-demand imbalance and accommodate
increasing uncertainty from greater penetration of renewable energy. There are also
multiple benefits for engaging in demand management, both for the participant, and
the network at large.

In this chapter, we study the economic impact of demand management in networked
marketplaces with governing platforms or market makers, e.g., electricity markets
and its independent systemoperators. We explore this using a networked competition
model that accounts for producer anticipation on the platform’s allocations and
network constraints, known as the networked Stackelberg competition.

This anticipation can be helpful when the platform has sufficient power and control
but can be harmful when producers have sufficient “market power”, leading to
price manipulation. We first show conditions when the networked Stackelberg
game have bounded efficiency loss. In particular, when the price intercepts are
homogeneous across networked markets without flow constraints, we show that
a unique equilibrium exists, and have bounded multiplicative loss of 3/2. The
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conditions listed allow for the platform to couple and aggregate the networked
marketplace, decreasing the opportunities and incentives for manipulation, and
limits the impact of anticipation. However, there exists a general class of networked
Stackelberg games which do not fall under this setting and can either have non-
existence of equilibria or unboundedly large efficiency loss. As a result, we find the
conditions to be “almost necessary”.

We show that demand management mechanisms in these networked games with an-
ticipation shares the “market power” of producers with consumers, thereby reducing
opportunities for price manipulation and incentives for collusion. Without network
constraints, games with demand management have bounded multiplicative loss of
3/2, while binding network constraints incur an additional additive loss bounded by
the revenue that flows through these constrained lines. Additionally, we show that
demand management may often be used as a threat but may not be necessary at an
equilibrium.
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C h a p t e r 5

TOWARDS DYNAMIC PARTICIPATION IN ONLINE
PLATFORMS

Thus far, Chapters 3 and 4 consider settings with full or perfect information, where
participants make decisions privy to cost and demand at various nodes in a static
game. In this chapter, we take the first step towards understanding uncertainty in
markets. To do so, we consider an online optimization problem where the decision
maker has a fixed amount of inventory to sell over markets with uncertain future
conditions.

We show that this is a generalization of a classical problem known as the one-way
trading problem. In that problem, a user has a fixed amount of inventory that he
needs to sell in markets with different prices at each time period and is concerned
with obtaining a conservative amount of revenue in the presence of uncertain (but
bounded) prices.

“In the one-way trading problem a trader is given the task of trading
dollars to yen. Each day, a new exchange rate is announced and the
trader must decide how many dollars to convert to yen according to the
current rate. The game ends when the trader trades his entire dollar
wealth to yen and his payoff is the number of yen acquired.” - (El-Yaniv
et al., 2001)

We focus more generally on an important class of online optimization problems
that we term online optimization under inventory (budget) constraints (OOIC). In
these problems, a decision maker has a fixed amount of inventory, e.g., drivers on
ridesharing markets with limit on driving hours or battery owners participating in
power contingency reserves market, and must make an irrevocable decision in each
of T rounds with the goal of optimizing aggregate revenue. The challenge is that
the decision maker does not have knowledge of future revenue functions nor when
the final round will occur, i.e., T . Further, the strict inventory constraint means that
action now has consequences for future rounds. As a result of this entanglement,
positive results have only been possible for inventory constrained online optimization
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in special cases to this point, e.g., the one-way trading problem (El-Yaniv et al.,
2001).

Beyond the one-way trading problem, the general formulation of OOIC also captures
a variety of other practical applications with regards to real-time selling. Two
examples that have motivated our interest in OOIC are (i) power contingency reserve
markets (Shafiee et al., 2018; Akhavan-Hejazi and Mohsenian-Rad, 2014) and (ii)
network spectrum trading (Bogucka et al., 2012; L. Qian et al., 2011). We delve
deeper into each of the examples here.

In power contingency reserve markets, the system operator faces a contingency, e.g.,
shortfall of supply that may lead to cascading blackouts, and communicates this need
to either supplement the power system using battery or cut down large scale power
supply. Consider the perspective of a battery supply owner1 that is deciding when
to take part in a contingency. A contingency may be solved immediately, or it may
instead cause a larger contingency whereby the system operator is perhaps willing to
paymore at a later time. In preparation to participate in these contingencies, batteries
are charged earlier and therefore the marginal cost of participation manifests as an
opportunity cost against future participation in the day. These situations highlight the
need for the online properties considered in our work: (i) the unknown ending time
T , (ii) future revenue functions are not known, and (iii) a costless, strict inventory
constraint.

Similarly, in spectrum trading, the owner of a spectrum band sells bandwidth tomake
sure that profit or revenue is maximized given the investments that have already been
made to procure the particular bandwidth. This means that any cost with regards
to sales only appears as opportunity cost against future possible sales. Similarly, a
potential buyer who is turned down may seek bandwidth from a different provider,
and may never return, or situations may change between time periods, highlighting
the same three properties as before: (i) the unknown ending time T , (ii) future
revenue functions are not known, and (iii) a costless and strict inventory constraint.

In this chapter, we develop a new algorithmic framework, and apply it to develop
online algorithms for the OOIC problem with an optimal competitive ratio (up to a
problem-dependent constant factor). Further, we prove that the algorithm provides
the first positive results for a generalization of the classical one-way trading problem
with concave revenue functions and price elasticity, which coincidentally aligns with

1An alternative is flexible loads whichmay be curtailed to respond to supply shortfalls. Similarly,
responding at the current moment may be an opportunity cost to later participation.
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the price formation in the Cournot competition models considered earlier. In more
detail, we summarize our contributions as follows.

Firstly, we introduce a new algorithmic framework, CR-Pursuit, in Section 5.3. The
framework is based on the idea of “pursuing” an (in some cases, almost) optimal
competitive ratio. The framework is parameterized by a tight upper bound on the
competitive ratio, which is then “pursued” with the actions in each round. We
apply the framework to OOIC and generalizations of the classic one-way trading
problem in this paper, but the framework has the potential for broad applicability
beyond these settings as well. For online platform design, the CR-Pursuit framework
presents an almost optimal online optimization for selling a limited inventory under
uncertainty.

Next, in Section 5.4, we applyCR-Pursuit to theOOICproblem to achieve the optimal
competitive ratio among all deterministic algorithms (up to a problem-dependent
constant factor). To obtain these bounds we use two technical ideas that may be of
general interest beyond the OOIC problem. First, we prove that it suffices to focus on
the single-parametric CR-Pursuit algorithm for achieving optimal competitive ratio,
thus significantly reducing the search space of optimal online algorithms. We also
identify a “critical” input sequence that highlights an important structural property
of the space of input sequences. By applying CR-Pursuit to this sequence, we
characterize a lower bound on the optimal competitive ratio as ln θ+1 where θ is the
ratio between the highest and lowest possible maximal willingness to pay. For any
other input, the performance ratio achieved by CR-Pursuit is upper bounded by the
product of a problem-dependent factor and the stated lower bound. This structure
not only suggests a principled approach to characterizing the optimal competitive
ratio, but also immediately shows that CR-Pursuit achieves the optimal competitive
ratio (up to a problem-dependent factor) among all deterministic algorithms.

Lastly, we apply CR-Pursuit to various one-way trading problems in Sec. 5.5. The
novel framework simplifies and unifies the state-of-the-art results of classic one-
way trading problems. In particular, the critical input discussed above is indeed
the worst-case one for classical one-way trading; hence, CR-Pursuit achieves the
optimal competitive ratio ln θ + 1. Further, we show that CR-Pursuit performs well
for generalizations of one-way trading where no positive results were previously
known. Specifically, for one-way trading with price elasticity and concave revenue
functions, CR-Pursuit achieves a competitive ratio that is within a small additive
constant (i.e., 1/3) to the general lower bound of ln θ + 1.
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5.1 Literature Review
Online optimization is a large and rich research area and excellent surveys can be
found in (Albers, 2003; Fiat, 1998). Well-known problems in the online optimization
paradigm include the age-old secretary problem (Chow et al., 1964), the ski rental
problem (Karlin et al., 1988), the one-way trading problem (El-Yaniv et al., 2001),
and the k-server problem (Fiat, Rabani, and Ravid, 1990). Our results represent
the most general results to date for a situation where actions are subject to a fixed
inventory constraint.

The problem considered here is a generalization of the classical one-way trading
problem, which has received considerable attention, e.g., (El-Yaniv et al., 2001; Chin
et al., 2015; Damaschke, Ha, and Tsigas, 2009; Fujiwara, Iwama, and Sekiguchi,
2011; Lorenz, Panagiotou, and Steger, 2009; W. Zhang et al., 2012). In the one-way
trading problem an online decision maker is sequentially presented with exchange
rates within a bounded region, and she desires to trade all her assets to another.
The amount of assets traded in a single time period is assumed to be small enough
to not affect the eventual price. El-Yaniv et. al. propose a threshold-based online
algorithm with competitive ratio O(ln θ) (El-Yaniv et al., 2001). Any remaining
items must be sold at the last period as that is revenue maximizing. On the other
hand, our analysis allows for leftover inventory (since selling all assets at the last
time step may not be the revenue maximizing solution for the last time step in the
presence of price elasticity or concave revenue functions) and an unknown stopping
time, while retaining the attained competitive ratio.

Variants of the one-way trading problem havebeen studied in the literature. The
one-way trading problem has been studied with unbounded prices and time-varying
price bounds, respectively in (Chin et al., 2015) and (Damaschke, Ha, and Tsigas,
2009). It has also been studied when every two consecutive prices are interrelated
(W. Zhang et al., 2012) . Average-case competitive analysis under the assumption
that the distribution of the maximum exchange rate is known has also been studied
for the same problem (Fujiwara, Iwama, and Sekiguchi, 2011). (Kakade et al., 2004)
incorporate market volume information and study another one-way trading model in
stock market, called the price-volume trading problem. While the classical one-way
trading problem mostly deals with linear revenue functions, we note that in our
problem we consider general concave revenue functions, which allow us to capture
a broader class of interesting settings, e.g., one-way trading with price elasticity or
markets with linear inverse demand.
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Beyond the one-way trading problem, OOIC is also highly related to generalizations
of the secretary problem and prophet inequalities, e.g., (Rubinstein, 2016; Feld-
man and Zenklusen, 2018; Babaioff et al., 2008). Strong positive results have been
obtained for these problems; however the analytic setting considered differs dramati-
cally fromourwork. Specifically, we consider aworst-case analysiswhereas analysis
of the secretary problem and prophet inequalities focus on stochastic instances. Un-
der the stochastic setting, so-called “thresholding” algorithms are effective; however
such algorithms have unbounded competitive ratios in the worst-case setting, even
under the simplest assumptions.

Prior to this work, themost general results known for online problemswith inventory
constraints are for the class of problems termed online optimization with packing
constraints, e.g., (Buchbinder and J. Naor, 2005; Buchbinder, J. S. Naor, et al., 2009;
Azar et al., 2016; Arora, Hazan, and Kale, 2012; Bansal, Buchbinder, and J. S. Naor,
2012). This stream of work developed an interesting algorithmic framework based
on a primal-dual or multiplicative weights update approach, which centers around
maintaining a dual variable for each constraint, understood as a shadow (or pseudo)
price for the constraint given the information thus far. While the inventory constraints
we consider are packing constraints, our formulation is fundamentally different than
the formulation considered in these papers. In these papers, the constraints come
in an online fashion; whereas in our work, the revenue functions are arriving in an
online fashion.

Another related online optimization problem is the k-search problem, where a
player is searching for the k highest prices in a sequence that is revealed to her
sequentially. When k → ∞, the k-max search problem becomes the one-way
trading problem (Lorenz, Panagiotou, and Steger, 2009). Lorenz et. al. propose
optimal deterministic and randomized online algorithms for both the k-max search
and k-min search problem (Lorenz, Panagiotou, and Steger, 2009).

That is different from the well-known k-server problem, where an online algorithm
must control the movement of k servers in a metric space to minimize the movement
(or latency involved) in serving future requests. A popular algorithmic framework
for the k-server problem is the potential function framework. In contrast to our
CR-Pursuit approach, the potential function approach requires a bound between
the offline optimal cost and the online cost at each time period with respect to the
potential. Instead, the CR-Pursuit maintains a bound between the current offline
optimal revenue and current total online revenue.
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Finally, it is important to distinguish our work from the literature studying regret
in online optimization, e.g., (Hazan, A. Agarwal, and Kale, 2007; N. Chen et al.,
2015). While regret is a natural measure for many online optimization problems,
when inventory constraints are present it is no longer appropriate to compare against
the best static action, as is done by regret. Static actions are poor choices when
optimizing revenue subject to inventory constraints. Instead, competitive ratio is
the most appropriate measure. Further, note that there is a fundamental algorithmic
trade-off between optimizing regret and competitive ratio, even when inventory
constraints are not present. In particular, (L. Andrew et al., 2013) shows that no
algorithm can obtain both sub-linear regret and constant competitive ratio.

5.2 Problem Formulation
The key notations used in this chapter are summarized in Table 51. We study an
online optimization problemwhere functions appear discretely and the stopping time
T is unknown to the decision maker. The functions gt(·) are revealed sequentially
in a particular period t, and are unknown beforehand. Additionally, there is an
inventory ∆ that constrains the sum of the decision maker’s actions, which is fixed
and given in advance as a constraint. We emphasize here that in contrast to the
line of online optimization work with packing constraints (Buchbinder and J. Naor,
2005; Buchbinder, J. S. Naor, et al., 2009; Azar et al., 2016; Arora, Hazan, and
Kale, 2012; Bansal, Buchbinder, and J. S. Naor, 2012), the uncertainty in our
optimization problem is not on the inventory constraints but the incoming revenue
functions which are arriving in an online manner.

More specifically, at time t ∈ [T] 2, upon observing the revenue function at period
t, the decision maker has to make an irrevocable decision on an action (quantity)
vt , with the objective of maximizing the aggregate revenue, while respecting the
inventory constraint

∑
t∈[T] vt ≤ ∆. 3 Upon choosing vt the decision maker receives

a revenue of gt(vt), where gt, ∀t ∈ [T] satisfy the following conditions:
2Throughout this chapter, we use [n] to denote the set {1,2,...,n}.
3The assumption that the action is chosen after observing the function differs from the classical

online convex optimization literature (Hazan, A. Agarwal, and Kale, 2007; J. Li et al., 2012), but
matches the literature on online convex optimization with switching costs (M. Lin et al., 2012;
Bansal, Gupta, et al., 2015; Y. Li, Qu, and N. Li, 2018) and the literature on competitive algorithm
design for online algorithm, including those on buy-or-rent decision making problems (Karlin et al.,
1988; T. Lu, M. Chen, and L. L. Andrew, 2013; Ying Zhang et al., 2018) and metrical task systems
(Borodin, Linial, and Saks, 1992; Fiat and Mendel, 2003; L.Lu et al., 2013). It allows an isolation
of the inefficiency resulting from inventory constraints rather than also including the inefficiency
resulting from the of lack of knowledge of the function.
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Table 51: Summary of Notations used in Chapter 5.

T Total time slots
gt(v) Revenue function at time t
σ[1:t] Input sequence up to time t, i.e., {g1, g2, ..., gt}

p(t) Base price at time t, i.e., g′t(0)
m, M lower/upper bound for p(t)
θ fluctuation ratio M/m
λ Dual solution
vt Output of online algorithm at time t
v∗t Output of optimal offline algorithm at time t
v̂t The maximizer of gt(v)

Φ∆(π) Worst case (maximal) inventory over all possible sequences of
inputs needed to maintain the competitive ratio π ≥ 1 for CR-
Pursuit(π) and a fixed inventory ∆

• gt(v) is concave, continuous and differentiable on v ∈ [0,∆];

• gt(0) = 0;

• p(t) , g′t(0) > 0 and p(t) ∈ [m, M].

The first condition is a smoothness condition on the revenue function and a natural
decreasing marginal revenue assumption. The second condition implies that selling
nothing yields zero revenue while the third condition limits the marginal revenue
at the origin (named maximum willingness to pay hereafter) and ensures that it is
beneficial to sell, since the maximum willingness to pay is positive. Denote the
family of all possible revenue functions at time t as G. We assume m and M are
known beforehand in the online setting, as is standard in one-way trading. We denote
θ = M/m as the ratio between the highest and lowest maximal willingness to pay.
We note that in this paper, we only consider the domain when gt(v) is increasing
in v, which intuitively means that selling more can never decrease revenue. For
example, if gt(v) = (pt − αtv)v as in the case of the one-way trading problem with
linear price elasticity, then we only consider v ∈ [0, pt

2αt ]. This is because selling any
more than the optimal amount at that time, e.g., pt

2αt in this example, will consume
more resources while at the same time decrease aggregate revenue. For the original
one-way trading problem example, these functions g are linear functions that passes
through the origin.
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In summary, an instance of online optimization under inventory constraints (OOIC)
is formulated as follows:

OOIC : max
v

T∑
t=1

gt(vt) (5.1)

s.t.
T∑

t=1
vt ≤ ∆, (5.2)

vt ≥ 0, ∀t ∈ [T]. (5.3)

Note that we can interpret the inventory constraint (5.2) in an OOIC in a parallel
way to the inventory constraint in a one-way trading problem. In particular, in the
one-way trading problem the trader has to decide in each slot the selling quantity
vt to maximize the total revenue at the stopping time T . In fact, when setting the
family of functionsG to be the family of revenue functions of the form gt(vt) = p(t)vt

we obtain the classical one-way trading problem. Additionally, when addressing
revenue functions of the form gt(vt) = v(t)(p(t) − ft(vt)) where ft is a convex
function representing price elasticity, we obtain the generalized one-way trading
problem with price elasticity.

To complete the specification of an OOIC, we state the Lagrangian of the OOIC
problem here:

L(v, λ, µ) =
T∑

t=1
gt(vt) + λ(∆ −

T∑
t=1

vt) +

T∑
t=1

vtµ(t), (5.4)

where λ ≥ 0 and µ(t) ≥ 0, ∀t ∈ [T] are Lagrangian multipliers.

To study the performance of an algorithm for OOIC we use the competitive ratio as
the metric of interest. Note that many papers in the online optimization literature,
e.g., (Hazan, A. Agarwal, and Kale, 2007), focus on regret instead of competi-
tive ratio, but regret is not an appropriate measure when inventory constraints are
considered since static actions are no longer appropriate4. Formally it can be de-
fined as follows. Denote a deterministic online algorithm as A, then A is called
π-competitive if

π = max
σ∈Σ

ηOPT (σ)

ηA(σ)
, (5.5)

4Our focus on competitive ratiomatches that of the literature on secretary problems e.g., (Babaioff
et al., 2008; Rubinstein, 2016), prophet inequalities e.g., (Hajiaghayi, Kleinberg, and Sandholm,
2007; Rubinstein, 2016), online optimization with switching costs e.g., (M. Lin et al., 2012; L.Lu
et al., 2013; T. Lu, M. Chen, and L. L. Andrew, 2013; Bansal, Gupta, et al., 2015), etc.
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where Σ is the set of all possible inputs (T, gt(·), t ∈ [T]), and ηOPT (σ) and ηA(σ)
are the revenues generated by the optimal offline algorithm OPT and the online
algorithm A, respectively. The value π is the competitive ratio of algorithm A.

The comparison against an offline optimal solution necessitates the analysis and
understanding of the offline optimal solution of the OOIC problem, where the input
sequence of functions σ and stopping time T are known beforehand to the decision
maker.

Understanding the Offline Optimal solution
It is easy to check that the offline version of an OOIC is a convex optimization
problem; thus it can be efficiently solved. Beyond this observation, we can also
give a more efficient solution. More specifically, in the offline setting, both T and
gt(·), ∀t ∈ [T] are known in advance to the decision maker. By investigating the
KKT conditions of the problem and exploring the “water-filling” structure of the
optimal solution, we propose a binary-search based algorithm to obtain the dual
solution. For ease of presentation, we denote λ∗ as the optimal dual solution of
problem OOIC and denote

Vt(λ
∗) , {v |g′t(v) = λ

∗, v ∈ [0,∆]}, (5.6)

the corresponding set of values of v in each time t that matches the optimal dual
solution. The optimality of the primal and dual solutions are stated in the following
proposition.

Proposition 5.1. The optimal dual solution λ∗ can be obtained by the binary search
algorithm and the optimal primal solution satisfies

v∗t ∈ Vt(λ
∗) (5.7)

T∑
t=1

v∗t = ∆ (5.8)

Note that in (5.7), if Vt(λ
∗) = ∅ we set v∗t = 0. Here, the Lagrange multiplier λ∗ can

be interpreted as the marginal cost (shadow price) of the inventory. In essence, we
should only sell in the slots in which the base price, i.e., p(t), exceeds the marginal
cost determined by the optimal dual variable. Note that when vt > 0, the marginal
revenue at epoch t is g′t(vt). Thus (5.7) essentially implies that the marginal revenue
equals to the marginal cost (i.e., λ∗) in slots that the selling quantity is positive.
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However, in practice, when a decision is made, the future revenue functions and
stopping time T are not known, and robust decisions have to be made. One conse-
quence is that these decisions aremade essentially assuming that there is a possibility
that the current time period is the stopping time T . Thus we are interested in the
online setting where we do not assume any further distributional information on the
revenue functions and decisions are irrevocable.

5.3 CR-Pursuit Algorithmic Framework
The class of online algorithms that make up the CR-Pursuit framework can be
described as follows, where we denote σ[1:t] , {g1, g2, ..., gt} as the input up to time
t and, under σ[1:t], we denote the optimal offline revenue as OPT(σ[1:t]). Given any
π ≥ 1, at time t, the online algorithm (called CR-Pursuit(π)) chooses an action vt

that satisfies:
OPT(σ[1:t])

π
= ηt−1 + gt(vt), (5.9)

where ηt−1 is the revenue of the online algorithm CR-Pursuit(π) up to time t − 1.
Clearly, we have η0 = 0 and

ηt = ηt−1 + gt(vt). (5.10)

Essentially, (5.9) and (5.10) imply that the online algorithm CR-Pursuit(π) tries to
keep the offline-to-online revenue ratio at each slot to be π, i.e., we have ∀t ∈ [T],
OPT(σ[1:t])/ηt = π.

While CR-Pursuit is defined for any arbitrary competitive ratio bound π, it may not
be feasible for all bounds5. This limitation motivates the following definition.

Definition 5.2. For CR-Pursuit(π) with π ≥ 1, if for any T and σ[1:T], we have∑T
t=1 vt ≤ ∆, then we say CR-Pursuit(π) is feasible. Otherwise, it is infeasible.

If CR-Pursuit(π) is feasible, i.e., it can maintain the ratio π under all possible
sequence and inventory constraint inputs, then we know that it is at least π-
competitive6. Intuitively, if π is large, the left-hand-side in (5.9) (i.e.,OPT(σ[1:t])/π)
is small. In this case, CR-Pursuit(π) only needs to sell a small amount of inventory
to maintain the revenue ratio. (Recall that we only consider the domain when gt(v)

is increasing in v.) In order to maintain the revenue ratio to be π, at time t ∈ [T],
the online algorithm need to consume inventory vt .

5One may not be able to pursue an over-optimistic competitive ratio.
6We note that there always exists a π (large enough) that can guarantee the feasibility of CR-

Pursuit(π).
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A careful reader may note that the inventory vt at a time period t may not suffice
to pursue the competitive ratio, then causing another potential infeasibility. Here
we present the following proposition to handle this case and allow us to focus on
feasibility based on sufficiency of total inventory in the remainder of the paper.

Proposition 5.3. We have OPT(σ[1:t]) − OPT(σ[1:t−1]) ≤ gt(v̂t), where v̂t ∈ [0,∆]
is the maximizer of gt(v).

Having defined the algorithmic framework and assured that, given sufficient in-
ventory, it is always possible to pursue the competitive ratio, we now present the
main theorem of this work, which states that a characteristic equation exists for the
optimality of the competitive ratio among all deterministic online algorithms.

Theorem 5.4. For CR-Pursuit(π) with π ≥ 1 and for a fixed inventory ∆, let
Φ∆(π) , maxσ[1:T ]

∑T
t=1 vt be the worst case (maximal) inventory over all possible

sequences of inputs needed to maintain the competitive ratio π, where vt is the
output of CR-Pursuit(π) at time t under input σ[1:T]. The characteristic equation for
optimality is Φ∆(π∗) = ∆, and π∗, the solution to the above equation, is the optimal
competitive ratio among all the deterministic online algorithms for OOIC problem.

Theorem 5.4 implies that it suffices to focus on the single-parametric CR-Pursuit
algorithm for achieving optimal competitive ratio. In other words, the problem
of designing an optimal deterministic online algorithm for OOIC problem reduces
to finding a π∗ ≥ 1 that satisfies the characteristic function Φ∆(π∗) = ∆7.We first
present a useful observation that given a fixed inventory constraint ∆, among all
CR-Pursuit algorithms with feasible competitive ratio, algorithms with a (strictly)
smaller competitive ratio requires a (strictly) larger output at each time period.

Lemma 5.5. For any fixed input σ[1:T], the output of a feasible CR-Pursuit(π) at
time t ∈ [T], is decreasing in π. Consequently, Φ∆(π) is decreasing in π ≥ 1.

Lemma 5.5 follows almost naturally since the offline solution remains the same, and
attempting to preserve a smaller competitive ratio requires you to always commit to
a larger inventory output8.

7By definition, ifΦ∆(π) ≤ ∆, then CR-Pursuit(π) is feasible and π-competitive whileΦ∆(π) > ∆
implies that CR-Pursuit(π) may be infeasible under certain input sequences.

8It also implies that if CR-Pursuit(π1) is feasible, then any online algorithm CR-Pursuit(π) with
π ≥ π1 is also feasible. Thus an upper bound on the optimal competitive ratio in this case will give
us a feasible competitive online algorithm.
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If we can obtain a closed-form expression of Φ∆(π), then by setting Φ∆(π) = ∆, we
can obtain the minimum competitive ratio π∗ such that CR-Pursuit(π∗) is feasible
and thus it is π∗-competitive. Additionally, as shown in Theorem 5.4, π∗ is the best
competitive ratio among all the deterministic online algorithms. To see this, we first
present the following lemma, setting bounds on the increase in the offline optimal
solution with any new sequence input, based on the shadow prices or marginal
benefits at each time, manifested in the dual variables of the optimization problem.

Lemma 5.6. Let λt and λt−1 be the optimal dual variable (or current offlinemarginal
prices) under σ[1:t] and σ[1:t−1], respectively, and let v∗t be the optimal offline
solution9 at slot t under σ[1:t]. Given any input σ[1:T], at any time t ∈ [T], we have
the following inequalities:

OPT(σ[1:t]) −OPT(σ[1:t−1]) ≥ gt(v
∗
t ) − λtv

∗
t ,

and
OPT(σ[1:t]) −OPT(σ[1:t−1]) ≤ gt(v

∗
t ) − λt−1v

∗
t ,

essentially bounding the difference in the offline optimal given a new input in the
sequence.

Before we proceed to prove Theorem 5.4, we first present the following lemma
revealing a useful structure of the worst-case input for CR-Pursuit. It implies that
for any inventory ∆ and for any pursuit algorithm based on a competitive ratio
π ≥ 1, the worst case input sequence causes CR-Pursuit to sell at non-decreasing
marginal prices across the time periods. The structure will be used in the proof of
Theorem 5.4.

Lemma 5.7. There exists an input sequence σ ∈ arg maxσ
∑

t vt such that g′t(vt)

is non-decreasing in t, where gt is the revenue function and vt is the output of
CR-Pursuit(π) under σ.

Lemma 5.7 suggests that such an input sequence that forces the pursuit algorithm
to face non-decreasing marginal prices g′t(vt) exists. As such, it suffices to focus on
the input space where g′t(vt) is non-decreasing in t10.

9Note that this solution v∗t is obtained by taking into consideration the entire input sequence thus
far and should not be confused with the maximizer of the function gt .

10Intuitively, these sequences require the pursuit algorithm tomake inventory commitments earlier
on in the time periods, and at lower prices, which result in significant inventory commitment at these
non-decreasing marginal prices.
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The proof of Lemma 5.7 is provided in the Appendix, but the idea of the proof,
roughly speaking, is that if the input sequence is not as stated, then there exists a
change of positions of revenue functions in the input sequence that eventually yield
a new input sequence such that g′t(vt) is non-decreasing in t and it has to be more
worst-case than before. An important result we require to prove Lemma 5.7 is the
following lemma which describes how the offline optimal solution changes when
we interchange the position of gτ and gτ+1 under a fixed input sequence.

Lemma 5.8. Let σ̃ be an input sequence. σ̄ is another input sequence constructed
by interchanging gτ and gτ+1 in σ̃. We claim that

OPT(σ̃[1:τ]) −OPT(σ̃[1:τ−1]) ≥ OPT(σ̄[1:τ+1]) −OPT(σ̄[1:τ]). (5.11)

Lemma 5.8 basically states that regardless of the input sequence thus far, the impact
or improvement in the offline optimal that it brings at that point has "diminishing
returns" in time. This helps us identify the worst case input sequence in Lemma
5.7 where the marginal benefits is non-decreasing across time periods. Putting the
above lemmas together, we are now ready to prove our main result in Theorem 5.4.

Proof of Theorem 5.4. Consider an arbitrary deterministic online algorithm, de-
noted as A. We show that A cannot achieve a ratio smaller than π∗.

ForA andCR-Pursuit(π∗), denote the output at time t as vAt and vt , respectively. For
ease of presentation, denote σ̃[1:T] = {g̃1, g̃2, ..., g̃T } as the worst case input sequence
for CR-Pursuit(π∗), i.e., under this input, we have

∑T
τ=1 vτ = Φ∆(π

∗) = ∆.

FromLemma 5.7, we claim that g̃′t(vt) is non-decreasing in t, i.e., g̃′t(vt) ≤ g̃′t+1(vt+1),
∀t. We present g̃ sequentially to A. If A commits at any time a larger inventory
thanCR-Pursuit, then we calculate the offline-to-online ratio thatA is now pursuing.
Since CR-Pursuit cannot attain that offline-to-online optimal ratio, it means that
at some point along the sequence, A has to have at least offline-to-online ratio
equivalent to π∗. On the other hand, if A reaches an offline-to-online ratio larger
than π∗ at any time, then we set that as the stop time T , and we are done.

Thus the competitive ratio ofA should at least be π∗. It follows thatAmust coincide
with CR-Pursuit(π∗), achieving a ratio of π∗, or otherwise A incurs a higher ratio
on σ̃[1:t ′]. �
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5.4 Competitive Analysis of CR-Pursuit
The results in the previous section highlight that the key to applying the CR-Pursuit
algorithmic framework is to mathematically characterize Φ∆(π). For special cases
such as the one-way trading problem (El-Yaniv et al., 2001) where gt(v) = ptv is a
linear function on v, we can obtain close-form expressions ofΦ∆(π) and compute the
optimal competitive ratio (as demonstrated in Section 5.5). However, it is difficult in
general to obtain such closed-form expressions for more general families of concave
revenue functions. Instead, we characterize an upper bound on Φ∆(π), which gives
an upper bound on the optimal competitive ratio, and consequently a feasible online
CR-Pursuit algorithm.

The critical input also plays an important role in establishing the upper bound for
Φ∆(π). It turns out that for any other inputs, the performance ratio achieved by
CR-Pursuit is upper bounded by the product of a problem-dependent factor and the
lower bound achieved under the critical input. This insight leads to the following
results.

Theorem 5.9. For OOIC, the optimal competitive ratio π∗ is upper bounded
by c(ln θ + 1), i.e., we have π∗ ≤ c(ln θ + 1), where c = supg∈G

v̂g′(0)
g(v̂) , v̂ =

arg maxv≥0 g(v).

Theorem 5.9 characterizes an upper bound on the optimal competitive ratio in the
case for general revenue functions gt , and also implies that CR-Pursuit(c(ln θ+1)) is
feasible and its competitive ratio is upper bounded c(ln θ+1). Note that c is a constant
that depends on the gradient properties (a.k.a. base price) and the maximizers of the
revenue functions11. For many interesting problems, this c is bounded and small.
For example, for the one-way trading problemwhere the revenue functions are linear,
i.e., gt(v) = p(t)v, ∀t ∈ [T], we have c = 1. For another example, for the one-way
trading with linear price elasticity where the revenue functions are quadratic, i.e.,
gt(v) = (p(t) − αtv)v, ∀t ∈ [T], we have c = 2. The proof of Theorem 5.9 is in the
Appendix.

11While c is a constant when the family of revenue functions are fixed, it is indeed true that c
could presumably be driven to be infinitely large, e.g., with revenue functions that are concave and
increasing. This parameter c can be seen in an economical sense as a comparison between the base
price and the average price at the maximizer of the function. Since the former is already bounded in
[m, M], we look at the case when the latter is small. These situations are hard to derive any interesting
online optimization as the functions require too much commitment even in bad time epochs, and
have low average prices. This results in low committed average prices while the offline optimal may
eventually not have to participate in these time epochs.
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5.5 Application to One-way Trading
In this section, we apply the CR-Pursuit algorithmic framework to standard one-way
trading (El-Yaniv et al., 2001) and its generalizations, illustrating that the framework
can both match state-of-the-art results for the classic setting and provide new results
for generalizations that have previously resisted analysis. In particular, using the CR-
Pursuit framework, we obtain an online algorithm matching the optimal (ln θ + 1)
competitive ratio for the classic one-way trading problem (Theorem 5.11) and a
near-optimal (ln θ + 4/3) result for the case with linear price elasticity (Theorem
5.13)12.

This section also provides an illustration of how the framework can be applied to
specific problem domains to obtain tighter results that are possible for the general
OOICproblem studied in the previous section. In particular, boundsmay be obtained
in general given gradient properties at the origin and optimal solutions of revenue
functions, but tighter bounds can be obtained given amore specific family of revenue
functions, e.g., for one-way trading with price elasticity (c = 2), the upper bound
derived from Section 5.3 is 2(ln θ + 1) while the bound obtained in this section is
ln θ + 4/3.

The one-way trading problem is a special case of the OOIC problem with gt(vt) =

p(t)vt for all t ∈ [T] and the input at time t can be simplified as p(t). In Section
5.5, we obtain the close-form expression of Φ∆(π) and compute the optimal π∗ in
this special case. Additionally, in Sec. We also show the ease of generalizing the
one-way trading problem, to cases where price formation include price elasticity, an
aspect that has been left out but desired in various communities.

Classic One-way Trading
As a direct application, one can obtain from Section 5.3 that the upper bound for
the one-way trading problem is ln θ + 1, which matches the lower bound. Thus, we
immediately know that the optimal competitive ratio for one-way trading is ln θ + 1
and CR-Pursuit(ln θ + 1) obtains the best guarantee possibe among deterministic
online algorithms. In this section, we apply the other approach presented in Section
5.3, with the aim of demonstrating the possibility of mathematically characterizing
Φ∆(π) under specific conditions. In particular, in the following, we first compute the
closed-form expression of Φ∆(π), then proceed with similar analysis as in Section
5.3 to obtain the optimal competitive ratio.

12The algorithmic framework also extends to any convex price elasticity, and yield online algo-
rithms with near-optimal competitive ratio in these cases.
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In the one-way trading problem, given any input up to time t, denoted as σ[1:t] ,

{p(1), p(2), ..., p(t)}, the optimal offline revenue can be expressed as OPT(σ[1:t]) =

∆ ·maxσ[1:t].Given any π ≥ 1, consider the class of online algorithm CR-Pursuit(π)
defined in Sec. 5.3. At time t, CR-Pursuit(π) sells the amount vt that satisfies:

OPT(σ[1:t])

π
= ηt−1 + p(t)vt, (5.12)

where ηt−1 is the revenue of the online algorithm CR-Pursuit(π) up to time t − 1.
Clearly, we have η0 = 0 and

ηt = ηt−1 + vt p(t). (5.13)

Essentially, (5.12) and (5.13) imply that the online algorithm CR-Pursuit(π) tries to
keep the offline-to-online revenue ratio at each slot to be π, i.e., we have ∀t ∈ [T],
OPT(σ[1:t])/ηt = π.

In the following, our goal is to compute the close-form expression ofΦ∆(π). Observe
that at slot t, the selling decision of CR-Pursuit(π∗) can be simplified as

vt =
(maxσ[1:t] −maxσ[1:t−1])∆

πp(t)
.

This suggests that CR-Pursuit(π∗)will sell only when the current price is larger than
the highest price in history. With this observation, we have the following lemma13.

Lemma 5.10. For CR-Pursuit(π) with π ≥ 1, given any input σ[1:T], to compute
Φ∆(π), it is sufficient to consider increasing price sequence.

From Lemma 5.10, we know that it is sufficient to consider the following increasing
price sequence with length n ≤ T :

m ≤ p1 < p2 < · · · < pn ≤ M . (5.14)

Under the given increasing price sequence, the optimal offline revenue at time
t ∈ [n] can be simplified as OPT(σ[1:t]) = pt∆. According to (5.12), the output of
CR-Pursuit(π) at time t ∈ [n] is

vt =
OPT(σ[1:t]) − ηt−1π

πpt
=
(pt − pt−1)∆

πpt
,

13It can actually be seen as a corollary of Lemma 5.7.
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where p0 = 0. Then we have

Φ∆(π) = max
p1,p2,··· ,pn

n∑
t=1

vt

= max
p1,p2,··· ,pn

∆

π
(1 +

p2 − p1
p2

+ · · · +
pn − pn−1

pn
)

(a)
=
∆

π
(1 +

∫ M

m

1
x

dx) =
∆

π
(1 + ln θ),

where (a) holds when the input sequence in (5.14) satisfies n → ∞ and pi →

pi+1, ∀i ∈ [n − 1]. Indeed, this is the worst-case input sequence for one-way trading
problem, also known as the "critical" input sequence. Thus for CR-Pursuit(π) to
be feasible, the minimum possible π should satisfy Φ∆(π) = ∆, which yields the
solution that π∗ = ln θ + 1. Consequently, we have the following result:

Theorem 5.11. Let π∗ = ln θ + 1, CR-Pursuit(π∗) is (ln θ + 1)-competitive.

Using a similar technique as used in Section 5.3 and in (El-Yaniv et al., 2001), we
can show that π∗ is the optimal competitive ratio for one-way trading problem. We
present the result in the following for completeness.

Theorem 5.12. Any deterministic online algorithm for one-way trading problem
has a competitive ratio that is no smaller than π∗.

One-way Trading with Price Elasticity
In this subsection, we consider the one-way trading problem in a generalized setting
with an additional flexibility on the price model playing the role of price elasticity.
We assume that price is affected by the total quantity sold at each slot, implying
that the decision of how much to sell affects the trading price, usually known in the
economics literature as price elasticity.

Specifically, we assume that at each slot t ∈ [T], the price elasticity (, ft(v))
is a convex non-negative function of the selling quantity with f (0) = 0. Under
this setting, the revenue function at time t becomes gt(v) = (p(t) − ft(v))v. This
setting can be considered as a special case of OOIC and the input at time t can
be simplified as p(t), ft(v). Here we have g′(0) = p(t) ∈ [m, M] and ft(v) ∈

[0,+∞), ∀v ∈ [0,∆], ft(0) = 0. Namely, the set of all possible revenue functions can
be expressed as

G ={gt(v)|gt(v) = (p(t) − ft(v))v, p(t) ∈ [m, M],

ft(v) ∈ [0,+∞), ∀v ∈ [0,∆], ft(0) = 0}.
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Note that when ft(v) = 0, ∀t ∈ [T], the problem reduces to one-way trading problem
considered in Section 5.5. Thus we note that any deterministic online algorithm in
one-way trading with price elasticity has a competitive ratio of at least ln θ+1. When
ft(v) = αtv, αt ≥ 0, ∀t ∈ [T], the problem becomes a one-way trading problem with
linear price elasticity, which is the same market model as in Chapters 3 and 4.

Consider the online algorithm CR-Pursuit(π) defined in (5.9). In this case, it is
difficult to obtain the closed-form expression of Φ∆(π). Instead, we follow the
analysis in Section 5.3 to obtain an upper bound on Φ∆(π), and obtain the following
result.

Theorem 5.13. Let π̄ = z2

2z−1 , where z = 2(1 + ln θ), then online algorithm CR-
Pursuit(π̄) is π̄-competitive. In particular, that means that the competitive ratio of
CR-Pursuit is O(ln θ) as well.

Proof. When π̄ = z2

2z−1 , we have Φ̄(π̄) = ∆. From Lemma C.5, we know that
Φ∆(π̄) ≤ Φ̄(π̄) = ∆. Thus CR-Pursuit(π̄) is π̄-competitive. �

Note that π̄ = ln θ + 1 + ln θ+1
4 ln θ+3 ∈ [ln θ +

5
4, ln θ +

4
3 ], thus the competitive ratio of

CR-Pursuit(π̄) is very close to the lower bound. Further, this competitive ratio is
better than the result in Sec. 5.3 which yields a 2(ln θ + 1) upper bound, since we
have a tighter bound through Lemma C.4.

Concluding Remarks
We consider the problem of firms’ optimal decision making under uncertain future
information. To ground our problem, we consider a firm with a fixed inventory
selling in uncertain markets in that revenue functions at each time is only revealed at
that time. We show first that this generalizes the classical one-way trading problem.

We design a novel framework for online optimization called CR-pursuit, where
algorithms pursue pre-defined competitive ratios. We show that such an algorithm
presents an optimal algorithm in terms of minimizing competitive ratio in the class
of problems that we consider.

In particular, our CR-Pursuit algorithm matches the state-of-the-art solutions for
the one-way trading problem and is applicable for a wider class of problems. With
regards to optimal decision making, we find that firms are both wary and hopeful of
the future, hedging against it by making safe decisions at each time step.
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C h a p t e r 6

CONCLUSION AND FUTURE WORK

Online platforms are catalysts for a large bulk of social and economic interactions
today. Platforms are not new, and have existed for a long time, but recent advances
in communication technology allow for platforms to thrive under online settings.
Driven by this success, studies of multi-sided platforms, networked competition and
successful design features started surfacing alongside. Beginning with the seminal
work of (Rochet and Tirole, 2003), research in this area have grown, in breadth
but also in depth, e.g., designing fine-grained control in ride-sharing platforms
through surge pricing in (A. Lu, Frazier, and Kislev, 2018). Many online platforms
today still fail to attain the critical mass required for a successful platform that
takes advantage of network effects, an idea that increase in scale on one side have
benefits to both sides of the market. On the other hand, some older online platforms
which are once successful are now on the decline. These platforms usually do not
understand platform design well, nor identify loopholes for manipulation, or the
impact of constraints due to regulation. The goal of this thesis is to identify aspects
of platform design that is critical to the success of online platforms.

In order to accomplish this goal, we have identified three observations that can help
us understand online platforms better, namely, (i) understanding successful online
platform design features and how and when they balance transparency and control,
(ii) recognizing potential abuse of market power and designing checks against such
manipulations, and (iii) considering the impact of dynamic decision making by
participants under limited information on the future. We elaborate on each of these
observations here.

1. Platforms make trade-offs between transparency and control.
For example, platforms like eBay have open access designs and are fully
transparent, while platforms like Uber exercise significant control and make
allocation decisions on behalf of its participants. Meanwhile, platforms like
Amazon seek a sweet spot between these two designs. Even with the same
purpose in mind, platform designs can contrast drastically, e.g., eBay vs.
Amazon. Obtaining the right balance depend on competition structures, e.g.,
transaction costs involved and heterogeneity of product.
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2. Platforms prevent manipulation by producers with market power.
Platforms often have designs that allow them to retain most of the “market
power”. For example, a study showed that the impact of producer anticipa-
tion in Uber relies heavily on its power and information asymmetry with the
drivers. Further, in recent years, we have witnessed manipulation both in
electricity markets, e.g., Enron in California, and ridesharing markets, e.g.,
coordinated manipulation to cause surge pricing. This happens because par-
ticipants collude and exercise their joint market power in a negative manner,
and network constraints over allocations exacerbate the effect of these manip-
ulations. In designing platforms that control over allocations, preventing or
having checks against such manipulation is critical.

3. Platforms make better decisions when their participants do.
Platforms often assume that their participants have complete information
and make fully rational decisions. However, participants may have limited
information of the future as compared to the platform. As such, participants
in platforms often make decisions that are unexpected. When they do, then
platform designs may turn out to be suboptimal too.

In this thesis, we provide a number of results in Chapters 3, 4 and 5 respectively,
studying some of these observations, shedding light on the following issues:

1. Trade-offs between transparency and control in platform design
Designs of successful platforms can be very diverse—understanding when
certain design features are efficient is important. We study three platform de-
signs on a networked Cournot competition model, highlighting the trade-off
between transparency and control. The first one is an open access design,
exemplified by eBay, where all firms have access to all markets, and firms
decide their production quantity to the markets jointly. The second design,
exemplified by ridesharing platforms, is a controlled allocation design, where
producers decide their aggregate production, but not its allocation. The fi-
nal design, discriminatory access, seeks to balance transparency and control,
providing restricted firm-market access, but firms retain control over the allo-
cation over their connected markets. We show that open access can incur large
search costs, while controlled allocation designs cause misaligned platform-
producer incentives towards production. Lastly, we show that discriminatory
access suffers from small inefficiencies but may be hard to design.
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2. Demand management as a check against market power
“Market power” and anticipation often allows for producer manipulation
which results in increased individual profits, but decreased system perfor-
mance. Network constraints over the platform allocations exacerbate the
“potential” of these manipulations, since nodal or marginal prices over the
network can be controlled easily. We study the impact of demandmanagement
under a networked Stackelberg model, which accounts for producer anticipa-
tion but is also amenable to consider practical network constraints pertaining
to the electricity grid. We first provide conditions for efficient anticipatory
competition, i.e., if price intercepts are homogeneous over markets that are
connected in an unconstrained manner, then a unique equilibrium exists and
efficiency loss is bounded. Demand management serves as a powerful tool
against anticipation, essentially giving consumers “market power” to counter
that of the producers, limiting their ability for manipulations. In fact, we show
that when consumers participate in demand management, then efficiency loss
is bounded multiplicatively by 3/2 and binding network constraints further in-
cur an additional additive loss. When markets are not too heterogeneous, then
demandmanagementmay serve as a threat that is not necessary at equilibrium.

3. Online decision making under inventory constraints
We have witnessed the impact of anticipation and the power of information. It
is also possible that firms have to make decisions under uncertainty, and one
source of doubt comes from the online nature of participation in platforms.
With uncertain prices and demand in the future, firms may hedge against
this by selling less in each market, being cautiously optimistic of the future.
We show that the problem of online optimization to sell in markets under
an inventory constraint is a generalization of the classical one-way trading
problem. We develop the CR-Pursuit framework to consider this class of
online optimization problems, showing that a simple pursuit of a competitive
ratio is possible—and the problem simplifies to finding the optimal or a
feasible competitive ratio to pursue. We show that our CR-Pursuit algorithm
achieves state-of-the-art results for the original one-way trading problem and
is applicable to generalizations that we consider. The analysis bears insights
to the larger picture in this thesis, in that the optimal solution of firms with
uncertainty can be far from the platform’s expectation. This will only be
exacerbated in the presence of multiple firms.



90

Since we cannot present a complete overview of every section in this thesis, we
provide a summary of the important lessons and interesting insights that we learn
in each section.

6.1 Lessons and Insights
This thesis extends over multiple topics, and in each topic/section our results have
provided us interesting insights about online platform design and considerations. In
this section, we aim to conclude this thesis by providing high-level insights from
each topic covered in this thesis. As we expound on each topic, we also provide
reference to the corresponding section to obtain a fuller and more complete picture.

Open access designs perform well when consumer search costs are low.

Open access designs are transparent and easy to implement in practice. Through our
analysis of open access platform designs under the networked Cournot competition,
we find that they promote participation, i.e., the Nash demand fulfilled at each
market is at least half that of the socially optimal profile (Lemma 3.7). When search
costs are negligible, then the worst case efficiency loss of open access designs are
small (Theorem 3.5). However, if search costs are high, then worst case efficiency
loss can be arbitrarily large (Theorem 3.19).

Additional control does not necessarily lead to improved performance.

Control is delicate. We show that if producers can anticipate these control over
allocations that maximize social welfare, then they tend to manipulate prices by
under-producing for increased profits, which can lead to arbitrarily large efficiency
loss (Theorem 3.11). We extend our analysis to consider different market clearing
mechanisms (Theorem 3.14), showing how outcomes depend on them.

If you have to increase control, do it over access whenever possible.

Controlling over access is not easy. In our work, we show that it is equivalent
to a Mathematical Program with Equilibrium Constraints (MPEC) which are, in
general, NP-hard. However, the discriminatory access design has bounded worst
case efficiency loss (Theorem 3.15), and amenable to balance other factors such as
search costs. While the network optimization is difficult, applying greedy algorithms
and heuristics may at times lead to optimality (Theorem 3.17).
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Anticipation is a necessary evil.

Anticipation drives a platform. For incentives to be effective in promoting efficiency,
the producers need to know them. Without anticipation, efficiency loss can be
arbitrarily large even in small networks, regardless of themarket clearingmechanism
(Proposition 4.2). On the other hand, we provide conditions that jointly inhibit
negative effects of anticipation. When we are able to restrict the “market power” of
the producers, we can guarantee a bounded loss (Theorem 4.1). However, we also
show that these conditions for efficiency under anticipation are “almost necessary”,
in that removing either condition leads to potentially an absence of equilibrium or
arbitrarily large losses.

Demand management give consumers “market power” to counter producers’.

Beyond stabilizing supply-demand imbalance across the market, demand manage-
ment schemes like demand response have a large role to play economically too.
We show that demand management restricts the “market power” of producers by
actually empowering and giving consumers “market power” to counter that of the
producers. By doing so, we show that demand management in the absence of
network constraints have bounded loss, while it suffers a small price of congestion
when network constraints are binding (Theorem 4.5).

Sometimes, simple pursuit can be optimal.

Making decisions under uncertainty can be difficult. For example, an Uber driver
needs to make a decision when he should drive in the day. We show that these
online optimization problems with inventory (driving time) constraints have online
optimal (competitive ratio) solutions that are easy to follow (Theorem 5.4). For the
Uber scenario, it involves finding what you would have earned up till this point and
aim for at least a fraction (the target competitive ratio) of it. We show what these
ratios are for different classes of revenue functions (Theorem 5.9).
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A p p e n d i x A

PROOFS FOR CHAPTER III

Proof of Lemma 3.8
Let qNE(F ×M) ∈ Q(F ×M) be the unique Nash equilibrium of the game (F,Q(F ×
M), π) associated with an arbitrary cost function profile c. Throughout the proof,
we always consider a networked Cournot game associated with the edge set F ×M .
Thus, for notational simplicity we use qNE instead of qNE(F ×M) for the remainder
of the proof. For each i ∈ F, we define the non-negative scalar λi according to

λi := ∂+Ci
©«

m∑
j=1

qNE
i j

ª®¬ . (A.1)

Here, λi is the marginal cost of firm i at the unique Nash equilibrium of the game
(F,Q(F×M), π). We define a (piecewise) linear cost function profile c = (c1, . . . , cn)

according to
Ci(si) := max{λisi, 0}, i = 1, . . . , n.

Clearly, Ci is convex, and differentiable on (0,∞) for each i ∈ {1, . . . , n}. Ad-
ditionally, the stationarity conditions of firms’ profit maximization problem un-
der the cost function profiles C and C are identical at qNE. The combination
of these two facts shows that qNE is the unique Nash equilibrium of the game
(F,Q(F × M), π) associated with the cost function profile C. Our objective is to
show that ρ(F × M,C) ≤ ρ(F × M,C), i.e.,

SW(qNE,C)
SW∗(F × M,C)

≥
SW(qNE,C)

SW∗(F × M,C)
.

In showing this, we first define the scalar µi for each firm i ∈ F according to

µi := ∂+Ci
©«

m∑
j=1

qNE
i j

ª®¬ · ©«
m∑

j=1
qNE

i j
ª®¬ − Ci

©«
m∑

j=1
qNE

i j
ª®¬ .

For each firm i, µi equals the absolute difference in his production cost at Nash
equilibrium associated with the cost function profiles C and C.

With the definition of µi in hand, we define an “intermediate” cost function profile
c̃ = (c̃1, . . . , c̃n) according to:

C̃i(si) := max{λisi − µi, 0}, i = 1, . . . , n.
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The cost function profile C̃ makes the connection between the cost function profiles
C and C. On one hand, for each firm i ∈ F, the cost function C̃i can be regarded
as a linearization of the original cost function Ci around the Nash equilibrium of
the game (F,Q(F ×M), π). On the other hand, it can be interpreted as a translation
of the cost function ci downwards along the y-axis of length µi, while keeping the
resulting cost function non-negative for all real numbers. Note that the stationarity
conditions of firms’ profit maximization problem under the cost function profiles C

and C̃ are identical at qNE. It follows that qNE is the unique Nash equilibrium of the
game (F,Q(F × M), π̃) associated with the cost function profile C̃.

Since firms’ production costs at qNE are equal for the cost function profiles C and
C̃, we have that SW(qNE,C) = SW(qNE, C̃). Moreover, since Ci(si) ≥ C̃i(si) for all
si ∈ R+, we have that SW∗(F × M,C) ≤ SW∗(F × M, C̃). It follows that

SW(qNE,C)
SW∗(F × M,C)

≥
SW(qNE, C̃)

SW∗(F × M, C̃)
. (A.2)

Additionally, the previous translation from C to C̃ implies that SW(qNE, C̃) and
SW(qNE,C) are related according to:

SW(qNE,C) = SW(qNE, C̃) −
n∑

i=1
µi ≥ 0. (A.3)

We claim that the following inequality holds for the efficient social welfare SW∗(F×
M,C) associated with the cost function profile C:

SW∗(F × M,C) ≥ SW∗(F × M, C̃) −
n∑

i=1
µi .

To see this, let q∗ be an efficient supply profile under the cost function profile C̃.
For each i ∈ F, we have

Ci
©«

m∑
j=1

q∗i j
ª®¬ ≤ C̃i

©«
m∑

j=1
q∗i j

ª®¬ + µi .

This inequality implies that

SW∗(F × M,C) ≥ SW(q∗,C) ≥ SW(q∗, C̃) −
n∑

i=1
µi

= SW∗(F × M, C̃) −
n∑

i=1
µi,
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The above inequality, in combinationwith inequalities EquationsA.2 andA.3, shows
that

SW(qNE,C)
SW∗(F × M,C)

≥
SW(qNE, C̃)

SW∗(F × M, C̃)

≥
SW(qNE, C̃) −

∑n
i=1 µi

SW∗(F × M, C̃) −
∑n

i=1 µi
≥

SW(qNE,C)

SW∗(F × M,C)
,

as needed to be shown.

Proof of Proposition 3.9
It follows from Lemma 3.8 that the worst symmetric cost function profile that
maximizes ρ(F × M,C) consists of n identical cost functions that are linear on
(0,∞). Thus, to upper bound the PoA of the networked Cournot game, it suffices to
consider a cost function profile C that satisfies

Ci(x) = cx for x ≥ 0, for all i ∈ F, (A.4)

for a finite positive constant c > 0 that is independent of i.

Given the assumption on the (piecewise) linearity of cost, it is straightforward
to show that the unique Nash equilibrium and an efficient supply profile of the
corresponding networked Cournot game are given by

qNE
i j =

(α j − c)+

β j(n + 1)
, and q∗i j =

(α j − c)+

β jn
,

respectively, for each i ∈ F, j ∈ M . It follows that the social welfare at the unique
Nash equilibrium qNE of this Cournot game is given by

SW∗(qNE,C) =
m∑

j=1

(
(α j − c)+

)2

2β j

(
1 −

1
(n + 1)2

)
.

And the efficient social welfare is given by

SW∗(F × M,C) =
m∑

j=1

(
(α j − c)+

)2

2β j
.

Hence, the price of anarchy associated with the cost function profile C is given by

ρ(F × M,C) =


1 + 1
(n+1)2−1 if max j∈M α j > c,

1 otherwise
.

Choosing c < max j∈M α j gives the worst-case cost function profile that maximizes
the price of anarchy over symmetric cost function profiles. This completes the proof.
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Proof of Theorem 3.5
It follows from Lemma 3.8 that the worst cost function profile that maximizes
ρ(F ×M,C) consists of cost functions that are linear on (0,∞). We thus assume that
each firm’s cost function satisfies Ci(si) = (cisi)

+, for i = 1, . . . , n, where we assume
without loss of generality that c1 ≤ · · · ≤ cn.

Note that, for the case in which n = 1, a direct application of Proposition 3.9 provides
a tight price of anarchy bound of ρ(F × M,C) ≤ 4/3. For the remainder of the
proof, we restrict ourselves to n ≥ 2.

We first consider the simple setting where the number of markets m = 1. That is,
the set of markets M = {1}. Without loss of generality, we assume that c1 < α1.
Since cost functions are linear, there exists an efficient supply profile q∗ that assigns
all production to firm 1, i.e., q∗i1 = 0 for i = 2, . . . , n. The supply from firm 1 and
the corresponding efficient social welfare are given by:

q∗11 =
α1 − c1
β1

, and SW∗(F × {1},C) =
(α1 − c1)

2

2β1
.

Fixing α1, β1, c1, we can optimize over c2, . . . , cn in order to minimize the social
welfare at the unique Nash equilibrium of the Cournot game. Using similar argu-
ments as in the proof of (R. Johari and J. N. Tsitsiklis, 2005, Theorem 12), one can
formulate this problem as a symmetric convex program over the production quanti-
ties at Nash equilibrium of the remaining firms. The optimal value of c2, . . . , cn is
given by

c∗i = α1 −
2n + 3
3n + 5

(α1 − c1), for i = 2, . . . , n.

And the production quantity of each producer is given by

qi1 =


α1−c1
β1
· n+3

3n+5 if i = 1.
α1−c1
β1
· 1

3n+5, if i = 2, . . . , n.

Define the cost function profile C
∗
= (C

∗

1, . . . ,C
∗

n) according to C
∗

1(s1) = (c1s1)
+

and C
∗

i (si) = (c∗i si)
+ for i = 2, . . . , n. Thus, for the fixed parameters α1, β1, c1, the

minimum social welfare at Nash equilibrium is given by

SW(qNE (F × {1}),C∗) =
(n + 2)(α1 − c1)

2

(3n + 5)β1
.

It follows that for any linear cost function profile C, we have

ρ(F × {1},C) ≤ ρ(F × {1},C∗) =
3
2

(
1 −

1
3n + 6

)
.
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We now consider the slightlymore complicated setting inwhichm > 1. The efficient
social welfare associated with a linear cost function profile C is given by

SW∗(F × M,C) =
m∑

j=1

(
(α j − c1)

+
)2

2β j
.

Given the linearity of firms’ cost functions over (0,∞), the networked Cournot game
decouples across markets. Thus, the social welfare at Nash equilibrium satisfies

SW(qNE (F × M),C) =
m∑

j=1
SW(qNE (F × { j}),C)

≥

m∑
j=1

(
(α j − c1)

+
)2

3β j

(
1 − 1

3n+6

) = SW∗(F × M,C)
3
2

(
1 − 1

3n+6

) .

It follows that the price of anarchy ρ(F × M,C) satisfies

ρ(F × M,C) ≤
3
2

(
1 −

1
3n + 6

)
.

Additionally, it is straightforward to check that this price of anarchy bound is achieved
by the cost function profile C

∗ if α1 = α2 = · · · = αm. This completes the proof.

Proof of Proposition 3.10
We only provide a proof of the price of anarchy bound, since the proof on its
tightness is straightforward. The key intuition of the proof is that, under a linear
cost function profile, the networked Cournot game decouples across markets. The
proof proceeds in two parts.

Part 1: We provide a price of anarchy bound for the case in which the number of
markets m = 1. Namely, for any cost function profile C ∈ Ln(cmin, cmax), we have

ρ(F × { j},C) ≤
1

2n+4
3n+5 + δ(γ j, n)

, j = 1, . . . ,m.

Weomit the proof of this price of anarchy bound, as it follows from similar arguments
as in the proof of Theorem 3.5.

Part 2: We provide a price of anarchy bound for the case in which the number of
market m > 1. Let the cost function of each firm i ∈ F be given by

Ci(si) = (cisi)
+, where ci ∈ [cmin, cmax].
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Without loss of generality, we assume that c1 ≤ · · · ≤ cn. Thus, the efficient social
welfare associated with the edge set F × M and the cost function profile C is given
by

SW∗(F × M,C) =
m∑

j=1

(
(α j − c1)

+
)2

2β j
.

Since firms’ cost functions are linear on (0,∞), the networked Cournot game decou-
ples across markets. It follows that the social welfare at the unique Nash equilibrium
of the game (F,Q(F × M), π) satisfies

SW(qNE (F × M),C) =
m∑

j=1
SW(qNE (F × { j}),C). (A.5)

Additionally, the term SW(qNE (F × { j}),C) satisfies

SW(qNE (F × { j}),C) =
SW∗(F × { j},C)
ρ(F × { j},C)

(A.6)

≥

m∑
j=1

(
(α j − c1)

+
)2

2β j

(
2n + 4
3n + 5

+ δ(γ j, n)
)
. (A.7)

Here, equation A.6 follows from the definition of the price of anarchy, and inequality
A.7 follows from the price of anarchy bound in Step 1. A combination of Eq. (A.5)
and inequality (A.7) provides the following lower bound on the reciprocal of the
price of anarchy ρ(F × M,C):

1
ρ(F × M,C)

≥

∑m
j=1

(
2n+4
3n+5 + δ(γ j, n)

)
((αj−c1)

+)
2

βj∑m
j=1
((αj−c1)+)

2

βj

.

One can verify that the partial derivative of the right-hand-side (RHS) of the above
inequality with respect to c1 is non-negative for c1 ∈ [cmin, cmax]. Hence, choosing
c1 = cmin minimizes the RHS of the above inequality. This completes the proof.

Lemma A.1. There exists firm i, such that sN
i ≤ s∗i .

Proof. Proof: Suppose note. Then ∀i, sN
i > s∗i .

Case 1: SN ⊆ S∗:

sN
i > s∗i ⇒ ∃ j ∈ SN s.t. dN

j > d∗j ⇒ p∗j > pN
j ,

but considering any firm i such that qN
i j > 0,

α j > pN
j = c′i (s

N
i ) + β jqN

i j > c′i (s
N
i ) > c′i (s

∗
i )
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but by the optimality of ∗,

c′i (s
∗
i ) ≥ p∗j ⇒ pN

j > p∗j,

a contradiction.

Case 2: ∃ market j s.t. j ∈ SN\S∗.

For any i such that qN
i j > 0, c′i (s

N
i ) < α j ≤ c′i (s

∗
i ), a contradiction to sN

i > s∗i . �

Proof. Proof of Lemma 3.7: Suppose on the other hand that there is a market j

such that dN
j < d∗j . We show that this contradicts the preceding lemma. For any

firm i such that qN
i j = 0, we have c′i (s

N
i ) ≥ pN

j ≥ p∗j = c′i (s
∗
i ), and by monotonicity,

sN
i > s∗i . On the other hand, if qN

i j > 0,

c′i (s
N
i ) = α j − β j dN

j − β jqN
i j > αj − β j

d∗j
2
− β j

d∗j
2
= α j − β j d∗j = c′i (s

∗
i ),

again implying that sN
i > s∗i for all i, a contradiction to the preceding lemma. �

Before providing a proof of Theorem 3.11 we first state and prove the key structural
lemma we use in the proof.

Lemma A.2. For a firm with costless production, a set of linear demand markets
under controlled allocation is equivalent to a single market with a convex, piecewise
linear demand curve. Conversely, any convex, decreasing, piecewise linear demand
curve with finitely many linear segments can be realized by a set of linear demand
markets under controlled access.

Proof. Proof of Lemma A.2. The characterization of the socially optimal produc-
tion, with s fixed highlights that the platformwill reallocate this amount to d1, . . . , dm

such that
∑

j d j = s, and for each market j where d j > 0, p j is equivalent to a fixed
price p across markets; for each market j where d j = 0, it must be that α j ≤ p. This
shows that, as s increases, the allocation will enter the markets one by one in the
order in which α j decreases.

We say a market becomes active when supply starts entering it. For a set of active
markets, before the next market becomes active, the marginal increase in supply will
be allocated in proportion to 1/β j (in order to keep the prices the same). This fully
describes the behavior of the platform.
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Without loss of generality, assume the markets are ordered such that α1 ≥ . . . ≥ αm.
From the firm’s point of view, the platform is equivalent to a single market with a
piecewise linear demand curve: when the price is between α1 and α2, the rate at
which price drops when s increases is β1; for p ∈ [α2, α3], the rate is 1/( 1

β1
+ 1

β2
). In

general, when the first k markets are active, prices drop i at the rate of (
∑k

j=1
1
βj
)−1.

We call this single demand curve the aggregate demand curve.

For a given production level, the area under the aggregate demand curve is equal to
the welfare in the original markets. The aggregate demand curve fully characterizes
the set of markets under controlled access. Note that whenever a new market joins,
the rate at which price drops becomes slower, therefore the aggregate demand curve
is always convex.

Conversely, one can show that any convex, decreasing, piecewise linear demand
curve consisting of finitely many linear segments is equivalent to a set of linear
demand markets under controlled access.

�

Proof. Proof of Theorem 3.11. By Theorem A.2, we can focus on constructing an
aggregate demand curve. Fix a constant λ ∈ (0, 1

2 ). The aggregate demand curve
we construct for m markets, (m ≥ 2), is

p(d) = max
0≤k<m

(λk − λ2k d).

It is not hard to verify that this is the piecewise linear function that connects
the following points: (0, 1), ( 1

1+λ,
λ

1+λ ), (
1

λ(1+λ),
λ2

1+λ ), · · · , (
1

λm−2(1+λ),
λm−1

1+λ ), (
1

λm−1 , 0).
Being the maximum of a family of decreasing linear functions, p(d) is obviously
a convex decreasing function. We first calculate the optimal social welfare, the
area under p(d). The trapezoid whose vertices are ( 1

λk−1(1+λ), 0), (
1

λk−1(1+λ),
λk

1+λ ),

( 1
λk (1+λ), 0), (

1
λk (1+λ),

λk+1

1+λ ) has area

1
2

(
1

λk(1 + λ)
−

1
λk−1(1 + λ)

) (
λk

1 + λ
+
λk+1

1 + λ

)
=

1 − λ
1 + λ

.

There are m − 2 such trapezoids under p(d), and therefore the socially optimal
welfare is Ω(m). On the other hand, the linear components of p(d) are designed so
that producing on any of the linear segment gives a maximal profit of 1

4 (for the k-th
segment, the profit maximizing production level is 1

2λk−1 ). The firm is indifferent
to best responding to any of the linear segments, and all the production levels 1

2λk
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for k = 0, . . . ,m − 1 are Nash equilibria. If we push the starting point of p(d) from
(0, 1) to (0, 1 + ε) for some ε > 0, then producing 1+ε

2 (by responding only to the
first market) will be the unique equilibrium, resulting in a social welfare of only
3(1 + ε)2/8. Therefore the price of anarchy is Ω(m). �

Proof. Proof of Theorem 3.14:

In the k ≤ 0 regime, a similar example to the consumer surplus case would work.
For example, if α1 = α2, with β1 = 0 and β2 = ε , then the platform will assign all of
the allocations to the second market. Consider a linear cost function c = (α1 − ε)x,
then the optimal is to fulfill all of market 1 which gives us infinitely large social
welfare, whereas the platform forces the firm to go to market 2, which results in a
constant social welfare.

On the other hand, when k ∈ (0, 1], we can design a series of markets for a costless
firm with a resulting price of anarchy that grows in the number of markets accessed,
similar to the social welfare maximizing platform (λ = 0.5 case). Lastly, in the
k > 1 regime, our price of anarchy bound decreases gracefully as the market maker
objective approaches revenue maximizing, up till a point where it is worst to set up
an open access platform, explaining the max operator.

We first show that regardless of the platform objective, the firms produce on aggre-
gate a quantity equivalent to the quantity that maximizes revenue:

LemmaA.3. Regardless of the parameter k for one costless firm, optimal aggregate
production in the platform including markets M maximizes social welfare, i.e.
q∗ =

∑
j∈M

αj

2βj .

Proof. Proof of Lemma A.3: Since market m is included, then the markets are
allocated at least the following amount of quantity before the last market is accessed:

d j =
α j − αm

kβ j
.

Further, we know that any additional quantity introduced into the platform will be
assigned e j to the respective markets respecting the following condition:

β je j = βmem ⇒ e j =

1
βj∑
k

1
βk

Q

Optimizing over the additional quantity e j , the firm’s profit can be written:
m∑

j=1

(
α j − αm

kβ j
+ e j

) (
α j − β j

(
α j − αm

kβ j
+ e j

))
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but with e j defined above and letting A =
∑

k
1
βk
, this can be rewritten as:

m∑
j=1

(
α j − αm

kβ j
+

Q
Aβ j

) (
α j −

α j − αm

k
−

Q
A

)
Differentiating with respect to Q, we have:

m∑
j=1

[
1

Aβ j

(
α j −

α j − αm

k
−

Q
A

)
+

(
α j − αm

kβ j
+

Q
Aβ j

) (
−

1
A

)]
= 0

which gives us that:

Q =
m∑

j=1

(
α j

2β j
−
α j − αm

kβ j

)
,

which implies that the optimal aggregate production is indeed
∑m

j=1
αj

2βj .

�

We propose a set of parameters for each market as in the social welfare maximizing
case and prove that the inefficiency in these markets are reflected as in Theorem
3.14.

Market parameters are designed in the following form, similar to that of the social
welfare maximizing scenario:

α1 = 1, β1 = 1, & α j =
a j−1θ j−1

1 + θ
, β j =

θ2 j−2

1 − θ2 , ∀ j ≥ 2,

then if we can show that the (single costless) firm wants to stay in the first market
only region, then the price of anarchy grows as a function of the sum of a geometric
progression with ratio a, and thereby can be written:

ρ =
4
3

(
1 +

1 − θ
1 + θ

(
a2 + a4 + . . .

))
=

4
3

(
1 +

(1 − θ)a2

(1 + θ)(1 − a2)

)
→θ→0

4
3

(
1

1 − a2

)
The optimal revenue considering only the first market is α2

1
4β1
= 1

4 . After some
algebra, the amount allocated to market j in the presence of m many markets of the
form defined above, or d j,m, can be expressed as:((

1
2
−

1
k

) m∑
i=1

αi

βi

) 1
βj∑m

i=1
1
βi

+
α j

kβ j
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and the prices at the markets then can be computed via α j − β j d j,m:(
1 −

1
k

)
α j −

1∑m
i=1

1
βi

((
1
2
−

1
k

) m∑
i=1

αi

βi

)
and thereby, revenue from market j can be written:(

1
2
−

1
k

) ∑m
i=1

αi
βi∑m

i=1
1
βi

(
1 −

2
k

)
α j

β j
+

(
1 −

1
k

) α2
j

kβ j
−

1
β j

(
1∑m

i=1
1
βi

)2 (
1
2
−

1
k

)2
(

m∑
i=1

αi

βi

)2

and revenue from all markets can be written:(
1
2
−

1
k

)2
(∑m

i=1
αi
βi

)2∑m
i=1

1
βi

+
1
k

(
1 −

1
k

) m∑
i=1

α2
i

βi

and we wish to show that ∀k, we can find a and θ such that the above aggregate
revenue is less than the revenue at only the first market. (Recall that when k = 1, the
second term is gone and the first term is the revenue from the social welfare case,
and taking a = 1, we retrieve the same righthand side as the social welfare case too,
which equates to the revenue at the first market, i.e., 1/4. )

Lemma A.4. When a = 1 and k = 1, then for any λ ∈ (0, 0.5),

(
1
2
−

1
k

)2
(∑m

i=1
αi
βi

)2∑m
i=1

1
βi

=
1
4
⇐⇒

(∑m
i=1

αi
βi

)2∑m
i=1

1
βi

= 1.

Proof. Proof of Lemma A.4:

This is proved under the social welfare maximizing platform, and restated here for
convenience. �

Another important and interesting point to note is that the two coefficients in the
revenue term sum up to 1/4, i.e.,(

1
2
−

1
k

)2
+

1
k

(
1 −

1
k

)
=

1
4
.

We use this identity to prove the following lemma:

Lemma A.5. For k ∈ (0, 1], take a = 1, and θ < 0.5, then

(
1
2
−

1
k

)2
(∑m

i=1
αi
βi

)2∑m
i=1

1
βi

+
1
k

(
1 −

1
k

) m∑
i=1

α2
i

βi
<

1
4
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Proof. Proof of Lemma A.5: From above, it remains to show that
∑m

i=1
α2
i

βi
≥ 1,

but the first term in the sum is already 1 while the rest are nonnegative so we are
done. �

We now move to prove the case whereby k > 1, through the following lemma:

Lemma A.6. For k > 1, and taking θ small enough,(∑m
i=1

αi
βi

)2∑m
i=1

1
βi

≤ a2.

This can be seen by considering the
∑m

i=1
αi
βi

part and extracting a from each sum-
mand. With this result, we can show the following:

Lemma A.7. For k > 1, a ≤

√
1 − 2

√
1
k

(
1 − 1

k

)
and taking λ small enough, then

(
1
2
−

1
k

)2
(∑m

i=1
αi
βi

)2∑m
i=1

1
βi

+
1
k

(
1 −

1
k

) m∑
i=1

α2
i

βi
<

1
4
.

The proof of Theorem 3.14 follows from the above lemmas, and the PoA bounds
follow.

Proof of Theorem 3.17
Without loss of generality, we assume that c1 ≤ · · · ≤ cn. We only provide a
proof for the case in which the number of market m = 1, as it is straightforward
to generalize our proof to the case in which m > 1 under the assumption on the
linearity of firms’ cost functions.

We denote by F1(E) the set of firms that have access to market 1. It is defined
according to

F1(E) = {i ∈ F | (i, 1) ∈ E}.

We first introduce the concept of a contiguous set of firms, which plays a central
role in the remainder of the proof. We have the following definition.

Definition A.8 (Contiguous Set). The set F1(E) is contiguous if

F1(E) = {1, 2, . . . , |F1(E)|}, or F1(E) = ∅.
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Here, |F1(E)| denotes the cardinality of the set F1(E). Qualitatively, the set F1(E) ⊆

F is contiguous, if it consists of consecutive elements of the set F. Clearly, for the
edge set E∗ generated by the greedy algorithm, the set F1(E

∗) is contiguous.

The rest of the proof consists of two parts. In Part 1, we show that if the set F1(E) is
contiguous, then the social welfare at the Nash equilibrium associated with edge set
E is guaranteed to be no larger than that of the edge set E∗. In Part 2, we consider
the case in which the set F1(E) is not contiguous. We show that there exists an edge
set Ẽ that yields a contiguous set F1(Ẽ), and has social welfare at Nash equilibrium
that is no smaller than that of the edge set E.

Part 1: In this part, we assume that the set F1(E) is contiguous, and show that
SW(qNE (E),C) ≤ SW(qNE (E∗),C). We first define a sequence of edge sets accord-
ing to

Ek =

k⋃
i=1
{(i, 1)}, k = 0, . . . , n. (A.8)

In particular, we have that E0 = ∅. Let k∗ = |E∗ |. To show that SW(qNE (E),C) ≤

SW(qNE (E∗),C) if F1(E) is contiguous, it suffices to show that the sequence
SW

(
qNE (Ek), C

)
is strictly increasing in k over k = 0, . . . , k∗, and monotonically

non-increasing in k over k = k∗, . . . , n.

We assume without loss of generality that ci ≤ α1 for all i. If this is not the case, one
can work with an alternative cost function profile C̃ = (C̃1, . . . , C̃n) that is defined
according to

C̃i(si) = (min{ci, α1} · si)
+

for i = 1, . . . , n. Clearly, min{ci, α1} ≤ α1 for all i. Additionally, it is straightforward
to show that

SW(qNE (Ek),C) = SW(qNE (Ek), C̃)

for all k = 0, . . . , n.

The proof of this claim on monotonicity relies on the following lemma. Its proof is
deferred to Appendix A.

Lemma A.9. Assume that each firm i’s cost function is of the form Ci(si) = (cisi)
+,

where c1 ≤ · · · ≤ cn. Let the number ofmarketsm = 1, and the edge setEk be defined
according to Eq. (A.8). For each k = 1, . . . , n, we have that SW

(
qNE (Ek), C

)
>
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SW
(
qNE (Ek−1), C

)
if and only if

α1 − ck >
1
k

(
1 +

1
k − 1

2(k+1)

) (
k−1∑
i=1
(α1 − ci)

)
. (A.9)

It follows from the description of the greedy algorithm that SW
(
qNE (Ek), C

)
is

strictly increasing in k for 0 ≤ k ≤ k∗. Additionally, we have that

SW
(
qNE (Ek∗+1), C

)
≤ SW

(
qNE (Ek∗), C

)
.

It follows from Lemma A.9 that for k = k∗ + 1, the following inequality is satisfied:

α1 − ck ≤
1
k

(
1 +

1
k − 1

2(k+1)

) (
k−1∑
i=1
(α1 − ci)

)
. (A.10)

To complete Part 1 of the proof, we have the following lemma. Its proof can be
found in Appendix A.

Lemma A.10. Let k∗ ∈ {0, . . . , n}, and assume that c1 ≤ · · · ≤ cn ≤ α1. If
inequality (A.10) is satisfied for k = k∗ + 1, then it is satisfied for k = k∗ + 1, . . . , n.

A combination of Lemma A.9 and A.10 reveals that

SW
(
qNE (Ek), C

)
≤ SW

(
qNE (Ek−1), C

)
for k = k∗ + 1, . . . , n. This completes Part 1 of the proof.

Part 2: In this part, we assume that the set F1(E) is not contiguous. We show that
there exists an edge set Ẽ ⊆ F × {1}, such that the set F1(Ẽ) is contiguous, and
SW

(
qNE (E), C

)
≤ SW

(
qNE (Ẽ), C

)
.

Our proof of the above claim is constructive. Given an edge set E ⊆ F × {1}, we
construct a sequence of (n2 + 1) edge sets according to the following procedure

1. Set k = 0, and Ek = E.

2. If the set F1(Ek) is contiguous, then set Ek+1 = Ek , and go to Step 5. If not,
go to Step 3.

3. Define the edge set Ẽk according to

Ẽk = Ek \
{(

max F1(Ek), 1
)}
. (A.11)
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4. If SW
(
qNE (Ek), C

)
≤ SW

(
qNE (Ẽk), C

)
, then set Ek+1 = Ẽk . If not, set

Ek+1 = Ẽk ∪ {(min (F \ F1(Ek)) , 1)} . (A.12)

5. If k < n2, update k = k + 1, and go to Step 2. If k ≥ n2, terminate the
procedure.

We will show that both of the following claims are true

(i) The set F1(En2) is contiguous.

(ii) For k = 0, . . . , n2 − 1, we have

SW
(
qNE (Ek), C

)
≤ SW

(
qNE (Ek+1), C

)
. (A.13)

We note that the second claim implies that SW(qNE (E),C) ≤ SW(qNE (En2),C). In
what follows, we show that Claim (i) and (ii) are true in Part 2.1 and 2.2 of the proof,
respectively.

Part 2.1: Proof of Claim (i). We show that Claim (i) is true according to a
“potential function" argument. Namely, we define a potential function on the edge
set Ek ⊆ F × {1} as follows

Φ(Ek) = |F1(Ek)|
(
max F1(Ek) − |F1(Ek)|

)
for k = 0, . . . , n2. For all Ek ⊆ F×{1}, we have thatΦ(Ek) ≥ 0. It is straightforward
to show Φ(Ek) = 0 if and only if the set F1(Ek) is contiguous. It follows that if
Φ(Ek) > 0, then Ek+1 is specified according to either Ek+1 = Ẽk or Eq. (A.12). If
Ek+1 = Ẽk , we have

Φ(Ek+1) = |F1(Ẽk)|
(
max F1(Ẽk) − |F1(Ẽk)|

)
(A.14)

= |F1(Ẽk)|
(
max F1(Ẽk) − (|F1(Ek)| − 1)

)
(A.15)

≤ |F1(Ẽk)|
(
max F1(Ek) − 1 − (|F1(Ek)| − 1)

)
(A.16)

= (|F1(Ek)| − 1)
(
max F1(Ek) − |F1(Ek)|

)
(A.17)

≤ Φ(Ek) − 1, (A.18)

where inequality (A.16) follows from the inequality max F1(Ẽk) ≤ max F1(Ek) − 1,
Eq. (A.17) follows from the fact that |F1(Ẽk)| = |F1(Ek)| − 1, and inequality (A.18)
follows from the fact that F1(Ek) is not contiguous.
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On the other hand, if Ek+1 is specified according to Eq. (A.12), then we have

Φ(Ek+1) =|F1(Ek)|
(
max F1(Ek+1) − |F1(Ek)|

)
(A.19)

≤|F1(Ek)|
(
max F1(Ek) − 1 − |F1(Ek)|

)
(A.20)

=Φ(Ek) − |F1(Ek)| ≤ Φ(Ek) − 1, (A.21)

where Eq. (A.19) follows from the fact that |F1(Ek)| = |F1(Ek+1)|, and inequality
(A.20) follows from the fact that max F1(Ek+1) ≤ max F1(Ek) − 1. In both cases,
we have that if Φ(Ek) > 0, then

Φ(Ek) − Φ(Ek+1) ≥ 1.

It is straightforward to show that Φ(E0) < n2. It immediately follows that Φ(En2) =

0. This finishes the proof of Claim (i).

Part 2.2: Proof of Claim (ii). According to the procedure we use in generating
the sequence of edge sets, inequality (A.13) is trivially satisfied if Ek+1 = Ek or
Ek+1 = Ẽk . For the remainder of this part, we show that inequality (A.13) is satisfied
if Ek+1 is specified according to Eq. (A.12). The key idea in this proof is to show
that if the removal of the most expensive producer leads to a strict decrease in social
welfare, then a unilateral decrease in the marginal cost of said producer will lead to
an increase in social welfare.

We first introduce some notation pertinent to the remainder of the proof. Define the
indices gk and hk according to

gk = max F1(Ek) and hk = min (F \ F1(Ek)) .

Since the set F1(Ek) is not contiguous, we must have that hk < gk . We define a new
cost function profile Cθ = (Cθ

1, . . . ,C
θ
n ) ∈ L

n(cmin, cmax) according to

Cθ
i (si) =


(cisi)

+ if i , gk

(θsi)
+ if i = gk,

(A.22)

where θ is a scalar parameter.

The unique Nash equillibrium of the networked Cournot game depends on firms’
cost function profiles. With a slight abuse of notation, we denote by qNE (E,C) the
unique Nash equilibrium of the networked Cournot game associated with an edge
set E ⊆ F × {1}, and a cost function profile C.

Our proof relies on the following technical lemma stating the monotonicity of
SW(qNE (Ek,Cθ),Cθ) in the scalar θ. Its proof is deferred to Appendix A.



117

Lemma A.11. Let the edge set Ẽk and the cost function profile Cθ be speci-
fied according to Eq. (A.11) and (A.22), respectively. If SW

(
qNE (Ek,C), C

)
>

SW
(
qNE (Ẽk,C), C

)
, then SW(qNE (Ek,Cθ),Cθ) is monotonically decreasing in θ

for cmin ≤ θ ≤ cgk .

Note that, by specifying Ek+1 according to Eq. (A.12), we essentially replace the
most expensive producer with another producer with a cheaper cost. In partic-
ular, if Ek+1 is specified according to Eq. (A.12), then SW(qNE (Ek,C),C) and
SW(qNE (Ek+1,C),C) are related according to

SW(qNE (Ek,C),C) = SW(qNE (Ek,Ccgk ),Ccgk ), (A.23)

SW(qNE (Ek+1,C),C) = SW(qNE (Ek,Cchk ),Cchk ). (A.24)

Recall that hk < gk . It follows that cmin ≤ chk ≤ cgk . An application of Lemma
A.11 shows that

SW(qNE (Ek,Ccgk ),Ccgk ) ≤ SW(qNE (Ek,Cchk ),Cchk ).

The above inequality, in combination with Eq. (A.23) and (A.24), shows that when
Ek+1 is specified according to Eq. (A.12), inequality (A.13) is satisfied. This
completes the proof.

Proof of Theorem 3.15
Without loss of generality, we assume that c1 ≤ · · · ≤ cn. It follows from the
description of the greedy algorithm that for each market j ∈ M , (1, j) ∈ E∗ if and
only if c1 < α j . It immediately follows that the efficient social welfare associated
with the edge set E∗ satisfies

SW∗(E∗,C) =
m∑

j=1

(
(α j − c1)

+
)2

2β j
= SW∗(F × M,C).

For the second part of the theorem, we only provide a proof for the case in which
the number of markets m = 1. The generalization to the case in which m > 1 can
be carried out following similar steps as in the proof of Proposition 3.10.

Given the restriction that c1 ≤ · · · ≤ cn, we define the subset of ordered linear cost
function profiles in Ln(cmin, cmax) according to

On(cmin, cmax) =

{
C ∈ Ln(cmin, cmax)

����
Ci(si) = (cisi)

+, i = 1, . . . , n, c1 ≤ · · · ≤ cn

}
.
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Thus, we have the following chain of inequalities

ρ(E∗,C) = inf
E⊆F×M

SW∗(F × M,C)
SW(qNE (E),C)

(A.25)

≤ sup
C∈Ln(cmin,cmax)

inf
E⊆F×M

SW∗(F × M,C)
SW(qNE (E),C)

(A.26)

= sup
C∈On(cmin,cmax)

inf
{(1,1)}⊆E⊆F×M

SW∗(F × M,C)
SW(qNE (E),C)

(A.27)

≤ inf
{(1,1)}⊆E⊆F×M

sup
C∈On(cmin,cmax)

SW∗(F × M,C)
SW(qNE (E),C)

(A.28)

≤ inf
{(1,1)}⊆E⊆F×M

1
2|E |+4
3|E+5| + δ(γ1, |E |)

(A.29)

=
1

max
k∈{1,...,n}

{ 2k+4
3k+5 + δ(γ1, k)

} . (A.30)

Here, Eq. (A.25) follows from the fact that SW∗(E∗,C) = SW∗(F × M,C), Eq.
(A.27) follows from our restriction that c1 ≤ · · · ≤ cn, inequality (A.28) follows from
the min-max inequality, and inequality (A.29) is a direct application of Proposition
3.10. This completes the proof.

Proof of Lemma A.9
The proof proceeds in two parts. In Part 1, we provide a necessary and sufficient
condition for the production quantity of firm k to be strictly positive at Nash equilib-
rium, when the edge set is given by Ek . In Part 2, we leverage on the intermediary
result in Part 1 to show that SW

(
qNE (Ek), C

)
> SW

(
qNE (Ek−1), C

)
if and only if

inequality (A.9) is satisfied.

Part 1: We show that for the game (F,Q(Ek), π), the production quantity of firm k

at Nash equilibrium qNE
k1 (Ek) is strictly positive, if and only if

α1 − ck >
1
k

(
k−1∑
i=1
(α1 − ci)

)
. (A.31)

We first prove the “if" part of the desired claim. First note that inequality (A.31)
implies that the following inequality is satisfied:

(k + 1)(α1 − ck) >

k∑
i=1
(α1 − ci). (A.32)
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One can check that if inequality (A.31) is satisfied, then the unique Nash equilibrium
of the game (F,Q(Ek), π) is given by

qNE
i1 (Ek) =

(k + 1)(α1 − ci) −
∑k
`=1(α1 − c`)

(k + 1)β1
, i = 1, . . . , k,

and qNE
i1 (Ek) = 0 for i = k + 1, . . . , n. It follows from inequality (A.32) that

qNE
k1 (Ek) > 0.

Next, we prove the “only if" part of the desired claim. First note that ci ≤ ck for
i = 1, . . . , k. Recall that for the game (F,Q(Ek), π), firm k’s production quantity
qNE

k1 (Ek) at Nash equilibrium is strictly positive. It follows that qNE
i1 (Ek) > 0 for

i = 1, . . . , k. The first order optimality condition for Nash equilibrium of the game
(F,Q(Ek), π) implies that

α1 − β1

(
k∑̀
=1

qNE
`1 (Ek)

)
− β1qNE

i1 (Ek) − ci = 0, (A.33)

for i = 1, . . . , k. Consequently, we have that

qNE
k1 (Ek) =

(k + 1)(α1 − ck) −
∑k
`=1(α1 − c`)

(k + 1)β1
> 0.

This implies that inequality (A.31) is satisfied.

Part 2: We show SW
(
qNE (Ek), C

)
> SW

(
qNE (Ek−1), C

)
if and only if inequal-

ity (A.9) is satisfied. First note when k = 1, it is straightforward to see that
SW

(
qNE (E1), C

)
> 0 if and only if α1 − c1 > 0. Thus, for the remainder of the

proof, we assume that k ≥ 2.

We only provide a proof for the “only if" part of the claim, as the “if" part of the
claim can be proved using similar arguments. First note that SW

(
qNE (Ek), C

)
>

SW
(
qNE (Ek−1), C

)
implies that qNE

k1 (Ek) > 0. If this is not the case, then we have
that qNE (Ek) = qNE (Ek−1), which clearly leads to a contradiction. Note that ci ≤ ck

for i = 1, . . . , k. It follows that

qNE
i1 (Ek) ≥ qNE

k1 (Ek) > 0, for i = 1, . . . , k .

One can show that the unique Nash equilibrium of the game (F,Q(Ek), π) is given
by

qNE
i1 (Ek) =

(k + 1)(α1 − ci) −
∑k
`=1(α1 − c`)

(k + 1)β1
, i = 1, . . . , k,
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and qNE
i1 (Ek) = 0 for i = k + 1, . . . , n. We denote the aggregate supply in market 1

at the unique Nash equilibrium of the game (F,Q(Ek), π) by dNE
1 (Ek). It is given by

dNE
1 (Ek) =

n∑
i=1

qNE
i1 (Ek) =

∑k
i=1(α1 − ci)

(k + 1)β1

Additionally, the social welfare at the Nash equilibrium of the game (F,Q(Ek), π)

satisfies

SW
(
qNE (Ek),C

)
=α1dNE

1 (Ek) −
1
2
β1dNE

1
2
(Ek) −

k∑
i=1

ciqNE
i1 (Ek)

=α1dNE
1 (Ek) −

1
2
β1dNE

1
2
(Ek) −

k∑
i=1

ci

(
α1 − ci

β1
− dNE

1 (Ek)

)
=(k + 1)α1dNE

1 (Ek) −
1
2
β1dNE

1
2
(Ek) −

k∑
i=1

(
ci(α1 − ci)

β1

)
+

(
k∑

i=1
ci − kα1

)
dNE

1 (Ek)

=
α1

∑k
i=1(α1 − ci)

β1
−

2k + 3
2

β1dNE
1

2
(Ek) −

k∑
i=1

ci(α1 − ci)

β1

=

∑k
i=1(α1 − ci)

2

β1
−

2k + 3
2

β1dNE
1

2
(Ek)

=

∑k
i=1(α1 − ci)

2

β1
−

2k + 3
2

(∑k
i=1(α1 − ci)

)2

(k + 1)2β1
.

Next, we provide a closed-form expression for SW
(
qNE (Ek−1),C

)
. Recall that

qNE
k1 (Ek) > 0. As we showed in Part 1, this implies that inequality (A.31) is

satisfied. We thus have

α1 − ck−1 ≥ α1 − ck >
1
k

(
k−1∑
i=1
(α1 − ci)

)
,

which further implies that

α1 − ck−1 >
1

k − 1

(
k−2∑
i=1
(α1 − ci)

)
.

It follows from our result in Part 1 that for the game (F,Q(Ek−1), π), producer k−1’s
production quantity at Nash equilibrium is strictly positive. Using similar arguments
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as in our derivation on the closed-form expression for SW
(
qNE (Ek),C

)
, we have

the following closed-form expression for SW
(
qNE (Ek−1),C

)
SW

(
qNE (Ek−1),C

)
=

∑k−1
i=1 (α1 − ci)

2

β1
−

2k + 1
2

(∑k−1
i=1 (α1 − ci)

)2

k2β1
.

Thus, the difference between SW
(
qNE (Ek), C

)
and SW

(
qNE (Ek−1), C

)
is given by

SW
(
qNE (Ek), C

)
− SW

(
qNE (Ek−1), C

)
=
(α1 − ck)

2

β1
+

2k + 1
2

(∑k−1
i=1 (α1 − ci)

)2

k2β1

−
2k + 3

2

(∑k
i=1(α1 − ci)

)2

(k + 1)2β1
.

An algebraic calculation reveals that SW
(
qNE (Ek), C

)
> SW

(
qNE (Ek−1), C

)
if and

only if

α1 − ck∑k−1
i=1 (α1 − ci)

<
1
k
, or

α1 − ck∑k−1
i=1 (α1 − ci)

>
k + 2 + 1

2k

k2 + k − 1
2
.

Recall that SW
(
qNE (Ek), C

)
> SW

(
qNE (Ek−1), C

)
implies that inequality (A.31) is

satisfied. It follows that SW
(
qNE (Ek), C

)
> SW

(
qNE (Ek−1), C

)
implies inequality

(A.9) is satisfied.

Proof of Lemma A.10
We prove this lemma by induction in k.

Base Step: For k = k∗ + 1, inequality (A.10) is satisfied by the assumption of this
lemma.

Induction Step: Assume that inequality (A.10) is satisfied for k ≥ 1. We show that
it is satisfied for k + 1 by showing that

α1 − ck+1 ≤
1

k + 1

(
1 +

1
k + 1 − 1

2(k+2)

) (
k∑

i=1
(α1 − ci)

)
. (A.34)

Since ck+1 ≥ ck , inequality (A.34) is satisfied if the following inequality holds

(k + 1)(α1 − ck) ≤

(
1 +

1
k + 1 − 1

2(k+2)

) (
k∑

i=1
(α1 − ci)

)
. (A.35)
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An algebraic calculation reveals that inequality (A.35) is satisfied if and only if

k3 + 3k2 + 1
2 k − 2

k2 + 3k + 3
2
(α1 − ck) ≤

k2 + 4k + 7
2

k2 + 3k + 3
2

(
k−1∑
i=1
(α1 − ci)

)
.

Given that k ≥ 1, the above inequality is satisfied if and only if

α1 − ck ≤
k2 + 4k + 7

2

k3 + 3k2 + 1
2 k − 2

(
k−1∑
i=1
(α1 − ci)

)
. (A.36)

The induction hypothesis implies that inequality (A.10) is satisfied for k. Given that
ci ≤ α1 for i = 1, . . . , n, we have that inequality (A.36) is satisfied if

1
k

(
1 +

1
k − 1

2(k+1)

)
≤

k2 + 4k + 7
2

k3 + 3k2 + 1
2 k − 2

. (A.37)

Given that k ≥ 1, inequality (A.37) holds if and only if(
k2 + 2k +

1
2

) (
k3 + 3k2 +

1
2

k − 2
)

≤ k
(
k2 + k −

1
2

) (
k2 + 4k +

7
2

)
.

And the above inequality holds if and only if (k+1)2 ≥ 0. Thus, (A.37) is satisfied if
k ≥ 1. This further implies that inequalities (A.34)-(A.36) are all satisfied. Hence,
inequality (A.10) also holds for k + 1. This completes the proof by induction.

Proof of Lemma A.11
Let nk = |F1(Ek)|. For the ease of exposition, we assume that the set F1(Ek) is given
by

F1(Ek) = {1, 2, . . . , nk − 1, gk}.

However, it is straightforward to generalize the proof to the case in which F1(Ek) is
any subset of {1, 2, . . . , gk} satisfying nk = |F1(Ek)| and max F1(Ek) = gk .

The remainder proof proceeds in two parts. In Part 1, we provide a closed-form
expression for SW

(
qNE (Ek,Cθ),Cθ

)
, and show that it is piecewise quadratic in θ.

In Part 2, the assumption stated in this lemma implies that SW
(
qNE (Ek,Cθ),Cθ

)
is

strictly decreasing in θ for cmin ≤ θ ≤ cgk .

Part 1: We first show that when θ = cgk , we have that qNE
i1 (E,C

θ) > 0 for all
i ∈ F1(Ek). First recall that

SW
(
qNE (Ek,C), C

)
> SW(qNE (Ẽk,C), C).
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It follows that qNE
gk1(Ek,C) > 0. If this is not the case, then Nash equilibrium remains

unchanged after the removal of producer gk . This implies that SW
(
qNE (Ek,C), C

)
=

SW(qNE (Ẽk,C), C), which is a contradiction. Recall that ci ≤ cgk for all i ∈ F1(Ek).
In combination with the fact that qNE

gk1(Ek,C) > 0, this implies that qNE
i1 (E,C

θ) > 0
for all i ∈ F1(Ek).

Assume that when θ = cmin, the vector qNE (Ek,Cθ) includes nmin strictly positive
entries. Since |Ek | = nk , we must have that nmin ≤ nk . We define a collection of
subsets Θnmin, . . . ,Θnk of the set [cmin, cgk ] according to

Θ` =

[
α1 +

`−2∑
r=1
(α1 − cr) − `(α1 − c`−1),

α1 +

`−1∑
r=1
(α1 − cr) − (` + 1)(α1 − c`)

) ⋂ [
cmin, cgk

]
,

for ` = nmin, . . . , nk − 1, and

Θnk =
[
cmin, cgk

]
\

nk−1⋃
`=nmin

Θ` .

One can check that for any θ ∈ int(Θ`), ` ∈ {nmin, . . . , nk}, we have

qNE
i1 (Ek,Cθ) > 0, for i = 1, . . . , ` − 1, and i = gk .

That is, the vector qNE (Ek,Cθ) contains ` strictly positive entries. Additionally,
given that the vector qNE (Ek,Cθ) includes nmin strictly positive entries when θ =
cmin, we can show that

nk⋃
`=nmin

Θ` =
[
cmin, cgk

]
, and Θ`1

⋂
Θ`2 = ∅

for any `1, `2 ∈ {nmin, . . . , nk} satisfying `1 , `2.1

If follows from similar arguments2 that SW
(
qNE (Ek,Cθ),Cθ

)
admits the following

closed-form expression

SW
(
qNE (Ek,Cθ),Cθ

)
=
(α1 − θ)

2 +
∑`−1

r=1(α1 − cr)
2

β1

−
2` + 3

2

(
α1 − θ +

∑`−1
r=1(α1 − cr)

)2

(` + 1)2β1
, for θ ∈ Θ` .

1The collection of sets {Θnmin, . . . ,Θnk } might not be a partition of [cmin, cgk ], as some of these
sets can be empty.

2as in the proof of Lemma A.9
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We remark that SW
(
qNE (Ek,Cθ),Cθ

)
is a piecewise quadratic function of θ that

is continuous in θ for θ ∈ [cmin, cgk ], and continuously differentiable in θ for θ ∈
int(Θ`), ` ∈ {nmin, . . . , nk}.

Part 2: We show that SW
(
qNE (Ek,Cθ),Cθ

)
is strictly monotonically decreasing in

θ for θ ∈ [cmin, cgk ]. First recall that the union of the intervalsΘnmin, . . . ,Θnk satisfies
nk⋃

`=nmin

Θ` =
[
cmin, cgk

]
.

Additionally, SW
(
qNE (Ek),Cθ

)
is continuous in θ for θ ∈ [cmin, cgk ]. Thus, in order

to show that SW
(
qNE (Ek),Cθ

)
is strictly decreasing in θ on [cmin, cgk ], it suffices to

show that
∂

∂θ
SW

(
qNE (Ek),Cθ

)
< 0,

for θ ∈ int(Θ`), ` = nmin, . . . , nk .

For θ ∈ int(Θ`), we have the following closed-formexpression for ∂SW
(
qNE (Ek),Cθ

)
/∂θ:

∂

∂θ
SW

(
qNE (Ek),Cθ

)
=
(2` + 3)

∑`−1
r=1(α1 − cr) − (2`2 + 2` − 1)(α1 − θ)

(` + 1)2β1
.

Thus, for each θ ∈ int(Θ`), ∂SW
(
qNE (Ek),Cθ

)
/∂θ < 0 if the following inequality

is satisfied:

α1 − θ >
2` + 3

2`2 + 2` − 1

`−1∑
r=1
(α1 − cr). (A.38)

We first show that ∂SW
(
qNE (Ek),Cθ

)
/∂θ < 0 for θ ∈ int(Θnk ). Recall that

SW
(
qNE (Ek,C), C

)
> SW(qNE (Ẽk,C), C). It follows from Lemma A.9 that the

following inequality is satisfied

α1 − cgk >
1
nk

(
1 +

1
nk −

1
2(nk+1)

)
nk−1∑
r=1
(α1 − cr). (A.39)

It follows from inequality (A.39) that for each θ ∈ int(Θnk ), we have

α1 − θ >α1 − cgk >
1
nk

(
1 +

1
nk −

1
2(nk+1)

)
nk−1∑
r=1
(α1 − cr)

>
2nk + 3

2n2
k + 2nk − 1

nk−1∑
r=1
(α1 − cr).
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Thus, ∂SW
(
qNE (Ek),Cθ

)
/∂θ < 0 for θ ∈ int(Θnk ).

Next, we show that ∂SW
(
qNE (Ek),Cθ

)
/∂θ < 0 for θ ∈ int(Θ`), ` = nmin, . . . , nk−1.

Recall that c1 ≤ · · · ≤ cnk−1 ≤ cgk < α1. It follows from a combination of Lemma
A.10 and inequality (A.39) that

α1 − c` >
1
`

(
1 +

1
` − 1

2(`+1)

)
`−1∑
r=1
(α1 − cr) (A.40)

for ` = nmin, . . . , nk − 1. Inequality (A.40) implies that

` (α1 − c`) >

(
1 +

1
` − 1

2(`+1)

)
`−1∑
r=1
(α1 − cr)

>

`−1∑
r=1
(α1 − cr)

(A.41)

for ` = nmin, . . . , nk − 1. It follows from inequality (A.41) that the following chain
of inequalities are satisfied for θ ∈ int(Θ`), ` = nmin, . . . , nk − 1:

θ <α1 +

`−1∑
r=1
(α1 − cr) − (` + 1)(α1 − c`)

=c` +
`−1∑
r=1
(α1 − cr) − `(α1 − c`) < c` .

The above inequality, in combination with inequality (A.40), provides the following
lower bound on α1 − θ for θ ∈ int(Θ`):

α1 − θ >α1 − c` >
1
`

(
1 +

1
` − 1

2(`+1)

)
`−1∑
r=1
(α1 − cr)

>
2` + 3

2`2 + 2` − 1

`−1∑
r=1
(α1 − cr).

Thus, ∂SW
(
qNE (Ek),Cθ

)
/∂θ < 0 for θ ∈ int(Θ`), ` = nmin, . . . , nk − 1. This

completes the proof.

Proof. Proof of Theorem 3.19

Example A.12. In the case of symmetric linear costs from the previous section,
recall that consumer surplus can be written:

CSNE
j =

(α j − c1)
2n2

2β j(n + 1)2
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and in this case, the overall penalty with n firms can be written:

p j = θ
(α j − c1)

2n2

2β j(n + 1)2
f (n), 0 ≤ θ ≤ 1

In this scenario, we can again make the (tight) price of anarchy explicit for the case
with search costs where max j α j > c, i.e. when the solution is non-degenerate:

ρ(F × M,C) ≤
(n + 1)2

n2(1 − θ f (n)) + 2n

We can already see in the above example that search costs can bring significant
changes to the price of anarchy bounds we obtain. For example, when θ = 0, then
we obtain the original bound for open access with symmetric costs firms, suggesting
that the larger n is, the better the bound. On the other hand, when θ = 1, as n grows
large, θ f (n) → 1, and our price of anarchy bound becomes linear in n, the number
of firms.

�
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A p p e n d i x B

PROOFS FOR CHAPTER IV

Proof. Proof of Proposition 4.2: The existence of a unique equilibrium follows
an application of Rosen’s theorem for concave games (Rosen, 1965). Assume the
following parameters for the two-node game.

p1(d1) = 1 − d1, p2(d2) = 1 − γd2, c1(q1) = γq2
1, c2(q2) = q2

2,

with an infinite transmission capacity on the link between nodes 1 and 2, and with
γ > 0.

We denote the reallocation quantity chosen by the platform to be r = r1 = −r2, and
it is obvious the following stationarity conditions hold at optimal supply profile:

q∗1(1 + 2γ) + r∗ = 1, q∗2(2 + γ) − γr∗ = 1, q∗1 − γq∗2 + (1 + γ)r
∗ = 0,

which follows from maximizing social welfare Π with respect to q1, q2, r together.
We show that

q∗1 + r∗ =
1 − r∗

1 + 2γ
+ r∗ =

1 + 2γr∗

1 + 2γ
, q∗2 − r∗ =

1 + γr∗

2 + γ
− r∗ =

1 − 2r∗

2 + γ
.

Now, we can also write

r∗ =
2γ2 − 2

6γ + 6γ2 →
1
3
,

and therefore, we have that the demand at both markets are non-negative. The social
welfare obtained at the solution corresponding to the above set of equations can be
written:

Π(q∗1, q
∗
2, r
∗) =

γ + 1
6γ

.

On the other hand, stationarity conditions for an equilibrium are the following:

qC
1 (2 + 2γ) + rC = 1, qC

2 (2 + 2γ) − γrC = 1, qC
1 − γqC

2 + (1 + γ)r
C = 0,

which corresponds to a unique solution (qC, rC), which has the following social
welfare:

Π(qC, rC) =
5(2γ3 + 7γ2 + 7γ + 2)

8(γ2 + 4γ + 1)2
.
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Once again, we can show that

qC
1 +rC =

1 − rC

2 + 2γ
+rC =

1 + (1 + 2γ)rC

2 + γ
, qC

2 −rC =
1 + γrC

2 + 2γ
−rC =

1 − (2 + γ)rC

2 + 2γ
.

Similarly, we can show
rC =

γ − 1
1 + 3γ + γ2 ,

and it is easy to observe that the demand at both markets are non-negative. Further,
it becomes trivial to note that the following limit holds:

lim
γ→∞

Π(q∗, r∗)
Π(qC, rC)

= ∞,

which shows that the two-node Cournot game can be unboundedly inefficient.

*Since this example is one where the price intercepts are homogeneous, and where
there are no network constraints, then the platform is essentially identical irregardless
of the objective function between consumer surplus and social welfare. This is
because while the stationarity conditions for the social welfare case is

α j − β j = αm − βmdm,

and the stationarity conditions for other market clearing mechanisms are

α j − kβ j d j = αm − kβmdm,

for some value k ∈ R. However, if α j = αm, then the conditions are essentially the
same. This means that the same example with a different platform market clearing
mechanism would still result in an infinitely large worst case efficiency loss. �

Proof. Proof of Theorem 4.1 We prove Theorem 4.1 in three steps. Our first
step proves that the networked Stackelberg game is equivalent to a single market
Cournotmarket with linear inverse demand. The results on uniqueness and existence
of equilibrium, and efficiency loss is then an application of Theorem 4.3. Next, we
show the “almost necessary" nature of this result. In particular, we provide proofs
that indeed no equilibrium exists in the G([1, 1]T, [1, 1]T, [2q2, q2]T, f ) illustrative
game. Next, we show proof of the construction exhibiting multiple equilibrium and
efficiency loss growing in the number of nodes (and its generalization).

Consider now the following networked Stackelberg game where markets have ho-
mogeneous price intercepts:

p j(d j) = α − β j d j,
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i.e., α j = αk , for all markets j, k (homogeneous price intercepts). We claim this
networked Stackelberg game is equivalent to a Cournot game with one market and
linear inverse demand, parameterized by:

p(d) = α −
1∑
j

1
βj

d,

where β j is defined from the set of markets in the networked Stackelberg game.
We first show these two games are identical in the sense that, given a fixed aggre-
gate production q, the resulting prices obtained through the following optimization
problem:

max
d1,...,dm

m∑
j=1

∫ dj

0
α − β j x dx −

n∑
i=1

ci(si) (B.1)

s.t.
m∑

j=1
d j = q (B.2)

is the same as the price obtained at the single market with quantity q, i.e., p = 1∑
j

1
βj

q.

By stationarity conditions, we find that

α − β j d j = α − βk dk ⇐⇒ β j d j = βk dk .

For all markets j, aggregate demand q is allocated to markets j in the following
manner

d j(q) =
1
βj∑
k

1
βk

q ⇐⇒ p j(q) = α − β j d j(q) = α −
1∑
k

1
βk

q,

which is equivalent to price p at the single market system. Since the prices faced
at all aggregate demand are exactly the same, then the two games are essentially
equivalent. Invoking Theorem 4.3, we obtain the existence and uniqueness of
equilibria, and the corresponding 3/2 worst case efficiency loss.

To prove Proposition 4.4, one can use a similar argument as above to show the equiv-
alence of a set of markets {αk − βk dk}

n
k=1 with α1 ≥ α2 ≥ · · · ≥ αn is equivalent to

a piecewise linear (convex) inverse demand function that links the following points:
(0, α1), (

α1−α2
β∗1

, α2), (
α1−α2
β∗1
+

α2−α3
β∗2

, α3), . . . , (
∑k−1

j=1
αj−αj+1

β∗j
, αk), . . . , ((

∑n−1
j=1

αj−αj+1
β∗j+

αn
β∗n

, 0),

where β∗j is the harmonic mean of all prior β j including itself, i.e.,

β∗k =
1∑k

j=1
1
βj

.
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Essentially, the platform allocate starting from markets with largest willingness to
pay and access new markets as the current price matches the maximal willingness
to pay of these incoming markets. Once a new market is added, prices are constant
between all active markets, resulting in the modified price elasticity.

Next, we show that the two examples (and their generalization) we present are
indeed as claimed. The following examples are (i) the generalization of the game
with multiple equilibria and efficiency loss growing linearly in the number of nodes,
and (ii) the example with no equilibria.

Example B.1. The following example is a generalization of the two node illustrative
game G([1, 1

1+λ ]
T, [1, λ2

1−λ2 ]
T, [0, (1 + ε)q]T,∞) and has multiple equilibria and has

unbounded worst case efficiency loss. We consider n nodes in a fully connected
graph without constraints. There is a costless firm on node 1, and every other node
has a firm with linear cost with marginal cost larger than 1, the largest willingness
to pay. Optimally, the costless firm will produce to fulfill all the demand from the
consumers. We design market parameters such that the area under each trapezoid
is fixed. Recall that the since the producer has zero cost, then the social welfare
is just the area under the inverse demand curve. As such, the increase of optimal
social welfare as we add nodes becomes clear.

At any Stackelberg equilibrium, only the costless producerwill produce. Themarkets
are designed such that there will be an additional Stackelberg equilibrium including
the additional market, but the additional markets never affect its profit. Therefore,
the worst case is when it chooses to participate only in the first market. As such, the
worst case social welfare at a Stackelberg equilibrium remains the same as we add
nodes.

Fix λ ∈ (0, 1/2). We design the markets such that the aggregate (convex, piecewise
linear) demand curve is as follows:

p(d) = max
0≤k<m

(λk − λ2k d)

One can show that this is convex and piecewise linear, combining the points
(0, 1),

(
1

1+λ,
λ

1+λ

)
, . . . ,

(
1

λm−1 , 0
)
.1 The maximal profit along each piecewise lin-

ear component is 1/4 and at the first segment, the corresponding social welfare is
3/8. On the other hand, the optimal social welfare is the area under the function

1Note that these set of markets can be also described by their price intercept and their price
elasticity. In particular, the price intercept of the j-th market is λ j−1

1+λ and the price elasticity is λ2( j−1)

1−λ2 .
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p(d). Each trapezoid has an area of 1−λ
1+λ , and it is obvious that the worst case

multiplicative efficiency loss is Ω(m).

�

Example B.2. Consider the two-node network with a finite line capacity, and de-
mand and cost functions at nodes k = 1, 2 are given by

p1(d1) = 1 − d1, p2(d2) = 1 − d2, ck(qk) = ck q2
k,

and assume without loss that c1 > c2 > 0 and m > 1. Together, for these set of
parameters, we find that no equilibrium exists if the flow constraint f satisfies the
following bound:

1
4

(
(c1+1)−(c2+1)
(c1+1)(c2+1)

)
1 − 1

4

(
1

c1+1 +
1

c2+1

) < f <
4c1 − 4c2

16c1c2 + 8c1 + 8c2 + 3
,

Proof. Proof of bounds in Example B.2 Since we assume c1 > c2 > 0, then the
second producer always produces more and the platform allocates from node 2 to
node 1. Now, the profit of each firm then can be written as the following:

Π1(q1, q2) =


q1(1 − q1+q2

2 ) − c1q2
1, if

q2−q1
2 < f

q1(1 − q1 − f ) − c1q2
1, otherwise

Π2(q2, q1) =


q2(1 − q1+q2

2 ) − c2q2
2, if

q2−q1
2 < f

q2(1 − q2 + f ) − c2q2
2, otherwise

From the profit functions of the firms, we can then look at the stationarity conditions,
given the different cases.

∂Π1
∂q1
=


1 − 2q1+q2

2 − 2c1q1, if q2−q1
2 < f

1 − 2q1 − f − 2c1q1, otherwise

∂Π2
∂q2
=


1 − q1+2q2

2 − 2c2q2, if q2−q1
2 < f

1 − 2q2 + f − 2c2q,2 otherwise

In this example, a Stackelberg equilibrium exists if ∂Π1
∂q1
=

∂Π2
∂q2
= 0 and either

q2−q1
2 < f (case 1) or q2−q1

2 > f (case 2), or ∂Π1
∂q1
≤ 0, ∂Π2

∂q2
≤ 0 and q2−q1

2 = f (case
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3). We first examine the first case, where q2−q1
2 < f , i.e., the flow constraints allow

for the desired movement of the platform.

Under the first scenario, from the stationary conditions, we have that productions
are related by

(4c1 + 1)q1 = (4c2 + 1)q2,

and that the sum of productions can be written in the following two manner:

q1 + q2 = (1 +
4c1 + 1
4c2 + 1

)q1 = (1 +
4c2 + 1
4c1 + 1

)q2

From the stationarity conditions, we can find the production values can be written:

q1 =
2(4c2 + 1)

(4c2 + 1) + (4c2 + 1) + (4c1 + 1)(4c2 + 1)
, q2 =

2(4c1 + 1)
(4c2 + 1) + (4c2 + 1) + (4c1 + 1)(4c2 + 1)

,

so no equilibrium of this case can exist if we have the following equation to hold:

4c1 − 4c2
(4c2 + 1) + (4c2 + 1) + (4c1 + 1)(4c2 + 1)

> f

Under the second scenario, from stationarity conditions, we have that

q1 =
1 − f

2 + 2c1
, q2 =

1 + f
2 + 2c2

,

and therefore no such equilibrium exists if the following constraints on f hold:

f >
c1 − c2

4(1 + c1)(1 + c2) − (2 + c1 + c2)

We get our final result by combining the two results. *For the interested reader,
one can obtain similar bounds for other objectives that are a convex combination of
social welfare and revenue. In particular, there are examples with no equilibria as
well for these platform objectives. �

Proof. Proof of Theorem 4.5

Theorem 4.5 is proved in three steps. The first two steps focuses on the case without
network constraints, proving first that the efficiency loss is indeed 3/2 and that there
are conditions under which demand management remains a threat but is not needed
at equilibrium. Essentially, the first step again follows the spirit of the proofs from
before for efficiency loss—that under these conditions, the game is equivalent to a
single market Cournot game with a linear inverse demand. The third step is longer,
where we show that when network conditions bind, we can essentially form sets of
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smaller networks that each have efficiency loss bounded by 3/2. The process of
forming these sets of smaller networks come at a cost, which is exactly the second
term in the efficiency loss value.

Having demand management implies that we drop the q j + r j ≥ 0 constraint.
Similar to before, we can show that without network constraints, prices at markets
are equivalent, i.e.,

α j − β j d j = αk − βk dk,

where d′j s may be negative. Again, one can show that this is equivalent to a single-
market Cournot competition with the following price function (where without loss
we assume α1 = max j α j).

p(d) =

(
α1 −

∑
j

α1 − α j

β j

)
−

1∑
j

1
βj

d

Similar to before, we can show that these are equivalent, resulting in a single market,
and applying (Ramesh Johari and John N Tsitsiklis, 2004) yields a 3/2 worst case
bound. Now we find conditions under which demand response remains a threat but
is not activated at equilibrium. In particular, without loss, let αm = min j α j , then
we require: (

α1 −
∑

j

α1 − α j

β j

)
−

1∑
j

1
βj

d < αm

Equivalently, we have
d >

1∑
j

1
βj

∑
j

α j − αm

β j
.

Now we consider the case with network constraints. Assume there exists an equi-
librium to the networked Stackelberg game. Let qNE be the production at each
location, and f S

i, j the flow at equilibrium between nodes i and j at the Stackelberg
equilibrium. We prove the case for one constrained edge but the proof generalizes
to multiple edges in a straightforward manner. Let the constrained edge be { j1, j2}

where the constraint lies in the direction from node j1 to node j2. Assume there
are no other paths (unconstrained) from j2 to j2, otherwise either there exists an
equilibrium that does not bind constraints, or this cannot be an equilibrium.

We now make cuts on the graph to consider smaller graphs with particular kinds
of constrained edges. Our aim is to get graphs of smaller size and with specific
type of constraints and only on lines that are incident on one "leaf" node. These
"leaf" nodes will either have a market fully fulfilled or a production fully utilized at
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both equilibrium and the optimal solution. Under these settings, we can then easily
compare the smaller graphs and obtain the 3/2 loss easily in each.

We replace nodes j1, j2 by j∗1, j∗2 in each subgraph, such that j1 originally is now
linked to j∗2 and j∗1 is now linked to j2. The original graph with m nodes is now
two graphs with a total of m + 2 nodes. The replacement outgoing node now has a
costless producer and no co-located market. The replacement incoming node now
has a market with price at the equilibrium µ j1 and no producer (or an infinitely
costly one).

We prove the following lemma, essentially summarizing the impact of these cuts
and replacements of nodes on the equilibrium and optimal quantity profile.

Lemma B.3. With cuts and replacement nodes described above, the following
statements are true.

1. SWnew(qS, rS) = SW(qS, rS) + µ j1 f S
j1, j2

2. SWnew(q∗, r∗) ≥ SW(q∗, r∗)

3. SWnew(q∗, r∗) ≤ 3
2 SWnew(qS, rS)

Proof. Proof of Lemma B.3: We first prove statement 1. By KKT conditions, the
quantity profile is exactly the same in the two games. The difference in social welfare
between the new and old cases is the revenue passing through that line.

The second statement follows since we have decreased cost and kept everything else
essentially the same. In particular, the optimal profile should also be an optimal
profile under the new set-up.

Lastly, one can show that these are “almost equivalent" to the game with no con-
straints, since both the optimal and equilibria cases use up the flow constraints that
the equilibrium profile uses. For example, in the case with the zero cost consumer,
then the game is similar to an unconstrained case but with the convex cost piece-
wise defined to be zero below constraint and linear with parameter greater than the
willingness to pay in any market. For the constrained demand that is fulfilled by
both optimal and Nash, then we end up with a concave piecewise linear inverse
demand, except that the Nash is at the edge of concavity, while the social optimal
may produce more potentially. However, even when no such concavity exists, the
efficiency loss is 3/2, so the decreased prices cannot help optimal social welfare.

�
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With the above lemma in place, we are now ready to prove the main part of Theorem
4.5. In particular.

SW(q∗, r∗) ≤ SWnew(q∗, r∗)

≤
3
2

SWnew(qS, rS)

≤
3
2

SW(qS, rS) +
∑

( j1, j2)∈I
µ j1 f S

j1, j2





136

A p p e n d i x C

PROOFS FOR CHAPTER V

Proof of Proposition 5.1

Proof. We prove this theorem by investigating the KKT conditions of problem
OOIC and exploring the structure of the optimal solution.

The Lagrangian for problem OOIC is defined as

L(v, λ, µ) =
T∑

t=1
gt(vt) + λ(∆ −

T∑
t=1

vt) +

T∑
t=1

vtµ(t), (C.1)

where λ ≥ 0 and µ(t) ≥ 0, ∀t ∈ [T] are the Lagrangian multipliers. The following
KKT conditions give us sufficient and necessary conditions for optimality:

g′t(vt) − λ + µ(t) = 0 ∀t ∈ [T], (C.2)

T∑
t=1

vt ≤ ∆, (C.3)

vt ≥ 0 ∀t ∈ [T], (C.4)

µ(t) ≥ 0 ∀t ∈ [T], (C.5)

λ ≥ 0, (C.6)

vtµ(t) = 0 ∀t ∈ [T], (C.7)

λ(

T∑
t=1

vt − ∆) = 0. (C.8)

Suppose v∗, µ∗ and λ∗ are the optimal solutions that satisfy the KKT conditions.
Denote the set T0 = {t |v∗(t) > 0, ∀t ∈ [T]}, then according to the KKT conditions,
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we have

µ∗(t) = 0, ∀t ∈ T0, (C.9)

λ∗(
∑
t∈T0

v∗(t) − ∆) = 0, (C.10)

g′t(v
∗(t)) − λ∗ = 0, ∀t ∈ T0, (C.11)

Since g′t is concave, g′t(v∗(t)) is non-increasing in vt . According to (C.11) we have

g′t(0) ≥ g′t(v
∗(t)) = λ∗, ∀t ∈ T0, (C.12)

namely,
g′t(0) ≥ λ∗ ∀t ∈ T0. (C.13)

Thus given a λ∗, we can use (C.13) to determine the set T0.

For ease of presentation, we denote

Vt(λ) = {v |g
′
t(v) = λ, v ∈ [0,∆]}.

Now consider the following two cases:

(1) ∆ ≥ maxvt∈Vt (0)
∑T

t=1 vt . In this case, observe that the solution

v∗(t) ∈ Vt(0), ∀t ∈ [T],

λ∗ = 0,

µ∗(t) = 0, ∀t ∈ [T],

satisfies the KKT conditions, thus it is the optimal solution.

(2) ∆ < maxvt∈Vt (0)
∑T

t=1 vt . In this case, we must have λ∗ > 0. According to (C.10)
and (C.11), we have

v∗(t) ∈ Vt(λ
∗) (C.14)

T∑
t=1

v∗(t) = ∆ (C.15)

It is straightforward to check that vt, ∀t ∈ T0 is non-increasing w.r.t. λ. Meanwhile,
according to (C.13), we know that the size of setT0 is non-increasingw.r.t. λ. Putting
together these two observations, we conclude that

∑
t∈T0 vt is non-increasing w.r.t. λ.

Thus given ∆ > 0, there exists a unique λ = λ∗ that satisfies
∑

t∈T0 v
∗(t) = ∆. Since

KKT conditions are sufficient and necessary for optimality of convex problem, we
can conclude that λ∗ is the optimal dual solution. �
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Proof of Lemma 5.6

Proof of Lemma 5.6. We prove this lemma in the following two steps:

Step I, we prove that OPT(σ[1:t]) − OPT(σ[1:t−1]) ≥ gt(v
∗
t ) − λtv

∗
t . To see this,

we denote optimal solution at time τ ∈ [t] under input σ[1:t]
1 as v∗τ . Note that

v∗τ ∈ Vτ(λt), τ ∈ [t] or v∗τ = 0 if Vτ(λt) = ∅. Similarly, denote optimal solution at
time τ ∈ [t − 1] under input σ[1:t−1]

1 as v̄τ . Note that v̄τ ∈ Vτ(λt−1), τ ∈ [t − 1] or
v̄τ = 0 if Vτ(λt−1) = ∅. Also v∗τ ≤ v̄τ, τ ∈ [t − 1] (by the non-increasing of g′t(v) and
λt ≥ λt−1). Then we have

OPT(σ[1:t]) −OPT(σ[1:t−1])

=

t∑
τ=1

gτ(v
∗
τ) −

t−1∑
τ=1

gτ(v̄τ)

= gt(v
∗
t ) +

t−1∑
τ=1
(gτ(v

∗
τ) − gτ(v̄τ))

(a)
≥ gt(v

∗
t ) +

t−1∑
τ=1

λt(v
∗
τ − v̄τ)

(b)
≥ gt(v

∗
t ) − λtv

∗
t

For (a), it comes from the concavity of gτ(v) and v∗τ ≤ v̄τ, τ ∈ [t − 1]. For (b), we
claim that

∑t−1
τ=1 v̄τ ≤

∑t
τ=1 v

∗
τ . To see this, when λt = 0, we must have λt−1 = 0. In

this case, v∗τ = v̄τ, ∀τ ∈ [t − 1] and thus we have
∑t−1
τ=1 v̄τ ≤

∑t
τ=1 v

∗
τ . When λt > 0,

from the KKT conditions in (C.10), we have
∑t
τ=1 v

∗
τ = ∆ ≥

∑t−1
τ=1 v̄τ. Then we

conclude that
∑t−1
τ=1 v̄τ ≤

∑t
τ=1 v

∗
τ and consequently, we have

∑t−1
τ=1(v

∗
τ − v̄τ) ≥ −v

∗
t .

Step II, we prove that OPT(σ[1:t]) −OPT(σ[1:t−1]) ≤ gt(v
∗
t ) − λt−1v

∗
t . Similarly, we

have

OPT(σ[1:t]) −OPT(σ[1:t−1])

= gt(v
∗
t ) +

t−1∑
τ=1
(gτ(v

∗
τ) − gτ(v̄τ))

(a)
≤ gt(v

∗
t ) +

t−1∑
τ=1

λt−1(v
∗
τ − v̄τ)

(b)
= gt(v

∗
t ) − λt−1v

∗
t

For (a), it is by the concavity of gτ: gτ(v∗τ) ≤ gτ(v̄τ) + λτ−1(v
∗
τ − v̄τ) (Note that λτ =

g′τ(v̄τ)) and λt−1 ≥ λτ, ∀τ ∈ [t −1]. For (b), when λt−1 = 0, it holds straightly; when
λt−1 > 0, we have

∑t
τ v
∗
τ = ∆ =

∑t−1
τ=1 v̄τ, which implies

∑t−1
τ=1(v

∗
τ − v̄τ) = −v

∗
t �
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Proof of Lemma. 5.8

Proof. Denote the input under σ as gt . Denote the input under σ̄ as ḡt , The optimal
dual variable under σ̃[1:t] (resp. σ̄[1:t] ) as λt (resp. λ̄t). We have,

gt = ḡt, ∀t ≤ τ − 1 ∨ t ≥ τ + 2. (C.16)

Besides, gτ = ḡτ+1, gτ+1 = ḡτ.

1) If λτ ≤ λ̄τ, then

OPT(σ̃[1:τ]) −OPT(σ̃[1:τ−1])

(a)
≥gτ(vτ) − λτvτ

(b)
≥gτ(v̄τ+1) − λτ v̄τ+1

(c)
≥gτ(v̄τ+1) − λ̄τ v̄τ+1

(a)
≥OPT(σ̄[1:τ+1]) −OPT(σ̄[1:τ])

For (a), it is by lemma 5.6. For (b), it is by the concavity of gt and for (c), it by
λτ ≤ λ̄τ.

2) If λτ ≥ λ̄τ, then similarly

OPT(σ̄[1:τ]) −OPT(σ̄[1:τ−1])

(a)
≥gτ+1(v̄τ) − λ̄τ v̄τ

(b)
≥gτ+1(v̄τ) − λτ v̄τ

(c)
≥gτ+1(vτ+1) − λτvτ+1

(a)
≥OPT(σ̃[1:τ+1]) −OPT(σ̃[1:τ])

For (a), it is by lemma 5.6. For (b), it is by λτ ≥ λ̄τ. For (c), it is by the concavity
of gt . Also, with

OPT(σ̄[1:τ]) −OPT(σ̄[1:τ−1]) +OPT(σ̄[1:τ+1]) −OPT(σ̄[1:τ])

=OPT(σ̄[1:τ+1]) −OPT(σ̄[1:τ−1])

=OPT(σ̃[1:τ+1]) −OPT(σ̃[1:τ−1])

=OPT(σ̃[1:τ+1]) −OPT(σ̃[1:τ]) +OPT(σ̃[1:τ]) −OPT(σ̃[1:τ−1]),

we can have

OPT(σ̄[1:τ+1]) −OPT(σ̄[1:τ]) ≤ OPT(σ̃[1:τ]) −OPT(σ̃[1:τ−1]) (C.17)

�



140

Proof of Lemma 5.7

Proof of Lemma 5.7. Suppose an arbitrary σ̃ ∈ arg maxσ
∑

t vt , under which g′t(vt)

is not non-decreasing in t. That is, exist a τ, g′τ(vτ) > g′τ+1(vτ+1). Denote the optimal
dual variables under σ̃[1:t] as λt . Note that λt is non-decreasing in t. Without loss
of generality, we assume that λt < λt+1 or λt = λt+1 = 0, ∀t. We construct a new
input sequence σ̄ by interchanging gτ and gτ+1 in σ̃ and denote the input under σ̄
as ḡt , the output of CRP(π∗) under σ̄ as v̄t . The optimal dual variable under σ̄[1:t]

as λ̄t . By definition, we can easily observe that,

OPT(σ̃t) = OPT(σ̄t), ∀t ≤ τ − 1 ∨ t ≥ τ + 1; (C.18)

vt = v̄t, ∀t ≤ τ − 1 ∨ t ≥ τ + 2; (C.19)

gt = ḡt, ∀t ≤ τ − 1 ∨ t ≥ τ + 2. (C.20)

Besides, gτ = ḡτ+1, gτ+1 = ḡτ. We claim that σ̄ ∈ arg maxσ
∑

t vt and ḡ′τ(v̄τ) =

g′τ+1(vτ+1) < g′τ(vτ) = ḡ′τ+1(v̄τ+1). To see this, consider the following two cases:

Case I, λτ = λτ+1 = 0. Under this case, we have OPT(σ̃[1:τ]) − OPT(σ̃[1:τ−1]) =

OPT(σ̄[1:τ+1])−OPT(σ̄[1:τ]) = gτ(v̂τ), where v̂τ = arg maxv gτ(v). Then vτ = v̄τ+1.
Similarly, we have vτ+1 = v̄τ.

∑
t vt =

∑
t v̄t . We conclude that σ̄ ∈ arg maxσ

∑
t vt

and ḡ′τ(v̄τ) = g′τ+1(vτ+1) < g′τ(vτ) = ḡ′τ+1(v̄τ+1).

Case II, 0 ≤ λτ < λτ+1. First, we have

gτ(vτ) + gτ+1(vτ+1) =
OPT(σ̃[τ+1]) −OPT(σ̃[τ−1])

π∗

=
OPT(σ̄[τ+1]) −OPT(σ̄[τ−1])

π∗

= gτ+1(v̄τ) + gτ(v̄τ+1),

which implies

gτ(vτ) − gτ(v̄τ+1) = gτ+1(v̄τ) − gτ+1(vτ+1). (C.21)

Second, we claim that v̄τ+1 ≤ vτ. From Lemma 5.8, we have

OPT(σ̄[1:τ+1]) −OPT(σ̄[1:τ]) ≤ OPT(σ̃[1:τ]) −OPT(σ̃[1:τ−1]).

Then gτ(vτ) ≥ gτ(v̄τ+1) and v̄τ+1 ≤ vτ are straightforward.
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Third, we show gτ(vτ) = gτ(v̄τ+1) and thus v̄τ+1 = vτ by contradiction. Suppose
gτ(vτ) > gτ(v̄τ+1) and thus v̄τ+1 < vτ. we show that

∑
t vt <

∑
t v̄t which contradict

the fact that σ̃ ∈ arg maxσ
∑

t vt . To see this, observe that we have

g′τ+1(vτ+1)(vτ − v̄τ+1)

(a)
< − g′τ(vτ)(v̄τ+1 − vτ)

(b)
≤gτ(vτ) − gτ(v̄τ+1)

=gτ+1(v̄τ) − gτ+1(vτ+1)

(b)
≤g′τ+1(vτ+1)(v̄τ − vτ+1)

For (a), it is by g′τ(vτ) > g′τ+1(vτ+1) ≥ λt+1 > 0 and v̄τ+1 < vτ. For (b), it is from
the concavity of gτ. As g′τ+1(vτ+1) ≥ λτ+1 > 0, we have

vτ + vτ+1 < v̄τ + v̄τ+1 (C.22)

, which leads to
∑

t vt <
∑

t v̄t .

So we conclude that gτ(vτ) = gτ(v̄τ+1) and thus v̄τ+1 = vτ. Consequently, gτ(vτ+1) =

gτ+1(v̄τ) and thus v̄τ = vτ+1. It is then straightforward that

σ̄ ∈ arg max
σ

∑
t

vt ; (C.23)

ḡ′τ(v̄τ) = g′τ+1(vτ+1) < g′τ(vτ) = ḡ′τ+1(v̄τ+1) (C.24)

By continuously interchanging gτ and gτ+1 which fails to satisfy g′τ+1(vτ) ≤ g′τ(vτ+1),
we finally attain a sequence ∈ arg maxσ

∑
t vt such that g′t(vt) is non-decreasing in

t. �

To prove this theorem, we use the following sequence of lemmas. For ease of
presentation, we first define p̃(t) = OPT(σ[1:t])/∆. Here p̃(t) can be interpreted
as the weighted averaged trading price for the offline algorithm when the input
sequence is σ[1:t]. Lemma C.1 limits the amount of inventory required to pursue
the competitive ratio, in terms of the problem-dependent factor c, the competitive
ratio π, the inventory size ∆, and the difference between the subsequent weighted
averaged trading prices of the offline optimal solution. Lemma C.2 seeks to bound
the subsequent differences, which help in the proof of Lemma C.3 that serves as an
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upper bound relying only on θ and not the actual sequence of functions or prices.
According to (5.9) and (5.10), the output of the algorithm CR-Pursuit(π) at slot t is
vt that satisfies

∆(p̃(t) − p̃(t − 1))
π

= gt(vt). (C.25)

We begin with the following lemma, which gives an upper bound on the amount of
inventory the online algorithm consumes at each time step to maintain the offline-
to-online revenue ratio.

Lemma C.1. For any input sequence σ[1:T], we have

vt ≤ c
∆

π

(p̃(t) − p̃(t − 1))
p(t)

,

where p(t) = g′t(0).

We prove Lemma C.1 in the appendix. The main idea of the proof is to show that
the condition on c can lead to the inequality gt(vt) ≤ gt(c∆π

(p̃(t)−p̃(t−1))
p(t) ), and the

result then follows by the fact that gt(v) is concave and increasing in v. Next, we
prove a lemma that allows us to bound the sum over all subsequent optimal average
prices, which then helps us limit the impact of price changes and thereby achieve
the competitive ratio bound.

Lemma C.2. For any input sequence σ[1:T], ∀p ∈ [m, M], we have xp ≤ p, where
xp ,

∑
t, p(t)≤p(p̃(t) − p̃(t − 1)).

To prove Lemma C.2, we first observe that if all the p(t) ∈ σ[1:T] is less that
p, the result is immediate. As for general cases, based on Lemma 5.8, we can
construct new input sequences by moving forward the slots with p(t) ≤ p in σ,
while increasing xp. At last, we can attain an input sequence with larger xp, while
the slots with p(t) ≤ p of it is all at the front and following the first observation, its
xp is bounded by p. Lemma C.2 then allows us to bound a component of the worst
case competitive ratio in the following lemma, eventually used to prove Theorem
5.9.

Lemma C.3. For any input sequence σ[1:T], we have

T∑
t=1

p̃(t) − p̃(t − 1)
p(t)

≤ ln θ + 1, (C.26)

where θ = M/m.
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The idea to proveLemma C.3 is to construct an optimization problem thatmaximizes
the left hand size in (C.26), subjected to the constraint from Lemma C.2 and show
its maximum value is equal to the right hand size in (C.26).

We are now ready to prove the upper bound on Φ∆(π), i.e., the result in Theorem
5.9.

Proof of Theorem 5.9. From Lemma C.1 and C.3, we have

Φ∆(π) = max
σ[1:T ]

T∑
t=1

vt ≤

T∑
t=1

c
∆

π

(p̃(t) − p̃(t − 1))
p(t)

≤ c
∆

π
(ln θ + 1).

By solving c∆π (ln θ + 1) = ∆, we get that π̄ = c(ln θ + 1). Thus by setting π = π̄, we
have Φ∆(π̄) ≤ ∆ and CR-Pursuit(π̄) is π̄-competitive. It then immediately follows
that π̄ is an upper bound for the optimal competitive ratio π∗. �

Recall that since CR-Pursuit is at best (ln θ + 1)-competitive, then the result in
Theorem 5.9 implies that CR-Pursuit achieves the optimal competitive ratio (up to
a problem-dependent factor c) among all deterministic online algorithms.

Proof of Lemma C.1

Proof. First, fromProposition 5.3, we easily conclude that vt ≤ v̂t . So if c∆π
(p̃(t)−p̃(t−1))

p(t) ≥

v̂t, it’s trivial. We now assume that c∆π
(p̃(t)−p̃(t−1))

p(t) ≤ v̂t .As gt(v) is a concave increas-
ing function in [0, v̂t] and thus it’s equivalent to show that gt(vt) ≤ gt(c∆π

(p̃(t)−p̃(t−1))
p(t) ).

For ease of presentation, we denote k = gt(vt) =
∆(p̃(t)−p̃(t−1))

π . Then we have the
following sequence of equivalent (or consequent) statements,

gt(vt) ≤ gt(c∆π
(p̃(t)−p̃(t−1))

p(t) )

⇐⇒ k ≤ gt(
ck
p(t) )

(a)
⇐= k ≤ ck

p(t)v̂t
gt(v̂t)

⇐⇒ c ≥ g′t (0)
gt (v̂t )/v̂t

,

where the last inequality holds by the definition of c. For (a), by the concavity of
gt , gt(0) = 0, and ck

p(t) ≤ v̂t , we have

gt(
ck
p(t)
) = gt(

ck
p(t)v̂t

v̂t + (1 −
ck

p(t)v̂t
)0) ≥

ck
p(t)v̂t

gt(v̂t).

�
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Proof of Lemma C.2

Proof. Denote T1 , min{t : p(τ) > p, ∀τ ≥ t} − 1, i.e., for any t > T1, we have
p(t) > p, or equivalently if p(t) ≤ p, then t ≤ T1. By definition, xp is determined by
σ[1:T1] only. Thus, in this proof, we only focus on the input horizon t ∈ [T1].

First, we consider a special case when p(t) ≤ p, ∀t ∈ [T1]. In this case, we have

xp =
∑

t∈[T1], p(t)≤p

(p̃(t) − p̃(t − 1))

=

T1∑
t=1

p̃(t) − p̃(t − 1)

= p̃(T1)

=
OPT(σ[1:T1])

∆

≤

∑T1
t=1 p(t)v∗t
∆

,

where v∗t , t ∈ [T1] are the solution of the optimal offline algorithm under input
σ[1:T1]. Here, the last inequality follows from the fact that gt(v), ∀t ∈ [T1] are
concave functions and we have

OPT(σ[1:T1]) =

T1∑
t=1

gt(v
∗
t ) ≤

T1∑
t=1
(gt(0) + g′t(0)v∗t ) =

T1∑
t=1

p(t)v∗t .

Further, since
∑T1

t=1 v
∗
t ≤ ∆ and p(t) ≤ p, ∀t ∈ [T1], we have xp ≤

∑T1
t=1 p(t)v∗t
∆

≤ p.

Second, we now consider the general cases. Suppose exist a slot τ(τ ≤ T1) such
that p(τ) > p. The we construct a new input sequence σ̄ by interchange gτ and gτ+1

in σ. Denote the input under σ̄ as ḡt . Let x̄p, p̄(t) be the corresponding variables
under σ̄. To show that xp ≤ p, we first show xp ≤ x̄p. We then prove xp ≤ p as
follows: We continuously interchange with p(τ) > p with the input at its next slot
until all the slots with p(t) ≤ p is at the front of it. At the meantime, xp keeps on
non-decreasing. Finally, we get a σ′, in which the price at each slot in [T ′1] (T

′
1 is

corresponding to T1 but defined under σ′) is less or equal to p, and xp ≤ x′p. Since
in σ′, p ≥ p(t), ∀t, from our analysis in the first part (special case), we have x′p ≤ p.
It then follows that xp ≤ p.

We now prove xp ≤ x̄p. By definition, we can easily observe that,

OPT(σt) = OPT(σ̄t), ∀t ≤ τ − 1 ∨ t ≥ τ + 1; (C.27)
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gt = ḡt, ∀t ≤ τ − 1 ∨ t ≥ τ + 2. (C.28)

Besides, gτ = ḡτ+1, gτ+1 = ḡτ.

1)if p(τ + 1) > p, it is easy to see that x̄p = xp.

2)if p(τ + 1) ≤ p, we have

xp − x̄p =p̃(τ + 1) − p̃(τ) − (p̄(τ) − p̄(τ − 1))

=
OPT(σ[1:τ+1]) −OPT(σ[1:τ])

∆

−
OPT(σ̄[1:τ]) −OPT(σ̄[1:τ−1])

∆
(a)
≤0

(a) is by lemma. 5.8.

�

Proof of Lemma C.3

Proof. Suppose in σ[1:T], p(t) takes n different values, which are denoted as m ≤

p1 ≤ p2 ≤ · · · · · · ≤ pn ≤ M . And define yi ,
∑

t, p(t)=pi (p̃(t) − p̃(t − 1)). Note that
we have

T∑
t=1

p̃(t) − p̃(t − 1)
p(t)

=

n∑
i=1

yi

pi
. (C.29)

From Lemma C.2, we have
∑i

j=1 y j = xpi ≤ pi.

Consider the following optimization problem:

max
n∑

i=1

yi

pi

s.t.
i∑

j=1
y j ≤ pi, i ∈ [n]

yi ≥ 0, i ∈ [n].

The KKT conditions are sufficient and necessary conditions for optimality for the
above convex problem. Denote µi ≥ 0, i ∈ [n] as the dual variables, then the KKT
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conditions can be expressed as:

1
pi
−

n+1−i∑
j=1

µi = 0, ∀i ∈ [n], (C.30)

µi(pi −

i∑
j=1

y j) = 0, ∀i ∈ [n], (C.31)

µi ≥ 0, ∀i ∈ [n],

yi ≥ 0, ∀i ∈ [n].

From (C.30), we know that µi > 0 for all i ∈ [n]. Thus from (C.31), we have

pi −

i∑
j=1

y j = 0, ∀i ∈ [n]. (C.32)

Thus we know the optimal primal solution is

yi = pi − pi−1, ∀i ∈ [n], (C.33)

where p0 = 0. And the optimal objective value equals to
∑n

i=1
pi−pi−1

pi
.

So
T∑

t=1

p̃(t) − p̃(t − 1)
p(t)

=

n∑
i=1

yi

pi

≤

n∑
i=1

pi − pi−1
pi

=
p1
p1
+

n∑
i=2

pi − pi−1
pi

≤ 1 +
∫ pn

p1

1
x

dx

≤ 1 + ln θ.

This completes our proof. �

Proof of Lemma 5.10

Proof. We show that any input σ[1:T] is equivalent to an increasing price sequence
as the following:

m ≤ p1 < p2 < · · · < pn ≤ M, (C.34)

where n ≤ T . According to (5.12), CRP(π) will sell only when the current price is
larger than the highest price in history. Thus for any input σ[1:T], we can delete the
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slots when CRP(π) does not sell, and the outputs of CRP(π) is then equivalent to
the resulting increasing price sequence. �

Proof of Theorem 5.12

Proof. Consider an arbitrary deterministic online algorithmdifferent fromCRP(π∗),
denoted asA. Using an adversary argument we show thatA cannot achieve a ratio
smaller than π∗.

For A and CRP(π∗), denote the output at time t as vA(t) and vt , respectively. For
ease of presentation, denote

σ̃[1:T] = {p̃(1), p̃(2), ..., p̃(T)}

as the worst case input for CRP(π∗), i.e., under this input, we have
∑T
τ=1 v(τ) =

Φ∆(π
∗) = ∆. According to Lemma 5.10, we must have m ≤ p̃(1) < p̃(2) < · · · <

p̃(T) ≤ M .

We present p̃(1) toA at the first slot. If vA(1) ≤ v(1), thenwe end the trading period,
i.e., T = 1. In this case, we have p̃(1)vA(1) ≤ p̃(1)v(1) = OPT(σ̃[1:1])/π∗, thus the
competitive ratio of A is at least π∗. Otherwise, if vA(1) > v(1), we continue to
present p̃(2) toA. In general, if at time t the total amount of inventoryA consumed
is no larger than

∑t
τ=1 v(τ), we immediately end the trading period. Otherwise, we

continue and presentA with the next input. Let t′ be the minimum t such that at the
end of time t, the total amount of inventoryA consumed is less than

∑t
τ=1 v(τ). We

note that t′ must exist, otherwise we have at time T ,
∑T
τ=1 vA(τ) >

∑T
τ=1 v(τ) = c is

a contradiction. Then we have

vA(1) > v(1)
2∑
τ=1

vA(τ) >

2∑
τ=1

v(τ)

· · ·

t ′−1∑
τ=1

vA(τ) >

t ′−1∑
τ=1

v(τ)

and by the definition of t′, we have

t ′∑
τ=1

vA(τ) ≤

t ′∑
τ=1

v(τ). (C.35)
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Since p̃(τ) are increasing in τ, A would have achieved a larger revenue by selling
exactly v(τ) for any τ ∈ [t′ − 1] and by selling v∗

A
(t′) = vA(t′) +

∑t ′−1
τ=1 vA(τ) −∑t ′−1

τ=1 v(τ) at time t′. Namely, we have

ηt ′
A ≤

t ′−1∑
τ=1

p̃(τ)v(τ) + p̃(t′)v∗A(t
′), (C.36)

where ηt ′
A

is the revenue of A up to time t′. However, from (C.35), we know
v∗
A
(t′) ≤ v(t′) and thus we have

ηt ′
A ≤

t ′∑
τ=1

p̃(τ)v(τ) = OPT(σ̃[1:t ′])/π∗. (C.37)

Thus the competitive ratio of A should at least be π∗.

It follows thatA must coincide with CRP(π∗), achieving a ratio of π∗, or otherwise
A incurs a higher ratio on σ̃[1:T]. �

Proof of Lemma C.4

Proof. First, by Proposition 5.3, we know that vt ≤ v̂t , where v̂t as the optimizer
of gt(vt). So if c∆π

(p̃(t)−p̃(t−1))
p(t) ≥ v̂t, it’s trivial. We now assume c∆π

(p̃(t)−p̃(t−1))
p(t) ≤ v̂t .

As gt(v) is a concave function, gt(v) is increasing in [0, v̂t] and thus it’s equivalent
to show that gt(vt) ≤ gt(c∆π

(p̃(t)−p̃(t−1))
p(t) ). To simplify the explanation, let k =

gt(vt) =
∆(p̃(t)−p̃(t−1))

π . By simple calculation, it’s equivalent to show the following
inequalities:

gt(vt) ≤ gt(
2∆

π(1+
√

1− 1
π )

(p̃(t)−p̃(t−1))
p(t) )

⇐⇒ k ≤ (p(t) − ft( 2k

(1+
√

1− 1
π )p(t)
)) 2k

(1+
√

1− 1
π )p(t)

⇐⇒ ft( 2k

(1+
√

1− 1
π )p(t)
) ≤

1−
√

1− 1
π

2 p(t)

(a)
⇐= ft(v̂t)

2k

(1+
√

1− 1
π )p(t)

1
v̂t
≤

1−
√

1− 1
π

2 p(t)

(b)
⇐= ft(v̂t)

2
π(1+

√
1− 1

π )

gt (v
∗
t )

p(t)
1
v̂t
≤

1−
√

1− 1
π

2 p(t)

⇐⇒ ft(v̂t)
gt (v̂t )
v̂t
≤

p2(t)
4

⇐⇒ ft(v̂t)(pt − ft(v̂t)) ≤ (
p(t)− ft (v̂t )+ ft (v̂t )

2 )2
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The last inequality follows by inequality of arithmetic and geometric means. For
(a), by the convexity of ft , ft(0) = 0, and 2k

π(1+
√

1− 1
π )p(t)

≤ v̂t , we have

ft(
2k

π(1 +
√

1 − 1
π )p(t)

) ≤ ft(v̂t)
2k

(1 +
√

1 − 1
π )p(t)

1
v̂t
.

For (b), by lemma 5.3, we have

ft(v̂t)
2k

(1 +
√

1 − 1
π )p(t)

1
v̂t
≤ ft(v̂t)

2

π(1 +
√

1 − 1
π )

gt(v̂t)

p(t)
1
v̂t

. �

Proof of Lemma C.5

Proof. From Lemma C.4, we have

Φ∆(π) = max
σ[1:T ]

T∑
t=1

vt ≤
2∆

π

(
1 +

√
1 − 1

π

) T∑
t=1

p̃(t) − p̃(t − 1)
p(t)

.

By Lemma C.3, we know that
T∑

t=1

p̃(t) − p̃(t − 1)
p(t)

≤ 1 + ln θ. (C.38)

Then we can bound Φ∆(π) as

Φ∆(π) ≤
2∆

π(1 +
√

1 − 1
π )

(

T∑
t=1

p̃(t) − p̃(t − 1)
p(t)

)

≤
2∆

π(1 +
√

1 − 1
π )

(1 + ln θ) = Φ̄(π).

This completes our proof. �

Recall that p̃(t) , OPT(σ[1:t])
∆

, and we have p̃(t) ∈ [0, M] and p̃(t) is non-decreasing
in t. The output of the algorithm CR-Pursuit(π) at time t satisfies

∆(p̃(t) − p̃(t − 1))
π

= vt(p(t) − ft(vt)). (C.39)

Restating Lemma C.1 under the parametric assumptions of gt(vt) in the one-way
trading with price elasticity setting, we can upper bound the selling quantity of
CR-Pursuit(π) at each slot using a more precise value of c, reflected in the following
lemma.
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Lemma C.4. For any input sequence σ[1:T], we have

vt ≤ c
∆

π

p̃(t) − p̃(t − 1)
p(t)

,

where c = 2/
(
1 +

√
1 − 1

π

)
.

We note that the bound in Lemma C.4 (c = 2/
(
1 +

√
1 − 1

π

)
) is related to π and

is always tighter than in Lemma C.1 (c = 2). The idea of the proof is similar to
that of Lemma C.1, but we further utilize the special structure of gt(·) here (i.e.,
the convexity of ft(·)). A proof is in the Appendix. The tighter bound allows us to
develop an online algorithm with better competitive ratio as compared to the one
obtained as a result of Sec. 5.3.

Lemma C.5. For CR-Pursuit(π) with π ≥ 1, we have Φ∆(π) ≤ Φ̄(π), where Φ̄(π) ,
2∆

π(1+
√

1− 1
π )
(1 + ln θ).

Lemma C.5 shows that Φ∆(π) is upper bounded by Φ̄(π). It is easy to show that
Φ̄(π) is decreasing in π ≥ 1. Thus by setting Φ̄(π̄) = ∆, we can guarantee that
CR-Pursuit(π̄) is feasible. Then we have the following result, which shows that the
competitive ratio of CR-Pursuit(π̄) is ln θ +Ω(1).
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AFTERWARD

I joined the Computing and Mathematical Sciences Department Ph.D. Program at
California Institute of Technology in the fall of 2014. Soon after the preliminary
examination held in the spring of 2014, I began working with my advisor Adam
Wierman.

The first piece ofmy thesis (Chapter 3) started from the earlier half ofmy second year.
Together with Adam and his postdoctoral scholar Hu Fu, we analyzed the efficiency
of open access platforms under a networked Cournot competition model (J. Z.
Pang et al., 2017). We also showed that controlling allocations can disincentivize
production. This work appeared at the International Conference on Computer
Communications (INFOCOM) in 2017, where I gave my first conference talk from
my Ph.D. career. This paper served as the starting point for our work on online
platform designs. It was during one of the breaks between sessions at the Simons
Institute for the Theory of Computing that we explained this work to Weixuan
(Sam) Lin and his advisor, Eilyan Bitar, who was previously a postdoctoral scholar
at Caltech, and then, an Assistant Professor at Cornell. Together, we found an
important result in Lemma 3.8, which was pivotal to the proof of many new results
in Chapter 3 (W. Lin et al., 2017), which also previously appeared in the Conference
for Decision and Control that same year. Finally, work on search cost started through
Adam’s visiting SURF student Jack Kleeman from University of Cambridge. A
culmination of this work was recently submitted to Operations Research.

I started getting involved in the second piece of my thesis (Chapter 4) spring of 2018,
building on work that was done previously in the group (Yunjian Xu et al., 2017).
The connection between controlling allocation platforms and networked Stackelberg
games considered in was stark, and new insights to the Stackelberg model followed
naturally. Anticipation led to manipulation, and conditions for efficiency under
anticipation were "almost necessary". Instead, inspired by a demand-side load
management mechanism in electricity markets, we develop a demand response
model, and show that demand management can lead to efficient markets, even with
network constraints binding. Discussions online and at the INFORMS general
meeting with Subhonmesh Bose helped push this work forward. This work moved
forward with much advise from Laura Doval, and concluded with a research visit to
the University of Illinois, Urbana-Champaign a year later in April 2019. Together
with previous results, the work was recently submitted to Management Science.
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The final part of my thesis (Chapter 5) started in the fall of 2017, when I had won-
derful discussions with a visiting student Hanling Yi from the Chinese University
of Hong Kong (CUHK). I was invited the following spring to CUHK by his advisor
Minghua Chen, and together with another student Qiulin Lin, we made big progress
in development of competitive online algorithms for generalizations of the classic
one-way trading problem. Much of the work took place within two weeks in CUHK,
but Qiulin (with minimal further guidance) tidied up our photographed whiteboard
proofs and ironed out details. This work will be presented in Conference of the
ACM Special Interest Group for Computer Systems Performance Evaluation (Sig-
metrics) in 2019. The research visit to Hong Kong was exceptionally memorable
as I also spent three days after the trip in Singapore, where I officially married my
wife, Odelia.

In preparation of this thesis, Imade the difficult choice to focus onmywork relating to
online platform design. As a result, a significant part of work done over the course
of my graduate studies was not reported as part of this thesis prior to this. The
following serves as a summary similar to an extended abstract of each work and will
not include much technical details or results. More importantly, it serves to show
my gratitude for the opportunities in collaboration, and the beautiful friendships
made over these years.

The first project outside the online platform design regime is on load-side frequency
regulation (J. Z. Pang, L. Guo, and Low, 2017). This work bore much fruits in
multiple extensions and generalizations, e.g., (Wang et al., 2018; You, J. Z. Pang,
and Yeung, 2018b; You, J. Z. Pang, and Yeung, 2018a). Another project covers
the study of scheduling for battery swapping, where we derive solutions for both
the offline (You, J. Z. Pang, M. Chen, et al., 2017) and online (You, Cheng, et al.,
2018) setting by first reformulating the problem as an bipartite graph optimization
problem. The last project looked at the joint optimization of placement and routing
of network function chains in networks (L. Guo, J. Pang, and Walid, 2016; L. Guo,
J. Pang, and Walid, 2018).

Besides these research projects, I was also glad to participate in two summer intern-
ships at the Software, Technology and Innovation Center of Schlumberger Limited.
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