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C h a p t e r 2

FINITE ELEMENT MODELING OF A RAT SPINAL CORD

In this chapter, I will discuss applying finite element modeling to the problem of

modeling epidural stimulation in the lumbar portion of a rat spinal cord. Briefly,

magnetic resonance imaging (MRI) was used to obtain images of a rat spinal cord

(Section 2.1). Tissue images were segmented and a transverse slice through the L1

vertebra was used to extrude a 3D spinal model which was coupled with electrodes

in SolidWorks (Section 2.1.1). Stimulation waveforms were analyzed for their dom-

inant frequency components (Section 2.1.3). Material properties (conductivity and

permittivity) were determined (Section 2.1.4) using the main frequency component

of each stimulation waveform. Section 2.2 describes a volume conductor simula-

tion using the COMSOL environment. This section also uses spatial symmetries

and translations in the bipolar electrode combinations in order to reduce the num-

ber of simulated combinations to 18. Section 2.2.2 briefly discusses computational

details of running the simulations. Section 2.A presents a summary of conductivity

and permittivity data from the literature.

2.1 Building the 3D volume conductor model

To provide a realistic simulation model, the geometry of the lumbosacral spinal

cord and its surrounding tissue was derived from MRI scans of a rat. An adult

female Sprague Dawley rat (a control animal from another lab already scheduled to

be euthanized) was fixed with 4% paraformaldehyde. The legs, tail, and everything

rostral from the T12 vertebra was removed. The remaining spinal cord and muscle

tissue was soaked for about 6 days in 3% K2(Cr2O7) and 10-mM Gd-HP-DO3A

following (Zhang et al., 2010). After soaking, it was placed in a solution containing



14

perfluoropolyether (Galden®) to maintain the staining. The sample was imaged in

an 11.7 tesla MRI machine at the Caltech Center for Biological Imaging at a voxel

resolution of 78 µm. Vertebrae T13, L1, L2, L3, and L4 were manually identified

in the resulting scans and segmented by hand (labeling bone and the inside of the

bone, see Figs. 2.1 and 2.2). Segmentation was done using the Matlab NIFTIa

toolbox and the bioelectromagnetism Toolboxb to select regions of interest, and

ITK-SNAPc (Yushkevich et al., 2006) to segment the regions. Custom Matlab code

was then used to merge the segmentation labels back into a single 3D image.

2.1.1 2d extrusion model with embedded electrode array model

Rather than model the full 3D structure of the rat spine shown in Figs. 2.1 and 2.2,

it was decided to model a 3 by 7 electrode array embedded in a 3D extrusion of

a spinal cord MRI slice taken from the middle of the L1 vertebra. This simplified

model reduced the complexity of the simulations while maintaining the applicabil-

ity to the L1 region. The area of the spinal cord under the L1 vertebra is known

(Parag Gad, Choe, et al., 2013) to contain the motor pools for the soleus, tibialis

anterior, and medial gastrocnemius muscles.

The manual segmentation of a transverse spinal cord slice from the middle of the

L1 vertebra can be seen in Fig. 2.3. Gray matter and white matter were clearly

visible in in the MRI data. Some spinal roots and nerve fibers were visible in the

Cerebrospinal fluid (CSF). Preliminary COMSOL simulations including the fibers

as cylinders of white matter in the CSF showed minimal effect on the voltage distri-

bution inside the spinal cord (white/gray matter), so these fibers were left out from

the final simulation model. Epidural fat was not visible in the MRI images. Dur-

ing the surgical implantation of epidural electrodes in rat models, the epidural fat

ahttp://www.mathworks.com/matlabcentral/fileexchange/8797-

tools-for-nifti-and-analyze-image
bhttp://eeg.sourceforge.net/bioelectromagnetism.html
cwww.itksnap.org
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Column Letters: A B C

row #

1 A1 B1 C1 ẑ ↓ cranial↑
2 A2 B2 C2

3 A3 B3 C3

4 A4 B4 C4

5 A5 B5 C5

6 A6 B6 C6

7 A7 B7 C7 caudal↓
x̂ →
←left side right side→
⊙ ŷ, dorsal

⊗ ventral

Table 2.1: This table shows the names of the electrodes and the orientation of the

array in the spinal cord as if you are looking down at the back of the rat with its head

pointed towards the top of the page. (Note that ⊙ means that the dorsal direction

is pointing out of the page and the ⊗ symbol indicates that the ventral direction is

into the page.) Figures 4.1 and 4.2 show the labeled electrode array in the simulated

spinal cord.

and array orientation. Figures 4.1 and 4.2 show the labeled electrode array in the

simulated spinal cord. (See also Section 2.2.1 for discussion of electrode array

combinations and combination naming.) Based on Figure 6 of (Parag Gad, Choe,

et al., 2013), the center 5 rows of electrodes would cover the spinal region of L4,

L5, L6, and S1. The parylene C backing of the electrode array is normally 20 µm

thick (Parag Gad, Choe, et al., 2013). In order to simulate efficiently (and reduce

the number of necessary mesh points), the parylene C thickness was chosen to

be 40 µm and the electrode (platinum) thickness chosen to be 10 µm (normally

0.2 µm). A slice through the extruded model showing the thicker array can be seen

in Figs. 2.6 and 2.7. The width of the curved portion of the parylene C next to the

CSF was constrained to a path length of 3 mm (the actual width of the array), while

the back of the array was allowed to be wider to compensate for the increased

thickness.

In order to reduce the number of mesh points required in COMSOL, to avoid errors
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Figure 2.5: Sketch of the spinal cord geometry and electrode array on top of the

segmented image. Regions in the segmented image are indicated by color: gray

matter (yellow), white matter (red), CSF/roots/fibers (green), and bone (purple).

See Figs. 2.6 and 2.7 for a better view of the electrode array after extrusion.

in COMSOL’s meshing algorithms, and to remove the discretization of the MRI

data, it was necessary to simplify the model geometry. Figure 2.5 shows a cross-

section of the CAD (SolidWorks) sketch over the segmented MRI image before

extrusion.

After extrusion, the electrode array model seen in Fig. 2.4 was wrapped and em-

bossed onto the parylene C material to create holes for the electrodes. These holes

were filled using constructive geometry. The result can be seen in Figs. 2.6 to 2.8.

2.1.3 Stimulation waveforms

Typically, electrical spinal stimulation uses monophasic square pulses (Parag Gad,

Choe, et al., 2013), biphasic square pulses (Josef Ladenbauer, 2008), or biphasic

square exponential pulses (Gill et al., 2018) where the exponential decay results

from capacitive discharge. For this work, I will assume that the distance between

multiple stimulation pulses is large enough that the voltage in the tissues returns

to steady state for a long time relative to the pulse width so that each pulse can be

analyzed separately.
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and a square exponential biphasic pulse (SSqExp(t,w)) given by:

SSqExp(t,w) = H (t + w)H (−t) − H (t)e−
t

w . (2.3)

Plots of Smono(t,w), Sbi(t,w), and SSqExp(t,w) can be seen in Figure (2.9) with

w = 200 µs.

Figure 2.9: Plots of Smono(t,w = 200 µs), Sbi(t,w = 200 µs), and SSqExp(t,w =

200 µs)

The frequency content of the stimulation pulse is an important factor in simulating

the electrical response of tissue to that stimulation pulse (as seen in Section 2.1.4).

The Fourier transform (F ) can be used to convert an arbitrary time domain function

h(t) into a frequency domain function (h̃(ω)) so that the power spectral density

(h̃2(ω)) can be plotted. For this thesis, the Fourier transform (F ) is defined by:

F (h(t)) =

∫ ∞

−∞
h(t)e−iωt dt = h̃(ω), (2.4)
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and the inverse Fourier transform (F −1) is defined by:

F −1(h̃(ω)) =
1

2π

∫ ∞

−∞
h̃(ω)eiωt dω = h(t), (2.5)

where ω = 2π f .

Using the above definitions, the Fourier transforms of these pulses are given by:

F (Smono(t,w)) = S̃mono( f ,w) =
sin(wπ f )

π f
, (2.6)

F (Sbi(t,w)) = S̃bi( f ,w) = 2i
sin2(wπ f )

π f
, (2.7)

and

F (SSqExp(t,w)) = S̃SqExp =
(2π f w − i)ei2π f w − 4π f w + i

2(i2π f w + 1)π f
. (2.8)

Plots of S̃2
mono( f ,w), S̃2

bi
( f ,w), and S̃2

SqExp
( f ,w) can be seen in Fig. 2.10 with w =

200 µs.

These pulses have a broad frequency response due to the discontinuities. These

discontinuities also make time-domain COMSOL simulations problematic without

smoothing. In order to address both of these issues, a Gaussian was selected for a

monophasic pulse (Gmono), and a normalized derivative of a Gaussian for a biphasic

pulse (Gbi). In order to keep the pulses equivalent to the square monophasic and

biphasic pulses, the amplitude and energy of the Gaussian pulses will be fixed to

that of the equivalent square pulse. In this case, energy (E) is

E =

∫ ∞

−∞
P(t)dt (2.9)

where the power P(t) is given by,

P(t) = I (t)V (t) =
(V (t))2

R
, (2.10)



24

2

Figure 2.10: Plots of power spectral density for monophasic square pulse

(S̃2
mono( f ,w = 200 µs)), biphasic square pulse (S̃2

bi
( f ,w = 200 µs)), and biphasic

square exponential (S̃2
SqExp

( f ,w = 200 µs)).

I (t) = V (t)/R is the current as a function of time, V (t) is the voltage as a function

of time, and R is a generalized resistance of the tissues. The amplitude of both

square pulses is 1. The energy of the monophasic square pulse is:

E(Smono(t,w)) =
w

R
, (2.11)

and the energy of the biphasic square pulse is:

E(Sbi(t,w)) =
2w

R
. (2.12)

First, define a Gaussian monophasic pulse (Gmono(t, ςmono)) centered at t = 0 and
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with an amplitude of Gmono(0) = 1,

Gmono(t, ςmono) = e
−1
2

(

t

ςmono

)2

, (2.13)

where ςmono is a width parameter measured in seconds. The energy in this pulse is:

E(Gmono(t, ςmono)) =
ςmono

√
π

R
. (2.14)

So,

E(Smono(t,w)) = E(Gmono(t, ςmono)) (2.15)

leads to:

ςmono =
w√
π
. (2.16)

Similarly, define a Gaussian biphasic pulse (Gbi(t) ∝ d
dt

Gmono(t)) centered at t = 0

and normalized to a maximum amplitude of 1,

Gbi(t, ςbi) =
−t

ςbi

e
1
2

(

1−
(

t

ςbi

)2
)

. (2.17)

The energy in this pulse is

E(Gbi(t, ςbi)) =
ςbi

√
πe

2R
. (2.18)

So

E(Sbi(t,w)) = E(Gmono(t, ςbi)) (2.19)

leads to:

ςbi =
4w

e
√
π
. (2.20)
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It can also be shown that the max and min amplitudes of the biphasic pulse occur at

t = ±ςbi. (2.21)

A square pulse width w = 200 µs corresponds in this normalization to ςmono ≈

112.84 µs and ςbi ≈ 166.04 µs. Plots of Gmono(t, ςmono) and Gbi(t, ςbi) can be found

in Fig. 2.11.

Figure 2.11: Plots of a Gaussian monophasic pulse Gmono(t, ςmono) and Gaussian

biphasic pulse Gbi(t, ςbi). Where ςmono ≈ 112.84 µs and ςbi ≈ 166.04 µs cause

Gmono(t, ςmono) and Gbi(t, ςbi) to have the same amount of power as a square pulse

with width w = 200 µs and a biphasic square pulse with width 2w respectively.

The Fourier transforms of Gbi,mono are given by:

F (Gmono(t, ς)) = G̃mono( f , ς) = ς
√

2πe−2π2 f 2ς2

(2.22)
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and

F (Gbi(t, ς)) = G̃bi( f , ς) = 2πiς2
√

2π f e
1
2
−2π2 f 2ς2

. (2.23)

Plots of the power spectral density G̃2
mono( f , ςmono) and G̃2

mono( f , ςbi) can be seen

in Fig. 2.12.

Figure 2.12: Plots of power spectral density for the monophasic Gaussian pulse

G̃mono( f , ςmono) and the biphasic Gaussian pulse G̃bi( f , ςbi) used in this study

Unfortunately, time domain simulations in COMSOL only allow us to pick tissue

electrical properties for a single frequency, so the frequencies with the most power

are:

f max
mono(ς) = argmax

f

|G̃mono( f , ς) |2 = 0 (2.24)
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and

f max
bi (ς) = argmax

f

|G̃bi( f , ς) |2 = 1

2πς
. (2.25)

For the values of ςmono and ςbi found above, f max
mono = 0, and f max

bi
≈ 958.5 Hz.

2.1.4 Modeling tissues and electrode materials

In order to build a proper frequency-dependent simulation of epidural stimulation

of the spinal cord, one must include key electrochemical properties of the affected

materials, such as the relative permittivity and conductivity of the electrode array

materials and biological tissues. While the relative permittivity is often referred to

as the dielectric constant of the material, both conductivity and relative permittivity

vary as a function of frequency and temperature. Data and 4-Cole-Cole model

(K. S. Cole and R. H. Cole, 1941) fits from (C. Gabriel, 1996) will be used to model

the relative permittivity and conductivity of biological tissue (Section 2.1.5.1). All

materials other than muscle and white matter were modeled as isotropic materials.

Data for Parylene C was taken from (Kahouli et al., 2012). The relative permittivity

and conductivity of platinum were assumed to be constant in this frequency range

and obtained from a CRC handbook (Chemical Rubber Company, 2012).

The rat body temperature is normally maintained between 37 ◦C and 38 ◦C (Gud-

jonsson, 1932), so where possible material properties have been obtained close to

that temperature or adjusted for that temperature.

2.1.5 Tissues

For the model described in Section 2.1.1, it is necessary to know the frequency-

dependent conductivity and relative permittivity for bone, grey matter, white mat-

ter, cerebro spinal fluid, and muscle. Additionally, the anisotropic conductivity for

white matter and muscle must be taken into account.

The frequency-dependent conductivity and relative permittivity of general materials
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vary with the polarizability of the material. The total polarizability of a material is

the sum of the polarization of localized electrons (the electron cloud of individual

atoms is distorted by the applied electric field, referred to as electronic polariz-

ability), ionic polarizability (displacement of atoms attached with ionic bonds in re-

sponse to an applied electric field), dipolar polarizability (reorientation of molecules

in response to an applied electric field), and space charge polarization (long range

motion of ions in response to an electric field). The polarization of a material is

maximum at low frequencies when all of these types of polarization occur. See

Figure 1 in (Leseal, 1982) for an overview. As the frequency of the electric field

increases, the polarization decreases as the different types of polarization are unable

to respond to the increased frequency. The frequency ranges at which this occurs

are referred to as dispersion regions. Electronic polarizability is present at all fre-

quencies. Ionic polarizability is limited by the speed of the displacement of the

atoms and has a dispersion region around 1013Hz (infrared). Dipolar polarizability

is limited by the rotational speed of the dipoles and has a dispersion region around

109Hz (microwave). Space charge polarization depends on the speed of ions in the

material and has a dispersion region around 104 − 105Hz (radio or lower).

In biological tissues, there are 3 commonly known dispersion regions (C. Gabriel,

S. Gabriel, and Corthout, 1996): the low frequency α dispersion region associated

with ionic diffusion, the β dispersion region (hundreds of kHz) associated with the

polarization of cell membranes (which block the flow of ions), and the γ dispersion

region (GHz) associated with the polarization of water. Other dispersion regions

may exist in a particular type of tissue.

2.1.5.1 4-Cole-Cole model

The Cole-Cole model (K. S. Cole and R. H. Cole, 1941) is commonly used to fit

measurements of the frequency-dependent isotropic complex relative permittivity
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and conductivity of simple materials. For biological tissues it is common to use

the Cole-Cole model with four dispersion regions. Three of these four dispersion

regions may roughly fit the α, β, and γ regions described in Section 2.1.5, but

the exact mechanisms of dispersion may differ in different types of tissues. The

4-Cole-Cole model is described by (De Geeter et al., 2012):

ǫr (ω) = ǫ∞ +
σi

iωǫ0
+

4
∑

n=1

∆ǫn

1 + (iωτn)1−αn
, (2.26)

σ(ω) = −ωǫ0ℑ(ǫr (ω)). (2.27)

where ǫr (ω) is the complex frequency-dependent relative permittivity, ǫ∞ is the

relative permittivity in the high-frequency limit, σi is the static conductivity arising

from freely-moving charges (ions freely-moving in a liquid for example, the same

ions involved in space charge polarization and the α dispersion), i =
√
−1, ω is the

angular frequency (with units of rad/ sec), ǫ0 = 8.854 187 817 × 10−12 F m−1 is the

permittivity of free spaced, (∆ǫn, τn, and αn) are obtained by fitting experimental

data, σ(ω) is the real valued conductivity, and ℑ(z) is the imaginary part of com-

plex number z. Each term in the sum corresponds to one of the four dispersion

regions.

Eqs. (2.26) and (2.27) run into non-physical numerical problems as ω → 0. These

problems can be avoided by adopting the following definitions:

ǫr (ω) = ǫ∞ +
4

∑

n=1

∆ǫn

1 + (iωτn)1−αn
, (2.28)

σ(ω) = σi − ωǫ0ℑ(ǫr (ω)). (2.29)

The second term in Eq. (2.29) is the conduction from bound charges (i.e. electrons

bound to molecules that are not free to move).

dhttp://physics.nist.gov/cgi-bin/cuu/Value?ep0
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Gabriel et al. (C. Gabriel, 1996) found the Cole-Cole parameters for 44 biological

materials (C. Gabriel and S. Gabriel, 1997) at 37 ◦C. Unfortunately, for some mate-

rials, in some frequency ranges, the values obtained from the 4-Cole-Cole equations

can diverge significantly from nearby measured values. Fortunately, the raw data is

also available for comparison (C. Gabriel and S. Gabriel, 1997). The 4-Cole-Cole

parameters used in this thesis can be found in Table 2.2. Comparisons with the

raw data can be found in Section 2.A. For muscle, the only available 4-Cole-Cole

coefficients are for the transverse direction, even though data is available for both

the parallel and transverse directions. Instead of attempting to fit the 4-Cole-Cole

model to the data directly, the closest matching frequency data for “Ovine @ 37

degC” was used for the muscle.

Tissue Type Bone (Cortical) Grey Matter White Matter CSF

ǫ∞ 2.5 4 4 4

σi 0.02 0.02 0.02 2

∆ǫ1 10 45 32 65

τ1 (ps) 13.263 7.958 7.958 7.958

α1 0.2 0.1 0.1 0.1

∆ǫ2 180 400 100 40

τ2 (ns) 79.577 15.915 7.958 1.592

α2 0.2 0.15 0.1 0

∆ǫ3 5 × 103 2 × 105 4 × 104 0

τ3 (us) 159.155 106.103 53.052 159.155

α3 0.2 0.22 0.3 0

∆ǫ4 1 × 105 4.5 × 107 3.5 × 107 0

τ4 (ms) 15.915 5.305 7.958 15.915

α4 0 0 0.02 0

Table 2.2: Cole-Cole parameters

While there are some limited measurements of the anisotropic conductivity of CNS

white matter (Ranck Jr. and BeMent, 1965), no one has measured the permittivity

for white matter in both the parallel and transverse directions. For the simulations
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in this thesis, I estimate the anisotropic conductivity and permittivity for the white

matter using the diffusion tensor data in Table 2.3. This method assumes that ion

diffusion is the dominant component of polarization at the frequencies used.

Define axes such that +x̂ is in the right direction, +ŷ is in the dorsal direction, and

+ẑ is in the caudal direction. This means that the eigenvectors are axis aligned such

that dtrans = dxx = dyy, and dparallel = dzz, where d. are the components of the

diffusion tensor. Then, using the method described in (De Geeter et al., 2012), with

the isotropic conductivity (σiso(ω)) obtained from measurements or Eq. (2.29), I

can obtain the conductivity in the transverse direction as follows:

σtrans (ω) =
dtransσiso(ω)

3

√

d2
transdparallel

. (2.30)

Similarly, for the parallel direction:

σparallel (ω) =
dparallelσiso(ω)

3

√

d2
transdparallel

. (2.31)

Using the same method and the isotropic real relative permittivity (ℜ(ǫr (ω))iso(ω),

whereℜ(z) is the real component of complex number z) again obtained from mea-

surements or the real part of Eq. (2.28), I can obtain the real relative permittivity in

the transverse direction:

ℜ(ǫr (ω))trans =
dtransℜ(ǫr (ω))iso(ω)

3

√

d2
transdparallel

, (2.32)

and the parallel direction

ℜ(ǫr (ω))parallel =
dparallelℜ(ǫr (ω))iso(ω)

3

√

d2
transdparallel

. (2.33)
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Table 2.3: Diffusion tensor coefficients for rat spinal cord obtained from (Gulani et al.,

1997).

Measured diffusion coefficients (X 10−3 mm2

s
)

Tissue Type dzz dxx dyy dxy

Left Lateral Funiculusa 0.87 ± 0.04 0.23 ± 0.05 0.19 ± 0.04 −0.03 ± 0.05

Right Lateral Funiculusa 0.78 ± 0.03 0.18 ± 0.05 0.25 ± 0.04 −0.03 ± 0.05

Dorsal Columnsa 1.01 ± 0.03 0.21 ± 0.03 0.25 ± 0.04 −0.06 ± 0.06

Gray Mattera 0.42 ± 0.02 0.44 ± 0.03 0.48 ± 0.03 −0.02 ± 0.03

Funiculus Avgb 0.825 ± 0.03 0.205 ± 0.04 0.22 ± 0.03 −0.03 ± 0.04

a (Gulani et al., 1997)
b Average of left and right lateral funiculus

2.1.6 Electrode array

Since the electrode array is made with parylene C and platinum traces, the conduc-

tivity (σ(ω)) and relative permittivity (ℜ(ǫr (ω))) of these materials are important

to the modeling effort.

2.1.6.1 Parylene C

Data on the real part of the dielectric constant and the dissipation factor (DF) were

obtained from the as-deposited values at 25 ◦C in Figure 5 of Kahouli (2012) (Ka-

houli et al., 2012) and fit to a polynomial in Λ = log10( f s).

DF (Λ) =0.061018−2.912 × 10−5
Λ − 0.0015511Λ2

+ 0.00089049Λ3 − 0.00059251Λ4
+ 2.0756 × 10−5

Λ
5
+ 5.9074 × 10−5

Λ
6

− 1.2942 × 10−5
Λ

7 − 6.965 × 10−8
Λ

8
+ 2.5675 × 10−7

Λ
9 − 1.9506 × 10−8

Λ
10

(2.34)

ℜ(ǫr (Λ)) =4.1276 − 0.28559Λ − 0.0078781Λ2 − 0.0046379Λ3
+ 0.0054592Λ4

+ 0.0013196Λ5 − 0.0024512Λ6

+ 0.0010473Λ7 − 0.00021781Λ8
+ 2.2709 × 10−5

Λ
9 − 9.492 × 10−7

Λ
10

(2.35)

The dissipation factor (DF)e quantifies the dielectric’s dissipation of electromag-

eThe dissipation factor, DF , is also called the loss tangent in some literature, usually with the

notation tan δ.
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Figure 2.13: Conductivity and real relative permittivity for parylene C

netic energy as heat and is given by (Orfanidis, 2016):

DF =
σi − ωǫ0ℑ(ǫr )

ωǫ0ℜ(ǫr )
. (2.36)

The numerator in Eq. (2.36) can be recognized from Eq. (2.29), and so the following

equation can be derived for conductivity:

σ(ω) = DFωǫ0ℜ(ǫr ). (2.37)

Based on Eqs. (2.34), (2.35) and (2.37), the conductivity and real relative permit-

tivity of Parylene C are plotted in Fig. 2.13.
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2.1.6.2 Platinum

The CRC Handbook of Chemistry and Physics (Chemical Rubber Company, 2012)

lists the resistivity of platinum at 27 ◦C as 10.8 × 10−8
Ωm. This gives a conduc-

tivity of σ = 9.26 × 106 S m−1. The real part of the relative permittivity was set

to 1 as is customary for metals. These values are assumed to be fairly frequency-

independent below optical frequencies (Scheffler et al., 2005).

2.1.7 Materials Summary

Table 2.4: Conductivity values with units S m−1

Material σ0 Hz
parallel

σ0 Hz
transverse

Bone 0.02

CSF 2

Gray matter 0.02

Muscle 0.24a 0.22a

Parylene C 1.42 × 10−12b

Platinum 9259259.25926

WM (Dorsal Columns) 0.054 0.012

WM (Lateral & Ventral Funiculus) 0.049 0.013

Material σ958.5 Hz
parallel

σ958.5 Hz
transverse

Bone 0.02

CSF 2

Gray matter 0.099

Muscle 0.52c 0.34c

Parylene C 8.20 × 10−9d

Platinum 9259259.25926

WM (Dorsal Columns) 0.17 0.038

WM (Lateral & Ventral Funiculus) 0.15 0.040

a f=10.0 Hz (closest frequency for ovine @37 degC muscle data)
b f=0.1 Hz (closest frequency for parylene C data)
c f=1000.0 Hz (closest frequency for ovine @37 degC muscle data)
d f=959.0 Hz (closest frequency for parylene C data)

2.2 COMSOL simulations

A Matlab program was written using the COMSOL Matlab interface to import

the SolidWorks model, label the various materials in the model, and set the ma-
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Table 2.5: Real relative permittivity values (unit less)

Material er0 Hz
parallel

er0 Hz
transverse

Bone 110000

CSF 110

Gray matter 45000000

Muscle 83000000a 41000000a

Parylene C 4.410b

Platinum 1

WM (Dorsal Columns) 94000000 21000000

WM (Lateral & Ventral Funiculus) 87000000 22000000

Material er958.5 Hz
parallel

er958.5 Hz
transverse

Bone 2800

CSF 110

Gray matter 170000

Muscle 1200000c 590000c

Parylene C 3.307d

Platinum 1

WM (Dorsal Columns) 190000 44000

WM (Lateral & Ventral Funiculus) 180000 46000

a f=10.0 Hz (closest frequency for ovine @37 degC muscle data)
b f=0.1 Hz (closest frequency for parylene C data)
c f=1000.0 Hz (closest frequency for ovine @37 degC muscle data)
d f=959.0 Hz (closest frequency for parylene C data)

terial properties as summarized in Tables 2.4 and 2.5. The mesh was set to “Extra

fine” and can be seen in Fig. 2.14. The outside boundaries (extruded oval shaped)

were set to be insulating (Neumann boundary condition), i.e. no current passing

through them. For active electrodes, the voltage of the back surface of the electrode

was set to the stimulating waveform (Dirichlet boundary condition). No voltage

or current restrictions were placed on the non-active electrodes. Static (time in-

variant inputs) simulations were used for comparison and testing purposes. For

time domain simulations, the time step (∆t) was set to 0.01 ms and solved for time

tbi,mono = −10ςbi,mono · · · + 10ςbi,mono. For biphasic stimulation, ςbi = 0.166 04 ms

so the COMSOL simulation was run from simulation time tbi = −1.6604 ms to

tbi = 1.6604 ms. For monophasic stimulation, ςmono = 0.112 84 ms so the COM-
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Figure 2.14: The finite element mesh used in all the volume conductor simulations.

SOL simulation was run from simulation time tmono = −1.1284 ms to 1.1284 ms.

After the simulations were complete, voltage time series were extracted from points

corresponding to each segment of the neurons as will be described in Chapter 3.

2.2.1 Stimulation patterns

Although more complex patterns of the active stimulating electrodes are possible

and have been used in humans (Harkema et al., 2011), for this thesis I will only con-

sider bipolar combinations of electrodes. Each combination will be referred to by a

name consisting of [positive electrode name][p for positive sign][negative electrode

name][n for negative sign]. Each name implies a pair of equations. For example,

combination A2pC5n means that the stimulation voltage on the back surface of the

A2 and C5 electrodes are defined, respectively, by:

VA2
s = VSG(t) (2.38)

VC5
s = −VSG(t), (2.39)
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where Vs is the stimulation scale factor (can be positive or negative with units of

volts), and G(t) is the stimulation shape function (either Gbi (t) for biphasic stimu-

lation or Gmono(t) for monophasic stimulation (see Section 2.1.3 for definitions)).

Electrodes not referenced in the combination name are simulated as floating. See

Table 2.1 for electrode labels and array orientation. Figures 4.1 and 4.2 show the

labeled electrode array in the simulated spinal cord.

The COMSOL simulations are linear so all simulations can be done with Vs = 1 V

and the output scaled for other voltages. For the electrode array described in Sec-

tion 2.1.1 (3 columns and 7 rows), there are 210 unique bipolar combinations (con-

sidering that the combination A1pB1n (VA1
s = VSG(t), VB1

s = −VSG(t)) is a scalar

multiple of B1pA1n (VB1
s = VSG(t), VA1

s = −VSG(t)). Since the model is an

extrusion, the combinatorial number of simulations necessary can be reduced if

translations of combinations of electrodes along the ẑ direction result in the same

output. To test this, I will compute stationary simulations for all three possible sin-

gle row combinations (ANpBNn, ANpCNn, BNpCNn) for each row N and compare

extracted voltage points under that row with the center row. Extracted points corre-

spond to each segment in the neurons described in Chapter 3 (including all 6 axons

directions). Figure 4.2 shows the locations of these neurons with the axons in the

−x̂ direction. The histogram results in Fig. 2.15 show that there are edge effects

in rows 1 and 7. However, translations along the ẑ axis between rows 2-6 result in

nearly the same output. In this thesis, I will only consider combinations ignoring

rows 1 and 7 to avoid edge effects.

Although the spinal cord model is not completely symmetric across the x = 0 plane

(the bone and muscle geometry captured from the MRI data are not symmetric),

it would be useful to test the difference between mirrored combinations. If the

difference is small, then symmetry about the mid-line can be used to reduce the

required number of simulations. The histogram of the difference between combina-







41

2.2.2 Computational details

Simulations were conducted using COMSOL 5.1 and MATLAB R2012a on a ma-

chine with 94G RAM and dual Intel® Xeon® X5550 CPUs operating at 2.67GHz.

Each biphasic simulation (i.e. one combination) on average took 5.5 ± 0.2 hours.

Each monophasic simulation on average took 2.8 ± 0.1 hours. For the biphasic

stimulation, the time series extraction on average took 4.73± 0.07 minutes for each

combination. For monophasic, the same extraction took on average 3.22± 0.3 min-

utes.

2.3 Summary

In this chapter, I discussed the finite element model of the rat lumbosacral spinal

cord and electrode array that will be used in the rest of the thesis. The geometry

of the finite element model was derived from an extrusion of a transverse slice

of an MRI image of the L1 vertebra. Stimulation waveforms were analyzed for

their dominant frequency components, and material properties (conductivity and

permittivity) were selected using the main frequency component of each stimulation

waveform. The finite element model was validated by comparing extracted voltage

values for translated single row combinations and mirrored combinations which

should result in the same voltage potentials.

2.A Appendix: Conductivity and relative permittivity measurements from

literature compared with 4-cole-cole fits

Conductivity and relative permittivity measurements for bone, CSF, gray matter,

muscle, and isotropic white matter from a variety of animals and original authors

were obtained from (C. Gabriel and S. Gabriel, 1997). 4-Cole-Cole parameters for

these materials were also obtained from the same source. Conductivity values from

(Josef Ladenbauer, 2008) were also obtained for comparison.

The collected data for muscle is presented in Fig. 2.17. Parameters for a 4-Cole-
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Cole fit are only available for transverse muscle even though data is available for

parallel muscle. At frequencies below 1 kHz, there is about an order of magnitude

variation in the conductivity and 2 orders of magnitude in the permittivity variation.

There also appears to be significant differences in the amount of anisotropy found

in the different studies.

The collected data for bone is presented in Fig. 2.18. It shows variation of 2 orders

of magnitude in both conductivity and relative permittivity below 1 kHz, depending

on the type of bone and the animal source.

Figure 2.19 plots the very limited data available for cerebro spinal fluid (CSF). The

value that Ladenbauer used for the CSF (1.7 S m−1 @ 1000 Hz) is certainly closer

in frequency to the dominant frequencies of the stimulation waveforms used in this

thesis than the data used for the 4-Cole-Cole fit, but the corresponding relative

permittivity was not available, so the value (2 S m−1) obtained from the 4-Cole-

Cole fit was used instead.

Figure 2.20 presents the conductivity and permittivity of white matter. At high fre-

quencies the conductivity and permittivity of white matter appears to be conserved

across species and studies. The values of conductivity used in (Josef Ladenbauer,

2008) (from a cat) appear to be significantly larger than those found by Gabriel et

al. in a sheep.

Figure 2.21 shows the collected data for gray matter. The grey matter values appear

to have minimal variation across species and samples at high frequencies. The con-

ductivity of grey matter used in (Josef Ladenbauer, 2008) also seems high compared

with the values Gabriel et al. found in a sheep.
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Figure 2.17: Data and Cole-Cole fits for Muscle. The 4-Cole-Cole fit is only for

transverse muscle even though data is available for both parallel and transverse.

Data from (C. Gabriel and S. Gabriel, 1997) and (Josef Ladenbauer, 2008).
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Figure 2.18: Data and Cole-Cole fits for bone. Data from (C. Gabriel and S. Gabriel,

1997) and (Josef Ladenbauer, 2008).
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Figure 2.19: Data and Cole-Cole fits for cerebro spinal fluid (CSF). Data from (C.

Gabriel and S. Gabriel, 1997) and (Josef Ladenbauer, 2008).
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Figure 2.20: Data and Cole-Cole fits for isotropic white matter. Data from (C.

Gabriel and S. Gabriel, 1997) and (Josef Ladenbauer, 2008).
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Figure 2.21: Data and Cole-Cole fits for gray matter. Data from (C. Gabriel and

S. Gabriel, 1997) and (Josef Ladenbauer, 2008).


