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ABSTRACT

A bilayered system is an assembly of two different materials and has the form of
flat and thin layers. The two materials are attached to each other at the surface. The
attachment method varies depending on the materials properties. Bilayered systems
made of materials with different dimensions and stiffness have been widely studied
and used for different applications. The characteristic scale of this kind of system
can go from hundreds of km in the case of geological layers on the Earth surface to
some µm in the case of very small electronic systems or microlenses.

The behavior of a bilayered system, when submitted to a stimulus, is characterized
by the conflict between the preferred response of eachmaterial and the constraint that
one imposes on the other. As a result, the deformation of the bilayered systemwill be
different from that which could be obtained when the materials are taken separately.
Of particular interest is the buckling of such systems: when submitted to a particular
stress distribution, one material will expand significantly more than the other, but
as the two materials are attached at the interface surface, the material displacements
must be continuous through this interface. The conflict between the continuity of
displacement and the need to expand differently may result in nonlinear patterns at
this interface. Those unstable situations can be used to define a limit of constraint for
the materials or can be used as actuators for a desired surface pattern. Many studies
have focused on characterizing homogeneous buckling within an entire surface due
to homogeneous strain distribution within the top surface. This characterization
was performed theoretically, numerically, and experimentally. But, some studies
have shown different possibilities of evolution of the buckling patterns known today.
As a consequence, we can pose two questions: 1) Is there a possibility to modify
non-linear patterns regardless of what is imposed by mechanical properties and
dimensions? 2) What happens in the case of a non-uniform state of constraints
within the bilayered system?

This thesis explores those questions for the case of a thin stiff film attached to a
compliant thick substrate. The first part of this thesis serves to describe the initial
buckling theory in the case of uniform strain and explains how to define the loading
threshold resulting in uniform buckling at the surface characterized by a finite
number of spatial frequencies. The second part of the thesis studies the consequences
of a non-uniform loading within the surface. A numerical method based on the
theory of the first part is implemented to show the emergence of new frequencies due
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to the discontinuous loading distribution. The third part focuses on the possibility
of tuning a uniform buckling by including an electromechanical coupling into the
bilayered system. This coupling makes the materials sensitive to electric fields, thus
creating a new energy term to interfere with the mechanical energy of deformation,
thereby modifying the resulting spatial frequency of the buckling. This study is
done theoretically and numerically by finite element modeling.
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C h a p t e r 1

INTRODUCTION

1.1 Overview of a bilayered system
The combination of different materials to obtain a system with specific deformation
properties represents a large field of study and research in the engineering domain.
A common example is composite materials as illustrated in Figure 1.1. The simplest
possible system is a bilayered system that consists of two materials attached to each
other on a single large common surface. A bilayered system as it is considered in
this thesis consists of a thin film attached to a thick substrate as shown in Figure
1.2. The interest in such a system comes from the study of instabilities when the
substrate and the film are made of completely different solids with linear elastic
properties in different ranges. Specifically, it is the strain mismatch between the two
materials that tunes the instability at the surface. Another point to be considered
is the dimensions of such a system: even though the film is very thin compared to
the substrate, the thickness of the substrate is taken to be very small compared to its
dimensions along the two other axes. This consideration allows simplifications in
the study of deformations such as the use of plane strain assumptions.

Those considerations about the thickness of the two components result in the film
being considered as a plate and the substrate as a semi-infinite elastic solid. To
illustrate the deformations that can happen in case of buckling of a bilayered system,
a simple example of wrinkles is shown in Figure 1.2. Those instability modes can

Figure 1.1: Example of multilayered material taken from [60].
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Figure 1.2: Example of buckling of a bilayered system.

appear in many situations observed in nature as listed by Genzer and Groenewold
[32]: the case of mountains, with Earth’s crust attached to Earth’s mantle; the case
of human skin, with the epidermis on top of the dermis; the case of fruits, in which
the skin of the fruit can wrinkle on top of its flesh. They also pointed out that such
instabilities are not only resulting from a plate film on top of a substrate, but can also
come out of rods on top of a soft substrate, like in the case of rails buckling while
attached to the soil. As mentioned by Hong et al. [41], those instabilities can be
associated with the failure of the bilayered system, like in the case of creasing on a
tire leading to fatigue failure if the phenomena is repetitive, or in the case of the film
being damaged by creasing while it is supposed to cover and protect the substrate.
The buckling of rails attached to the ground is also a failure and can cause very
serious damages. On the other hand, many potential fields of application have been
explored to discover an instability mode of a bilayered system. A tunable nonlinear
deformation on a surface has several interesting uses.

1.2 Fields of application of buckling deformation
1.2.1 Flow control
The influence of boundary layer flow over energy consumption for a system in
motion has been studied from theoretical, numerical, and experimental perspectives.
In order to improve the efficiency of a system, several engineering problems have
focused on the influence of the drag generated by the interaction between a solid
structure and a fluid flow. Over the last century, the speed of all vehicles has
increased, triggering more and more turbulent flow situations over the surface of
those vehicles. The result is a higher fuel consumption to provide the necessary
extra energy to compensate for the effects of turbulent flow [81, 26] and the risk of
deterioration of the surface in contact with the flow. The situation is more critical
in an aeronautic structure. The boundary layer affects lift and drag and can be the
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Figure 1.3: Flow streamlines over an aircraft. From Chen et al. [23]

difference between flight and staling.

There have been multiple studies of the interaction between large surfaces and flows.
The main parameter used and measured for characterization is the velocity vector
of the flow. The velocity field within a flow is determined by solving the Navier
Stokes equations. The components of this vector are the streamwise velocity, the
normal velocity, and the spanwise velocity. Starting from this vector, more specific
characterization parameters like the Mach number, the Reynolds shear stress, or the
overall drag coefficient can be defined.

The reduction of the drag related to the surface shear stress generated by the flow is
the main objective of those studies. The theoretical study of drag uses the Navier
Stokes equation combined with the conservation of mass. It results in the distinction
of different types of drags as discussed in [28]. The numerical studies on turbulent
flowover an aircraft have been performed onmultiple occasionswith diversemodels.
Each model can result in a different result in terms of drag representationm as
emphasized in [23] and as illustrated in Figure 1.3.

To address the problem of drag reduction, studies have focused on the surface
characteristics. Different methods have been used to specify surface property and
its potential influence on drag reduction. In particular, one strategy that has been
widely studied is the use of a compliant surface: initially, Kramer [50] introduced
the idea of a distributed damping surface by the intermediary of a ducted rubber
coating, illustrated in Figure 1.4, that would be in contact with a flow. His experi-
ments resulted in a reduced drag coefficient compared to a rigid surface. Based on
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Figure 1.4: Ducted rubber coating from Kramer [50] (Dimensions in 1/1000 inch).

those results, further studies brought more types of compliant surfaces and more
experimental observations.

The most common way to model a compliant surface is by considering it as a sur-
face supported by springs and dampers. Those springs and dqmpers are associated
with spring stiffness and a damping coefficient. The displacements of the wall can
then be described by equation of motion relating the displacements, the spring and
dumper coefficientsm and the wall stresses induced by the flow. The displacement
field of this compliant surface results in different types of waves appearing within
the flow in contact with the surface. The characterization of those waves gives a
different approach to the influence of a compliant wall on the drag: Gad-El-Hak [35]
and Carpenter [19] showed that even if the drag could be delayed by the effect of a
compliant surface on the growth rate of Tollmien-Schlichting instabilities, the effect
of the surface displacement could generate additional flow induced instabilities. Al-
though Carpenter [20] managed to develop optimization criteria taking into account
the different types of instabilities, the number of unknowns and the non-linearity of
the Navier Stokes equation in the case of a turbulent flow makes the design of an
ideal compliant surface very challenging.

In more recent studies performed by Luhar et al. [55, 56] it was emphasized that the
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waves associated with the wall-normal velocity and the wall pressure cover a large
region in the spectral domain. It is possible to come up with an admittance relating
the wall normal velocity and the wall pressure, but the main difficulty comes from
the fact that it is necessary to optimize the wall performance for an entire range of
wavenumbers and frequencies.

1.2.2 Flexible electronics
The design of coating made of metallic film attached to compliant polymer substrate
is used in the design of electronics for smart sensory devices. Some very concrete
examples are quoted by Lumelsky et al [57], like the design of a skin for smart floor
or a machine skin for personal robots. Going more into detail of those electronics,
Lacour et al [51] realized amechanical and electrical characterization of a stretchable
electronic surface and built a device based on the bilayered concept supporting an
electric circuit. The principle was that the polymer substrate would be the support
of both the active device cells containing circuit components like transistors and
the metal interconnects (see Figure 1.5). The cells would be supported by a rigid
islandm but the key to this system was the metal interconnects: the buckling of
the bilayered system made of those interconnects and the substrate would make the
circuit capable of handling up to 12 % stretch and avoiding fracture. The metal used
for interconnectswas gold andwould buckle in a reversiblewaywhile still conserving
its electrical properties. Another example is the design of metal-semiconductor-
metal photodetectors based on buckled nanoribbons. This device’s properties are
well characterized by Sun et al [69], showing that the material properties of the
Gallium arsenide nanoribbons, when attached to polymer substrate, result in a
buckling behavior. This buckling behavior can be exploited in terms of bending
when the nanoribbons are fully embedded inside the polymer material.

1.2.3 Microlens arrays
The importance of the physical properties of the materials, especially the elasticity
modulus in the nonlinear deformation of bilayered systems, is taken advantage of
in the design of microlenses: by controlling the dimensions of the film deposited
on a substrate, it is possible to obtain a particular targeted shape for the bilayered
system and then the film after the buckling occurs. This particular shape can be
controlled to be concave or convex and then result in the microlenses desired. To
generate microlenses through buckling, Chan and Crosby [21] developed a process
: after modifying the linear elasticity of a polymer substrate along its surface by
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Figure 1.5: Example of elastic electronic surface made on a polymer substrate.
From Lacour et al. [51]

Figure 1.6: Magnified optical profile of microlens surface. From Chan and Crosby
[21].

ultraviolet/ozone oxydation creating silicate regions, they attached this bilayered
system to acrylate monomer in order to generate a swelling of the substrate. The
specific regions with silicate on top of the polymer were then subject to buckling
due to difference of elastic modulus between the polymer and the silicate. The
control of the dimensions of the oxidized regions associated with the knowledge
of the different elasticity modulus was the key to obtain the microlenses of the
desired size, as illustrated in Figure 1.6. In order to build microlenses that would
be less rigid and whose shape would be reversible, Chandra et al. [22] developed
another method by applying a silicate layer through a copper mask on a pre-stretched
polymer substrate. After releasing the substrate, the difference of elasticity modulus
between the polymer and the silicate would trigger the wrinkling process, and the
dimension of the microlens could be controlled by modifying the dimensions of the
copper mask.
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1.2.4 Material characterization and metrology
The previous sections have shown that the deformations observed on bilayered
systems result from the difference of elastic modulus between materials. This
fact can be used as a basis to determine the elastic properties of a film based on
measured deformation when subjected to a known stretch and attached to a well-
characterized substrate. The technique was used by Stafford et al. [66] when they
created a filmwith an elasticmodulus gradient resulting from the combination of two
different polystyrene sub-films with varying thicknesses assembled together. This
film consisting of two materials was then attached to a pre-stretched thick substrate,
and thewavelength of the resulting observed surfacewrinkleswasmeasured by small
angle light scattering. This wavelength could then be used to calculate the modulus
of the film at every position. This is not the only application that can be made using
bilayered systems. In their review, Chung et al. [27] also mention the possibility of
using this system as a force sensor in biology studies: if the deformation properties
of the film and substrate materials are known, the force exerted by the film on the
substrate can be deduced from a measure of resulting deformation. The authors
also describe the possibility of using the wrinkling phenomena on top of a bilayered
system to measure over a time evolution the viscoelastic properties of a chosen
polymer.

1.2.5 Phase grating
Another interesting application of those non-linear deformations is as diffraction
tools: for a particular type of buckling consisting of wrinkles, the top surface of
a bilayered system can (if the dimensions allow it) be turned into a phase grating.
An example of such use was given by Harrison et al. [36] as they attached atactic
polystyrene films to prestretched polydimethylsiloxane to generate buckling. They
used the resulting deformed surface to diffract a coherent beam by generating a
phase shift to the light proportional to the amplitude of the wrinkles on the surface
of the bilayered system. One of the possible uses of a phase grating that refers to
the previous section on metrology is described by Ma et al. [59]. They created
a bilayered phase grating combining gold and polydimethylsiloxane and used the
diffracted light as a way to measure thermal strain applied to a silicon sample
attached to the phase grating.
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1.3 Literature review
The interest in the bilayered system has led to a number of experimental, theoretical,
and computational studies. Biot [9] studied a different bilayered system where an
infinite beam, instead of a thin film, was attached to the substrate. In his study, the
deflection of the beam, when submitted to a particular load, ended up being nonlinear
as a consequence of the difference of elastic properties between the beam and the
substrate. He also showed the importance of the assumption of a two-dimensional
substrate and a three-dimensional substrate.

Then Allen [3] completed a study closer to the system illustrated in Figure 1.2,
focusing on sandwich panels. His work depicted both the bending and the buckling
of the panels. He emphasized the contribution of the core and the faces in different
scenarios, including our scenario of interest involving a very thin face.

Using the developed theory on the buckling phenomena, experimental studies were
performed, motivated by the potential applications described in the previous sec-
tions. The most commonly studied engineering system consists of a thin metal film
attached to a thick polymer. Bowden et al. [10] and Wagner et al. [76] would attach
a gold film to a polydimethylsiloxane (PDMS) substrate. Instead of gold, it is also
possible to consider thin silicon ribbons [46, 47]. Iacopi et al. [45] used a Ta film
attached to a polymer core. It is also possible to oxidize the surface of a PDMS
substrate to obtain a thin layer on top with a Young’s modulus completely differ-
ent from the original Young’s modulus of the PDMS [11]. A different approach
would consist of having both the substrate and the film made of gels with different
compositions and properties [67].

The experimental studies were then followed by more research by Huang [42, 43],
Li et al. [53].

Another research motivation in the experimental field is the observation of bilayered
systems at many occasions in biological patterns. The study of brain deformation
[64, 15, 71] involving the differential growth of the cortex attached to the subcortex
is a field of investigation on which the Föppl-von Kármán theory is an appropriate
tool. It is also the case for mucosa deformation [52] as the study of its deformation
can help us to understand medical issues and lead to new treatment approaches.

On the numerical field, Chen and Hutchinson [24] studied a more complex type
of buckling using ABAQUS to show that the nonlinear deformation depends on
the minimum energy state. Cao and Hutchinson [18] emphasized the influence of
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the value of the critical buckling strain on the resulting buckling pattern. Tallinen
and Biggins [70] studied the folding of the bilayered system near and far from
the buckling threshold. Cai et al. [16] completed a comparative study between
experimental results and numerical results on the creasing phenomena on top of a
bilayered system.

This possibility for different buckling states due to energy minimization was then
developed in theory by Audoly and Boudaoud [4, 5, 6]. Hutchinson then studied the
stability of wrinkling in bilayered system [44]. Wang and Zhao [77] emphasized the
distinction between all initial and advanced instability modes of bilayered systems,
including buckling delamination, by realizing phase diagrams.

1.4 Thesis motivation and outline
The key question explored in this thesis concerns the control of instability by het-
erogeneous stimuli and electric fields.

Chapter 2 of this thesis reviews the possible deformation of a bilayered system
consisting of a thin film attached to a thick substrate. The film is treated as a
Föppl-von Kármán plate and the substrate as a semi-infinite elastic solid.

In Chapter 3, we provide a numerical method to study instabilities, and we use
this numerical method on a surface subjected to a discontinuous heterogeneous
external stretch. The key idea of the numerical method is to optimize the total
energy by turning it into a quadratic form of the displacement by expressing the
energy in the Fourier domain.The non-linear terms of the deflection are treated with
the introduction of an auxiliary variable linked to the deformation by a constraint
treated using the augmented Lagrangian method. The convergence of this model
using heterogeneous external stretch gives a precise picture of the behavior of a
bilayered system subjected to a varying load.

Chapter 4 goes into an active coating whose deformations can be modified. The tool
used to control the deflection of a surface is the electromechanical coupling. Con-
sidering dielectric elastomers as the substrate of the bilayered system, the chapter
presents a theoretical study of the total energy of this system, taking into account
an extra term in the expression of the energy resulting from an external applied
electric field [30]. The optimization of the energy gives an amplitude of the deflec-
tion depending on the applied electric field. This enables the potential control of
instabilities using an applied electric field. The choice of the dielectric elastomers
for the substrate is also motivated by the fact that their mechanical properties, such
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Elastomer Elastic

energy
density
(J/cm3)

Actuation
pres-
sure
(MPa)

Thickness
strain(%)

Young’s
mod-
ulus
(MPa)

Electric
field
(V/µm)

Dielectric
con-
stant

Coupling
effi-
ciency
(%)

Silicone 0.22 1.36 32 1.0 235 3.2-9.8 54
Polyurethane 0.087 1.6 11 17 160 7.0 21
Fluoroelastomer 0.0046 0.11 8 2.5 32 12.7 15
Latex rubber 0.0059 0.11 11 0.85 67 2.7 21

Table 1.1: Representative dielectric elastomer materials performance (Zheng [84]).

as Young’s modulus are close to those of the solids found in literature used for the
role of substrate as illustrated in Table 1.1.

Chapter 5 keeps exploring the concept of an active bilayered system, but from
a finite deformation numerical perspective. Using finite element modeling via
ABAQUS, a bilayered system made of a thin stiff film attached to a thick compliant
substrate is modeled, and the non-linear deformation resulting from buckling is
generated. TheMaxwell stress related to the dielectric elastomermodel is introduced
through a subroutine and incorporated into a linear elastic material to add the effect
of an external electric field. The resulting evolution of the deformation gives a
complementary approach to the theoretical results of Chapter 4.

Chapter 6 explores the different directions and possibilities offered by the results of
this thesis.
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C h a p t e r 2

INSTABILITIES IN BILAYERED SYSTEMS

This chapter formulates the problem of deformation of bilayered systems and recalls
key results in the literature associated to those systems.

2.1 Bilayered system
Consider the bilayered system shown in Figure 2.1. The thickness h of the film is
assumed to be very small compared to the thickness H of the substrate. Therefore,
we treat the thin film as a Föppl-vonKármán plate and the substrate as a semi-infinite
solid. The two are coupled by the continuity of displacement across the interface.

2.1.1 Föppl-von Kármán theory
Since the thickness is small, we consider all components of the displacement to be
independent of the thickness coordinate (we may regard this to be the mid-plane
displacement). The energy Eel consists of a stretching energy Est and a bending
energy Eb [31, 75]:

Eel = Est + Eb (2.1)

Figure 2.1: Bilayered system consisting of a thin film attached to a thick substrate.
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with

Est =
Eh

2(1 − ν2)

∫ ∫
(εxx + εyy)

2 − 2(1 − ν2)(εxxεyy − ε
2
xy) dx dy (2.2)

and
Eb =

D
2

∫ ∫
(∆w)2 − 2(1 − ν)(

∂2w

∂x2
∂2w

∂y2 − (
∂2w

∂x∂y
)2) dx dy (2.3)

where w is the out of plane deflection, u, v are the two components of the in-plane
displacement, εxx =

∂u
∂x +

1
2 (

∂w
∂x )

2, εyy = ∂v
∂y +

1
2 (

∂w
∂y )

2, εxy =
1
2 (

∂u
∂y +

∂v
∂x +

∂w
∂x

∂w
∂y ) are

the components of the strain tensor, E is the Young modulus of the film, D is the
bending modulus of the film, ν is the Poisson ratio of the film. We note that the
out of plane deflection can result in stretching as shown by the extra term of the ε
expressions.

The governing equations of the plate are then obtained by minimizing the elastic
energy with respect to displacements u, v, w:

∂σαβ

∂xβ
= 0 (2.4)

D∆2w − h
∂2w

∂xα∂xβ
σαβ = 0 (2.5)

with σαβ the components of the stress tensor.

The shape of the plate results from a competition between the stretching energy and
the bending energy.

2.1.2 Energy brought by the substrate
The substrate is considered as a semi-infinite linear elastic material. The expression
of the substrate energy can be simplified depending on the situation: for example,
in the case of a substrate in sandwich panels, Allen [3] showed that considering this
energy first as a sum of stretching energy and shear energy and then considering all
in-plane strains to be negligible compared to the strains in the z direction, the energy
of the substrate could be reduced to terms only related to the shear strains in the
z direction. In our case, we want to start from a general approach and express the
energy of the substrate without neglecting any terms. It is possible to do so starting
from the general elastic energy of the substrate :

Esub =

∫ ∞

−∞

∫ ∞

−∞

∫ 0

−∞

1
2
σi j εi j dz dx dy. (2.6)
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This can be expressed in terms of the substrate displacements us,vs,ws as

Esub =
1

Lx Ly

Es

2

∫ ∞

−∞

∫ ∞

−∞

∫ 0

−∞

1
2

1 − νs

(1 + νs)(1 − 2νs)
((
∂us

∂x
)2 + (

∂vs

∂y
)2 + (

∂ws

∂z
)2)

+
1
2

1
1 + νs

((
∂us

∂y
+
∂vs

∂x
)2 + (

∂us

∂z
+
∂ws

∂x
)2 + (

∂vs

∂z
+
∂ws

∂y
)2)dx dy dz. (2.7)

The equilibrium equations associated with this energy are the Navier equations

(λ + µ)grad div
©«

us

vs

ws

ª®®®¬ + µ
©«
∆us

∆vs

∆ws

ª®®®¬ = 0 (2.8)

with λ and µ being the Lame coefficients of the material which can be expressed as
functions of the Young modulus and the Poisson coefficient as follows:

λ =
Esνs

(1 + νs)(1 − 2νs)
, (2.9)

µ =
Es

2(1 + νs)
. (2.10)

Equation (2.8) gives

(λ + µ)(
∂2us

∂x2 +
∂2vs

∂x∂y
+
∂2ws

∂x∂z
) + µ(

∂2us

∂x2 +
∂2us

∂y2 +
∂2us

∂z2 ) = 0, (2.11)

(λ + µ)(
∂2us

∂x∂y
+
∂2vs

∂y2 +
∂2ws

∂x∂z
) + µ(

∂2vs

∂x2 +
∂2vs

∂y2 +
∂2vs

∂z2 ) = 0, (2.12)

(λ + µ)(
∂2us

∂x∂z
+
∂2vs

∂y∂z
+
∂2ws

∂z2 ) + µ(
∂2ws

∂x2 +
∂2ws

∂y2 +
∂2ws

∂z2 ) = 0. (2.13)

(2.14)

We seek to solve these equations subjected to the deflection of the film us(z = 0) =
u, vs(z = 0) = v, ws(z = 0) = w and zero displacement as z → ∞. By naming
f ′ = ∂ f

∂z and by transferring the previous equations into the Fourier domain for
variables x and y, we obtain

(λ + µ)((−k2
x ûs) + (−kx ky)v̂s + ikxŵs

′) + µ(−k2
x ûs − k2

y ûs + ûs
′′) = 0, (2.15)

(λ + µ)((−kx kyûs) + (−k2
y)v̂s + ikyŵs

′) + µ(−k2
x v̂s − k2

y v̂s + v̂s
′′) = 0, (2.16)

(λ + µ)((ikxûs
′) + (iky)v̂s

′ + ŵs
′′) + µ(−k2

xŵs − k2
yŵs + ŵs

′′) = 0. (2.17)
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This can be expressed with the form:

©«

ûs

v̂s

ŵs

ûs
′

v̂s
′

ŵs
′

ª®®®®®®®®®®®®®®®¬

′

=

©«

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

k2
x
λ+2µ
µ +k2

y
λ+µ
µ kx ky 0 0 0 −ikx

λ+µ
µ

λ+µ
µ kx ky k2

y
λ+2µ
µ +k2

x 0 0 0 −iky
λ+µ
µ

0 0 µ
λ+2µ (k

2
x+k2

y) −ikx
λ+µ
λ+2µ −iky

λ+µ
λ+2µ 0

ª®®®®®®®®®®®®®®®¬

©«

ûs

ûs

ûs

ûs
′

v̂s
′

ŵs
′

ª®®®®®®®®®®®®®®®¬

(2.18)

or U′ = AU. The linear operator A of Equation (2.18) has eigenvalues kz and −kz

each one with multiplicity 3 and

kz =

√
k2

x + k2
y . (2.19)

The eigenspace associated with each of those two eigenvalues has dimension 2. As
a consequence, Equation (2.18) presents the following forms as solutions:

ûs = (u1 + u2z)ekz z + (u3 + u4z)e−kz z, (2.20)

v̂s = (v1 + v2z)ekz z + (v3 + v4z)e−kz z, (2.21)

ŵs = (w1 + w2z)ekz z + (w3 + w4z)e−kz z . (2.22)

Injecting (2.20), (2.21), (2.22) into (2.15), (2.16), (2.17) gives a new set of equations
to solve. As each coefficient associated with an exponential term must be brought
to 0 to satisfy the condition as z → ∞, the expressions of substrate displacement
are simplified:

©«
ûs

v̂s

ŵs

ª®®®¬ = ekz z

(
c1

©«
ky
−kx

0

ª®®®¬ + c2
©«

0
ikz

ky

ª®®®¬ + c3

©«
kx z

kz
ky

λ+3µ
λ+µ + kyz

−ikzz

ª®®®¬
)

+ e−kz z

(
c4

©«
ky
−kx

0

ª®®®¬ + c5
©«

0
−ikz

ky

ª®®®¬ + c6

©«
kx z

−kz
ky

λ+3µ
λ+µ + kyz

ikzz

ª®®®¬
)

(2.23)

The constants of integration can be determined using the boundary conditions: the
substrate is considered semi-infinite, then c4, c5, c6 are all 0 and the displacements
at z=0 are equal to the displacements u, v, w of the film; then c1, c2, c3 are functions
of v̂,û,ŵ:

û = ky c1 (2.24)



15

ŵ = ky c2 (2.25)

v̂ = −kx c1 + ikz c2 +
kz

ky

λ + 3µ
λ + µ

c3 (2.26)

To be able to use those expressions, it is first necessary to use the Plancherel theorem
to transfer the in-plane spatial domain into the Fourier domain in Equation (2.7):

Esub =
1

Lx Ly

1
2

∫ ∞

−∞

∫ ∞

−∞

∫ 0

−∞

(2µ + λ)(k2
x |ûs |

2 + k2
y |v̂s |

2 + |ŵs
′|2)

+ λ(kx kyûs v̂s
∗ + kx ky v̂sûs

∗ + ikxûsŵs
′∗ − ikxûs

∗ŵs
′ + iky v̂sŵs

′∗ − iky v̂s
∗ŵs
′)

+ µ(|ikyûs + ikx v̂s |
2 + |ikxŵs + ûs

′|2 + |ikyŵs + v̂s
′|2) dz dkx dky . (2.27)

By substituting the expressions of v̂s,ûs,ŵs, the final form of the substrate energy is
finally obtained:

Esub =
1

Lx Ly

∫ ∞

−∞

∫ ∞

−∞

©«
û∗

v̂∗

ŵ∗

ª®®®¬
Es(1 − νs)

(1 + νs)(3 − 4νs)
T

©«
û

v̂

ŵ

ª®®®¬ dkx dky, (2.28)

with

T =
©«

k2
x

kz
+

3−4νs
1−νs

k2
y

4kz
1

1−νs
kx ky
4kz

−
1−2νs
1−νs

ikx
2

1
1−νs

kx ky
4kz

k2
y

kz
+

3−4νs
1−νs

k2
x

4kz
−

1−2νs
1−νs

iky
2

1−2νs
1−νs

ikx
2

1−2νs
1−νs

iky
2 kz

ª®®®¬ . (2.29)

The details of the calculation just depicted can also be found in Appendix C.

If we assume that u, v are small then

Esub =
1

Lx Ly

∫ ∞

−∞

∫ ∞

−∞

E∗s |ŵ |
2 dkx dky (2.30)

with E∗s =
Es(1−νs)

(1+νs)(3−4νs) . This recovers expression given by the work of Audoly and
Boudaoud [4].

2.1.3 Loading
When the bilayered system is submitted to a load, the total energy receives an extra
term associated with this load. Of particular interest in this thesis is the situation
when there is a mismatch in the stress-free strain between the film and the substrate.
We introduce this by modifying the strain tensor as follows:



16

εxx = −ηx +
∂u
∂x
+

1
2
(
∂w

∂x
)2, (2.31)

εyy = −ηy +
∂v

∂y
+

1
2
(
∂w

∂y
)2, (2.32)

εxy = −ηxy +
1
2
(
∂u
∂y
+
∂v

∂x
+
∂w

∂x
∂w

∂y
) (2.33)

with ηx , ηy, ηxy being the components of the strain mismatch tensor.

2.2 Possible instabilities
2.2.1 Buckling
The system above has an equilibrium solutionwithw = 0. However, as themismatch
η increases, this solution becomes unstable at a critical ηc. We obtain deformation
patterns as post-buckled states.

2.2.2 Deformation patterns
Using the separation of variable and superposition, Allen [3] looked for solution w

of the form
w =

∑
m

∑
n

Amn sin(km x) sin(kn y) (2.34)

where Amn is the amplitude and km, kn the wavenumbers of the mnth mode.

The simplest form of w is the cylindrical pattern characterized by one coefficient A

and one wavenumber k. This situation occurs when the plane strain applied to the
bilayered system is uni-directional and with an amplitude within a specific range.
This form is one of the most observed and studied experimentally and numerically
[12, 46, 65, 18]. But more complex patterns can be observed when the stretching of
the system becomes bi-axial. The possibilities have been well-described by Audoly
and Boudaoud [4, 5, 6], who explained that by adding a second main direction for
the plane stretch field within the bilayered system, the initial uni-directional wrinkle
deflection could turn into undulating stripes or a checkerboard pattern. They also
explained that a higher magnitude of in plane strain could lead to the formation of
a herringbone pattern. Those different options are depicted in Figure 2.2.

Those different types of deformation occur for an external load near the buckling
threshold and depend mainly on the orientation of the stretch. But other types of
patterns can result from uni-directional in-plane strain: if the magnitude of the strain
goes very high beyond the buckling threshold, the uni-directional wrinkles will be
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Figure 2.2: Schematics of mode shapes: (a) 1D wrinkling mode, (b) square checker-
board mode, (c) hexagonal mode, (d) triangular mode, and (e) herringbone mode.
Image from[17].

Figure 2.3: Schematic of three types of morphological instability: (a) wrinkling,
(b) folding, and (c) creasing. Image from[54].

folded [68]. It is also possible to observe a period-doubling (a doubling of the
periodicity) of the original wrinkles [14, 18], and for particular cases of stiffness
ratio, a creasing behavior will be observed beyond the buckling threshold (see Figure
2.3).

2.2.3 Theory for unidirectional wrinkles
In their work, Audoly and Boudaoud [4] start from the assumption that the deflection
would be of the form w = A cos(k x) and use the simplified form of the substrate
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energy. They obtain

Eel =
Eh

2(1 − ν2)
(η2

x + η
2
y + 2νηxηy −

ηx + νηy

2
k2 A2 +

1
16

k4 A4) +
E

2(1 + ν)
η2

xy

+
1
4

Dk4 A2 +
1
2

E∗s k A2. (2.35)

The expressions of the amplitude and wavenumber characterizing the wrinkles are
obtained by optimizing Equation (2.35) with respect to A and k:

dEel

dk
= 0 ⇒ k = (

E∗s
D
)1/3 (2.36)

dEel

dA
= 0 ⇒ A =

√
(ηx + νηy)

4
k2 − h2 (2.37)

Equations (2.36) and (2.37) show that thewavelengths ofwrinkles are independent of
the external stretch η applied to the bilayered system, and they also give an expression
for the minimum stretch required for the buckling to happen: (ηx + νηy)

4
k2 − h2 > 0

means that (ηx + νηy) >
h2k2

4 represent the condition on η for wrinkles to appear.

The results regarding the amplitude of those wrinkles must be considered very
carefully. The theory explained by Koiter [37] shows that there is another method
to express the amplitude and it gives very different results compared to Equation
(2.37).

2.3 Experimental studies
To confirm all the theories developed in the previous sections of this chapter, many
experimental studies have been realized. The details of those experimental studies
are indicative of the range of physical parameters that can be considered for further
investigation.

Regarding the materials used in the experimental studies, we notice that the material
used the most often as a substrate is the PDMS which is a silicon-based organic
polymer. The advantage of this polymer is that its stiffness can vary depending on
the way the sample is prepared. Although the substrate is in most cases made of
PDMS, the material for the film is different from one study to another: as mentioned
in Section 1.3, it can be made of gold, silicon, or gels. Another possibility used
by Brau et al [12] and Auguste et al[7] is to start from the PDMS substrate and to
create the film on top of the substrate by uniformly oxidizing the top surface of the
substrate using ultra violet rays combined with ozone as illustrated in Figure 2.4.
The ozone will modify the rigidity of the surface, resulting in a thin film with a
higher stiffness already attached to the substrate.
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Figure 2.4: Generating wrinkles in a bilayered system by oxidation using ultra violet
and ozone. Image from[7].

Figure 2.5: Generating wrinkles in a bilayered system by spin coating and dip
coating. Image from[25].

In case the film is not created from the surface of the substrate, different techniques
can be used to generate it: Jin et al [48] used spin coating to generate a thin film
made of uncured PDMS and then placed the film into an oven at 120◦ C before
attaching it to a PDMS substrate at 40◦C. Chen and Crosby [25] also used a spin
coating method to generate a polystyrene film, but used a dip coating method to
attach it to the substrate, as illustrated in Figure 2.5.

The choice of the method for engineering the bilayered system is also related to the
method used to generate the differential strain. Different modes of compression for
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such a system are listed by Holland et al [40]: either the two materials are already
attached together, and then everything is submitted to the same a strain resulting
in a different load due to the stiffness mismatch, or one of the two materials is
pre-stretched before being attached to the other, and then this pre-stretch is turned
off after attachment. It is also possible to have both materials attached, but then
external stretch is only applied to one material. This was the case in the work of
Breid and Crosby [13]: they used the ultra violet method to generate the stiff film on
top of the substrate, and then injected a solvent vapor inside the substrate to swell
it while the stiff film maintained its original volume. This method resulted in in a
differential stress at the interface film substrate.

The measurement part can also involve different methods. In their work, Auguste
et al [7] used optical profilometry with laser scanning confocal fluorescence mi-
croscopy to characterize the shape of the wrinkles.
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C h a p t e r 3

NUMERICAL METHOD FOR DISCONTINUOUS BUCKLING

This chapter presents a numerical method for a situation where the mismatch strain
is possibly heterogeneous. We apply it to the case of liquid crystalline substrates.

3.1 Liquid-crystalline substrates
A potential materials for the substrate of the bilayered system is the liquid crystal
elastomer (LCE). LCEs are rubbery networks of polymer chains with a long-range
mobile crystalline order, and they show enormous (0.1-1) strains depending on tem-
perature [78]. Specifically on cooling, we observe compression along the nematic
director and extension perpendicular to it. Studying very thin (35 nm) polystyrene
film attached to a thicker (0.36 mm) LCE substrate, Agrawal [2] observed the forma-
tion of surface wrinkles parallel to the nematic director of the LCE if the bilayer is
cooled by 20◦C and perpendicular to the nematic director and if the bilayer is heated
by 10◦C. When the bilayer is brought back to its initial temperature, the surface
deformation returns to the initial state. It is observed that the wavelength of the
wrinkles varies linearly with the thickness of the polystyrene film, and beyond suffi-
ciently high thickness for the film, the wrinkling instability is replaced by reversible
curling. The role of the thickness is also emphasized in the work of Verduzco [74]
who studied the defomation of a nematic gel.

The thermal expansion technique is also the base of the experimental study of Kang
et al [49]. In this work, the liquid crystalline material is a reactive mesogen solution
(RMS) and is attached to a polyimide (PI) film before being exposed to plasma.
The PI film is rubbed before attachment in order to make the RMS molecules align
along the rubbing direction once in contact with the film. This technique shows the
importance of molecular alignment: when the PI film is not rubbed, the resulting
wrinkles formed after plasma exposure were isotropic while a rubbed film would
result in a one directional wrinkle aligned with the rubbing direction. In Kang’s
paper, it is speculated that the necessary strain for wrinkling comes from thermal
heating due to the plasma. It is also shown that a longer exposure time to plasma
(100 seconds instead of 60 seconds) would result in higher amplitude for the re-
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sulting wrinkles. This paper links each characteristic of the wrinkling phenomena
to a particular experimental parameter: the wrinkling directionality is linked to the
molecular alignment of the liquid crystal, the amplitude of wrinkles is connected to
the plasma exposure time generating higher strain. The wavelength of the wrinkles
results from the thicknesses and the elastic modulus ratio.

Even though the thermal expansion property is key in generating the differential
strain triggering the wrinkles, the very particular wrinkling pattern (direction, com-
plexity) depends on the preparation of the liquid crystalline material. This fact is
emphasized in thework of deHaan [34], showing that polymerization by photoalign-
ment of liquid crystal opens the door to different possibilities of wrinkle orientations.
This photopolymerization by UV light irradiation allows the director alignment to
be heterogeneous or a function of space. It results in wrinkles changing directions
in different regions of the very same sample. Even more complex patterns are also
obtained using photomasks during the polymerization. This method is also used in
the work of Ma [58] where it is also shown that the duration of the UV radiation can
influence the final wavelength and amplitude of the resulting wrinkles: the longer
the exposure to UV, the larger the wavelength and the amplitude of the wrinkles are.

3.2 Minimizing the total energy
We consider the situation where the strain mismatch η between the film and the
substrate varies with space (x,y). The total energy of the bilayered system is

Eel = Es f + Eb f + Esub

=
1

Lx Ly
(

∫ ∫
Eh
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2
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(
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)2)2

−
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(
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2
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+

∫ ∫
D
2
(∆w)2 dx dy +

∫ ∫
E∗s

√
k2

x + k2
y |ŵ |

2 dkx dky).

(3.1)

Finding the equilibrium state of this system is achieved by finding the displacements
u, v and w that minimizes this total energy. In this expression, the part of the
energy associated with the bending phenomenon is different from Equation 2.3: for
simplicity, we only keep the term (∆w)2.
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3.2.1 Non-dimensionalization
The expression of the energy involves a lot of different variables and parameters.
The number of parameters can be reduced using non-dimensionalization to simplify
the expression of the energy. Another advantage is that this process will allow us
to introduce a set of coefficients associated with each type of energy. Those coeffi-
cients will make it more convenient to control the influence of one particular energy
compared to the two others.

In our case, the variables are u, v, w, x, y, ηx and ηy. The parameters are E ,
h, ν and Es∗. Expressions of the undimensionalized variables are written:

x̄ =
x
x0

; ȳ =
y

y0
; ū =

u
u0

; v̄ =
v

v0
; w̄ =

w

w0
; η̄x =

ηx

ηx0
; η̄y =

ηy

ηy0
;

¯ηxy =
ηxy

ηxy0
.

We must be careful about the frequency domain and be sure that the
non-dimensionalization of this domain is equivalent to the Fourier transform of the
non-dimensionalized space domain.

ŵ =

∫
w(x, y) exp(−i(kx x + kyy))dx dy
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∫
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(3.2)
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1
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1
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and ¯̂w =
∫
w̄ exp(−i(k̄x x̄ + k̄y ȳ)) then ŵ =

w0 x0 y0 ¯̂w.
Substituting all those variables in the expression of energy, we obtain
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+
v0

x0

∂v̄

∂ x̄
)

+
1
2
w0

x0

w0

y0

∂w̄

∂ x̄
∂w̄

∂ ȳ
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Because of the symmetry along the axes x and y within the bilayered system, we
take x0 = y0 and kx0 = ky0. Then the previous equation gives

1
x0y0
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We introduce dimensionless numbers αbend , αstretch and αsubs and set

x0 = (
αsubs

αbend

D
2E∗s
)

1
3 ,

w0 =

√
αstret

αbend

h2

12
,

u0 = v0 =

√√
αstret

αbend

h2w2
0

12x2
0
,

ηx0 = ηy0 = ηxy0 =

√√
αstret

αbend

h2w2
0

12x4
0
,
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Then the expression of the undimensionalized energy is
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3.2.2 Transfer to the Fourier domain
The expression of this energy is a non-linear function of the displacement and of
the gradient of the displacements. This expression mixes integrals over the space
domain and the Fourier domain. To simplify this, we recall Plancherel’s theorem,
which presents two dimensions∫ +∞

−∞

∫ +∞

−∞

| f (x, y)|2dx dy =
1

4π2

∫ +∞

−∞

∫ +∞

−∞

| f̂ (kx, ky)|2dkx dky (3.4)

where f̂ (k) denotes the non-unitary angular frequency version of the Fourier trans-
form of a function f (x, y)

This theorem allows us to transform the stretching energy and the bending energy
of the film taken from Equation (3.1):
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1
2
�
(
∂w̄

∂ x̄
)2 − ˆ̄ηy + i k̄y ˆ̄v +

1
2
�
(
∂w̄

∂ ȳ
)2 |2 − (1 − ν)(− ˆ̄ηx

+ i k̄x ˆ̄u +
1
2
�
(
∂w̄

∂ x̄
)2)∗(− ˆ̄ηy + i k̄y ˆ̄v +

1
2
�
(
∂w̄

∂ ȳ
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E f b =
1

4π2

∫
|(k̄2

x + k̄2
y) ˆ̄w |

2 dk̄x dk̄y (3.6)

where * denotes the complex conjugate.

3.2.3 Use of the Augmented Lagrangian
We would like to use this to rewrite the total energy in the form

Ē = Ē f b + Ē f s + Ēs =

∫ ©«
ˆ̄u
ˆ̄v
ˆ̄w

ª®®®¬
t∗

A
©«

ˆ̄u
ˆ̄v
ˆ̄w

ª®®®¬ + (B
t)∗

©«
ˆ̄u
ˆ̄v
ˆ̄w

ª®®®¬ + C dk̄x dk̄y . (3.7)

However, this is not possible due to the terms �
( ∂w̄∂ x̄ )

2, �
( ∂w̄∂ ȳ )

2 and �∂w̄
∂ x̄

∂w̄
∂ ȳ . In order to

solve this problem, we introduce auxiliary variables ξ1, ξ2 and impose the constraint
ξ1 =

∂w
∂x , ξ2 =

∂w
∂y . We use the augmented Lagrangian to enforce the constraint.
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General description of Augmented Lagrangian

The AL is an iterative way to optimize a constrained problem. In order to describe
it properly, it is necessary to start from the penalty function method:

When considering the optimization of a function f (x) subjected to a constraint
c(x) = 0, the penalty functionmethod consists of setting a penalty function sequence
gn(x):

gn(x) = f (x) +
n
2

c(x)2. (3.8)

The optimization is solved by finding the limit of the sequence of the minima xn as
n goes to∞

The AL described by Hestenes [39], is an improvement of the penalty function
method that can be sensitive to local minima and might result in the constraint
c(x) not converging to 0. It builds upon the penalty function parameter by adding
a Lagrange multiplier λ associated with the constraint c(x). The new function to
optimize becomes

gn(x) = f (x) + λnc(x) +
β

2
c(x)2. (3.9)

The quadratic penalty parameter β can be taken as a sequence βn or can bemaintained
a constant positive. The theorems associated with the convergence of λn have been
depicted by Hestenes [39], then by Gill et al [33], and later Nocedal and Wright
[61]. The iterations of gn and λn are described by the following procedure:
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Result: Minimized function f (xn) and its associated minimizer xn

Choose initial values of λ0, β and a convergence criteria τ ;

n=0 ;

while |c(xn)| < τ do
Determine x solving dgn(x)

dx =0;

xn=x;

λn+1 = λn + βc(xn);

gn+1(x) = f (x) + λn+1c(x) + β
2 c(x)2;

n = n + 1;

end
Algorithm 1: Functional minimization algorithm usingAugmented Lagrangian.

Application to the bilayered system energy

The optimization problem Ē (ū, v̄, w̄) we are interested in is
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Following the procedure of the AL, a new function A is created:

A = Ē2+
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In order to minimizeA with respect to ū, v̄, w̄, it is necessary to transfer all the terms
into the Fourier domain to create a quadratic form
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Now, thanks to the new variables ξ1 and ξ2, it is possible to writeA with a quadratic
form of ˆ̄u, ˆ̄v, ˆ̄w:
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The distribution ˆ̄u, ˆ̄v, ˆ̄w minimizing A is given by:

©«
ˆ̄u
ˆ̄v
ˆ̄w

ª®®®¬ = −A−1B. (3.16)
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TheAL iterative loopmust be adapted to take into account the ξ1 and ξ2 in the energy
minimization: the two distributions cannot remain fixed at their initial values: ξ1

and ξ2 must be calculated at each iteration to minimize A . It could be possible to
consider a larger quadratic form in the Fourier domain, but it is more straightforward
in that case to optimize A with respect to ξ1 and ξ2 in the spatial domain. As a
result, at each iteration, ξ1 and ξ2 are determined by solving the equations:

∂A

∂ξ1
= 0, (3.17)

∂A

∂ξ1
= 0 (3.18)

which are equivalent to solving
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+
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+

1
2
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2 ) − 2(1 − ν)ξ2(−η̄x +
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+

1
2
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1 )

+ 2(1 − ν)ξ1(−η̄xy +
1
2
(
∂ū
∂ ȳ
+
∂v̄

∂ x̄
) +

1
2
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Ultimately, the iterative procedure of the AL applied to the bilayered system is
described by the following algorithm:
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Result: Distribution of u, v, w minimizing the total energy.

Definition step: Choose all physical parameters of the bilayered system and
the value of the non-dmensionalized coefficients αbend , αstret and αsub. Using
those parameters, the space domain, the frequency domain, the
undimensionalized coefficients x0, w0, u0 = v0, ηx0 = ηy0 = ηxy0, Ē and the
quadratic tensor A can be defined. Choose the parameters of the loop: the
maximum number of iterations, the convergence criteria τ, the coefficient of
quadratic penalty β., the initial value of the Lagrange multipliers λ0

1 and λ0
2.

Choose the initial distributions for undimensionalized displacements ū0, v̄0,
and w̄0. ;

n=0 ;

while ∂w̄n+1
∂ x̄ − ξ1(n+1) < τ and ∂w̄n+1

∂ ȳ − ξ2(n+1) < τ do
Solve Equations (3.19) and (3.20) to determine ξ1(n+1) and ξ2(n+1);

Transfer all distributions ūn, v̄n, w̄n, λ1n,λ2n,ξ2
1n, ξ

2
2n, ξ1nξ2n into the Fourier

domain;

Compute Bn+1 using (3.15);

Compute ˆ̄un+1, ˆ̄vn+1, ˆ̄wn+1 using (3.16);

Transfer ˆ̄un+1, ˆ̄vn+1, ˆ̄wn+1 into the space domain ;

Compute ∇ūn+1,∇v̄n+1,∇w̄n+1 ;

Compute λ1(n+1) = λ1(n) − β(
∂w̄n+1
∂ x̄ − ξ1(n+1)) ;

Compute λ2(n+1) = λ2(n) − β(
∂w̄n+1
∂ ȳ − ξ2(n+1)) ;

n = n + 1;

end
Algorithm 2: Energy minimization algorithm using Augmented Lagrangian in
the Fourier domain.

We implement the algorithm in Matlab. Since we discretize the problem, it is
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important that the discretization be chosen to include the frequencies of interest.
Further, Matlab uses unitary ordinary frequency instead of the unitary angular
frequency used here.

3.3 Results
In all cases, the initial distributions for displacements u, v and w are taken to be
random, the initial distributions λ0

1 and λ0
2 are taken to be 0 and the value of the

penalty coefficient β is maintained constant through the entire procedure. The
thickness of the film is taken to be 30 µm, the Poisson coefficient of the film is set
to 0.3, and the Poisson coefficient of the substrate is set to 0.4

3.3.1 Case of a uniform strain
We seek to verify the method by comparing the converged results in the case of a
homogeneous strain with the analytic results shown in Chapter 2.

One dimensional deformation

In one dimension, we consider in-plane displacement u and deflection w depending
only on the space variable x. We still allow strain in the y direction ηy to be applied
as it is a uniform field independent of directions. There is only one constraint ∂w∂x ,
and as a consequence, there is only one Lagrange multiplier λ1.

Several tests have been performed with different stiffness ratios and different values
for the applied strain ηx = ηy. For every test, the sampling was taken to be 256
points, and the stopping criteria was taken to be:

| ∂w∂x − ξ1 |

| ∂w∂x |
< 10−8. (3.21)

Every test converged to the stopping criteria and results in a single frequency mode
for the deflection w as illustrated in Figure 3.1. This particular figure represents the
case where the elasticity of the film is 10 GPa and the elasticity of the substrate is 10
MPa. Table 3.1 collects the results of all cases studied. We see excellent agreement
between the numerical result and analytic result, thereby verifying the numerical
method.
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Figure 3.1: Plot of the converged deflection obtained using the Augmented La-
grangian method.

Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Case
7

Case
8

Case
9

E f (GPa) 1 3 5 7 10 10 10 10 10
Es (MPa) 10 10 10 10 10 7 5 3 1
strain 0.03 0.03 0.03 0.02 0.01 0.01 0.009 0.009 0.009
converged
wavelength
(m−1)

10738 7445 6280 5613 4984 4425 3956 3337 2313

theoretical
wavelength
(m−1)

10738 7445 6280 5613 4984 4425 3956 3337 2313

converged
amplitude
(µm)

21.28 43.75 55.28 49.00 34.54 41.9 45.72 57.48 88.57

theoretical
amplitude
(µm)

21.28 43.75 55.28 49.00 34.54 41.9 45.72 57.48 88.57

Table 3.1: 1D converged deflection characteristics with the Augmented Lagrangian
method.
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Two-dimensional deformation

Figure 3.2 illustrates the evolution of a two-dimensional case by showing the first step
with complete randomdistribution, and how themodelmanages to reach a converged
configuration. We see some branching faults, but they eventually annihilate each
other.

The main difficulty with the 2D case is the cost of calculation, especially since
convergence requires usually around 40,000 iterations. As a consequence, the
convergence criteria was taken to be 10−5 instead of 10−8. Themodel also converged
towards one mode frequency wrinkles as illustrated in Figure 3.3.

Another difficulty compared to the 1D case is the error with respect to the theory.
We noticed that even though the wavelength of the wrinkles matched the expected
theory value with a small relative difference, the value of the amplitude did not
match exactly, and the relative difference was higher than 5%. The reason for that
difference turned out to be the sampling of the model. When in 1D a sampling of
more or less 18 value points per wrinkle period was enough to match the theory
value, the 2D case would require 70 value points per wrinkle period. The influence
of the sampling on the converged amplitude is shown in Figure 3.4. In order to
reach that sampling, it was necessary to reduce the number of wrinkles observed
on the whole data set as the option of increasing the number of points within the
set requires high computational cost. The illustration of the number of wrinkles
observed to improve the sampling is represented in Figure 3.5.

Being aware of this error depending on the sampling, the next step is to compare
the theory with the numerical amplitude and wavelength for different scenarios of
elasticity and applied strain. This comparison is illustrated in Table 3.2. When we
compare the theoretical amplitude with the numerical converged solution, we must
keep in mind that we are considering a unidirectional strain η which means that the
strain in the other main direction will be zero. As a consequence, the theoretical
expression of the amplitude, based on expression 2.37 will become

A =

√
η

4
k2 − h2. (3.22)

3.3.2 Influence of quadratic constraint on convergence
The choice of the initial values for parameters and variables has an influence on
the convergence of the model. The initial displacements are taken to be random
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Figure 3.2: Evolution of the deflection w as a function of the number of iterations.
Case a shows the deflection after one iteration; Case b shows the deflection after
4300 iterations; Case c shows the deflection after 16865 iterations.
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Figure 3.3: Plot of the converged deflection obtained using the Augmented La-
grangian method in 2D.

Figure 3.4: Relative error of the amplitude as a function of the sampling.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
E f (GPa) 7 5 3 1 10 10
Es (MPa) 10 10 10 10 1 10
strain η 0.01 0.03 0.03 0.03 0.003 0.01
converged wavelength
(m−1)

5613 6286 7441 10740 2315 4982

theoretical wave-
length (m−1)

5613 6279 7441 10738 2313 4984

sampling(number of
points/period)

19 43 44 19 19 14

converged amplitude
(µm)

16.96 43.79 33.56 10.52 32.67 23.36

theoretical amplitude
(µm)

19.22 46.29 35.56 11.86 36.64 26.65

Table 3.2: Converged two-dimensional deflection characteristics with the Aug-
mented Lagrangian method.
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Figure 3.5: Change of sampling to improve the resolution and decrease the amplitude
relative error. Case a shows 9 wrinkles for an error of 12.3%; Case b shows 3
wrinkles for an error of 5.85 %; Case c shows 2 wrinkles for an error of 3.48%.



37

distributions, and the initial Lagrange multipliers λ1 and λ2 are taken to be 0. Those
choices are motivated by the fact that those values will evolve as the loop progresses.
But regarding the quadratic penalty coefficient β, the choice is more important since
β remains constant during the entire loop. When looking at the terms associated
with β in the expressions (3.12) and (3.16), it is possible to determine the influence
of β on the converged solution.

If β is significantly large, then the energy will be dominated by the quadratic
penalty term β

2 (∇w − ξ)
2. As a consequence, the minimization of the energy will

make the residue (∇w − ξ) very small to compensate the large value of β. This will
result in a smaller converged residue and then more likely to satisfy the stopping
loop criteria. But, the expression (3.16) indicates that in each successive increment,
deflection w will be calculated as follow:

ˆ̄w = −4π2
1

4π2 (ikx)λ̂1 +
1

4π2 (ikx)λ̂2 +
1

4π2
β
2 (2ikx)ξ̂1 +

1
4π2

β
2 (2iky)ξ̂2

2αbend(k2
x + k2

y)
2 + 2αsubs4π2

√
k2

x + k2
y + β(k2

x + k2
y)

. (3.23)

And in the case of β being very large, this expression will then be dominated by
the terms associated with β, and the influence of the other terms will be negligible.
As a consequence, the convergence of w towards the form minimizing the energy
will be very slow because the stretching and bending terms have a small influence at
every increment compared to β. In conclusion, having β very large will ensure that
the converged residue will be very small and will be more likely to match with the
convergence criteria, but the final converged state will require a very large number
of increments to be reached.

On the opposite side, if β is very small, the minimum value of the residue will
be reached quicker, but might not be small enough to match with the stopping loop
criteria. The influence of β is illustrated in Figure 3.6. In those plots, the norm of
the residue distribution is calculated as:

|residue| = |
√

r2
1 + r2

2 | (3.24)

with

r1 =

∂w
∂x − ξ1
∂w
∂x

, (3.25)

r2 =

∂w
∂y − ξ2

∂w
∂y

. (3.26)
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β Minimum residue norm Increment of the minimum
120 6.60 ×10−4 8,019
400 1.16 ×10−4 9,327
600 3.64 ×10−5 15,775
800 2.21 ×10−5 23,156
1000 1.31 ×10−5 32,717
1200 9.84 ×10−6 40,799
2000 3.28 ×10−6 62,601
3000 1.45 ×10−6 130,326

Table 3.3: Minimum norm of the residue and computational cost for different values
of quadratic penalty coefficient β.

It is necessary to remember that ξ1, ξ2, ∂w
∂x and ∂w

∂y are distributions within the
space domain as there is one value associated with each value of the displacement
distribution within the space domain It can be observed that for β=120, the residue
reached its minimum in less than 10,000 increments, but the norm of the residue
distribution will not go lower than 0.005. By increasing β all the way until 4,000,
one can see that the residue will take more than 130,000 increments to reach its
minimum, but the minimum value of the norm of the residue will be lower than
10−5. All the exact values of the minimum residue and associated increments are
indicated in Table 3.3.

It is interesting to observe from Figure 3.6 that after reaching its minimum value,
the residue starts increasing and diverges after more iterations. This phenomenon
is due to the fact that the deflection w depends on only one variable. It means
that its derivative with respect to the other variable will converge towards a zero
distribution. At some point, both the derivative of w and the associated variable ξ
will be so small that the relative error with respect to the derivative of w will become
very unstable due to its very small values and will eventually start to diverge. This
problem can be avoided by changing the orientation of the wrinkles to ensure that
deflection w on both in-plane coordinates which will prevent ∂w

∂x or ∂w
∂y to tend to

0. This case is illustrated in Figure 3.7. We see that after a stabilization period, the
residue norm will converge and reach the convergence criteria (in this case equal to
5 × 10−7) set to stop the loop.

Case of gold film attached to PDMS substrate

In all previous sections, the values of the Young’s modulus of the film are not the
values that can be seen in the experimental work of Bowden et al [10]. If we
take values indicated in the experimental studies: E = 82 GPa, Es = 20 MPa, ν=
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Figure 3.6: Evolution of the norm of the residue distribution for different values of
quadratic penalty coefficient β.
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Figure 3.7: Example of uniform deflection depending on both x and y coordinates.
The final converged out-of-plane displacement is on the left, and the evolution of
the norm of the associated residue is on the right.

0.33, νs= 0.48, and a strain magnitude η = 0.005, the converged solution gives the
expected wavelength but there is still some inaccuracy regarding the amplitude. For
a thickness of 50 nm, as indicated in the experimental work, the converged model
predicts an amplitude of around 50.54 nm while the theoretical value was 56 nm.
This correspond to an error of 9.75 %. And if we take the thickness to be 100 nm,
then the resulting numerical amplitude will be 101 nmwhile the expected theoretical
amplitude is 111 nm. There is still an error of 9% and if we make the same study
for a thickness of 400 nm, the resulting numerical amplitude is 404 nm and the
theoretical amplitude is 444 nm making the error still 9%.

These results demonstrate that we can still obtain a converged model close to the
theoretical model with parameters corresponding to experimental conditions.

3.3.3 Case of discontinuous strain
Importance of the substrate energy

One critical point to consider with the Matlab implemented AL method is that the
Fourier transform of all variables ends up forcing all average values of strains to be
zero regardless of the size of the surface. It is then necessary to be more careful
with the contribution of the displacements in each energy, not only regarding the
amount of resulting energy, but regarding the effect on the convergence of the final
solution.

The substrate energy is then revisited to take into account the terms related to
the in-plane strains. So we cannot use the simplified expression (2.30), but the full
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expression (2.28).

One parameter strain distribution

One of the key features here is the control of the direction of the wrinkling pattern
along the surface. This control results from the stretching tensor

η =

(
ηx ηxy

ηxy ηy

)
(3.27)

To reduce this tensor to one orientation parameter, we introduce the angle θ repre-
senting the orientation of the stretch with respect to the undimensionalized x-axis:

η = η

(
cos2(θ) cos(θ) sin(θ)

cos(θ) sin(θ) sin2(θ)

)
(3.28)

In this representation, ηwill be considered as the loading parameter. We can generate
a heterogeneous mismatch by creating an adequate distribution of the angle θ. This
influence is illustrated in Figure 3.8. The left case of this figure is a simple interface
with θ being π/4 on the left of the surface and π/2 on the right of the surface. The
right case shows that multiple interfaces can be created as θ would switch from π/2
to π/4 two times on the same surface. We can observe spacing is at the expected
value in each segment. This creates mismatch at the boundary, resulting in defects.

Another interesting case to observe is a case of symmetry of the parameter θ through
the interface. As illustrated in Figure 3.9, the left part has wrinkles oriented with
θ = π/4 and the right part has wrinkles oriented with θ = −π/4. In this case, we
observe that symmetry of the angle results in wrinkles in phase through the interface.
There is no need for branching as the positions of high amplitude deflections and
low amplitude deflections are matching along the interface. This makes sense since
the branching operation requires the presence of extra frequencies within the Fourier
domain, which results in higher surface energy.

A more advanced case would consist of representing a more complex combination
of interfaces. Figure 3.10 shows what happens when the surface is submitted to a
particular angle variation making the final deflection go through a different set of
interfaces with each one presenting a symmetry for the angle θ. Again it can be
observed that the wrinkles will form in such a way that no branching is required
through the interfaces.
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Figure 3.8: Converged deflection for varying angle distributions.

Figure 3.9: Converged deflection for symmetric strain angle through the interface.
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Figure 3.10: Converged deflection for multiple symmetric interfaces.

Figure 3.11: Converged deflection for multiple non-symmetric interfaces.

The last case we want to study in this section illustrates what happens when the
periodicity at the edges is made impossible by the orientation of the wrinkles.
Because of the Fourier transform, the model when returning to the space domain
will have periodicity of the displacements between opposite edges of the surface.
Strain orientation distribution depicted in Figure 3.11 results in 4 different regions
with non-symmetric wrinkle directions. Observing closely the right part of the
bottom edge, we can see that the deflection is continuous with the right part of
the top edge but immediately branches towards the assigned direction of the region.
This result indicates that when using this method, one should be careful and consider
results represented away form the edges except if there is symmetry between the
opposite edges.
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Sensitivity to the angle of the strain

All results obtained in this thesis considered angles of the strain mismatch to be
either θ = π

2 and θ = π
4 . This choice resulted in a strain tensor with components

either only along the y-axis or with equal axial and shear components:

θ =
π

2
⇒ η =

(
0 0
0 η

)
, (3.29)

θ =
π

4
⇒ η =

(
η
2

η
2

η
2

η
2

)
. (3.30)

But if we study the case of non-symmetric angles of strain orientation with respect to
the x- and y-axes, we are going to see a difference in terms of converged amplitude.
This is illustrated in Figure 3.12: we see that the converged maximum deflections
for angles π

2 and π
4 are very close, and that there is a difference for angles π

3 and π
6 .

We can conclude that the numerical method is sensitive to the angle of orientation
of the strain. To avoid inaccuracy in the results, we will consider only numerical
values for angles π

2 and π
4 since those angles ensure the simplest forms of the strain

tensor.

Energy at the interface

This method can now be used to characterize the energy behavior at the interface of
the discontinuous strain. The case taken to make the comparison is the one with film
elasticity being 10 GPa, substrate elasticity being 10 MPa, strain η being 0.01. Each
energy is first computed separately using Equations (2.7) and (3.1) and then the total
energy density functions are represented by summing the three energies. Figure
3.13 represents the reference case with no change of orientation angle, Figure 3.14
represents the case with the orientation angle going from π/2 to π/4, and Figure
3.14 represents the case with the orientation angle going from π/4 to −π/4. Figure
3.14 is the ideal illustration of the effect of branching at the interface on the energies.
We see that overall, the branching has the effect of decreasing the energy variation at
the interface. We can also see that the total energy variation is also decreased at the
interface without any branching, but instead, a symmetric change of the orientation.

3.3.4 Limit of the interface dimension
The results obtained so far showed a surface divided in two or four parts. Of interest
is the behavior of the material as the number of interfaces within the same surface
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Figure 3.12: Converged deflection for different angles of the strain mismatch: case
a: θ = π

2 ;: case b: θ =
π
3 ;: case c: θ =

π
4 ;: case d: θ =

π
6 .

are multiplied. This will reduce the space in which the wrinkles are allowed to form
and will challenge the convergence of the final solution. This study is realized for
a surface made of 256 × 256 nodes, and in every case a checkerboard is created
for the orientation θ of the wrinkles as illustrated in the left figures in Figure 3.16.
The different regions represent the angle θ switching from 0 to pi

2 . The resulting
converged deflection in each case is illustrated in the right figures in Figure 3.16.

In each case, the total dimension of the surface was taken so that eight wrinkles
would have been observed in the case of a continuous strain distribution. We can
see that for the case b, when the size of each sub-surface is the length of one
period for the wrinkles, the deformation is still reflected correctly. But in case c,
the distance between two interfaces is half this period and it becomes harder to
distinguish precisely the discontinuities. We can then conclude that even if the
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Figure 3.13: Energy density functions distributions for the case of uniformwrinkles.
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Figure 3.14: Energy density functions distributions for the case of wrinkles with
one non-symmetric interface.
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Figure 3.15: Energy density functions distributions for the case of symmetric wrin-
kles.
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Figure 3.16: Strain orientation θ and resulting converged deflection w for three
different number of interfaces within a surface. Case a: four different regions along
each axis; case b: eight different regions along each axis; case c: sixteen different
regions along each axis.
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model still converges for small distances between interfaces, the clearness of the
final disconitnuity will be very weak if this distance is lower than the wavelength
associated with the wrinkles.

3.3.5 Study of a symmetric interface with a small error
The fact that symmetric strain orientations through the interface result in an interface
without any branching or default brings another question: what angle difference
across the interface will result in defaults along the interface? An approach to this
problem consists of creating an interface with almost symmetric strain orientations.
The test illustrated in Figure 3.17 shows the sensitivity of the branching phenomenon
to a small prescribed difference of angles within the symmetry. As seen in the right
figures, a 5% difference between the angles generates defaults at the interface, while
in the right figures, a 1% difference yields no default in the final solution. In the 1%
case, it appears that the wrinkles bend to match with the other half of the surface at
the interface.
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Figure 3.17: Comparison of two cases with slightly non-symmetric angles across
the interface. The left part represents the case with a difference of 1% between
the two angles accross the interface and the right part represents the case with a
difference of 5%.
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C h a p t e r 4

WRINKLING CONTROL BY ELECTRIC FIELD: SMALL
DEFORMATION THEORY

4.1 Electromechanical coupling and bilayered systems
Some applications, like phase grating, require the buckling of a bilayered system to
be tunable and eventually reversible. One possibility for that is to use a dielectric
elastomer as a substrate and then use the electromechanical coupling of this material
to influence the buckling at the top surface.

Dielectric elastomers are part of the electroactive polymers. The use of such proper-
ties to trigger buckling has already been investigated in theoretical and experimental
studies. The theory regarding dielectric elastomers started with the work of Toupin
[73]. Dorfmann and Ogden [29] gave a summary of the constitutive equations for
this type of material: when subjected to an external electric field, the dielectric
elastomer sees a variation of its electric potential distribution. The electric field E
and the electric displacement D resulting from this distribution are determined by
the Maxwell’s equations:

∇ · D = 0, (4.1)

∇ × E = 0. (4.2)

These electric fields and electric displacements result in mechanical forces in the
body that are described by the Maxwell stress tensor τM .

τM = D ⊗ E −
1
2
ε0E .E . (4.3)

This Maxwell stress tensor is added to the equilibrium equation of the elastomer and
consequently has an influence on the equilibrium displacement field and the total
equilibrium energy.

The first experimental studies of dielectric elastomers in a geometry similar to the
systems in which we take interest in this thesis were to consider a polymer film
attached to compliant electrodes on its top and bottom surfaces. This study was
realized by Pelrine et al [63, 62] and showed that the effective pressure applied in
the thickness direction and resulting from an external electric field would have the
effect of reducing the thickness of the dielectric elastomer while expanding its area
to ensure incompressibility (see Figure 4.1).
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Figure 4.1: Principle of operation of dielectric elastomers. Image from [62].

Our objective is different : the modification of buckling pattern. So we assume that
the bottom electrode is rigid.

4.2 Energy of the system
The total energy of the system is the sumof themechanical and electrostatic energies.
The mechanical energy is that studied in Section 2.1.

Emech =
Eh

2(1 − ν2)

∫ ∫
(−ηx +

∂u
∂x
+

1
2
(
∂w

∂x
)2 − ηy +

∂v

∂y
+

1
2
(
∂w

∂y
)2)2

− 2(1 − ν)(−ηx +
∂u
∂x
+ (

∂w

∂x
)2)(−ηy +

∂v

∂y
+ (

∂w

∂y
)2)

+ 2(1 − ν)(−ηxy +
1
2
(
∂u
∂y
+
∂v

∂x
) +

1
2
∂w

∂x
∂w

∂y
)2 dx dy

+
D
2

∫ ∫
(∆w)2−2(1−ν)(

∂2w

∂x2
∂2w

∂y2 −(
∂2w

∂x∂y
)2)+

∫ ∫
E∗s

√
k2

x + k2
y |ŵ |

2 dkx dky

(4.4)

The electrostatic energy is

Ee =
1
S
(

∫
Ω

α

2
|P0 |

2dV+
ε0

2

∫
y(Ω)

|∇ϕ|2dv−
∫
y(S)

g(y)(−ε0∇ϕ+P0χ(y(Ω)))nelectrodedS)

(4.5)

according to Tian [72], with P0 the polarization of the material, S the unit surface,
ϕ the electric potential, g(y) the value of ϕ at the film, nelectrode the vector normal
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to the electrode pointing towards the elastomer, Ω the entire system film-substrate
α and ε0 are permittivity constants defined by the relation

εrε0 = ε0 +
1
α
. (4.6)

To simplify this expression, considering small deformation, we assume y(Ω)=Ω.
Also the value of g(y) is a constant external applied voltage V, and it is possible to
obtain an expression of the P0 by using the variational principle to minimize the
energy with respect to P0. This variational principle performed by Tian [72] leads
to

∂ α2 |P0 |
2

∂P0
+ F−t∇ϕ = 0 (4.7)

which, considering very small deformations and then F ≈ Id, is equivalent to

P0 =
−1
α
∇ϕ. (4.8)

These simplifications lead to

Ee =
1
S
(

∫
Ω

1
2
(ε0 +

1
α
)|∇ϕ|2dV +

∫
S

V(ε0 +
1
α
)∇ϕ.nelectrodedS). (4.9)

Considering that the surface of the system film-substrate is at z=0 and that the depth
of the substrate (associated to its thickness H) goes to -∞, the expression of the
electric potential at the surface is initially ϕ = ϕ0(x, y, z = 0).
Then, the deflection w induces a perturbation ϕ1 to this electric potential. The result
is

ϕ = ϕ0(x, y,w) + ϕ1(x,w). (4.10)

By doing a Taylor expansion of this expression we obtain

ϕ = ϕ0(x, y,0) + w∇ϕ0(x, y,0).ez + ϕ1(x, y,0) + w∇ϕ1(x, y,0).ez + o(w). (4.11)

The termw∇ϕ1(x, y,0).ez is considered negligible as the deflection and the perturba-
tion ϕ1 are considered small. At the surface of the film-substrate, a constant voltage
is applied. This means that the total electric potential ϕ is considered constant and
equal to ϕ0(x, z = 0). Therefore, the Taylor expansion results in

w∇ϕ0(x, y,0).ez + ϕ1(x, y,0) = 0, (4.12)

which is equivalent to

−w
∂ϕ0

∂z
(x, y,0) = ϕ1(x, y,0). (4.13)
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This provides one boundary condition on ϕ1. The governing equation of ϕ1 is
obtained from the Maxwell law:

∇y ·
[
−ε0∇yϕ + Pχ (y(Ω))

]
= 0. (4.14)

The Maxwell law leads to a simplification of the expression of Ee:

∇ · [−ε0∇ϕ + Pχ (y(Ω))] = 0, (4.15)

so that

ϕ∇ · [−ε0∇ϕ + Pχ (y(Ω))] = 0, (4.16)

which gives

∇ · [−ε0ϕ∇ϕ + ϕPχ (y(Ω))] − ∇ϕ · (−ε0∇ϕ + Pχ (y(Ω))) = 0, (4.17)

which gives∫
Ω

∇ · [−ε0ϕ∇ϕ + ϕPχ (y(Ω))] dV −
∫
Ω

∇ϕ · (−ε0∇ϕ+Pχ (y(Ω)))dV = 0. (4.18)

Then the divergence theorem gives∫
S
(−ε0V∇ϕ+VPχ (y(Ω))).nelastomer dS =

∫
Ω

∇ϕ·(−ε0∇ϕ+Pχ (y(Ω)))dV . (4.19)

But in that case, nelastomer = −nelectrode so we can inject the surface integral in the
expression of Ee and also replace the polarization vector P by −1

α ∇ϕ. Finally

Ee = −
1
S

1
2

∫
Ω

(ε0 +
1
α
)|∇ϕ|2dV . (4.20)

Substituting the expression (4.10) into (4.20) we obtain

Ee = −
1

Lx Ly

1
2

∫ Lx

0

∫ Ly

0

∫ 0

−H
(ε0 +

1
α
)(|∇ϕ0 |

2 + |∇ϕ1 |
2 + 2∇ϕ0 · ∇ϕ1) dx dy dz.

(4.21)

The next step is to study the possible expressions of ϕ0 and ϕ1. We know that ϕ0

is the electric potential in the case of the absence of deflection. ϕ0 is then directly
associated to the external voltage V and the electric field E0 by the following
expression:

E0 = −∇ϕ0 = −V/H. (4.22)
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From this, we can deduce
∇2ϕ0 = 0. (4.23)

Subjecting (4.8) into (4.15) we obtain that ∇2ϕ = 0, and considering 4.23, we obtain

∇2ϕ1 = 0. (4.24)

This is a Laplace equation that can be solved by separation of variables:

ϕ1 = f (x, y)g(z) (4.25)

giving
∇2 f + λ2 f = 0 (4.26)

and
g′′(z) − λ2g(z) = 0 (4.27)

with λ >0 which leads to

g(z) = C1eλz + C2e−λz . (4.28)

But we recall that z goes to −∞ as we consider the thickness H of the dielectric to
be very large, which means that C2 must be 0.

Now, regarding the function f in the equation (4.26), it is possible to perform a
separation of variables again giving f (x, y) = a(x)b(y) with

d2a
dx2 = −δ

2a, (4.29)

d2b
dy2 = −γ

2b, (4.30)

λ2 = δ2 + γ2. (4.31)

Solving equations (4.29) and (4.30) for all possible values of δ and γ give

a(x) =
∑
δ

(Mδcos(δx) + Nδsin(δx)),

b(x) =
∑
δ

(Mγcos(γy) + Nγsin(γy))

(4.32)
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resulting in

ϕ1 =
∑
δ,γ

eλz(Aδcos(δx) + Bδsin(δx))(Aγcos(γy) + Bγsin(γy)) (4.33)

with λ =
√
δ2 + γ2 Now considering the other boundary condition (4.13) combined

with (4.22) we obtain

w =
1
E0

∑
δ,γ

(Aδcos(δx) + Bδsin(δx))(Aγcos(γy) + Bγsin(γy)). (4.34)

This expression can also be seen as a Fourier cosine and sine decomposition. As w
is considered to be periodic, it is then possible to write the following equivalence
with the exponential Fourier decomposition:

w =

+∞∑
kx,ky=−∞

ŵ(kx, ky) ei(kx x+ky y) (4.35)

with

kx = δ,

ky = γ

(4.36)

As a consequence we have

ϕ1 = E0

+∞∑
kx,ky=−∞

e
√

k2
x+k2

y zŵ(kx, ky) ei(kx x+ky y). (4.37)

From this expression we can compute

∇ϕ1 =

©«

E0
∑+∞

kx,ky=−∞ ikx e
√

k2
x+k2

y zŵ(kx, ky) ei(kx x+ky y)

E0
∑+∞

kx,ky=−∞ iky e
√

k2
x+k2

y zŵ(kx, ky) ei(kx x+ky y)

E0
∑+∞

kx,ky=−∞

√
k2

x + k2
y e
√

k2
x+k2

y zŵ(kx, ky) ei(kx x+ky y)

ª®®®®®®®®®¬
(4.38)

and then we can compute
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|∇ϕ1 |
2 =

E2
0

∑
kx,ky

ikx ekz z ŵ(kx, ky)ei(kx x+ky y)
∑
nx,ny

−inx enz z ¯̂w(nx,ny)e−i(nx x+ny y)

+ E2
0

∑
kx,ky

iky ekz z ŵ(kx, ky)ei(kx x+ky y)
∑
nx,ny

−iny enz z ¯̂w(nx,ny)e−i(nx x+ny y)

+ E2
0

∑
kx,ky

kz ekz z ŵ(kx, ky)ei(kx x+ky y)
∑
nx,ny

nz enz z ¯̂w(nx,ny)e−i(nx x+ny y)

=
∑
kx,ky

∑
nx,ny

(nx kx + nyky + kz nz)e(kz+nz)zŵ(kx, ky) ¯̂w(nx,ny)ei((kx−nx) x+(ky−ny) y),

(4.39)

with
nz =

√
n2

x + n2
y; kz =

√
k2

x + k2
y,

and

∇ϕ1.∇ϕ0 = −E2
0

+∞∑
kx,ky=−∞

√
k2

x + k2
y e
√

k2
x+k2

y zŵ(kx, ky) ei(kx x+ky y). (4.40)

We can now substitute (4.39) and (4.40) into (4.21). By recalling that the thickness
H of the substrate is considered equivalent to∞ then:∫ 0

−H
|∇ϕ1 |

2 dz =

E2
0

∑
kx,ky

∑
nx,ny

nx kx + nyky + kz nz

(kz + nz)
ŵ(kx, ky) ¯̂w(nx,ny)ei((kx−nx) x+(ky−ny) y). (4.41)

This simplifies to:∫ Lx

0

∫ Ly

0

∫ 0

−H
|∇ϕ1 |

2 dz dx dy =

E2
0

∑
kx,ky

∑
nx,ny

nxkx+nyky+kz nz
(kz+nz )

ŵ(kx, ky) ¯̂w(nx,ny)

∫ Lx

0
ei(kx−nx)x dx

∫ Ly

0
ei(ky−ny)y dy

= Lx Ly E2
0

∑
kx,ky

2(k2
x + k2

y)

2
√

k2
x + k2

y

ŵ(kx, ky) ¯̂w(kx, ky). (4.42)
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The next term to consider is ∇ϕ1.∇ϕ0. It simplifies to∫ Lx

0

∫ Ly

0

∫ 0

−H
∇ϕ1.∇ϕ0 dz dx dy = E2

0

∑
kx,ky

ŵ(kx, ky)
∫ Lx

0
eik x dx

∫ Ly

0
eiky dy

= 0.
(4.43)

Then, substituting (4.42) and (4.43) into (4.21) , we obtain

Ee = −
1
2
ε0εr E2

0 (H +
∞∑

kx=−∞

∞∑
ky=−∞

√
k2

x + k2
y ŵ(kx, ky) ¯̂w(kx, ky)). (4.44)

The final step is to note that the sum over all possible frequencies kx and ky is
actually equivalent to taking integrals over the entirety of the frequencies’ domains.
So the electrostatic energy is given by

Ee = −
1
2
ε0εr E2

0 (H +
∫ ∞

−∞

∫ ∞

−∞

√
k2

x + k2
y ŵ(kx, ky) ¯̂w(kx, ky)) dkx dky . (4.45)

When interpreting the two terms of expression (4.45), we see that the first term
is a constant representing the linear electric field over the entire substrate, and the
second term is the energy change resulting from the presence of deflection at the top
of the dielectric material. More importantly, we notice that this second term is equal
to the substrate energy up to constants. The minus sign of this electric energy term
means that as the external voltage is increased, the electric energy will counteract
the effect of the substrate on the buckling deformation.

Putting everything together, the total energy of the system is

Etotal =
Eh

2(1 − ν2)

∫ ∫
(−ηx +

∂u
∂x
+

1
2
(
∂w

∂x
)2 − ηy +

∂v

∂y
+

1
2
(
∂w

∂y
)2)2

− 2(1 − ν)(−ηx +
∂u
∂x
+ (

∂w

∂x
)2)(−ηy +

∂v

∂y
+ (

∂w

∂y
)2)

+ 2(1 − ν)(−ηxy +
1
2
(
∂u
∂y
+
∂v

∂x
) +

1
2
∂w

∂x
∂w

∂y
)2 dx dy

+
D
2

∫ ∫
(∆w)2 − 2(1 − ν)(

∂2w

∂x2
∂2w

∂y2 − (
∂2w

∂x∂y
)2) dx dy

+

∫ ∫
(E∗s −

1
2
ε0εr E2

0 )

√
k2

x + k2
y |ŵ |

2 dkx dky −
1
2
ε0εr E2

0 H. (4.46)

4.3 Case of unidirectional wrinkles
We can adopt the results of Audoly and Boudaoud [4] recalled in Chapter 2 to show
that
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physical parameter symbol numerical value
elasticity modulus of the film E 1 GPa
Poisson coefficient of the film ν 0.3
elasticity modulus of the substrate Es 1 MPa
Poisson coefficient of the substrate νs 0.4
thickness of the film h 30 µm
external buckling strain ηx = ηy 0.01
relative permittivity εr 7

Table 4.1: Table of the numerical values of physical parameters.

Figure 4.2: Wavenumber of wrinkles vs external electric field for different values of
stiffness of the film.

dEtotal

dk
= 0 ⇒ k = (

E∗s −
1
2ε0εr E2

0
D

)1/3, (4.47)

dEtotal

dA
= 0 ⇒ A =

√
(ηx + νηy)

4
k2 − h2. (4.48)

Those two expressions show that as the external voltage increases, the wavenumber
k will decrease and the amplitude A will increase. Taking the numerical values of
Table 4.1, the influence of the voltage is illustrated in Figures 4.2 and 4.3.

More concretely, the consequence of the electric field will be that the number of
wrinkles over a given surface will decrease, while the amplitude of those wrinkles
will increase.
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Figure 4.3: Amplitude of wrinkles vs external electric field for different values of
stiffness of the film.

4.4 Case of bidirectional wrinkles
The effects described in the previous section can also be applied to a more complex
buckling pattern. If the load triggering the buckling has more than one direction,
the resulting surface deflection can depend on both the planar axes x and y. One
simple example of such case is what is called the checkerboard deflection pattern:

w = A(cos(k x) + cos(ky)) (4.49)

Considering only the purely mechanical part of the energy of deformation before
applying an electric field, Audoly and Boudaoud showed that the different energies
for the film and the substrate are:

Esubstrate = E∗s k A2 (4.50)

Ebending =
1
2

Dk4 A2 (4.51)

Estretching =
Eh

32(1 − ν)
(32η2 − 16ηA2k2 + (3 − ν)A4k4) (4.52)

We can incorporate the effect of the electric field by modifying the substrate energy.
We obtain

dEtotal

dk
= 0 ⇒ k = (

E∗s −
1
2ε0εr E2

0
D

)1/3, (4.53)
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dEtotal

dA
= 0 ⇒ A =

√
1

3 − ν
8
k2η −

2h2

1 + ν
. (4.54)

The consequences illustrated in Figure 4.4 are again a higher amplitude of the
deflection and a lower wavenumber.

It is tempting to think that the electric field can be increased to the point where there
are no more wrinkles thanks to a sufficiently small wavenumber. But the situation is
not that simple. For the models to hold, we must assume small deflection. It means
that we must stay in a range of small deformation regarding the amplitude.
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Figure 4.4: Illustration of the influence of the electric field on wrinkles: from initial
state on the upper half part, the application of external voltage will result in higher
amplitude and smaller number of wrinkles in the final state on the lower half part.
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C h a p t e r 5

WRINKLING CONTROL BY ELECTRIC FIELD: FINITE
DEFORMATION SIMULATIONS

In this chapter we continue the investigation of potential control of wrinkles using
an electric field in a finite deformation setting using the commercial finite element
package ABAQUS [1]. We limit the study to a two-dimensional setting of plane
strain.

5.1 Strain mismatch-induced wrinkles
We begin with the purely mechanical problem where a strain mismatch between the
film and the substrate induces wrinkles.

5.1.1 Computational setting
We use the material parameters shown in Table 5.2. These parameters are chosen
consistent with the choice of PDMS as the substrate and metal as the film.

It is important to choose the computation domain and element size appropriately
to capture the desired phenomena. Following Cao and Hutchinson [18] we choose
the element size to be approximately 1/100 of the expected wrinkle size. A typical
mesh is shown in Figure 5.1.

Finally, we use the following boundary conditions, also shown in Figure 5.1. The top
is traction-free to be consistent with cases described in Chapter 2 while the bottom
is placed on rollers to mimic stress-free conditions at infinity. The displacements
are assumed to be periodic on the lateral surface, mimicking an infinite body. The
method chosen for those periodic displacements was inspired by Wu et al. [82].
Note however that the lateral size has to be large for the wrinkle to be independent
of the domain size. The size chosen is indicated in Table 5.2

Regarding the units of our system, we just have to keep in mind that ABAQUS is
unitless. This allows us to pick the most convenient set of units adapted to the scale
of our system. Our choice is indicated in Table 5.1.
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Figure 5.1: ABAQUS mesh illustration.

physical parameter unit system used in our case
Length 0.1 mm
Force N
Stress 100 MPa
Mass 104kg
Energy 10−4J
Time s

Table 5.1: Possible sets of units in ABAQUS.

physical parameter film substrate
Width 2.2 cm 2.2 cm
Thickness 30µm 3 mm
Young’s modulus 10 GPa 10 MPa
Poisson coefficient 0.3 0.4
Relative permittivity 0 6.7
coefficient of thermal
expansion

0.0001K−1 0.000001K−1

Table 5.2: Physical parameters of the film and the substrate in ABAQUS.
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5.1.2 Buckling method
General strategy

The buckling strategy follows the approach ofWong and Pellegrino [80, 79] in 2002,
followed by Cao and Hutchinson [18], Zang et al [83], Song et al [65], Zheng [84],
and Cai et al [17]. It consists of two steps: the first one is to find the critical buckling
load and potential instability modes by solving an eigenvalue problem; the second
one is to introduce a small perturbation associated with the identified instability
modes as an initial imperfection to find the post-buckled shape.

More precisely, the first step falls into two parts: initially, it is necessary to generate
an equilibrium state represented by the stiffness matrix K0 by applying an initial
load P on the entire bilayered system. Then, based on this equilibrium state,
an incremental load Q is applied in addition to the initial load to generate an
associated stiffness matrix K∆. Then, we find the potential instabilities by solving
the generalized eigenvalue problem

(K0 + λiK∆)vi = 0. (5.1)

Here the indice i refers to the ith buckling mode. The resulting instability modes vi

represent the possible shapes resulting from buckling.

Once obtained, the most representative instability modes vi are then linearly com-
bined to obtain a state of initial imperfection δz. This initial imperfection helps
generate the buckling deformation in a continuous way as ABAQUS has difficul-
ties dealing with a discontinuous response. The most representative modes are
associated with the smallest eigenvalues λi, and the initial imperfection is obtained
by

δz =
∑

i

φivi . (5.2)

Here the coefficients φi are taken with values around 1% of the thickness of the film
in order to minimize the influence of the imperfection on the final amplitude of the
wrinkles and in order to have the formation of wrinkles as smooth and continuous
as possible.

Strategy adapted to our particular case

We introduce a strain mismatch between the substrate and the film by subjecting it
to a temperature, since the thermal expansion coefficients are taken to be different
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Figure 5.2: Steps used to generate wrinkles in ABAQUS.

(Table 5.2).

According to the linear theory, the buckling strain η satisfies

η(1 + ν)
4

(
E∗s
D )

2/3
− h2 > 0 ⇒ η >

h2(
E∗s
D )

2/3

4(1 + ν)
. (5.3)

If we use the numerical values of h, Es, E , νs, ν given in Table 5.2, Equation 5.3
becomes η > 0.0043. As the coefficient of thermal expansion of the film is 0.0001
K−1, then taking an initial temperature of 20 K will give η = 0.002 which is under
the buckling threshold. Afterwards, the step *BUCKLE with the Lanczos method is
selected to generate an eigenvalue problem. It is noted that the resulting eigenvalues
are not very well-spaced from each other.

It means that there is not one particular buckling mode that is preferred when the
system buckles. It would then require that all the first buckling modes within a
certain range would be used in the definition of imperfection (5.2) with the same
coefficient φ in order to reflect properly the sensitivity of the bilayered system to
several neighboring modes.

But something allows us to deal with the imperfection differently: we have done a
post-buckling analysis performed with initial imperfection composed of 6 different
modes. We have then made a Fourier analysis of the deflection at the surface of our
model. We did this analysis for different cases associated with different elasticity
moduli for the film and the substrate. The Fourier analysis of the deflection of the
three cases is shown in Figure 5.3.

We see that in each case, the post-buckling behavior, even if showing several wave-
lengths, has onewavelength associatedwith an amplitude farmore important than all
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other wavelengths. This results in the deflection always taking an almost sinusoidal
form. Most importantly, in each case, the dominant wavelength of those wrinkles is
the one closest to the theoretical value and is also the one associated with the first
buckling mode obtained from the buckling step in ABAQUS. We can conclude that
regardless of what the stiffness of the materials is and what the number of modes
we consider in our initial geometrical imperfection is, the post-buckling behavior
converges towards wrinkles with one dominant frequency. As a consequence, we
can simply reduce the expression of the initial small deformation (5.2) to a single
term corresponding to this dominant mode instead of considering 6 different ones.

Using the *IMPERFECTION command, this deformation is injected into the initial
shape of the bilayered system associated with coefficient φ=0.002, which corre-
sponds to 0.67 % of the thickness of the film. The wrinkle deformations are then
progressively generated by using thermal expansions with the same coefficients as
in the previous step. All those steps are illustrated in Figure 5.2.

5.1.3 Results
The influence of the temperature T generating the strain mismatch and the wrinkles
is illustrated in Figure 5.4. This figure shows the case with Es = 7 MPa, and the
rest of the parameters are indicated in Table 5.2. The parameter U2 corresponds
to the out-of-plane displacement. We can see the formation of periodic sinusoidal
wrinkles in Figure 5.4.

Figure 5.5 shows the von Mises stress distribution for five different stiffness ratios
for the parameters in Table 5.2. We see that the stress in the substrate is negligible
compared to the stress in the film. This is due to the strain mismatch and also to the
elasticity ratio between the two materials.

We repeat these simulations for various parameters shown in Table 5.3. We extract
the deformation and use MATLAB to find the wrinkle frequency. The results are
shown in Figure 5.6 and Table 5.3 and are compared to those of the linear theory.
Here the stiffness ratio corresponds to the following expression:

sti f f ness ratio =
E f

12(1 − ν2
f )

(1 + νs)(3 − 4νs)

(1 − νs)Es
. (5.4)

Table 5.3 shows that for each case study, the relative difference between the theoret-
ical and numerical values remains under 3.5%.
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Figure 5.3: Fourier representation of thewrinkles in 3 different cases: a) theYoung’s
modulus of the film is 5 GPa and the Young’s modulus of the substrate is 10 MPa ;
b)the Young’s modulus of the film is 7 GPa and the Young’s modulus of the substrate
is 10 MPa ; c) the Young’s modulus of the film is 10 GPa and the Young’s modulus
of the substrate is 7 MPa.



70

Figure 5.4: ABAQUS wrinkle behavior influenced by increasing temperature T .
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Figure 5.5: ABAQUS wrinkles for four different stiffness ratios. The physical
parameters are all indicated in Table 5.3.
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Figure 5.6: Comparison of numerical and theoretical results in the case of a wave-
length vs stiffness ratio plot.

Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

Case
7

Case
8

Case
9

E f (GPa) 1 3 5 7 10 10 10 10 10
Es (MPa) 10 10 10 10 10 7 5 3 1
strain 0.03 0.03 0.024 0.025 0.01 0.01 0.009 0.009 0.009
numerical
wavelength
(m−1)

10850 7425 6283 5712 5140 4570 3998 3427 2285

theoretical
wavelength
(m−1)

10738 7445 6280 5613 4984 4425 3955.86 3337 2313

relative dif-
ference (%)

1.04 0.26 0.06 1.76 3.13 3.27 1.06 2.71 1.22

theoretical
amplitude
(µm)

21.28 43.75 47.59 56.80 34.54 41.90 45.72 57.48 88.57

numerical
amplitude
(µm)

20.67 44.4 48.04 56.55 34.55 40.59 45.28 56.1 90.09

Table 5.3: Comparison between numerical values and theoretical values of wrin-
kles’wavelengths.
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Figure 5.7: Comparison of numerical and theoretical results in the case of a ampli-
tude vs strain plot.

Case
A

Case
B

Case
C

Case
D

Case
E

Case
F

Case
G

Case
H

Case
I

strain 0.007 0.014 0.021 0.028 0.035 0.042 0.049 0.056 0.063
numerical
amplitude
(µm)

5.932 30.66 43.51 53.56 62.23 69.94 77.07 83.75 90.05

theoretical
amplitude
(µm)

4.805 30.76 43.24 52.84 60.95 68.11 74.58 80.53 86.07

relative dif-
ference (%)

23.4 3.25 0.624 1.36 2.1 2.69 3.34 4.0 4.62

Table 5.4: Comparison between numerical values and theoretical values of wrinkle
amplitudes.

A second comparison concerns the effect of differential strain on the post-buckling
amplitude. For a fixed stiffness ratio, a similar study for different values of strain
was conducted corresponding to the moduli in case 3.

The results are shown in Figure 5.7 and Table 5.4. Again the results agree with
those of the linear theory.

We conclude that the numerical model built in ABAQUS is remarkably consistent
with the linear theory described in Chapter 2 in the chosen range of stiffness ratio
and buckling strain.

One particular case we can also present is the case with materials’ properties close
to experimental studies. The values used in Table 5.5 show the case of a very thin
film made of gold attached to a PDMS substrate. For both materials, the Young
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physical parameter film substrate
Thickness 30 nm 3 µm
Young’s modulus 82 GPa 20 MPa
Poisson coefficient 0.33 0.48

Table 5.5: Datas used to model gold film attached to PDMS substrate.

Figure 5.8: Amplitude of wrinkles vs homogeneous strain in case of gold film
attached to PDMS substrate.

modulus and the Poisson ratio are taken from the study made by Bowden et al. [10]

The results for varying strain biaxial strain (ηx = ηy) is shown in Figure 5.8. The
results are not matching accurately for strain smaller than 0.0028 but correspond
to theoretical results beyond that value. This can be explained by the fact that the
convergence ofABAQUSmight lack accuracywhen the strain is close to the buckling
threshold. In addition to the amplitude results, the wavelength of the wrinkles was
3.142 × 106m−1 and the expected theoretical value was 3.156 × 106m−1 making the
relative error being 0.44 %.

5.2 Dielectric material modeling
A subroutine can be used to generate electromechanical coupling in an ABAQUS
model: the element subroutine UEL allows us to introduce new behaviors based on
nonstandard degrees of freedom. Instead of defining explicitly only the stress, the
user is asked to define all residuals, stiffness matrices, and energies associated with
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the Galerkin method in finite element modeling. In our case, this subroutine allows
us to generate an electric potential gradient between elements, and as a consequence,
to generate an electric field distribution within the entire dielectric elastomer.

The formulation of the electromechanical problem in a dielectric undergoing finite
deformation is rather tricky [73, 29, 72]. We follow Henann et al. [38], used
a standard Galerkin approach to define a new element level system of equations,
residuals, and corresponding tangents. Based on the discretization of both the
displacement u and the electric potential φ using shape functions N A :

u =
∑

uAN A (5.5)

φ =
∑

φAN A (5.6)

They[38] implemented the formulation in a user-element subroutine that was used
to describe the behavior of bending and twisting actuators as well as a barrel-type
energy harvesting device. We adapt the formulation to our problem: we turn the
Gent model into a neo-hookean model by setting the Gent coefficient I0 to be 1015.
We compute the Lame parameters and the bulk moduli from the Young’s moduli and
Poisson’s ratios of each material and assign those parameters to each corresponding
material.

Before we use this model to study the influence of the electric field on wrinkles, we
checked that the electromechanical coupling had the expected effect for the linear
deformation of a dielectric substrate. We simply applied the electric field on top
of the substrate and calculated the resulting Cauchy stress along the out-of-plane
direction σz. This was compared with the expected Maxwell stress resulting from
the applied electric field σel :

σel =
1
2
ε0εr E2 and σz = µ

1
J5/3 (Fzz −

I1

3
) + κ(J − 1). (5.7)

In this case J = det(F), I1 = F2
xx+F2

yy+F2
zz, µ =

Es

2(1+νs) , κ = λ+
2
3 µ, λ =

νsEs

(1+νs)(1−2νs)
and

F =
©«
1 0 0
0 1 0

0 0
√

1 + 2 Hdef ormed−Hinitial

Hinitial

ª®®®¬ . (5.8)

with Hinitial and Hde f ormed being the depth of the substrate before and after the
electric field is applied.
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Figure 5.9: Comparison of the numerical and theoretical stress within the substrate
for different electric fields. The substrate Young modulus is 30 MPa.

We compare the two stresses for different values of applied voltage and Young
modulus of the substrate. At first we study the case of the Young modulus being 30
MPa illustrated in Figure 5.9.

This figure shows that this comparison is reliable only for electric fields up to 400
MV/m. A similar study can be done for different values of the Young modulus of
the substrate as illustrated in Figure 5.10. We can see that there is still a difference
between the theoretical stress and the numerical stress, although this difference is
less important for lower values of the Young modulus. As a consequence we will
study the influence of the electric field only for values of Es less than or equal to 30
MPa.

One point with this method is that it uses the temperature variable as the degree
of freedom to represent the electric potential: the imposed electric potential at the
top and bottom of the bilayered system is actually an imposed temperature. As a
consequence, we cannot use thermal expansion to create the differential strain within
the bilayered system to generate the initial buckling before applying the electric field.

We overcome this by generating the mismatch directly within the subroutine by
implementing a change of reference: if we suppose that we want to impose a strain
with value 0.03 to trigger the buckling, then the gradient deformation tensor would
be modified as:
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Figure 5.10: Comparison of the numerical and theoretical stress within the substrate
for different Young moduli. Case a : Es = 100 MPa; case b: Es = 40 MPa; case c:
Es = 200 MPa.
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Figure 5.11: Steps used to generate electric field in ABAQUS.

F = F .Ubuckling (5.9)

with

Ubuckling =
©«

1
1.03 0 0
0 1.03 0
0 0 1

ª®®®¬ . (5.10)

The process is illustrated in Figure 5.11.

More details about the input file used to generate the bilayered system with wrinkles
and apply the external electric field are in Appendix B.

5.3 Results
As different values for external voltage were applied, we observed that the wave-
length did not change with the variation of the electric field distribution. There
are two possibilities to explain this: the total energy of the system stays in a local
minimum associated with the specific wavelength obtained during the linear pertur-
bation process, creating a high energy barrier to prevent the transfer to a different
wavelength. The second possibility is that the choice of periodic boundary condition
imposed at the edges constrains the wavelength of the wrinkles and prevents any
change for that variable.

This observation forces us to reconsider the expression of the amplitude in the linear
theory. Restarting from equation

Etotal =
Eh

2(1 − ν2)
(η2

x + η
2
y + 2νηxηy −

ηx + νηy

2
k2 A2 +

1
16

k4 A4)

+
1
4

Dk4 A2 +
1
2
(E∗s −

1
2
ε0εr E2

0 )k A2 −
1
2
ε0εr E2

0 H, (5.11)
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physical parameter film substrate
Thickness 30µm ∞

Young’s modulus 10 GPa 30 MPa
Poisson coefficient 0.3 0.4
Relative permittivity 0 6.7

Table 5.6: Physical parameters of the film and the substrate for amplitude compari-
son.

it is possible to express the amplitudeminimizing the energy at a constant wavelength
by solving

dEtotal

dA
= 0 (5.12)

which gives

A =

√
(ηx + νηy)

4
k2 −

4D(1 − ν2)

Eh
− E∗s

8(1 − ν2)

Ehk3 +
4(1 − ν2)

Ehk3 ε0εr E2
0 . (5.13)

In this equation, we cannot use the expression of k involving the electric field given
in Equation (4.47). But in order to see which parameters influence the coefficient
associated with the electric field, it is necessary to develop a simplification using
Equation (2.36), defining k independently of the electric field. At the end we obtain

A =

√
(ηx + νηy)

4
k2 −

4D(1 − ν2)

Eh
− E∗s

8(1 − ν2)

Ehk3 +
h2

3E∗s
ε0εr E2

0 =

√
c1 + c2E2

0

(5.14)

To illustrate the difference between the amplitude depending on a varying k and
the amplitude only depending on the electric field with a constant k, Figure 5.12
is plotted using the parameters of Table 5.6 and taking the differential strain in the
main directions ηx and ηy to be 0.03. We find that those two amplitudes are similar
for small electric fields.

The result for the parameters given in Table 5.6 is illustrated in Figure 5.13, and we
can observe both the linear deformation of the large depth of the substrate and the
deformation of the wrinkles on top of the bilayered system.

5.3.1 Results with varying elasticity of the substrate
We make different models with varying value for Esub. The final deformation for
each case is illustrated in Figure 5.14. In this figure, the parameter NT11 represents
the electric potential distribution.
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Figure 5.12: Comparison of amplitude of wrinkles for constant and varying wave-
lengths as a function of applied electric field.

Figure 5.13: Evolution of out-of-plane displacement between initial state with no
electric field and state with electric field equal to 362.4 MV/m.



81

Figure 5.14: Final deformation with electric potential distribution for each case
described in Table 5.7.
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Case 1 Case 2 Case 3 Case 4

Es (MPa) 30 25 20 15
theoretical coefficient c2
(10−4µm4/V2)

19.37 23.24 29.05 38.74

numerical coefficient c2
(10−4µm4/V2)

19.61 23.56 29.58 38.93

Table 5.7: Comparison of linear approximation of amplitudewith theory coefficients
for varying substrate elasticity.

It is now possible to compare the theoretical results and the results obtained with
ABAQUS. We keep in mind that in this section, the Poisson coefficient of the two
materials is taken from Table 5.2, and the deformation gradient tensor generating
wrinkles is given by Equation (5.10).

As illustrated in Figure 5.15, the numerical results and the theoretical results present
a good matching. We note that the value of the substrate elasticity is taken as the
varying parameter because, as indicated in Equation (5.14), changing this elasticity
parameter will influence the coefficient associated with the electric field.

To illustrate the results further, Table 5.7 compares the coefficient c2 illustrated in
Equation 5.14

Width of the system

As mentioned in Section 5.1, we use periodic boundary conditions on the edges.
This choice, combined with a fixed length for all cases with varying parameters for
the bilayered system, actually prevents the model from reaching perfect accuracy
regarding the wavelength of the wrinkles. The buckling command of ABAQUS will
have to deal with the fact that the displacements at the extremities must be equal.
As a consequence, the resulting wavelength will still give an integer number of
wrinkles over the width of the bilayered system. In the case of a very large number
of wrinkles, the error will be small, but still can be corrected by adapting the width
of the materials. Instead of using the value given by Table 5.2, assigning the width
to the value L given below will make the deformation produce exactly n wrinkles,
and the resulting wavelength will be exactly ktheory calculated with Equation (2.36)

L =
2π

ktheory
n. (5.15)
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Figure 5.15: Amplitude vs external applied electric field for different elasticity
modulus in both theoretical (blue) and numerical results (red): Case (1a), (1b):
Esub=15 MPa; Case (2a), (2b): Esub=20 MPa; Case (3a), (3b): Esub=25 MPa; Case
(4a), (4b): Esub=30 MPa.
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5.3.2 Different options for deformation gradient tensor and mesh size
Deformation gradient tensor

The plot shown in Figure 5.15 shows that there is an important shift in the initial
amplitude between theory and subroutine results. This brings us to consider the
possibility that the gradient deformation tensor depicted in Equations (5.9) and
(5.10) might not correctly represent the applied uniform strain. One correction to
be made is to consider the third spatial direction along z to be different from 1.
If that is the case, then the expression (5.10) must also be modified to conserve
incompressibility:

Ubuckling =
©«

1
1.032 0 0

0 1.03 0
0 0 1.03

ª®®®¬ (5.16)

The influence of this new form is illustrated in Figure 5.16. In this figure, the blue
curve represents the theoretical evolution of the amplitude vs the external applied
electric field when considering the data of Table 5.6 and a strain of 0.03 applied
to generate wrinkles. The green curve represents the ABAQUS evolution of the
amplitude when the gradient deformation tensor of the element user subroutine
corresponds to Equation (5.10), with the red curve representing the same results
for a gradient deformation tensor corresponding to (5.16). It appears that the green
curve is significantly closer to the theoretical results. As a consequence, this format
of deformation tensor should be preferred to generate a more accurate initial wrinkle
generation.

Influence of mesh density

In the results of the previous sections, the mesh was taken to be 1000 nodes along
the width and 30 nodes along the depth of the bilayered system. The distribution of
the nodes along the depth was not linear, so that more nodes would be located on the
top of the bilayered system where the most interesting deformations happen. Given
that we observed 15 wrinkles in our model every time due to the choice of length
described in the previous section, the number of nodes per wrinkle from a horizontal
perspective was 67. A more dense mesh would result in higher calculation cost.

We still made models with a higher mesh density. We made a model with mesh
density of 1500 × 45 nodes with 15 wrinkles so that the horizontal number of nodes
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Figure 5.16: Amplitude vs external applied electric field for different gradient
deformation tensor formats.

per wrinkle would be 100. We also made a model with a mesh density of 1600 ×
30 with 16 wrinkles to reduce the computational cost and still maintain the same
horizontal number of nodes per wrinkle. We also made a model with a mesh of
size 1800 × 30 with 16 wrinkles to see the influence of a larger number of nodes
per wrinkle period.The results of those three models are represented alongside the
results for a model with 1000 × 30 nodes in Figure 5.17. We see that the results from
the meshes with 1500 × 45 nodes and 1800 × 30 nodes differ from the two other
results. It indicates that the solution ABAQUS computes increment after increment
is very sensitive to the mesh density. A higher mesh density does not necessarily
result in a more accurate solution. In fact, we can think that a higher mesh density
adds more equations to a problem that is already made unstable by the presence of
the periodic boundary conditions, making it more sensitive to edge effects or local
minima.

5.3.3 Results with varying thickness of film
Taking into account this different deformation gradient tensor and the mesh of size
1000x30 nodes, Equation (5.14) also indicates that the linear coefficient associated
with the external electric field also depends on the thickness h of the film.

The influence of the thickness is even more important since the coefficient depends
on h2. Simulations have been conducted with varying thickness to observe if
the numerical results match the theory in that case. Those simulations have been
performed with a gradient deformation tensor given by Equation (5.16), the width of
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Figure 5.17: Amplitude vs external applied electric field for mesh sizes.

Case A Case B CaseC Case
D

film thickness (µm) 10 20 30 40
theoretical coefficient c2
(10−4µm4/V2)

2.15 8.64 19.37 34.44

numerical coefficient c2
(10−4µm4/V2)

2.25 8.95 20.35 36.42

Table 5.8: Comparison of linear approximation of amplitude with theoretical coef-
ficients for varying thickness.

the materials given by Equation (5.15), and the elasticity parameters of the materials
given by Table 5.6.

Figure 5.18 shows all final deformations with deflectionU2 distribution. We observe
that 15 wrinkles in each case, the thicker the film is, the smaller the width necessary
to observe 15 wrinkles becomes. This is due to the relation between the thickness
and the wavelength of the wrinkles.

The comparison with theoretical results is illustrated in Figure 5.19 and in Table 5.8.
Again, the linear coefficients c2 are quite similar between theoretical and numerical
results.

In both cases of varying substrate elasticity and varying film thickness, the ABAQUS
results match the theoretical expectations regarding the evolution of the amplitude
when the external electric field increases. This match is still limited to an electric
field under 360 MV/m. For higher electric fields, the ABAQUS model cannot
converge and we cannot obtain further data. Still, those results confirm the initial
influence developed in Chapter 4: the amplitude increases as a square root function



87

Figure 5.18: Final deformation with deflection distribution for each case described
in Table 5.8.
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Figure 5.19: Amplitude vs external applied electric field for different film thickness
in both theoretical (blue) and numerical results (red): Case (1a), (1b): h=10 µm;
Case (2a), (2b): h=20 µm; Case (3a), (3b): h=30 µm; Case (4a), (4b): h=40 µm.
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physical parameter unit system used in gold film
case

Length cm
Force N
Stress 10 kPa
Mass 100 kg
Voltage V

Table 5.9: Set of units in the case of a film made of gold.

of the quadratic electric field.

5.3.4 Results for gold film and PDMS substrate
In the previous sections, the values taken for the elasticity and the thickness of
the film are not exactly the ones that can be found in experimental studies. We
can perform a study with values corresponding to the experimental values given
in Table 5.5 with the thickness of the film being 50 nm and the thickness of the
substrate being 0.3 mm. Because those dimensions are very small, we had to rescale
everything to ease the convergence within ABAQUS. The dimensions used in this
particular case are depicted in Table 5.9. We chose to apply a differential strain of
0.005 within the film to generate the initial wrinkles. We made this choice so that
the amplitude of initial wrinkles would be in the range of the thickness of the film.
The comparison between theoretical results and numerical results is illustrated in
Figure 5.20. When we make an approximation of the linear coefficient c2, we obtain
a value of 7615 nm4/V2 for the red curve and 7594 nm4/V2 for the blue curve. We
can conclude that the model is still coherent for elasticity and thickness of the film
close to the values taken in experimental studies.
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Figure 5.20: Amplitude vs external applied electric field for gold film attached to
PDMS substrate.



91

C h a p t e r 6

CONCLUSION

6.1 General conclusion
This thesis studied several aspects of surface deformation of bilayered systems. The
perspectives of those investigations were motivated by the potential uses of bilayered
systems. Our specific focus concerned heterogeneity and tunability.

First we revisited the theory of deformation for bilayered systems. It was necessary to
establishwhichmodelswere used for eachmaterial component and the consequences
of those models on the final nonlinear behavior. This work focused essentially on the
elastic energy of the bilayered system. Indeed, the entire study of deformation rests
on the principle that deformation, linear and nonlinear will serve only one objective:
the minimization of the energy of the system. Once this state of minimal energy is
reached, the bilayered system has reached its equilibrium in terms of displacement
field. The energy study of such systems brought us to split the total energy into
different terms where each term represented a contribution from a specific order of
derivative of the displacement field. Each contribution imposed a specific pattern
for the equilibrium state of displacement, and the relative importance of each term
depended on the dimensions and elasticity of the materials. Most of this work
was based on literature review of previous work done on bilayered systems. We
then proceeded to give a detailed and well-explained theory regarding the elastic
energy of the substrate: by solving the Navier equation, taking into account specific
boundary conditions associated with properties of bilayered systems, we gave a
complete formulation of the energy, taking into account the contribution of the in-
plane displacement. All previouswork in this field did not consider this contribution,
as its value was negligible compared to the contribution of the deflection. But, the
average value requirements of numerical methods made it necessary to consider
in-plane displacements in the final expression of the energy. To result in nonlinear
displacements, the energy minimization must be associated with a differential strain
between the two materials. The pattern observed at the surface and the possible
evolution of this pattern will depend on the value of this differential strain. The type
of pattern that is studied in this thesis is called the wrinkling pattern and is the first
one to appear when the surface of a bilayered system buckles. The study of wrinkles
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is done by determining the value of their amplitude and their wavelength.

Not only did the pattern depend on the amplitude of this differential strain, but it
also depended on the orientation of this strain. In the second part, we demonstrated
the influence of this orientation by implementing all the theory and expressions of
the first part into a numerical loop. We showed that from a starting point with
any random distribution of in-plane displacements and deflection at the surface
of a bilayered system, it was possible to recover the nonlinear pattern that would
minimize the total energy. The implementation of such a numerical method was
challenging due to the coexistence of energy terms related to different orders of
derivatives of the displacements: more specifically, order 0, order 1, and order 2
of deflection derivatives were making the minimization too difficult in the space
domain. Thus, we developed a form of the energy expressed in the Fourier domain.
This transfer was made possible by considering a semi-infinite domain for the
system and then using the Plancherel theorem to generate an infinite integral over
the frequency domain to express the energy. This Fourier transfer only partially
solved the problem, as some derivative terms were not simplified by the Plancherel
theorem. It was then necessary to replace those terms by extra variables associated
with constraints, creating then an Augmented Lagrangian loop system to converge
from an initial random distribution to a set of displacements minimizing the energy.

The method was first tested on a simple 1D model with unidirectional differential
strain generating wrinkles. The results in this case were very satisfying since the
amplitude and the wavelength predicted by theory were exactly recovered with no
relative mistake after completing approximately 40,000 iterations of the simulation.
In comparison to the one-dimensional case, implementation of a two-dimensional
model was more difficult, as it was computationally far more expensive to take
into account two components of the in-plane displacement and two spatial coor-
dinates. More importantly, in order to maintain the convergence of the model, it
was necessary to consider the contribution of the in-plane displacements in the
substrate energy. Eventually, the convergence of unidirectional wrinkles was still
achieved and the wavelength and amplitude of the wrinkles converged towards the
expected theoretical values. We were then able to revisit the initial objective for a
heterogeneous strain distribution with an interface for the orientation of the strain
at an arbitrary, predefined position on the surface. This interface would define
the border for a discontinuous angle of orientation of the strain. We showed with
the Augmented Lagrangian loop applied on the two-dimensional model that such
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a discontinuity in the strain would result in a discontinuity in the direction of the
wrinkles. This discontinuity could be observed in two ways: a change of spatial
angle of wrinkles between each side of the interface, and in non-symmetric cases, a
change in the number of wrinkles between each side of the interface. One interesting
point from this discontinuity was that it would affect neither the global amplitude
or the wavelength away from the interface.

The next part of this thesis was about another aspect of the instabilities of a bilayered
system: the possibility of actively influencing those instabilities by an external
constraint that would not be a mechanical load. We were particularly interested in
electromechanical coupling by using dielectric elastomers as the substrate of the
bilayered system. The goal was to predictably control the wrinkles with an external
applied voltage at the top and bottom of the bilayered system. To begin our study of
this electromechanical coupling, we focused on the theory of electric elastomers to
determine how theMaxwell equations and theMaxwell stress tensor would influence
the nonlinear deformations at the top surface of the bilayered system. Considering
a Taylor expansion of the electric potential at the top surface, it was possible to
inject the correct contribution of the nonlinear electric field into the expression of
the electric energy. From energy minimization, it was then possible to prove that the
electric field was actually influencing the value of the wavelength and the amplitude
of the wrinkles at the minimum energy state. More precisely, our study proved that
the electric field had the effect of counteracting the influence of the substrate on
the nonlinear deformation. As a consequence, the higher the applied voltage on
top of the substrate, the more the bilayered system behaved like a single plate at
the top surface. Another interesting feature from this chapter is the range of the
electric field required for significantly modifying the amplitude and wavelength.
This range depends on the relative permittivity of the dielectric material, and in the
case of a dielectric elastomer, this permittivity lies within a range of 1 to 10. In
this case, we notice that the variation in the amplitude of electric field to observe a
10% variation in the amplitude of the wrinkles is 300 MV/m. When considering the
size of the materials involved here, a bilayered system with a depth of 1 mm would
require an external field of 300,000 V to obtain this variation. Such a high value is
due to the fact that the dielectric permittivity of those materials is quite small, and
consequently, high voltages are required to deform dielectric elastomers.

After establishing the theory of nonlinear deformation by electromechanical cou-
pling, it was necessary to create a method to confirm this theory. Finite element
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modeling can allow for the building of sufficiently small models and sufficiently
refined mesh to observe the desired deformations. ABAQUS was used to build a
bilayered system with a dimensional scale of millimeters for the substrate and a di-
mensional scale of micrometers for the film. The main advantage of ABAQUS was
its capacity to reproduce the initial buckling phenomena described in Chapter 2. All
the results regarding the buckling behavior and associated nonlinear deformations
could be reproducedwith high accuracy, confirming that ABAQUSwas representing
the studied phenomena well. As ABAQUS does not provide a pre-existing dielectric
model, we implemented a user-defined element capable of performing electrome-
chanical coupling through the implementation of a material model that added the
Maxwell stress to the initial Cauchy stress tensor. One limitation compared to the
theoretical model is that it was impossible to build a semi-infinite model. More
specifically, regarding the in-plane dimensions, to compensate the finite length of
the bilayered system, periodic boundary conditions were imposed on the model at
the edges. Even though it would be equivalent to having an infinite model, it would
also prevent the wavelength of the wrinkles from being modified by an imposed
electric field. We then developed a different angle of comparison, as it was possi-
ble to consider an optimal amplitude, minimizing the energy independently of the
wavelength. This new form would be less impacted by the influence of the elec-
tromechanical coupling than by the form with varying wavelengths, but would still
give a clear comparison support. The simulation provided deformation for values
of electric field up to 360 MV/m, for different values of thickness of the film and
elasticity of the substrate. The comparative results were accurate enough to confirm
the validity of the theory.

In a more general view, this thesis has managed to show that nonlinear wrinkles
on top of a bilayered surface are not the end of a buckling process, but instead can
be seen as a first step of a more complex behavior. The evolution of the amplitude
and the wavelength of wrinkles can lead to a significantly different pattern, and
this evolution can then be used to serve the different purposes described in the
introduction of this thesis. Also it is important to note that those wrinkles do not
necessarily require a uniformly distributed strain on the whole surface to remain
stable. It is now confirmed that discontinuous wrinkles can coexist within the same
surface, thus opening the path to more applications and behavioral phenomena.
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6.2 Future work
This thesis opens the door for more studies on both the part associated with the
Augmented Lagrangian loop and the part associated with the ABAQUS numerical
studies. The numerical methods used to observe the formation of wrinkles with
a sudden change of main orientation offers the ideal support for an experimental
comparison. As mentioned in Chapter 3, several experimental studies have been
using liquid crystal elastomers to generate discontinuous wrinkles. It would be
very interesting to realize an experimental process based on those results that would
yield wrinkles with measurable amplitude and wavelength with a controlled change
of angle for wrinkles. This way, all measured values could be compared in both
areas away from the discontinuity interface and on this interface. Based on those
methods, the next potential step would be to study what energy minimization tools
are involved in the interface and more specifically, in the merging process at this
very interface. Even though the energy minimization method introduced in this
thesis was used to study the specific case of wrinkles, it would be natural to consider
extending thismethod to other buckling phenomena. We showed that a checkerboard
pattern scenario was achievable through this numerical method for higher values of
imposed strain. It is possible to consider applying this method to evenmore complex
buckling, such as the creasing or folding of the surface. Another very interesting
buckling pattern that could become accessible numerically with this method is the
herringbone pattern described by Audoly and Boudaoud [6], which is present in
many engineering applications.

The influence of dielectric elastomers on the surface wrinkles of a bilayered system
is also a first step for even more interesting studies. As mentioned previously,
the values of the electric field necessary for this model are very high, but the
dielectric elastomer is not the only option for achieving our initial goal. Even
though the electromechanical coupling laws of this material make it convenient to
work with, more materials like ferroelectric materials, liquid crystal elastomers or
ionic polymers could be considered for providing the extra electric energy. Exploring
such materials could uncover better relative permittivity options, leading to smaller
values of voltage required to obtain the desired deformations. Another aspect to
explore is extending the study of the influence of the electric field to more complex
buckling patterns. Even though we studied this influence for a two-directional case
at the end of Chapter 4, there are more possible buckling patterns still left to study
with the Maxwell stress.
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With regards to the finite element modeling problem that we solved, we can envision
that the next step would be to find a way to unconstrain the value of the buckling
wavelength. For example, one could explore the attempt to use very powerful finite
element software in order to model a very high number of wrinkles to approximate
a model equivalent to an infinite model with an appropriately refined mesh. If this
option is not possible, the entire focus would shift to the edge boundary conditions.
Finding conditions that would enable the frequency of wrinkles to evolve without
a significantly high energy cost would solve this local minimum problem. We can
also consider other improvements to the model used here: for example, it would be
more convenient to use another degree of freedom than the temperature to represent
the electric field, since the temperature cannot be used anymore to generate the
initial differential strain necessary to trigger the buckling. Although a predefined
deformation gradient tensor was an acceptable replacement option, it is not capable
of fully recovering the initial amplitude of wrinkles. The use of thermal strain
remains much more appreciated for that purpose.

This thesis has also established a complete basis to be compared with experimental
results regarding the influence of electromechanical coupling on bilayered systems.
One could think about creating an experimental setup involving a dielectric elastomer
attached to a rigid, thin electrode and measuring the influence of an applied electric
field on the surface. One aspect that requires careful investigation is the selection of
measurement tools, since the small scale of the materials requires equipment with
a very high resolution to capture the evolution of the amplitude and the wavelength
of the wrinkles. Other aspects include the choice of materials and the attachment
method in order to generate the initial wrinkles. In case the problem of imposed
wavelength in the numerical method cannot be fixed, it would be interesting to see if
the experimental results of such a system would match the theoretical results or the
numerical results regarding the evolution of the wavelength. Even though one could
initially expect the experimental results to match the numerical solutions because of
the edge effects that would come with an experimental process, it could be possible
to observe a varying wavelength if the plane is taken to be so large that hundreds
of wrinkles could be observed. In that case, local variation could occur, as the side
effects would become negligible in areas very far from the edges. This discussion
is, of course, based on hypotheses, and it is possible to think that experimental
results could uncover a new, completely different cause to the wavelength problem
encountered in the numerical case. If the theoretical and numerical results can be
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matched experimentally, such bilayered systems could be practically implemented
as actuators in more complex engineering systems.

Finally, one last idea of investigation for the future could be to explore the possi-
bilities of all the results in this thesis applied to different dimensional scales. All
scales here were chosen to fit in the necessary assumption of the Föppl-von Kármán
theory, but it could be interesting to calculate the critical size of the film and the
substrate, at which the small deformation theory would no longer hold and then find
the maximum size of wrinkles that could be created while this theory would still
hold. As a matter of fact, the initial assumptions did not impose the range of value
for the thickness to be within the µm range, but that deformation size is limited with
respect to the thickness of the film. As a consequence, it is possible to increase this
size as long as the substrate remains sufficiently larger than the film and the in-plane
dimensions also remain far larger than the thickness of the film.
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A p p e n d i x A

AUGMENTED LAGRANGIAN CODE

This is the Matlab code implemented for the Augmented Lagragian method de-
scribed in Chapter 3.

Matlab Code
c l e a r a l l
c l o s e a l l
c l c

o p t i o n s = o p t im s e t ( ’ TolFun ’ ,1 e−15 , ’ D i s p l a y ’ , ’ o f f ’ ) ;

%d e f i n e t h e Po i s s on c o e f f f o r t h e r o o t program
c o e f f = 0 . 3 ;
POISSON = 1− c o e f f ;

%p h y s i c a l p a r am t e r s
t h i c k n e s s =30∗10^−6;
Ef i lm = 10∗10^9;
Esub = 10∗10^6;
nu f i lm =0 . 3 ;
nusub =0 . 4 ;
e p s i l o n 0 =8.85∗10^ −12;
e p s i l o n r =7;
e l e c t r i c _ f i e l d =0∗10^8;
bendingModulus = Ef i lm ∗ t h i c k n e s s ^3 / (12∗ (1 − nu f i lm ^2) ) ;
Sub s t r a t eModu l u s = (1− nusub ) / ( ( 1 + nusub ) ∗(3−4∗ nusub ) ) ∗

Esub ;
e t a =0 . 0 1 ;
k t h e o r y =( Sub s t r a t eModu l u s / bendingModulus ) ^ ( 1 / 3 ) ;
Atheory= s q r t ( e t a ∗(1+ nu f i lm ) ∗4 / k t h e o r y ^2− t h i c k n e s s ^2 ) ;
k t h eo r y2 = ( ( Subs t r a t eModu lu s −1/2∗ e p s i l o n 0 ∗ e p s i l o n r ∗

e l e c t r i c _ f i e l d ^2 ) / bendingModulus ) ^ ( 1 / 3 ) ;
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%d e f i n e space and f r e qu en cy domain
N = 128 ;
a = 0 ;
b = 300∗ p i ;
dx = ( b−a ) /N;
spaceDomain = a + dx ∗ ( 0 :N−1) ;

[X,Y] = meshgr id ( spaceDomain ) ;

kDomain = (−N/ 2 ) ∗2∗ p i / ( b−a ) + 2∗ p i / ( b−a ) ∗ ( 0 :N−1) ;

[KX,KY] = meshgr id ( kDomain ) ;

%d e f i n e a c o e f f o f b a l a n c e o f e n e r g i e s
b a l ancebend = 1100 ; %bend ing c o e f f i c i e n t

b a l a n c e s u b s = 2∗ ba l ancebend ∗ (2∗ p i ∗12 / b ) ^3 ; %
s u b s t r a t e ene rgy c o e f f i c i e n t

b a l a n c e s t r e t c h = 2 ; %s t r e t c h i n g ene rgy c o e f f i c i e n t

% d e f i n e t h e q u a d r a t i c p e n a l t y c o e f f i c i e n t
b e t a = 1200 ;

% d e f i n e u nd imen s i o n a l i z e d p a r ame t e r s
x0 =( b a l a n c e s u b s / b a l anc ebend ∗ bendingModulus / ( 2∗

Sub s t r a t eModu l u s ) ) ^ ( 1 / 3 ) ;
w0= s q r t ( b a l a n c e s t r e t c h / b a l anc ebend ∗ t h i c k n e s s ^ 2 / 1 2 ) ;
u0= s q r t ( b a l a n c e s t r e t c h / b a l anc ebend ∗ t h i c k n e s s ^2 /12∗w0^2 /

x0 ^2 ) ;
e t a 0 = s q r t ( b a l a n c e s t r e t c h / b a l anc ebend ∗ t h i c k n e s s ^2 / 12∗ (w0

^2 ) / ( x0 ^4 ) ) ;
ene rgy0=ba l ancebend ∗2 / bendingModulus∗x0 ^2 /w0^2 ;
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e l e c 0 = s q r t ( 1 / e p s i l o n 0 / e p s i l o n r ∗2∗ Sub s t r a t eModu l u s /
b a l a n c e s u b s ) ;

% d e f i n e t h e s c a l e s c o e f f i c i e n t s f o r space and
f r e qu en cy

Xco r r e c t = x0∗X;
Yco r r e c t = x0∗Y;
KXcor rec t = ( 1 / x0 ) ∗KX;
KYcor rec t = ( 1 / x0 ) ∗KY;

%d e f i n e t h e s i z e o f t h e loop
s i z e l o o p = 40000 ;

%d e f i n e t h e ang l e o f o r i e n t a t i o n o f t h e w r i n k l e s
t e t a = −p i / 4∗ ones (N) ;

f o r y = 1 :N/ 2
f o r x = 1 :N

t e t a ( x , y ) = p i / 4 ;

end
end

%d e f i n e t h e u nd imen s i o n a l i z e d e l e c t r i c f i e l d
e l e c b a r = e l e c t r i c _ f i e l d / e l e c 0 ;
%d e f i n e t h e u nd imen s i o n a l i z e d s t r a i n magn i tude
e t a b a r = e t a / e t a 0 ;

%d e f i n e t h e s t r a i n i n each of t h e main d i r e c t i o n and
t h e s h e a r s t r a i n

e t a xyTen so r = e t a b a r ∗ cos ( t e t a ) .∗ s i n ( t e t a ) ; %
und imen s i o n a l i z e d s h e a r s t r a i n

e t a xTen so r = e t a b a r ∗ cos ( t e t a ) .∗ cos ( t e t a ) ; %
und imen s i o n a l i z e d s t r a i n i n x− d i r e c t i o n

e t a yTen so r = e t a b a r ∗ s i n ( t e t a ) .∗ s i n ( t e t a ) ; %
und imen s i o n a l i z e d s t r a i n i n y− d i r e c t i o n
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%s t r a i n d i s t r i b u t i o n s a r e now t r a n s f e r r e d i n t o t h e
F o u r i e r domain

e t axFou = f f t s h i f t ( f f t 2 ( e t a xTen s o r ) ) ;
e t ayFou = f f t s h i f t ( f f t 2 ( e t a yTen s o r ) ) ;
e t axyFou = f f t s h i f t ( f f t 2 ( e t a xyTen so r ) ) ;

%d e f i n e i n i t i a l gue s s f o r w

wTensor =−Atheory /w0/2+ Atheory /w0∗ r and (N) ;
uTensor = −2.5+5∗ r and (N) ;
vTensor = −2.5+5∗ r and (N) ;

%c r e a t e an empty box f o r x i
x i 1Ten so r = z e r o s (N,N) ;
x i 2Ten so r = z e r o s (N,N) ;

%i n i t i a l Lagrange m u l t i p l i e r lambda i s s e t t o be 0
lambda1= z e r o s (N) ;
lambda2= z e r o s (N) ;

%c r e a t e t h e q u a d r a t i c c o e f f i c i e n t
quad1 = 2∗ ( b a l a n c e s t r e t c h / ( 1 ) ) ∗ (KX.∗KX+POISSON / 2∗ (KY.∗

KY) ) +2∗ b a l a n c e s u b s ∗ (KX.∗KX) . / ( ( KX.∗KX+KY.∗KY) . ^ 0 . 5 )
;

quad2 = 2∗ ( b a l a n c e s t r e t c h / ( 1 ) ) ∗ (KY.∗KY+POISSON / 2∗ (KX.∗
KX) ) +2∗ b a l a n c e s u b s ∗ (KY.∗KY) . / ( ( KX.∗KX+KY.∗KY) . ^ 0 . 5 )
;

quad12 = 2∗ ( b a l a n c e s t r e t c h / ( 1 ) ) ∗ ( ( 1+ c o e f f ) / 2∗KX.∗KY) ;
quad3 = 2∗ ( b a l ancebend / ( 1 ) ) ∗ (KX.∗KX+KY.∗KY) . ^ 2+ ( b e t a

/ ( 1 ) ) ∗ (KX.∗KX+KY.∗KY) +2∗ b a l a n c e s u b s ∗ (KX.∗KX+KY.∗KY)
.^0 .5 − e l e c b a r ^2∗ (KX.∗KX+KY.∗KY) . ^ 0 . 5 ;

%c r e a t e a q u a d r a t i c ma t r i x f o r t h e s h e a r components o f
t h e s u b s t r a t e
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quadsub11 = 2∗ b a l a n c e s u b s ∗ (KX.∗KX . / (KX.∗KX+KY.∗KY)
.^0 .5+(3 −4∗ nusub ) / (1 − nusub ) /4∗KY.∗KY . / (KX.∗KX+KY.∗KY
) . ^ 0 . 5 ) ;

quadsub12 = 2∗ b a l a n c e s u b s ∗ (1 / (1 − nusub ) /4∗KX.∗KY . / (KX
.∗KX+KY.∗KY) . ^ 0 . 5 ) ;

quadsub13 = 2∗ b a l a n c e s u b s ∗ ( −1/2∗1 i ∗KX∗(1−2∗ nusub ) / (1 −
nusub ) ) ;

quadsub21 = quadsub12 ;
quadsub22 = 2∗ b a l a n c e s u b s ∗ (KY.∗KY . / (KX.∗KX+KY.∗KY)

.^0 .5+(3 −4∗ nusub ) / (1 − nusub ) /4∗KX.∗KX . / (KX.∗KX+KY.∗KY
) . ^ 0 . 5 ) ;

quadsub23 = 2∗ b a l a n c e s u b s ∗ ( −1/2∗1 i ∗KY∗(1−2∗ nusub ) / (1 −
nusub ) ) ;

quadsub31= −quadsub13 ;
quadsub32= −quadsub23 ;
quadsub33= 0∗ quadsub11 ;

%add t h e two ma t r i c e s
quad1=quad1+quadsub11 ;
quad2=quad2+quadsub22 ;
quad3=quad3+quadsub33 ;
quad12=quad12+quadsub12 ;
quad13=quadsub13 ;
quad31=quadsub31 ;
quad23=quadsub23 ;
quad32=quadsub32 ;

%compute t h e i n t e rm e d i a r y c o e f f i c i e n t s t o b u i l d t h e
i n v e r s e o f t h e q u a d r a t i c ma t r i x

bigA=quad2 .∗ quad3−quad23 .∗ quad32 ;
bigB=−( quad12 .∗ quad3−quad23 .∗ quad31 ) ;
bigC=quad12 .∗ quad32−quad2 .∗ quad31 ;
bigD=−( quad12 .∗ quad3−quad1 .∗ quad32 ) ;
bigE=quad1 .∗ quad3−quad13 .∗ quad31 ;
b igF =−( quad1 .∗ quad32−quad12 .∗ quad31 ) ;
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bigG=quad12 .∗ quad23−quad13 .∗ quad2 ;
bigH=−( quad1 .∗ quad23−quad13 .∗ quad12 ) ;
b i g I =quad1 .∗ quad2−quad12 .∗ quad12 ;
d e t e rm i =quad1 .∗ bigA+quad12 .∗ bigB+quad13 .∗ bigC ;

%compute t h e c o e f f i c i e n t s o f t h e i n v e r s e o f t h e
q u a d r a t i c ma t r i x

invquad11=bigA . / d e t e rm i ;
invquad12=bigD . / d e t e rm i ;
invquad13=bigG . / d e t e rm i ;
invquad21=bigB . / d e t e rm i ;
invquad22=bigE . / d e t e rm i ;
invquad23=bigH . / d e t e rm i ;
invquad31=bigC . / d e t e rm i ;
invquad32=bigF . / d e t e rm i ;
invquad33= b i g I . / d e t e rm i ;

%b u i l d a wa i t b a r t o i n d i c a t e t h e p r o g r e s s o f t h e loop
h = wa i t b a r ( 0 , ’ P l e a s e ␣ wa i t . . . ’ ) ;

% b u i l d a box t o s t o c k t h e number o f m i s t a k e s ( c a s e s
where t h e po lynomia l f o r x i can ’ t be s o l v e d )

numbero fMis t akes = 0 ;
x i 1 check = z e r o s (N) ;
x i 2 check = z e r o s (N) ;
r e s i d u e = ones (N,N) ;

%t r a n s f e r a l l d i s p l a c emen t s u , v , w i n t o t h e F o u r i e r
domain and c r e a t i n g t h e i r d e r i v a t i v e s u s i n g f ’= i k f

wFou = f f t s h i f t ( f f t 2 ( wTensor ) ) ;
wxFou = (1 i ∗KX) .∗wFou ;
wxTensor = r e a l ( i f f t 2 ( i f f t s h i f t ( wxFou ) ) ) ;
wyFou = (1 i ∗KY) .∗wFou ;
wyTensor = r e a l ( i f f t 2 ( i f f t s h i f t ( wyFou ) ) ) ;
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uFou = f f t s h i f t ( f f t 2 ( uTensor ) ) ;
uxFou = (1 i ∗KX) .∗ uFou ;
uxTensor = r e a l ( i f f t 2 ( i f f t s h i f t ( uxFou ) ) ) ;

uyFou = (1 i ∗KY) .∗ uFou ;
uyTensor = r e a l ( i f f t 2 ( i f f t s h i f t ( uyFou ) ) ) ;

vFou = f f t s h i f t ( f f t 2 ( vTensor ) ) ;
vxFou = (1 i ∗KX) .∗ vFou ;
vxTensor = r e a l ( i f f t 2 ( i f f t s h i f t ( vxFou ) ) ) ;
vyFou = (1 i ∗KY) .∗ vFou ;
vyTensor = r e a l ( i f f t 2 ( i f f t s h i f t ( vyFou ) ) ) ;

%t r a n s f e r Lagrange p a r ame t e r s lambdas i n t o t h e F o u r i e r
domain

lambda1Fou = f f t s h i f t ( f f t 2 ( lambda1 ) ) ;
lambda2Fou = f f t s h i f t ( f f t 2 ( lambda2 ) ) ;

%s t a r t t h e loop
f o r l oo =1: s i z e l o o p

%so l v e f o r x i

p a r f o r i =1 :N
f o r j =1 :N

gues s = [ wxTensor ( i , j ) , wyTensor ( i , j ) ] ;
fun = @( y ) xiRoot2Duvxy ( y , e t axTenso r ,

e t ayTenso r , e t axyTenso r , lambda1 , lambda2 ,
be t a , wxTensor , wyTensor , uxTensor , vyTensor
, uyTensor , vxTensor , i , j , POISSON ,
b a l a n c e s t r e t c h ) ;

[ s o l u t i o n , f v a l , e x i t f l a g , o u t p u t ]= f s o l v e ( fun , guess ,
o p t i o n s ) ;

i f e x i t f l a g <1 && e x i t f l a g >1
numbero fMis t akes = numbero fMis t akes +1 ;
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end
x i 1Ten so r ( i , j ) = s o l u t i o n ( 1 ) ;
x i 2Ten so r ( i , j ) = s o l u t i o n ( 2 ) ;
%we make a check t h a t eve ry v a l u e o f t h e x i

d i s t r i b u t i o n s i s s a t i s f a y i n g t h e po lynomia l
x i 1 check ( i , j ) = (2∗ s o l u t i o n ( 1 ) ∗ b a l a n c e s t r e t c h ∗(−

e t a xTen so r ( i , j ) +uxTensor ( i , j ) +0 .5∗ s o l u t i o n ( 1 ) ^2−
e t a yTen so r ( i , j ) +vyTensor ( i , j ) +0 .5∗ s o l u t i o n ( 2 ) ^2−
POISSON∗(− e t a yTen so r ( i , j ) +vyTensor ( i , j ) +0 .5∗ s o l u t i o n
( 2 ) ^2 ) ) +2∗ b a l a n c e s t r e t c h ∗POISSON∗ s o l u t i o n ( 2 ) ∗(−
e t a xyTen so r ( i , j ) +0 . 5∗ ( uyTensor ( i , j ) +vxTensor ( i , j ) )
+0 .5∗ s o l u t i o n ( 1 ) ∗ s o l u t i o n ( 2 ) ) ) + lambda1 ( i , j )−b e t a ∗ (
wxTensor ( i , j )− s o l u t i o n ( 1 ) ) ;

x i 2 check ( i , j ) = (2∗ s o l u t i o n ( 2 ) ∗ b a l a n c e s t r e t c h ∗(−
e t a xTen so r ( i , j ) +uxTensor ( i , j ) +0 .5∗ s o l u t i o n ( 1 ) ^2−
e t a yTen so r ( i , j ) +vyTensor ( i , j ) +0 .5∗ s o l u t i o n ( 2 ) ^2−
POISSON∗(− e t a xTen so r ( i , j ) +uxTensor ( i , j ) +0 .5∗ s o l u t i o n
( 1 ) ^2 ) ) +2∗ b a l a n c e s t r e t c h ∗POISSON∗ s o l u t i o n ( 1 ) ∗(−
e t a xyTen so r ( i , j ) +0 . 5∗ ( uyTensor ( i , j ) +vxTensor ( i , j ) )
+0 .5∗ s o l u t i o n ( 1 ) ∗ s o l u t i o n ( 2 ) ) ) + lambda2 ( i , j )−b e t a ∗ (
wyTensor ( i , j )− s o l u t i o n ( 2 ) ) ;

end
end
%t h i s i s t o s t o p t h e loop i f t h e r e i s one v a l u e o f

x i no t s a t i s f y i n g t h e x i e q u a t i o n
i f max (max ( x i 1 check ) ) >0.000001

msg = ’ E r r o r ␣ o c c u r r e d ␣wi th ␣ x i1 ’ ;
e r r o r (msg )

end
i f max (max ( x i 2 check ) ) >0.000001

msg = ’ E r r o r ␣ o c c u r r e d ␣wi th ␣ x i2 ’ ;
e r r o r (msg )

end
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%c r e a t e x i ^2 and t r a n s f e r e v e r y t h i n g i n t o t h e
F o u r i e r Domain

x i 1Squa r e = x i 1Ten so r .∗ x i 1Ten so r ;
x i1Fou = f f t s h i f t ( f f t 2 ( x i 1Ten so r ) ) ;
x i1Squa reFou = f f t s h i f t ( f f t 2 ( x i 1Squa r e ) ) ;

x i 2Squa r e = x i 2Ten so r .∗ x i 2Ten so r ;
x i2Fou = f f t s h i f t ( f f t 2 ( x i 2Ten so r ) ) ;
x i2Squa reFou = f f t s h i f t ( f f t 2 ( x i 2Squa r e ) ) ;

%c r e a t e x i 1 ∗ x i2 and t r a n s f e r i t i n t o t h e F o u r i e r domain
x i 1 x i 2 = x i 1Ten so r .∗ x i 2Ten so r ;
x i 1x i2Fou = f f t s h i f t ( f f t 2 ( x i 1 x i 2 ) ) ;

%c r e a t e B te rm by t h e i n t e rm e d i a r y o f i t s c o n j u g a t e
B s t a r 1 =( b a l a n c e s t r e t c h / ( 1 ) ) ∗ ( 2∗ ( 1 i ) ∗KX.∗ con j (− e t axFou

+1/2∗ xi1SquareFou −e t ayFou +1/2∗ x i2Squa reFou ) −2∗
POISSON∗ (1 i ) ∗KX.∗ con j (− e t ayFou +1/2∗ x i2Squa reFou ) +2∗
POISSON∗ (1 i ) ∗KY.∗ con j (− e taxyFou +1/2∗ x i1x i2Fou ) ) ;

B s t a r 2 =( b a l a n c e s t r e t c h / ( 1 ) ) ∗ ( 2∗ ( 1 i ) ∗KY.∗ con j (− e t axFou
+1/2∗ xi1SquareFou −e t ayFou +1/2∗ x i2Squa reFou ) −2∗
POISSON∗ (1 i ) ∗KY.∗ con j (− e t axFou +1/2∗ x i1Squa reFou ) +2∗
POISSON∗ (1 i ) ∗KX.∗ con j (− e taxyFou +1/2∗ x i1x i2Fou ) ) ;

B s t a r 3 =(1 i ∗KX.∗ con j (( − lambda1Fou ) +( b e t a ) ∗(− xi1Fou ) ) +1 i ∗
KY.∗ con j (( − lambda2Fou ) + b e t a ∗(− xi2Fou ) ) ) ;

Bterm1= con j ( B s t a r 1 ) ;
Bterm2= con j ( B s t a r 2 ) ;
Bterm= con j ( B s t a r 3 ) ;

%upda t e w, w’ and lambda

wFouNext = − i nvquad31 .∗ Bterm1− i nvquad32 .∗ Bterm2−
i nvquad33 .∗ Bterm ;

% because one of t h e q u a d r a t i c ma t r i x t e rms i s 0 ,
i t s i n v e r s e w i l l be i n f i n i t e . I t r e p r e s e n t s t h e



113

mean va l u e o f t h e d i s t r i b u t i o n w and must be s e t
t o 0

wFouNext (N/2+1 ,N/ 2+1 ) =0;

% compute t h e d e r i v a t i v e s and t h e L ap l a c i a n o f
d e l f e c t i o n w us i ng t h e method f ’= i k ∗ f

wxFou = (1 i ∗KX) .∗ wFouNext ;
wyFou = (1 i ∗KY) .∗ wFouNext ;
wFou = wFouNext ;
Lap l a c i anFou = (1 i ∗KX) .∗wxFou + (1 i ∗KY) .∗wyFou ;

%upda t e u
%uFouNext = −( i n v e r s e q u ad1 ) .∗ Bterm1 −(

i n v e r s e qu ad12 ) .∗ Bterm2 ;
uFouNext = − i nvquad11 .∗ Bterm1− i nvquad12 .∗ Bterm2−

i nvquad13 .∗ Bterm ;
%s e t t h e av e r ag e v a l u e o f u t o be 0
uFouNext (N/2+1 ,N/2+1 ) = 0 ;

%compute d e r i v a t i v e o f i n p l a n e d i s p l a c emen t u
uxFou = (1 i ∗KX) .∗ uFouNext ;
uyFou = (1 i ∗KY) .∗ uFouNext ;
uFou = uFouNext ;

%upda t e v
vFouNext = − i nvquad21 .∗ Bterm1− i nvquad22 .∗ Bterm2−

i nvquad23 .∗ Bterm ;
%s e t t h e av e r ag e v a l u e o f v t o be 0
vFouNext (N/2+1 ,N/2+1 ) = 0 ;

%compute d e r i v a t i v e o f i n p l a n e d i s p l a c emen t v
vxFou = (1 i ∗KX) .∗ vFouNext ;
vyFou = (1 i ∗KY) .∗ vFouNext ;
vFou = vFouNext ;
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%upda t e t h e Lagrange m u l t i p l i e r lambda
lambda1Fou = lambda1Fou−b e t a ∗ (wxFou−xi1Fou ) ;
lambda2Fou = lambda2Fou−b e t a ∗ (wyFou−xi2Fou ) ;

%t r a n s f e r a l l d i s p l a c emen t s f i e l d s and d e r i v a t i v e s
back t o t h e space domain

wNext = i f f t 2 ( i f f t s h i f t ( wFouNext ) ) ;
wTensor = r e a l ( wNext ) ;

wxTensor = ( i f f t 2 ( i f f t s h i f t ( wxFou ) ) ) ;
wxTensor = r e a l ( wxTensor ) ;
wyTensor = ( i f f t 2 ( i f f t s h i f t ( wyFou ) ) ) ;
wyTensor = r e a l ( wyTensor ) ;
L a p l a c i a n = r e a l ( i f f t 2 ( i f f t s h i f t ( Lap l a c i anFou ) ) ) ;

uTensor = r e a l ( i f f t 2 ( i f f t s h i f t ( uFouNext ) ) ) ;
uxTensor = ( i f f t 2 ( i f f t s h i f t ( uxFou ) ) ) ;
uxTensor = r e a l ( uxTensor ) ;
uyTensor = ( i f f t 2 ( i f f t s h i f t ( uyFou ) ) ) ;
uyTensor = r e a l ( uyTensor ) ;

vTensor = r e a l ( i f f t 2 ( i f f t s h i f t ( vFouNext ) ) ) ;
vxTensor = ( i f f t 2 ( i f f t s h i f t ( vxFou ) ) ) ;
vxTensor = r e a l ( vxTensor ) ;
vyTensor = ( i f f t 2 ( i f f t s h i f t ( vyFou ) ) ) ;
vyTensor = r e a l ( vyTensor ) ;

%t r a n s f e r t h e Lagrange m u l t i p l i e r s lambda back t o t h e
space domain

lambda1 = ( i f f t 2 ( i f f t s h i f t ( lambda1Fou ) ) ) ;
lambda1 = r e a l ( lambda1 ) ;
lambda2 = ( i f f t 2 ( i f f t s h i f t ( lambda2Fou ) ) ) ;
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lambda2 = r e a l ( lambda2 ) ;

%c r e a t e a r e s i d u e t e n s o r t o check t h e conve rgence
r e s i du e1Fou = wxFou−xi1Fou ;
r e s i d u e2Fou = wyFou−xi2Fou ;
r e s i d u e 1 = r e a l ( i f f t 2 ( i f f t s h i f t ( wxFou−xi1Fou ) ) ) ;
r e s i d u e 2 = r e a l ( i f f t 2 ( i f f t s h i f t ( wyFou−xi2Fou ) ) ) ;

%compute s t r e t c h i n g ene rgy and bend ing ene rgy
s t r e t c h i n g _ e n e r g y = Ef i lm ∗ t h i c k n e s s ∗ ( 0 . 5 / ( 1 − nu f i lm

^2) ∗(− e t a 0 ∗ e t a xTen so r +x0 / u0∗ uxTensor +( x0 /w0)
^2∗1/2∗ wxTensor .^2− e t a 0 ∗ e t a yTen so r +x0 / u0∗
vyTensor +( x0 /w0) ^2∗1/2∗ wyTensor . ^ 2 ) . ^2 −1 / (1+
nu f i lm ) ∗(− e t a 0 ∗ e t a xTen so r +x0 / u0∗ uxTensor +( x0 /w0)
^2∗1/2∗ wxTensor . ^ 2 ) .∗ ( − e t a 0 ∗ e t a yTen so r +x0 / u0∗
vyTensor +( x0 /w0) ^2∗1/2∗ wyTensor . ^ 2 ) +1 / (1+ nu f i lm )
∗(− e t a 0 ∗ e t a xyTen so r +x0 / u0 ∗0 . 5∗ ( vxTensor+uyTensor
) +( x0 /w0) ^2∗1/2∗ wyTensor .∗ wxTensor ) ) ;

b end ing_ene rgy = 1 /2∗ bendingModulus∗x0 ^4 /w0^2∗
Lap l a c i a n . ^ 2 ;

%compute d e f l e c t i o n a t t h e c o r r e c t s c a l e t h a nk s t o
t h e d imen s i o n a l c o e f f i c i e n t

wco r r e c t =w0∗wTensor ;

%p l o t t h e d i s t r i b u t i o n o f d e f l e c t i o n w a t t h e
c o r r e c t s c a l e wi th i n d i c a t i o n o f loop
advancement

f i g u r e ( 8 )
s u r f ( Xco r r e c t , Yco r r e c t , w co r r e c t )
c o l o r b a r

view ( 2 )
s h ad i ng i n t e r p

t i t l e ( [ ’w␣Tensor ’ , num2s t r ( l oo ) ] )
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%p l o t t h e F o u r i e r d i s t r i b u t i o n o f d e f l e c t i o n w wi th
i n d i c a t i o n o f loop advancement

wobs=abs (wFou ) ;
f i g u r e ( 6 7 )
s u r f ( KXcorrec t , KYcorrec t , wobs )
c o l o r b a r
view ( 2 )

s h ad i ng i n t e r p
t i t l e ( [ ’ F o u r i e r ␣ r e p r e s e n t a t i o n ␣ of ␣w’ , num2s t r ( l oo ) ] )

%p l o t t h e r e l a t i v e e r r o r between x i and g rad (w)
d i s t r i b u t i o n wi th i n d i c a t i o n o f loop advancement

f i g u r e ( 111 )
s u r f (X,Y, r e s i d u e 1 . / wxTensor )
c o l o r b a r
view ( 2 )

s h ad i ng i n t e r p
t i t l e ( [ ’ r e s i d u e 1 ’ , num2s t r ( l oo ) ] )

%i n c a s e conve rgence i s p r e v e n t e d by l o c a l minima
a f t e r h igh number o f i t e r a t i o n s , i t i s s t i l l
p o s s i b l e t o t r y t o g e t r i d o f t h o s e l o c a l minima
e i t h e r

%wi th a f i l t e r o r wi th a n o i s e d i s t u r b a t i o n
% t r y t o k i l l d e f a u l t by add ing n o i s e eve ry 5000

i t e r a t i o n s
i f l oo == 100000 | | l oo ==55000 | | l oo == 41000

cho i c e = i n p u t ( ’Do␣you␣want ␣ t o ␣ f i l t e r ␣ o r ␣ n o i s e ␣ o r
␣ change ␣ b e t a ␣ o r ␣ con t i nu e , ␣F /N/B /C␣ ’ , ’ s ’ ) ;

i f c h o i c e == ’N’

wxTensor = max (max ( wxTensor ) ) / 1∗ r and (N)+
wxTensor ;

wyTensor = max (max ( wyTensor ) ) / 1∗ r and (N)+
wyTensor ;
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uxTensor = max (max ( uxTensor ) ) / 1∗ r and (N)+
uxTensor ;

uyTensor = max (max ( uyTensor ) ) / 1∗ r and (N)+
uyTensor ;

vxTensor = max (max ( vxTensor ) ) / 1∗ r and (N)+
vxTensor ;

vyTensor = max (max ( vyTensor ) ) / 1∗ r and (N)+
vyTensor ;

lambda1 = max (max ( lambda1 ) ) / 1∗ r and (N)+lambda1 ;
lambda2 = max (max ( lambda2 ) ) / 1∗ r and (N)+lambda2 ;
x i 1Ten so r = max (max ( x i 1Ten so r ) ) / 1∗ r and (N)+

x i 1Ten so r ;
x i 2Ten so r = max (max ( x i 2Ten so r ) ) / 1∗ r and (N)+

x i 2Ten so r ;
wxFou = f f t s h i f t ( f f t 2 ( wxTensor ) ) ;
wyFou = f f t s h i f t ( f f t 2 ( wyTensor ) ) ;
uxFou = f f t s h i f t ( f f t 2 ( uxTensor ) ) ;
uyFou = f f t s h i f t ( f f t 2 ( uyTensor ) ) ;
vxFou = f f t s h i f t ( f f t 2 ( uxTensor ) ) ;
vyFou = f f t s h i f t ( f f t 2 ( uyTensor ) ) ;
lambda1Fou = f f t s h i f t ( f f t 2 ( lambda1 ) ) ;
lambda2Fou = f f t s h i f t ( f f t 2 ( lambda2 ) ) ;
x i1Fou = f f t s h i f t ( f f t 2 ( x i 1Ten so r ) ) ;
x i2Fou = f f t s h i f t ( f f t 2 ( x i 2Ten so r ) ) ;

% t r y t o k i l l d e f a u l t by u s i ng a f i l t e r
e l s e i f c ho i c e == ’F ’
p ow e r f i l t e r = ’What␣ v a l u e ␣do␣you␣want ␣ f o r ␣ f i l t e r ?

␣ ’ ;
f i l t = i n p u t ( p o w e r f i l t e r ) ;

[M, I ] = max ( abs (wFou ( : ) ) ) ;
[ I_row , I _ c o l ] = ind2sub ( s i z e ( abs (wFou ) ) , I ) ;
w2=wFou ;
w2( abs (wFou ) < f i l t ∗M∗ ones (N) ) =0;
wFou = 1 .0∗w2 ;
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wxFou = (1 i ∗KX) .∗wFou ;
wyFou = (1 i ∗KY) .∗wFou ;

wxTensor= r e a l ( i f f t 2 ( i f f t s h i f t ( wxFou ) ) ) ;
wyTensor= r e a l ( i f f t 2 ( i f f t s h i f t ( wyFou ) ) ) ;

[M, I ] = max ( abs ( lambda1Fou ( : ) ) ) ;
[ I_row , I _ c o l ] = ind2sub ( s i z e ( abs ( lambda1Fou ) ) , I ) ;
lambda12=lambda1Fou ;
lambda12 ( abs ( lambda1Fou ) < f i l t ∗M∗ ones (N) ) =0;
lambda1Fou = 1 .0∗ lambda12 ;

lambda1= r e a l ( i f f t 2 ( i f f t s h i f t ( lambda1Fou ) ) ) ;

[M, I ] = max ( abs ( lambda2Fou ( : ) ) ) ;
[ I_row , I _ c o l ] = ind2sub ( s i z e ( abs ( lambda2Fou ) ) , I ) ;
lambda22=lambda2Fou ;
lambda22 ( abs ( lambda2Fou ) < f i l t ∗M∗ ones (N) ) =0;
lambda2Fou = 1 .0∗ lambda22 ;

lambda2= r e a l ( i f f t 2 ( i f f t s h i f t ( lambda2Fou ) ) ) ;

[M, I ] = max ( abs ( uxFou ( : ) ) ) ;
[ I_row , I _ c o l ] = ind2sub ( s i z e ( abs ( uxFou ) ) , I ) ;
ux2=uxFou ;
ux2 ( abs ( uxFou ) < f i l t ∗M∗ ones (N) ) =0;
uxFou = 1 .0∗ ux2 ;

uxTensor= r e a l ( i f f t 2 ( i f f t s h i f t ( uxFou ) ) ) ;

[M, I ] = max ( abs ( uyFou ( : ) ) ) ;
[ I_row , I _ c o l ] = ind2sub ( s i z e ( abs ( uyFou ) ) , I ) ;
uy2=uyFou ;
uy2 ( abs ( uyFou ) < f i l t ∗M∗ ones (N) ) =0;
uyFou = 1 .0∗ uy2 ;

uyTensor= r e a l ( i f f t 2 ( i f f t s h i f t ( uyFou ) ) ) ;

[M, I ] = max ( abs ( vxFou ( : ) ) ) ;
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[ I_row , I _ c o l ] = ind2sub ( s i z e ( abs ( vxFou ) ) , I ) ;
vx2=vxFou ;
vx2 ( abs ( vxFou ) < f i l t ∗M∗ ones (N) ) =0;
vxFou = 1 .0∗ vx2 ;

vxTensor= r e a l ( i f f t 2 ( i f f t s h i f t ( vxFou ) ) ) ;

[M, I ] = max ( abs ( vyFou ( : ) ) ) ;
[ I_row , I _ c o l ] = ind2sub ( s i z e ( abs ( vyFou ) ) , I ) ;
vy2=vyFou ;
vy2 ( abs ( vyFou ) < f i l t ∗M∗ ones (N) ) =0;
vyFou = 1 .0∗ vy2 ;

vyTensor= r e a l ( i f f t 2 ( i f f t s h i f t ( vyFou ) ) ) ;

e l s e i f c ho i c e == ’B ’
newbeta= ’What␣ v a l u e ␣do␣you␣want ␣ f o r ␣ b e t a ?␣ ’

;
b e t a = i n p u t ( newbeta ) ;

end
end

%t e rm i n a t e t h e loop i f t h e r e s i d u e becomes sma l l
i f norm ( r e a l ( r e s i d u e 1 ) ) / norm ( r e a l ( wxTensor ) )

<0.00000001
b r eak

end
[M, I ] = max ( wobs ( : ) ) ;

[ I_row , I _ c o l ] = ind2sub ( s i z e ( wobs ) , I ) ;
K i n t e r e s t =KYcor rec t ( I_row , I _ c o l ) ;

w a i t b a r ( l oo / s i z e l o o p , h , s p r i n t f ( ’%12.9 f ’ , K i n t e r e s t
) )

%save t h e d a t a eve ry 2000 i t e r a t i o n s
i f mod ( loo , 5 0 00 ) <1
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save ( ’C : \ Use r s \ Pau l ␣Mazur \ Documents \MATLAB\
d ime n s i o n a l i z e d ␣ r e s u l t s \ b e t t e r ␣ samp l ing \
o ppo s i t e −a n g l e s . mat ’ )

end
end
c l o s e ( h )

%conv e r t e v e r y t h i n g o b t a i n e d i n t h e space domain
wTensor = i f f t 2 ( i f f t s h i f t ( wFouNext ) ) ;
wxTensor = i f f t 2 ( i f f t s h i f t ( wxFou ) ) ;
wyTensor = i f f t 2 ( i f f t s h i f t ( wyFou ) ) ;
lambda1 = i f f t 2 ( i f f t s h i f t ( lambda1Fou ) ) ;
lambda2 = i f f t 2 ( i f f t s h i f t ( lambda2Fou ) ) ;
x i 1Ten so r = i f f t 2 ( i f f t s h i f t ( x i1Fou ) ) ;
x i 2Ten so r = i f f t 2 ( i f f t s h i f t ( x i2Fou ) ) ;
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A p p e n d i x B

ABAQUS BILAYERED SYSTEM CODE

This is the ABAQUS inp file used for generating wrinkles on a bilayered system and
then applying an external electric field on top of the bilayered system. The results of
this file are presented in Chapter 5. This code is a modification of the code realized
by Henann et al. [38] available at [8].

∗Heading
2D plane − s t r a i n , b i l a y e r e d sys tem
∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗ PARAMETERS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Pa r ame t e r
∗∗
∗∗ s i z e o f spec imen (m)
t o t a l _ t h i c k n e s s =4 .0 e−3
t 0 _ t o p = 0 .03 e−3
t 0 _ b o t = t o t a l _ t h i c k n e s s − t 0 _ t o p
∗∗
∗∗Young Modulus ( Pa )
Ef i lm = 10 .0 e9
Esub = 30 .0 e6
NuFilm = 0 . 3
NuSub = 0 . 4
r a t i o = ( 1 2 . 0∗ ( 1 − NuFilm∗NuFilm ) ∗Esub / Ef i lm ∗ ( 1 . 0 −

NuSub ) / ( ( 1 . 0 + NuSub ) ∗ ( 3 . 0 − 4 .0∗NuSub ) ) )
k t h e o r y = 1 / t 0 _ t o p ∗pow ( r a t i o , 0 . 3 3 3 3 3 3 )
∗∗ l e n g t h o f t h e spec imen a l l ow i n g t o ob s e r v e 15

w r i n k l e s
L0 = 2 . 0∗16 . 0∗3 . 1 4 1 6 / k t h e o r y
∗∗ Shea r modul i
G = Ef i lm / ( 2 . 0 ∗ ( 1 . 0 + NuFilm ) )
Gsub = Esub / ( 2 . 0 ∗ ( 1 . 0 + NuSub ) )
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∗∗
∗∗ Bulk modulus ( Pa )
K = Ef i lm / ( 3 . 0 ∗ ( 1 . 0 − 2 . 0 ∗ NuFilm ) )
Ksub = 1 .0∗ Esub / ( 3 . 0 ∗ ( 1 . 0 − 2 . 0 ∗NuSub ) )
∗∗
∗∗ Gent p a r ame t e r
Imax = 7 . 0 e15
∗∗
∗∗ P e r m i t t i v i t y ( a r b i t r a r y u n i t s )
p e rm i t = 6 . 7∗8 . 8 5 e−12
p e rm i t f i lm = 0 . 0
∗∗
∗∗ number o f e l emen t s i n t h e x and y d i r e c t i o n s
ex = 1600
ey_ top = 4
ey_bo t = 30− ey_ top
∗∗
∗∗ F i n a l t ime ( s )
t f = 1 . 0
∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗ c a l c u l a t i o n s f o r geometry , node numbering , l oads ,

e t c . , don ’ t change
∗∗
∗∗ Geometry
t _ t o t = t 0 _ b o t + t 0 _ t o p
∗∗
∗∗ node / e l emen t number ing
ey = ey_bo t + ey_ top
n l a y e r = ex + 1
∗∗
n1 = 1
n2 = n1 + ex
n3 = ey∗ n l a y e r + 1
n4 = n3 + ex
e1 = 1
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e2 = e1 − 1 + ex
e3 = 1 + ( ey − 1) ∗ex + ( e1 − 1)
e4 = e3 + ex − 1
∗∗
nmidbot tom=n1+ex / 2
nmid1 = ey_bo t ∗ n l a y e r + 1
nmid2 = nmid1 + ex
∗∗
l e f t 2 =n2+1
r i g h t 2 = l e f t 2 +ex
l e f t 3 = r i g h t 2 +1
r i g h t 3 = l e f t 3 +ex
l e f t 4 = r i g h t 3 +1
r i g h t 4 = l e f t 4 +ex
l e f t 5 = r i g h t 4 +1
r i g h t 5 = l e f t 5 +ex
l e f t 6 = r i g h t 5 +1
r i g h t 6 = l e f t 6 +ex
l e f t 7 = r i g h t 6 +1
r i g h t 7 = l e f t 7 +ex
l e f t 8 = r i g h t 7 +1
r i g h t 8 = l e f t 8 +ex
l e f t 9 = r i g h t 8 +1
r i g h t 9 = l e f t 9 +ex
l e f t 1 0 = r i g h t 9 +1
r i g h t 1 0 = l e f t 1 0 +ex
l e f t 1 1 = r i g h t 1 0 +1
r i g h t 1 1 = l e f t 1 1 +ex
l e f t 1 2 = r i g h t 1 1 +1
r i g h t 1 2 = l e f t 1 2 +ex
l e f t 1 3 = r i g h t 1 2 +1
r i g h t 1 3 = l e f t 1 3 +ex
l e f t 1 4 = r i g h t 1 3 +1
r i g h t 1 4 = l e f t 1 4 +ex
l e f t 1 5 = r i g h t 1 4 +1
r i g h t 1 5 = l e f t 1 5 +ex
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l e f t 1 6 = r i g h t 1 5 +1
r i g h t 1 6 = l e f t 1 6 +ex
l e f t 1 7 = r i g h t 1 6 +1
r i g h t 1 7 = l e f t 1 7 +ex
l e f t 1 8 = r i g h t 1 7 +1
r i g h t 1 8 = l e f t 1 8 +ex
l e f t 1 9 = r i g h t 1 8 +1
r i g h t 1 9 = l e f t 1 9 +ex
l e f t 2 0 = r i g h t 1 9 +1
r i g h t 2 0 = l e f t 2 0 +ex
l e f t 2 1 = r i g h t 2 0 +1
r i g h t 2 1 = l e f t 2 1 +ex
l e f t 2 2 = r i g h t 2 1 +1
r i g h t 2 2 = l e f t 2 2 +ex
l e f t 2 3 = r i g h t 2 2 +1
r i g h t 2 3 = l e f t 2 3 +ex
l e f t 2 4 = r i g h t 2 3 +1
r i g h t 2 4 = l e f t 2 4 +ex
l e f t 2 5 = r i g h t 2 4 +1
r i g h t 2 5 = l e f t 2 5 +ex
l e f t 2 6 = r i g h t 2 5 +1
r i g h t 2 6 = l e f t 2 6 +ex
l e f t 2 7 = r i g h t 2 6 +1
r i g h t 2 7 = l e f t 2 7 +ex
l e f t 2 8 = r i g h t 2 7 +1
r i g h t 2 8 = l e f t 2 8 +ex
l e f t 2 9 = r i g h t 2 8 +1
r i g h t 2 9 = l e f t 2 9 +ex
l e f t 3 0 = r i g h t 2 9 +1
r i g h t 3 0 = l e f t 3 0 +ex
l e f t 3 1 = r i g h t 3 0 +1
r i g h t 3 1 = l e f t 3 1 +ex
l e f t 3 2 = r i g h t 3 1 +1
r i g h t 3 2 = l e f t 3 2 +ex
l e f t 3 3 = r i g h t 3 2 +1
r i g h t 3 3 = l e f t 3 3 +ex
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l e f t 3 4 = r i g h t 3 3 +1
r i g h t 3 4 = l e f t 3 4 +ex
l e f t 3 5 = r i g h t 3 4 +1
r i g h t 3 5 = l e f t 3 5 +ex
l e f t 3 6 = r i g h t 3 5 +1
r i g h t 3 6 = l e f t 3 6 +ex
l e f t 3 7 = r i g h t 3 6 +1
r i g h t 3 7 = l e f t 3 7 +ex
l e f t 3 8 = r i g h t 3 7 +1
r i g h t 3 8 = l e f t 3 8 +ex
l e f t 3 9 = r i g h t 3 8 +1
r i g h t 3 9 = l e f t 3 9 +ex
l e f t 4 0 = r i g h t 3 9 +1
r i g h t 4 0 = l e f t 4 0 +ex
l e f t 4 1 = r i g h t 4 0 +1
r i g h t 4 1 = l e f t 4 1 +ex
l e f t 4 2 = r i g h t 4 1 +1
r i g h t 4 2 = l e f t 4 2 +ex
l e f t 4 3 = r i g h t 4 2 +1
r i g h t 4 3 = l e f t 4 3 +ex
l e f t 4 4 = r i g h t 4 3 +1
r i g h t 4 4 = l e f t 4 4 +ex
l e f t 4 5 = r i g h t 4 4 +1
r i g h t 4 5 = l e f t 4 5 +ex
l e f t 4 6 = r i g h t 4 5 +1
r i g h t 4 6 = l e f t 4 6 +ex
l e f t 4 7 = r i g h t 4 6 +1
r i g h t 4 7 = l e f t 4 7 +ex
l e f t 4 8 = r i g h t 4 7 +1
r i g h t 4 8 = l e f t 4 8 +ex
l e f t 4 9 = r i g h t 4 8 +1
r i g h t 4 9 = l e f t 4 9 +ex
l e f t 5 0 = r i g h t 4 9 +1
r i g h t 5 0 = l e f t 5 0 +ex
l e f t 5 1 = r i g h t 5 0 +1
r i g h t 5 1 = l e f t 5 1 +ex
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l e f t 5 2 = r i g h t 5 1 +1
r i g h t 5 2 = l e f t 5 2 +ex
l e f t 5 3 = r i g h t 5 2 +1
r i g h t 5 3 = l e f t 5 3 +ex
l e f t 5 4 = r i g h t 5 3 +1
r i g h t 5 4 = l e f t 5 4 +ex
l e f t 5 5 = r i g h t 5 4 +1
r i g h t 5 5 = l e f t 5 5 +ex
l e f t 5 6 = r i g h t 5 5 +1
r i g h t 5 6 = l e f t 5 6 +ex
l e f t 5 7 = r i g h t 5 6 +1
r i g h t 5 7 = l e f t 5 7 +ex
l e f t 5 8 = r i g h t 5 7 +1
r i g h t 5 8 = l e f t 5 8 +ex
l e f t 5 9 = r i g h t 5 8 +1
r i g h t 5 9 = l e f t 5 9 +ex
l e f t 6 0 = r i g h t 5 9 +1
r i g h t 6 0 = l e f t 6 0 +ex
∗∗
e lbo t_mas1 = n1
e lbo t_mas2 = n1 + 1
e lbo t_mas3 = n1 + 1 + n l a y e r
e lbo t_mas4 = n1 + n l a y e r
∗∗
e l t op_mas1 = nmid1
e l t op_mas2 = nmid1 + 1
e l t op_mas3 = nmid1 + 1 + n l a y e r
e l t op_mas4 = nmid1 + n l a y e r
∗∗
e1dum = ex∗ey + 1
e2dum = e1dum − 1 + ex
e3dum = 1 + ( ey − 1) ∗ex + ( e1dum − 1)
e4dum = e3dum + ex − 1
emid1dum = 1 + ( ey − ey_ top ) ∗ex + ( e1dum − 1)
emid2dum = emid1dum + ex − 1
emid3dum = 1 + ( ey − ey_top −1)∗ex + ( e1dum − 1)
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emid4dum = emid3dum + ex − 1
∗∗
e t o p_ma s t e r = ex∗ ey_bo t + 1
∗∗
∗∗ F i n a l p o t e n t i a l
ph i = 2 .0∗1208079 .59
∗∗
∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗ MODEL DEFINITION
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗Node
<n1 > , 0 . 0 , 0 . 0
<n2 > , <L0> , 0 . 0
<n3 > , 0 . 0 , < t _ t o t >
<n4 > , <L0> , < t _ t o t >
<nmid1 > , 0 . 0 , < t 0_bo t >
<nmid2 > , <L0> , < t0_bo t >
∗∗
∗∗ Nodes
∗∗
∗Nset , n s e t =n1
<n1>
∗Nset , n s e t =n2
<n2>
∗Nset , n s e t =n3
<n3>
∗Nset , n s e t =n4
<n4>
∗Nset , n s e t =nmidbot tom
<nmidbottom >
∗Nset , n s e t =nmid1
<nmid1>
∗Nset , n s e t =nmid2
<nmid2>
∗Nset , n s e t = l e f t 2
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< l e f t 2 >
∗Nset , n s e t = l e f t 3
< l e f t 3 >
∗Nset , n s e t = l e f t 4
< l e f t 4 >
∗Nset , n s e t = l e f t 5
< l e f t 5 >
∗Nset , n s e t = l e f t 6
< l e f t 6 >
∗Nset , n s e t = l e f t 7
< l e f t 7 >
∗Nset , n s e t = l e f t 8
< l e f t 8 >
∗Nset , n s e t = l e f t 9
< l e f t 9 >
∗Nset , n s e t = l e f t 1 0
< l e f t 1 0 >
∗Nset , n s e t = r i g h t 2
< r i g h t 2 >
∗Nset , n s e t = r i g h t 3
< r i g h t 3 >
∗Nset , n s e t = r i g h t 4
< r i g h t 4 >
∗Nset , n s e t = r i g h t 5
< r i g h t 5 >
∗Nset , n s e t = r i g h t 6
< r i g h t 6 >
∗Nset , n s e t = r i g h t 7
< r i g h t 7 >
∗Nset , n s e t = r i g h t 8
< r i g h t 8 >
∗Nset , n s e t = r i g h t 9
< r i g h t 9 >
∗Nset , n s e t = r i g h t 1 0
< r i g h t 1 0 >
∗Nset , n s e t = l e f t 1 1
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< l e f t 1 1 >
∗Nset , n s e t = l e f t 1 2
< l e f t 1 2 >
∗Nset , n s e t = l e f t 1 3
< l e f t 1 3 >
∗Nset , n s e t = l e f t 1 4
< l e f t 1 4 >
∗Nset , n s e t = l e f t 1 5
< l e f t 1 5 >
∗Nset , n s e t = l e f t 1 6
< l e f t 1 6 >
∗Nset , n s e t = l e f t 1 7
< l e f t 1 7 >
∗Nset , n s e t = l e f t 1 8
< l e f t 1 8 >
∗Nset , n s e t = l e f t 1 9
< l e f t 1 9 >
∗Nset , n s e t = l e f t 2 0
< l e f t 2 0 >
∗Nset , n s e t = r i g h t 1 1
< r i g h t 1 1 >
∗Nset , n s e t = r i g h t 1 2
< r i g h t 1 2 >
∗Nset , n s e t = r i g h t 1 3
< r i g h t 1 3 >
∗Nset , n s e t = r i g h t 1 4
< r i g h t 1 4 >
∗Nset , n s e t = r i g h t 1 5
< r i g h t 1 5 >
∗Nset , n s e t = r i g h t 1 6
< r i g h t 1 6 >
∗Nset , n s e t = r i g h t 1 7
< r i g h t 1 7 >
∗Nset , n s e t = r i g h t 1 8
< r i g h t 1 8 >
∗Nset , n s e t = r i g h t 1 9
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< r i g h t 1 9 >
∗Nset , n s e t = r i g h t 2 0
< r i g h t 2 0 >
∗Nset , n s e t = l e f t 2 1
< l e f t 2 1 >
∗Nset , n s e t = r i g h t 2 1
< r i g h t 2 1 >
∗Nset , n s e t = l e f t 2 2
< l e f t 2 2 >
∗Nset , n s e t = l e f t 2 3
< l e f t 2 3 >
∗Nset , n s e t = l e f t 2 4
< l e f t 2 4 >
∗Nset , n s e t = l e f t 2 5
< l e f t 2 5 >
∗Nset , n s e t = l e f t 2 6
< l e f t 2 6 >
∗Nset , n s e t = l e f t 2 7
< l e f t 2 7 >
∗Nset , n s e t = l e f t 2 8
< l e f t 2 8 >
∗Nset , n s e t = l e f t 2 9
< l e f t 2 9 >
∗Nset , n s e t = l e f t 3 0
< l e f t 3 0 >
∗Nset , n s e t = r i g h t 2 2
< r i g h t 2 2 >
∗Nset , n s e t = r i g h t 2 3
< r i g h t 2 3 >
∗Nset , n s e t = r i g h t 2 4
< r i g h t 2 4 >
∗Nset , n s e t = r i g h t 2 5
< r i g h t 2 5 >
∗Nset , n s e t = r i g h t 2 6
< r i g h t 2 6 >
∗Nset , n s e t = r i g h t 2 7
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< r i g h t 2 7 >
∗Nset , n s e t = r i g h t 2 8
< r i g h t 2 8 >
∗Nset , n s e t = r i g h t 2 9
< r i g h t 2 9 >
∗Nset , n s e t = r i g h t 3 0
< r i g h t 3 0 >
∗Nset , n s e t = l e f t 3 1
< l e f t 3 1 >
∗Nset , n s e t = l e f t 3 2
< l e f t 3 2 >
∗Nset , n s e t = l e f t 3 3
< l e f t 3 3 >
∗Nset , n s e t = l e f t 3 4
< l e f t 3 4 >
∗Nset , n s e t = l e f t 3 5
< l e f t 3 5 >
∗Nset , n s e t = l e f t 3 6
< l e f t 3 6 >
∗Nset , n s e t = l e f t 3 7
< l e f t 3 7 >
∗Nset , n s e t = l e f t 3 8
< l e f t 3 8 >
∗Nset , n s e t = l e f t 3 9
< l e f t 3 9 >
∗Nset , n s e t = l e f t 4 0
< l e f t 4 0 >
∗Nset , n s e t = r i g h t 3 1
< r i g h t 3 1 >
∗Nset , n s e t = r i g h t 3 2
< r i g h t 3 2 >
∗Nset , n s e t = r i g h t 3 3
< r i g h t 3 3 >
∗Nset , n s e t = r i g h t 3 4
< r i g h t 3 4 >
∗Nset , n s e t = r i g h t 3 5
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< r i g h t 3 5 >
∗Nset , n s e t = r i g h t 3 6
< r i g h t 3 6 >
∗Nset , n s e t = r i g h t 3 7
< r i g h t 3 7 >
∗Nset , n s e t = r i g h t 3 8
< r i g h t 3 8 >
∗Nset , n s e t = r i g h t 3 9
< r i g h t 3 9 >
∗Nset , n s e t = r i g h t 4 0
< r i g h t 4 0 >
∗Nset , n s e t = l e f t 4 1
< l e f t 4 1 >
∗Nset , n s e t = l e f t 4 2
< l e f t 4 2 >
∗Nset , n s e t = l e f t 4 3
< l e f t 4 3 >
∗Nset , n s e t = l e f t 4 4
< l e f t 4 4 >
∗Nset , n s e t = l e f t 4 5
< l e f t 4 5 >
∗Nset , n s e t = l e f t 4 6
< l e f t 4 6 >
∗Nset , n s e t = l e f t 4 7
< l e f t 4 7 >
∗Nset , n s e t = l e f t 4 8
< l e f t 4 8 >
∗Nset , n s e t = l e f t 4 9
< l e f t 4 9 >
∗Nset , n s e t = l e f t 5 0
< l e f t 5 0 >
∗Nset , n s e t = r i g h t 4 1
< r i g h t 4 1 >
∗Nset , n s e t = r i g h t 4 2
< r i g h t 4 2 >
∗Nset , n s e t = r i g h t 4 3
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< r i g h t 4 3 >
∗Nset , n s e t = r i g h t 4 4
< r i g h t 4 4 >
∗Nset , n s e t = r i g h t 4 5
< r i g h t 4 5 >
∗Nset , n s e t = r i g h t 4 6
< r i g h t 4 6 >
∗Nset , n s e t = r i g h t 4 7
< r i g h t 4 7 >
∗Nset , n s e t = r i g h t 4 8
< r i g h t 4 8 >
∗Nset , n s e t = r i g h t 4 9
< r i g h t 4 9 >
∗Nset , n s e t = r i g h t 5 0
< r i g h t 5 0 >
∗Nset , n s e t = l e f t 5 1
< l e f t 5 1 >
∗Nset , n s e t = l e f t 5 2
< l e f t 5 2 >
∗Nset , n s e t = l e f t 5 3
< l e f t 5 3 >
∗Nset , n s e t = l e f t 5 4
< l e f t 5 4 >
∗Nset , n s e t = l e f t 5 5
< l e f t 5 5 >
∗Nset , n s e t = l e f t 5 6
< l e f t 5 6 >
∗Nset , n s e t = l e f t 5 7
< l e f t 5 7 >
∗Nset , n s e t = l e f t 5 8
< l e f t 5 8 >
∗Nset , n s e t = l e f t 5 9
< l e f t 5 9 >
∗Nset , n s e t = l e f t 6 0
< l e f t 6 0 >
∗Nset , n s e t = r i g h t 5 1
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< r i g h t 5 1 >
∗Nset , n s e t = r i g h t 5 2
< r i g h t 5 2 >
∗Nset , n s e t = r i g h t 5 3
< r i g h t 5 3 >
∗Nset , n s e t = r i g h t 5 4
< r i g h t 5 4 >
∗Nset , n s e t = r i g h t 5 5
< r i g h t 5 5 >
∗Nset , n s e t = r i g h t 5 6
< r i g h t 5 6 >
∗Nset , n s e t = r i g h t 5 7
< r i g h t 5 7 >
∗Nset , n s e t = r i g h t 5 8
< r i g h t 5 8 >
∗Nset , n s e t = r i g h t 5 9
< r i g h t 5 9 >
∗Nset , n s e t = r i g h t 6 0
< r i g h t 6 0 >
∗∗
∗ N f i l l , n s e t = l e f t _ s u b , b i a s = 1 .20
n1 , nmid1 , <ey_bot > , < n l a y e r >
∗ N f i l l , n s e t = l e f t _ f i l m
nmid1 , n3 , <ey_top > , < n l a y e r >
∗ N f i l l , n s e t = r i g h t _ s u b , b i a s = 1 .20
n2 , nmid2 , <ey_bot > , < n l a y e r >
∗ N f i l l , n s e t = r i g h t _ f i l m
nmid2 , n4 , <ey_top > , < n l a y e r >
∗ N f i l l , n s e t =Na l l _ sub
l e f t _ s u b , r i g h t _ s u b , <ex > ,1
∗ N f i l l , n s e t =Na l l _ f i lm
l e f t _ f i l m , r i g h t _ f i lm , <ex > ,1
∗Nset , n s e t = top , gen
<n3 > , <n4 > , 1
∗Nset , n s e t =bottom , gen
<n1 > , <n2 > , 1
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∗Nset , n s e t =midplane , gen
<nmid1 > ,<nmid2 > ,1
∗∗
∗∗ Elemen t s
∗∗
∗User Element , Nodes =4 , Type=U1 , I p r o p e r t i e s =1 , P r o p e r t i e s

=4 , Coo r d i n a t e s =2 , V a r i a b l e s =1 ,Unsymm
1 ,2 ,11
∗∗
∗Element , t y p e =U1
<e1 > , <e lbo t_mas1 > ,< e lbo t_mas2 > ,< e lbo t_mas3 > ,<

e lbo t_mas4 >
∗ E l s e t , e l s e t = f i r s t _ e l e m e n t
<e1>
∗Elgen , e l s e t = e l b o t
<e1 > ,<ex > ,1 ,1 , < ey_bot > , < n l a y e r > , <ex>
∗Element , t y p e =U1
<e top_mas t e r > , <e l top_mas1 > ,< e l top_mas2 > ,< e l top_mas3 > ,<

e l top_mas4 >
∗Elgen , e l s e t = e l t o p
< e t op_mas t e r > , <ex > ,1 ,1 , < ey_top > ,< n l a y e r > , <ex>
∗ E l s e t , e l s e t = E l a l l
e l b o t , e l t o p
∗ E l s e t , e l s e t = e l r i g h t s i d e , gen
<e2 > , <e4 > , <ex>
∗ E l s e t , e l s e t = e l l e f t s i d e , gen
<e1 > , <e3 > , <ex>
∗∗
∗∗ Co n s t r a i n t : C o n s t r a i n t −1
∗Equa t i on
2
n1 , 1 , 1 .
n2 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −1−Copy
∗Equa t i on
2
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n1 , 2 , 1 .
n2 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −1
∗Equa t i on
2
n3 , 1 , 1 .
n4 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −1−Copy
∗Equa t i on
2
n3 , 2 , 1 .
n4 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −2
∗Equa t i on
2
l e f t 2 , 1 , 1 .
r i g h t 2 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −2−Copy
∗Equa t i on
2
l e f t 2 , 2 , 1 .
r i g h t 2 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −3
∗Equa t i on
2
l e f t 3 , 1 , 1 .
r i g h t 3 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −3−Copy
∗Equa t i on
2
l e f t 3 , 2 , 1 .
r i g h t 3 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −4
∗Equa t i on
2
l e f t 4 , 1 , 1 .
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r i g h t 4 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −4−Copy
∗Equa t i on
2
l e f t 4 , 2 , 1 .
r i g h t 4 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −5
∗Equa t i on
2
l e f t 5 , 1 , 1 .
r i g h t 5 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −5−Copy
∗Equa t i on
2
l e f t 5 , 2 , 1 .
r i g h t 5 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −6
∗Equa t i on
2
l e f t 6 , 1 , 1 .
r i g h t 6 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −6−Copy
∗Equa t i on
2
l e f t 6 , 2 , 1 .
r i g h t 6 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −7
∗Equa t i on
2
l e f t 7 , 1 , 1 .
r i g h t 7 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −7−Copy
∗Equa t i on
2
l e f t 7 , 2 , 1 .
r i g h t 7 , 2 , −1.
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∗∗ Co n s t r a i n t : C o n s t r a i n t −8
∗Equa t i on
2
l e f t 8 , 1 , 1 .
r i g h t 8 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −8−Copy
∗Equa t i on
2
l e f t 8 , 2 , 1 .
r i g h t 8 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −9
∗Equa t i on
2
l e f t 9 , 1 , 1 .
r i g h t 9 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −9−Copy
∗Equa t i on
2
l e f t 9 , 2 , 1 .
r i g h t 9 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −10
∗Equa t i on
2
l e f t 1 0 , 1 , 1 .
r i g h t 1 0 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −10−Copy
∗Equa t i on
2
l e f t 1 0 , 2 , 1 .
r i g h t 1 0 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −11
∗Equa t i on
2
l e f t 1 1 , 1 , 1 .
r i g h t 1 1 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −11−Copy
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∗Equa t i on
2
l e f t 1 1 , 2 , 1 .
r i g h t 1 1 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −12
∗Equa t i on
2
l e f t 1 2 , 1 , 1 .
r i g h t 1 2 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −12−Copy
∗Equa t i on
2
l e f t 1 2 , 2 , 1 .
r i g h t 1 2 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −13
∗Equa t i on
2
l e f t 1 3 , 1 , 1 .
r i g h t 1 3 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −13−Copy
∗Equa t i on
2
l e f t 1 3 , 2 , 1 .
r i g h t 1 3 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −14
∗Equa t i on
2
l e f t 1 4 , 1 , 1 .
r i g h t 1 4 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −14−Copy
∗Equa t i on
2
l e f t 1 4 , 2 , 1 .
r i g h t 1 4 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −15
∗Equa t i on
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2
l e f t 1 5 , 1 , 1 .
r i g h t 1 5 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −15−Copy
∗Equa t i on
2
l e f t 1 5 , 2 , 1 .
r i g h t 1 5 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −16
∗Equa t i on
2
l e f t 1 6 , 1 , 1 .
r i g h t 1 6 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −16−Copy
∗Equa t i on
2
l e f t 1 6 , 2 , 1 .
r i g h t 1 6 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −17
∗Equa t i on
2
l e f t 1 7 , 1 , 1 .
r i g h t 1 7 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −17−Copy
∗Equa t i on
2
l e f t 1 7 , 2 , 1 .
r i g h t 1 7 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −18
∗Equa t i on
2
l e f t 1 8 , 1 , 1 .
r i g h t 1 8 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −18−Copy
∗Equa t i on
2
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l e f t 1 8 , 2 , 1 .
r i g h t 1 8 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −19
∗Equa t i on
2
l e f t 1 9 , 1 , 1 .
r i g h t 1 9 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −19−Copy
∗Equa t i on
2
l e f t 1 9 , 2 , 1 .
r i g h t 1 9 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −20
∗Equa t i on
2
l e f t 2 0 , 1 , 1 .
r i g h t 2 0 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −20−Copy
∗Equa t i on
2
l e f t 2 0 , 2 , 1 .
r i g h t 2 0 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −21
∗Equa t i on
2
l e f t 2 1 , 1 , 1 .
r i g h t 2 1 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −21−Copy
∗Equa t i on
2
l e f t 2 1 , 2 , 1 .
r i g h t 2 1 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −22
∗Equa t i on
2
l e f t 2 2 , 1 , 1 .
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r i g h t 2 2 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −22−Copy
∗Equa t i on
2
l e f t 2 2 , 2 , 1 .
r i g h t 2 2 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −23
∗Equa t i on
2
l e f t 2 3 , 1 , 1 .
r i g h t 2 3 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −23−Copy
∗Equa t i on
2
l e f t 2 3 , 2 , 1 .
r i g h t 2 3 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −24
∗Equa t i on
2
l e f t 2 4 , 1 , 1 .
r i g h t 2 4 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −24−Copy
∗Equa t i on
2
l e f t 2 4 , 2 , 1 .
r i g h t 2 4 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −25
∗Equa t i on
2
l e f t 2 5 , 1 , 1 .
r i g h t 2 5 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −25−Copy
∗Equa t i on
2
l e f t 2 5 , 2 , 1 .
r i g h t 2 5 , 2 , −1.
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∗∗ Co n s t r a i n t : C o n s t r a i n t −26
∗Equa t i on
2
l e f t 2 6 , 1 , 1 .
r i g h t 2 6 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −26−Copy
∗Equa t i on
2
l e f t 2 6 , 2 , 1 .
r i g h t 2 6 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −27
∗Equa t i on
2
l e f t 2 7 , 1 , 1 .
r i g h t 2 7 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −27−Copy
∗Equa t i on
2
l e f t 2 7 , 2 , 1 .
r i g h t 2 7 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −28
∗Equa t i on
2
l e f t 2 8 , 1 , 1 .
r i g h t 2 8 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −28−Copy
∗Equa t i on
2
l e f t 2 8 , 2 , 1 .
r i g h t 2 8 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −29
∗Equa t i on
2
l e f t 2 9 , 1 , 1 .
r i g h t 2 9 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −29−Copy
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∗Equa t i on
2
l e f t 2 9 , 2 , 1 .
r i g h t 2 9 , 2 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −30
∗Equa t i on
2
l e f t 3 0 , 1 , 1 .
r i g h t 3 0 , 1 , −1.
∗∗ Co n s t r a i n t : C o n s t r a i n t −30−Copy
∗Equa t i on
2
l e f t 3 0 , 2 , 1 .
r i g h t 3 0 , 2 , −1.
∗∗
∗IMPERFECTION , FILE=Job−buck l i ng −henann −1600x30 , STEP=2
1 ,0 .0000003
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗ MATERIAL DEFINITION
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗
∗∗ Ma t e r i a l p r o p e r t i e s f o r t h e r e a l m a t e r i a l
∗∗
∗ u e l p r op e r t y , e l s e t = e l t o p
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗G Kbulk Imax p e rm i t f i lm pe
<G> , <K> , <Imax > , < p e rm i t f i lm > , 1
∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ u e l p r op e r t y , e l s e t = e l b o t
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗G Kbulk Imax pe rm i t pe
<Gsub > , <Ksub > , <Imax > , <pe rmi t > , 1
∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗ INITIAL CONDITIONS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ I n i t i a l c o n d i t i o n s , t yp e = t emp e r a t u r e
n a l l _ s ub , 0 . 0
n a l l _ f i lm , 0 . 0
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗ AMPLITUDE
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗Ampli tude , name=Amp−1
0 . 0 , 0 . 0 , < t f > , 1 . 0
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗ STEP DEFINITION
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗Step , Name=Load , nlgeom=yes , i n c =50000
∗Coupled t empe r a t u r e −d i s p l a c emen t , de l tmx =100.0
0 .05 , < t f > , 1 . e −8 ,0 .05
∗ c o n t r o l s , p a r ame t e r s = l i n e s e a r c h
1 0 , 1 . 0 , 0 . 0 0 0 1 , 0 . 2 5 , 0 . 1 0
∗ c o n t r o l s , p a r ame t e r s = t ime i n c r em e n t a t i o n
, , , , , , , 1 0 , , , , , ,
∗∗
∗Boundary
<nmid1 > ,2 ,2
bottom , 1 1 , 1 1 , 0 . 0
∗Boundary
bottom ,YSYMM
∗Boundary
nmidbottom ,XSYMM
∗Output , f i e l d , t ime i n t e r v a l =0 .05
∗node ou tpu t , n s e t = n a l l _ f i l m
u , nt , coo rd
∗node ou tpu t , n s e t = n a l l _ s u b
u , nt , coo rd
∗Element Output , e l s e t = E l a l l , d i r e c t i o n s =YES
BF , FV , LE , PE , PEEQ , PEMAG, S , SDV
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∗∗
∗Output , h i s t o r y , t ime i n t e r v a l =0 .05
∗node ou tpu t , n s e t = r i g h t _ f i l m
u1 , u2
∗node ou tpu t , n s e t = t op
n t11
∗node ou tpu t , n s e t =midp lane
r f l 1 1
∗∗
∗End S tep
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗Step , Name= E l e c t r i c i t y , nlgeom=yes , i n c =50000
∗Coupled t empe r a t u r e −d i s p l a c emen t , de l tmx =100.0
0 .05 , < t f > , 1 . e −8 ,0 .05
∗ c o n t r o l s , p a r ame t e r s = l i n e s e a r c h
1 0 , 1 . 0 , 0 . 0 0 0 1 , 0 . 2 5 , 0 . 1 0
∗ c o n t r o l s , p a r ame t e r s = t ime i n c r em e n t a t i o n
, , , , , , , 1 0 , , , , , ,
∗∗
∗Boundary , amp l i t u d e =Amp−1
midplane ,11 ,11 , < phi >
∗∗
∗Output , f i e l d , t ime i n t e r v a l =0 .05
∗node ou tpu t , n s e t = n a l l _ f i l m
u , nt , coo rd
∗node ou tpu t , n s e t = n a l l _ s u b
u , nt , coo rd
∗∗
∗Output , h i s t o r y , t ime i n t e r v a l =0 .05
∗node ou tpu t , n s e t = r i g h t _ s u b
u1 , u2
∗node ou tpu t , n s e t = r i g h t _ f i l m
u1 , u2
∗node ou tpu t , n s e t = t op
n t11
∗node ou tpu t , n s e t =midp lane
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r f l 1 1
∗∗
∗End S tep
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A p p e n d i x C

SUBSTRATE ENERGY CODE

This is the Mathematica notebook written to solve the exact expression of the
substrate energy in the Fourier domain described in Chapter 2.



Substrate energy
First wewrite down the differential operator A :

A = {0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 1},

kx^2 * λ + 2 * μ  μ + ky^2, (λ + μ) / μ * kx * ky, 0, 0, 0, -I * kx * (λ + μ) / μ,

(λ + μ) / μ * kx * ky, ky^2 * λ + 2 * μ  μ + kx^2, 0, 0, 0, -I * ky * (λ + μ) / μ,

0, 0, μ  λ + 2 * μ * kx^2 + ky^2,

-I * kx * (λ + μ)  λ + 2 * μ, -I * ky * (λ + μ)  λ + 2 * μ, 0;

Then we evaluate the eigenvalues and eigenvectors of this differential operator:

Eigensystem[A]

- kx2 + ky2 , - kx2 + ky2 , - kx2 + ky2 , kx2 + ky2 , kx2 + ky2 , kx2 + ky2 ,


ⅈ

kx
, 0, -

1

kx2 + ky2
, -

ⅈ kx2 + ky2

kx
, 0, 1,


ky

kx kx2 + ky2
, -

1

kx2 + ky2
, 0, -

ky

kx
, 1, 0,

{0, 0, 0, 0, 0, 0}, 
ⅈ

kx
, 0,

1

kx2 + ky2
,

ⅈ kx2 + ky2

kx
, 0, 1,

-
ky

kx kx2 + ky2
,

1

kx2 + ky2
, 0, -

ky

kx
, 1, 0, {0, 0, 0, 0, 0, 0}

We see that we have two different eigenvalues, each one having a multiplicity 3. The two eigenspace 

each have dimension 2. It is possible to ask Mathematica to solve the differential system on its own, but 

the result is not favorable to the boundary conditions we want to apply.

DSolve(λ + μ) * -kx^2 * u[z] - kx * ky * v[z] + I * kx * w'[z] +

μ * -kx^2 * u[z] - ky^2 * u[z] + u''[z] ⩵ 0 &&

(λ + μ) * -kx * ky * u[z] - ky^2 * v[z] + I * ky * w'[z] +

μ * -kx^2 * v[z] - ky^2 * v[z] + v''[z] ⩵ 0 &&

(λ + μ) * (I * kx * u'[z] + I * ky * v'[z] + w''[z]) +

μ * -kx^2 * w[z] - ky^2 * w[z] + w''[z] ⩵ 0, {u[z], v[z], w[z]}, z

This result gives us the form that must be investigated for u ,v, and w. We determine the independent 

constants of functions u,v,w by solving the following systems:
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Solveμ kx^2 + ky^2 u2 + I kx (λ + μ) -Sqrtkx^2 + ky^2 w2 -

u2 kx^2 λ + 2 μ + μ ky^2 - v2 (λ + μ) kx ky ⩵ 0 &&

μ kx^2 + ky^2 v2 + I ky (λ + μ) -Sqrtkx^2 + ky^2 w2 -

v2 ky^2 λ + 2 μ + μ kx^2 - u2 (λ + μ) kx ky ⩵ 0 &&

λ + 2 μ kx^2 + ky^2 w2 + I kx (λ + μ) -Sqrtkx^2 + ky^2 u2 +

I ky (λ + μ) -Sqrtkx^2 + ky^2 v2 - μ kx^2 + ky^2 w2 ⩵ 0 &&

μ kx^2 + ky^2 u1 - 2 Sqrtkx^2 + ky^2 u2 + I kx (λ + μ)

-Sqrtkx^2 + ky^2 w1 + w2 - u1 kx^2 λ + 2 μ + μ ky^2 - v1 (λ + μ) kx ky ⩵ 0 &&

μ kx^2 + ky^2 v1 - 2 Sqrtkx^2 + ky^2 v2 + I ky (λ + μ)

-Sqrtkx^2 + ky^2 w1 + w2 - v1 ky^2 λ + 2 μ + μ kx^2 - u1 (λ + μ) kx ky ⩵ 0 &&

λ + 2 μ kx^2 + ky^2 w1 - 2 Sqrtkx^2 + ky^2 w2 +

I kx (λ + μ) -Sqrtkx^2 + ky^2 u1 + u2 + I ky (λ + μ)

-Sqrtkx^2 + ky^2 v1 + v2 - μ w1 kx^2 + ky^2 ⩵ 0, {u1, u2, v1, v2, w1, w2}

Solve::svars : Equations may not give solutions for all "solve" variables.

v1 → -
kx u1

ky
-
ⅈ kx2 + ky2 w1

ky
-
u2 kx2 λ + ky2 λ + 3 kx2 μ + 3 ky2 μ

kx ky kx2 + ky2 (λ + μ)

,

v2 →
ky u2

kx
, w2 →

ⅈ kx2 + ky2 u2

kx


Solve

μ kx^2 + ky^2 u4 + I kx (λ + μ) Sqrtkx^2 + ky^2 w4 - u4 kx^2 λ + 2 μ + μ ky^2 -

v4 (λ + μ) kx ky ⩵ 0 && μ kx^2 + ky^2 v4 + I ky (λ + μ) Sqrtkx^2 + ky^2 w4 -

v4 ky^2 λ + 2 μ + μ kx^2 - u4 (λ + μ) kx ky ⩵ 0 &&

λ + 2 μ kx^2 + ky^2 w4 + I kx (λ + μ) Sqrtkx^2 + ky^2 u4 +

I ky (λ + μ) Sqrtkx^2 + ky^2 v4 - μ kx^2 + ky^2 w4 ⩵ 0 &&

μ kx^2 + ky^2 u3 + 2 Sqrtkx^2 + ky^2 u4 + I kx (λ + μ)

Sqrtkx^2 + ky^2 w3 + w4 - u3 kx^2 λ + 2 μ + μ ky^2 - v3 (λ + μ) kx ky ⩵ 0 &&

μ kx^2 + ky^2 v3 + 2 Sqrtkx^2 + ky^2 v4 + I ky (λ + μ)

Sqrtkx^2 + ky^2 w3 + w4 - v3 ky^2 λ + 2 μ + μ kx^2 - u3 (λ + μ) kx ky ⩵ 0 &&

λ + 2 μ kx^2 + ky^2 w3 + 2 Sqrtkx^2 + ky^2 w4 +

I kx (λ + μ) Sqrtkx^2 + ky^2 u3 + u4 + I ky (λ + μ) Sqrtkx^2 + ky^2 v3 + v4 -

μ w3 kx^2 + ky^2 ⩵ 0, {u3, u4, v3, v4, w3, w4}

Solve::svars : Equations may not give solutions for all "solve" variables.

v3 → -
kx u3

ky
+
ⅈ kx2 + ky2 w3

ky
-
u4 -kx2 λ - ky2 λ - 3 kx2 μ - 3 ky2 μ

kx ky kx2 + ky2 (λ + μ)

,

v4 →
ky u4

kx
, w4 → -

ⅈ kx2 + ky2 u4

kx


From here we only consider the terms associated with exp[-k*z] since the boundary conditions make the 

others terms to be zero. We first check that our result satisfies the set of coupled differential equations:

2     substrate_energy.nb
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u[z_] = c4 * ky + c6 * kx * z * Exp[Sqrt[kx^2 + ky^2] * z];

v[z_] = -c4 * kx + c5 * I * Sqrt[kx^2 + ky^2] + c6 *

Sqrt[kx^2 + ky^2]  ky * λ + 3 * μ  (λ + μ) + ky * z * Exp[Sqrt[kx^2 + ky^2] * z];

w[z_] = c5 * ky + c6 * I * -Sqrt[kx^2 + ky^2] * z * Exp[Sqrt[kx^2 + ky^2] * z];

uconj[z_] = Conjugate[c4] * ky + Conjugate[c6] * kx * z * Exp[Sqrt[kx^2 + ky^2] * z];

vconj[z_] = -Conjugate[c4] * kx - Conjugate[c5] * I * Sqrt[kx^2 + ky^2] + Conjugate[c6] *

Sqrt[kx^2 + ky^2]  ky * λ + 3 * μ  (λ + μ) + ky * z * Exp[Sqrt[kx^2 + ky^2] * z];

wconj[z_] = Conjugate[c5] * ky + Conjugate[c6] * I * Sqrt[kx^2 + ky^2] * z *

Exp[Sqrt[kx^2 + ky^2] * z];

(λ + μ) * -kx^2 * u[z] - kx * ky * v[z] + I * kx * w'[z] +

μ * -kx^2 * u[z] - ky^2 * u[z] + u''[z] // Simplify

(λ + μ) * -kx * ky * u[z] - ky^2 * v[z] + I * ky * w'[z] +

μ * -kx^2 * v[z] - ky^2 * v[z] + v''[z] // Simplify

(λ + μ) * (I * kx * u'[z] + I * ky * v'[z] + w''[z]) +

μ * -kx^2 * w[z] - ky^2 * w[z] + w''[z] // Simplify

0

0

0

Now, we inject those functions into the expression of the energy of the substrate:

energy = 1  2 * Integrate

2 * μ + λ * kx^2 * u[z] * uconj[z] + ky^2 * v[z] * vconj[z] + wconj'[z] * w'[z] +

λ * (ky * kx * u[z] * vconj[z] + kx * ky * uconj[z] * v[z] + I * kx * u[z] * wconj'[z] -

I * kx * uconj[z] * w'[z] + I * ky * v[z] * wconj'[z] - I * ky * vconj[z] * w'[z]) +

μ * ((I * ky * u[z] + I * kx * v[z]) * (-I * ky * uconj[z] - I * kx * vconj[z]) +

(I * kx * w[z] + u'[z]) * (-I * kx * wconj[z] + uconj'[z]) + (I * ky * w[z] + v'[z]) *

(-I * ky * wconj[z] + vconj'[z])), {z, -Infinity, 0} // Simplify

ConditionalExpression
1

2 ky2 kx2 + ky2 (λ + μ)2
μ ky kx2 + ky2 (λ + μ) c4 ky kx2 + ky2 (λ + μ) -

ⅈ kx kx2 + ky2 c5 ky (λ + μ) - ⅈ c6 (λ + 3 μ) Conjugate[c4] +

ky kx2 + ky2 (λ + μ) ky ⅈ c4 kx kx2 + ky2 + c5 kx2 + 4 ky2 (λ + μ) -

ⅈ c6 kx2 + 2 ky2 (λ + 3 μ) Conjugate[c5] +

(λ + 3 μ) ⅈ ky kx2 + ky2 ⅈ c4 kx kx2 + ky2 + c5 kx2 + ky2 kx2 + 2 ky2 (λ + μ) +

c6 kx2 + ky2 2 ky2 (λ + 2 μ) + kx2 (λ + 3 μ) Conjugate[c6] , Re kx2 + ky2  > 0

ky  kx2 + ky2 * (λ + μ)  λ + 3 * μ * vint + kx / ky * uint - I * kx2 + ky2  ky * wint

substrate_energy.nb     3
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Now, we replace the constants c4 c5 c6 with their expressions as functions of the displacements at the 

interface between film and substrate (at z=0):

energybis =

Simplify
1

2 ky2 kx2 + ky2 (λ + μ)2

μ ky kx2 + ky2 (λ + μ) uint / ky ky kx2 + ky2 (λ + μ) -

ⅈ kx kx2 + ky2 wint / ky ky (λ + μ) - ⅈ ky  kx2 + ky2 * (λ + μ)  λ + 3 * μ *

vint + kx / ky * uint - I * kx2 + ky2  ky * wint λ + 3 μ

Conjugate[uint] / ky + ky kx2 + ky2 (λ + μ)

ky ⅈ uint / ky kx kx2 + ky2 + wint / ky kx2 + 4 ky2 (λ + μ) - ⅈ ky  kx2 + ky2 *

(λ + μ)  λ + 3 * μ * vint + kx / ky * uint - I * kx2 + ky2  ky * wint

kx2 + 2 ky2 λ + 3 μ Conjugate[wint] / ky + λ + 3 μ

ⅈ ky kx2 + ky2 ⅈ uint / ky kx kx2 + ky2 + wint / ky kx2 + ky2 kx2 + 2 ky2

(λ + μ) + ky  kx2 + ky2 * (λ + μ)  λ + 3 * μ * vint + kx / ky * uint -

I * kx2 + ky2  ky * wint kx2 + ky2 2 ky2 λ + 2 μ + kx2 λ + 3 μ

ky  kx2 + ky2 * (λ + μ)  λ + 3 * μ * Conjugate[vint] + kx / ky * Conjugate[uint] +

I * kx2 + ky2  ky * Conjugate[wint] , Re kx2 + ky2  > 0

1

2 kx2 + ky2 (λ + 3 μ)

μ 2 ⅈ kx3 wint μ + 2 kx2 kx2 + ky2 uint (λ + 2 μ) + ky2 kx2 + ky2 uint (λ + 3 μ) +

kx ky 2 ⅈ ky wint μ + kx2 + ky2 vint (λ + μ) Conjugate[uint] +

kx ky kx2 + ky2 uint (λ + μ) + 2 ky2 ⅈ ky wint μ + kx2 + ky2 vint (λ + 2 μ) +

kx2 2 ⅈ ky wint μ + kx2 + ky2 vint (λ + 3 μ) Conjugate[vint] +

2 kx2 + ky2 -ⅈ (kx uint + ky vint) μ + kx2 + ky2 wint (λ + 2 μ) Conjugate[wint]

Now, we replace the Lame coefficients with their expressions as function of the Young modulus and the 

Poisson ratio of the substrate:
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energybisbis =

FullSimplify1  2 kx2 + ky2 Young * ν  1 + ν * 1 - 2 * ν + 3 Young  2  1 + ν

Young  2  1 + ν 2 ⅈ kx3 wint Young  2  1 + ν +

2 kx2 kx2 + ky2 uint Young * ν  1 + ν * 1 - 2 * ν + 2 Young  2  1 + ν +

ky2 kx2 + ky2 uint Young * ν  1 + ν * 1 - 2 * ν + 3 Young  2  1 + ν +

kx ky 2 ⅈ ky wint Young  2  1 + ν + kx2 + ky2 vint

Young * ν  1 + ν * 1 - 2 * ν + Young  2  1 + ν Conjugate[uint] +

kx ky kx2 + ky2 uint Young * ν  1 + ν * 1 - 2 * ν + Young  2  1 + ν +

2 ky2 ⅈ ky wint Young  2  1 + ν +

kx2 + ky2 vint Young * ν  1 + ν * 1 - 2 * ν + 2 Young  2  1 + ν +

kx2 2 ⅈ ky wint Young  2  1 + ν + kx2 + ky2 vint

Young * ν  1 + ν * 1 - 2 * ν + 3 Young  2  1 + ν Conjugate[vint] +

2 kx2 + ky2 -ⅈ (kx uint + ky vint) Young  2  1 + ν + kx2 + ky2 wint

Young * ν  1 + ν * 1 - 2 * ν + 2 Young  2  1 + ν Conjugate[wint] 

1

4 kx2 + ky2 -3 + ν + 4 ν2

Young

4 kx2 uint (-1 + ν) + ky2 uint (-3 + 4 ν) - kx ky vint - 2 ⅈ kx2 + ky2 wint (-1 + 2 ν)

Conjugate[uint] + -kx ky uint + kx2 vint (-3 + 4 ν) +

2 ky 2 ky vint (-1 + ν) + ⅈ kx2 + ky2 wint (-1 + 2 ν) Conjugate[vint] +

2 ky ⅈ kx2 + ky2 vint (1 - 2 ν) + 2 ky wint (-1 + ν) +

ⅈ kx kx2 + ky2 uint (1 - 2 ν) + 2 kx2 wint (-1 + ν) Conjugate[wint]

In this section, we confirm our results by performing the same calculation with the terms associated with 

exp[k*z] (we must be careful and integrate the energy from 0 to infinity):
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u2[z_] = c1 * ky + c3 * kx * z * Exp[-Sqrt[kx^2 + ky^2] * z];

v2[z_] = -kx * c1 - I * Sqrt[kx^2 + ky^2] * c2 +

c3 * -Sqrt[kx^2 + ky^2]  ky * λ + 3 * μ  (λ + μ) + ky * z *

Exp[-Sqrt[kx^2 + ky^2] * z];

w2[z_] = c2 * ky + c3 * I * Sqrt[kx^2 + ky^2] * z * Exp[-Sqrt[kx^2 + ky^2] * z];

uconj2[z_] = Conjugate[c1] * ky + Conjugate[c3] * kx * z * Exp[-Sqrt[kx^2 + ky^2] * z];

vconj2[z_] = -kx * Conjugate[c1] + I * Sqrt[kx^2 + ky^2] * Conjugate[c2] +

Conjugate[c3] * -Sqrt[kx^2 + ky^2]  ky * λ + 3 * μ  (λ + μ) + ky * z *

Exp[-Sqrt[kx^2 + ky^2] * z];

wconj2[z_] = Conjugate[c2] * ky - Conjugate[c3] * I * Sqrt[kx^2 + ky^2] * z *

Exp[-Sqrt[kx^2 + ky^2] * z];

(λ + μ) * -kx^2 * u2[z] - kx * ky * v2[z] + I * kx * w2'[z] +

μ * -kx^2 * u2[z] - ky^2 * u2[z] + u2''[z] // Simplify

0

Again we inject the expressions of the displacements into the expression of the substrate energy:

energy2 = Simplify1  2 * Integrate2 * μ + λ *

kx^2 * u2[z] * uconj2[z] + ky^2 * v2[z] * vconj2[z] + wconj2'[z] * w2'[z] +

λ * ky * kx * u2[z] * vconj2[z] + kx * ky * uconj2[z] * v2[z] +

I * kx * u2[z] * wconj2'[z] - I * kx * uconj2[z] * w2'[z] +

I * ky * v2[z] * wconj2'[z] - I * ky * vconj2[z] * w2'[z] +

μ * I * ky * u2[z] + I * kx * v2[z] * -I * ky * uconj2[z] - I * kx * vconj2[z] +

I * kx * w2[z] + u2'[z] * -I * kx * wconj2[z] + uconj2'[z] +

I * ky * w2[z] + v2'[z] * -I * ky * wconj2[z] + vconj2'[z], {z, 0, Infinity}

ConditionalExpression
1

2 ky2 (λ + μ)2
kx2 + ky2 μ

ky (λ + μ) c1 ky kx2 + ky2 (λ + μ) + kx kx2 + ky2 ⅈ c2 ky (λ + μ) + c3 (λ + 3 μ)

Conjugate[c1] + ky (λ + μ) ky -ⅈ c1 kx kx2 + ky2 + c2 kx2 + 4 ky2 (λ + μ) -

ⅈ c3 kx2 + 2 ky2 (λ + 3 μ) Conjugate[c2] + (λ + 3 μ)

ky c1 kx kx2 + ky2 + ⅈ c2 kx2 + 2 ky2 (λ + μ) + c3 2 ky2 (λ + 2 μ) + kx2 (λ + 3 μ)

Conjugate[c3] , Re kx2 + ky2  > 0
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Simplifyenergy2, Re kx2 + ky2  > 0

1

2 ky2 kx2 + ky2 (λ + μ)2
μ ky kx2 + ky2 (λ + μ)

c1 ky kx2 + ky2 (λ + μ) + kx kx2 + ky2 ⅈ c2 ky (λ + μ) + c3 (λ + 3 μ) Conjugate[c1] +

ky kx2 + ky2 (λ + μ) ky -ⅈ c1 kx kx2 + ky2 + c2 kx2 + 4 ky2 (λ + μ) -

ⅈ c3 kx2 + 2 ky2 (λ + 3 μ) Conjugate[c2] +

(λ + 3 μ) ky kx2 + ky2 c1 kx kx2 + ky2 + ⅈ c2 kx2 + ky2 kx2 + 2 ky2 (λ + μ) +

c3 kx2 + ky2 2 ky2 (λ + 2 μ) + kx2 (λ + 3 μ) Conjugate[c3]

FullSimplifyenergy2, Re kx2 + ky2  > 0

1

2 ky2 (λ + μ)2
kx2 + ky2 μ ky (λ + μ)

c1 ky kx2 + ky2 (λ + μ) + kx kx2 + ky2 ⅈ c2 ky (λ + μ) + c3 (λ + 3 μ) Conjugate[c1] +

ky (λ + μ) ky c2 kx2 + 4 c2 ky2 - ⅈ c1 kx kx2 + ky2 (λ + μ) - ⅈ c3 kx2 + 2 ky2 (λ + 3 μ)

Conjugate[c2] + (λ + 3 μ) ky c1 kx kx2 + ky2 + ⅈ c2 kx2 + 2 ky2 (λ + μ) +

c3 2 ky2 (λ + 2 μ) + kx2 (λ + 3 μ) Conjugate[c3]

Now, we replace the constants c1 c2 and c3 with their expressions as functions of the displacements at 

the top surface of the substrate (z=0):
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energy3 =

1

2 ky2 (λ + μ)2
kx2 + ky2 μ ky (λ + μ) uint / ky ky kx2 + ky2 (λ + μ) + kx kx2 + ky2

ⅈ wint / ky ky (λ + μ) + -kx  kx2 + ky2 * uint - I * wint - ky  kx2 + ky2 *

vint * (λ + μ)  λ + 3 * μ λ + 3 μ Conjugate[uint] / ky +

ky (λ + μ) ky wint / ky kx2 + 4 wint / ky ky2 - ⅈ uint / ky kx kx2 + ky2 (λ + μ) -

ⅈ -kx  kx2 + ky2 * uint - I * wint - ky  kx2 + ky2 * vint *

(λ + μ)  λ + 3 * μ kx2 + 2 ky2 λ + 3 μ Conjugate[wint] / ky +

λ + 3 μ ky uint / ky kx kx2 + ky2 + ⅈ wint / ky kx2 + 2 ky2 (λ + μ) +

-kx  kx2 + ky2 * uint - I * wint - ky  kx2 + ky2 * vint *

(λ + μ)  λ + 3 * μ 2 ky2 λ + 2 μ + kx2 λ + 3 μ

-kx  kx2 + ky2 * Conjugate[uint] + I * Conjugate[wint] -

ky  kx2 + ky2 * Conjugate[vint] * (λ + μ)  λ + 3 * μ // FullSimplify

1

2 kx2 + ky2 (λ + 3 μ)

μ 2 kx2 uint (λ + 2 μ) + ky2 uint (λ + 3 μ) + kx -2 ⅈ kx2 + ky2 wint μ + ky vint (λ + μ)

Conjugate[uint] +

kx ky uint (λ + μ) + kx2 vint (λ + 3 μ) + 2 ky -ⅈ kx2 + ky2 wint μ + ky vint (λ + 2 μ)

Conjugate[vint] + 2 ⅈ kx kx2 + ky2 uint μ + kx2 wint (λ + 2 μ) +

ky ⅈ kx2 + ky2 vint μ + ky wint (λ + 2 μ) Conjugate[wint]

wconj2'[z] * w2'[z] // Simplify

ⅇ-2 kx2+ky2 z kx2 + ky2 c2 ky + ⅈ c3 -1 + kx2 + ky2 z

ky Conjugate[c2] - ⅈ -1 + kx2 + ky2 z Conjugate[c3]
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FullSimplify

1

2 ky2 kx2 + ky2 (λ + μ)2

μ ky (λ + μ) c1 ky kx4 + ky3 + kx2 ky 1 + ky (λ + μ) +

kx kx2 + ky2 ⅈ c2 ky kx2 + ky -1 + 2 ky (λ + μ) +

c3 kx2 λ + 3 μ + ky -λ + 2 ky λ - μ + 4 ky μ Conjugate[c1] +

kx2 + ky2 ky (λ + μ) ky -ⅈ c1 kx kx2 + ky2 + c2 kx2 + 4 ky2 (λ + μ) -

ⅈ c3 kx2 + 2 ky2 λ + 3 μ Conjugate[c2] +

λ + 3 μ ky c1 kx kx2 + ky2 + ⅈ c2 kx2 + 2 ky2 (λ + μ) +

c3 2 ky2 λ + 2 μ + kx2 λ + 3 μ Conjugate[c3] 

1

2 ky2 kx2 + ky2 (λ + μ)2
μ

ky (λ + μ) c1 ky kx2 + ky kx2 + ky2 (λ + μ) + kx kx2 + ky2 ⅈ c2 ky kx2 + ky (-1 + 2 ky)

(λ + μ) + c3 kx2 (λ + 3 μ) + ky (-λ + 2 ky λ - μ + 4 ky μ) Conjugate[c1] +

kx2 + ky2 ky (λ + μ) ky c2 kx2 + 4 c2 ky2 - ⅈ c1 kx kx2 + ky2 (λ + μ) -

ⅈ c3 kx2 + 2 ky2 (λ + 3 μ) Conjugate[c2] +

(λ + 3 μ) ky c1 kx kx2 + ky2 + ⅈ c2 kx2 + 2 ky2 (λ + μ) +

c3 2 ky2 (λ + 2 μ) + kx2 (λ + 3 μ) Conjugate[c3]

Finally, we replace the Lame coefficients with their expressions as functions of the Young modulus and 

Poisson ratio.
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energy4 =

1

2 kx2 + ky2 Young * ν  1 + ν * 1 - 2 * ν + 3 Young  2  1 + ν

Young  2  1 + ν

2 kx2 uint Young * ν  1 + ν * 1 - 2 * ν + 2 Young  2  1 + ν + ky2

uint Young * ν  1 + ν * 1 - 2 * ν + 3 Young  2  1 + ν +

kx -2 ⅈ kx2 + ky2 wint Young  2  1 + ν + ky vint

Young * ν  1 + ν * 1 - 2 * ν + Young  2  1 + ν Conjugate[uint] +

kx ky uint Young * ν  1 + ν * 1 - 2 * ν + Young  2  1 + ν +

kx2 vint Young * ν  1 + ν * 1 - 2 * ν + 3 Young  2  1 + ν +

2 ky -ⅈ kx2 + ky2 wint Young  2  1 + ν +

ky vint Young * ν  1 + ν * 1 - 2 * ν + 2 Young  2  1 + ν

Conjugate[vint] + 2 ⅈ kx kx2 + ky2 uint Young  2  1 + ν +

kx2 wint Young * ν  1 + ν * 1 - 2 * ν + 2 Young  2  1 + ν +

ky ⅈ kx2 + ky2 vint Young  2  1 + ν + ky wint Young * ν  1 + ν * 1 - 2 * ν +

2 Young  2  1 + ν Conjugate[wint] // FullSimplify

1

4 kx2 + ky2 -3 + ν + 4 ν2

Young

4 kx2 uint (-1 + ν) + ky2 uint (-3 + 4 ν) - kx ky vint + 2 ⅈ kx2 + ky2 wint (-1 + 2 ν)

Conjugate[uint] +

-kx ky uint + 2 ky ⅈ kx2 + ky2 wint (1 - 2 ν) + 2 ky vint (-1 + ν) + kx2 vint (-3 + 4 ν)

Conjugate[vint] + 2 2 kx2 wint (-1 + ν) + ⅈ kx kx2 + ky2 uint (-1 + 2 ν) +

ky 2 ky wint (-1 + ν) + ⅈ kx2 + ky2 vint (-1 + 2 ν) Conjugate[wint]
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